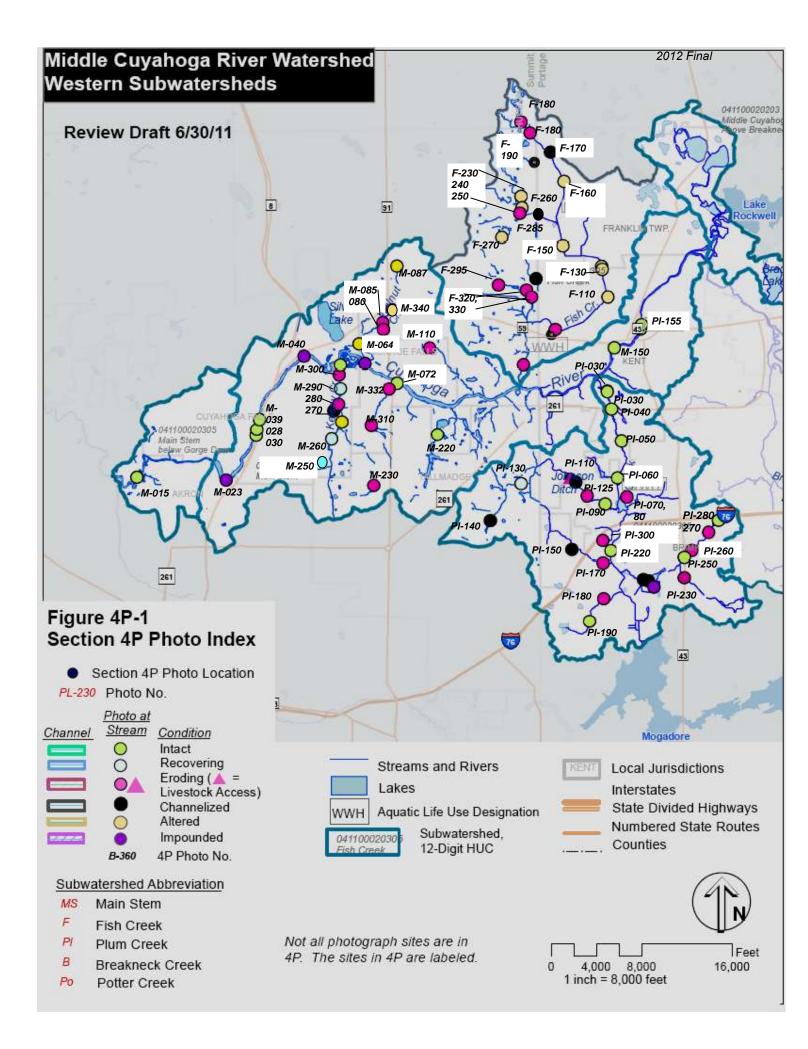
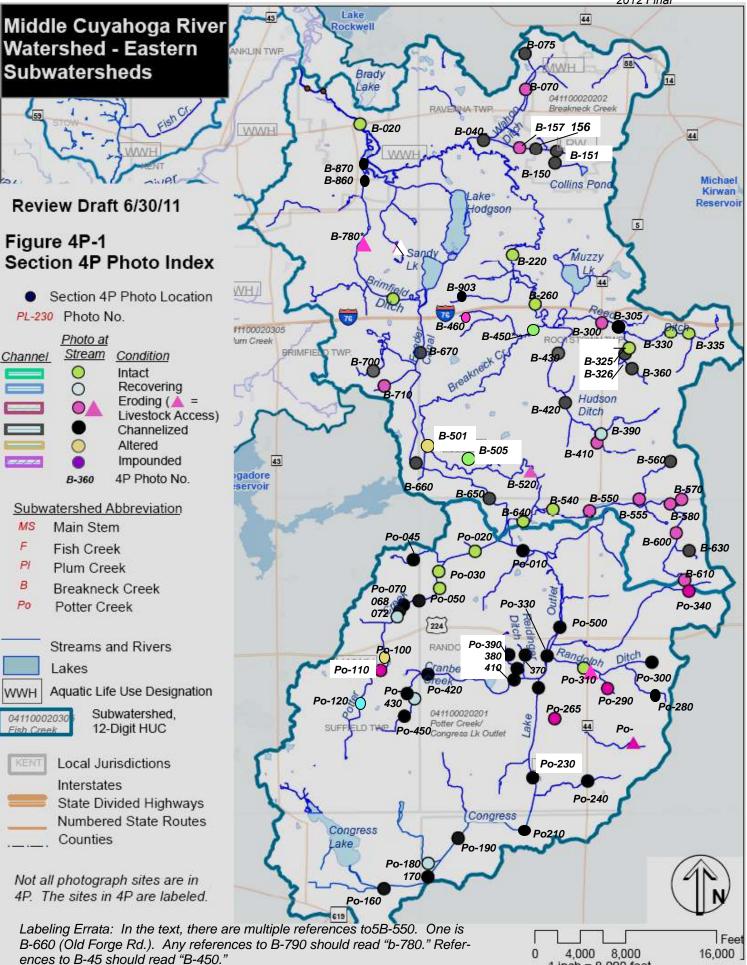
Middle Cuyahoga River Watershed Action Plan Section 4P Watershed Photos by Subwatershed

2012 Final

Attachment 4P Organization


4P is organized by subwatershed:

- M (or MS) is Main Stem;
- F (or FC) is Fish Creek;
- Pl is Plum Creek;
- B (or BC) is Breakneck Creek
- Po is Potter Creek


At the beginning of the attachment there is an index map of all the photos and a list and description of the photos, slope, channel condition, and page number by subwatershed.

The photos are grouped by main stem or tributary and, to the extent possible, are presented from the downstream (receiving) end and working upstream, toward the source.

The photo sites are color coded on the index map to reflect observed conditions.

1 inch = 8,000 feet

4P Photo Number	Page 4P M-	Name	% Slope	Channel Condition	Example_of
MS-015	1	Cuyahoga River	0.28	Intact	Cuyahoga River, intact corridor in Cascade
MS-020	1	Cuyahoga River		Impounded/	Cuyahoga R. Ohio Edison dam and
		, 0		intact	downstream
MS-023	1	Cuyahoga River	0.79	Impounded	Cuy. R. Ohio Edison dam pool impounded
MS-028	1	Cuyahoga River	0.79	Intact	Cuyahoga River in CF Gorge
MS-030	2	Cuyahoga River	0.79	Intact	Cuyahoga River CF Gorge at High Glens
MS-040	2	Cuyahoga River	5.00	Intact	Cuyahoga River expert class rapids
MS-043	2	Cuyahoga River		Impounded	Dams and dam pools, Cuyahoga Falls
MS-057	2	Cuyahoga River	0.09	Impounded	Cuyahoga River dam pool, Cuy. Falls
MS-060	2	Cuyahoga River	0.09	Intact	Cuy. R Water Works Pk dam pool but flowing
MS-063	5	Walnut Creek	0.45	Channelized, hardened	Walnut Cr, hardened channel, flooding/bank failure
MS-072	3	Cuyahoga River	0.08	Intact	Cuy R Munroe Falls dam site intact channel
MS-085	5	Walnut Creek	1.60	Eroding	Walnut Creek in park, eroding - runoff vol.
MS-080	5		6.62	Eroding	Walnut Cr. trib, very steep, eroding from runoff
MS-083	1		0.00	Altered, incised	Walnut Cr. headwater urbanized channel
MS-110	6		0.46	Eroding	Eroded headwater trib no buffer
MS-148	3	Cuyahoga River	0.10	Intact	Cuyahoga River intact channel, steep valley, boardwalk Kent
MS-150	3	Cuyahoga River	0.46	Intact,	Cuy R Kent dam site up/downstream
MS-155	3		0.00	Intact	Cuyahoga River near Brady's Leap (rapids)
MS-220	6	Munroe Falls Park tributary	1.18	Intact	Intact stream corridor, Munroe Falls MetroPark
MS-230	4		3.04	Channelized, eroding	Kelsey Cr eroding headwater trib, steep slope, neighborhood runoff
MS-250	4	Kelsey Creek	very Iow	Intact/ recovering	Low-gradient portion of Kelsey Creek in woods more intact than other places
MS-260	4	Kelsey Creek	0.50	Recovering	Kelsey Creek - low gradient woods/park
MS-270	4		0.39	Altered, hardened channel	Kelsey Cr. trib - hardened
MS-280	4	Kelsey Creek	0.15	Eroding	Kelsey Cr. eroding/incised in park
MS-290	4	Kelsey Creek	0.23	Recovering	Kelsey Cr. former dam pool
MS-300	4	Kelsey Creek	0.78	Eroding	Kelsey Cr. in Water Works Park - banks eroding
MS-310	6		0.91	Incised	Incised headw trib, slope - 3.4 to 0.9% here
MS-332	6		1.09	Incised	Incised tributary - runoff, steep slopes
MS-340	5			Altered/ culverted	Walnut Creek flowing under building
MS-345	5			Altered/ culverted	Walnut Creek headwater tributary - culverted

Table 4P-1f		Photo Index F	ish Cre	ek Subwate	ershed
4P Photo	Page		%	Channel	
Number	4P f-	Name	Slope	conditions	Example_of
f-020	1	Fish Creek		Intact	Fish Cr. intact corridor WWH non att. 2000
f-050	1	Fish Creek		Channelized	Fish Creek at Route 59 channelized narrow
f-070	1	Fish Creek		Channelized	Fish Cr at Sunrise small wooded buffer, flowing
f-080	2	Fish Creek	0.08	Eroding,	Fish Cr lower (Spaulding) - channelized
				channelized,	eroding flooding
				embedded	
f-095	7		0.00		Fish Cr. subwatershed pavement runoff
f-110	2	Fish Creek	0.05	Altered	Fish Cr. channelized, altered wetland
				wetland, chnanelized	
f-130	2	Fish Creek	0.05	Channelized	Fish Cr McKinney channelized, altered
1-130	2	FISH CIEEK	0.05	Channelizeu	wetland, flooding problems
f-131	2	Fish Creek	0.05	Altered	Fish Cr. altered wetland upstream of flood
	_			Wetland	probs.
f-150	3	Fish Creek	0.07	Altered	Fish Cr. altered wetland, at Johnson limited
				wetland,	flood access
				channelized,	
				embedded	
f-160	4	Fish Creek	0.47	Altered	Fish Cr. altered wetland; woods
				wetland, channelized	
f-170	4	Fish Creek	0 17	Embedded	Fish Cr. narrow shrub/grass buffer embedded
f-180	4	Fish Creek	0.38		Fish Cr. wooded buffer ?intact channel??
f-190	4	Fish Creek		Incised	Fish Cr. narrow treed buffer, grass, incised?
f-260	5	Fish Creek	0.30	Channelized	Fish Cr. Newcomer Rd., channelized flooded
					after heavy rain
f-230	6		0.33	Altered	Fish Cr. Headwaters altered hydrology &
f-240	6		0.50	Wetland Altered	wetland in subdiv.
1-240	0		0.52	Wetland	Fish Cr. Headwaters altered hydrology & wetland in subdiv.
f-250	6		0.07	Incising,	F Cr narrow treed buffer eroding bank intact
1 200	U		0.07	eroding	channel
f-270	6		1.03	Altered	Fish Cr. Headwaters altered hydrology &
				Wetland	wetland in subdiv.
f-285	7		0.28	Channelized	Fish Cr. trib - altered channel, grass banks at
			_		HS
f-295	7		0.00	Incising,	Fish Cr. headwaters - storm drain outflow from
f 220	7		1 20	channelizing	plaza F Cr headwater trib in subdiv. grass/shrub
f-320	1		1.30	Incising?	banks/buff
f-330	7		0.19	Incising	F Cr headwater trib in subdiv. eroding mown
			50	-	hanka
f-360	7			?Intact?	Fish Creek headwater with narrow buffer

Table 4P-1pl		Index Map Plu	m Cree	k Subwater	shed
4P Photo Number	Page 4P Pl-	Name	% Slope	Channel Condition	Example_of
PL-030	1	Plum Creek	?	Intact -	Plum Creek restoration
1 2 000	•			restored	
PL-040	1	Plum Creek	0.56	Intact/starting to erode?	Plum Creek intact corridor
PL-050	1	Plum Creek	0.14	Intact	Plum Creek intact corridor
PL-060	1	Plum Creek	0.52	Intact	Plum Creek in wetlands at Howe by subdiv.
PL-070	1		0.00	Eroding	development and erosion - Pleasant Lakes
PL-080	1	Lake			View of Lake in Pleasant Lakes development, receives water from all ditches
PL-090	2	Johnson Ditch	1.98	Intact	Johnson Ditch intact corridor
PL-100	2	Johnson Ditch		Channelized	Channelized Johnson Ditch, minimal to good buffer
PL-105	2	Johnson Ditch	0.34	Eroding	Johnson Ditch high flow, woods, ag field erosion
PL-110	3	Johnson Ditch	0.34	Channelized - livestock	J Ditch channelized unrestr livestock access
PL-115	2	Johnson Ditch	0.34	Channelized	Johnson Ditch narrow buffer from industrial site
PL-130	3	Johnson Ditch	0.29	Channelized/r ecovering	J Ditch, JayCee park, in wetl culverted both ends
PL-140	3	Johson Ditch	0.29	Channelized	Johnson Ditch headw in subdiv by det basin
PL-150	4		0.48	Channelized	Johnson Ditch as roadside ditch
PL-170	4		0.27	Eroding	J Ditch s eroding bank by building
PL-180	4		0.48	Incised, eroding	Plum Cr trib eroding stream no buffer golf course
PL-190	4		0.55	Intact	Plum Cr headw trib intact corridor
PL-210	5		0.30	Channelized	Plum Cr trib channelized by subdiv
PL-215	5		0.34	Channelized	Plum Cr headwater - channelized
PL-220	4	Plum Creek	0.44	Intact	Plum Creek intact corridor
PL-225	5		0.00	Impounded	Private impounded lake
PL-230	5		2.48	Eroding, channelized	Plum Cr tributary eroding min-no buffer
PL-250	6		0.41	Intact	Plum Creek trib - Wetland mitigation area
PL-260	6		0.41	Eroding, channelized	Plum Cr. headw trib eroding infrastructure
PL-270	6		0.41	Eroding	Plum Cr trib streambank erosion in development
PL-280	6			Intact	Plum Cr headw trib intact sm-wide wooded buff
PL-300	4		0.07	Eroding	Plum Cr trib flows through topsoil/mulch piles

Table 4P-1 B		Photo Index B	reakne	neck Creek Subwatershed				
4P Photo	Page		%	Channel				
	4P b-	Stream Name	Slope	Condition	Example_of			
B-020	1 & 2	Breakneck Creek		Intact altered buffer	B. Cr. intact channel, narrow wooded buffer, urban			
B-045	1	Breakneck Creek		Intact	Breakneck Creek at Rootstown, intact,			
B-040	9	Wahoo Ditch	0.13	Channelized	wetlands, spring floods W. Ditch, channelized, overgrown non-attain			
B-040 B-055		Wahoo Ditch	0.15	Channelized	Wahoo Ditch			
B-070		Wahoo Ditch	0.04	Channelized,	W Ditch channelized eroding sod banks,			
D 0/0	5	Walloo Diteri	0.04	eroding	urban/woods, area with flooding problems			
B-075	9	Wahoo Ditch	0.22	Channelized				
B-150		Hommon Ave. Ditch		Channelized	Hommon Ave. Ditch LRW narrow channelized gr buffer			
B-151	10	Collins Pond Outlet	0.11	Altered/culver ed	Altered hydrology culverted channelized			
B-156	10	Hommon Ave. Ditch	0.00	Channelized	Hommon Ave. Ditch channelized, grass buffer			
B-157	10	Hommon Ave. Ditch	0.00	Channelized, eroding	Hommon Ave. Ditch eroding channelized			
B-160	10	Collins Pond Outlet	0.11		Collins Pond Outlet/Hommon Ave. Ditch, altered, channelized, culverted			
B-170	11	Collins Pond		Altered wetInad	Vicinity of Collins Pond			
B-180	11	Collins Pond		Altered wetland				
B-220	2	Breakneck Creek	0.02	Intact	Breakneck Cr. intact floodplain, flooding			
B-260	2	Breakneck Creek	0.03	Altered, eroding grass/no buffer	Altered eroding grass bank/buffer, could be influenced by Hudson/Reed Ditches upstream			
B-300	6	Reed Ditch	0.05	Channelized, incised	Reed Ditch channelized incised large volume			
B-305	6	Reed Ditch			Reed Ditch channelized			
B-325		Reed Ditch	0.23	Channelized	Reed Ditch s. trib tall grass banks/buffer			
B-326	7	Reed Ditch	0.23		Reed Ditch s. trib. wooded buffer			
B-330	6	Reed Ditch	0.36	Intact?	R. Ditch small headwater grass/tree buffer good flow			
B-335	6	Reed Ditch	0.36	?	R. Ditch small headwater grass/tree buffer			
B-360	7	Reed Ditch	1.49	Altered/ channelized	R. Ditch channelized mown swale plus detention basin			
B-390	5	Hudson Ditch	0.95	Recovering	Hudson Ditch narrow shrub buffer embedded			
B-410		Hudson Ditch		Incised	Incised headwater stream mown grass banks			
B-420	5	Hudson Ditch	0.04	Channelized	Hudson Ditch channelized, grass banks			

Table 4P-1 B		Photo Index B	reakne	ck Creek Su	ubwatershed
4P Photo Number	Page 4P b-	Stream Name	% Slope	Channel Condition	Example_of
B-430		Hudson Ditch		Channelized, incised	Hudson Ditch channelized, embedded, buffer woods/grass
B-460 B-501	13 2	Breakneck Creek	low	Eroding ?	Headwater tributary eroding, no buffer Breakneck Cr at Old Forge Rd. No buffer.
B-505	13			Intact? No buffer	Headwater tributary at Old Forge no buffer
B-520	2	Breakneck Creek	0.10	Eroding, livestock	Breakneck Cr altered eroded grass bank in livestock yard
B-540	1	Breakneck Creek headwater tribs	0.26	Intact	B Cr intact headwater channel in wetland
B-550	3	Breakneck Creek headwater tribs	0.31	Intact	B Cr Intact weltand below headwater tribs
B-555	3	Breakneck Creek headwater tribs	1.27	Channelized	B Cr headw. tribs channelized eroding grass banks
B-560	3	Breakneck Creek headwater tribs	1.27	Eroding	B Cr headw tribs eroding banks buffer- ag/wet/woods
B-575	3	Breakneck Creek headwater tribs	0.70	Eroding	View of eroding stream in field along Wilkes
B-580	4	Breakneck Creek headwater tribs	2.35	Eroding, channelized	B Cr headw tribs eroding banks volume channelization
B-600	4	Breakneck Creek headwater tribs	0.67	Eroding	B Cr headw trib eroding banks sm. grass/woods buff
B-610	4	Breakneck Creek headwater tribs	0.96	Eroding/incisi ng	B Cr headw trib eroding mown grass banks
B-630	4	Breakneck Creek headwater tribs	1.61	Channelized	B Cr headw trib grass/ag banks/buffer
B-640	1	Breakneck Creek	0.00	Intact buffer - channelized? ?	Congress Lake Outlet/Potter Cr. Upstream of confluence, intact corridor, wetlands
B-650	12	Feeder Canal	0.04	Channelized	Feeder Canal, ditch small treed buffer in res/ag use
B-660 B-670		Feeder Canal Feeder Canal		Channelized Channelized	Feeder Canal mown grass banks/buffer Feeder Canal channelized narrow treed buffer
D-070	12		0.13	Channelized	

Table 4P-1 B		Photo Index B	ubwatershed		
4P Photo Number	Page 4P b-	Stream Name	% Slope	Channel Condition	Example_of
B-700	13	Feeder Canal	0.69	Eroding, altered banks	Feeder Canal headw trib eroding turbid grass banks
B-710	13	Feeder Canal	0.59	Eroding	Feeder Canal headw trib eroding trubid grass banks
B-740	8	Brimfield Ditch	0.27	Intact	Brimfield Ditch intact vegetated buffer
B- 780/790	8	Brimfield Ditch		Eroding, channelized, livestock	Brimfield Ditch livestock access channelized no fp
B-860	8	Brimfield Ditch		Channelized	Near water treatment plant - no buffer one side
B-870	8	Brimfield Ditch		channelized	Good buffer
B-903	13			channelized	Headwater tributary channelized, small buffer

Table 4F	р-1 ро	Photo Index P	otter C	reek Subwa	tershed
4P Photo Number	Page 4P Po-			Channel Condition	Example_of
Po-010	4	Congress Lake Outlet	0.14	Channelized	CLO/Potter Creek at Johnnycake Rd. floods, resid. area
Po-020	1	Potter Creek	0.04	Intact channel/	Potter Cr. lower at confluence of CLO- intact in wetland
				embedded	
Po-030	1	Potter Creek	0.15	Intact	Potter Cr lower -Randolph Rd. in wetland
Po-040	1		0.13	Channelized	Potter Cr. trib channelized grass buffer
Po-045	<u>1</u> 1	Potter Creek	0.15	Channelized	Potter Cr. Trib channelized no buffer Potter Cr. at Trares Rd. in wooded buffer WWH
Po-050			0.15	Intact	partial
Po-060	1	Potter Creek	0.15	Embedded	Potter Cr at Conley Rd. in buffer, embedded, ditch upstream
Po-068	2	Potter Creek	0.16	Channelized	Large, diverse wetland buffer on Potter Creek, contiguous to easement
Po-070	2	Potter Creek	0.16	Channelized/ embedded	Potter Cr. ditch embedded prop. overwide site
Po-072	2	Potter Creek	0.16	Recovering/ intact	Potter Cr. recovered section in woods immediately upstream of demo site
Po-100	2	Potter Creek	0.44	still intact?	Potter Creek at Waterloo Rd. no buffer/treed
Po-110	3	Potter Creek	0.44	Recovering	Potter Cr. at Shaffer, livestock fence, recovering
Po-111	3	Potter Creek	0.44	Eroding incising	Potter Creek bank erosion downstream of fenced cattle yard eroded during floods (2003?)
Po-120	3	Potter Creek		literentig	Potter Creek at Steffy Rd. varied buffer
Po-160	5	Congress Lake Outlet	0.12	Channelized embedded weedy	Upper Congress Lake Outlet (CLO) at Swamp Rd summer, weedy
Po-170	5	Congress Lake Outlet	0.05	Channelized eutrophic	CLO, upper - algae filled
Po-180	9		0.49		CLO tributary - recovering in channel
Po-190	5	Congress Lake Outlet	0.05	Channelized, embedded	CLO - upper, steep sided channel, silted in
Po-210	5		0.16		CLO, upper reaches, narrow channel and buffer
Po-230	5	Congress Lake Outlet	0.07	Channelized	CL0 upper reaches good flow
Po-240	9		0.00	Channelized	Potter Cr/CLO tributary varying grass buffer
Po-250	9		0.70	Eroding, incising, livestock	CLO trib incised unrestricted livestock access
Po-265	9		0.00	Eroding, incising	CLO tributary incised in woods - upstream effects
Po-280	8			Channelized	Randolph Ditch tributary - channelized roadside ditch
Po-290	8	Randolph Ditch	1.17	Eroding, incising	Randolph Ditch trib. some buffer, incised, intact
Po-300	8	Randolph Ditch	0.45	Channelized	Randolph Ditch trib minimal buffer channelized

Table 4P-1 po		Photo Index P	otter C	reek Subwa	k Subwatershed			
4P Photo Number	Page 4P Po-	Name	% Slope	Channel Condition	Example_of			
Po-310	8	Randolph Ditch	0.12	Eroding, livestock	Randolph Ditch unrestricted livestock access			
Po-311	8	Randolph Ditch	0.12	Intact	Randolph Ditch downstream of Rte 44 livestock small buf			
Po-320	4	Congress Lake Outlet	0.07	Channelized	CLO - wooded buffer			
Po-330	4	Congress Lake Outlet	0.11	Channelized	CLO at Alexander Rd., confluence Randolph Ditch grassed/wooded buffer			
Po-340	9		0.41	Incising/ Intact/ altered	CLO tributary intact in woods, incised where no buffer			
Po-341	9		0.41	Incising/ Intact/ altered	CLO tributary intact in woods, incised where no buffer			
Po-370	7	Reidinger Ditch	0.21	Channelized	Reidinger Ditch grass buffer, channelized, tiled			
Po-380	7	Reidinger Ditch	0.46	Channelized	Reidinger Ditch, grassed buffer, channelized			
Po-390	7	Reidinger Ditch	0.46	Channelized	Reidinger Ditch narrow grass buffer in ag			
Po-410	6	Cranberry Creek	0.12	Channelized	Cranberry Cr. tiled ditch small buffer			
Po-420	6	Cranberry Creek	0.09	Channelized	Cranberry Creek channelized, small grass buffer			
Po-430	6	Cranberry Creek	0.00	Channelized	Cranberry Cr. extensively channelized minimal buffer			
Po-440	6	Cranberry Creek	0.28	Recovering	Cranberry Creek minimal buffer from ag recovering			
Po-450	6	Cranberry Creek	0.28	Channelized	Cranberry Cr. in residential area min. buffer			
Po-500	4	Congress Lake Outlet	0.04	Channelized	CLO lower end - Waterloo Rd., spring floods no flooding; wooded buffer			

Middle Cuyahoga River Watershed Plan

Middle Cuyahoga River—Lower end to Gorge; Dam Pools—Non-attainment WWH criteria

MS-015 Cuyahoga River at Cascade MetroPark, Oct., 2010.

MS-020 Below and at Ohio Edison Dam; July, 2009.

MS-023 Ohio Edison dam pool at Gorge Rd; July, 2009.

MS 028 Cuyahoga River in the Gorge between top of the dam pool and Overlook. July, 2009.

Cuyahoga River Main Stem—Gorge and Low-Head Dam Pools

MS-030 Gorge up- and downstream of High Glens overlook, Cuyahoga Falls gorge. Low-head dam pools are in far background of left picture. New High Glens Park boardwalk visible in right-hand photo.. Nov., 2009.

MS 040 Expert-class rapids at Sheraton below lowermost low-head dam at Broad St., July, 2009.

MS 043 View of two remaining low-head dam pools and upper-most dam in Cuyahoga Falls from Cuyahoga Falls riverfront walk. July, 2009.

MS-057 Upper dam pool at Oak Park Ave.

MS-060 Cuyahoga River at Water Works Park, on a double meander on a low-lying sand/gravel deposit. Park floods during high water. Near public water supply. June, 2011, Mar., 2004.

Middle Cuyahoga River Restored Section—Munroe Falls to —Kent

MS-072 View of river and rapids at reconstructed dam abutment at Brust Park where the Munroe Falls dam was removed. May, 2008. Pic. 9192.

MS-148 Cuyahoga River boardwalk trail, Kent. Steepsided valley walls apparent to left. This is a typical view of the Middle Cuyahoga between Munroe Falls and Kent. Mar., 2009.

MS-150 Left: View from Main St. bridge looking downstream to Kent dam. River flows through sluiceway, and the historic dam has been retained as a park. Right: View downstream of the park on the dam. June, 2011, Nov. 2010.

MS-150 Cuyahoga River upstream of dam and bridge. May, 2010.

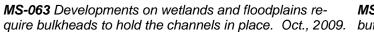
MS-155 Cuyahoga River near Brady's Leap, Kent. October, 2010

Kelsey Creek

MS-300. Kelsey Creek in Water Works Park. The channel is gravelly. Erosion, which may be threatening the bridge, may be due to high volumes. June, 2011.

MS-290 Kelsey Creek, former dam pool. June, 2011.

MS 280, 270 Kelsey Creek in Kennedy Park lacks a functional riparian corridor and is eroding its banks, partially due to excess stormwater from altered stream corridors and impervious surfaces in neighborhoods. The sediment and channel erosion degrade the stream habitat. Many streams in the Main Stem subwatershed are altered. Spring, 2011, Summer, 2010.


MS 250, 260 Kelsey Creek is generally low-gradient and is most intact within woods.. (Center) Even a low-gradient portion like this through Galt Park is incising, showing evidence of overloading. Summer, 2010.

MS-230 Stormwater runoff from a Tallmadge neighborhood contributes to overloading the creek and water quality problems.. This is one of the few steep slopes along Kelsey Cr. Spring, 2004.

Walnut Creek

MS-080 Steep slopes contribute to the erosive force of the water. Oct., 2009.

MS-085 Walnut Creek in Adell Durbin Park has a wooded buffer but is eroding from excess stormwater. Oct., 2009.

MS 340, 345 Headwater tributaries to Walnut Creek have been severely altered. Culverted tributaries flow beneath the pavement and sod. The tributary on the right emerges in the background behind the houses. Summer, 2010; Spring, 2011

Other Main Stem Sub-watershed Tributaries

While a few of the headwater tributaries in the Main Stem subwatershed have intact riparian environments, many have been altered or otherwise affected by excess runoff and steep slopes. Some headwater tributaries became incised at the river when the Munroe Falls dam and river base level were lowered.

MS-110 Unnamed Tributary, Charring Cross Rd., July, 2010.

MS-220. Munroe Falls MetroPark Creek appears to be an intact, high-quality stream with gravel substrate, riparian zone, wooded riparian buffer, variable flow. August, 2010.

MS-310, 332. Unnamed tributary that flows past Munroe Falls City Hall. The entire length is incised, apparently overloaded by runoff from neighborhoods and steep slopes.

Fish Creek—Main Stem WWH (Non-Attainment)

FC-020 Fish Creek n. of N. River Rd. Nov., 2009, June, 2011

F-50 Fish Creek at Rte 59, June, 2011

F70 Fish Creek at Sunrise Rd. June, 2011.

Watershed Typical Views—Fish Creek Subwatershed

Fish Creek Kent—MWH In Attainment

This portion of Fish Creek is known for flooding problems, receiving excess storm water from upstream.

FC-080 Fish Creek at Spaulding, spring floods on right. Note proximity of flood waters to buildings and partially submerged utility pole, eroding banks, lack of floodplain access. Nov., 2010, March 2011

FC-110 Fish Creek at Fairchild Nov., 2010

F-130 McKinney Ave. flooding Mar, 2011

FC-130 McKinney Ave. Playground (left) is converted wetland adjacent to Fish Creek; Fish Creek channel (center); channelized wetland upstream of playground/flooding site (right). Nov., 2010.

Fish Creek at Johnson Rd.

FC-150 Fish Creek at Johnson Rd. This area provides a clear example of the effect of channelizing Fish Creek through former wetlands. The poorly draining soils pond the water, but the creek has limited access to floodplains, and the flood water is not being stored or treated within the soil and roots of the wetland. Photos taken during July, 2010 (top left), November, 2010 (middle), March floods, 2011(bottom).

Watershed Typical Views—Fish Creek Subwatershed

Fish Creek, Northern Portion

FC-160 Fish Cr. At Spell Rd. – altered wetland Nov., 2009.

FC-170 Fish Creek at Judson Rd., July, 2009.

FC-180 Fish Creek by Ravineview, Nov. 2009.

FC-190 Fish Creek at Barlow Rd. Nov., 2010

Watershed Typical Views—Fish Creek Subwatershed

FC-260 Newcomer Rd after heavy rain, April, 2011. There have been reports of this road flooding, and the flattened vegetation suggests possible over-topping of the road. The narrow channelized stream is apparent under the floodwater in the fourth picture. This road receives drainage from several subdivisions on topof the hill to the east, which all have severely altered hydrology.

Fish Creek Headwaters flowing to Newcomer

This tributary system has been highly altered.

FC-230 Fish Creek at Rose Mallow Rd., Nov. 2009, July, 2010.

FC-240 Fish Creek at Bluestem in altered wetland. Nov., 2009.

FC-270 Fish Creek at Wexford Rd. July, 2010.

FC-250 Fish Creek headwater at Young Rd., July 2010. Watershed Typical Views—Fish Creek Subwatershed

Lower Fish Creek Headwater Tributaries

These few photos are typical of residential and commercial development in the lower portion of the Fish Creek watershed, both in Stow and Kent. Although some landscape features have been preserved, most of the riparian landscape is highly altered However, there are many homeowners' association parcels and large properties (e.g, the Stow-Munroe falls high school), where willing property owners could improve the riparian landscape or infiltrate stormwater.

F-320, F330 Remaining stream in developed area, Edgewater neighborhood. In areas like these, enhancing the narrow riparian area with shrubs, tall grasses, or trees, could reduce the risk of erosion. Nov., 2009.

F-360 Stream channel off Fish Creek Rd & Greenlawn – some buffer Nov., 2009.

F-295 Drainage from a shopping plaza at Graham & Fishcreek is a headwater of Fish Creek Nov. 2010, June, 2011.

FC-095 Route 59 (above), Fish Creek Rd., and Graham Rd. in Stow and Kent are heavily developed with commercial uses, roads, and, parking lots, which drain to Fish Cr. Nov., 2010.

FC-285 Modified stream channel, Fish Creek tributary at Stow-Munroe Falls High School. July, 2010

Watershed Typical Views—Fish Creek Subwatershed

Plum Creek—WWH In Attainment, 2000

Similar to Breakneck Creek, much of the Plum Creek main stem corridor is relatively intact, with wetlands, floodplains, and wooded buffers protecting the stream. However, much of the Plum Creek subwatershed was undergoing rapid development prior to the economic downturn that began in 2007-2008 and is likely to face development pressure again. As with Breakneck Creek, the headwater tributaries are more altered than the main stem.

PI-025, 030 Plum Creek Park, restored stream; Nov., 2010.

PI-040 Plum Creek upstream of Route 261 April, 2011.

PI-050 Plum Creek at Sunnybrook Rd.

PI-060 Plum Creek at Howe Ave. April, 2011.

PI-060 View from railroad tracks across Plum Creek/ wetland to Pleasant Lakes subdivision during flood March, 2009

PI-070, PI-080 Pleasant Lakes development, with view of lake. The lake receives water from all Plum Creek tributaries/ditches. March, 2009

Watershed Typical Views—Plum Creek

Johnson Ditch

Portions of Johnson Ditch flow through intact stream corridors; others have been altered.

PI-090 Johnson Ditch at Sunnybrook, March 2009 & May, 2011.

PI-105 Johnson Ditch at Mogadore Rd. Roadside ditch carrying sediment to Johnson ditch March, 2009.

PI-100 Plum Creek/Johnson Ditch Mogadore Rd March, 2009

PI-125 Johnson Ditch crosses industrial property at Howe.

Watershed Typical Views—Plum Creek

Johnson Ditch

PI-110 Johnson Ditch at Howe Ave. across (upstream) from Crystal Rd., April, 2011

PI-130 Plum Creek/Johnson Ditch @ JayCee Park Howe Ave. in large wetland complex. Upstream ends culverted under park, agricultural land. April, 2011

PI-140 Head of Johnson Ditch below Tallmadge High School with extended detention basin for schools, Recreation Center.

Plum Creek Tributaries South of Pleasant Lake

PI-220 Plum Creek at Tallmadge Rd. east of Sunnybrook Rd. Nov., 2009

PI-300 Plum Creek tributary at I-76 on Sunnybrook

PI-170 Johnson Ditch (south)) at Sunnybrook Note eroding bank by building. Nov., 2009

PI 150 Johnson Ditch (south)) at Tallmadge Rd.

PL-180 Plum Creek tributary in golf course on Sunnybrook Rd., near the Portage County wellhead 5-year time of travel zone. Nov., 2009

PI-190 Plum Creek tributary at Old Forge Rd. Nov., 2009

PI-210 and 215 Plum Creek headwater in Lor Run neighborhood, March, 2009.

PI-225 private lake near Irish and Dussell Rds.

PI 230 Southern tributary on SR 43, April, 2011

Watershed Typical Views—Plum Creek

Plum Creek Southern Tributaries

Plum Creek Tributaries at Brimfield Center

PI 250 Plum Creek northern tributary SR 43, Brimfield Center, restored wetland, Nov. 2009

PI-260 Plum Creek enters Brimfield Center/Tallmadge Rd. from upstream with erosive force.

PI 270, 280 Plum Creek @ Brimfield Crossings pics Nov., 2009 Watershed Typical Views—Plum Creek

Breakneck Creek (WWH, generally in attainment)

From its lower (more urbanized) end in Kent to its headwaters, this low-gradient, sinuous "swamp creek" flows through nearly continuous bands of woods, wetlands, and floodplains, which hold back floods, provide habitat and shade, and buffer the creek from impacts. Breakneck Creek begins where its headwater tributaries coalesce and then join with Congress Lake Outlet/Potter Creek (bottom pictures). The tributaries are more altered than the creek.

B-020 Breakneck Creek at Route 59 very narrow buffer May 2008.

B-045 Breakneck at Rootstown Rd. during May high waters, with what appears to be silt in the thalweg, flanked by wetlands May 2011

B-640 Congress Lake Outlet/Potter Creek at Johnnycake upstream of confluence, May 2011.

B-540 Breakneck Creek at Hartville Rd. – headwater tributaries upstream of Congress Lake Outlet/Potter Creek confluence, May 2011

Watershed Typical Views—Breakneck Creek

Breakneck Creek Wetlands, Floodplains, Riparian Corridor

While most of Breakneck Creek is flanked by wetlands, floodplains and forested riparian buffer (B-220, top left), at a few areas near road crossings, the wooded riparian environment has been altered.

B-220 Breakneck Cr. At Sandy Lake Rd. BC 220 Nov., 2009.

B-520 Breakneck Creek at Old Forge/Kline – Eroded bank from livestock access (fenced chute?), July, 2010.

B-020 Breakneck Creek at Route 59. Very narrow buffer May, 2008.

B-501 Breakneck Cr. At Old Forge Rd., Nov., 2009.

B-260 At several road crossings, residents near the water have cleared the riparian buffer to the water's edge. In this case, there appears to be a storm pond embankment adjacent to the river, which is eroding. Breakneck Creek at Lynn, downstream of Reed & Hudson Ditches, April, 2011

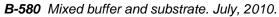
Breakneck Creek Headwater Tributaries (upstream of Congress Lake Outlet

B-550 Breakneck headwaters, mostly incised, flow into a pond and this wetland at Route 44, below which the channel appears to be intact. The downstream effects of the sediment loads have not been determined. April, 2011. Pic 24891.

B-555 Northern headwater tributary at Wilkes. April, 2011. pics 24881, 83

B-560 New Milford Rd. Farm field eroding directly into roadside ditch/headwater tributary. April, 2011. Pic. 24870

B-575 view of incising stream from Wilkes April, 2011. (Misnumbered as 580)


Breakneck Creek Headwater Tributaries (above Confluence with Congress Lake Outlet

B-580 Breakneck headwater tributary, Wilkes Rd. (slope 2.3%) Banks are eroding. April, 2011.

B-610 Small tributary, Fairground Rd..

B-630 Headwater tributary at New Milford Rd., April, 2011.

B-600 Breakneck headwaters at Bassett. Even the portion in the woods is eroding. April, 2011.

Breakneck Creek—Hudson Ditch

B-430 Hudson Ditch at Tallmadge Rd. Nov. 2009.

B-420 Modified stream channel, Hudson Ditch, Bower Rd. July, 2009.

B-420 Hudson Ditch, Bower St. July, 2009.

B-390 Hudson Ditch Rte 44 July, 2009.

B-410 Modified stream channel, Hudson Ditch, Hartville Rd. Nov. 2009

Reed Ditch starts as a small headwater tributary but increases in size to a wide, deeply-incised chasm at its downstream end, due to large volumes of water from the watershed. There appears to be room along Reed Ditch to restore flood storage or other watershed functions.

BC-300 Reed Ditch at Rte 44 - carries huge volume. June, 2010, pics 5306, 5311

B-305 Reed Ditch main stem, neighborhood east of SR 44, June, 2010

B-330 Reed ditch eastern end, New Milford Rd, June, 2010.

B-335 Upstream/eastern end Reed Ditch at Haffrick, June 2010

Reed Ditch-southern tributary

B-325 Reed Ditch southern tributary. Cemetery east of Rte 44 June, 2010.

BC-360 Reed Ditch s. of Tallmadge Rd. June, 2010.

B-326 Reed ditch same as BC 325 but toward back of the cemetery. June, 2010.

Wetland (dark blotchy area) at confluence of Reed and Hudson Ditches. This wetland may be helping buffer the effects of the ditches on Breakneck Creek immediately downstream.

The yellow lines are property lines.

Source: Portage County GIS, 2011, using 2006 aerial photograph.

2012 Final

Middle Cuyahoga River Watershed Action Plan Brimfield Ditch

BC 870, 860 Brimfield Ditch North of Summit Road July, 2010

B-740 Brimfield Ditch at Sandy Lake Rd. Nov. 2009.

B-780 Brimfield Ditch at Meloy. Upper left two photos, November and March, 2009. Right, 2006 aerial photo of Brimfield Ditch, which appears to be channelized, at Meloy Rd..

Watershed Typical Views—Breakneck Creek

BC-040 Wahoo Ditch at Sandy Lake Rd., Aug., 2009

B-070 Wahoo Ditch - Trailer Park - Jones Rd., Feb., 2009.

B-055 Wahoo Ditch at Bridge St. & Rte. 59 Feb., 2009 Pics Misnumbered as 550

B-070 Wahoo Ditch—Trailer Park, Jones Feb, 2009. Watershed Typical Views—Breakneck Creek

B-75 Wahoo Ditch at Wall St. near Infirmary .

Feb., 2009.

4P B-9

B-150, BC-160 Collins Pond Outlet at Diamond Rd. May, 2011

B-151; 156; 157. Hommon Ave. Ditch—(left) B-151 upstream of Ravenna Wastewater Treatment Plant; (lower left) B-156—downstream of wastewater treatment plant (WWTP in background right); and (below) B-157—where the bank and road appear to be eroding. Note high tension power lines in corridor, which would constrain channel reconstruction. May, 2011. Pics 25226, 30, 31

Collins Pond and Hommon Ave. Ditch

Collins Pond (highlighted in blue in lower right). Neighbors have noted flooding problems. Collins Pond outlet is culverted west of Diamond St. (see previous page). The pond is surrounded by wetlands and "D" (very poorly draining) soils, see photos below. The pond is also largely surrounded by impervious surfaces, which increases the runoff load to the pond and outlet channel. Hommon Ave. Ditch is in a channel between a road, the wastewater treatment plant, and a high tension utility line. It appears that toward the downstream end of the ditch, the embankment is eroding, threatening the road. The pond in the left center of the picture has increased in size and wetness since the early 1900s. Possible measures to consider, in addition to the City's riparian setback, include setting aside land through easements, reducing or storing runoff from impervious surfaces, daylighting the outlet and restoring some flood storage . Source: Ohio DNR, PCRPC, 2006 Photo.

B-170 Ponding in poorly draining soils near Collins Pond, Fox Run Rd., Nov. 2009.

B-180 View south and west showing wetland, Collins Pond, and houses. Nov., 2009.

Feeder Canal

B-670 Feeder Canal at Rootstown April, 2011

B-660 Feeder Canal at Old Forge. Algae in April, nearby farms. April, 2011

B-650 Feeder Canal at Saxe Rd. Road ditch drains agricultural and large-lot residential land. April, 2011. Watershed Typical Views—Breakneck Creek

B-670 (near) Tallmadge Rd. , April, 2011.

Other Breakneck Creek & Feeder Canal Headwater Tributaries

B-903 Breakneck headwater tributary at Lakewood Rd., July, 2010

B-460 Breakneck headwater tributary at Lakewood Rd., south of I-76 April, 2011

B-505. Headwater tributary on Old Forge Rd. April, 2011.

B-700, 710 Feeder Canal Headwater Tributaries Sandy Lake Road, May, 2011.

Potter Creek—Lower

2012 Final

Po-020 Potter Creek and substrate in wetland at Ranfield Rd. July, 2010.

Po-040, 45 Potter Creek tributaries at Randolph Rd., July, 2010

Po-030 Potter Creek at Randolph Rd. —in wetlands July, 2010.

Po-050 Potter Cr. At Trares. Site of bio-assessment. Partially attaining WWH criteria. July, 2010

Po-060 Potter Creek at Conley— embedded. Spring, 2005.

Middle Potter Creek—Upstream of Conley Rd.

2012 Final

Po-070 Potter Creek, site of potential over-wide ditch design to restore flood storage and a narrower, sinuous channel. Site received low QHEI score due to embeddedness, poor channel form, lack of sinuosity and cover. Dec., Oct., 2007.

Po-072 Upstream of potential over-wide ditch location, the channel has substantially recovered and received a good QHEI score. Oct. 2007.

Po-068 Wetland contiguous to and partially protected through easement. Oct. 2007.

Po-100 Potter Creek at Waterloo Rd.. July, 2010.

Potter Creek—Upper

Po-110 Potter Creek at Shaffer. Exclusion fence has allowed creek to begin recovering. Blown out stream downstream from flood event. May, 2011.

Po-120 Potter Creek at Steffy Rd. July, 2010.

Congress Lake Outlet

Po-010 Congress Lake Outlet/Potter Creek at Johnnycake Rd. during spring floods, April, 2011.

Po-500 Congress Lake Outlet at Waterloo Rd. during spring floods, April, 2011

Po-330 Congress Lake Outlet at Alexander Rd./confluence with Randolph Ditch (coming in from left). April, 2011

Po-320 Congress Lake Outlet at Eberly Rd.. Embedded. July 2010

Congress Lake Outlet—Upper

Po-230 Congress Lake Outlet at Laubert Rd., July, 2010

Po-210 Congress Lake Outlet at Gopp Rd.. July, 2010

Po-190 Congress Lake Outlet at Pinedale Rd.. Silted in. July, 2010

Po-170 Congress Lake Outlet at Duquette Rd., July, 2010

Po-160 Congress Lake Outlet at Swamp Rd.. Weedy. July, 2010.

Po-410 Cranberry Creek at Hartville Rd., Spring, 2011

Cranberry Creek

Po-420 Cranberry Creek at Aberagg Rd., June, 2010.

Po-430 Cranberry Creek at Shaffer Rd. (west) Spring, 2011

Po-440 Cranberry Creek at Shaffer Rd. (east) Spring, 2011

Po-450 Cranberry Creek at Griggy Rd. July, 2010

Redinger Ditch

Po-370 Reidinger Ditch at Alexander Rd. Grassed buffer. Tile outlets apparent. Spring 2011.

Po-380 Reidinger Ditch at Hartville Rd. Grassed buffer. July, 2010.

Po-390 Reidinger Ditch at Alexander (w). Typical of tributaries, agricultural use with varying widths of grassed buffer. July, 2010.

Randolph Ditch

Po-310 Randolph Ditch at Route 44. Unrestricted livestock access. Downstream appears more intact. May, 2011.

Po-265 Congress Lake Outlet tributary at Belding. Spring 2011.

Po-290 Randolph Ditch tributary at Eberly (west), spring, 2011

Po-300 Randolph Ditch tributary at Matti, Spring, 2011.

Po-280 Randolph Ditch tributary at Eberly (eastern). Spring, 2011

Congress Lake Outlet Tributaries

2012 Final

Po-340, 341. Congress Lake Outlet tributary at New Milford Rd. Spring, 2011. Pics. 24907, 908

Po-265 Congress Lake Outlet tributary at Belding Rd.. Spring 2011.

Po-250 Congress Lake Outlet tributary at A. Horning Rd., Unrestricted livestock access, incised. Spring, 2011.

Po-240 Congress Lake Outlet Tributary Route 44 south of Laubert. This is typical of many tributaries, separated from agricultural uses with grass buffers of varying widths. July, 2010

Po-180 Congress Lake Outlet tributary at Duquette. Channel is recovering. June, 2010.

Watershed Typical Views—Potter Creek Subwatershed

Middle Cuyahoga River Watershed Action Plan Appendix TSD and TMDL data

Station	River Mile	Date	Comments	Temp (°C)	pH (s.u.)	D.O.	Cond. (umhos/en
BreakneckCk nr Homestead Rd	56.82/14.6	10-Jul-96		18.85	7.86	9.07	52
BreakneckCk nr Homestead Rd	56.82/14.6	20-Jun-96		22.69	7.76	6.44	40
BreakneckCk nr Homestead Rd	56.82/14.6	29-Aug-96		20.83	7.92	8.47	49
BreakneckCr nr Homestead Rd	56.82/14.6	30-Jul-96		19.63	7.85	6.71	68
Breakneck Cr @ Summit Rd	56.82/7.00	04-Sep-96		19.48	7.80	7.43	53
Breakneck Cr @ Summit Rd	56.82/7.00	10-Jul-96		19.63	7.80	7.54	54
Breakneck Cr @ Summit Rd	56.82/7.00	20-Jun-96		22.47	7.63	5.47	35
Breakneck Cr @ Summit Rd	56.82/7.00	29-Aug-96		20.48	7.69	7.19	46
Breakneck Cr @ Summit Rd	56.82/7.00	30-Jul-96		20.25	7.72	6.57	71
Breakneck Ck @ Lakewood Rd	56.82/5.19	04-Sep-96		19.81	7.83	7.04	53
Breakneck Ck @ Lakewood Rd	56.82/5.19	10-Jul-96		19.45	7.84	7.23	56
Breakneck Ck @ Lakewood Rd	56.82/5.19	20-Jun-96		22.25	7.65	5.30	34
Breakneck Ck @ Lakewood Rd	56.82/5.19	29-Aug-96		20.28	7.76	7.62	46
Breakneck Ck @ Lakewood Rd	56.82/5.19	30-Jul-96		20.51	7.76	5.86	72
Breakneck Ck @ Powder Mill	56.82/3.08	04-Sep-96		19.74	7.81	7.76	72
Breakneck Ck @ Powder Mill	56.82/3.08	10-Jul-96		19.18	7.80	8.07	71
Breakneck Ck @ Powder Mill	56.82/3.08	20-Jun-96		21.91	7.68	5.73	38
Breakneck Ck @ Powder Mill	56.82/3.08	29-Aug-96		19.56	7.79	7.71	59
Breakneck Ck @ Powder Mill	56.82/3.08	30-Jul-96		20.10	7.68	5.85	104
Breakneck Crk @ SR 59	56.82/1.66	04-Sep-96		19.97	7.90	7.65	68
Breakneck Crk @ SR 59	56.82/1.66	10-Jul-96		19.29	7.84	7.46	73
Breakneck Crk @ SR 59	56.82/1.66	20-Jun-96		21.88	7.65	5.97	39
Breakneck Crk @ SR 59	56.82/1.66	29-Aug-96		21.97	7.69	6.33	54
Breakneck Crk @ SR 59	56.82/1.66	30-Jul-96		20.44	7.80	7.0	94
Breakneck Crk near mouth	56.82/0.28	04-Sep-96		19.76	7.92	8.14	64
Breakneck Crk near mouth	56.82/0.28	10-Jul-96		19.35	7.91	8.02	73
Breakneck Crk near mouth	56.82/0.28	20-Jun-96		21.84	7.67	6.05	39
Breakneck Crk near mouth	56.82/0.28	29-Aug-96		20.15	7.89	8.32	59
Breakneck Crk near mouth	56.82/0.28	30-Jul-96		20.42	7.93	8.32	55
Bridge Crk @ Stafford Rd	83.29/11.22	09-Jul-96		20.22	7.61	5.32	30
Bridge Crk @ Stafford Rd	83.29/11.22	16-Sep-96		13.69	7.31	6.04	5
Bridge Crk @ Stafford Rd	83.29/11.22	24-Jul-96		21.0	7.51	6.15	3
Bridge Crk @ Stafford Rd	83.29/11.22	27-Aug-96		21.1	7.86	10.20	3
Bridge Crk @ Stafford Rd	83.29/11.22	27-Jun-96		19.82	7.78	5.88	2

Cuyahoga River Basin TSD

Station	River Mile	Date	Comments	Temp (°C)	pH (s.u.)	D.O.	Cond. (umhos/em)
Cuy R @ Ravenna Rd	57.67	29-Aug-96		23.86	7.73	5.61	389
Cuy R @ Ravenna Rd	57.67	30-Jul-96		21.43	7.50	5.7	550
Cuy R @ Standing Rock	55.8	04-Sep-96		21.87	7.68	5.50	45
Cuy R @ Standing Rock	55.8	04-Sep-96	Dup. samp	21.87	7.68	5.50	45.
Cuy R @ Standing Rock	55.8	10-Jul-96		19.62	7.75	6.55	585
Cuy R @ Standing Rock	55.8	20-Jun-96		21.85	7.62	5.66	384
Cuy R @ Standing Rock	55.8	29-Aug-96		21.64	7.75	6.00	46
Cuy R @ Standing Rock	55.8	30-Jul-96		20.75	7.57	6.07	28
Cuy R @ Fuller Park	54.32	04-Sep-96		22.61	7.95	9.01	45
Cuy R @ Fuller Park	54.32	10-Jul-96		20.92	7.89	8.92	60
Cuy R @ Fuller Park	54.32	20-Jun-96		22.05	7.81	8.37	38
Cuy R @ Fuller Park	54.32	29-Aug-96		21.80	7.93	8.40	28
Cuy R @ Fuller Park	54.32	30-Jul-96		21.12	7.81	8.21	71
Cuy R near Middlebury Rd	53.4	04-Sep-96		21.64	7.89	7.89	49
Cuy R near Middlebury Rd	53.4	10-Jul-96		20.82	7.90	8.51	63
Cuy R near Middlebury Rd	53.4	20-Jun-96		22.22	7.77	7.58	34
Cuy R near Middlebury Rd	53.4	29-Aug-96		21.73	7.82	7.22	49
Cuy R near Middlebury Rd	53.4	30-Jul-96		21.00	7.76	6.83	80
Cuy R @ Munroe Falls	50.0	04-Sep-96		23.00	7.91	7.96	59
Cuy R @ Munroe Falls	50.0	10-Jul-96		21.75	8.13	10.51	66
Cuy R @ Munroe Falls	50.0	20-Jun-96		22.33	7.67	6.92	35
Cuy R @ Munroe Falls	50.0	29-Aug-96		21.97	7.69	6.33	54
Cuy R @ Munroe Falls	50.0	30-Jul-96		22.35	7.99	9.19	94
Cuy R @ SR 91	49.78	04-Sep-96		22.77	8.13	9.70	55
Cuy R @ SR 91	49.78	10-Jul-96		22.17	8.24	9.64	33
Cuy R @ SR 91	49.78	20-Jun-96		22.31	7.83	8.48	35
Cuy R @ SR 91	49.78	29-Aug-96		22.15	7.91	8.66	54
Cuy R @ SR 91	49.78	30-Jul-96		22.22	8.07	8.46	81
Cuy R @ Waterworks Park	48.38	04-Sep-96		21.88	7.84	8.38	83
Cuy R @ Waterworks Park	48.38	10-Jul-96		19.86	7.84	10.15	80
Cuy R @ Waterworks Park	48.38	20-Jun-96		22.11	7.85	8.26	37
Cuy R @ Waterworks Park	48.38	29-Aug-96		21.13	7.69	7.64	62
Cuy R @ Waterworks Park	48.38	30-Jul-96		21.86	7.80	6.57	135
Cuy R near Broad Blvd	46.25	04-Sep-96		22.17	8.21	9.24	76

Station	River Mile	Date	Comments	Temp (°C)	pH (s.u.)	D.O.	Cond. (umhos/em)
Cuy R near Broad Blvd	46.25	10-Jul-96		21.76	8.36	7.20	826
Cuy R near Broad Blvd	46.25	20-Jun-96		22.41	8.14	8.96	354
Cuy R near Broad Blvd	46.25	29-Aug-96		22.15	8.17	8.82	638
Cuy R near Broad Blvd	46.25	30-Jul-96		22.53	8.31	8.34	1096
Cuy R dst Gorge Dam	43.8	04-Sep-96		22.86	8.56	9.39	721
Cuy R dst Gorge Dam	43.8	10-Jul-96		22.88	8.48	9.72	807
Cuy R dst Gorge Dam	43.8	10-Jul-96	Dup. samp	22.88	8.40	9.72	807
Cuy R dst Gorge Dam	43.8	20-Jun-96		22.79	8.18	8.60	352
Cuy R dst Gorge Dam	43.8	29-Aug-96		22.24	8.23	9.43	620
Cuy R dst Gorge Dam	43.8	30-Jul-96	Rain started	22.66	8.13	7.04	926
Cuy R dst Gorge Dam	43.8	30-Jul-96	Dup. samp	22.66	8.13	7.04	926
Cuy R @ Cuyahoga St	42.6	04-Sep-96		23.09	8.58	10.23	731
Cuy R @ Cuyahoga St	42.6	10-Jul-96		24.07	8.4	9.98	835
Cuy R @ Cuyahoga St	42.6	20-Jun-96		22.74	8.02	8.57	355
Cuy R @ Cuyahoga St	42.6	29-Aug-96		21.7	8.08	8.77	618
Cuy R @ Cuyahoga St	42.6	30-Jul-96	After rain	21.13	7.62	7.31	496
Cuy R @ Cuyahoga St	42.6	30-Jul-96	Rain	21.18	7.48	6.91	844

v ب							
Potter Crk @ Trares Rd	56.82 /1.67/10.22	04-Sep-96		17.62	7.74	7.20	500
Potter Crk @ Trares Rd	10.22	10-Jul-96		16.53	7.84	8.49	498
Potter Crk @ Trares Rd	10.22	20-Jun-96		20.40	7.81	7.43	473
Potter Crk @ Trares Rd	10.22	29-Aug-96		18.38	7.76	7.46	518
Potter Crk @ Trares Rd	10.22	29-Aug-96	Dup. samp	18.38	7.75	7.43	518
Potter Crk @ Trares Rd	10.22	30-Jul-96		17.81	7.76	6.40	650
		-					
Wahoo Ditch @ Lakewood Rd	56.82/4.8 /0.39	04-Sep-96		19.58	7.40	3.94	1104
Wahoo Ditch @ Lakewood Rd	0.39	10-Jul-96		18.25	7.63	8.55	1220
Wahoo Ditch @ Lakewood Rd	0.39	20-Jun-96		20.37	7.88	10.84	998
Wahoo Ditch @ Lakewood Rd	0.39	29-Aug-96		20.33	7.69	8.76	1209
Wahoo Ditch @ Lakewood Rd	0.39	30-Jul-96		19.96	7.48	5.74	1516

Station	Hg		Zn		Hardness as CaCO3	COD	J	NO2-NO3
C D @ ITC 400	. ^ 7	v	10	ν	112	15		0.17
Cuy R @ Standing Rock	0.2	К	10	Κ	177	10	К	0.87
Cuy R @ Standing Rock	0.2	Κ	11		179	10	К	0.83
Cuy R @ Standing Rock	0.2	Κ	14		246	18		1.16
Cuy R @ Standing Rock	0.2	Κ	13		163	30		0.62
Cuy R @ Standing Rock	0.2	Κ	10	К	177	20		0.86
Cuy R @ Standing Rock	0.2	Κ	12		217	10	к	1.90
Cuy R @ Fuller Park	0.2	Κ	10	Κ	174	12		0.73
Cuy R @ Fuller Park	0.2	К	11		243	38		1.50
Cuy R @ Fuller Park	0.2	К	27		160	27		0.74
Cuy R @ Fuller Park	0.2	Κ	10	К	179	22		0.73
Cuy R @ Fuller Park	0.2	Κ	10	к	220	15		1.29
Cuy R near Middlebury Rd	0.2	Κ	10	К	191	27		1.45
Cuy R near Middlebury Rd	0.2	К	10	к	241	10	к	2.13
Cuy R near Middlebury Rd	0.2	К	17		151	32		0.84
Cuy R near Middlebury Rd	0.2	к	10	к	177	20		1.22
Cuy R near Middlebury Rd	0.2		10	к	229	12		2.55
Cuy R @ Munroe Falls	0.2	Κ	10		200	22		2.17
Cuy R @ Munroe Falls	0.2	К	10	К	233	26		2.38
Cuy R @ Munroe Falls	0.2	К	24		142	30		0.62
Cuy R @ Munroe Falls	0.2	К	10	К	193	21		2.13
Cuy R @ Munroe Falls	0.2	К	11		241	22		3.28
Cuy R @ SR 91	0.2	Κ	10	К	202	24		2.16
Cuy R @ SR 91	0.2	К	10	К	238	18		2.62
Cuy R @ SR 91	0.2	Κ	10	К	142	24		0.71
Cuy R @ SR 91	0.2	К	12		193	31		2.14
Cuy R @ SR 91	0.2	К	10	К	236	10	к	3.52
Cuy R @ Waterworks Park	0.2	Κ	10	К	251	36		2.01
Cuy R @ Waterworks Park	0.2	Κ	10	к	269	15		1.74
Cuy R @ Waterworks Park	0.2	К	15		151	27		0.66
Cuy R @ Waterworks Park	0.2	К	10		212	20		2.08
Cuy R @ Waterworks Park	0.2	Κ	13		310	12		2.60
Cuy R near Broad Blvd	0.2	Κ	10	К	243	15		1.87
Cuy R near Broad Blvd	0.2	К	10	к	271	20		1.49
Cuy R near Broad Blvd	0.2	Κ	19		140	18		0.65
Cuy R near Broad Blvd	0.2	К	13		210	34		1.88
Cuy R near Broad Blvd	0.2	К	11		247	15		2.28

Station	Hg		Zn		Hardness as CaCO3	COD	NO2-NO3
Cuy R dst Gorge Dam	0.2	Κ	10		236	18	1.73
Cuy R dst Gorge Dam	0.2	К	10	К	250	26	1.85
Cuy R dst Gorge Dam	0.2	Κ	10	Κ	250	23	1.86
Cuy R dst Gorge Dam	0.2	Κ	20		139	27	0.59
Cuy R dst Gorge Dam	0.2	К	10	К	210	22	1.51
Cuy R dst Gorge Dam	0.2	К	10	к	222	28	1.23
Cuy R dst Gorge Dam	0.2	Κ	10		217	18	1.24
Cuy R @ Cuyahoga St	0.2	Κ	10		238	12	1.68
Cuy R @ Cuyahoga St	0.2	К	10	К	256	12	1.73
Cuy R @ Cuyahoga St	0.2	К	19		142	21	0.59
Cuy R @ Cuyahoga St	0.2	К	10	к	210	17	1.50
Cuy R @ Cuyahoga St	0.2	К	217		159	103	0.64
Cuy R @ Cuyahoga St	0.2	Κ	25		224	25	1.03

Station	Hg		Zn		Hardness as CaCO3	COD		NO2-NO3
Breakneck Cr @ Summit Rd	0.2	Κ	10	К	278	24		0.38
Breakneck Cr @ Summit Rd	0.2	К	10	К	280	12		0.54
Breakneck Cr @ Summit Rd	0.2	Κ	10	К	165	32		0.88
Breakneck Cr @ Summit Rd	0.2	К	10	К	227	25		0.39
Breakneck Cr @ Summit Rd	0.2	К	10	к	286	10	К	0.21
Breakneck Ck @ Lakewood Rd	0.2	Κ	10	К	276	21		0.43
Breakneck Ck @ Lakewood Rd	0.2	К	10		297	20		0.49
Breakneck Ck @ Lakewood Rd	0.2	К	10	К	163	38		0.78
Breakneck Ck @ Lakewood Rd	0.2	Κ	12		224	36		0.39
Breakneck Ck @ Lakewood Rd	0.2	К	10	К	277	10	к	0.22
Breakneck Ck @ Powder Mill	0.2	Κ	13		269	12		3.95
Breakneck Ck @ Powder Mill	0.2	Κ	19		288	20		1.99
Breakneck Ck @ Powder Mill	0.2	К	10	к	165	32		0.90
Breakneck Ck @ Powder Mill	0.2	К	13		233	34		2.11
Breakneck Ck @ Powder Mill	0.2	К	12		268	18		2.52
Breakneck Crk @ SR 59	0.2	Κ	10		264	21		3.89
Breakneck Crk @ SR 59	0.2	Κ	15		288	20		2.44
Breakneck Crk @ SR 59	0.2	К	10	К	165	35		0.82
Breakneck Crk @ SR 59	0.2	К	10		233	25		2.65
Breakneck Crk @ SR 59	0.2	Κ	12		266	10	к	4.51
Breakneck Crk near mouth	0.2	Κ	10	К	261	15		3.22
Breakneck Crk near mouth	0.2	Κ	10	К	285	18		2.14
Breakneck Crk near mouth	0.2	К	24		165	35		0.71
Breakneck Crk near mouth	0.2	Κ	28		229	25		2.32
Breakneck Crk near mouth	0.2	К	10	К	263	10	К	3.64
BreakneckCk nr Homestead Rd	0.2	K	11		292	28		0.39
BreakneckCk nr Homestead Rd	0.2	к	10	к	285	12		0.62
BreakneckCk nr Homestead Rd	0.2	к	13		203	38		1.05
BreakneckCk nr Homestead Rd	0.2	к	10	к	238	36		0.39
BreakneckCk nr Homestead Rd	0.2	к	12		292	18		0.20
Potter Crk @ Trares Rd	0.2	К	10	K	273	15		0.42
Potter Crk @ Trares Rd	0.2	к	10	к	274	10	К	0.57
Potter Crk @ Trares Rd	0.2	к	10	к	246	28		0.81
Potter Crk @ Trares Rd	0.2	к	10	к	260	20		0.48
Potter Crk @ Trares Rd	0.2	Κ	10	Κ	269	11		0.52
Potter Crk @ Trares Rd	0.2	К	10	К	283	10	К	0.51
Wahoo Ditch @ Lakewood Rd	0.2	К	25		262	15	\dashv	9.07
Wahoo Ditch @ Lakewood Rd	0.2	к	41		269	32		4.81
Wahoo Ditch @ Lakewood Rd	0.2	к	23		246	32		4.06
Wahoo Ditch @ Lakewood Rd	0.2	к	22		257	28		11.5
Wahoo Ditch @ Lakewood Rd	0.2	Κ	25		255	26		4.72

Station	NH3-N	,	TKN	;	Total-H	>	TDS	TSS		FC Bacteria
Cuy R @ Standing Rock	0.08		0.5		0.05	К	310	5	К	33
Cuy R @ Standing Rock	0.05		0.5		0.05	Κ	306	5	Κ	33
Cuy R @ Standing Rock	0.06		0.5		0.07		404	б		230
Cuy R @ Standing Rock	0.14		0.8		0.12		272	14		180
Cuy R @ Standing Rock	0.05		0.4		0.07		324	5		40
Cuy R @ Standing Rock	0.07		0.6		0.11		390	7		220
Cuy R @ Fuller Park	0.05	Κ	0.4		0.08		300	5	К	30
Cuy R @ Fuller Park	0.05	К	0.4		0.09		396	7		180
Cuy R @ Fuller Park	0.12		0.8		0.10		272	8		280
Cuy R @ Fuller Park	0.05		0.4		0.09		328	5		150
Cuy R @ Fuller Park	0.05	К	0.5		0.10		384	5		440
Cuy R near Middlebury Rd	0.05	Κ	0.5		0.05	К	322	5	К	60
Cuy R near Middlebury Rd	0.05	К	0.4		0.11		420	6		140
Cuy R near Middlebury Rd	0.11		0.8		0.26		262	10		300
Cuy R near Middlebury Rd	0.08		0.4		0.10		328	7		370
Cuy R near Middlebury Rd	0.05		0.6		0.10		430	6		1000
Cuy R @ Munroe Falls	0.06		0.6		0.08		380	5	К	
Cuy R @ Munroe Fails	0.05	К	0.8		0.07		435	11		10
Cuy R @ Munroe Falls	0.15		0.9		0.12		242	12		250
Cuy R @ Munroe Fails	0.12		0.5		0.08		374	8		
Cuy R @ Munroe Fails	0.05	К	0.8		0.09		486	6		
Cuy R @ SR 91	0.05	Κ	0.5		0.11		384	7		30
Cuy R @ SR 91	0.05	К	0.6		0.08		434	11		40
Cuy R @ SR 91	0.13		0.8		0.10		242	11		340
Cuy R @ SR 91	0.14		0.4		0.08		376	9		10
Cuy R @ SR 91	0.05		0.7		0.10		486	6		40
Cuy R @ Waterworks Park	0.05	Κ	0.6		0.07		540	9		
Cuy R @ Waterworks Park	0.05	К	0.17		0.07		492	12		
Cuy R @ Waterworks Park	0.14		0.8		0.05		260	12		
Cuy R @ Waterworks Park	0.09		0.2		0.09		433	10		
Cuy R @ Waterworks Park	0.05	К	0.7		0.07		630	5		
Cuy R near Broad Blvd	0.05	Κ	0.8		0.06		494	10		100
Cuy R near Broad Blvd	0.05	К	0.7		0.05		530	13		60
Cuy R near Broad Blvd	0.11		0.6		0.05	К	252	14		260
Cuy R near Broad Blvd	0.08		0.2	К	0.10		428	14		90
Cuy R near Broad Blvd	0.08		0.9		0.07		534	9		120
Cuy R dst Gorge Dam	0.05	Κ	0.8		0.05		448	6		
Cuy R dst Gorge Dam	0.06		0.8		0.05	К	520	7		
Cuy R dst Gorge Dam	0.06		0.8		0.05	Κ	514	7		
Cuy R dst Gorge Dam	0.11		0.7		0.08		230	14		360
Cuy R dst Gorge Dam	0.05	К	0.2		0.06		420	6		
Cuy R dst Gorge Dam	0.13		0.7		0.06		456	5		
Cuy R dst Gorge Dam	0.12		0.7		0.06		466	5		
			0.5							

Station	NH3-N	TKN	Total-P	TDS	TSS	FC Bacteria
Cuy R dst Gorge Dam	0.06	0.8	0.05 K	520	7	
Cuy R dst Gorge Dam	0.06	0.8	0.05 K	514	7	
Cuy R dst Gorge Dam	0.11	0.7	0.08	230	14	360
Cuy R dst Gorge Dam	0.05 K	0.2	0.06	420	6	
Cuy R dst Gorge Dam	0.13	0.7	0.06	456	5	
Cuy R dst Gorge Dam	0.12	0.7	0.06	466	5	
Cuy R @ Cuyahoga St	0.05 K	0.7	0.05 K	456	5	280
Cuy R @ Cuyahoga St	0.05	0.7	.05 K	512	8	
Cuy R @ Cuyahoga St	0.11	0.7	0.06	248	19	360
Cuy R @ Cuyahoga St	0.05 K	0.2	0.07	420	9	90
Cuy R @ Cuyahoga St	0.79	1.6	0.68	254	342	200000
Cuy R @ Cuyahoga St	0.17	0.7	0.20	432	61	2100

Station	NH3-N	1	TKN		Total-P		TDS	TSS	t	FC Bacteria
Breakneck Cr @ Summit Rd	0.05	к	0.4		0.05		406	9		
Breakneck Cr @ Summit Rd	0.05	к	0.2	к	0.12		386	8		
Breakneck Cr @ Summit Rd	0.09		0.9		0.17		262	6		
Breakneck Cr @ Summit Rd	0.05	к	0.4		0.10		362	9		
Breakneck Cr @ Summit Rd	0.05	к	0.3		0.07		420	5	к	
Breakneck Ck @ Lakewood Rd	0.05	K	0.5				406	8		190
Breakneck Ck @ Lakewood Rd	0.05	к	0.2	к	0.23		406	15		
Breakneck Ck @ Lakewood Rd	0.09		0.9		0.14		264	7		
Breakneck Ck @ Lakewood Rd	0.05	к	0.5		0.08		360	14		14
Breakneck Ck @ Lakewood Rd	0.05	к	0.3		0.09		393	13		
Breakneck Ck @ Powder Mill	0.05	к	0.5		0.08		524	5	к	130
Breakneck Ck @ Powder Mill	0.15		0.5		0.07		498	6		
Breakneck Ck @ Powder Mill	0.16		1.0		0.11		280	14		
Breakneck Ck @ Powder Mill	0.05	к	0.6		0.10		434	5		130
Breakneck Ck @ Powder Mill	0.67		1.2		0.15		548	5	к	
Breakneck Crk @ SR 59	0.05	к	0.6		0.08		476	5	к	
Breakneck Crk @ SR 59	0.05	к	0.4		0.08		508	6		
Breakneck Crk @ SR 59	0.15		0.9		0.15		284	12		
Breakneck Crk @ SR 59	0.05	к	0.5		0.12		456	5	к	
Breakneck Crk @ SR 59	0.05	к	0.6		0.14		500	5	к	
Breakneck Crk near mouth	0.05	к	0.3		0.12		464	5	К	
Breakneck Crk near mouth	0.05	к	0.4		0.08		510	5	к	
Breakneck Crk near mouth	0.15		0.9		0.17		288	11		
Breakneck Crk near mouth	0.05	к	0.5		0.11		444	5		
Breakneck Crk near mouth	0.05	к	0.4		0.14		474	5	к	l
BreakneckCk nr Homestead Rd	0.06		0.4		0.06		416	14		
BreakneckCk nr Homestead Rd	0.05		0.2		0.11		387	9		
BreakneckCk nr Homestead Rd	0.11		0.9		0.28		308	22		
BreakneckCk nr Homestead Rd	0.06		0.5		0.11		382	9		
BreakneckCk nr Homestead Rd	0.05	к	0.3		0.05		412	9		
								-		
Potter Crk @ Trares Rd	0.16		0.4		0.07		380	17		·i
Potter Crk @ Trares Rd	0.12				0.05	к	392	7		
Potter Crk @ Trares Rd	0.23		1.0		0.42		356	6		
Potter Crk @ Trares Rd	0.16		0.4		0.08		398	5		
Potter Crk @ Trares Rd	0.17		0.4		0.06		408	5	K	
Potter Crk @ Trares Rd	0.23		0.4		0.11		364	6		
Wahoo Ditch @ Lakewood Rd	0.19		0.9		0.12		790	5	К	140
Wahoo Ditch @ Lakewood Rd	1.42		2.5		0.26		864			
Wahoo Ditch @ Lakewood Rd	0.48		1.9		0.66		724		к	
Wahoo Ditch @ Lakewood Rd	0.06		0.4		0.18		844	5	К	180
Wahoo Ditch @ Lakewood Rd	2.54		3.5		0.31		794	5	к	
WING BOD IN			~ ^ /		0.05	77	242	12		100

			WWH	Attributes	S		М	WH	Attribute	es				-
						High In	fluence	?	Mode	erate Inj	fluence			
	ey <u>HEI</u> omponen QHEI	Gradient (ft/mile)	No Charne parton checkeed Eculture Garel Sukstates Sith ee Eukstares Good,Book entSukstares Mooders et Brucs M	FastCuller.Eccles Lev-NomalCyelsT Emkeccecress NaxCerth>40cm Lev-NomalEirie Fimbercerress	TazlwwH Mirkutes	Charrie zeiderho Fecolery Sit.MickSutsiares No Sinuicaliy	Eraise.No Crter MaxDepth < 40 cm M E , HM) Trdal HJ, MMH Attitindes	Recover ra Charrel	Freedworkers and the former Sand Buksing estification Hattern Buksing edition Fault Formert	Luwerus y Cry1-2 CoverTykes Irreim fertard FoorFools No Fast Cuirert	HighMod. Cveis Herkeddedress HighMod. FirleErrkeddedress Moffine	Tel NI MALI MERICO	(MMHE, 41), (MME41) F2(10	(MMHML+1), (MMH+1), F21 0
			200020		. –	00/20				1022	<u> </u>			_=
57.5	56.5	3.00			3	•	1	•		•		7	0.50 2.25	5
	67.5	4.61			5	•	1	•			•	6	0.331.33	3
	70.0	6.12			5	•	1	•	• •	•	• •	6	0.331.33	3
	64.0	6.12			4		0	•	• •	•		6	0.201.40)
52.0	54.0	0.10			3		0	•	• •	•	• •	6	0.251.75	5
51.0	48.5	0.10	•		2	• •	2	٠	• •	•	• •	6	1.00 3.00)
48.7	56.0	1.00			4	•	1	٠	• •	•	• •	6	0.401.60)
48.0	46.5	0.10			3	• •	2	٠	• •	•	• •	6	0.75 2.25	5
46.0	67.0	0.10			7		0		• •		• •	4	0.130.63	3
44.0	76.0	62.50			9		0					0	0.10 0.10)
42.8	82.0	8.62			9		0				•	1	0.100.20)
(19-028) H	Breakneck	Creek			-									
Year: 9	6													
9.5 (67.5	1.77			6	•	1	•		•	• •	4	0.290.80	5
6.8 (66.5	1.27			6	•	1	•	• •	•	•	5	0.291.00)
5.2	86.5	5.21			8		0	•			•	2	0.11 0.33	3
3.1	56.5	5.21			3	•	1	• •	• •		• •	6	0.50 2.00)
1.7	59.0	3.48	•	•	2	•	1	••	• •	•	• •	7	0.673.00)
0.2 (69.0	3.48			7		0	•			• •	3	0.13 0.50)
(19-029) F		ek												
Year: 9		_			_									
1.5	41.0	10.00	-	-	2	••	2	••	• •	•	• •	7	1.00 3.33	3

Appendix Table . Qualitative Habitat Evaluation Index (QHEI) matrix showing modified and warmwater habitat characteristics for fish sampling sites in the Cuyahoga River basin study area, 1996.

			MWH Attributes WWH Attributes High Influence Moderate Influence																															
					Ν	/WI	H A	\ttr	ibu	ute	s			I	Higl	h In	flue	ence	e				М	ode	erat	te li	nflu	ien	се					
<u>Ke</u> <u>QH</u> <u>Co</u> River Mile	Y I <u>EI</u> mpone	nts Habitat Rating	No Channelization or Recovered	Boulder/Cobble/Gravel Substrates	Silt Free Substrates	Good/Excellent Substrates	Moderate/High Sinuosity	Extensive/Moderate Cover	Fast Current/Eddies	Low-Normal Overall Embeddedness	Max. Depth >40 cm	Low-Normal Riffle Embeddedness	Total WWH Attributes	Channelized or No Recovery	Silt/Muck Substrates	No Sinuosity	Sparse/ No Cover	Max. Depth <40 cm (WD,HW sites)	Total High Influence Attributes	Recovering Channel	Heavy/Moderate Silt Cover	Sand Substrates (Boat)	Hardpan Substrate Origin	Fair/Poor Development	Low Sinuosity	Only 1-2 Cover Types	Intermittent & Poor Pools	No Fast Current	High/Mod. Overall Embeddedness	High/Mod. Riffle Embeddedness	No Riffle	Total Moderate Influence Attributes	(MWH H.I.+1)/ (WWH+1) Ratio	(MWH M.I.+1)/ (WWH+1) Ratio
Wahoo I Year: 20																																		
2.6	44.5	Fair											0			٠	٠	٠	3	٠				•				•	•	٠		5	4.00	9.00
2.5	46.0	Fair											2			٠	٠	٠	3	•	•			•				•	•	٠		6	1.33	3.33
2.2	55.0	Good											5			٠			1	٠	٠			•				•	•	٠		6	0.33	1.33

Source: Ohio EPA, 2009. Wahoo Ditch Bioassessment.

Appendix Table . IBI metric scores from fish sampling sites in the Cuyahoga River basin study area, 19	966.
pendix Table . IBI metric scores from fish sampling sites in the Cuyahoga River basin st	rrea, 1
pendix Table . IBI metric scores from fish sampling sites in the Cuyahoga	study a
pendix Table . IBI metric scores from fish sampling sites in the Cuyahoga	basin s
pendix Table . IBI metric scores from fish sampling sites	River
pendix Table . IBI metric scores from fish sampling sites	uyahoga
pendix Table . IBI metric scores from fish sampling sites	õ
pendix Table . IBI metric scores from fish sampling sites	the
pendix Table . IBI metric scores from	E
pendix Table . IBI metric scores from	sites
pendix Table . IBI metric scores from	sampling
pendix Table . IBI metric scores from	físh
pendix Table.	firom
pendix Table.	scores
pendix Table.	metric
-	BI
-	t Table .
	-

					Number of	of			Pe	rcent of I	Percent of Individuals			Rel.No.		
River Mile T	Type Date	Drainage area (sq mi)	Total species	Sunfish species	Sucker species	Intolerant species	Darter species	Simple Lithophils	Tolerant fishes	Omni- vores	Top carnivores	Insect- ivores	DELT anomalies	tolerants /(0.3km)	IBI	Modified Iwb
Cuyahoga	Cuyahoga River - (19001)	(1														
Year: 1	1996															
75.80 D	D 07/15/1996	96 151	14(3)	4(5)	2(1)	0(1)	2(1)	40(5)	35(3)	13(5)	15.7(5)	71(5)	0.0(5)	81(1) *	40	7.4
75.80 D	D 08/14/1996	96 151	15(3)	3(3)	3(3)	0(1)	3(3)	58(5)	25(3)	22(3)	14.0(5)	64(5)	2.4(1)	153(1)	36	7.8
64.50	D 07/15/1996	96 177	17(3)	3(3)	2(1)	1(1)	4(3)	51(5)	6(5)	4(5)	13.5(5)	78(5)	0.0(5)	156(1) *	42	7.6
64.50	D 08/14/1996	96 177	14(3)	1(1)	2(1)	1(1)	3(3)	41(5)	5(5)	3(5)	11.8(5)	83(5)	1.8(1)	158(1) *	36	7.3
57.50	D 07/15/1996	96 208	14(3)	5(5)	2(1)	0(1)	3(3)	38(5)	41(1)	1(5)	13.7(5)	82(5)	1.4(3)	65(1) *	38	6.8
57.50	D 08/14/1996	96 208	8(1)	3(3)	0(1)	0(1)	1(1)	20(3)	46(1)	(5)	22.9(5)	71(5)	2.9(5)	29(1) *	32	4.4
56.00	D 07/16/1996	96 291	12(3)	5(5)	1(1)	0(1)	1(1)	16(1)	31(3)	7(5)	29.3(5)	55(5)	0.0(5)	60(1) *	36	6.9
56.00	D 08/14/1996	96 291	12(3)	4(5)	0(1)	0(1)	2(1)	7(1)	24(3)	0(5)	23.9(5)	57(5)	4.3(3)	53(1) *	34	6.5
44.00	E 08/27/1996	96 337	12(3)	0(1)	2(1)	0(1)	3(1)	48(5)	15(5)	11(5)	6.9(5)	54(3)	0.0(5)	222(3)	38	7.5
44.00	D 07/23/1996	96 337	14(3)	1(1)	2(1)	0(1)	2(1)	15(1)	4(5)	4(5)	1.2(3)	15(1)	0.0(5)	1484(5)	32	7.7
42.80	D 07/30/1996	96 340	15(3)	1(1)	2(1)	0(1)	4(3)	37(5)	4(5)	3(5)	0.3(1)	37(3)	0.0(5)	1682(5)	38	7.4
42.80	D 08/27/1996	96 340	13(3)	1(1)	2(1)	0(1)	4(3)	68(5)	7(5)	3(5)	0.5(1)	69(5)	0.0(5)	300(3)	38	6.3
54.20	A 07/16/1996	996 293	3 17(3)	5(5)	3(3)	1(1)	19(3)	57(5)	44(1)	43(1)	5(1)	34(3)	6.3(1)	136(1)	28	7.5
54.20	A 08/15/1996	996 293	3 15(3)	6(5)	3(3)	0(1)	13(1)	44(3)	42(1)	41(1)	11(5)	36(3)	8.2(1)	154(1)	28	7.6
53.40	A 07/16/1996	996 307	7 13(3)	5(5)	2(1)	0(1)	1(1)	6(1)	18(3)	14(5)	20(5)	46(3)	2.7(3)	184(1)	32	6.7
53.40	A 08/15/1996	996 307	7 13(3)	4(5)	2(1)	0(1)	1(1)	13(1)	26(3)	23(3)	13(5)	46(3)	2.4(3)	122(1) *	30	6.7
52.00	A 07/23/1996	996 309) 14(3)	6(5)	1(1)	0(1)	0(1)	5(1)	16(3)	14(5)	36(5)	41(3)	4.5(1)	184(1)	30	7.3
52.00	A 08/15/1996	996 309	0 12(3)	5(5)	2(1)	0(1)	3(1)	7(1)	15(3)	14(5)	29(5)	45(3)	3.6(1)	188(1)	30	7.6
51.00	A 07/16/1996	996 322	2 10(3)	5(5)	1(1)	0(1)	0(1)	10(1)	24(3)	21(3)	15(5)	52(3)	(1)6(11	102(1) *	28	6.3
51.00	A 08/15/1996	996 322	2 8(1)	4(5)	1(1)	0(1)	0(1)	3(1)	11(5)	11(5)	16(5)	41(3)	2.9(3)	124(1) *	32	6.1
48.70	A 07/16/1996	996 327	7 14(3)	5(5)	2(1)	0(1)	4(1)	8(1)	34(1)	34(1)	15(5)	48(3)	7.0(1)	172(1)	24	7.1
48.70	A 08/15/1996	996 327	7 15(3)	5(5)	2(1)	0(1)	3(1)	13(1)	38(1)	36(1)	18(5)	46(3)	0.0(5)	110(1) *	28	7.1
48.00	A 08/15/1996	996 331	14(3)	5(5)	2(1)	0(1)	2(1)	11(1)	31(1)	31(1)	16(5)	48(3)	3.4(1)	122(1) *	24	6.9
48.00	A 07/23/1996	996 331	11(3)	4(5)	1(1)	0(1)	0(1)	14(1)	41(1)	40(1)	17(5)	40(3)	3.2(1)	112(1) *	24	6.4

▲ - IBI is low end adjusted.
 * - < 200 Total individuals in sample
 ** - < 50 Total individuals in sample

11/03/1999

k - (19028)	
Creel	966
neck	-
Breakneck	Year:

5.4	4.7	5.0	4.3	7.4	6.9			5.9			7.0
* 40	* 36	* 16	* 14	* 42	* 46			* 30			48
45(1)	38(1)	17(1)**	26(1)*	101(1)	110(1)			62(1)			458(3)
0.0(5)	1.4(3)	3.1(1)	0.0(1)	0.0(5)	0.0(5)			0.0(5)			0.0(5)
51(3)	90(5)	44(1)	58(1)	62(5)	78(5)			61(5)			85(5)
32.7(5)	7.0(5)	28.1(1)	41.9(1)	28.8(5)	12.6(5)			3.6(3)			9.4(5)
14(5)	1(5)	28(1)	0(1)	3(5)	9(5)			34(3)			5(5)
39(3)	65(1)	66(1)	45(1)	8(5)	16(5)			45(3)			7(5)
29(3)	18(3)	31(1)	13(1)	36(3)	61(5)			18(1)			76(5)
4(5)	3(3)	2(3)	1(1)	4(3)	5(5)			2(1)			5(5)
0(1)	0(1)	0(1)	0(1)	2(1)	1(1)			0(1)			1(1)
2(3)	2(3)	1(1)	1(1)	2(3)	2(3)			1(1)			3(3)
3(3)	2(3)	2(3)	2(3)	2(3)	2(3)			3(3)			2(3)
14(3)	10(3)	8(1)	6(1)	15(3)	15(3)			11(3)			17(3)
22	22	22	22	79	<i>6L</i>			37	6)		35
3.10 D 08/01/1996	3.10 D 10/09/1996	1.70 D 08/01/1996	1.70 D 10/09/1996	0.20 D 08/02/1996	0.20 D 10/09/1996	- (19035)	2	0.50 E 08/08/1996	West Branch Cuyahoga - (19036)	2	0.90 D 08/02/1996
3.10 D	3.10 D	1.70 D	1.70 D	0.20 D	0.20 D	Bridge Creek - (19035)	Year: 1996	0.50 E	West Branch (Year: 1996	0.90 D

530	13.41	67.5	NA	46	V. Good
86	6.38	66.5	NA	30*	Fair
171	5.74	86.5	NA	40	Good
90	5.05	56.5			Poor/Good
47	5.85	59.5	4.6*	<u>15</u> *	Poor/V. Poor
120	4.00	69.0	7.2*	44	Fair/Good
rio Lake I	Plain - WWH	Use Desi	gnation	(Existing)	
128	4.85		7.1*	44	Fair/Good
133	3.04		6.3*	40	Fair/Good
162	9.69		7.2*	42	Fair/Good
region Bi	iocriteria: Eri	ie-Ontario		lain	
IBI			MIwb		
WHEW	H MWHc	WWH	EWH	MWHc	
40 50	24	NA	NA	NA	

headwater streams with drainage areas \leq 20 mi2.

from biocriteria (<4 IBI units or <0.5 MIwb units).

applicable biocriteria (>4 IBI units or >0.5 MIwb units). Underlined Very Poor range.

End of Volume