PHASE II ENVIRONMENTAL SITE ASSESSMENT

of an

INDUSTRIAL PROPERTY 890 N. MCDOWELL BOULEVARD & 320 CORONA ROAD PETALUMA, CALIFORNIA 94954

Prepared for:

Lomas Partners 13848 Weddington Street Sherman Oaks, California 91401

Prepared by:

P.O. Box 904 Clayton, California 94517

(877) 563-4300 (toll free)

PEI Project #16-3985

Issue Date: October 12, 2017

Executive Summary	4
1.0 Introduction	7
2.0 Site Description & Background	9
2.1 Site Identification/Location	9
2.2 Site Background	9
2.2.1 Camp Dresser & McGee Phase I ESA (February 2010)	9
2.2.2 Kleinfelder Phase II (September 2010)	10
2.2.3 Kleinfelder Phase II (January 2011)	11
2.2.4 Pinnacle Phase I ESA – (March	12
3.0 Subsurface Assessment Activities	15
3.1 Northern Portion – Former Mill Structures	15
3.1.1 Geophysical Survey	15
3.1.2 Exploratory Trenching & Soil Sampling	16
3.2 Central Portion – Former AST Compound and Truck Scale	18
3.2.1 Soil Borings and Groundwater Monitoring Well Installation	19
3.2.2 Groundwater Monitoring Well Development and Sampling	20
3.2.3 Groundwater Monitoring Well Surveying	20
3.2.4 Shallow Soil and Soil Vapor Survey	21
3.3 Southern Portion – Undeveloped Portion	22
4.0 Investigation Results	23
4.1 Soil and Groundwater Conditions	23
4.2 Analytical Results	24
4.2.1 Northern Portion – Former Mill Structures	25
4.2.2 Central Portion – Former AST Compound and Truck Scale	26
4.2.2.1 Soil Boring Results – June 2017	26
4.2.2.2 Groundwater Analytical Results – June & September 2017	28
4.2.2.3 Shallow Soil and Soil Vapor Survey – September 2017	30
4.3 Southern Portion - Undeveloped	33
5.0 Conclusions & Recommendations	36
5.1 Northern Portion – Former Mill Structures	36
5.2 Central Portion – Former AST Compound and Truck Scale Area	36
5.2.1 Soil and Soil Vapor Data	36
5.2.2 Groundwater Data	37

Table of Contents

5.3 Southern Portion - Undeveloped	
5.4 Summary of Sitewide Conclusions and Recommendations	
6.0 References	40
7.0 Statement of Environmental Professionals	41

Tables

Table 1 – Soil Results – Test Pit	Sampling – April 2017
-----------------------------------	-----------------------

- Table 2 Soil Results Soil Borings & Monitoring Wells June 2017
- Table 3 Groundwater Monitoring Wells Construction Details and Initial Observations June 7-8, 2017
- Table 4 Groundwater Results Borings & Monitoring Wells, June and September 2017
- Table 5 Soil Results-Shallow Borings Within Impacted Groundwater Area September 2017
- Table 6 Soil Vapor Results-Shallow Borings Within Impacted Groundwater Area September 2017
- Table 7 Shallow Soil Results Southern Portion June and September 2017

Figures

- Figure 1 Site Vcinity Topographic map
- Figure 2 Site Vicinity Aerial Photograph
- Figure 3 Site Plan of Subject Property (North)
- Figure 4 Site Plan of Subject Property (South)
- Figure 5 Geophysical Anomalies and Pit Locations
- Figure 6 Boring Location Map
- Figure 7 Groundwater Monitoring Well Schematic
- Figure 8 Shallow Soil and Soil Vapor Boring Map (Central Portion)
- Figure 9 Shallow Soil Boring Location Map (Southern Portion)
- Figure 10 Groundwater Isopleth June 2017
- Figure 11 Groundwater Isopleth September 2017

Appendices

- Appendix A Geophysical Survey
- Appendix B Boring Logs
- Appendix C Groundwater Survey Data
- Appendix D Analytical Laboratory Results and Chain of Custodies

Executive Summary

This report presents the results of a Phase II Environmental Site Assessment of an industrial property located at the southeastern corner of McDowell Boulevard and Corona Road in northern Petaluma, California. The subject property is an approximately 6.56-acre parcel of land located to the west of a railroad right-of-way, between McDowell and the railroad. The subject property was previously used as a feed mill facility from at least the 1940s through the early 1980s. The mill structures were destroyed by fire in the 1980s. The property has more recently been utilized by a wooden truss construction company and for truck parking purposes. Truck fueling and minor truck maintenance operations have also been conducted at the site.

Background

The site is being considered for future use for multi-family residential development and a parking lot/station for the Sonoma Marin Area Rapid Transit (SMART) system. In 2010/2011, SMART began environmental assessment of the subject property as part of its potential use as parking lot/light rail station. Consultants retained by SMART completed a Phase I Environmental Site Assessment (Phase I or ESA) and limited subsurface assessments. This work discovered the presence of petroleum hydrocarbons and the fuel additive 1,2-dichloroethane (1,2-DCA) in portions of the subject property. No additional assessments of the subject property were conducted following completion of those initial environmental assessments.

In December 2016, Lomas Partners, a potential purchaser of the subject property, retained Pinnacle Environmental, Inc. (PEI), to assess the site and evaluate the potential for future environmental concerns. PEI completed a Phase I ESA of the site in March 2017. Interviews conducted as part of the ESA indicated the potential for buried burned building debris in the northern portion of the site, near the railroad right-of-way in the area of the former mill buildings. PEI also observed the areas in the central portion of the site, near a former truck fueling facility and near an inactive domestic water supply well, where subsurface impacts were previously reported in the 2010/2011 subsurface investigations. In addition to the foregoing, PEI assessed the southern portion of the property to evaluate its potential use by SMART as a parking lot for the proposed light rail station. Subsequent assessment efforts refer to the three areas of the site as the Northern Portion (Former Mill Structures), the Southern Portion (undeveloped), and Central Portion (AST Compound and Truck Scale). Assessment activities, findings and conclusions associated with these three areas are summarized below.

Northern Portion - Former Mill Structures

In order to assess locations of potential buried debris and possible environmental impacts, PEI contracted with a geophysical survey company to complete a survey of the northern portion of the site. The surveyor laid out a grid over the area of the site that was formerly occupied by two mill buildings and a large grain elevator structure between them. The survey identified several geophysical anomalies within this area. Following completion and receipt of the geophysical

survey results, PEI conducted a test pit investigation at the approximate locations of the detected anomalies. Several test pit excavations indicated areas of building debris (e.g., burned wood, metal, concrete) up to depths of 7 feet below ground surface (bgs), as well as some areas where soil staining and hydrocarbon odors were noted. Laboratory data of field screened soils indicated low concentrations of petroleum hydrocarbons and metals; however, no significant widespread indications of releases or hazardous substance disposal were observed in areas investigated via the test pits. These results indicate isolated areas of buried building debris and that lightly impacted soils will likely be encountered during future development grading. As such, a soil and groundwater management plan (SGMP) is recommended to be completed prior to implementing these activities.

Central Portion – AST and Truck Scale

Data collected during 2010/2011 assessment indicated petroleum hydrocarbon and 1,2-DCA impacts in the central portion of the subject property. To further assess these reported impacts, in June 2017 PEI installed eight groundwater monitoring wells (MW-1 to MW-8) and six soil borings (SB-1 to SB-6) in this area of the site. The monitoring wells were sampled in June and September 2017. The depth-to-groundwater measurements from the two monitoring events have ranged from approximately 6 to 7.5 feet below ground surface (bgs), and a southerly groundwater flow direction was computed in both monitoring events.

In June 2017, groundwater sample analyses from wells MW-4, -5 and -6 detected 1,2-DCA concentrations exceeding that compound's California maximum contaminant level (CaMCL)for drinking water (0.5 μ g/L). Subsequent groundwater sampling analyses of monitoring wells MW-1 to MW-8 in September 2017 indicated the presence of 1,2-DCA in two wells, MW-4 and MW-5, at concentrations exceeding the 1,2-DCA CaMCL. No 1,2-DCA was detected in the MW-6 sample in September whereas the concentration in June was 6.77 μ g/L. The 1,2-DCA impact appears to be localized on the site, with significantly reduced or non-detectable concentrations noted in downgradient wells.

In order to better assess a potential source of impacted groundwater, PEI conducted a shallow soil vapor and soil matrix survey in September 2017. The survey included the installation of 20 shallow borings to a depth of approximately 8 feet bgs, with installation of temporary soil vapor sampling probes at approximately 5 feet bgs. The soil vapor data indicated a potential source of petroleum hydrocarbon impacts in the area located north of the former fueling facility ASTs. Soil vapor analyses from probes in SV-1 and SV-2 detected concentrations of benzene that exceed residential screening levels. No 1,2-DCA was detected in soil vapor.

Soil matrix results from samples analyzed from soil borings advanced in June 2017 indicated no concentrations of petroleum hydrocarbons or VOCs. Soil results from soil samples analyzed from soil borings advanced in September 2017 consisted of one minor detection of TPH in the gasoline range (TPHg), four detections of TPH in the diesel range (TPHd), and one minor detection of both ethylbenzene and xylenes. With the exception of one detection of TPHd, the concentrations of these compounds were below Regional Water Quality Control Board (RWQCB) Environmental Screening Levels (ESLs) for soils in a residential setting. Thus, soil sample analytical results from both the June and September phases of investigation indicated no significant source of hydrocarbons or 1,2-DCA to groundwater.

Due to the proposed residential development of the subject property, petroleum hydrocarbonimpacted soils will require excavation and removal from the subject property. This task will be accomplished subsequent to proper destruction and abandonment of the on-site domestic water supply water well and demolition of existing surface structures (e.g., truck scale and associated buildings). Soil excavation, screening for contaminant levels, and off-site transportation and disposal will be completed under the specifications of a Soil Management Plan to be prepared prior to field activities. Additionally, based on groundwater data collected to date, two additional quarterly rounds of groundwater monitoring are recommended to further assess groundwater concentrations.

Southern Portion - Undeveloped

The southern portion of the property, south and east of the truss fabrication metal building, is an area that is being evaluated for placement of a parking structure to be constructed for the proposed SMART light rail station. Historical records reviewed indicated no historical structures or areas of significant industrial use on this portion of the property. Records indicate this area was used primarily for truck parking. PEI collected 10 shallow soil samples at approximately 6 inches below ground surface (bgs) at selected locations around the perimeter of this area; these samples were analyzed for TPHcc, VOCs, metals, and SVOCs. The analytical data indicated four sample locations with shallow soil impacts consistent with motor oil surface spills. Soil samples subsequently collected from 2.5 feet bgs at these locations contained no contaminant concentrations above regional screening levels. The analytical data indicated no significant releases of constituents of concern within this area of the site other than surficial heavy hydrocarbon releases (i.e., motor oil releases from historical truck parking). As such, this area of the property does not warrant the need for additional environmental assessment. Future development of this portion of the property should not be precluded. However, because petroleum-hydrocarbon-impacted soils may be encountered during redevelopment activities in this portion of the site, soil grading and moving activities should be conducted under a Soil Management Plan, prepared prior to implementation of site redevelopment activities.

1.0 Introduction

Lomas Partners (Client) retained Pinnacle Environmental, Inc. (PEI), to perform due diligence assessment activities for the property located at 890 North McDowell Boulevard in Petaluma, California ("subject property" or "site"). The subject property consists of an approximately 6.56-acre parcel of land located on the west side of a railroad right-of-way. The site is being considered for future use for multi-family residential development and a parking lot/station for the Sonoma Marin Area Rapid Transit (SMART) system.

The site is currently occupied by several businesses related to trucking and transportation including Moga Transportation, Inc. (Moga) (a refrigerated dairy trucking company), and AJR Trucking (a postal contractor). Recent previous site tenants included Jim Todorovitch Paving and Walt Price Truss Company. Several older buildings exist on the site including the following (generally from northwest to southeast):

- a small office building and adjoining restroom/shower locker room (addressed 320 Corona Road, occupied by Moga);
- an approximately 1,650-square-foot rectangular corrugated metal warehouse/garage building (locked, occupant unknown);
- an open sided truck repair building with attached masonry shed (locked, signage indicates Carlos Truck Repair);
- a well house shed covering an on-site groundwater production well; and
- an approximately 3,000-square-foot rectangular corrugated warehouse and office (previously occupied by Walt Price Truss Company)

Historically, the site was developed prior to 1942 with at least three industrial structures along the northern portion of the site that were utilized by a feed mill (initially Pacific Guano). Additional smaller structures were added to the central portion of the property in the 1970s. The large industrial buildings were not visible in a 1993 aerial photograph due to an apparent fire that was reported at the subject property and that caused the razing of the structures prior to 1993. Since the 1990s, the subject property has primarily been used for trucking related businesses. Most of the neighboring properties were agricultural land with scattered residences from the 1940s through 1970s. Increasing commercial and residential development was noted from the 1970s to present.

Prior environmental assessments were completed in 2010 and 2011 on behalf of SMART, which included a Phase I ESA (Camp Dresser & McGee [CDM]) and Phase II Soil and Groundwater Investigations (Kleinfelder). The Phase II investigations discovered sporadic soil and

groundwater petroleum hydrocarbon impacts in the northern and central portions of the site, which included detections of 1,2-dichloroethane (1,2-DCA) in several grab-groundwater samples. The results were not reported to regulatory agencies.

Upon review of the above assessments, PEI completed additional environmental site assessment activities at the subject property include the following:

- Phase I Environmental Site Assessment (February 2017)
- Geophysical Survey of Northeastern Portion with Trenching/ Potholing (March 2017)
- Subsurface Soil and Groundwater Assessment (May/June 2017)
- Soil Vapor Survey & Shallow Soil Sampling (September 2017)
- Third Quarter 2017 Groundwater Monitoring (September 2017)

The purpose of the above assessments was to further evaluate subsurface impacts discovered in prior investigations and attempt to locate other areas of environmental impacts that might require regulatory interaction for approval of the proposed development of the site. The scope, findings, and conclusions associated with the above assessments completed by PEI are detailed in the ensuing sections of this report.

For ease of discussion, this report divides the subject property into three distinct areas of assessment. Those areas and the rationale for their distinction are discussed below:

Northern Portion – Former Mill Structures

Historically, the northern portion of the subject property was occupied by large feed mill structures located to the west of the railroad right-of-way from the 1940s through 1980s. The operations within this mill structure are largely unknown. Interviews indicated the possibility that portions of the burned down structures were buried on the property.

Central Portion – Above Ground Storage Tank (AST) & Truck Scale

Based on subsurface assessments completed by Kleinfelder in 2010/2011, soil and groundwater at the property were noted as impacted with petroleum hydrocarbons and the volatile organic compound (VOC) 1,2-DCA. This area of the site was a former a cardlock truck fueling operation with pressurized subsurface piping. The pressurized subsurface piping has been assumed to be the likely the source for the previously detected subsurface impacts.

Southern Portion – Undeveloped

This portion of the property has been historically undeveloped and is currently used for truck parking. This area is the potential location of SMART parking facilities. Due to limited historical activities of environmental concern in this area, this area is being considered as a potential area of a "lot split". As such, the Client desires this portion of the property to be considered for "no further action" for environmental impacts while other portions of the site continue to be investigated and remediated (as necessary), with regulatory review.

2.0 Site Description & Background

2.1 Site Identification/Location

The subject property consists of an approximate 6.56-acre parcel of land located at the northeast corner of the intersection of McDowell Boulevard and Corona Road, within a commercial and residential area. The site is addressed as 890 North McDowell Boulevard; however, additional addresses associated with the subject property include 320 Corona Road and 910 North McDowell Boulevard. A site vicinity topographic map for the subject property is shown on **Figure 1**. A site vicinity aerial photograph is included as **Figure 2**. A site plan of the subject property is included as **Figures 3 & 4**.

The site is bordered by the following:

North	Immediately by Corona Road, then by a paved parking lot for a U.S. Post Office, then by a commercial-use property.						
East	Immediately by a railroad right-of-way, then by a residence (northwest), vacant pasture land (north and northeast), then farther by a light industrial facility (Beauchamp's Welding, 360 Corona).						
South	Immediately by drainage culvert, then by a vacant parcel (fronting McDowell) and single family dwellings.						
West	Immediately by McDowell Boulevard, then by an automotive repair (297 Corona) and muffler businesses (967 McDowell), residence, and mobile home park (911 McDowell).						

2.2 Site Background

Prior environmental assessments from 2010/2011 were completed on behalf of SMART in evaluation of the property as a possible train station and parking lot.

2.2.1 Camp Dresser & McGee Phase I ESA (February 2010)

In February 2010 Camp Dresser & McKee (CDM) completed at Phase I Environmental Site Assessment (ESA) for SMART. The following information on the subject property was presented in the CDM ESA report:

Historical Occupants

Royal Petroleum – Previously operated a commercial card-lock fueling facility at the site. Three ASTs containing diesel were located within a low-bermed concrete containment structure. The ASTs were plumbed via underground piping to dispensers

on the south side of the structure. In 2005, the dispensers were removed and the tanks cleaned and degassed. No records were found to document subsurface piping removal and/or soil and groundwater sampling following AST removal.

Stringer Sportswear - Manufactured unspecified items. Stringer Sportswear reportedly released process water to the subsurface through release to the City storm drain. The process waste water was reportedly to be re-routed to an existing septic tank. The nature (i.e., chemical constituents, if any) of the process water and the location of the septic tank were not reported.

Pacific Guano Company (1958-159) – Presented a potential for releases of fertilizer or fertilizer ingredients.

V Dolan Trucking Company (320 Corona Road) – Listed as a generator of non-RCRA hazardous waste. Details of hazardous material use and disposal were not reported.

On-Site Observations

Two oil burning furnaces - CDM reported of a potential for the presence of an underground storage tank (UST) related to these furnaces. The furnace and evidence of a UST were not observed by PEI during its 2017 Phase I ESA.

Truck scale - There are four manholes associated with the truck scale that potentially indicate a chamber containing a hydraulic lift mechanism.

Water well - A potable water well adjacent to the former ASTs and dispensers is a potential vertical conduit for surface spills to reach groundwater.

Lumber operations – The southern portion of the property was used for lumber operations that may have involved the use of wood preservatives and spray paint.

CDM recommended further investigation including limited soil and groundwater sampling, as well as a survey for lead-based paint and asbestos containing material (ACM) in the onsite buildings.

2.2.2 Kleinfelder Phase II (September 2010)

Subsequent to the Phase I ESA by CDM, Kleinfelder Inc (Kleinfelder) was retained by SMART to complete a Phase II ESA on the subject property. The scope of work was based on the CDM report and included 10 soil borings on the subject property, including five borings to 5 feet below ground surface (bgs) and five borings to 25 feet bgs using direct push sampling methodologies. Groundwater was encountered and sampled in the 25-foot soil borings. 36 soil and five groundwater samples were submitted for laboratory analysis for: total petroleum hydrocarbons for gasoline and diesel range organics (total petroleum hydrocarbons as gasoline and diesel [TPH-g and TPH-d, respectively]);

VOCs and fuel oxygenates via EPA test method 8260; Leaking Underground Fuel Tank (LUFT) metals: chromium (Cr), cadmium (Cd), lead (Pb), nickel (Ni), and zinc (Zn) by EPA test method 6010; Creosote by EPA test method 8270; and Herbicides by EPA test method 8151. Kleinfelder noted strong petroleum odors from soil in their boring B-4, located northeast of the former AST compound, from a depth of 5 to 20 feet bgs.

Soil concentrations of TPH in the gasoline and diesel range were noted in several of the borings. TPH as motor oil was detected several borings. Chlorinated herbicides and creosote were not detected.

Groundwater impact was discovered in four of the five grab-groundwater samples. Of these groundwater samples, the grab-groundwater sample from boring B-4 (W-4) reported concentrations of TPH-g, naphthalene, ethylbenzene, and xylenes

Based on the data, Kleinfelder recommended additional investigation to assess the extent of petroleum hydrocarbon impacts. Kleinfelder also recommended sampling in the area of the southwest corner of the property.

2.2.3 Kleinfelder Phase II (January 2011)

Kleinfelder completed five additional borings (borings B-11 to B-15) in November 2010 using direct push methodologies. Twenty-five soil samples and five groundwater samples were collected from each of the five borings. Samples were analyzed for TPH-g, TPH-d, MTBE, VOCs, and LUFT 5 metals (Cd, Cr, Pb, Ni, and Zn). Petroleum hydrocarbon odors were noted in borings located northeast and southeast of the former AST compound.

Concentrations of 1,2-dichloroethane (1,2-DCA) were noted in soil samples greater than 15 feet. 1,2-DCA was also noted in grab-groundwater samples in several borings, with one sample indicating anomalously high concentrations (e.g., 170 micrograms per liter [ug/L] in boring B-13).

TPH-d was noted in a grab-groundwater sample collected near the western corner of the site at a concentration of 500 ug/L. Kleinfelder presumed this detection was related to a LUFT case: J&D Automotive at 278 Corona Road, located southwest of the western corner of the site. TPH-d was not detected in other on-site grab-groundwater samples.

Concentrations of nickel and cobalt were noted in some water samples at concentrations above ESLs.

Kleinfelder recommended SMART and the property owner approach Sonoma County Department of Environmental Health and/or San Francisco Bay Regional Water Quality Control Board to assess the need for cleanup action of the groundwater at the subject property.

2.2.4 Pinnacle Phase I ESA – (March 2017)

Prior to subsurface assessment activities, PEI completed a Phase I ESA on the subject property. Recognized environmental conditions and other potential environmental issues noted during the assessment included the following:

- PEI's research indicated the subject property was initially developed prior to 1942 with industrial uses. City directories indicate the property was occupied by the Corona Feed Mill in 1965. Earlier city directories do not list Corona Road or McDowell Boulevard. According to the 2010 Phase I ESA, the property was previously occupied by the Pacific Guano Company in 1949 to 1959 (no information source was provided). According to PEI's research, Pacific Guano Feed Company operated in Petaluma. A 1973 aerial photograph indicates the feed mill received raw grain from a railroad spur that came onto the property. Typically, a feed mill operation includes grain elevators and silos, and a steam process that compresses ground feed into pellets. PEI observed evidence of grain silos and elevators in a 1973 aerial photograph. Building permits and process information for the historic feed mill are very limited from the city of Petaluma or Sonoma County for the subject property addresses. It is unknown how steam was produced (e.g., typically boilers fired by fuel), or what hazardous materials were used or waste generated from these operations. The two buildings associated with the feed mill burned down in separate fires. According to interviews with persons familiar with the property, the related building debris was reportedly buried on-site. Buried building materials have the potential for treated wood (creosote) and metal impacts (lead based paint), as well the possibility of poly-nuclear aromatic hydrocarbons (PNAs) generated from combustion. It is unknown whether underground vaults, storage tanks, or septic systems currently exist or were abandoned properly. This is a data gap which, if filled, can impact the conclusions of this report. Based on the unknowns associated with former feed facility, a geophysical survey was recommended for the northwestern portion of the subject property to evaluate whether buried debris or other anomalies exist on-site.
- Building department records indicate a fuel pump and well were permitted for the address 320 Corona in 1964. No additional records were available related to possible USTs or their contents associated with the subject property. This is a data gap which, if filled, can impact the conclusions of this report. Fire department records indicate that a cardlock diesel fuel facility was permitted at the subject property in 1992 that included ASTs for diesel. This facility was closed in 2005. A photograph from the early-1980s indicates a fuel depot and other ASTs were previously located on the property. Based on the Phase II investigations completed by Kleinfelder in 2010 and 2011, soil and groundwater beneath the subject property in the area of the former ASTs were impacted with gasoline related constituents (e.g., BTEX, 1,2-DCE and 1,2-DCA). Former fueling activities and resulting soil and groundwater impacts are a recognized environmental condition and a vapor encroachment condition. Additional assessment was recommended to evaluate these issues.

- The subject property has been used for trucking related business which included truck maintenance, painting and sandblasting, since at least the early 1980s. Recent truck repair operations have occurred at the subject property that has resulted in surficial staining with heavy petroleum hydrocarbons. This is a recognized environmental condition.
- A masonry boiler room was noted near the western border of the subject property. Due to miscellaneous debris in and around the room, ground surfaces were not readily observable. There are no records at the city of Petaluma or Sonoma County related to this boiler room or how it was fueled (although a gas meter was noted nearby). This is a data gap that, if filled, can impact the conclusions of this report.
- An approximately 1,650-square-foot metal garage/warehouse was locked and inaccessible during the site visit. This structure had sliding door entrances indicating the potential for historic equipment service and repair. An early 1980s photograph indicates the building was occupied by Tom Rose Trucking. The lack of access to this building and other structures on the property is a data gap that, if filled, can impact the conclusions of the report.

2.3 Geology and Hydrogeology

The subject property is located in the Petaluma Valley, part of the northern California Coast Ranges Geomorphic Province, comprised of northwest-trending mountain ranges and valleys. The northern and southern ranges are separated by a depression containing the San Francisco Bay. The Petaluma Valley extends from Penngrove south to the Marin County line and San Pablo Bay, includes the Two Rock area to the west and extends east to the crest of the Sonoma Mountains, which separate the Petaluma and Sonoma Valleys. This area includes most of the watershed of the Petaluma River. (DWR 1982)

As reported in June 1982, the California Department of Water Resources (DWR) evaluated the groundwater resources of Petaluma Valley relying in large part upon water well logs. The logs were used to develop cross sections depicting the subsurface geology. Two of the cross sections intersect just east of the subject property, close enough to the site to obtain a reliable picture of its underlying lithology. From Cinnabar Road on the west to Adobe Road on the east, the Valley is filled with alluvial fan deposits from the surface to a maximum of about 350 feet in thickness along the Valley's north-south axis, roughly corresponding to Ely Road in the area of the site. Beneath the site, the depth of the alluvial fan deposits is estimated to be about 170 feet. The Tertiary Merced and Petaluma Formations lie below the Quaternary fan deposits (Qf). The fan deposits can be described as unconsolidated fine sand, silt and silty clay, coarse sand and gravel, with gravel more abundant near fan heads. The Merced Formation is comprised of coarse- to fine-grained sandstone with minor amounts of clay. The Petaluma Formation is characterized by consolidated clay and shale with minor amounts of sandstone. The specific yields of the three

lithologic units vary from low (3-7%) in the Petaluma Formation to high (10-20%) in the Merced Formation, and moderate to high (8-17%) in the fan deposits. The higher the specific yield of a geologic unit, the more water it will yield.

The domestic well on the subject property is more than 100 ft deep, but no details of its construction were available to PEI. It could have been completed in either the fan deposits or in the Merced Formation. All of the site monitoring wells (MW-1 through MW-8) were completed in the fan deposits from 25 to 30 ft deep. (See **Appendix B** for the monitoring well boring logs.) The groundwater measurements from the monitoring events indicate that the water-bearing zone tapped by the monitoring wells exists under confined or semi-confined conditions.

Groundwater was encountered at approximately 9 feet bgs in one of PEI's test pits excavated near the truck repair awning in the northern portion of the site. Groundwater measurements from PEI's monitoring wells (installed in 2017) have typically ranged from approximately 6 to 8 feet bgs and flows in a southerly direction.

Nine monitoring wells were constructed during an investigation of the J&D Automotive LUST case at 278 Corona Road. One of these wells (MW-9) was situated adjacent to the subject property just off North McDowell Road and about 70 ft southeast of the corner of Corona Road. This well was shallow, but construction details are unknown. During the four years it was monitored, sampling analyses yielded no detections of TPH or VOCs. It is worthwhile to note that this well would be located downgradient to groundwater flow across the site during the two monitoring events conducted at the site to date.

3.0 Subsurface Assessment Activities

Since completion of the Phase I ESA in March 2017, PEI has completed additional subsurface environmental assessment activities at the property as detailed in the sections below. The discussion of the investigations has been divided into three areas of the property: Northern Portion, Central Portion, and Southern Portion, as discussed below.

3.1 Northern Portion – Former Mill Structures

Prior environmental reports did not provide information regarding the disposition of the former feed mill buildings on-site. Specifically, there was no indication of whether the former structures may have been buried on-site. Buried building debris represents a recognized environmental condition (REC). Prior to drilling and groundwater sampling at the property, PEI completed a geophysical survey followed by a potholing and test pit investigation in areas identified by the geophysical survey as having subsurface anomalies. This work was completed in March and April 2017 and is described below.

3.1.1 Geophysical Survey

PEI retained Subtronic Corporation (Subtronic) to perform a geophysical investigation to assess the possible locations of potential burn/disposal sites from the remnants of prior feed mill buildings destroyed in the 1980s.

The area surveyed consisted of two areas southwest of the railroad tracks and southeast of Corona Road which are separated by several small buildings and an overhead permanent shade structure (part of the former mill structure). The area surveyed was mostly flat, and consisted of hard-packed dry gravel. Some sections of reinforced and non-reinforced concrete were observed within the geophysical survey area. Trailers, cars, and trucks which were present on site were moved for the survey.

The geophysical investigation was completed over three days from March 19 to 21, 2017. The survey equipment included electromagnetic (EM) and ground penetrating radar (GPR) equipment. The surveyor laid out a grid over the area of the site that was formerly occupied by two mill buildings and a large grain elevator structure between them. The surveyed area totaled approximately 90 feet by 467 feet. Due the size of the property, the geophysical survey was limited to only the area of the former mill buildings. The remainder of the property was not assessed by the geophysical survey.

The survey observed three primary areas with subsurface anomalies. The anomalies were marked on a map and included in a written report. The area of Anomaly 1 was noted to be approximately 3000 square feet, large enough to correspond to a potential burn/disposal site. A copy of the geophysical report is included in **Appendix A**.

3.1.2 Exploratory Trenching & Soil Sampling

Following completion and review of the geophysical survey results, PEI retained excavation contractor Eleven Engineering of Petaluma, California to excavate exploration test pits in the areas of identified geophysical anomalies. The exploration test pits were excavated on April 4 and 5, 2017. Nineteen shallow test pits were completed at the property in areas of identified geophysical anomalies. The test pits were labelled TP-1 through TP-12 with some test pits labeled A and B (e.g., TP-9B) for pits collected within the same general area of an identified anomaly. The general area of geophysical anomalies and pit locations are shown on **Figure 5**. Several test pits (TP-1N, TP-1S, TP-1C, and TP-1ST) were also placed in the area of a reported historic septic tank. TP-2 through TP-12 were excavated within the geophysical survey area.

Soils from the exploration test pits were screened in the field by a professional geologist for indications of potential contamination including soil staining, odors, and volatile organic compounds (VOCs) using a photoionization detector (PID). Soil samples were collected from several of the test pits based on field observations for chemical analysis. Soil samples were collected directly from the backhoe bucket into glass jars, which were then labeled and sealed with Teflon-lined caps, and placed in a cooler chilled with ice for delivery to an off-site analytical laboratory. Six soil samples were selected for laboratory analysis including: TP-1C-3, TP-4-3, TP-5-4, TP-5-9, TP-7A-4, and TP-7B-6. The selected soil samples were analyzed for the following:

Total Petroleum Hydrocarbons differentiated by carbon chain (TPH-cc by EPA Method 8015B) Volatile Organic Compounds (VOCs by EPA Method 8260B) CAM-TTLC 17 Metals (Metals by EPA Method 6010) Semi-volatile Organic Compounds (SVOCs by EPA Method 8270B)

Test Pit Area	Test Pit(s)*	Observations
Possible Septic Tank Area east of Truss Company (approx. 50 ft southwest of railroad tracks)	TP-1N TP-1C (SampleTP- 1C-3' collected /analyzed) TP-1S	Primarily dark gray clays and gravel with some old lumber pieces. Slight heavy hydrocarbon odor from TP- 1N at 1' to 3' bgs, which grades to a swampy odor. TP- 1C encountered brown stained clay which exhibited hydraulic oil odors at approximately 2 ft bgs grading to a weathered gasoline odor at 3 ft bgs. Bottom of test pits encountered light bluish-gray sandy clays with no odor at approximately 6 to 9 ft bgs.
Septic tank Area	TP-1ST	Dark gray gravels and clay with some metal and wood

A summary of pit locations, observations, and sampling rationale is presented in the table below.

east of Truss Company (approx. 45 ft SW of RR tracks)	(approx. 8 feet south of TP-1S)	debris to 5' bgs. At 3' bgs, encountered angle iron and 3'x3' metal piece with circular hole that may have been old filling hole. With redwood pieces coming up, it was likely that this was a redwood septic tank that had been abandoned/destroyed in place.
Southeast of truck repair awning	TP-2, TP- 3A & TP- 3B, TP-4 <i>(Sample TP-4-3'</i> <i>collected)</i>	Gray sandy gravel from 0-1' bgs, grading to dark gray and dark brown gravelly clays with some concrete and burned and unburned wood debris to approximately 3' bgs. Very slight heavy hydrocarbon and swampy odors noted from approximately 3' to 4' bgs. Grades to gray sandy clay with no odors from 4' to 5' bgs.
~15' south of truck repair awning	TP-5 (Samples TP-5-4' and TP-5- 9' collected/ analyzed)	Brown sandy gravel from 0-1' bgs, grading to dark gray gravelly clay at 1' bgs. 2" transite sanitary sewer-type pipe encountered at 2' bgs, traversing test pit from northeast – southwest (likely the "Unknown Utility" that was noted in the geophysical survey). 2'-3' bgs grades to very dark gray clay exhibiting a slight heavy hydrocarbon odor, and grades to bluish-gray clay with increased hydrocarbon odor from 3'-6' bgs. 6'-9' bgs grades to medium bluish-gray sandy clay exhibiting a lighter hydrocarbon odor. Groundwater seeped into excavation at approximately 9 ft bgs from the south side of test pit. Lab data indicate de minimis concentrations of diesel range hydrocarbons in TP-5 at 4 feet bgs (12.3 milligrams per kilogram [mg/kg]), and non-detect (ND) at 9 feet bgs.
Edge of concrete pad to north of truck repair awning	TP-6	Test pit excavated along east and south side of concrete pad encountered an additional concrete pad and footing at approximately 6" to 1.5" bgs (former building pad/footing).
Edge of concrete pad coming from northwest side of truck repair awning and northeast of masonry shed	TP-7A (TP-7a-4' collected) TP-7B (TP-7b-6'	TP-7A dug to south of pad, between truck repair awning and large pad to north of truck repair awning. Encountered very dark gray clay exhibiting slight swampy, sewage, and heavy hydrocarbon odors from 0.5' to 5' bgs. However, lab data from TP-7A at 4 feet was ND for TPH.
	collected)	TP-7B dug in unpaved 5'x8' area to west of truck repair pad. Encountered gravel A/B fill material, and apparently placed inside an abandoned, concrete walled septic tank (7.5'x5'x7' deep). Bottom of tank contained sewage-

		smelling soft clay. Lab data indicate de minimis concentrations of diesel range hydrocarbons in TP-7B at 6 feet (81.5 mg/kg).
Area of geophysical anomaly #1, to northwest of truck repair awning	TP-8 TP-9a TP-9b TP-12	 TP-8 – the southernmost test pit in this area contained some concrete and metal debris from 1-2' bgs. TP-9a and TP-9b (center of anomaly) contained large concrete debris and much burned wood and metal debris from approximately 1-3' bgs, and lesser amounts of debris from 3-6' bgs, and little to no debris from 6-7' bgs TP-12, at north end of anomaly, contained much large concrete debris from 1-3' bgs and minor amounts of burned wood debris. Becomes minor amounts of debris from 3-4' bgs. No odors were noted from any of these test pits.
Area of geophysical anomaly #2, approximately 90 to 120' southeast of Corona Road	TP-10 TP-11	A railroad spur was encountered at the east end of TP-10 at 6" bgs, approximately 39 feet southwest of the SMART/NWP RR line (likely the cause of the anomaly). Minor amounts of concrete and wood debris encountered in both test pits from approximately 1-3' bgs. Trace amount of debris in very dark gray clay from 3-5' bgs. No odors noted from these test pits.

*= with samples collected as indicated

3.2 Central Portion – Former AST Compound and Truck Scale

Based on the results of previous site investigations (2010/2011), as well as findings from PEI's Phase I ESA (2017), PEI prepared a scope of work to assess subsurface soil and groundwater conditions in the central portion of the site around the former AST compound and in the vicinity of the truck scale. The investigations conducted in this area of the site included a combination of soil borings with grab groundwater sample collection, installation and sampling of monitoring wells, and a soil vapor survey. The investigation was conducted in two phases, with the initial phase, soil borings and groundwater monitoring well installation, conducted in June 2017, and the second phase, additional soil borings and an associated soil vapor survey, conducted in September 2017. The phases of the investigation are further described in the sections below.

3.2.1 Soil Borings and Groundwater Monitoring Well Installation

In order to assess environmental impacts in subsurface soil and groundwater, PEI proposed to complete 12 soil borings at the subject property from the western property boundary to the central portion of the site. A workplan and permit application were submitted to and approved by the Sonoma County Department Health Services (SCDHS). Permit number SR0014174 was issued by SCDHS on May 10, 2017. Prior to initiating fieldwork, USA Dig Alert was notified and the proposed boring locations were cleared by a private geophysical utility clearance contractor.

Two additional soil borings were added during the investigation (permitted through SCDHS) in order to provide additional soil and groundwater data. Thus, PEI completed 14 soil borings on the central and western portion of the subject property in June 2017 (see Figure 6). Boring logs are included in Appendix B.

PEI retained the services of Cascade Drilling of Woodland, California to complete the on-site borings using a hollow-stem auger drill rig. Soil samples were collected at approximately 5-foot intervals (beginning at 5 feet bgs) in each boring. Discrete soil samples were collected utilizing a California split spoon sampler equipped with brass or stainless steel sampling tubes. Collected sample tubes were lined with Teflon sheeting, capped, and labelled, and then placed in a chilled cooler for delivery to an off-site analytical laboratory. Samples were selected for chemical analyses based on physical observations, olfactory indications, visual staining, and field monitoring of VOCs using a PID.

Soil samples were delivered by overnight delivery service to Enviro-Chem Laboratories of Pomona, California. The samples were submitted to the laboratory under chain-of-custody documentation. Selected samples were analyzed for VOCs by EPA Method 8260B, and Total Petroleum Hydrocarbons by carbon chain (TPHcc) by EPA Method 8015B.

Grab groundwater samples were collected from six of the soil borings (S-1 to S-6). The groundwater samples were collected from the soil borings into laboratory supplied sample bottles using new disposable bailers. Following collection of the grab groundwater samples, these six borings were abandoned using neat cement grout in accordance with local regulations and under the observation of a grout inspector from the SCDHS.

The remaining eight soil borings were converted to groundwater monitoring wells by installing 2-inch-diameter, Schedule 40 PVC slotted screen (e.g., 5-10 feet of 0.020-inch screen) and solid casing to ground surface. Monterey #3 sand was placed in the annular space from the bottom of the boring to approximately two feet above the top of the well screen. An approximately 2-foot bentonite seal was placed above the sand-pack. Each well was completed with Portland type I/II cement grout placed in the annular space from the bentonite seal to just below ground surface.

Monitoring wells MW-1 through MW-4 and MW-6 through MW-8 were completed with 9-inch diameter, above grade steel monuments protected by steel bollards. MW-5 was completed with a traffic-rated steel well box placed in concrete to protect the well at ground surface. A groundwater monitoring well schematic is included as **Figure 7**.

Soil boring logs and monitoring well completion diagrams are included in **Appendix B**. California Department of Water Resources (DWR) well completion reports are being completed and will be submitted to the DWR.

3.2.2 Groundwater Monitoring Well Development and Sampling

The newly installed groundwater monitoring wells (MW-1 through MW-8) were developed at least 48 hours after well installation. Well development activities consisted of surging the screened interval of each monitoring well for a period of approximately 5 to 15 minutes with a surge block, followed by purging of well water using a combination of hand held bailer and down-hole pump. Well development water was monitored for temperature, pH, specific conductance, and total dissolved solids during purging of the wells. The monitoring wells were developed until approximately 6 to 10 casing volumes of water had been removed and groundwater parameters had stabilized. Well development logs were completed.

The groundwater monitoring wells were sampled in June and September 2017. Well sampling logs were completed for sampling events. Groundwater samples were collected from each site monitoring well following purging and monitoring of the well purge water. Well purging was conducted using a new disposable bailer. Groundwater parameters including temperature, pH, and specific conductance were monitored during well purging. Monitoring wells were sampled following removal of approximately 3 casing volumes of water from each well and stabilization of groundwater parameters.

The monitoring wells were sampled using a disposable bailer to collect the samples into laboratory supplied 1-liter amber bottles and 40-milliliter (ml) VOA vials. Following collection, the sample containers were labeled and placed on ice for shipment to an analytical laboratory. The samples were sent under chain-of-custody documentation to Enviro-Chem Laboratories of Pomona, California (Enviro-Chem). Samples were analyzed for VOCs by EPA Method 8260B, and TPH-cc by EPA Method 8015B.

During the September 2017 groundwater sampling event, PEI was able to gain access to the onsite domestic water well located northwest of the former AST compound. PEI was able to move the well cover aside enough to assess the depth to water and collect a water sample using a new weighted disposable bailer. The groundwater sample (DW-1) was submitted with the samples collected from the site monitoring wells for laboratory analysis to Enviro-Chem for VOC and TPHcc analysis. The domestic well was sampled on September 6, 2017. The water level measured approximately 8.4 feet below the top of the well. The top of the well is approximately 2 feet above ground surface. The total depth of the well is apparently greater than 100 feet deep as PEI's 100-foot long water level measuring tape did not encounter the bottom of the well when lowered into the well.

3.2.3 Groundwater Monitoring Well Surveying

Well surveying was performed by Ray Carlson and Associates, a California licensed professional land surveyor (PLS) experienced with the GeoTrackerTM specifications. The well surveyed

generally conforms to the California State Water Resources Control Board's "GeoTrackerTM Survey_XYZ Guidelines & Restrictions" (Rev. 6, June 3, 2004). The monitoring wells were surveyed for elevation relative to sea level. Groundwater elevations were calculated to establish groundwater gradient (magnitude and direction). Groundwater monitoring well survey data and maps are included in **Appendix C**.

3.2.4 Shallow Soil and Soil Vapor Survey

The analytical data collected from completion of PEI's initial 6 soil borings and 8 groundwater monitoring wells indicated that groundwater at the site has been slightly impacted with the VOC 1,2-DCA. However, no significant source area of similar 1,2-DCA impacts to soil was discovered during PEI's initial investigations. Thus, PEI completed a soil vapor survey and shallow soil sampling in the general area of groundwater impacts (central portion of property) in order to further assess potentially impacted soils and a potential source of the groundwater impacts. The soil vapor survey was conducted on September 5 and 6, 2017. Prior to conducting the soil vapor survey, USA Dig Alert was notified and the proposed soil vapor boring locations were cleared by a private geophysical utility clearance contractor.

PEI retained the services of TEG-Northern California to complete 21 shallow soil borings (SV-1 through SV-20 and SB-21). The boring locations are noted in **Figure 8.** Soil borings were completed using a Strataprobe direct-push drilling rig. The soil borings were advanced to a depth of 8 feet bgs, except for boring SV-1 which was advanced to 12 feet bgs. Groundwater was not encountered except at SV-4, where perched groundwater was encountered at approximately 6 feet bgs. Soil matrix sampling was completed from each of the borings at depth of 4 and 8 feet bgs (and 12 feet bgs from SV-1). Soil samples were collected and archived in appropriately labeled soil core acetate sleeves, sealed with Teflon sheeting and plastic end caps, and placed in a cooler chilled with ice for delivery to an off-site laboratory under standard chain-of-custody methods.

Soil vapor samples were collected from each of the soil vapor boring in general accordance with California EPA – Department of Toxic Substances Control (DTSC) protocols (July 2015). Soil vapor sampling points were installed at a depth of approximately 5-feet bgs within borings SV-1 through SV-20. No soil vapor sample was collected from soil boring SB-21.

Dedicated Teflon sample tubing was used for each soil vapor sampling point. Stainless steel soil vapor probe tips were embedded at the bottom of the Teflon tubing at approximately 5-feet bgs midway within a minimum one-foot section of sand pack. Approximately one foot of dry granular bentonite was placed above the sand pack. Hydrated granular bentonite was then placed above the granular bentonite to the ground surface. The soil vapor sampling points were allowed to sit for a minimum of two hours prior to sampling. Soil vapor samples were collected using a 50-ml syringe connected to the Teflon sample tubing. Soil vapor samples were analyzed by TEG's on-site mobile laboratory for VOCs by EPA Method 8260B.

3.3 Southern Portion – Undeveloped Portion

Historical uses of the southern portion of the subject property have included wooden truss manufacturing and truck parking. No previous significant structures or buildings were identified from the Phase I ESA data reviews. This area of the site will likely be utilized by SMART for parking for the proposed north Petaluma SMART light rail station.

On June 6, 2017, PEI collected shallow soil samples from approximately 0.5 feet bgs from ten sampling locations, SS-1 to SS-10, around the perimeter of the southern portion of the subject property. The approximate locations of the shallow soil samples are indicated on **Figure 9**. Soil samples were collected using hand held trowels that were cleaned and rinsed between sampling locations. Soil samples were collected into glass jars, sealed with Teflon lined caps, labeled, and placed in a chilled cooler for shipment to the off-site laboratory. The shallow soil samples were analyzed for the following:

VOCs by EPA Method 8260B; TPH-cc by EPA Method 8015B. CAM 17 Metals SVOCs by EPA Method 8270B

Based on heavy petroleum hydrocarbons detections noted from several of the June 2017 shallow soil samples (samples SS-4-0.5 through SS-7-0.5), additional soil samples were collected from approximately 2.5 feet bgs from these sampling locations on September 6, 2017. These deeper soil samples were collected utilizing TEG's Strataprobe drilling rig. The deeper soil samples (SS-4-2.5 through SS-7-2.5) were collected into acetate soil core tubes and submitted to Enviro-Chem for TPH-cc analysis by EPA Method 8015B.

4.0 Investigation Results

4.1 Soil and Groundwater Conditions

Soil conditions encountered during advancement of the soil borings and excavation of test pits generally consisted of gray, dark gray, to olive brown clay with lesser amounts of fine to medium grained sands and traces of fine gravel. Fine gravels and sand were typically encountered in thin lenses (up to 3 feet thick) at depths of 15 to 31 feet bgs (the deepest depth explored). Encountered soils generally did not exhibit evidence of significant contamination such as odors, staining, or elevated PID readings. Soils encountered in soil borings and test pits exhibited low to no detected PID readings. The highest recorded PID reading was noted from soil 10 feet bgs from the soil boring advanced for MW-8. Soil boring logs for the June 2017 soil borings and monitoring well installations are presented in **Appendix B**.

Evidence of groundwater was noted at varying depths between 8 and 25 feet bgs. The large variation in depths to encountered groundwater was likely an effect of the fine sediments encountered from near the ground surface to just above water bearing zones, which resulted in confined to semi-confined conditions for the underlying groundwater. Grab-groundwater samples were collected at depths between approximately 15 to 25 feet bgs from soil borings SB-1 through SB-6.

Groundwater monitoring wells MW-1 through MW-8 were installed to depths ranging from approximately 25 to 31 feet bgs, depending upon where soil cuttings indicated that groundwater had been encountered. Monitoring well construction details are included on soil boring logs presented in **Appendix B**. The location and elevation of the monitoring wells were surveyed by Ray Carlson and Associates on July 7, 2017. Survey maps and data are presented in **Appendix C**.

Depth to groundwater measurements from site monitoring wells were collected during the June and September groundwater monitoring events. Groundwater elevations were calculated from the monitoring well elevation and depth to groundwater measurement data. Depth to groundwater and the corresponding groundwater elevations for the two monitoring events conducted to date are indicated in **Table 1**, below:

Monitoring Well	Total Depth (BGS/TOC)	Casing Elevation	Date Measured	Depth to Water (feet below TOC)	GW Elevation (ft msl)
MW-1	251/281	36.36	6/7/17	9.45	26.91
141 44 -1	23720	50.50	9/6/17	10.53	25.83
	/		6/7/17	9.62	26.21
MW-2	25'/28'	35.83	9/6/17	10.60	25.23
			6/7/17	9.31	25.92
MW-3	30'/33'	35.23	9/6/17	10.10	23.94
	0.51/2.01		6/7/17	10.55	25.65
MW-4	27/30	36.20	9/6/17	11.29	24.91
			6/7/17	6.35	26.67
MW-5	30'/30'	33.02	9/6/17	7.30	25.72
	15.00	25.52	6/7/17	9.83	25.70
MW-6	15,20	35.53	9/6/17	10.82	24.71
			6/7/17	9.91	26.13
MW-7	15,20	36.04	9/6/17	11.13	24.91
			6/7/17	10.67	27.06
MW-8	25'/28'	37.73	9/6/17	11.70	26.03

 Table 1 – Monitoring Well Water Level and Groundwater Elevation Data

BGS = below ground surface

TOC = Top of casing

msl = mean sea level

Groundwater elevation contours for the June and September monitoring events were plotted on site maps and are presented on Figures 10 and 11. The groundwater elevation maps indicate a general southerly groundwater flow direction across the site, with MW-4 and MW-6 located on the downgradient side of the site. The June groundwater gradient was calculated as 0.0053 feet per foot to the south-southwest, and the September groundwater gradient was calculated as 0.0043 feet per foot to the south. Groundwater isopleth maps for the June and September sampling events are included as Figure 10 and Figure 11.

4.2 Analytical Results

Laboratory analytical reports and corresponding chain-of-custody documentation from soil, groundwater, and soil vapor sampling activities conducted for this investigation are presented in **Appendix D**. The discussion of the analytical data has been separated into the three separate

areas of the site that were subject of PEI's investigation: The Northern Portion – Former Mill Structures; the Central Portion – Former AST Compound and Truck Scale; and the undeveloped Southern Portion of the site.

4.2.1 Northern Portion – Former Mill Structures

Buried building debris including concrete, wood, and metal were identified in several of the exploration test pits excavated on April 4 and 5, 2017. The approximate locations of the test pits excavated in this portion of the site are indicated on **Figure 5**.

Based on field observations from trenching activities within areas of geophysical anomalies, five test pits/trenches (TP-1, TP-4, TP-5, AND TP-7) were identified where visual, olfactory, or other evidence indicated potential environmental impacts in the areas of the former mill structures. Soil samples were collected from these trenches and submitted for off-site laboratory analysis. The samples selected for chemical analysis included: TP-1C-3, TP-4-3, TP-5-4, TP-5-9, TP-7A-4, and TP-7B-6, collected at various depths between 3 to 9 feet bgs. The analytical results from these soil samples are summarized in **Table 2**, below:

				Re	esults (mg/kg)				
Soil Sample ID & Depth	TPH C4- C10 mg/ kg	TPH C11- CC22 mg/kg	TPH C23-C35 mg/kg	BTEX	Chromium	Lead	Other Metals	VOCs	SVOCs
TP-1C-3'	ND	ND	ND	ND	48.8	7.5	<ttlc< th=""><th>ND</th><th>ND</th></ttlc<>	ND	ND
TP-4-3'	ND	ND	ND	ND	51.8	11.6	<ttlc< th=""><th>ND</th><th>ND</th></ttlc<>	ND	ND
TP-5-4'	ND	12.3	ND	ND	53.2	231	<ttlc< th=""><th>ND</th><th>ND</th></ttlc<>	ND	ND
TP-5-9'	ND	ND	ND	ND	45.9	4.8	<ttlc< th=""><th>ND</th><th>ND</th></ttlc<>	ND	ND
TP-7A-4'	ND	ND	ND	ND	50.5	6.96	<ttlc< th=""><th>ND</th><th>ND</th></ttlc<>	ND	ND
TP-7B-6'	ND	81.5	ND	ND	41.4	12.2	<ttlc< th=""><th>ND</th><th>4.32¹</th></ttlc<>	ND	4.32 ¹
ESLs ²	100	230	5100		120,000	80			<i>39</i> ¹
RSLs ³	NA	NA	NA		12,000	400			50^{I}
TTLC ⁴					2,500	1,000			

Table 2 – Soil Results – Test Pit Sampling – April 2017

1 Bis (2-Ethylhexyl) Phthalate (aka DEHP)

2 Environmental Screening Levels (ESLs) for residential soils, San Francisco Bay RWQCB, February 2016 (Rev. 3)

- 3 Regional Screening Levels (RSLs) in mg/kg for residential soils, Region 9 EPA, June 2017
- 4 Total Threshold Limit Concentrations for hazardous waste characterization. "<TTLC" = Result below the TTLC for the other CAM17 metals
- ND = Not detected at or above laboratory reporting limits

NA = Not Applicable

VOCs/SVOCs = volatile organic compounds / semi-volatile organic compounds

Bold results = Detected concentrations greater than one or more regulatory guideline levels

The laboratory results indicate minor (de minimis) concentrations of mid-range (C11-C22) petroleum hydrocarbons were detected from soil samples collected within TP-5-4 and TP-7B-6. Test pits TP-5 and TP-7B were excavated to the south of the open truck repair awning. The detected TPH concentrations indicate possible previous releases of diesel.

Detected chromium and lead concentrations were below their hazardous waste characterization Total Threshold Limit Concentrations (TTLC) of 2,500 mg/kg and 1,000 mg/kg, respectively. However, one of the lead detections and several of the chromium detections were at concentrations which may require additional testing to determine whether the Soluble Threshold Limit Concentration (STLC) for non-RCRA hazardous waste (California hazardous waste) is exceeded. The additional testing may be required if and when materials from these test pits are removed from the site for off-site disposal.

No VOCs or SVOCs were detected above laboratory reporting limits, with the exception of an anomalous low concentration of Bis (2-Ethylhexyl) Phthalate (4.32 mg/kg) in TP-7B at 6 feet bgs.

4.2.2 Central Portion – Former AST Compound and Truck Scale

4.2.2.1 Soil Boring Results – June 2017

Soil samples were collected from each of the 14 soil borings that were completed in June 2017 including SB-1 through SB-6 and MW-1 through MW-8. The analytical results are summarized in **Table 3**, below:

Soil Sample ID & Depth	TPH-cc C4 – C35	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2- DCA	Other VOCs
SB-1-15'	ND	ND	ND	ND	ND	ND	ND
SB-1-20'	ND	ND	ND	ND	ND	ND	ND
SB-2-10'	ND	ND	ND	ND	ND	ND	ND
SB-2-15'	ND	ND	ND	ND	ND	ND	ND
SB-3-15'	ND	ND	ND	ND	ND	ND	ND
SB-4-5'	ND	ND	ND	ND	ND	ND	ND
SB-4-15'	ND	ND	ND	ND	ND	ND	ND
SB-5-5'	ND	ND	ND	ND	ND	ND	ND
SB-5-10'	ND	ND	ND	ND	ND	ND	ND
SB-5-15'	ND	ND	ND	ND	ND	ND	ND
SB-5-20'	ND	ND	ND	ND	ND	ND	ND
SB-6-10'	ND	ND	ND	ND	ND	ND	ND
SB-6-15'	ND	ND	ND	ND	ND	ND	ND
SB-6-20'	ND	ND	ND	ND	ND	ND	ND
MW-1-15'	ND	ND	ND	ND	ND	ND	ND
MW-2-10'	ND	ND	ND	ND	ND	ND	ND
MW-3-15'	ND	ND	ND	ND	ND	ND	ND
MW-4-15'	ND	ND	ND	ND	ND	ND	ND
MW-4-25'	ND	ND	ND	ND	ND	ND	ND
MW-5-5'	ND	ND	ND	ND	ND	ND	ND
MW-5-10'	ND	ND	ND	ND	ND	ND	ND
MW-5-15'	ND	ND	ND	ND	ND	ND	ND
MW-5-25'	ND	ND	ND	ND	ND	ND	ND
MW-6-15'	ND	ND	ND	ND	ND	ND	ND
MW-6-20'	ND	ND	ND	ND	ND	ND	ND
MW-7-15'	ND	ND	ND	ND	ND	ND	ND
MW-7-20'	ND	ND	ND	ND	ND	ND	ND
MW-8-15'	ND	ND	ND	ND	ND	ND	ND

Table 3 – Soil Results – Soil Borings & Monitoring Wells – June 2017
(Results in mg/kg, depth in feet bgs)

ND = Not detected at or above laboratory reporting limits

None of the analyses of soil samples collected from the 14 initial soil borings advanced in June 2017 indicated any detected concentrations of TPH or VOCs above laboratory reporting limits. These results do not indicate a specific source of soil contamination that could have impacted groundwater conditions at the site.

4.2.2.2 Groundwater Analytical Results – June & September 2017

Site groundwater monitoring wells were initially sampled on June 7 and 8, 2017, during the 2nd quarter of 2017 and sampled again in the 3rd quarter 2017 on September 6 and 7, 2017.

The monitoring wells were initially sampled on June 7 and 8, 2017, during the 2nd quarter of 2017, and sampled again in the 3rd quarter 2017 on September 6 and 7, 2017. The groundwater level and elevation measurements indicate a general southerly groundwater flow direction, with MW-4 and MW-6 located on the downgradient side of the site.

Groundwater analytical results from the groundwater sampling activities are summarized in **Table 4**, below.

			TPH-	TPH	TPH			1,2-	Iso-	Oth an
Groundwater Sample ID	Туре	Sampled	C4-	C11-	C23-	Benzene	Xylenes		propyl	VOC
Sample ID		Sampicu	C10	C22	C35			DCA	benzene	vocs
SB-1	Grab	6/2/2017	ND	ND	ND	ND	ND	8.03	ND	ND
SB-2	Grab	6/2/2017	ND	ND	ND	ND	ND	ND	ND	ND
SB-3	Grab	6/1/2017	ND	ND	ND	ND	ND	ND	ND	ND
SB-4	Grab	6/1/2017	ND	ND	ND	ND	ND	ND	ND	ND
SB-5	Grab	6/1/2017	2050	673	ND	864	11.8	ND	42.5	ND
SB-6	Grab	6/1/2017	ND	ND	ND	ND	ND	18.1	ND	ND
MW-1	Monitoring	6/7/2017	ND	ND	ND	ND	ND	ND	ND	ND
	Well	9/7/2017	ND	ND	ND	ND	ND	ND	ND	ND
MW-2	Monitoring	6/7/2017	ND	ND	ND	ND	ND	ND	ND	ND
	Well	9/7/2017	ND	ND	ND	ND	ND	ND	ND	ND
MW-3	Monitoring	6/7/2017	ND	ND	ND	ND	ND	ND	ND	ND
	Well	9/7/207	ND	ND	ND	ND	ND	ND	ND	ND
MW-4	Monitoring	6/8/2017	ND	ND	ND	ND	ND	1.89	ND	ND
	Well	9/6/2017	ND	ND	ND	ND	ND	2.17	ND	ND
		9/6/2017	ND	ND	ND	ND	ND	1.74	ND	ND
		(d)								
MW-5	Monitoring	6/8/2017	ND	ND	ND	ND	ND	17.4	ND	ND
	wen	9/6/2017	ND	ND	ND	ND	ND	3.97	ND	ND
MW-6	Monitoring	6/8/2017	ND	ND	ND	ND	ND	6.77	ND	ND
	Well	9/6/2017	ND	ND	ND	ND	ND	ND	ND	ND
MW-7	Monitoring	6/8/2017	ND	ND	ND	ND	ND	ND	ND	ND
	Well	9/6/207	ND	ND	ND	ND	ND	ND	ND	ND
MW-8	Monitoring	6/8/2017	ND	ND	ND	ND	ND	ND	ND	ND
	Well	9/6/207	ND	ND	ND	ND	ND	ND	ND	ND
DW-1	Grab	9/6/2017	ND	ND	ND	ND	ND	ND	ND	ND
CA MCLs ¹			NA	NA	NA	1.0	1,750	0.5	NA	-
ESLs ²			100	100	NA	1.1	1,300	6.1	NA	-
Fed MCL ³			NA	NA	NA	5.0	10,000	5.0	NA	-

Table 4 – Groundwater Results – Borings & Monitoring Wells,June and September 2017

(Results in $\mu g/L$)

1California Maximum Contaminant Levels – July 2014

2 Environmental Screening Levels – Tier 1 ESLs – February 2016 for human health risks in a residential setting from vapor intrusion from shallow groundwater

3 Federal Maximum Contaminant Levels

ND - Not Detected at concentrations greater than or equal to the laboratory reporting limits

NA – Not Applicable

Bold results = Detected concentrations greater than one or more regulatory guideline levels

1California Maximum Contaminant Levels for drinking water

2 Environmental Screening Levels – Tier 1 ESLs – February 2016 for shallow groundwater, residential scenario 3 Federal Maximum Contaminant Levels for drinking water

ND = not detected above laboratory detection limit; NL = not listed

The analytical data indicate groundwater at the subject property is slightly impacted in the area of the current well house and the former AST compound with 1,2-DCA at concentrations which exceed the Federal Maximum Contaminant Level (FedMCL) of 5 ug/L (grab-groundwater samples SB-1 and SB-6, and June 2017 monitoring well samples from MW-5 and MW-6). Detected concentrations of 1,2-DCA from SB-1, SB-6, MW-4, MW-5, and MW-6 are all above the California MCL (CaMCL) of 0.5 ug/L. In addition, several of the 1,2-DCA detections are above the ESL for vapor intrusion from shallow groundwater in a residential setting. However detected 1,2-DCA concentrations from the downgradient monitoring wells were generally at or below the vapor intrusion ESL.

The grab groundwater sample collected from the soil boring SB-5 indicated apparently anomalous concentrations of TPHg (2,050 ug/L), TPHd (673 ug/L), benzene (864 ug/L) and xylenes (11.8 ug/L). None of the samples collected to date from site monitoring wells or the remaining five grab-groundwater samples collected in June 2017 contained BTEX constituents above laboratory reporting limits. Other than SB-5, no other groundwater sample contained TPH concentrations (C4 to C35) or BTEX constituents above laboratory reporting limits.

PEI was able to gain access to the on-site domestic water well (DW-1) at the subject property during the September 2017 sampling event to collect a grab groundwater sample with a new disposable bailer. Well DW-1 is located west and adjacent to the concrete enclosure that formerly housed the fuel ASTs Analytical results indicate that no analyzed compounds (VOCs or TPH) were detected at concentrations above laboratory reporting limits from the sample collected from DW-1.

4.2.2.3 Shallow Soil and Soil Vapor Survey – September 2017

PEI completed a soil vapor survey and shallow soil sampling in the general area of the groundwater impacts (central portion of property) in order to assess for potential impacted soils and a potential source of groundwater impacts observed during the June 2017 sampling event. The field work included advancing 20 borings to collect shallow soil (up to 12 feet bgs) and soil vapor samples at approximately 5 feet bgs. An additional soil boring, SB-21, was installed in the center of the concrete former fuel dispenser pad for soil collection only. The analytical results are summarized in **Tables 5** and **6**, below.

Table 5 – Soil Results-Shallow Soil Borings within Impacted Groundwater Area September 2017

Soil Sample ID & Depth	TPH C4- C10	TPH C11- CC22	TPH C23- C35	Benzene	Toluene	Ethyl- benzene	Xylenes	1,2-DCA	Other VOCs
SV-1-4'	16.1	92.2	ND	ND	ND	0.485	1.4	ND	Trace*
SV-1-8'	ND	59.8	ND	ND	ND	ND	ND	ND	Trace*
SV-1-12'	ND	ND	ND	ND	ND	ND	ND	ND	ND
SV-2-4'	ND	320	ND	ND	ND	ND	ND	ND	ND
SV-11-8'	ND	ND	ND	ND	ND	ND	ND	ND	ND
SV-2-8'	ND	ND	ND	ND	ND	ND	ND	ND	ND
SV-12-8'	ND	ND	ND	ND	ND	ND	ND	ND	ND
SV-17-4'	ND	ND	ND	ND	ND	ND	ND	ND	ND
SV-19-4'	ND	ND	ND	ND	ND	ND	ND	ND	ND
SV-20-4'	ND	ND	ND	ND	ND	ND	ND	ND	ND
SB-21-4'	ND	38.1	ND	ND	ND	ND	ND	ND	ND
SB-21-8'	ND	ND	ND	NA	NA	NA	NA	NA	NA
ESLs (residential)	100	230	5100	0.044	2.9	1.4	2.3	.0045	varies
ESLs (commercial)	500	1,000	140,000	1	1,000	22	1,000	1.6	

(Concentrations in mg/Kg)

* SV-1-4' and SV-1-8' contained trace concentrations of n-butyl benzene, n-propyl benzene, 1,2,4trimethylbenzene, 1,3,5-trimethylbenzene

ND = not detected above laboratory reporting limit

ESLs = Environmental Screening Levels (ESLs) for residential/commercial soils (as indicated), San Francisco Bay RWQCB, February 2016 (Rev. 3)

ND – Not Detected at concentrations greater than or equal to the laboratory reporting limits NA – Not Analyzed

Bold results = Detected concentrations greater than one or more regulatory guideline levels

The soil analytical results indicate relatively minor TPH as gasoline (TPH-C4-C10) and diesel (TPH-C11-C22) detections from 4 feet bgs at SV-1, which reduce to "non-detect" at 12 feet bgs at SV-1. TPH as diesel was detected at 320 mg/kg from the 4 foot bgs sample from SV-2, which is greater than the ESL for soil in a residential setting of 230 mg/kg, however TPH as diesel was not detected in the 8 foot soil sample from SV-2. TPH as diesel was also detected in the 4 foot sample from SB-21, however the 8 foot soil sample results indicated no detected TPH as diesel.

No VOCs or TPH as gasoline or motor oil (TPH-C23-C35) were detected at or above laboratory reporting limits in any of the soil samples selected for analysis from the September shallow soil borings. Specifically, no 1,2-DCA was detected in any of the soil samples analyzed, thus no source of 1,2-DCA impacts to groundwater were identified from the September 2017 soil sampling activities.

	Results (µg/L)										
Soil Sample ID	Dongono	Toluono	Ethyl-	Xylene-	Xylenes-	1,2-	Other				
(5 feet bgs)	Denzene	Toluene	benzene	m, p	0	DCA	VOCs				
SV-1	11.0	1.0	3.3	11.0	2.8	ND	ND				
SV-2	4.0	5.3	2.2	6.5	1.7	ND	ND				
SV-3	ND	ND	ND	ND	ND	ND	ND				
SV-4	ND	ND	ND	ND	ND	ND	ND				
SV-5	ND	ND	ND	ND	ND	ND	ND				
SV-6	ND	ND	ND	ND	ND	ND	ND				
SV-7	ND	ND	ND	ND	ND	ND	ND				
SV-8	ND	ND	ND	ND	ND	ND	ND				
SV-9	ND	ND	ND	ND	ND	ND	ND				
SV-10	ND	ND	ND	ND	ND	ND	ND				
SV-11	ND	ND	ND	ND	ND	ND	ND				
SV-12	ND	ND	ND	ND	ND	ND	ND				
SV-13	ND	ND	ND	ND	ND	ND	ND				
SV-14	ND	ND	ND	ND	ND	ND	ND				
SV-15	ND	ND	ND	ND	ND	ND	ND				
SV-16	ND	ND	ND	ND	ND	ND	ND				
SV-17	ND	ND	ND	ND	ND	ND	ND				
SV-18	ND	ND	ND	ND	ND	ND	ND				
SV-19	2.8	ND	2.9	7.9	0.15	ND	ND				
SV-20	ND	ND	ND	ND	ND	ND	ND				
Blanks (2)	ND	ND	ND	ND	ND	ND	ND				
CHHSLs ¹	0.085	320	1.1	850/800	740	0.11	varies				
ESLs (subslab - residential) ²	0.048	160	0.56	52	52	0.054	varies				
ESL (subslab – commercial) ³	0.42	1,300	4.9	440	440	0.470					

Table 6- Soil Vapor Results-Shallow Boringswithin Impacted Groundwater Area - September 2017

1 California Human Health Screening Levels - Residential structures with engineered fill

2 Environmental Screening Levels – Tier 1 ESLs – June 2016 for subslab soil gas with intact slab (residential)

3 Environmental Screening Levels – Tier 1 ESLs – June 2016 for subslab soil gas with intact slab (commercial)

ND – Not Detected at concentrations greater than or equal to the laboratory reporting limits **Bold results** = Detected concentrations greater than one or more regulatory guideline levels

Soil vapor data indicate concentrations of BTEX constituents in three borings advanced to the northeast of the truck scale and former AST compound (SV-1, SV-2 and SV-19). The soil vapor results from these borings indicate concentrations of benzene and ethylbenzene above soil vapor intrusion into residential structure standards (e.g. residential CHHSLs for structures with engineered fill materials under subslab base gravel; residential soil vapor intrusion ESLs). The remaining 17 soil vapor samples did not detect concentrations of VOCs above laboratory reporting limits. The detections of ethylbenzene, xylenes, and TPH in soil samples from SV-1

and SV-2, along with the detections of BTEX compounds in soil vapor samples from SV-1, SV-2 and SV-19 suggest the possible presence of a historic source of petroleum hydrocarbons (e.g., possible former UST) located north of the former AST enclosure. A former UST could have been a source of 1,2-DCA to groundwater, however, the soil and vapor analytical results did not reveal any specific source of 1,2-DCA as 1,2-DCA was not detected in any of the shallow soil or soil vapor samples analyzed.

Soil data indicates limited gasoline (16.1 mg/Kg) and diesel (92.2 mg/Kg) in SB-1 at 4 feet bgs which reduces in concentration with depth to 12 feet bgs. Soil data indicate limited diesel in the 4 foot soil sample collected boring SV-2 (320 mg/Kg) and SV-21 (38.1 mg/Kg). No VOCs or TPH as gasoline were detected above laboratory detection limits. Specifically, no 1,2-DCA was detected in the soil vapor of any of the 20 vapor samples collected from within the area of the identified 1,2-DCA groundwater plume. No evidence of a significant source for groundwater impact based upon soil data.

4.3 Southern Portion - Undeveloped

In June 2017, PEI collected 10 shallow soil borings, SS-1 to SS-10, at a depth of approximately 0.5 foot bgs around the perimeter of the southern portion of the subject property. These soil samples were analyzed for VOCs, TPH-cc, SVOCs, and CAM 17 metals.

Based on heavy petroleum hydrocarbons detections (TPH as motor oil [C23-C35]) from SS-4-0.5 through SS-7-0.5 from the June 2017 sampling, additional soil samples were collected from approximately 2.5 feet bgs at these sampling locations in September 2017 for TPH-cc analysis. Analytical results from the near surface soil sampling conducted in the southern portion of the site are summarized in **Table 7**, below.

Soil Sample ID	ТРН C4-C10	ТРН C11-C22	ТРН C23-C35	As	Cr Total	Pb	Other Metals	VOCs	SVOCs
SS-1-0.5'	ND	ND	ND	3.98	39.9	9.47	<ttlc< th=""><th>ND</th><th>ND</th></ttlc<>	ND	ND
SS-2-0.5'	ND	ND	ND	ND	50.6	7.62	<ttlc< th=""><th>ND</th><th>ND</th></ttlc<>	ND	ND
SS-3-0.5'	ND	ND	ND	6.36	40.8	16.6	<ttlc< th=""><th>ND</th><th>ND</th></ttlc<>	ND	ND
SS-4-0.5'	ND	110	3,430	ND	33.3	5.85	<ttlc< th=""><th>ND</th><th>ND</th></ttlc<>	ND	ND
SS-4-2.5'	ND	ND	ND	NA	49.5	NA	NA	NA	NA
SS-5-0.5'	ND	631	13,700	3.5	66.5	10.5	<ttlc< th=""><th>ND</th><th>ND</th></ttlc<>	ND	ND
SS-5-2.5'	ND	ND	ND	NA	NA	NA	NA	NA	NA
SS-6-0.5'	ND	110	4,100	3.21	44.2	7.3	<ttlc< th=""><th>ND</th><th>ND</th></ttlc<>	ND	ND
SS-6-2.5	ND	ND	ND	NA	NA	NA	NA	NA	NA
SS-7-0.5'	ND	ND	2,370	ND	44.1	7.95	<ttlc< th=""><th>ND</th><th>ND</th></ttlc<>	ND	ND
SS-7-2.5'	ND	ND	ND	NA	NA	NA	NA	NA	NA
SS-8-0.5'	ND	ND	522	6.31	61.3	11.7	<ttlc< th=""><th>ND</th><th>ND</th></ttlc<>	ND	ND
SS-9-0.5'	ND	ND	ND	ND	50.8	6.15	<ttlc< th=""><th>ND</th><th>ND</th></ttlc<>	ND	ND
SS-10-0.5'	ND	ND	340	ND	60.5	22.4	<ttlc< th=""><th>ND</th><th>ND</th></ttlc<>	ND	ND
ESLs (residential)	100	230	5,100	0.067	120,000	80			
ESLs (commercial)	500	1,000	140,000	0.31	1,800,000	320			
RSLs				0.68	120,000	400			
TTLC				500	2,500	1,000			

Table 7 – Shallow Soil Results – Southern Portion June and September 2017 (Concentrations in mg/Kg)

ESLs = Environmental Screening Levels (ESLs) for residential/commercial soils (as indicated), San Francisco Bay RWQCB, February 2016 (Rev. 3)

< TTLC = Results below Total Threshold Limit Concentrations for hazardous waste characterization for other CAM17 metals

ND - Not Detected at concentrations greater than or equal to the laboratory reporting limits

NA - Not Analyzed

As = arsenic, Cr = chromium, Pb = lead

VOCs/SVOCs = volatile organic compounds / semi-volatile organic compounds

Bold results = Detected concentrations greater than one or more regulatory guideline levels

No metals were detected at concentrations greater than their respective hazardous waste characterizations TTLCs. were observed in shallow soil above total threshold limit concentrations (TTLC). However, five of the chromium detections were at concentrations which may require additional testing to determine whether the STLC for non-RCRA hazardous waste (California hazardous waste) is exceeded. The additional testing may be required if and when materials from these test pits are removed from the site for off-site disposal.

No VOCs or SVOCs were observed in shallow soil samples at concentrations above laboratory detection limits.

The analytical results indicate detected concentrations of heavy hydrocarbons in the motor oil range (C23-C35) in several of the initial surface soil samples collected at 0.5 feet bgs from the perimeter of the truck parking area (samples SS-4-0.5 through SS-7-0.5). However, results from

soil samples collected at 2.5 feet bgs from these four sampling locations were non-detect for TPH, indicating the initial TPH detections are from only minor surficial releases.

5.0 Conclusions & Recommendations

5.1 Northern Portion – Former Mill Structures

The geophysical survey and test pit analysis indicated evidence of historical burial of building debris (e.g., burned wood, concrete, septic tanks, etc.). The buried debris appears to be limited in areal extent, and most debris was located within the first 4 to 5 feet bgs.

Soils that were observed with potential environmental impact were sampled for TPH, VOCs, SVOCs and metals. Analytical data indicated pockets of low concentrations of TPH-diesel impacted soils within a few of the test pit excavations. The encountered soils and analytical results do not suggest any significant releases of petroleum hydrocarbons to subsurface soils. No specific source of organic or inorganic constituents of concern were encountered that would cause significant groundwater impacts.

Future site development activities (e.g., grading) will likely encounter areas of buried building debris and soils impacted with a low concentrations of petroleum hydrocarbons(e.g., TPH-diesel). A soil management plan will be necessary to segregate impacted soil and debris and address potential worker safety concerns.

5.2 Central Portion – Former AST Compound and Truck Scale Area

5.2.1 Soil and Soil Vapor Data

Soil data collected from the 35 soil borings advanced at the site in June and September 2017 identified no obvious source of impacts to the subsurface. Low concentrations of petroleum hydrocarbon impacts and BTEX constituents were detected in shallow soil matrix samples collected in the vicinity of SV-1, SV-2, and SV-19. These borings are located northeast of the former AST enclosure and south of the former mill structures.

Soil vapor data indicate concentrations of BTEX constituents northeast of the former AST enclosure. These concentrations are above California Human Health Screening Levels (CHHSLs) for residential properties which is proposed for the site.

The specific source of the petroleum hydrocarbon noted on the subject property is unknown. However, based on the data collected during this assessment, there appears to be a potential source (possibly a former UST) located northeast of former AST enclosure and south of truck repair awning. The analytical data and observations of soil conditions in this area indicate that remediation (e.g., source removal/excavation) will likely required prior to or during site development activities.
5.2.2 Groundwater Data

An anomalous concentration of benzene was observed in one grab groundwater sample, SB-5, at concentrations of 864 ug/L. In September 2017, PEI completed a shallow soil/soil vapor boring (SV-7) in the vicinity of SB-5. No field observations of soil impacts were noted in SV-7 and no soil vapor was detected in the vapor sample collected 5 feet bgs. Upgradient grab-groundwater sample SB-3 and downgradient groundwater results from MW-6 and MW-7 detected no concentrations of benzene or other petroleum hydrocarbons constituents. Therefore, the impact detected in the grab-groundwater sample from SB-5 appears to be very localized and/or from an anomalous detection.

Groundwater within the central area of the subject property is slightly impacted with low concentrations of 1,2-DCA. In June 2017, the highest detections of 1,2-DCA were noted in grab-groundwater sample SB-6 at 18.1 μ g/L and in site monitoring well MW-5 at 17.4 μ g/L. The analytical data indicates that the 1,2-DCA impact is localized on the subject property, with significantly reduced or non-detectable concentrations noted in downgradient wells MW-4 and MW-6.

Subsequent groundwater sampling of site monitoring wells in September 2017 indicated reduced concentrations of 1,2-DCA from the June 2017 data from wells MW-4 and MW-5, and no detected concentrations of 1,2-DCA in MW-6. The detected 1,2-DCA concentrations have been above the California MCL of $0.5\mu g/L$. However, detected 1,2-DCA concentrations from the downgradient monitoring wells in September 2017 were generally at or below the vapor intrusion ESL.

Constituents of concern (TPH, BTEX, and 1,2-DCA) have been noted in groundwater beneath the site. The detected concentrations of these constituents during the September 2017 groundwater sampling event are below California MCLs for all VOCs other than 1,2-DCA. The results do not suggest a need for an active remedial action program to address groundwater impacts. Based on the data collected to date, two additional quarterly rounds of groundwater monitoring are recommended to further assess groundwater concentrations. Further discussion of the 1,2-DCA detections in groundwater and recommendations for how to address these detections is presented in Section 5.4, below.

The detected concentrations of 1,2-DCA during the September groundwater monitoring event were on the order of or below the ESL for vapor intrusion from shallow groundwater in a residential setting. The results of the soil vapor survey conducted in September 2017 confirm that vapor intrusion from underlying 1,2-DCA impacted groundwater should not be an issue for site redevelopment, as 1,2-DCA was not detected in any of the 20 soil vapor samples collected during the investigation.

5.3 Southern Portion - Undeveloped

The historical information reviewed for this investigation indicates no significant structural or industrial use of the southern portion of the property. The primary historical use identified has been the relatively recent use of the perimeter of this portion of the site for truck/trailer parking.

Groundwater data did not indicate impacts at MW-7, the southernmost monitoring well installed at the site. Shallow soil data on this portion of the site indicate surficial impacts of shallow soils with petroleum hydrocarbons in the range of motor oil.

The history and data indicate no significant environmental concern on the southern portion of the property. Therefore, this portion of the property does not require additional assessment. However, there remains a possibility that future site development activities (e.g., grading) will encounter soils impacted with low concentrations of petroleum hydrocarbon (e.g., TPH-motor oil). A soils management plan will be necessary to segregate impacted soil and debris and address potential worker safety concerns.

5.4 Summary of Sitewide Conclusions and Recommendations

Proposed future actions to prepare the subject property for residential development and for SMART system parking will likely remove remnant concentrations of petroleum hydrocarbon contaminants and alleviate threats to public health and to ecological and water resources. These actions are: 1) the excavation and off-site removal of petroleum-impacted soil and buried waste debris; and 2) the proper destruction of the domestic water well to eliminate a potential conduit for impacted groundwater to reach a deep water-bearing zone or aquifer serving beneficial uses.

Excavation and construction activities will be conducted under the guidance of a Soil and Groundwater Management Plan (SGMP) that would describe procedures to protect workers' health, notify appropriate regulatory agencies, and manage impacted soil or groundwater if it is encountered. The threat of soil vapor intrusion into buildings can be precluded by the excavation and removal of impacted soil (i.e., where volatile constituents of fuel were detected in soil vapor tests) and by appropriate construction techniques (i.e. placement of engineered fill below sub-slab base gravel).

The residual degree of impact to groundwater by 1,2-DCA is minor and the extent of the impacts to groundwater appears to be limited. It is well documented (see, for example, USGS 2006) that 1,2-DCA degrades both aerobically and anaerobically. Under aerobic conditions, 1,2-DCA can be degraded when used as a carbon source by microorganisms. The intermediate by-product of this degradation is chloroethanol, which is then mineralized to carbon dioxide and water. Under anaerobic conditions, which may be the case for site groundwater, the mean half-life for biodegradation of 1,2-DCA has been shown to be on the order of 63-165 days. If remediation of 1,2-DCA in groundwater is warranted at a pace faster than natural attenuation, then it would be possible to add the appropriate microbes to accelerate its degradation. In the interim, it is

recommended that two additional quarterly rounds of groundwater monitoring are conducted to further assess concentrations of 1,2-DCA in groundwater.

6.0 References

The following references were utilized during the preparation of this report:

California Department of Water Resources (DWR), in cooperation with the Sonoma County Water Agency, June 1982. Bulletin 118-4: Evaluation of Ground Water Resources: Sonoma County, Volume 3: Petaluma Valley.

California Environmental Protection Agency, Office of Environmental Health Hazard Assessment, January 2005, Table revised September 23, 2010. Use of California Human Health Screening Levels (CHHSLs) in Evaluation of Contaminated Properties.

Camp Dresser McKee., May 10, 2010. "Phase I Environmental Site Assessment of a Industrial Property, 890 N. McDowell Blvd, Petaluma, CA" prepared for SMART

Kleinfelder., February 15, 2017. "Phase II Environmental Investigation, 890 N. McDowell Blvd, and 320 Corona Road, Petaluma, CA" prepared for SMART

Kleinfelder., February 15, 2017. "Phase I Soil and Groundwater Investigation, 890 N. McDowell Blvd, and 320 Corona Road, Petaluma, CA" prepared for SMART

PEI, Inc., February 15, 2017. "Phase I Environmental Site Assessment of a Industrial Property, 890 N. McDowell Blvd, and 320 Corona Road, Petaluma, CA" prepared for Lomas Partners

San Francisco Regional Water Quality Control Board (RWQCB), "Environmental Screening Levels – Tier 1 ESLs, Feb 2016 (Rev. 3)", February 2016

US Environmental Protection Agency (EPA), Region IX, "Regional Screening Level (RSL) Residential Soil Table", May 2016

7.0 Statement of Environmental Professionals

This Assessment has been performed for the exclusive use and benefit of the addressee(s) identified on the cover of this report, or agents directly specified by it (them), for the transaction at issue concerning the subject property described in this report. This Assessment shall not be used or relied upon by others without the prior written consent of Pinnacle Environmental, Inc. and of the addressee(s) named on the cover of this report.

The objective of this limited subsurface investigation was to discover potential environmental impact from historical usage of the subject property to subsurface soils, as specified in the scope of services, with the limitations identified in the proposal. The field and laboratory procedures described herein were conducted in accordance with generally accepted environmental consulting practices in order to accomplish the stated objectives.

Signature of Environmental Consultant – Peter K. Cloven, CEM, REA:

Signature/Environmental Consultant

Signature of California Professional Geologist-Francois Bush, PG #7711:

Signature of Professional Geologist

FIGURES

Groundwater Isopleth – September 6, 2017 890 McDowell Boulevard, Petaluma, CA

Groundwater Isopleth – June 2, 2017 890 McDowell Boulevard, Petaluma, CA

APPENDIX A

GEOPHYSICAL SURVEY

GEOPHYSICAL SUBSURFACE INVESTIGATION

326 Corona Road, Petaluma, CA

For

Pinnacle Environmental 3/21/17

Objective:

The objective of the subsurface geophysical investigation was to try to delineate the location(s) of burn/disposal sites from the remnants of building destroyed by a fire in 1983 thought to exist within the site area.

Site Description:

The area surveyed consists of two areas south of the railroad tracks and east of Corona Road which are separated by a couple small buildings and an overhead permanent shade structure. The site was mostly flat, and consisted of a hard-packed dry soil. Some sections of reinforced and non-reinforced concrete was within the geophysical survey area. Trailers, cars, trucks, and any trash which was present on site was moved for the survey. The area surveyed did not cover the full scope of the burned building due to constant truck operations on site.

Site History:

The location has historically been developed and in use for various companies (transportation company, feed mill, etc).

The photo below is a historical photo of the site taken around 1980

Geophysical Equipment Used:

Geometrics G-858 MagMapper

The G-858 MagMapper is a cesium vapor magnetometer that detects the earth's magnetic field. This magnetometer uses new technology to get precise readings at rates up to 10 times per second. This enables Subtronic to quickly collect high resolution data over large areas. The data is stored on the console connected to the magnetometer. Following the data collection, the data is then downloaded to a computer for processing by the software contouring package. The results are analyzed and anomalies identified. It records data in G (Gauss).

Profiler EMP-400

The Profiler EMP-400 (EMP) is a powerful electromagnetic induction tool and can be used to reliably examine soil conditions and subsurface structures. It is a frequency domain, electromagnetic profiling system that acquires multiple frequencies. This enables the user to determine and select the best frequencies to achieve the best results for a specific task. The Profiler can be used to determine soil conductivity which is the ability of a material to transmit an electrical current which is directly correlated to the amount of salts in the soil. It records data in mS/m (conductivity)

GSSI SIR-4000

A SIR-4000 ground penetrating radar (GPR) system graphically records subsurface structures. Both geological and man-made structures are recorded by the introduction of a pulse of electromagnetic energy into the ground. Reflected pulses received by the antenna are then processed for measurable contrast in electrical properties. The result is a visual pseudo-cross-sectional profile. Primary applications of the GPR are detecting underground storage tanks, foundations, buried drums, previously excavated areas, burn/disposal sites, and voids. The GPR depth penetration is severely limited by clay-rich soil. Radar waves can penetrate deeper in sandy and gravelly soils.

Survey Methodology:

No apparent underground utilities were noted at this site via a visual site inspection. Utilities were not located and was outside the scope of work. For the geophysical surveys, a 90' (x) by 467' (y) grid (Grid PET1, PET2, and PET3) was laid out over the site area, and the corners were marked with pink whiskers (Fig. 4 Site Map). The G-858 magnetometer, EMP-400 profiler, and 400 MHz GPR data was collected along traverses spaced 2 feet apart. G-858 data was collected with a single bottom sensor taking readings every 0.1 seconds. EMP-400 data was collected at 10,000 Hz, with readings taken every 0.25 seconds. The GPR data was collected at 24 scans/ft, 512 samples per scan, and with a ns (nanosecond) time range of 100 seconds. A low-pass and high-pass filter was used at 100 and 800 MHz. Both the G-858 and EMP-400 data was processed using MagMap and contoured using Surfer 13. GPS readings were collected simultaneously with the G-858 and EMP-400 data, and were used to georeferenced the geophysical data in Google Earth.

Survey Results:

Using the EMP-400, three anomalous areas were observed, all located in grid PET1 (Fig. 1). Using the G-858 mag, six anomalous areas were observed, spread out across grids PET1, PET2, and PET3. Using the 400 MHz GPR, four anomalous areas were found across grids PET1 and PET2. Correlations between the three geophysical methods used was observed in two areas marked as anomalies 1 + 2. Areas. For further reference on the location of these anomalous areas, please see the included Google Earth KMZ file.

Figure 1 – EMP-400 survey results across grids PET1, PET2, and PET3. Anomalous areas detected with the EMP-400 circled in dark magenta. Minimum value is -300 mS/m, the maximum value is 900 mS/m, and the contour interval is 50 mS/m.

Figure 2 – G-858 Mag bottom sensor survey results across grids PET1, PET2, and PET3. Anomalous areas detected with the G-858 circled in dark pink. Minimum value is 32000 G, the maximum value is 62000 G, and the contour interval is 1000 G.

Figure 3 – GSSI SIR-4000 w/400MHz GPR results across grids PET1, PET2, and PET3. Anomalous areas detected with the GPR circled in red. Dark blue is least reflective and yellow is most reflective.

Conclusion:

Agreement between the three geophysical methods used was observed in two anomalous areas (anomalies 1 + 2 in figures 1-3). Anomaly 2 in the NW corner of the surveyed area is very linear and narrow, appearing to consist of two objects running closely parallel to each other, and it is unlikely to be related to the burn/disposal site. Anomaly 2 looks similar to other observed patterns from possible utilities such as large gas lines, high voltage lines, etc.

Anomaly 1 is likely to be the predicted burn/disposal site based on the strength of the GPR reflections, the strong EMP conductivity values, and the slightly elevated magnetic signature from the G-858. The overall area for anomalous area 1 is ~3000 sq ft, large enough to correspond to a potential burn/disposal site from the burned building.

Potholing or drilling is recommended for Anomaly 1 to find evidence of the suspected burn/disposal site. Google Earth KMZ files have been provided with this report for further analysis and for accurate locations of anomalous features identified.

Limitations:

The subsurface geology, object size and composition, burial depth, affect the size and shape of geophysical anomalies, which may impede their detection. The limits of discernment of this magnetic survey are the detection of objects within 15 feet of metal fences, buildings, vehicles and other identified metal objects.

Report Prepared By: Stefan M. Burns and Pierre Armand

ame

Pierre Armand, RGP 1021

Figure 4 - Site Map

APPENDIX B

BORING LOGS & WELL DIAGRAM

Project Number: 16-3985 Date Started: 5/31/17 Project Name: Corona Station Date Started: 5/31/17 Site Location: 320 Corona Rd, Petaluma Date Completed: 5/31/17 Drill Rig: CME-75 Screen Type/Diameter: Sch 40 PVC - 2" Drilling Method: Hollow Stem Auguer Gravel/Sand Pack Type: #3 Sand (Monterey) Sampling Method: CA Split Spoon Grout Type/Quantity: Neat Portland Cement Boring Diameter: 8" Depth to Water (encountered): 15.9' Logged by: Francois Bush Elevation of Top of PVC Casing: Drilling Contractor: Cascade Drilling Casing Stickup, 3 ft Remarks: Groundwater Sample Collected @ between bgs Weather: Sunny	MW-1
Project Number: 16-3985 Date Started: 5/31/17 Project Name: Corona Station Date Completed: 5/31/17 Site Location: 320 Corona Rd, Petaluma Casing Type/Diameter: Sch 40 PVC - 2" Drill Rig: CME-75 Screen Type/Slot: Sch 40 PVC - 0.020" Drilling Method: Hollow Stem Auguer Sampling Method: CA Split Spoon Boring Diameter: 8" Logged by: Francois Bush Drilling Contractor: Cascade Drilling Remarks: Groundwater Sample Collected @ between bgs Weather: Sunny	2
Project Name: Corona Station Date Completed: 5/31/17 Site Location: 320 Corona Rd, Petaluma Casing Type/Diameter: Sch 40 PVC - 2" Drill Rig: CME-75 Screen Type/Slot: Sch 40 PVC - 0.020" Drilling Method: Hollow Stem Auguer Sampling Method: CA Split Spoon Boring Diameter: 8" Logged by: Francois Bush Drilling Contractor: Casing Stickup, 3 ft Remarks: Groundwater Sample Collected @ between bgs Weather: Sung	
Site Location: 320 Corona Rd, Petaluma Casing Type/Diameter: Sch 40 PVC - 2" Drill Rig: CME-75 Screen Type/Slot: Sch 40 PVC - 0.020" Drilling Method: Hollow Stem Auguer Gravel/Sand Pack Type: #3 Sand (Monterey) Sampling Method: CA Split Spoon Grout Type/Quantity: Neat Portland Cement Boring Diameter: 8" Depth to Water (encountered): 15.9' Logged by: Francois Bush Elevation of Top of PVC Casing: Drilling Contractor: Cascade Drilling Casing Stickup, 3 ft Remarks: Groundwater Sample Collected @ between bgs Weather: Sunny	
Drill Rig: CME-75 Screen Type/Slot: Sch 40 PVC - 0.020" Drilling Method: Hollow Stem Auguer Gravel/Sand Pack Type: #3 Sand (Monterey) Sampling Method: CA Split Spoon Grout Type/Quantity: Neat Portland Cement Boring Diameter: 8" Depth to Water (encountered): 15.9' Logged by: Francois Bush Drilling Contractor: Cascade Drilling Casing Stickup, 3 ft Remarks: Groundwater Sample Collected @ between bgs Weather: Sunny	
Drilling Method: Hollow Stem Auguer Gravel/Sand Pack Type: #3 Sand (Monterey) Sampling Method: CA Split Spoon Grout Type/Quantity: Neat Portland Cement Boring Diameter: 8" Depth to Water (encountered): 15.9' Logged by: Francois Bush Elevation of Top of PVC Casing: Drilling Contractor: Casade Drilling Casing Stickup, 3 ft Remarks: Groundwater Sample Collected @ between bgs Weather: Sunny	
Sampling Method: CA Split Spoon Grout Type/Quantity: Neat Portland Cement Boring Diameter: 8" Depth to Water (encountered): 15.9' Logged by: Francois Bush Elevation of Top of PVC Casing: Drilling Contractor: Cascade Drilling Casing Stickup, 3 ft	
Boring Diameter: 8" Depth to Water (encountered): 15.9' Logged by: Francois Bush Elevation of Top of PVC Casing: Drilling Contractor: Casing Stickup, 3 ft Remarks: Groundwater Sample Collected @ between bgs Weather: Sunny	
Logged by: Francois Bush Elevation of Top of PVC Casing: Drilling Contractor: Casing Stickup, 3 ft Remarks: Groundwater Sample Collected @ between bgs Weather: Sunny	
Drilling Contractor: Cascade Drilling Casing Stickup, 3 ft Remarks: Groundwater Sample Collected @ between bgs Weather: Sunny E E E E E E E	
Remarks: Groundwater Sample Collected @ between bgs Weather: Sunn	
	windy
	/, windy
e unit constraints of the constr	mpletion gram
	Monument
$-1 - \frac{1}{(1 - 1)^2}$	(3' above -
CL Very dark gray CLAY, sort, damp, no odor (0% gvi, 0% sand,	grouna)
	Neat
	Cement
	Grout
	Sch 40
$10 MW-1 X_5 $	2" PVC Blank
	Bentonite
	Chips
Becomes light olive gray with little fine sand, medium stiff, dry	
6 MW-1 X	
1255 o 0 -10 v10	#2
12 12 12 12 12 12 12 12	
	0.020"
	Slotted
	PVC Screen
11 MW-1 X 15 SW Olive brown fine to coarse SAND with some clay and little fine	
1300 11 0 -15 X gravel, loose, wet, no odor (5% gvl, 80% sand, 15% fines)	
15 X 16	
5 MW-1 X 1310 13 0 -20 X 20	

	K	inne	acle	nental							Boriı	ng/M	/ell N	umbe	r:		M	W	/-1
			Inc.										P	age		2	of		2
Time	Blow Counts	PID Reading (ppm	Sample ID.	Depth (ft BGS)	nscs			L	itholc	ogic [Descri	ption				Well [Coi Diag	mp jra	oletion
	23	0		X 20															
	23			X 21 22	CL	Light ovile odor (0% g	e gr gvl	ray s I, 159	andy % sar	CLA nd, 85	Y, stif 5% fin	f, moi ies)	ist to w	vet, no			4		#3 S and
				23													K	-	0.020" Slotted
1325	5 11 14	0		24 X X 25 X	SC	Light olive odor (0% g	e gr gvl	ray c I, 55º	layey % sar	fine nd, 4	SANI 5% fin	D, loo ies)	se, we	t, no				E	Bottom Cap
				_26 27															
				28 															
				31 															
				33															
				34 35															
				36															
			, ,	39															

Pinnacle							Boring/Well Number: MW-2											
		0	bic.	Ref ALGI							Pa	ge	1	of	2			
Proiec	t Nun	nber:	16-398	5				Date Started:	5/30/17									
Projec	t Nan	ne: Co	orona S	station			-	Date Complet	ted: 5/30	/17								
Site L	ocatio	n: 32	0 Coro	na Rd,	Petal	uma	-	Casing Type/I	Diamete	r: Sch 40 PVC	2"							
Drill R	ig: CN	ИЕ-75	i				-	Screen Type/	Slot: Sc	h 40 PVC - 0.02	0"							
Drilling	g Met	hod:	Hollov	v Stem	Augu	er	-	Gravel/Sand I	Pack Typ	be: #3 Sand	(M	onte	erey)					
Samp	ling M	lethod	: CA S	plit Sp	oon			Grout Type/Q	uantity:	Neat Portland C	ement							
Boring	j Dian	neter:	8"					Depth to Wate	er (enco	untered): 20.3'								
Logge	d by:	Fran	cois Bu	sh				Elevation of T	op of P∖	/C Casing:								
Drilling	illing Contractor: Cascade Drilling						-	Casing Stickup, 3 ft										
Rema	rks: (Groun	dwater	Samp	le Col	lected @		betweer	n	bgs	W	eath	er: S	Sunn	ıy, windy			
		Ê																
Time	Blow Counts	PID Reading (pp	Sample ID.	Depth (ft BGS)	uscs			Litholog	gic Descr	iption			We	ell Co Dia	ompletion			
					GP	Light gray	y gra	vel with sand						K	Monumen	nt		
				1											(3' above	-		
					CL	Very dark	(gra	y CLAY, mediu	m stiff, d	ry, no odor (0%	gvl,				ground)			
				2		0% sand,	, 100	% fines)										
															Neat			
				- ° -											Grout			
				4										K	Giour			
	4			X											Sch 40			
1235	7		MW-2	X_5											2" PVC			
	9	0	-5	х											Blank			
				6														
														K.	Bentonite	э		
				_ 7 _											Chips			
				9														
	10		MW-2	X	SC/	Light olive	e gra	y clayey find S	AND to s	andy CLAY, de	nse/stiff,							
1235	15	0	-10	X10	CL	moist to v	vet, i	no odor (0%gvl	, 50%sai	nd, 50%fines)					#3			
	17]	х										<	Sand			
				11														
														K	0.020"			
				12_									—		Slotted			
				12											PVC Scree	en		
												-	-					
				14									-					
	6		***************	X														
	13		MW-2	X 15	SP	Light tan	fine	to medium SAN	ND, very	dense, wet, no	odor							
1244	20	0	-15	x		gravel, lo	ose,	wet, no odor (5	5% gvl, 8	0% sand, 15% t	ines)							
	21			X 16									 					
	6		MW-2	X									 					
1258	13		-17	X17_									—					
	15 1F			X Y 10									<u> </u>					
	10			<u></u>								•	<u> -</u>					
				19								•	<u> </u>					
	9		MW-2	X	CL/	Light olive	e bro	wn clayey find	SAND to	sandy CLAY, o	lense/stiff,	v			1			
1302	11	0	-20	X_20	SC/	no odor (0%g	vl, 50%sand, 50	0%fines)									

	P	\ inp	acle	Pental	i		Boring/Well Number							:		M١	N-2
		U	Inc.	nemu								F	Page		2	of	2
Time	Blow Counts	PID Reading (ppm)	Sample ID.	Depth (ft BGS)	uscs			Lith	ologic	c Desc	criptior	1		N	Vell	Cor Diag	npletion ram
	12	0		X 20	CL/	Light olive	e bro	own cla	ayey f	ind S	AND to	o sandy	′ CLAY,				
	12			X 21 22	SC	dense/stiff	ff, w	et, no	odor	(0%g\	/I, 50%	ósand,	50%fine	s)		4	#3 S and
																K	0.020" Slotted
1310	6 8 12	0	MW-2 -25	24 X X 25 X	CL	Grades to odor (0% g	o oliv gvl,	ve brov 0% sa	wn CL and, 1	.AY, m 00% f	nedium ines)	n stiff, r	noist, no			-	Bottom Cap
				26													
				27													
				28													
				29													
				30													
				31													
				32													
				33													
				34													
				_ 35													
				36													
				37													
				38													
				20													
				_													

Pinnacle							Boring/Well Number:		MW-3	
10		0	bic.	Rentul			Pa	ge 1	of	2
Proied	ct Nun	ber:	16-398	5			Date Started: 5/30/17			
Projec	ct Nan	ne: Co	orona S	tation			Date Completed: 5/30/17			
Site L	ocatio	n: 32	0 Coro	na Rd,	Petal	uma	Casing Type/Diameter: Sch 40 PVC - 2"			
Drill R	lig: CN	/IE-75					Screen Type/Slot: Sch 40 PVC - 0.020"			
Drillin	g Metl	nod:	Hollov	v Stem	Augu	ier	Gravel/Sand Pack Type: #3 Sand (M	onterey)	
Samp	ling M	ethod	: CA S	plit Spo	oon		Grout Type/Quantity: Neat Portland Cement			
Boring	g Dian	neter:	8"				Depth to Water (encountered): 16.4'			
Logge	ed by:	Franc	cois Bu	sh			Elevation of Top of PVC Casing:			
Drillin	g Con	tracto	r: Casca	ade Drilli	ng		Casing Stickup, 3 ft			
Rema	ırks: (Groun	dwater	Sampl	le Col	lected @	between bgs We	eather: (Clou	dy, breezy
		(m					2			
Time	Blow Counts	PID Reading (ppr	Sample ID.	Depth (ft BGS)	uscs		Lithologic Description	We	ell C Dia	ompletion
					GP	Light gray	/ gravel with sand		Z	Monument
					CL	Very dark odor (2% grades to	gray CLAY with trace fine gravel, medium stiff, dry, no gvl,0% sand, 98% fines) no gravel (0% gvl,0% sand, 100% fines)		K	3' above - ground) Sch 40 2" PVC Blank
	4			<u>4</u>						
911	67	1.2	MW-3 -5	X_5 X _6_ _7_ _7_ _8_						Bentonite Chips
				9						
915	4 7 10	1.1	-10	X X10 X 13		becomes (0% gvl, 2	light olive brown, trace fine sand, damp 2% sand, 98% fines)		< {	#3 Sand 0.020" Slotted PVC Screen
				14						
922	6 12	1.2	MW-3 -15	X 15 X		grades to	no sand, damp (0% gvl,0% sand, 100% fines)			
	13			X 16						
				L		water at 1	6.4' at 10:00			
				17_						
				18						
				_ '' _						
				19						
932	9 13	0.9	MW-3 -20	X X_20	SC	Light olive (0% gvl, 6	e brown clayey fine sand, dense, moist to wet, no odor 60% sand, 40% fines)			

	E			? nenta	,	Boring/W		M	W-3	
:			Inc.		5		Page	2	of	2
Time	Blow Counts	PID Reading (ppm	Sample ID.	Jepth (ft BGS)	SSSL	Lithologic Description		Well	Cor Diac	npletion
932	16 16 16 4 5 12 15 7 7 10 12	0.9	MW-3 -24 MW-3 -30	X 20 X 21 22 23 23 X 24 X 24 X 25 X 26 27 27 27 28 28 28 29 29 X X 30 X	SC				*	#3 Sand 0.020" Slotted PVC Screen Bottom
				X _31 32 33 34 34 35 36 36 37 38 38 39						

Pinnacle								Boring/Well Number:							MW-4
- Se		En	bc.	nentai								Page	1	of	2
Proiec	t Nun	nber	16-398	5				Date Starte	d [.] 5/31/17						
Projec	t Nan	ne: Co	orona S	station				Date Compl	leted: 5/3	1/17					
Site L	ocatio	n: 32	0 Coro	na Rd,	Petal	uma		Casing Type	e/Diamete	er: Sch 40 P	VC - 2"				
Drill R	ig: CN	ME-75	;					Screen Type	e/Slot: So	h 40 PVC -	0.020"				
Drilling	g Metl	hod:	Hollov	v Stem	Augu	er	-	Gravel/Sand	d Pack Ty	pe: #3 Sand	l	(Mont	erey)		
Samp	ling M	lethod	I: CA S	plit Spo	oon		-	Grout Type/	Quantity:	Neat Portla	nd Cement				
Boring) Dian	neter:	8"				-	Depth to Wa	ater (enco	untered): 16	•				
Logge	d by:	Fran	cois Bu	ısh			-	Elevation of	Top of P	VC Casing:					
Drilling	g Con	tracto	r: Casca	ade Drilli	ng		-	Casing Sticl	kup, 3 ft						
Rema	rks: (Groun	dwater	Sampl	e Col	lected @		betwe	en	bgs		Weath	ner: S	Sunr	ıy, windy
		я)													
Time	Blow Counts	PID Reading (pp	Sample ID.	Depth (ft BGS)	nscs			Lithol	ogic Desc	ription			We	ell C	ompletion gram
					CL	Very dark	k gra	y CLAY with t	trace of fir	ne sand, soft	, dry, no odo	or		R	Monument
				1 _		(0% gvl,2	2% sa	and, 98% fine	es)						(3' above -
				2											ground)
														K	Sch 40
			ļ	_ 3 _											2" PVC
															Blank
	7			4 		Crados tr	o liab	t olivo gravv	ith increa	co in find co	nd modium				
955	7 7	2	MW-4	^ X 5		stiff (0% o	avl 2	5% sand 75°	% fines)	se in iniu sai	nu, meulum				
	10		-5	X			g	070 04114, 10	, , , , , , , , , , , , , , , , , , , ,						
]	ļ	_6_											
				. – –										6	
				7_										È	Bentonite
				. – – –											Chips
]]	_9_											
	9		MW-4	X		increase	in sa	nd, damp (09	% gvl,35%	sand, 65%	fines)				
1000	17	3.4	-10	X10										_	#3
	19			11										`	Sanu
															0.020"
				12										Ł	Slotted
															PVC Screen
				13											
				14											
						Groundwa	ater :	at 14.3 feet b	gs at 10:4	0					
	4]	MW-4	X 15											
1010	7	2	-15	х		decrease	e in sa	and (0% gvl,1	15% sand	, 85% fines)					
	20			X 16											
				17									-		
				_ 18_											
	5		M\\/_/	_19_ X									-		
1015	8	0	-20	X_20											

:	P		acle	nental			Boring/Well Number:		M	W-4
			Inc.		0	-	Page	2	of	2
Time	Blow Counts	PID Reading (ppm	Sample ID.	Depth (ft BGS)	nscs		Lithologic Description	Well	Cor Diag	npletion ram
	9			X 20	CL					
									4	#3 S and
				22						0.000"
						Becomes v	vet		K	Slotted PVC
	5			24						Screen
1025	7 9	0.3	MW-4 -25	X X 25						
	12			Х						
				26						
				_ 27						Bottom
1035	8 19	2.2	MW-4	X X 28					¢	Сар
1000	21	∠ .∠	-20	X						
				_29						
				31						
				32						
				33						
				_34						
				_35						
				36						
				37						
				38						
				39						

Pinnacle								Boring/Well Number:							MW-5			
		Con Con	Inc.	rentui									Paç	ge	1	of	2	
Proiec	t Num	nber	16-398	5				Date	Started [.]	5/31/17								
Projec	t Nan	ne: Co	orona S	tation			-	Date	Comple	ted: 5/31	1/17							_
Site Lo	ocatio	n: 32	0 Coro	na Rd,	Peta	uma	-	Casi	ng Type/	Diamete	er: Sch 40) PVC - 2	'					-
Drill R	ig: CN	ИЕ-75	5				-	Scre	en Type/	Slot: So	ch 40 PV0	C - 0.020"						
Drilling	g Metl	hod:	Hollow	v Stem	ı Augı	ler	-	Grav	el/Sand	Pack Ty	pe: #3 Sa	and	(Mo	onte	rey)			
Samp	ling M	lethod	I: CA S	plit Sp	oon		-	Grou	it Type/C	uantity:	Neat Po	rtland Cer	nent					
Boring	Dian	neter:	8"				-	Dept	h to Wat	er (enco	ountered):	25.3'						
Logge	d by:	Franc	cois Bu	ish			-	Elev	ation of 1	op of P	VC Casin	g:						
Driilinę	g Con	tracto	r: Casca	ade Drilli	ng		-	Casi	ng Sticki	ир, 3π								
Rema	rks: (Groun	dwater	Samp	le Col	lected @			betwee	n	bgs		We	ath	er: S	Sunr	iy, breezy	
		Ê																_
ime	llow Counts	ID Reading (ppr	ample ID.	epth (ft BGS)	ISCS				Litholog		rintion				We		ompletion	
	В	<u> </u>	S		AF	Concrete			LILIIOIO	JIC DESC	прион						Traffic	
				1_1_	<i></i>												rated stree	et
		4.3		2 2 	CL	Very dark slight odc	k gra or (he	ay CLA eavy o	Y with tra il odor) (2	ace fine 2% gvl,2	gravel an 2% sand,	d sand, so 96% fines	oft, dry,)	•		K	box Sch 40	
				E -													Blank	
				4										•				
1517	9 9 12	0.3	MW-5 -5	X X_5 X _6_		becomes no odor (ligh 0% र्	it gray, gvl,109	increase % sand, §	e in sand 90% fine	l, no grav es)	el, mediui	n stiff				Bentonite Chips	;
				7 7 8													£	
	13		MW-5	<u></u>		no sand												
1522	15	0	-10	X10		(0% avl. (∩% s	sand 1	100% fine	20)							#3	
	15			X		(0 / 0 g v i, i	0,00	Jana,								<	Sand	
				11														
																-	0.020"	
				12_													Slotted	
				13													PVC Scree	n
				14														
4507	7		MW-3	X 15		becomes	meo	dium o	live gray									
1527	8 16	1.1	-15	X 16														
	10			7.10														
)	_ 17_														
				_ 18 _														
				19											<u> </u>			
	4		MW-3			sampler \	wet										1	
1535	8	0	-20	X_20)													

	ľ		acle	nenta	,					B	Borin	g/We	ell Nu	mber	:		M	N-5	
8			Inc.		8								Pa	ge	P	2	of	2	
Time	Blow Counts	PID Reading (ppm	Sample ID.	Depth (ft BGS)	USCS			Lit	tholo	gic D	escrip	otion			١	Vell	Cor Diag	nplet ram	ion
<u>⊢</u> 1540 1547 1553	<u>m</u> 23 23 6 8 14 5 7 15 5 6 17 29		 MW-5 -24 MW-5 -28 MW-5 -30	$\begin{array}{c} \square \\ X 20 \\ 21 \\ 22 \\ 23 \\ 23 \\ 24 \\ X \\ 26 \\ 24 \\ X \\ 26 \\ 27 \\ 28 \\ 26 \\ 29 \\ 28 \\ 29 \\ 28 \\ 29 \\ 28 \\ 29 \\ 29$		some fine : (0% gvl,1(Light olive wet, no odd grades to li CLAY, med (0% gvl, 5	sar 0% ¢ gra lor ligh ¢diu 50%	nd, sc sanc ay cla (0% g t oliv m still 6 sanc	oft, m d, 90 ⁴ gvl, 6 ff, de d, 50	noist t % fine fine \$ 60% s ay cla anse, 7 2% fin	so wet so wet es) SAND sand, wet, r ies)	y, med 40% 1 ne SA no odc	ium de ines)					Bott	tom
				35 36 37 38 38 39															
	P	inn	acle	8	6					Boring/W	ell Numb	er:			MW-6				
----------	----------------	------------------	------------	----------------------------	-------	----------------------	------------------	-----------------------------------	---------------------	---------------	---------------	--------	----------	---------------	----------------------------------				
- A		En	inc.	ientai								Page	1	of	2				
Projec	t Nun	hber:	16-398	5				Date Starte	d: 6/1/17										
Projec	t Nan	ne: Co	orona S	tation				Date Comp	leted: 6/1/	17									
Site L	ocatio	n: 32	0 Coro	na Rd,	Petal	uma	_	Casing Typ	e/Diamete	er: Sch 40 P	VC - 2"								
Drill R	ig: CN	ЛЕ-75					_	Screen Typ	e/Slot: So	ch 40 PVC -	0.020"								
Drilling	g Metl	nod:	Hollov	v Stem	Augu	ier		Gravel/San	d Pack Ty	pe: #3 Sand	1	(Monte	erey)						
Samp	ling M	ethod	: CA S	plit Spo	oon			Grout Type	/Quantity:	Neat Portla	nd Cement								
Boring	j Dian	neter:	8"				_	Depth to W	ater (enco	ountered): 16	'								
Logge	d by:	Franc	cois Bu	sh			-	Elevation o	f Top of P	VC Casing:									
Drilling	g Con	tracto	r: Casca	ade Drilli	ng		-	Casing Stic	kup, 3 ft										
Rema	rks: (Groun	dwater	Sampl	e Col	lected @		betwe	een	bqs		Weath	ier: C	Clou	dy, breezy				
		(u								U					<u>,</u>				
Time	Blow Counts	PID Reading (ppr	Sample ID.	Depth (ft BGS)	USCS			Litho	logic Desc	ription			We	ell Co Dia	ompletion				
					CL	Very dark	k gra	y CLAY with	trace of fir	ne sand, soft	, dry, no odo	or		R	Monument				
				1 2		(0% gvl,2	2% sa	and, 98% find	es)						(3' above - ground) Sch 40				
				3 											.2" PVC Blank				
800	10 12 13	0.3	MW-6 -5	X X_5 X _6_ _7		becomes (0% gvl,1	s light 10% s	t gray with litt sand, 90% fii	le fine sar nes)	nd, hard, dry	no odor			1	Bentonite Chips				
	5		MW-6	8 9 X		becomes	s light	t olive brown	, no sand,	medium stif	, damp								
810	8	0	-10	X10		(0% gvl, (0% s	and, 100% f	nes)					,	#3				
	11			X 11									-	<	Sand				
				<u> </u> −''−									-		0 020"				
				12										<	Slotted				
)												PVC Screen				
				13															
													_						
				14															
	4		MW-6										-						
815	8	0.5	-15	X															
	12			X 16		Water at	: 16 fe	eet at 0905											
				_ 17_															
				_ 18 _									_						
				19									-						
	7		MW-6	X		becomes	s mec	dium olive bro	own, soft, (damp (samp	ler wet)				1				
830	9	0.4	-20	X_20															

	P		acle	Penta	,			Bo	oring/We	ll Number:		М	W-6
		S	Inc.	nemca		_				Page	2	of	2
Time	Blow Counts	PID Reading (ppm	Sample ID.	Depth (ft BGS)	nscs		Lithc	ologic Des	scription		Wel	l Co Diag	mpletion gram
	16			X 20	CL			<u> </u>					
)		21 22							 	4	#3 Sand 0.020"
				23 24								K	Slotted PVC Screen
843	4 5 8	0	MW-6 -25	X X 25 X 									
847	4 5 8		MW-6 27	X_27 X X_28 29	SC	Olive brow no odor (0 ⁰	n clayey fi % gvl,70%	ine to me sand, 30	dium SAN 0% fines)	D, loose, wet			
852	4 9 10	0.5	MW-6 -30	X_30 X X_31								•	Bottom Cap
		,		32 33									
				34							n n n		
				36							•		
				37 38									
				39							•		

	P	inp	acle	S	8					E	Boring/V	Vell Nu	nber:				мw	-7
1		En	bic.	renta									Pag	е	1	of		2
Proiec	t Nun	nher.	16-398	5				Date S	Started: 6/1	/17								
Projec	t Nan	ne: Co	orona S	Station			-	Date (Completed:	6/1/17	7							
Site L	ocatio	n: 32	0 Coro	na Rd,	Petal	uma		Casing	g Type/Diai	meter:	Sch 40 I	PVC - 2"						
Drill R	lig: CN	ЛЕ-75					_	Scree	n Type/Slot	t: Sch	40 PVC -	- 0.020"						
Drilling	g Metl	hod:	Hollov	v Stem	Augu	ier		Grave	I/Sand Pac	к Туре	e: #3 Sar	nd	(Mo	ntere	ey)			
Samp	ling M	lethod	: CA S	plit Sp	oon		-	Grout	Type/Quan	ntity: N	leat Portl	and Cem	ent					
Boring	g Dian	neter:	8"				_	Depth	to Water (e	encou	ntered): 1	5'						
Logge	ed by:	Franc	cois Bu	ısh			-	Elevat	ion of Top	of PV	C Casing:							
Drilling	g Con	tracto	r: Casca	ade Drilli	ng		-	Casing	g Stickup,	3π								
Rema	rks: (Groun	dwater	Samp	le Col	lected @			between		bas		Wea	athe	r: Si	unn	v, wir	dy
		۲ آ		·							0							
lime	3low Counts	oID Reading (ppr	Sample ID.	Depth (ft BGS)	JSCS				Lithologic [Descri	ption			Ņ	Wel	l Co Dia	omple	tion
-					CL	Very dark	k gra	y CLAY	with trace	of fine	sand, so	ft, dry, no	odor			Z	Mon	ument
		· · · · · · · · · · · · · · · · · · ·	n (1 1 2		(0% g∨l,2	2% sa	and, 98 [°]	% fines)			,,,,					(3' a gro	bove - bund)
				3													2" P\ B	/C lank
1040	9 9 15	0	MW-7 -5	X X_5 X 6		becomes (5% gvl,5	s olive 5% sa	e gray w and, 90 ⁰	vith little fine % fines)	e grav	el and co	arse sanc				K	∕Ber C	ntonite hips
				7 7														·
														-				
	_			_9_					. .					-	-			
1045	5	0.4	MW-7	X	SC	Olive gra	ay cla	iyey fine	SAND, de	ense, d	lry, no ode	or		-	-			
1045	11	0.4	-10	X10		(0% gvl, (60%	sand, 4	0% fines)					-		_		#3
	15			11										-	-		0	anu
														-	-		0.	020"
]	_12_												~	SI	otted
														-			PVC	Screen
				13_										-				
														-				
				14_										-				
	4		MW-7	X 15	CL	Olive gra	av CL	AY, stif	f, damp to r	moist ((sampler	wet), no c	dor	-				
1050	8	0	-15	X		(0% gvl,0)% sa	and, 100	0% fines)						_			
	12			X 16										-				
				47										-				
				– '′–	SC	Olive ara	av cla	wey fine	SAND de	nse M	let to moi	st no odc	or.	-	-			
				18		(0% avl.)	., ola 60%	sand. 4	0% fines)						-			
			1	<u> </u>	1													
				_19														
1054	8 12	n	MW-7	X X 20	ļ									-				
100+		<u> </u>	20	<u></u>	1	L												

	P	∧ inp	acle	Ponta	,					Вс	oring	/Wel	l Nun	nber:			M۱	N-7	
			Inc.	nenta									Page	e		2	of	2	
Time	Blow Counts	PID Reading (ppm	Sample ID.	Depth (ft BGS)	nscs			Lith	holog	jic De:	scriptio	on			v	Vell	Cor)iag	npletio ram	on
	16			X 20	SC														
				21													¥	#3 S an	s nd
				22													ĺ	0.00	0"
				23													¥	Slott PV	ed C
				24														Scre	en
1058	6 8 9	0	MW-7 -25	X X 25 X		grades to i (0% g∨l, 50	incre 0% :	ease sand	in cla , 50%	ay, dei 6 fines	nse/sti s)	iff, mc	oist to v	vet					
				26															
				27														Botto	m
1103	6 10	0.5	MW-7 -28	X X 28	CL	Olive gray odor (0% g	v CL/ gvI, 2	AY w 2% s	/ith tra and,	ace of 98% f	fine s ines)	and, s	stiff, dr	y, no			\.	Сар	
	12			X 20															
				_31											•				
															•				
															•				
				34															
				35											••				
															•				
				_ 3/															
				38											•				
				39															

	P	inp	acle		6					Boring/We	ll Numb	er:			MW-8
1		-	bic.	Rentul								Page	1	of	2
Projec	ct Nun	hber:	16-398	5				Date Starte	ed: 5/31/17	7					
Projec	ct Nan	ne: Co	orona S	tation				Date Com	pleted: 5/3	1/17					
Site L	ocatio	n: 32	0 Coro	na Rd,	Petal	uma	-	Casing Ty	oe/Diamete	er: Sch 40 PV	C - 2"				
Drill R	lig: CN	ЛЕ-75					-	Screen Ty	pe/Slot: S	ch 40 PVC - 0.	020"				
Drillin	g Metl	nod:	Hollow	v Stem	Augu	er	-	Gravel/Sa	nd Pack Ty	/pe: #3 Sand		(Mont	erey)	
Samp	ling M	ethod	: CA S	plit Spo	oon		-	Grout Type	e/Quantity:	Neat Portland	d Cement	,			
Boring	g Dian	neter:	8"				-	Depth to V	/ater (enco	ountered): 7.2'					
Logge	ed by:	Franc	cois Bu	sh			-	Elevation of	of Top of P	VC Casing:					
Drillin	g Con	tracto	r: Casca	ade Drilli	ng		-	Casing Sti	ckup, 3 ft						
	-						-								
Rema	rks: (Groun	dwater	Sampl	le Col	ected @		betw	een	bgs		Weat	her: S	Suni	ny, windy
		â													
Time	Blow Counts	PID Reading (pp	Sample ID.	Depth (ft BGS)] USCS			Litho	blogic Desc	cription			We	ell C	Completion agram
					GP	Light gray	y gra	avel with san	a						(3' above
				- ' -	SC	light grav	v to	dark grav cl	avev find S	SAND dense (try no od	or in the second se			around)
				2		(0% avl.6	y .0 30%	sand, 40% f	ines)		<i>ary,</i> no ou	51			ground)
														7	Neat
			1	3											Sement
															Grout
				4										7	Bentonite
	2			х											Chips
740	3	1.7	MW-8	X_5										K	Sch 40
	4		-5	X											2 PVC
				_ 6 _											Blank
					ϵ	Baaamaa		uniter level	maggirad)		-		
				- ' -		Decomes	s wei	, walei ievei	measureu	rat 7.2 @0950	,				
				8											
				_ 9 _											
	6]	MW-8	Х											
745	8	11.2	-10	X10											#3
	15			Х										<	Sand
				11	CL	Dark gray	y sar	ndy CLAY, si	tiff, moist t	o damp, no od	or				
				L		(0% gvl,2	20%	sand, 80% f	ines)					K	0.020"
				12									-		Slotted
				12									-		PVC Screen
													-		
				14									-		
													-		
	5		MW-8	X 15											
750	8	10.5	-15	x											
	15			X 16											
	5]	MW-8	х											
755	8	5.1	-17	X17_	SC	Dark gray	y cla	yey find SAN	ID, dense,	moist, no odo	r				
	10			Х		(0% gvl,6	60%	sand, 40% f	ines)						
	17			X 18											
				L											
	E			_19_		light olive	o hr	wp alouau f	nd CAND	to condu CLAN	donao/-	iff .	-		
800	9	5	-20	X 20	SC	no odor (0%g	vl, 50%sanc	I, 50%fines		, acrise/Si	, v	-		

	P		acle	P enta	,					I	Bori	ng/W	/ell N	lumb	er:			M۱	N-8	
		U	Inc.	incirica.									F	Dage			2	of	2	
Time	Blow Counts	PID Reading (ppm	Sample ID.	Depth (ft BGS)	nscs			Li	itholo	ogic E	Descri	iption				W	ell	Cor)iag	nplet ram	ion
	13			X 20	SC											-				
				21												-		4	#	t3 and
				22		Becomes I	ligh	nt oliv	ve bro	own,	mois	t to w	et			-			00	
				23												-		¥	_ 0.0 	20" tted
	6		M\\\/_8	24 X		Grades to	رزام	ve br			V me	dium	stiff	moist	no	-			Bot	tom
1310	8 12	2	-25	Х 25 Х	CL	odor (0% g	gvl,	, 0%	sand	ULA 1, 100)% fir	ies)	5un, 1	moist,	110	ĺ	4	\mathbf{N}	Сар	UIII
				26																
				_27																
				28																
				29																
				30																
				31																
				33																
				_35																
				36																
				_ 38																
				_ 39									·····							

	Pi	nnac	le					Boring/Well N	umber:		SB-1
5	0.00	Se Inc							Page	1 of	2
Projec	t Num	per: 16-39	985				Date Started: 6/2	2/17			
Projec	t Name	e: Corona	Station				Date Completed:	: 6/2/17			
Site L	ocation	: 320 Cor	rona Rd, Pe	etaluma	à		Casing Type/Dia	meter: N/A			
Drilling	g Rig: (CME-75					Screen Type/Slo	t: N/A			
Drilling	g Metho	od: Holl	ow Stem A	uguer			Gravel/Sand Pac	ck Type: N/A			
Samp	ling Me	thod: CA	Split Spoor	n			Grout Type/Quar	ntity: Neat Portland Cen	nent		
Boring	Diame	eter: 8"					Depth to Water:	13.9'			
Logge	d by: I	Francois I	Bush				Elevation of Top	of PVC Casing:			
Drilling	g Contr	actor: Ca	scade Drilling				Casing Stickup				
	-										
Rema	rks: G	roundwat	er Sample	Collect	ed @	11:05	between	bgs			
(qd			s.								
d) f			fine.	(SE							
ding		₽	/pu	BO							
eac		e	l/sa	L) (fl	ŝ						
D	me	amp	gv	eptł	ő						
4	ΪĒ	s	%	ð	ő	-	Lithologic	Description			
					GP	Gray san	dy GRAVEL, dense				
			5/5/90	_ 1 _	CL	Dark gray	CLAY with little fine g	ravel and sand, medium	stiff, dry,dry	/, no odor	
				_ 2 _							
				3							
				4							
				Х		becomes	light olive gray CLAY,	very stiff, dry, no odor			
0	1034	SB-1-5	0/0/100	X 5							
				Х							
				_ 6 _							
				_ 7 _							
				_ 8 _							
				9							
				Х		grades to	medium olive brown,	little fine sand			
0	1038	SB-1-10	0/10/90	X_10							
				Х		ļ					
				11							
				12							
				13							
				_ 14 _							
				X							
0	1043	SB-1-15	0/0/100	X_15		becomes	medium soft, no sand	, damp to moist			
				Х							
				_ 16							
				_17							
				_18							
				_19							
				Х		becomes	stiff to very stiff, damp	to moist			
0	1047	SB-1-20	0/0/100	X_ 20							

	P	ine	acle vironmental	ſ		Boring/Well Number: SB-1
PID reading (ppb)	Time	Sample ID	% gvl/sand/fines	Depth (ft BGS)	nscs	Lithologic Description
				X 20 21	CL	
			0/70/30	22 23 24	SC	Olive brown clayey fine to medium SAND, medium dense no odor
0	1055	SB-1 -25	0/70/30	X X_25 X_26		
				27 28		
				29 30		
				31 32		
				33 34		
				35 36		
				37 38 30		

	Pi	Pace	emental				Boring/Well Number	:		SB-2
Desia	4 NI		005				Pa	ige 1	l of	1
Projec	t Num		Station							
Projec				taluma a		<u>L</u>				
Sile Lo			ona Ru, Pe	laiuma		<u> </u>	asing Type/Diameter: N/A			
Drilling	g Rig: C		Ot A.			<u> </u>				
Drilling	g Metho	Dd: Holle	ow Stem Au	iguer		<u>(</u>	Fravel/Sand Pack Type: N/A			
Samp	ling Me	thod: CA	Split Spoor	1			Frout Type/Quantity: Neat Portland Cement			
Boring	g Diame	eter: 8"					epth to Water: 18.2'			
Logge	ed by: I	Francois E	Bush			<u>E</u>	levation of Top of PVC Casing:			
Drilling	g Contr	actor: Cas	scade Drilling			<u> </u>	asing Stickup			
Rema	rks: G	roundwat	er Sample (Collecte	ed @1	2:40	between bgs			
PID reading (ppt	Time	Sample ID	% gvl/sand/fines	Depth (ft BGS)	D USCS	Grav sandy GRA	Lithologic Description			
			0/0/100	1	CI	Dark gray CLAY	soft dry no odor			
			0/0/100	- ' -	02	Bark gray OL/11			••••••	••••••
				2				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
				3						••••••
										••••••
				_ 4 _						
				X		becomes dark g	ray, medium stiff			
0	1214	SB-2-5	0/0/100	X 5		······································				
				X						
				_ 6 _						
				7						
				_ 8 _						
				_ 9 _						
				X		becomes bluish-	gray, trace fine sand, slight odor			
118	1219	SB-2-10	0/2/98	X_10						
				X						
				11						
				10						
				10					•••••	
				11						
				14 					••••••	
03	1224	SB-2.15	0/2/98	X 15		hecomes olive b	rown with some blue arey motteling very sti	ff no o	dor	
0.0	1224	50-2-15	0/2/00	x_13		(sampler wet)	Town with some blue-gray mottening, very su		101	
				16		<u>,</u>				
				- '0						
				17						
	4									
				18						
	4			X 19						
	1			x	SC	Olive gray claye	/ fine to medium SAND, loose, wet, no odor			
0	1230	SB-2-20	0/70/30	X_ 20		fillion f				

	Pi	Enviro	le					Boring/Well	Number:		SB-3
			005					4/47	Pa	ge 1 of	2
Projec		per: 16-3	985			<u> </u>	Date Started: 6/	1/17			
Projec		e: Corona	Station			<u> </u>	Date Completed	1: 6/1/17			
Site L	ocation	: 320 Col	rona Rd, Pe	etaluma	1		Casing Type/Dia	ameter: N/A			
Drilling	g Rig: C	CME-75					Screen Type/Sl	ot: N/A			
Drilling	g Metho	od: Holl	ow Stem Au	uguer			Gravel/Sand Pa	ck Type: N/A			
Samp	ling Me	thod: CA	Split Spoor	n		(Grout Type/Qua	ntity: Neat Portland	Cement		
Boring) Diame	eter: 8"				<u> </u>	Depth to Water:	24.5'			
Logge	d by: I	rancois	Bush				Elevation of Top	of PVC Casing:			
Drilling	g Contr	actor: Ca	scade Drilling			(Casing Stickup				
Rema	rks: G	roundwat	er Sample (Collect	ed @'	5:20	between	bgs			
reading (ppb	0	ple ID	///sand/fines	th (ft BGS)	ώ						
ē	ime	am	é g	Jept	ISC		Lithologia	Description			
_∟		S	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		C P	Grav sandy CP		Description			
			0/0/100			Very dark grou (CLAV soft day	no odor			
				- ' -							
				2							
				3							
				<u> </u>							
				4							
				<u></u> X		arades to olive	brown CI AY wi	h some fine sand m	edium	stiff damn	no odor
0	1435	SB-3-5	0/10/90	X 5		2. 4400 10 01170 1	2.300 CL/ (1 W			ean, aamp,	
-	1 100		0,10,00	x							
				6							
				7							
				_ 8 _							
				9							
				Х	SC/	grades to olive l	brown clayey fir	id SAND to sandy CL	AY, soft/	medium de	nse
0	1440	SB-3-10	0/50/50	X_10	CL	damp to moist,	no odor				
				Х	ļ						
				11							
				12							
				13							
				_14							
~		~	0/0///00	X							
0	1445	SB-3-15	0/0/100	X_15	CL	Olive brown CL	AY, medium sti	t, damp, no odor (sai	npler wet)		
				X	ļ						
				16							
				_17							
				18							
				10							
	<u> </u>			_19 X							
	1150		0/0/4.00	× 20							

	le		acle	ental					Borir	ng/Wel	I Number Page	r:	SI 2 of	B-3	
PID reading (ppb)	Time	Sample ID	% gvl/sand/fines	Depth (ft BGS)	NSCS		Lit	thologic	c Descri	ption					
				X 20	CL										
				21											
				22											
				23											
				24											
				X											
	1500	NR		X_25		No Recove	ery								
				X 26											
				27											•
				28											
				- 29											
				30											
				31											
				51											
	~~~~~			32											
				33											•
				34											
				35											
															•
				30											
				37											
				20											
				30											
				39											

	Pi	negel	emental			Boring/Well Number: SB-4
220			CASC MORE AND			Page 1 of 1
Projec	t Numl	ber: 16-39	985			Date Started: 6/1/17
Projec	t Name	e: Corona	Station			Date Completed: 6/1/17
Site Lo	ocation	: 320 Cor	ona Rd, Pe	taluma		Casing Type/Diameter: N/A
Drilling	g Rig: (	CME-75				Screen Type/Slot: N/A
Drilling	g Metho	od: Hollo	ow Stem Au	iguer		Gravel/Sand Pack Type: N/A
Samp	ling Me	thod: CA	Split Spoon	1		Grout Type/Quantity: Neat Portland Cement
Boring	g Diame	eter: 8"				Depth to Water: 16'
Logge	d by: I	Francois E	Bush			Elevation of Top of PVC Casing:
Drilling	g Contr	actor: Cas	scade Drilling			Casing Stickup
Rema	rks: G	roundwate	er Sample (	Collecte	ed @1	3:45 between bgs
qdc			es			
eading (p		ole ID	//sand/fin	ו (ft BGS	0	
D	me	ami	^b	eptl	SC	
Р	Ξ	ŭ	%	ă	Ö	Lithologic Description
			2/2/96		CL	very dark gray CLAY with trace fine gravel and sand, soft, dry, no odor
				1_		
				_ 2 _		
				_ 3_		
				<u>- 4 -</u> V		boomoo bluigh grou CLAX (no group) or good) stiff
0	1210		0/0/100	~ ~ _		Decomes Didish gray CLAT (no gravel of samo), sum
U	1310	30-4-0	0/0/100	x S		
				6		
				7		
				- · -		
				8		
				9		
				X		becomes olive brown with some fine sand, stiff, dry
0	1317	SB-4-10	0/15/85	X 10		
				x		
				11		
	I					
				_12_		
				_13_		
				_ 14		
				X		
0	1321	SB-4-15	0/0/100	X_15		becomes olive brown with some blue-gray motteling, very stiff no odor
				Х		
				_ 16		
				_17		
				_18		
	ļ			X_19		
	1207		0/60/40	X	SC	Ulive brown clayey tine SAND, dense, moist to wet, no odor
U	1321	30-2-20	0/60/40	<u></u> 20	1	

	Pi	Enviro	evmental						Boring/We	ll Number:			SB-5
Decis	4 NI		05					10/47		Page	1 c	of	1
Projec	t Nom		Ctation				Date Started: 6	12/17					
Projec	a Name			4 - I			Date Complete	u: 0/2/17					
Site Lo	ocation	: 320 Cor	ona Rd, Pe	taluma			Casing Type/Di	ameter: N	/A				
Drilling	g Rig: (	CME-75					Screen Type/S	ot: N/A					
Drilling	g Metho	od: Hollo	ow Stem Au	lguer			Gravel/Sand Pa	ack Type:	N/A				
Sampl	ling Me	thod: CA	Split Spoor	ו			Grout Type/Qua	antity: Nea	at Portland Cer	ment			
Boring	Diam	eter: 8"					Depth to Water	: 16.5'					
Logge	d by: I	Francois E	Bush				Elevation of To	p of PVC C	Casing:				
Drilling	g Contr	actor: Cas	cade Drilling				Casing Stickup						
Rema	rks: G	roundwate	er Sample (	Collecte	ed @0	8:30	between	bgs					
qdd			les										
reading (	Φ	DIe ID	vl/sand/fin	th (ft BGS	S								
<u> </u>	Lim	San	6 %	Dep	JSC		Litholo	aic Descrip	otion				
					GP	Gray sand	ly GRAVEL, dense	<u> </u>					
	(			1			สาขางการการการการการการการการการการการการการก						
			0/0/100		CL	Very dark	gray CLAY, soft, dry	, no odro					
				_ 2 _									
				_ 3 _									
				_ 4 _									
				Х		becomes	medium stiff						
0	758	SB-5-5	0/0/100	X 5									
				X									
				_ 6 _									
				7_									
				- ⁸ -									
				- ³ -		bocomos	light olivo grov with s	omo fino o	and damp				
0	807	SB 5 10	0/15/85	X 10		Decomes	ight onve gray with s		anu, uamp				
U	007	30-5-10	0/10/00	X_10									
				11									
				··-									
				12									
				1									
	(			_13_									
	<u> </u>			]									
				_ 14									
				Х									
0.3	812	SB-5-15	0/70/30	X_15	SC	Mottled of	ive brown / bluish gra	ay clayey fi	ne to medium	SAND de	ense, n	noist, I	no
				Х	ļ	odor (sam	pler wet)						
				16									
				17									
						becomes	wet						
				18									
				X_19	~~	-11-1-1	-						
19	819	SB-5-20	0/70/30	X 20	ວບ	Slight odo							

	Pei	Environ	e mental						Borin	g/Well I	Number:			SB-6
											Page	1 0	of	1
Projec	t Num	ber: 16-39	85				Date Started:	6/2/17						
Projec	t Nam	e: Corona	Station				Date Complet	ed: 6/2/17	7					
Site Lo	ocatior	: 320 Cor	ona Rd, Pe	taluma			Casing Type/I	Diameter:	N/A					
Drilling	g Rig: (	CME-75					Screen Type/	Slot: N/A						
Drilling	g Meth	od: Hollo	ow Stem Au	lguer			Gravel/Sand F	Pack Type	e: N/A					
Samp	ling Me	thod: CA	Split Spoor	۱			Grout Type/Q	uantity: N	leat Portla	and Ceme	ent			
Boring	Diam	eter: 8"					Depth to Wate	er: 15.5'						
Logge	d by:	Francois E	Bush				Elevation of T	op of PVC	C Casing:					
Drilling	g Conti	actor: Cas	cade Drilling				Casing Sticku	р						
Rema	rks: G	roundwate	er Sample (	Collecte	ed @0	9:40	between	bg	ls					
qdc			es											
1) D			l/fin	GS										
adin		D 0	anc	(ft E										
re	ē	nple	s/lvť	, th	SS									
DIG	Щ. Ц	San	б%	Dep	US(		Lithol	ogic Desc	ription					
			0/0/100		CL	Very dark	gray CLAY, soft, d	ry, no odo	or					
				1_1			Manadananananananananananananananan							
				1										
				_2_										
				]										
				]_3_										
			0/10/90	]		becomes I	ight olive gray with	some fine	e sand, m	iedium sti	ff			
				_ 4 _										
				X										
0	918	SB-6-5	0/10/90	X 5										
				Х										
				_ 6 _										
				_7_										
				8_										
				<u> </u>	901		n clavey fine SAN	) to sand		lonce ma	dium	etiff me	iet to v	/ot
0	ດາາ	SB_6 10	0/50/50	∧  x 10	3U/ CI	no odor	in clayey line SANI	J to sandy	Y ULAT, C	iense, me	ulum	sun, mo	เรเ เบ V	/81
0	922	30-0-10	0/00/00	. ^_ '∪  x										
				11										
				12										
				1										
				13										
		¢		1										
				_ 14										
		•••••••••••••••••••••••••••••••••••••••		X										
0	926	SB-6-15	0/0/100	X_15	CL	olive brow	n CLAY, soft, mois	t, no odor						
	(			x		(sampler v	wet)							
				_ 16										
	]			]										
				_17										
				_18										
				X_19										
		00 0	- /- ···	X		becomes v	very stiff, damp to o	dry						
0	930	SB-6-20	0/0/100	X_20										

# **APPENDIX C**

# WELL SURVEY DATA & MAPS

Description	Longitude	Latitude	Level Ht	Northing	Easting	Comments	RCA Pt#
MW-1	-122.65585992	38.26691067	36.36	1,859,703.91	6,373,357.40	North Rim PVC	15000
MW-1 GND	-122.65585951	38.26691177	33.32	1,859,704.31	6,373,357.52	Ground-North Side Conc.	15001
MW-2	-122.65658478	38.26672249	35.83	1,859,636.89	6,373,148.78	North Rim PVC	15003
MW-2 GND	-122.65658513	38.26672397	32.82	1,859,637.43	6,373,148.69	Ground-North Side Conc.	15002
MW-3	-122.65621955	38.26649017	35.23	1,859,551.52	6,373,253.04	North Rim PVC	15004
MW-3 GND	-122.65622033	38.26649107	32.37	1,859,551.85	6,373,252.82	Ground-North Side Conc.	15005
MW-4	-122.65566932	38.26619644	36.20	1,859,443.42	6,373,410.24	North Rim PVC	15007
MW-4 GND	-122.65566975	38.26619791	32.51	1,859,443.95	6,373,410.12	Ground-North Side Conc.	15006
MW-5	-122.65543389	38.26656214	33.02	1,859,576.11	6,373,478.80	Rim,apprx S 30 W. North side obstructed.	15015
MW-5 GND	-122.65543397	38.26656327	33.25	1,859,576.52	6,373,478.78	Ground-North Rim Christy.	15014
MW-6	-122.65527266	38.26599823	35.53	1,859,370.41	6,373,523.61	North Rim PVC	15008
MW-6 GND	-122.65527353	38.26599660	31.84	1,859,369.82	6,373,523.36	Ground-South Side Conc.	15009
MW-7	-122.65499094	38.26614688	36.04	1,859,423.96	6,373,604.89	North Rim PVC	15011
MW-7 GND	-122.65499109	38.26614864	32.83	1,859,424.60	6,373,604.85	Ground-North Side Conc.	15010
MW-8	-122.65532133	38.26683842	37.73	1,859,676.49	6,373,511.84	North Rim PVC	15012
MW-8 GND	-122.65532083	38.26683647	34.00	1,859,675.77	6,373,511.98	Ground-South Side Conc.	15013

Note: GPS Field Survey & Level Loop performed on site 7/7/17 by Ray Carlson & Assoc., Inc. (Lic#3890). Northings & Eastings are CA State Plane, Zone 2



1 inch = 100 feetFeet 100 50

0

890 N. McDowell Rd, Petaluma GPS Monitor Well Survey



JOB NO. 2017-RFP Pinnacle Envire

©June 28, 2017



©June 28, 201



# **APPENDIX D**

LABORATORY DATA & CHAIN OF CUSTODY

Laboratory Data & Chain of Custody Test Pit Excavation Samples April 2017 Date: April 13, 2017

Mr. Peter Cloven Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com

Project: Corona Rd - Petaluma LAB I.D.: 170407-10 through -15

Dear Mr. Cloven:

The **analytical results** for the soil samples, received by our laboratory on April 7, 2017, (via OnTrac), are attached. The samples were received chilled, intact and accompanying chain of custody record.

Enviro-Chem appreciates the opportunity to provide you and your company this and other services. Please do not hesitate to call us if you have any questions.

Sincerely,

Curtin Desilets Vice President/Program Manager

Andy Wang Laboratory Manager

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER:	Pinnacle Environmenta P.O. Box 904 Clayton, CA 94517	al, Inc	
	(925) 673-5500 Email:	pcloven@pei	-env.com
PROJECT:	Corona Rd - Petaluma		
		DATE	RECEIVED:04
MATRIX: SO	L.	DATE	EXTRACTED: 0
DATE SAMD	$ED \cdot 04/04 - 05/17$	DATE	ANALYZED:04

DATE SAMPLED: 04/04-05/17 REPORT TO: MR. PETER CLOVEN DATE RECEIVED:<u>04/07/17</u> DATE EXTRACTED:<u>04/10/17</u> DATE ANALYZED:<u>04/10/17</u> DATE REPORTED:<u>04/13/17</u>

TOTAL PETROLEUM HYDROCARBONS (TPH) - CARBON CHAIN ANALYSIS METHOD: EPA 8015B

# UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

SAMPLE I.D.	LAB I.D.	C4-C10	C11-C22	C23-C35	DF
тр-1с-3	170407-10	ND	ND	ND	1
TP-4-3	170407-11	ND	ND	ND	1
TP-5-4	170407-12	ND	12	.17	1
TP-5-9	170407-13	ND	ND	ND	1
TP-7a-4	170407-14	ND	ND	ND	1
TP-7b-6	170407-15	ND	<u>81</u>	35	1
METHOD BLANK			NU	100	1
	ROL	(10)	10	50	

#### COMMENTS

C4-C10 = GASOLINE RANGE C11-C22 = DIESEL RANGE C23-C35 = MOTOR OIL RANGE DF = DILUTION FACTOR PQL = PRACTICAL QUANTITATION LIMIT ACTUAL DETECTION LIMIT = DF X PQL ND = NON-DETECTED OR BELOW THE ACTUAL DETECTION LIMIT * = PEAKS IN DIESEL RANGE BUT CHROMATOGRAM DOES NOT MATCH THAT OF DIESEL STANDARD

Data Reviewed and Approved by:

4/11/2017 2:48:39 PM

4/10/2017 9:31:23 PM

Α

manager

1.000000

Data Acquisition Time

Channel

Operator

**Dilution Factor** 

Software Version : 6.3.2.0648 Sample Name : 170407-12 Instrument Name : GC-I Rack/Vial : 0/40 Sample Amount : 1.000000 Cycte : 37

Result File : D:\GC DATA\GC-\\02017\1704\1704\010\A057.rst Sequence File : D:\GC DATA\GC-\\02017\1704\1704\0170410\170410.seq



8015 Results

Component Name C11-C22 C23-C35 P403183 Adjusted Amount 122.9 1170.3

1000202 1210.2

; 4/11/2017 2:50:55 PM

Data Acquisition Time : 4/10/2017 10:07:28 PM

: A

: manager

: 1.000000

 Software Version
 6.32.0646

 Sample Name
 170407-15
 20/2***

 Instrument Name
 GC-I

 Rack/Vial
 0/43

 Sample Amount
 1.000000

 Cycle
 : 40

Result File : D:\GC DATA\GC-\\02017\1704\1704\04060.rst Sequence File : D:\GC DATA\GC-\\02017\1704\1704\010\4000.rst



Date

Channel

Operator Dilution Factor

8015 Results

Component	And	Adjusted
Name	EACHIE	Amount
C11-C22	0000000	814.9
C23-C35	10914529	1347.8
	20851162	2162.7

			E	nviro Ch	em, Inc				
1214 E. Lex	ington A	venue, P	omona,	CA 9176	6 Te	l (909)590	-5905	Fax (909)59	0-5907
		8	015E	QA/Q	QC Re	port			
Date Analyzed		<u>4/10-11/20</u>	<u>017</u>				Units:	<u>ma/Ka (p</u>	om)
Matrix:	Soil/S	Solid/S	Sludg	e/Liq	uid				
Matrix Spike (N	/IS)/Matri	ix Spike D	uplicate	e (MSD)					
Spiked Sample	Lab I.D.	.:	17041	0-20	MS/MS	5D			
Analyte	SR	spk conc	MS	%MS	MSD	%MSD	%RPD	ACP %MS	ACP RPD
C11~C22 Range	0	200	183	91%	183	91%	0%	75-125	0-20%
LCS STD REC	OVERY:								
Analyte C11~C22 Range	spik conc 200	160	% REC 80%	ACP 75-125					
Analyte C11C22 Range Analyzed and	spik conc 200 Reviewe	LCS 160	% REC 80%	ACP 75-125					
Analyte C11-C22 Range Analyzed and Final Reviewe	spik cond 200 Reviewe r:	LCS 160	% REC 80%	ACP 75-125					

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER:	Pinnacle Environmental, Inc
	P.O. Box 904
	Clayton, CA 94517
	(925) 673-5500 Email: pcloven@pei-env.com
PROJECT:	Corona Rd - Petaluma

MATRIX: SOIL	DATE RECEIVED: 04/07/17	
DATE SAMPLED: 04/04/17	DATE ANALYZED: 04/10&11/1	7
REPORT TO: MR. PETER CLOVEN	DATE REPORTED: 04/13/17	
		100

SAMPLE I.D.: TP-1C-3

I.D.: 170407-10

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EpA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic (As)	4.85	0.3	1	500	5.0	6010B
Barium(Ba)	138	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium (Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	48.8	0.5	1	2,500	560/50	6010B
Chromium VI (Cr6)		0.1	-	500	5.0	7196A
Cobalt(Co)	12.4	1.0	1	8,000	80	6010B
Copper(Cu)	16.4	1.0	1	2,500	25	6010B
Lead (Pb)	7.50	0.5	1	1,000	5.0	6010B
Mercury(Hg)	0.144	0.01	1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	63.4	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(Tl)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	43.4	5.0	1	2,400	24	6010B
Zinc(Zn)	61.1	0.5	1	5,000	250	6010B

#### COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit 1 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) = Not analyzed/not requested

Data Reviewed and Approved by: ______ CAL-DHS ELAP CERTIFICATE No.: 1555

# 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

### LABORATORY REPORT

CUSTOMER:	Pinnacle Environmental, Inc
	P.O. Box 904
	Clayton, CA 94517
	(925) 673-5500 Email: pcloven@pei-env.com
PROJECT:	Corona Rd - Petaluma

MATRIX: SOIL	DATE RECEIVED: <u>04/07/17</u>
DATE SAMPLED: 04/04/17	DATE ANALYZED: <u>04/10&amp;11/17</u>
REPORT TO:MR. PETER CLOVEN	DATE REPORTED: 04/13/17

SAMPLE I.D.: TP-4-3

LAR I.D.: 170407-11

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	2.50	0.3	1	500	5.0	6010B
Barium (Ba)	164	5.0	1	10,000	100	6010B
Bervllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium(Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	51.8	0.5	1	2,500	560/50	6010B
Chromium VI (Cr6)		0.1		500	5.0	7196A
Cobalt (Co)	11.2	1.0	1	8,000	80	6010B
Copper (Cu)	16.6	1.0	1	2,500	25	6010B
Lead (Pb)	11.6	0.5	1	1,000	5.0	6010B
Mercury (Hg)	0.164	0.01	1	20	0.2	7471A
Molvbdenum (Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	47.6	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium (T1)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	51.8	5.0	1	2,400	24	6010B
Zinc(Zn)	35.5	0.5	1	5,000	250	6010B

#### COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 = DTLC analysis for the stal 11 recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) -- = Not analyzed/not requested

Data Reviewed and Approved by: ______ CAL-DHS ELAP CERTIFICATE No.: 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER:	Pinnacle Environmental, Inc P.O. Box 904
PROJECT:	Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com Corona Rd - Petaluma

MATRIX:SOIL	DATE RECEIVED: 04/07/17
DATE SAMPLED: 04/05/17	DATE ANALYZED: <u>04/10&amp;11/17</u>
REPORT TO:MR. PETER CLOVEN	DATE REPORTED: 04/13/17
Contract and the second s second second sec second second sec	

SAMPLE I.D.: TP-5-4

I.D.: 170407-12

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	4.16	0.3	1	500	5.0	6010B
Barium(Ba)	106	5.0	1	10,000	100	6010B
Bervllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium (Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	53.2	0.5	1	2,500	560/50	6010B
Chromium VI (Cr6)	· · · · · · · · · · · · · · · · · · ·	0.1	-	500	5.0	7196A
Cobalt (Co)	21.3	1.0	1	8,000	80	6010B
Copper (Cu)	37.6	1.0	1	2,500	25	6010B
Lead (Pb)	231 *	0.5	1	1,000	5.0	6010B
Mercury (Hg)	0.359	0.01	1	20	0.2	7471A
Molvbdenum (Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	65.0	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(Tl)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	72.8	5.0	1	2,400	24	6010B
Zinc(Zn)	86.3	0.5	1	5,000	250	6010B

#### COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and PA-TCLP Limit at 5 = 21LL analysis for the netal is terminated III marked) *** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) = Not analyzed/not requested

Data Reviewed and Approved by: <u>174</u> CAL-DHS ELAP CERTIFICATE No.: 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER:	Pinnacle Environmental, Inc
	P.O. Box 904
	Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com
PROJECT:	Corona Rd - Petaluma

MATRIX:SOIL	DATE RECEIVED: 04/07/17
DATE SAMPLED: 04/05/17	DATE ANALYZED: 04/10&11/17
REPORT TO:MR, PETER CLOVEN	DATE REPORTED: 04/13/17
and the second	

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

SAMPLE I.D.: TP-5-9

LAD I.D.: 170407-13

a second discussion

****		10000000000		Contraction of the second		
ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	2.13	0.3	1	500	5.0	6010B
Barium(Ba)	153	5.0	1	10,000	100	6010B
Bervllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium (Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	45.9	0.5	1	2,500	560/50	6010B
Chromium VI (Cr6)		0.1	_	500	5.0	7196A
Cobalt(Co)	12.2	1.0	1	8,000	80	6010B
Copper (Cu)	9.32	1.0	1	2,500	25	6010B
Lead (Pb)	4.88	0.5	1	1,000	5.0	6010B
Mercury (Hg)	0.176	0.01	1	20	0.2	7471A
Molvbdenum(Mo)	ND	5.0	1	3,500	350	6010B
Nickel (Ni)	73.4	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(Tl)	ND	1.0	1	700	7.0	6010B
Vanadium (V)	42.0	5.0	1	2,400	24	6010B
Zinc(Zn)	38.0	0.5	1	5,000	250	6010B

COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit 🚛 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) - = Not analyzed/not requested

Data Reviewed and Approved by: CAL-DHS ELAP CERTIFICATE No.: 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER:	Pinnacle Environmental, Inc P.O. Box 904
PROJECT:	Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com Corona Rd - Petaluma

MATRIX: SOIL	DATE RECEIVED: <u>04/07/17</u>
DATE SAMPLED:04/05/17	DATE ANALYZED: 04/10&11/17
REPORT TO:MR. PETER CLOVEN	DATE REPORTED: 04/13/17
and the second se	

SAMPLE I.D.: TP-7a-4

IAN I.D.: 170407-14

------ A4/07/17

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	Epa
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic (As)	2.60	0.3	1	500	5.0	6010B
Barium(Ba)	168	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium (Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	50.5	0.5	1	2,500	560/50	6010B
Chromium VI (Cr6)	( mar)	0.1	-	500	5.0	7196A
Cobalt(Co)	11.6	1.0	1	8,000	80	6010B
Copper(Cu)	17.6	1.0	1	2,500	25	6010B
Lead (Pb)	6.96	0.5	1	1,000	5.0	6010B
Mercury(Hg)	0.166	0.01	1	20	0.2	7471A
Molybdenum (Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	45.4	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(T1)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	44.7	5.0	1	2,400	24	6010B
Zinc (Zn)	38.5	0.5	1	5,000	250	6010B

#### COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit t * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) ---= Not analyzed/not requested

Data Reviewed and Approved by: CAL-DHS ELAP CERTIFICATE No.: 1555

# 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER:	Pinnacle Environmental, Inc
	P.O. Box 904
PROJECT:	Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com Corona Rd - Petaluma

MATRIX: SOIL	DATE RECEIVED: <u>04/07/17</u>
DATE SAMPLED: <u>04/05/17</u>	DATE ANALYZED: 04/10&11/17
REPORT TO: MR. PETER CLOVEN	DATE REPORTED: 04/13/17
***************************************	

SAMPLE I.D.: TP-7b-6

LAH I.D.: 170407-15

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	2.79	0.3	1	500	5.0	6010B
Barium(Ba)	157	5.0	1	10,000	100	6010B
Beryllium(Be)	ND	0.5	1	75	0.75	6010B
Cadmium(Cd)	1.85	0.5	1	100	1.0	6010B
Chromium Total(Cr)	41.4	0.5	1	2,500	560/50	6010B
Chromium VI (Cr6)	100	0.1	-	500	5.0	7196A
Cobalt(Co)	10.2	1.0	1	8,000	80	6010B
Copper(Cu)	32.3	1.0	1	2,500	25	6010B
Lead (Pb)	12.2	0.5	1	1,000	5.0	6010B
Mercury(Hg)	0.222	0.01	1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	49.4	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver(Ag)	ND	1.0	1	500	5.0	6010B
Thallium(Tl)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	44.3	5.0	1	2,400	24	6010B
Zinc(Zn)	148	0.5	1	5,000	250	6010B

# TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit = * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) == Not analyzed/not requested

Data Reviewed and Approved by: _____ CAL-DHS ELAP CERTIFICATE No.: 1555

### 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

METHOD BLANK REPORT

CUSTOMER:	Pinnacle Environmental, Inc
	P.O. Box 904
	Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com
PROJECT:	Corona Rd - Petaluma

MATRIX:SOIL	DATE	RECEIVED: 04707717
DATE SAMPLED: 04/04-05/17	DATE	ANALYZED: <u>04/10&amp;11/17</u>
REPORT TO:MR. PETER CLOVEN	DATE	REPORTED: 04/13/17

METHOD BLANK REPORT FOR LAB I.D.: 170407-10 THROUGH -15

D 01/07/17

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	1	500	15	6010B
Arsenic(As)	ND	0.3	1	500	5.0	6010B
Barium(Ba)	ND	5.0	1	10,000	100	6010B
Bervllium (Be)	ND	0.5	1	75	0.75	6010B
Cadmium (Cd)	ND	0.5	1	100	1.0	6010B
Chromium Total(Cr)	ND	0.5	1	2,500	560/50	6010B
Chromium VI (Cr6)	-	0.1	-	500	5.0	7196A
Cobalt (Co)	ND	1.0	1	8,000	80	6010B
Copper (Cu)	ND	1.0	1	2,500	25	6010B
Lead (Pb)	ND	0.5	1	1,000	5.0	6010B
Mercury (Hg)	ND	0.01	1	20	0.2	7471A
Molybdenum (Mo)	ND	5.0	1	3,500	350	6010B
Nickel(Ni)	ND	2.5	1	2,000	20	6010B
Selenium(Se)	ND	1.0	1	100	1.0	6010B
Silver (Ag)	ND	1.0	1	500	5.0	6010B
Thallium(T1)	ND	1.0	1	700	7.0	6010B
Vanadium(V)	ND	5.0	1	2,400	24	6010B
Zinc(Zn)	ND	0.5	1	5,000	250	6010B

#### COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 *** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) = Not analyzed/not requested

Data Reviewed and Approved by: ______ CAL-DHS ELAP CERTIFICATE No.: 1555

Matrix Spike/ Matrix Spik	Dunline a									
ANALYSIS DATE:										
	4/11/2017							Unit	: m <u>g/Kg(r</u>	(md
Analysis Spk.Sample ID	CONC.	LCS %Rec.	LCS STATUS	Sample Result	Spike Conc.	MS	% Rec MS	MSD	% Rec MSD	% RPD
Chromium(Cr) 170407-13	50.0	104	PASS	45.9	50.0	94.2	97%	83.8	86.1%	*
Lead(Pb) 170407-13	50.0	103	PASS	4.88	50.0	46.4	83%	45.7	82%	2%
Nickel(Ni) 170407-13	1 50.0	104	PASS	73.4	50.0	121	67%	121	95%	2%2
ANALYSIS DATE.	: 4/10/2017									
Analysis Spit.Sample ID	CONC.	LCS %Rec.	STATUS	Sample Result	Spike Conc.	SW	% Rec MS	OSM	% Rec MSD	% RPD
Mercury (Hg) 170407-39	0.125	94	SSVd	0	0.125	0.105	84%	0.111	9668	8%
MS/MSD Status:			30	-						
Analysis %MS	%WSD	%CCS	%RPD							
Chromium(Cri) PMSS	PASS	PASS	PASS				Ň	ĥ		
Lead(Pb) PASS	PASS	PASS	PASS				ľ	N		
Nickelyil) PASS	PASS	PASS	PASS		ANALYST:		1			
Meroury (Hg) PASS	PASS	PASS	PASS				8	T		
Accepted Range 75 ~ 125	75 ~ 125	85 ~ 115	0 ~ 20		FINAL REV	IEWER:	63	X		12

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY	REPORT
------------	--------

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Corona Rd - Petaluma

MATRIX: SOIL	DATE RECEIVED: 04/07/17
DATE SAMPLED: 04/04/17	DATE ANALYZED: 04/10/17
REPORT TO: MR. PETER CLOVEN	DATE REPORTED: 04/13/17

SAMPLE I.D.: TP-1C-3

LAB I.D.: 170407-10

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ACETONE         ND         1.020           BENZENE         ND         0.005           BROMOCBENZENE         ND         0.005           BROMOCHLOROMETHANE         ND         0.005           BROMOCHLOROMETHANE         ND         0.005           BROMOCHLOROMETHANE         ND         0.005           BROMOCHLOROMETHANE         ND         0.005           BROMOCRM         ND         0.005           BROMOMETHANE         ND         0.005           2-BUTANONE (MEK)         ND         0.005           2-BUTANONE (MEK)         ND         0.005           SEC-BUTYLBENZENE         ND         0.005           SEC-BUTYLBENZENE         ND         0.005           CARBON DISULFIDE         ND         0.005           CHLOROBENZENE         ND         0.005           CHLOROFRM         ND         0.005           2-CHLOROTOLUENE         ND         0.005           1,2-DIBROMOCHLOROMETHANE         ND         0.005 <th>PARAMETER</th> <th>SAMPLE RESULT</th> <th>PQL X1</th>	PARAMETER	SAMPLE RESULT	PQL X1
BENZENE         ND         0.005           BROMOBENZENE         ND         0.005           BROMOCHLOROMETHANE         ND         0.005           BROMODICHLOROMETHANE         ND         0.005           BROMOFORM         ND         0.005           BROMOMETHANE         ND         0.005           BROMOMETHANE         ND         0.005           2-BUTANONE (MEK)         ND         0.005           2-BUTYLBENZENE         ND         0.005           SEC-BUTYLBENZENE         ND         0.005           SEC-BUTYLBENZENE         ND         0.005           CARBON DISULFIDE         ND         0.005           CARBON TETRACHLORIDE         ND         0.005           CHLOROBENZENE         ND         0.005           CHLOROFORM         ND         0.005           CHLOROFORM         ND         0.005           CHLOROFORM         ND         0.005           CHLOROFORM         ND         0.005           CHLOROTOLUENE         ND         0.005           L-CHLOROTOLUENE         ND         0.005           J.2-DIBROMOETHANE         ND         0.005           J.2-DIBROMOETHANE         ND         0.	ACETONE	ND	<u>0.020</u>
BROMOBENZENE         ND         0.005           BROMOCHLOROMETHANE         ND         0.005           BROMODICHLOROMETHANE         ND         0.005           BROMOMETHANE         ND         0.005           BROMOMETHANE         ND         0.005           BROMOMETHANE         ND         0.005           BROMOMETHANE         ND         0.005           2-BUTANONE (MEK)         ND         0.005           SEC-BUTYLBENZENE         ND         0.005           SEC-BUTYLBENZENE         ND         0.005           CARBON DISULFIDE         ND         0.005           CARBON TETRACHLORIDE         ND         0.005           CHLOROENZENE         ND         0.005           CHLOROENANE         ND         0.005           CHLOROENANE         ND         0.005           CHLOROFORM         ND         0.005           CHLOROTOLUENE         ND         0.005           2-CHLOROTOLUENE         ND         0.005           1, 2-DIBROMOETHANE         ND         0.005           1, 2-DIBROMOETHANE         ND         0.005           1, 2-DIBROMOETHANE         ND         0.005           1, 3-DICHLOROBENZENE         <	BENZENE	<u>ND</u>	0.005
BROMOCHLOROMETHANE         ND         0.005           BROMODICHLOROMETHANE         ND         0.005           BROMOFORM         ND         0.005           BROMOMETHANE         ND         0.005           BROMOMETHANE         ND         0.005           SROMOMETHANE         ND         0.005           2-BUTANONE (MEK)         ND         0.005           SEC-BUTYLBENZENE         ND         0.005           SEC-BUTYLBENZENE         ND         0.005           CARBON DISULFIDE         ND         0.005           CARBON TETRACHLORIDE         ND         0.005           CHLOROBENZENE         ND         0.005           CHLOROBENZENE         ND         0.005           CHLOROFORM         ND         0.005           CHLOROFORM         ND         0.005           CHLOROFORM         ND         0.005           2-CHLOROTOLUENE         ND         0.005           2-CHLOROTOLUENE         ND         0.005           1.2-DIBROMOCHLOROMETHANE         ND         0.005           1.2-DIBROMOCHLOROMETHANE         ND         0.005           1.2-DIBROMOCHLOROBENZENE         ND         0.005           1.3-DICHLOROBENZEN	BROMOBENZENE	ND	0.005
BROMODICHLOROMETHANEND0.005BROMOFORMND0.005BROMOMETHANEND0.0052-BUTANONE (MEK)ND0.0052-BUTANONE (MEK)ND0.005SEC-BUTYLBENZENEND0.005SEC-BUTYLBENZENEND0.005CARBON DISULFIDEND0.005CARBON TETRACHLORIDEND0.005CHLOROBENZENEND0.005CHLOROBENZENEND0.005CHLOROFORMND0.005CHLOROFORMND0.005CHLOROTOLUENEND0.0051.2-DIBROMOCHLOROMETHANEND0.0051.2-DIBROMOETHANEND0.0051.2-DIBROMOETHANEND0.0051.2-DICHLOROBENZENEND0.0051.2-DICHLOROBENZENEND0.0051.2-DICHLOROBENZENEND0.0051.2-DICHLOROBENZENEND0.0051.2-DICHLOROBENZENEND0.0051.2-DICHLOROBENZENEND0.0051.2-DICHLOROBENZENEND0.0051.2-DICHLOROBENZENEND0.0051.2-DICHLOROBENZENEND0.0051.2-DICHLOROBENZENEND0.0051.2-DICHLOROBENZENEND0.0051.2-DICHLOROBENZENEND0.0051.2-DICHLOROBENZENEND0.0051.2-DICHLOROBENZENEND0.0051.2-DICHLOROBENZENEND0.0051.2-DICHLOROBENZENEND0.0051.2-DICHLOROBENZENEND0.005	BROMOCHLOROMETHANE	ND	0.005
BROMOFORM         ND         0.005           BROMOMETHANE         ND         0.005           2-BUTANONE (MEK)         ND         0.005           N-BUTYLBENZENE         ND         0.005           SEC-BUTYLBENZENE         ND         0.005           TERT-BUTYLBENZENE         ND         0.005           CARBON DISULFIDE         ND         0.005           CARBON TETRACHLORIDE         ND         0.005           CHLOROBENZENE         ND         0.005           CHLOROBENZENE         ND         0.005           CHLOROBENAZENE         ND         0.005           CHLOROMETHANE         ND         0.005           JC-CHLORODITUENE         ND         0.005           J.2-DIBROMOCHLOROMETHANE         ND         0.005           J.2-DIBROMOETHANE         ND         0.005           J.2-DICHLOROBENZENE         ND         0.005           J.3-DICHLOROBENZENE         ND         0.005           J.4-DICHLOROBENZENE	BROMODICHLOROMETHANE	ND	0.005
BROMOMETHANE         ND         0.005           2-BUTANONE (MEK)         ND         0.020           N-BUTYLBENZENE         ND         0.005           SEC-BUTYLBENZENE         ND         0.005           SEC-BUTYLBENZENE         ND         0.005           CARBON DISULFIDE         ND         0.010           CARBON TETRACHLORIDE         ND         0.005           CHLOROBENZENE         ND         0.005           CHLOROBENZENE         ND         0.005           CHLOROFORM         ND         0.005           CHLOROFORM         ND         0.005           CHLOROFORM         ND         0.005           CHLOROFORM         ND         0.005           CHLOROTOLUENE         ND         0.005           2-CHLOROTOLUENE         ND         0.005           1, 2-DIBROMOCHLOROMETHANE         ND         0.005           1, 2-DIBROMOETHANE         ND         0.005           1, 2-DICHLOROBENZENE         ND         0.005           1, 3-DICHLOROBENZENE         ND         0.005           1, 4-DICHLOROBENZENE         ND         0.005           1, 1-DICHLOROBENZENE         ND         0.005           1, 1-DICHLOROBEN	BROMOFORM	ND	0.005
2-BUTANONE (MEK)         ND         0.020           N-BUTYLBENZENE         ND         0.005           SEC-BUTYLBENZENE         ND         0.005           TERT-BUTYLBENZENE         ND         0.005           CARBON DISULFIDE         ND         0.010           CARBON TETRACHLORIDE         ND         0.005           CHLOROBENZENE         ND         0.005           CHLOROFTHANE         ND         0.005           CHLOROFTHANE         ND         0.005           CHLOROTOLUENE         ND         0.005           CHLOROTOLUENE         ND         0.005           1,2-DIBROMO-3-CHLOROPROPANE         ND         0.005           1,2-DIBROMOETHANE         ND         0.005           1,2-DICHLOROBENZENE         ND         0.005           1,2-DICHLOROBENZENE         ND         0.005           1,2-DICHLOROBENZENE         ND         0.005           1,3-DICHLOROBENZENE         ND         0.005           1,4-DICHLOROBENZENE         ND         0.005           1,1-DICHLOROBENZENE         ND         0.005           1,1-DICHLOROETHANE         ND         0.005           1,2-DICHLOROETHANE         ND         0.005	BROMOMETHANE	ND	0.005
N-BUTYLBENZENE         ND         0.005           SEC-BUTYLBENZENE         ND         0.005           TERT-BUTYLBENZENE         ND         0.005           CARBON DISULFIDE         ND         0.010           CARBON TETRACHLORIDE         ND         0.005           CHLOROBENZENE         ND         0.005           CHLOROFORM         ND         0.005           CHLOROTOLUENE         ND         0.005           2-CHLOROTOLUENE         ND         0.005           1.2-DIBROMO-3-CHLOROPROPANE         ND         0.005           1.2-DIBROMOETHANE         ND         0.005           1.2-DICHLOROBENZENE         ND         0.005           1.3-DICHLOROBENZENE         ND         0.005           1.4-DICHLOROBENZENE         ND         0.005           1.4-DICHLOROBENZENE         ND         0.005           1.4-DICHLOROBENZENE         ND         0.005           1.4-DICHLOROBENZENE         ND         0.005 <td< td=""><td>2-BUTANONE (MEK</td><td>ND</td><td>0.020</td></td<>	2-BUTANONE (MEK	ND	0.020
SEC-BUTYLBENZENE         ND         0.005           TERT-BUTYLBENZENE         ND         0.005           CARBON DISULFIDE         ND         0.010           CARBON TETRACHLORIDE         ND         0.005           CHLOROBENZENE         ND         0.005           CHLOROBENZENE         ND         0.005           CHLOROETHANE         ND         0.005           CHLOROFORM         ND         0.005           CHLOROFORM         ND         0.005           CHLOROTOLUENE         ND         0.005           2-CHLOROTOLUENE         ND         0.005           4-CHLOROTOLUENE         ND         0.005           1.2-DIBROMO-3-CHLOROPROPANE         ND         0.005           1.2-DIBROMOETHANE         ND         0.005           1.2-DIBROMOETHANE         ND         0.005           1.2-DICHLOROBENZENE         ND         0.005           1.3-DICHLOROBENZENE         ND         0.005           1.4-DICHLOROBENZENE         ND         0.005           1.4-DICHLOROBENZENE         ND         0.005           1.4-DICHLOROBENZENE         ND         0.005           1.1-DICHLOROBENZENE         ND         0.005 <t< td=""><td><u>N-BUTYLBENZENE</u></td><td>ND</td><td>0.005</td></t<>	<u>N-BUTYLBENZENE</u>	ND	0.005
TERT-BUTYLBENZENEND0.005CARBON DISULFIDEND0.010CARBON TETRACHLORIDEND0.005CHLOROBENZENEND0.005CHLOROETHANEND0.005CHLOROFORMND0.005CHLOROTOLUENEND0.0052-CHLOROTOLUENEND0.0051, 2-DIBROMOCHLOROMETHANEND0.0051, 2-DIBROMO-3-CHLOROPROPANEND0.0051, 2-DIBROMOETHANEND0.0051, 2-DIBROMOETHANEND0.0051, 2-DICHLOROBENZENEND0.0051, 3-DICHLOROBENZENEND0.0051, 4-DICHLOROBENZENEND0.0051, 1-DICHLOROBENZENEND0.0051, 1-DICHLOROETHANEND0.0051, 1-DICHLOROETHANEND0.0051, 1-DICHLOROETHANEND0.0051, 1-DICHLOROETHANEND0.0051, 2-DICHLOROETHANEND0.0051, 1-DICHLOROETHANEND0.0051, 2-DICHLOROETHANEND0.0051, 2-DICHLOROETHANEND0.0051, 2-DICHLOROETHANEND0.0051, 2-DICHLOROETHANEND0.0051, 2-DICHLOROETHENEND0.0051, 2-DICHLOROETHENEND0.0051, 2-DICHLOROETHENEND0.0051, 2-DICHLOROETHENEND0.0051, 2-DICHLOROETHENEND0.0051, 2-DICHLOROETHENEND0.0051, 2-DICHLOROETHENEND0.0051,	SEC-BUTYLBENZENE	ND	0.005
CARBON DISULFIDEND0.010CARBON TETRACHLORIDEND0.005CHLOROBENZENEND0.005CHLOROETHANEND0.005CHLOROFORMND0.005CHLOROMETHANEND0.0052-CHLOROTOLUENEND0.0054-CHLOROTOLUENEND0.0051,2-DIBROMO-3-CHLOROPROPANEND0.0051,2-DIBROMOETHANEND0.0051,2-DIBROMOETHANEND0.0051,2-DICHLOROBENZENEND0.0051,3-DICHLOROBENZENEND0.0051,4-DICHLOROBENZENEND0.0051,1-DICHLOROETHANEND0.0051,2-DICHLOROBENZENEND0.0051,1-DICHLOROETHANEND0.0051,1-DICHLOROETHANEND0.0051,2-DICHLOROETHANEND0.0051,1-DICHLOROETHANEND0.0051,2-DICHLOROETHANEND0.0051,2-DICHLOROETHANEND0.0051,2-DICHLOROETHANEND0.0051,2-DICHLOROETHANEND0.0051,2-DICHLOROETHANEND0.0051,2-DICHLOROETHANEND0.0051,2-DICHLOROETHANEND0.0051,2-DICHLOROETHANEND0.0051,2-DICHLOROETHENEND0.0051,2-DICHLOROETHENEND0.0051,2-DICHLOROETHENEND0.0051,2-DICHLOROETHENEND0.0051,2-DICHLOROETHENEND0.0051,2-DICHLOROETHENEND <t< td=""><td>TERT-BUTYLBENZENE</td><td>ND</td><td>0.005</td></t<>	TERT-BUTYLBENZENE	ND	0.005
CARBON TETRACHLORIDEND0.005CHLOROBENZENEND0.005CHLOROETHANEND0.005CHLOROFORMND0.005CHLOROTOLUENEND0.0052-CHLOROTOLUENEND0.0054-CHLOROTOLUENEND0.005DIBROMOCHLOROMETHANEND0.0051,2-DIBROMO-3-CHLOROPROPANEND0.0051,2-DIBROMOETHANEND0.0051,2-DICHLOROBENZENEND0.0051,3-DICHLOROBENZENEND0.0051,4-DICHLOROBENZENEND0.0051,1-DICHLOROETHANEND0.0051,1-DICHLOROETHANEND0.0051,1-DICHLOROETHANEND0.0051,1-DICHLOROETHANEND0.0051,2-DICHLOROETHANEND0.0051,1-DICHLOROETHANEND0.0051,2-DICHLOROETHANEND0.0051,2-DICHLOROETHANEND0.0051,2-DICHLOROETHANEND0.0051,2-DICHLOROETHANEND0.0051,1-DICHLOROETHANEND0.0051,1-DICHLOROETHANEND0.0051,1-DICHLOROETHENEND0.0051,2-DICHLOROETHENEND0.005	CARBON DISULFIDE	ND	0.010
CHLOROBENZENE         ND         0.005           CHLOROETHANE         ND         0.005           CHLOROFORM         ND         0.005           CHLOROFORM         ND         0.005           CHLOROFORM         ND         0.005           CHLOROTOLUENE         ND         0.005           2-CHLOROTOLUENE         ND         0.005           4-CHLOROTOLUENE         ND         0.005           DIBROMOCHLOROMETHANE         ND         0.005           1,2-DIBROMO-3-CHLOROPROPANE         ND         0.005           1,2-DIBROMOETHANE         ND         0.005           1,2-DIBROMOETHANE         ND         0.005           1,2-DICHLOROBENZENE         ND         0.005           1,3-DICHLOROBENZENE         ND         0.005           1,4-DICHLOROBENZENE         ND         0.005           1,4-DICHLOROBENZENE         ND         0.005           1,1-DICHLOROETHANE         ND         0.005           1,2-DICHLOROETHANE         ND         0.005           1,2-DICHLOROETHANE         ND         0.005           1,2-DICHLOROETHANE         ND         0.005           1,2-DICHLOROETHANE         ND         0.005 <t< td=""><td>CARBON TETRACHLORIDE</td><td>ND</td><td>0.005</td></t<>	CARBON TETRACHLORIDE	ND	0.005
CHLOROETHANE         ND         0.005           CHLOROFORM         ND         0.005           CHLOROFORM         ND         0.005           CHLOROMETHANE         ND         0.005           2-CHLOROTOLUENE         ND         0.005           4-CHLOROTOLUENE         ND         0.005           DIBROMOCHLOROMETHANE         ND         0.005           1, 2-DIBROMO-3-CHLOROPROPANE         ND         0.005           1, 2-DIBROMO-3-CHLOROPROPANE         ND         0.005           1, 2-DIBROMOETHANE         ND         0.005           1, 2-DIBROMOETHANE         ND         0.005           1, 2-DICHLOROBENZENE         ND         0.005           1, 3-DICHLOROBENZENE         ND         0.005           1, 4-DICHLOROBENZENE         ND         0.005           1, 4-DICHLOROBENZENE         ND         0.005           1, 1-DICHLOROETHANE         ND         0.005           1, 1-DICHLOROETHANE         ND         0.005           1, 2-DICHLOROETHANE         ND         0.005           1, 1-DICHLOROETHENE         ND         0.005           1, 1-DICHLOROETHENE         ND         0.005           1, 1-DICHLOROETHENE         ND         0.00	CHLOROBENZENE	ND	0.005
CHLOROFORM         ND         0.005           CHLOROMETHANE         ND         0.005           2-CHLOROTOLUENE         ND         0.005           4-CHLOROTOLUENE         ND         0.005           JEROMOCHLOROMETHANE         ND         0.005           1,2-DIBROMO-3-CHLOROPROPANE         ND         0.005           1,2-DIBROMOETHANE         ND         0.005           1,2-DIBROMOETHANE         ND         0.005           1,2-DIBROMOETHANE         ND         0.005           1,2-DIBROMOETHANE         ND         0.005           1,2-DICHLOROBENZENE         ND         0.005           1,3-DICHLOROBENZENE         ND         0.005           1,4-DICHLOROBENZENE         ND         0.005           1,1-DICHLOROBENZENE         ND         0.005           1,1-DICHLOROBENZENE         ND         0.005           1,1-DICHLOROETHANE         ND         0.005           1,2-DICHLOROETHANE         ND         0.005           1,1-DICHLOROETHANE         ND         0.005           1,1-DICHLOROETHENE         ND         0.005           1,1-DICHLOROETHENE         ND         0.005	CHLOROETHANE	ND	0.005
CHLOROMETHANEND0.0052-CHLOROTOLUENEND0.0054-CHLOROTOLUENEND0.005DIBROMOCHLOROMETHANEND0.0051,2-DIBROMO-3-CHLOROPROPANEND0.0051,2-DIBROMOETHANEND0.0051,2-DIBROMOETHANEND0.0051,2-DICHLOROBENZENEND0.0051,3-DICHLOROBENZENEND0.0051,4-DICHLOROBENZENEND0.0051,1-DICHLOROBENZENEND0.0051,2-DICHLOROBENZENEND0.0051,1-DICHLOROETHANEND0.0051,2-DICHLOROETHANEND0.0051,1-DICHLOROETHANEND0.0051,2-DICHLOROETHANEND0.0051,2-DICHLOROETHANEND0.0051,2-DICHLOROETHANEND0.0051,2-DICHLOROETHENEND0.0051,2-DICHLOROETHENEND0.005	CHLOROFORM	ND	0.005
2-CHLOROTOLUENEND0.0054-CHLOROTOLUENEND0.005DIBROMOCHLOROMETHANEND0.0051,2-DIBROMO-3-CHLOROPROPANEND0.0051,2-DIBROMOETHANEND0.005DIBROMOETHANEND0.005DIBROMOMETHANEND0.0051,2-DICHLOROBENZENEND0.0051,3-DICHLOROBENZENEND0.0051,4-DICHLOROBENZENEND0.0051,1-DICHLOROETHANEND0.0051,2-DICHLOROETHANEND0.0051,1-DICHLOROETHANEND0.0051,2-DICHLOROETHANEND0.0051,1-DICHLOROETHANEND0.0051,1-DICHLOROETHENEND0.0051,1-DICHLOROETHENEND0.0051,2-DICHLOROETHENEND0.005	CHLOROMETHANE	ND	0.005
4-CHLOROTOLUENEND0.005DIBROMOCHLOROMETHANEND0.0051,2-DIBROMO-3-CHLOROPROPANEND0.0051,2-DIBROMOETHANEND0.005DIBROMOMETHANEND0.0051,2-DICHLOROBENZENEND0.0051,3-DICHLOROBENZENEND0.0051,4-DICHLOROBENZENEND0.0051,1-DICHLOROBENZENEND0.0051,1-DICHLOROMETHANEND0.0051,2-DICHLOROETHANEND0.0051,1-DICHLOROETHANEND0.0051,2-DICHLOROETHANEND0.0051,2-DICHLOROETHENEND0.0051,1-DICHLOROETHENEND0.0051,2-DICHLOROETHENEND0.005	2-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANEND0.0051,2-DIBROMO-3-CHLOROPROPANEND0.0051,2-DIBROMOETHANEND0.005DIBROMOMETHANEND0.0051,2-DICHLOROBENZENEND0.0051,3-DICHLOROBENZENEND0.0051,4-DICHLOROBENZENEND0.0051,1-DICHLOROMETHANEND0.0051,2-DICHLOROETHANEND0.0051,1-DICHLOROETHANEND0.0051,2-DICHLOROETHANEND0.0051,2-DICHLOROETHANEND0.0051,2-DICHLOROETHENEND0.0051,1-DICHLOROETHENEND0.0051,2-DICHLOROETHENEND0.005	<u>4-CHLOROTOLUENE</u>	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANEND0.0051,2-DIBROMOETHANEND0.005DIBROMOMETHANEND0.0051,2-DICHLOROBENZENEND0.0051,3-DICHLOROBENZENEND0.0051,4-DICHLOROBENZENEND0.005DICHLOROBITLUOROMETHANEND0.0051,1-DICHLOROETHANEND0.0051,2-DICHLOROETHANEND0.0051,1-DICHLOROETHANEND0.0051,2-DICHLOROETHANEND0.0051,1-DICHLOROETHANEND0.0051,1-DICHLOROETHENEND0.0051,2-DICHLOROETHENEND0.005	DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMOETHANEND0.005DIBROMOMETHANEND0.0051,2-DICHLOROBENZENEND0.0051,3-DICHLOROBENZENEND0.0051,4-DICHLOROBENZENEND0.005DICHLORODIFLUOROMETHANEND0.0051,1-DICHLOROETHANEND0.0051,2-DICHLOROETHANEND0.0051,2-DICHLOROETHANEND0.0051,2-DICHLOROETHANEND0.0051,1-DICHLOROETHENEND0.005	1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
DIBROMOMETHANEND0.0051,2-DICHLOROBENZENEND0.0051,3-DICHLOROBENZENEND0.0051,4-DICHLOROBENZENEND0.005DICHLORODIFLUOROMETHANEND0.0051,1-DICHLOROETHANEND0.0051,2-DICHLOROETHANEND0.0051,1-DICHLOROETHANEND0.0051,1-DICHLOROETHENEND0.0051,2-DICHLOROETHENEND0.005	1,2-DIBROMOETHANE	ND	0.005
1,2-DICHLOROBENZENEND0.0051,3-DICHLOROBENZENEND0.0051,4-DICHLOROBENZENEND0.005DICHLORODIFLUOROMETHANEND0.0051,1-DICHLOROETHANEND0.0051,2-DICHLOROETHANEND0.0051,1-DICHLOROETHANEND0.0051,2-DICHLOROETHENEND0.0051,1-DICHLOROETHENEND0.005	DIBROMOMETHANE	ND	0.005
1,3-DICHLOROBENZENEND0.0051,4-DICHLOROBENZENEND0.005DICHLORODIFLUOROMETHANEND0.0051,1-DICHLOROETHANEND0.0051,2-DICHLOROETHANEND0.0051,1-DICHLOROETHENEND0.0051,1-DICHLOROETHENEND0.0051,2-DICHLOROETHENEND0.005	1,2-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENEND0.005DICHLORODIFLUOROMETHANEND0.0051,1-DICHLOROETHANEND0.0051,2-DICHLOROETHANEND0.0051,1-DICHLOROETHENEND0.005cis-1,2-DichloroetheneND0.005	1,3-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANENDQ.0051,1-DICHLOROETHANEND0.0051,2-DICHLOROETHANEND0.0051,1-DICHLOROETHENEND0.005cIS-1,2-DICHLOROETHENEND0.005	1, 4-DICHLOROBENZENE	ND	0.005
1,1-DICHLOROETHANEND0.0051,2-DICHLOROETHANEND0.0051,1-DICHLOROETHENEND0.005CIS-1,2-DICHLOROETHENEND0.005	DICHLORODIFLUOROMETHANE	ND	0.005
1,2-DICHLOROETHANEND0.0051,1-DICHLOROETHENEND0.005CIS-1,2-DICHLOROETHENEND0.005	1,1-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENEND0.005CIS-1,2-DICHLOROETHENEND0.005	1,2-DICHLOROETHANE	ND	0.005
CIS-1, 2-DICHLOROETHENE ND 0.005	1,1-DICHLOROETHENE	ND	0.005
	CIS-1, 2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE ND 0.005	TRANS-1, 2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE ND 0.005	1,2-DICHLOROPROPANE	ND	0.005

TO BE CONTINUED ON PAGE 12 -----

DATA REVIEWED AND APPROVED BY:___

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT Pinnacle Environmental, Inc CUSTOMER: P.O. Box 904 Clayton, CA 94517 (925) 673-5500 Email: pcloven@pei-env.com Corona Rd - Petaluma PROJECT: DATE RECEIVED: 04/07/17 MATRIX: SOIL DATE ANALYZED: 04/10/17 DATE SAMPLED: 04/04/17 DATE REPORTED: 04/13/17 REPORT TO:MR. PETER CLOVEN LAB I.D.: 170407-10 SAMPLE I.D.: TP-1C-3 ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM POL X1 SAMPLE RESULT PARAMETER 0.005 ND 1, 3-DICHLOROPROPANE 0.005 2,2-DICHLOROPROPANE ND 0.005 ND 1,1-DICHLOROPROPENE ND 0.005 CIS-1, 3-DICHLOROPROPENE 0.005 TRANS-1, 3-DICHLOROPROPENE ND 0.005 ND ETHYLBENZENE 0.020 ND 2-HEXANONE 0.005 ND HEXACHLOROBUTADIENE 0.005 ND ISOPROPYLBENZENE 0.005 ND 4-ISOPROPYLTOLUENE 0.020 ND 4-METHYL-2-PENTANONE (MIBK) 0.005 METHYL tert-BUTYL ETHER (MTBE ND 010 ND METHYLENE CHLORIDE 0.005 ND NAPHTHALENE 0.005 ND N-PROPYLBENZENE 0.005 ND STYRENE 0.005 ND 1,1,1,2-TETRACHLOROETHANE 0.005 1, 1, 2, 2-TETRACHLOROETHANE ND 0.005 ND TETRACHLOROETHENE (PCE) 0.005 ND TOLUENE 0.005 ND 1,2,3-TRICHLOROBENZENE 0.005 1, 2, 4-TRICHLOROBENZENE ND 0.005 1,1,1-TRICHLOROETHANE ND 0.005 1, 1, 2-TRICHLOROETHANE ND 0.005 ND TRICHLOROETHENE (TCE) 0.005 ND TRICHLOROFLUOROMETHANE 0.005 1,2,3-TRICHLOROPROPANE ND 0.005 1,2,4-TRIMETHYLBENZENE ND 0.005 1,3,5-TRIMETHYLBENZENE ND 0.005 VINYL CHLORIDE ND 0.010 ND M/P-XYLENE 0.005 ND O-XYLENE COMMENTS PQL = PRACTICAL QUANTITATION LIMIT ND = NON-DETECTED OR BELOW THE PQL DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555
1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER:	Pinnacle Environmental, Inc P.O. Box 904
	Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com
PROJECT:	Corona Rd - Petaluma

MATRIX: <u>SOIL</u>	DATE RECEIVED: 04/07/17
DATE SAMPLED: 04/04/17	DATE ANALYZED: 04/10/17
REPORT TO: MR. PETER CLOVEN	DATE REPORTED: 04/13/17

SAMPLE I.D.: TP-4-3

LAB I.D.: 170407-11

ANALYSIS:	VOLATILE ORGANICS, EPA	METHOD 5030B/8260B	, PAGE 1 OF 2
	$IINTT \cdot ma / Ka = MILLIGE$	AM PER KILOGRAM = P	PM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	<u>ND</u>	0.005
2-BUTANONE (MEK	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	<u>ND</u>	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	<u>ND</u>	0.005
CHLOROFORM	ND	0,005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0,005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1, 3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1, 2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

----- TO DE CONTINUED ON PAGE

#### LABORATORY REPORT

CUSTOMER:	Pinnacle Environmental, Inc P.O. Box 904
PROJECT:	Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com Corona Rd - Petaluma

REPORT TO: MR. PETER CLOVEN	DATE REPORTED: <u>04/13/17</u>
DEDODE NO. ND DEEDD OF OVERY	
DATE SAMPLED: 04/04/17	DATE ANALYZED:04/10/17
MATRIX: SOIL	DATE RECEIVED: <u>04/07/17</u>

SAMPLE I.D.: TP-4-3

LAB I.D.: 170407-11

ANALYSIS:	VOLATILE ORGANICS	EPA METHOD	5030B/8260B,	PAGE 2 DF 2
	UNIT: $mg/Kg = MII$	LIGRAM PER	KILOGRAM = PPN	4 CHANGO ST

PARAMETER	SAMPLE RESULT	POL X1
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1, 3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
<u>2-HEXANONE</u>	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
<u>N-PROPYLBENZENE</u>	ND	0,005
STYRENE	ND	0.005
1, 1, 1, 2-TETRACHLOROETHANE	ND	0.005
1, 1, 2, 2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1, 2, 4-TRICHLOROBENZENE	ND	0.005
1, 1, 1-TRICHLOROETHANE	ND	0.005
1, 1, 2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1, 2, 3-TRICHLOROPROPANE	ND	0.005
<u>1,2,4-TRIMETHYLBENZENE</u>	ND	0.005
1, 3, 5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
<u>O-XYLENE</u>	ND	0.005
COMMENTS PQL = PRACTICAL QUANT	ITATION LIMIT	
ND = NON-DETECTED OR BELOW THE	PQL	
DAWA DEVITEMED AND ADDOOVED DV.		

DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

	TAPOT		
	LABO	ATORI REPORT	
CUSTOMER:	Pinnacle Environment	al, Inc	
	P.O. Box 904		
	Clayton, CA 94517		
	(925) 673-5500 Email:	pcloven@pei-en	IV. COM
PROJECT:	Corona Rd - Petaluma	L	
	FT	האייד פר(	SETVED.04/07/17
MATRIA: SU		DATE AND	$V_{10} = V_{10} = 0.04 / 10 / 17$
DALE SAMPI	MD DETER CLOVEN	DATE AND DATE REL	$\frac{12350}{04/13/17}$
KEFORI IO.	MR. PEIER CLOVEN		
SAMPLE I.I	D.: TP-5-4	LAB I.D.	.: 170407-12
ANALYS	IS: VOLATILE ORGANICS UNIT: mg/Kg = MI	, EPA METHOD 50: LLIGRAM PER KILO	30B/8260B, PAGE 1 OF 2 OGRAM = PPM
PARAMETER		SAMPLE RESULT	POL XI
ACETONE			0.020
BENZENE		ND	0.005
BROMOBENZE			0.005
BROMOCHLOR		ND	0.005
BROMODICHI	JOROMETHANE		0.005
BROMONETU	AND	ND	0.005
2 RUMOMETHANE		ND	0.020
N-BUTYLEE	VZENE	ND	0.005
SEC-BUTYLE	BENZENE	ND	0,005
TERT-BUTY	LBENZENE	ND	0.005
CARBON DIS	SULFIDE	ND	0.010
CARBON TET	TRACHLORIDE	ND	0.005
CHLOROBEN2	ZENE	ND	0.005
CHLOROETH/	ANE	ND	0.005
CHLOROFORM	4	ND	0.005
CHLOROMETH	HANE	ND	0.005
2-CHLOROTO	DLUENE	ND	0.005
4-CHLOROTO	OLUENE	ND	0.005
DIBROMOCHI	LOROMETHANE	<u>ND</u>	0.005
1,2-DIBRON	MO-3-CHLOROPROPANE	<u>ND</u>	0.005
1,2-DIBRON	MOETHANE	ND	0.005
DIBROMOME:	THANE	ND	0.005
1,2-DICHLO	DROBENZENE	<u>ND</u>	0.005
1,3-DICHLO	DROBENZENE	<u>ND</u>	0.005
1,4-DICHL	DROBENZENE	ND	0.005
DICHLOROD	IFLUOROMETHANE	ND	0.005
1,1-DICHL	DROETHANE	ND	0.005
1, Z-DICHLO	OROETHANE		0.005
1,1-DICHLO	OROETHENE		0.005
CIS-1, Z-D.	DICULOROFTHENE		0.005
IRANS-1, Z	-DICHLOROEIHENE	ND	0.005

TO BE CONTINUES ON PAGE

	LABOR	ATORY REPORT	
CUSTOMER:	Pinnacle Environmenta	al, Inc	
	P.O. Box 904		
	Clayton, CA 94517		
	(925)673-5500 Email:	pcloven@pei-env.	com
PROJECT:	Corona Rd - Petaluma		
MATRIX:SOI	L.	DATE RECE	IVED:04/07/17
DATE SAMPL	ED:04/05/17	DATE ANALY	YZED:04/10/17
REPORT TO:	MR. PETER CLOVEN	DATE REPOR	RTED: 04/13/17
SAMPLE I.C	).: TP-5-4	LAB I.D.:	170407-12
3373 T Hat			
ANALYS	IS: VOLATILE ORGANICS,	EPA METHOD 5030	B/8260B, PAGE 2 OF 2 RAM = PPM
ARAMEMPRO	onii. ag/ng - Min	SAMPLE RESULT	POL X1
- ACAMELEK	IDODDODANE	ND	0.005
2-DICHIO	ROPROPANE	ND	0.005
- 1-DICHLC	ROPROPENE	ND	0.005
15-1.3-DT	CHLOROPROPENE	ND	0.005
TRANS~1.3-	DICHLOROPROPENE	ND	0,005
THYLRENZE	INF.	ND	0.005
-HEXANONE		ND	0.020
EXACHLORC	BUTADIENE	ND	0.005
SOPROPYLE	SENZENE	ND	0.005
-ISOPROPY	'LTOLUENE	ND	0.005
-METHYL-2	PENTANONE (MIBK	ND	0.020
ETHYL ter	T-BUTYL ETHER (MTBE	ND	0.005
<b>ETHYLENE</b>	CHLORIDE	ND	0.010
APHTHALEN	IE	ND	0.005
-PROPYLBE	NZENE	ND	0.005
TYRENE		ND	0.005
,1,1,2-TE	TRACHLOROETHANE	ND	0.005
,1,2,2-TE	TRACHLOROETHANE	ND	0.005
TETRACHLOR	OETHENE (PCE)	ND	0.005
OLUENE		ND	0.005
1,2,3-TRIC	HLOROBENZENE	ND	0.005
.2,4-TRIC	HLOROBENZENE	ND	0.005
L, 1, 1-TRIC	HLOROETHANE	ND	0.005
1,1,2-TRIC	HLOROETHANE	<u>ND</u>	0.005
RICHLOROE	THENE (TCE)	ND	0.005
RICHLOROF	LUOROMETHANE	ND	0.005
,2,3-TRIC	HLOROPROPANE	ND	0.005
,2,4-TRIM	IETHYLBENZENE	ND	0.005
., 3, 5-TRIM	IETHYLBENZENE	ND	0.005
INYL CHLC	<u>)RIDE</u>	ND	0.005
1/P-XYLENE	1	ND	010
		NTEN	0 005

CAL-DHS CERTIFICATE # 1555

	LABORATORY REPORT	
CUSTOMER: Pinnacle Envir	conmental, Inc	
P.O. Box 904		
Clayton, CA 94	517	
(925) 673-5500	Email: pcloven@pei-env	. com
PROJECT : Corona Rd - Pe	taluma	
MATRIX: SOIL	DATE RECE	LIVED: 04/07/17
DATE SAMPLED:04/05/17	DATE ANAL	YZED: 04/11/17
REPORT TO:MR. PETER CLOVE	IN DATE REPO	DRTED: 04/13/17
SAMPLE I.D.: TP-5-9	LAB I.D.:	170407-13
ANALYSIS: VOLATILE OR UNIT: mg/Kg	GANICS, EPA METHOD 5030 g = MILLIGRAM PER KILOO	DB/8260B, PAGE 1 OF 2 GRAM = PPM
PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	<u>ND</u>	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK	<u>ND</u>	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.005
CHIODODENZENE		0.005
CHLOROBENZENE		0,005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0,005
2-CHLOBOTOLIJENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPA	ANE ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1.2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1.2-DICHLOROPROPANE	ND	0.005

TO BE CONTINUED ON PAGE #2 -----

ato.

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Corona Rd - Petaluma

MATRIX; <u>SOIL</u>	DATE RECEIVED: 04/07/17
DATE SAMPLED:04/05/17	DATE ANALYZED: 04/11/17
REPORT TO: MR. PETER CLOVEN	DATE REPORTED: 04/13/17

SAMPLE I.D.: TP-5-9

LAB I.D.: 170407-13

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	POL X1
1.3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1.1-DICHLOROPROPENE	ND	0.005
CIS-1.3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK	ND	0.020
METHYL tert-BUTYL ETHER (MTBE	ND	0.005
METHYLENE CHLORIDE	ND	<u>0.010</u>
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1, 1, 1, 2-TETRACHLOROETHANE	ND	0.005
1, 1, 2, 2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4~TRICHLOROBENZENE	ND	0.005
1, 1, 1-TRICHLOROETHANE	ND	0.005
1, 1, 2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	<u>ND</u>	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
<u>O-XYLENE</u>	ND	0.005
COMMENTS PQL = PRACTICAL QUAN	TITATION LIMIT	

ND = NON-DETECTED OR BELOW THE POL

DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

	LAB	ORATORY REPORT	
CUSTOMER:	Pinnacle Environme	ntal, Inc	
000101111.	P.O. Box 904		
	Clayton, CA 94517		
	(925) 673-5500 Emai	1: pcloven@pei-env.	COIL
DDATECT	Corona Ed - Petalu	ma	
PRODECT	COIONA NU - Feculu		
MATRIXISO	TT.	DATE RECEI	VED: 04/07/17
DATE SAMPI	LED: 04/05/17	DATE ANALY	ZED:04/11/17
REPORT TO	MR. PETER CLOVEN	DATE REPOR	TED: 04/13/17
SAMPLE I.I	D.: <b>TP-7a-4</b>	LAB I.D.:	170407-14
ANALYS	TS: VOLATILE ORGANI	CS, EPA METHOD 50301	B/8260B, PAGE 1 OF 2
1416-64) I U	UNIT: $ma/Ka = h$	ILLIGRAM PER KILOGI	RAM = PPM
PARAMETER		SAMPLE RESULT	PQL X1
ACETONE		ND	0.020
BENZENE		ND	0.005
BROMOBENZI	ENE	ND	0.005
BROMOCHLOI	ROMETHANE	ND	0.005
BROMODICH	LOROMETHANE	ND	0.005
BROMOFORM		ND	0.005
BROMOMETH	ANE	ND	0.005
2-BUTANON	E (MEK)	ND	020
N-BUTYLBE	NZENE	ND	0.005
SEC-BUTYL	BENZENE	ND	0.005
TERT-BUTY	LBENZENE	ND	0.005
CARBON_DI	SUTATISE	ND	0.010
CARBON TE	TRACHLORI DE	ND	0.005
CHLOROBEN	ZENE	ND	0.005
CHLOROETH.	ANE	ND	0.005
CHLOROFOR	<u>M</u>	ND	0.005
CHLOROMET.	HANE	ND	0.005
2-CHLOROT	OLUENE	<u>ND</u>	0.005
4-CHLOROT	OLUENE	ND	0.005
DIBROMOCH	LOROMETHANE	ND	0.005
1.1-DIBRO	PUT-3-UNLOHOPRORADE		0.005
<u>1,2-DIBRO</u>	MOETHANE		0.005
DIBROMOME	THANE		0.005
1,2-DICHL	OROBENZENE		0.005
1,3-DICHL	OROBENZENE		0.005
1,4-DICHL	UKUBENZENE		0.005
1 1 DI CUI		ND	0.005
1, I-DICHL	ODOETHANE ODOETHANE	ND	0.005
1 1_DICHL	ODOFTHENE	ND	0.005
CTS_1 2-D	ICHLOROFTHENE	ND	0.005
013-1,2-0	TUTUT (SALEND	ND	0.005
1 2	ODODDODANE		0.005
	UNCENCERING		

TO BE CONTINUED ON PAGE #2

CUSTOMER:	Pinnacle Environment	al, Inc	
	P.O. Box 904		
	Clayton, CA 94517		
	(925)673-5500 Email:	pcloven@pei-env.	COM
PROJECT:	Corona Rd - Petaluma		
			$\frac{1}{12}$
MATRIX: SOI		DATE RECEI	7ED:04/11/17
DATE SAMPI	ED: 04/05/17	DATE ANALI	3ED: 04/11/17
REPORT TO:	MR. PETER CLOVEN	DATE REPOR	16D: <u>04/13/17</u>
SAMPLE I.I	D.: TP-7a-4	LAB I.D.:	170407-14
ANALYS	IS: VOLATILE ORGANICS,	, EPA METHOD 5030E	3/8260B, PAGE 2 OF 2
	<b>UNIT:</b> mg/Kg = MII	LIGRAM PER KILOGF	AM = PPM
PARAMETER		SAMPLE RESULT	POT XI
1,3-DICHLO	DROPROPANE		0.005
Z, Z-DICHLO	DROPROPANE		0.005
I,I-DICHL(	DKOPKOPENE		0.005
TDANC 1 2	DICULODODDODENE	ND	0.005
FRANS-1,3-	-DICHLOROPROPENE	ND	0.005
C UEVANONE	2116	ND	0.020
		ND	0.005
	3ENZENE	ND	0.005
4-ISOPROP	YLTOLUENE	ND	0.005
- 1001101	- PENTARCHE (MTHE)	ND	0.020
RETRYS. Lat.	T-BUTYL STHER INTRE!	ND	0.005
METHYLENE	CHLORIDE	ND	0.010
NAPHTHALEN	NE	ND	0.005
N-PROPYLBE	ENZENE	ND	0.005
STYRENE		ND	0.005
1,1,1,2-TH	ETRACHLOROETHANE	ND	0.005
1, 1, 2, 2 - 1	ETBACELOBORTHAME	ND	0.005
TETRACHLO	HOETHENE (PCE)	ND	0.005
TOLUENE		ND	0.005
1,2,3-781	CHLOBORENZENE	ND	0.005
1,2,4-TRI	CHLOROBENZENE	ND	0.005
1, 1, I-TRI	CHLOROSTHASE	ND	0.005
1.1.2-78.0	CH1/OROSTHANS	ND	0.005
THICHLORO	ETHENS (TCE)	ND	0.005
THICHLORS	FLOOROMETHANK	ND	0.005
1.2.3-TRU	CHLOROPROPASIE	ND	0.005
1.2.1.T.B.I	BETHYLDENZERE	ND	0.005
11月7日日本市場主日	NEALA ATTRACTACTOR AND A DECEMBER OF A DE	ND	0.005
A R R R R R R R R R R R R R R R R R R R	ORIDE	ND	0.005
VINYL CHL	E'	ND	0.010
VINYL CHL M/P-XYLEN		ND	0 005

DATA REVIEWED AND CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT Pinnacle Environmental, Inc. CUSTOMER: P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Corona Rd - Petaluma DATE RECEIVED: 04/07/17 MATRIX:SOIL DATE ANALYZED: 04/11/17 DATE SAMPLED: 04/05/17 DATE REPORTED: 04/13/17 REPORT TO: MR. PETER CLOVEN SAMPLE I.D.: TP-7b-6 LAB I.D.: 170407-15 ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 CF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X25*
CETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.0 <u>05</u>
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	<u>ND</u>	0.005
1, 3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1, 2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

----- TO UN CONTINUED ON PAGE #2 -----

#### 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925) 673-5500 Email: pcloven@pei-env.com Corona Rd - Petaluma PROJECT: DATE RECEIVED:04/07/17 MATRIX:SOIL DATE ANALYZED: 04/11/17 DATE SAMPLED:04/05/17 REPORT TO: MR. PETER CLOVEN DATE REPORTED:04/13/17 and the second second second second second LAB I.D.; 170407-15 SAMPLE I.D.: TP-7b-6 ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM SAMPLE RESULT POL X25* PARAMETER 0.005 ND 1, 3-DICHLOROPROPANE 0.005 2,2-DICHLOROPROPANE ND 1,1-DICHLOROPROPENE ND 0.005 0.005 CIS-1, 3-DICHLOROPROPENE ND TRANS-1, 3-DICHLOROPROPENE ND 0.005 0.005 ETHYLBENZENE ND 0.020 2-HEXANONE ND 0.005 ND HEXACHLOROBUTADIENE 0.005 ISOPROPYLBENZENE ND 0.005 ND 4-ISOPROPYLTOLUENE 0.020 4-METHYL-2-PENTANONE (MIBK) ND 0.005 METHYL tert-BUTYL ETHER (MTBE) ND 0.010 METHYLENE CHLORIDE ND 0.005 ND NAPHTHALENE 0.005 N-PROPYLBENZENE ND 0.005 ND STYRENE 0.005 1, 1, 1, 2-TETRACHLOROETHANE ND 0.005 ND 1,1,2,2-TETRACHLOROETHANE 0.005 TETRACHLOROETHENE (PCE) ND 0.005 ND TOLUENE 0.005 1,2.3-TRICHLOROBENZENE ND 1, 2, 4-TRICHLOROBENZENE 0.005 ND 0.005 1, 1, 1-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 TRICHLOROETHENE (TCE) ND 0.005 ND TRICHLOROFLUOROMETHANE 0.005 1,2,3-TRICHLOROPROPANE ND 0.005 1, 2, 4-TRIMETHYLBENZENE ND 0.005 1,3,5-TRIMETHYLBENZENE ND 0.005 VINYL CHLORIDE ND 0.010 M/P-XYLENE ND ND 0.005 O-XYLENE COMMENTS POL = PRACTICAL QUANTITATION LIMIT ND = NON-DETECTED OR BELOW THE PQL - PQL RAISED DUE TO MATRIX INTERFERENCE DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

## 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

METHOD BLANK REPORT

CUSTOMER:	Pinnacle Environmental, Inc P.O. Box 904
	Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com
PROJECT:	Corona Rd - Petaluma

MATRIX: SOIL	DATE	RECEIVED: 04/0//1/
DATE SAMPLED: 04/04-05/17	DATE	ANALYZED: 04/10/17
REPORT TO: MR. PETER CLOVEN	DATE	REPORTED: 04/13/17

METHOD BLANK REPORT FOR LAB I.D.: 170407-10 THROUGH -15

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2

			and the second second second
	UNIT: mg/Kg = MILLIGRAM PER KILOGRAM =	PPM	
PARAMETER	SAMPLE RESULT	PQL X1	
ACETONE	ND	0.020	

ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	<u>0.005</u>
2-BUTANONE (MEK	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1, 2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1.3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1.1-DICHLOROETHENE	ND	0.005
CIS-1, 2-DICHLOROETHENE	ND	0.005
TRANS-1.2-DICHLOROETHENE	ND	0.005
1.2-DICHLOBOPBOPANE	ND	0.005

----- TO BE CONTINUED ON PAGE #2 -----

### 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

METHOD BLANK REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Corona Rd - Petaluma

MATRIX: SOIL	DATE RECEIVED: 04/07/17
DATE SAMPLED: 04/04-05/17	DATE ANALYZED: 04/10/17
REPORT TO: MR. PETER CLOVEN	DATE REPORTED: 04/13/17

METHOD BLANK REPORT FOR LAB I.D.: 170407-10 THROUGH -15

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM PARAMETER SAMPLE RESULT POL X1

PARAMELLER.	SMULT KESOUL	FÖD VT	
1, 3-DICHLOROPROPANE	ND	0.005	_
2,2-DICHLOROPROPANE	ND	0.005	
1,1-DICHLOROPROPENE	ND	0.005	_
CIS-1, 3-DICHLOROPROPENE	ND	0.005	_
TRANS-1, 3-DICHLOROPROPENE	ND	0.005	_
ETHYLBENZENE	ND	0.005	_
2-HEXANONE	ND	0.020	_
HEXACHLOROBUTADIENE	<u>ND</u>	0.005	_
ISOPROPYLBENZENE	ND	0.005	_
4-ISOPROPYLTOLUENE	ND	0.005	_
4-METHYL-2-PENTANONE (MIBK	ND	0.020	_
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005	_
METHYLENE CHLORIDE	ND	0.010	_
NAPHTHALENE	ND	0.005	_
N-PROPYLBENZENE	ND	0.005	_
STYRENE	ND	0.005	_
1, 1, 1, 2-TETRACHLOROETHANE	ND	0.005	_
1,1,2,2-TETRACHLOROETHANE	ND	0.005	_
TETRACHLOROETHENE (PCE	ND	0.005	_
TOLUENE	ND	0.005	_
1,2,3-TRICHLOROBENZENE	ND	0.005	_
1,2,4-TRICHLOROBENZENE	<u>ND</u>	0.005	_
1, 1, 1-TRICHLOROETHANE	ND	0.005	
1,1,2-TRICHLOROETHANE	ND	0.005	
TRICHLOROETHENE (TCE)	ND	0.005	_
TRICHLOROFLUOROMETHANE	ND	0.005	_
1, 2, 3-TRICHLOROPROPANE	ND	0.005	_
1,2,4-TRIMETHYLBENZENE	ND	0.005	_
1, 3, 5-TRIMETHYLBENZENE	ND	0.005	
VINYL CHLORIDE	ND	0.005	_
M/P-XYLENE	ND	0.010	
O-XYLENE	ND	0.005	_
CONSERVED DOT - DESCRITCAT OUSNE	TTATION TIMT		

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE

DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

/2017 Duplicate (MS 170410-17 spk conc 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.0	D) MS/MSD MS 0.059 0.042 0.061 0.056 0.048 %RC 120% 90% 118% 114% 104%	%RC 118% 84% 122% 112% 96% ACP %RC 75-125 75-125 75-125 75-125	MSD 0.059 0.039 0.059 0.058 0.049	%RC 118% 78% 118% 116% 98%	Matrix: Unit: 0% 6% 4% 4% 2%	ACP %RC 75-125 75-125 75-125 75-125 75-125	ACP RPI 0-20 0-20 0-20 0-20 0-20 0-20
Duplicate (MS 170410-17 spk conc 0.050 0.050 0.050 0.050 0.050 0.050 0.060 0 0.060 0 0.045 0 0.059 0 0.057 0 0.052 0 0.053	D) MS/MSD MS 0.059 0.042 0.061 0.056 0.048 %RC 120% 90% 118% 114% 104%	%RC 118% 84% 122% 112% 96% ACP %RC 75-125 75-125 75-125 75-125	MSD 0.059 0.039 0.059 0.058 0.049	%RC 118% 78% 118% 116% 98%	%RPD 0% 6% 4% 4% 2%	ACP %RC 75-125 75-125 75-125 75-125 75-125	ACP RP 0-20 0-20 0-20 0-20 0-20
170410-17 spk conc 0.050 0.050 0.050 0.050 0.050 0.050 0.060 0 0.060 0 0.045 0 0.059 0 0.057 0 0.052 0 0.053	MS/MSD MS 0.059 0.042 0.061 0.056 0.048 %RC 120% 90% 118% 114% 104%	%RC 118% 84% 122% 112% 96% ACP %RC 75-125 75-125 75-125 75-125	MSD 0.059 0.039 0.059 0.058 0.049	%RC 118% 78% 118% 116% 98%	%RPD 0% 6% 4% 4% 2%	ACP %RC 75-125 75-125 75-125 75-125 75-125	ACP RP 0-20 0-20 0-20 0-20 0-20
spk conc 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.060 0.045 0.0059 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055	MS 0.059 0.042 0.061 0.056 0.048 %RC 120% 90% 118% 114% 104%	%RC 118% 84% 122% 112% 96% ACP %RC 75-125 75-125 75-125 75-125	MSD 0.059 0.039 0.059 0.058 0.049	%RC   118%   78%   118%   98%	0%   6%   4%   2%	75-125 75-125 75-125 75-125 75-125 75-125	0-20 0-20 0-20 0-20 0-20
0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.060 0.045 0.059 0.057 0.052 0.053	0.059 0.042 0.061 0.056 0.048 %RC 120% 90% 118% 114% 104%	118% 84% 122% 112% 96% ACP %RC 75-125 75-125 75-125 75-125	0.059 0.039 0.059 0.058 0.049	118% 78% 118% 116% 98%	<u>6%</u> <u>4%</u> <u>4%</u> <u>2%</u>	75-125 75-125 75-125 75-125 75-125	0-20 0-20 0-20 0-20
0.050 0.050 0.050 0.050 0.050 0.050 0.060 0.045 0.059 0.057 0.052 0.053	0.042 0.061 0.056 0.048 %RC 120% 90% 118% 114% 104%	84% 122% 112% 96% ACP %RC 75-125 75-125 75-125 75-125	0.039 0.059 0.058 0.049	78% 118% 116% 98%	<u>4%</u> <u>4%</u> <u>2%</u>	75-125 75-125 75-125 75-125	0-20 0-20 0-20 0-20
0.050 0.050 0.050 0.050 0.060 0 0.060 0 0.045 0 0.059 0 0.057 0 0.052 0 0.053	0.061 0.056 0.048 %RC 120% 90% 118% 114% 104%	122% 112% 96% ACP %RC 75-125 75-125 75-125 75-125	0.059 0.058 0.049	118% 116% 98%	4% 4% 2%	75-125 75-125 75-125	0-20
0.050 0.050 0.050 0.060 0.045 0.059 0.057 0.052 0.053	0.056 0.048 %RC 120% 90% 118% 114% 104%	112% 96% ACP %RC 75-125 75-125 75-125 75-125	0.058	98%	<u>4%</u>	75-125 75-125	0-20
0.050 Diric LCS 0 0.060 0 0.045 0 0.059 0 0.057 0 0.052 0 0.053	0.048 %RC 120% 90% 118% 114% 104%	96% ACP %RC 75-125 75-125 75-125 75-125	0.049	98%	2%	75-125	0-20
LCS   0 0.060   0 0.045   0 0.059   0 0.057   0 0.052   0 0.053	%RC 120% 90% 118% 114% 104%	ACP %RC 75-125 75-125 75-125 75-125					
LCS   0 0.060   0 0.045   0 0.059   0 0.057   0 0.052   0 0.053	%RC 120% 90% 118% 114% 104%	ACP %RC 75-125 75-125 75-125 75-125 75-125					
0 0.060 0 0.045 0 0.059 0 0.057 0 0.052 0 0.053	120% 90% 118% 114% 104%	75-125 75-125 75-125 75-125					
0 0.045   0 0.059   0 0.057   0 0.052   0 0.052	90% 118% 114% 104%	75-125 75-125 75-125					
0 0.059   0 0.057   0 0.052   0 0.053	118% 114% 104%	75-125 75-125	i.				
0 0.057 0 0.052 0 0.053	114%	75-125	2.4				
0 0.057 0 0.052 0 0.053	104%	10-120	2				
0 0.052	10470	75 106	1			L'and an other t	1.711.14
0 0.053	100%	75-120	5		- 1	ALL PARTS	244
	106%	75-125				LPTICE.	0.00
0 0.103	103%	75-125				C.P. 104.7	240
0 0.059	118%	75-125				1.00	0.011
0 0.058	116%	75-125				£	
0 0.051	102%	75-125					
onc ACP %RC	MB %RC	%RC	%RC	%RC	%RC	%RC	%RC
	M-BLK	170407-10	120407-03	120407-12	170407-13	110007-04	110.00
70-130	129%	134*%	130%	136*%	*%	156*%	128%
70-130	103%	100%	91%	102%	103%	79%	99%
70-130	88%	79%	36*%	65*%	64*%	50*%	80%
	1 a/ 50	N DC	MDC	%PC	%PC	%RC	WRC
ONC ACP %RC	%RC	%RC	70 110			inter 12	T PROFILE.
	170419-17	179419-18		10010-10	8.0.0*0/	T HAANDI	1 1512401
70-130	106%	111%	123%	101%	133 %	4400	100 %
70-130	107%	109%	99%	115%	102%	119%	123%
70-130	79%	80%	69*%	62*%	60*%	68*%	68%
onc ACP %RC	%RC	%RC	NRC	NRC	%R0	580	1980
	170410-24	170410-25					
	137*%	131*%		1			
70-130	107 70	1000				()	_
0 70-130	103%	111.4%					
	0 0.058 0 0.051 onc ACP %RC 70-130 70-130 70-130 onc ACP %RC 70-130 70-130 70-130 70-130	0 0.058 116%   0 0.051 102%   onc ACP %RC MB % RC   70-130 129%   70-130 103%   70-130 103%   70-130 103%   70-130 88%   onc ACP %RC %RC   70-130 106%   70-130 107%   70-130 79%   onc ACP %RC	0 0.058 116% 75-125   0 0.051 102% 75-125   onc ACP %RC MB %RC %RC   70-130 129% 134*%   70-130 103% 100%   70-130 103% 79%   onc ACP %RC %RC   70-130 103% 100%   70-130 106% 111%   70-130 106% 111%   70-130 107% 109%   70-130 79% 80%   0 70-130 107% 109%   0 70-130 79% 80%	0 0.058 116% 75-125   0 0.051 102% 75-125   onc ACP %RC MB %RC %RC %RC   70-130 129% 134*% 130%   70-130 103% 100% 91%   70-130 103% 100% 91%   70-130 103% 100% 91%   70-130 106% 111% 123%   70-130 106% 111% 123%   70-130 107% 109% 99%   70-130 79% 80% 69*%   0nc ACP %RC %RC %RC   70-130 107% 109% 99%   70-130 79% 80% 69*%   0nc ACP %RC %RC %RC	0 0.058 116% 75-125   0 0.051 102% 75-125   onc ACP %RC MB % RC %RC %RC %RC   70-130 129% 134*% 130% 136*%   70-130 103% 100% 91% 102%   70-130 103% 100% 91% 102%   70-130 103% 100% 91% 102%   70-130 103% 100% 91% 102%   70-130 106% 111% 123% 65*%   70-130 106% 111% 123% 101%   70-130 106% 111% 123% 101%   70-130 107% 109% 99% 115%   70-130 79% 80% 69*% 62*%   0nc ACP %RC %RC %RC MHC   70-130 79% 80% 69*% 62*%	0 0.058 116% 75-125   0 0.051 102% 75-125   0 0.051 102% 75-125   0 0.051 102% 75-125   0 C M-BLK 10407-10 17040-11 170407-11   70-130 129% 134*% 130% 136*% 111*%   70-130 103% 100% 91% 102% 103%   70-130 88% 79% 36*% 65*% 64*%   0mc ACP %RC %RC %RC %RC %RC   70-130 106% 111% 123% 101% 133*%   70-130 106% 111% 123% 101% 133*%   70-130 107% 109% 99% 115% 102%   70-130 79% 80% 69*% 62*% 60*%   70-130 79% 80% 69*% 62*% 60*%   70-130 79% 80%	0 0.058 116% 75-125   0 0.051 102% 75-125   0 0.051 102% 75-125   0 0.051 102% 75-125   0 C M-BLK 70-120 70-130 129% 134*% 130% 136*% 11*% 156*%   70-130 103% 100% 91% 102% 103% 79%   70-130 103% 79% 36*% 65*% 64*% 50*%   0nc ACP %RC %RC %RC %RC %RC %RC   70-130 106% 111% 123% 101% 133*% 144*%   70-130 106% 111% 123% 101% 133*% 144*%   70-130 106% 111% 123% 60*% 62*% 60*% 68*%   0nc ACP %RC %RC %RC %RC %RC %RC   70-130 106% 111% 123% 60*%

#### 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT Pinnacle Environmental, Inc. CUSTOMER: P.O. Box 904 Clayton, CA 94517 (925) 673-5500 Email: pcloven@pei-env.com Corona Rd - Petaluma PROJECT: DATE RECEIVED:04/07/17 DATE EXTRACTED:04/10/17 MATRIX: SOIL DATE ANALYZED:04/10/17 DATE SAMPLED:04/04/17 REPORT TO:MR. PETER CLOVEN DATE REPORTED: 04/13/17 SAMPLE I.D.: TP-1C-3 LAB I.D.: 170407-10 SEMI-VOLATILE ORGANICS, EPA 8270C, PAGE 1 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM SAMPLE RESULT PQL X1 PARAMETER 0.50 ND Acenaphthene 0.50 ND Acenaphthylene ND 0.50 Anthracene 0.50 Benzo(a) anthracene ND 0.50 Benzo(b) fluoranthene ND 0.50 Benzo(a)pyrene NO. 0.50 Benzo(q,h,i)pervlene ND 0.50 ND Benzo(k) fluoranthene 0.50 Benzoic Acid ND 0.50 Benzyl Alcohol ND 0.50 ND Bis(2-Chloroethoxy) methane 0.50 Bis(2-Chloroethyl)ether ND 0.50 Bis(2-Chloroisopropyl)ether ND 0.50 ND Bis(2-Ethylhexyl)Phthalate 0.50 4-Bromophenyl Phenyl Ether ND 0.50 ND Butylbenzylphthalate 0.50 ND 4-Chloro-3-Methylphenol 0.50 4-Chloroaniline ND 0.50 ND 2-Chloronaphthalene 0.50 ND 2-Chlorophenol 0.50 4-Chlorophenyl Phenyl Ether ND

ND TO BE CONTINUED ON PAGE #2

ND

ND

SID.

ND

ND

ND

ND

ND

ND

ND ND

ND

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

DATA REVIEWED AND APPROVED BY:____

Chrysene

Dibenzofuran

Di-n-butylphthalate

Di-n-octylphthalate

1,2-Dichlorobenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

2,4-Dichlorophenol

Diethyl Phthalate

2,4-Dimethylphenol

Dimethyl Phthalate

3,3-Dichlorobenzidine

Dibenzo(a, h) anthracene

## 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER:	Pinnacle Environment	al, Inc	
	P.O. Box 904		
	Clayton, CA 94517		
	(925)673-5500 Email:	pcloven@pei	-env.com
PROJECT:	Corona Rd - Petaluma		
		DATE	RECEIVED: <u>04/07/17</u>
MATRIX: SO	<u>L</u>	DATE	EXTRACTED: 04/10/17
DATE SAMPI	ED:04/04/17	DATE	ANALYZED: 04/10/17
REPORT TO:	MR. PETER CLOVEN	DATE	REPORTED: 04/13/17

REPORT TO: MR. PETER CLOVEN

SAMPLE I.D.: TP-1C-3

LAB I.D.: 170407-10

SEMI-VOLATILE ORGANICS, EPA 8270C, PAGE 2 OF 2 UNITE: ma/Ka = MILLIGRAM DER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
4.6-Dinitro-2-methylphenol	ND	0.50
2,4-Dinitrophenol	ND	0.50
2,4-Dinitrotoluene	ND	0.50
2,6-Dinitrotoluene	ND	0.50
Fluoranthene	ND	0.50
Fluorene	ND	0.50
Hexachlorobenzene	ND	0.50
Hexachlorobutadiene	ND	0.50
Hexachlorocyclopentadiene	ND	0.50
Hexachloroethane	ND	0.50
Indeno(1,2,3-cd) rene	ND	0.50
Isophorone	ND	0.50
2-Methyl Phenol	ND	0.50
3/4-Methyl Phenol	ND	0.50
2-Methylnaphthalene	ND	0.50
N-Nitroso-di-n-dipropylamine	ND	0.50
N-Nitrosodimethylamine	ND	0. <u>50</u>
N-Nitrosodiphenylamine	ND	0.50
Naphthalene	ND	0.50
2-Nitroaniline	ND	0.50
3-Nitroaniline	ND	0.50
4-Nitroaniline	ND	0.50
Nitrobenzene	<u>ND</u>	0.50
2-Nitrophenol	ND	0.50
4-Nitrophenol	ND	0.50
Pentachlorophenol	ND	0.50
Phenanthrene	ND	0.50
Phenol	ND	0.50
Pyrene	ND	0.50
Pyridine	ND	0.50
1,2,4-Trichlorobenzene	ND	0.50
2,4,5-Trichlorophenol	ND	0.50
2,4,6-Trichlorophenol	ND	0.50
<b>COMMENTS</b> PQL = PRACTICAL QUAN ND = NON-DETECTED OR BELOW TH	TITATION LIMIT	
DATA REVIEWED AND APPROVED BY		

ND = NON-DETECTED OR BELOW THE FOL DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

#### 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT Pinnacle Environmental, Inc CUSTOMER: P.O. Box 904 Clayton, CA 94517 (925) 673-5500 Email: pcloven@pei-env.com Corona Rd - Petaluma PROJECT: DATE RECEIVED: 04/07/17 DATE EXTRACTED:04/10/17 MATRIX: SOIL DATE ANALYZED:04/10/17 DATE SAMPLED: 04/04/17 DATE REPORTED:04/13/17 REPORT TO:MR. PETER CLOVEN LAB I.D.: 170407-11 SAMPLE I.D.: TP-4-3 SEMI-VOLATILE ORGANICS, EPA 8270C, PAGE 1 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM SAMPLE RESULT PQL X1 PARAMETER 0.50 ND Acenaphthene 0.50 ND Acenaphthylene ND 0.50 Anthracene 1.50 Benzo(a) anthracene ND. 0.50 ND Benzo(b) fluoranthene 0.50 ND Benzo(a)pyrene 0.50 ND Benzo(q, h, i)pervlene 0.50 Benzo(k) fluoranthene ND 0.50 ND Benzoic Acid 0.50 Benzyl Alcohol ND 0.50 Bis (2-Chloroethoxy) methane ND 0.50 ND Bis(2-Chloroethyl)ether 0.50 ND Bis(2-Chloroisopropyl)ether 0.50 Bis(2-Ethylhexyl)Phthalate ND 0.50 4-Bromophenyl Phenyl Ether ND 0.50 ND Butylbenzylphthalate 0.50 4-Chloro-3-Methylphenol ND 0.50 ND 4-Chloroaniline 0.50 ND 2-Chloronaphthalene ND 0.50 2-Chlorophenol 0.50 4-Chlerophenyl Phenyl Ether ND 0.50 ND Chrysene 0.50 ND Di-n-butylphthalate 0.50 Di-n-octylphthalate ND 0.50 Dibenzo(a,h)anthracene ND 0.50 ND Dibenzofuran 0.50 ND

1,2-Dichlorobenzene 0.50 ND 1,3-Dichlorobenzene 0.50 ND 1,4-Dichlorobenzene 0.50 ND 3,3-Dichlorobenzidine 0.50 ND 2,4-Dichlorophenol ND 0.50 Diethyl Phthalate 0.50 2,4-Dimethylphenol ND 0.50

TO BE CONTINUED ON PAGE #2

ND

DATA REVIEWED AND APPROVED BY:

Dimethyl Phthalate

## 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

	LABOR	ATORY REPO	ORT
CUSTOMER:	Pinnacle Environmenta	al, Inc	
	P.O. Box 904		
	Clayton, CA 94517		
	(925)673-5500 Email:	pcloven@pei	-env.com
PROJECT:	Corona Rd - Petaluma		
		DATE	RECEIVED: 04/07/17
MATRIX: SOI	L	DATE	EXTRACTED: 04/10/17
DATE SAMPL	ED: <u>04/04/17</u>	DATE	ANALYZED: <u>04/10/17</u>
REPORT TO:	MR. PETER CLOVEN	DATE	REPORTED: 04/13/17

SAMPLE I.D.: TP-4-3

LAB I.D.: 170407-11

SEMI-VOLATILE ORGANICS, EPA 8270C, PAGE 2 OF 2 INTT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
4,6-Dinitro-2-methylphenol	ND	0.50
2,4-Dinitrophenol	ND	0.50
2,4-Dinitrotoluene	ND	0.50
2,6-Dinitrotoluene	ND	0.50
Fluoranthene	ND	0.50
Fluorene	ND	0.50
Hexachlorobenzene	ND	0.50
Hexachlorobutadiene	ND	0.50
Hexachlorocyclopentadiene	ND	0.50
Hexachloroethane	ND	0.50
Indeno(1,2,3-cd) rene	ND	0.50
Isophorone	ND	0.50
2-Methyl Phenol	ND	0.50
3/4-Methvl Phenol	ND	0.50
2-Methylnaphthalene	ND	0.50
N-Nitroso-di-n-dipropylamine	ND	0.50
N-Nitrosodimethylamine	ND	0.50
N-Nitrosodiphenylamine	ND	0.50
Naphthalene	ND	0.50
2-Nitroaniline	ND	0.50
3-Nitroaniline	ND	0.50
4-Nitroaniline	ND	0.50
Nitrobenzene	ND	0.50
2-Nitrophenol	ND	0.50
4-Nitrophenol	ND	0.50
Pentachlorophenol	ND	0.50
Phenanthrene	ND	0. <u>50</u>
Phenol	ND	0.50
Pyrene	ND	0.51
Pyridine	ND	0.50
1.2.4-Trichlorobenzene	ND	0.50
2.4.5-Trichlorophenol	ND	0.50
2.4.6-Trichlorophenol	ND	0.50
COMMENTS POL = PRACTICAL OUANTI	TATION LIMIT	

ND = NON-DETECTED OR BELOW THE PQL DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

LABOR	ATORY REPORT	
CUSTOMER: Pinnacle Environmenta	al, Inc	
P.O. Box 904		
Clayton, CA 94517		
(925) 673-5500 Email:	pcloven@pei-env.c	om
DEGITECT: Corona Ed - Petaluma	F	
PRODUCT: COTONA Na POCALANO	DATE RECEIV	ED:04/07/17
MATRIX · COTI.	DATE EXTRAC	TED:04/10/17
DATE SAMPLED 04/05/17	DATE ANALYZ	ED:04/10/17
DETORT TOME PETER CLOVEN	DATE REPORT	ED: 04/13/17
KHIOKI IO. <u>MAI IMIMA ODOVIM</u>		
SAMPLE I.D.: TP-5-4	LAD I.D.: 1	70407-12
SEMT-VOLATILE ORGAN	TCS EPA 8270C. PA	AGE 1 OF 2
UNIT: ma/Ka = MII	TTCRAM PER KILOGRA	M = PPM
DADAMETED	SAMPLE RESULT	POL X1
Pananeter (	ND	0.50
Acenaphthylene	ND	0.50
Arthracopo	ND	0.50
Benzo(a) anthracene	ND	0.50
Benzo(b) fluoranthene	ND	0.50
Benzo (a) pyrene	ND	0.50
Benzo(a, h, i)pervlene	ND	0.50
Benzo(k) fluoranthene	ND	0.50
Benzoic Acid	ND	0.50
Benzyl Alcohol	ND	0.50
Bis(2-Chloroethoxy)methane	ND	0.50
Bis(2-Chloroethvl)ether	ND	0.50
Bis(J-Chloroisopropylisther	ND	0.50
Bis12-EthylbexyliPhthalate	ND	0.50
4-Bromophenyl Phenyl Ether	ND	0.50
Butylbenzylphthalate	ND	0.50
4-Chloro-3-Methylphenol	ND	0.50
4-Chloroaniline	ND	0.50
2-Chloronaphthalene	ND	0.50
2-Chlorophenol	ND	0.50
4-Chlorophenyl Fhenyl Ether	ND	0.50
Chrysene	ND	0.50
Di-n-butylphthalate	ND	0.50
Di-n-octylphthalate	ND	0.50
Dibenzo(a,h)anthracene	ND	0.50
Dibenzofuran	ND	0.50
1,2-Dichlorobenzene	ND	0.50
1,3-Dichlorobenzene	<u>ND</u>	0.50
1,4-Dichlorobenzene	<u>ND</u>	0.50
3,3-Dichlorobenzidine	ND	0.50
2,4-Dichlorophenol	ND	0.50
<u>Diethyl Phthalate</u>	ND	0.50
2,4-Dimethylphenol	<u>ND</u>	0.50
Dimethyl Phthalate	ND	0.50

TO BE CONTINUED ON PAGE #2

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER:	Pinnacle Environmenta	al, Inc	
	P.O. Box 904		
	Clayton, CA 94517		
	(925)673-5500 Email:	pcloven@pei	-env.com
PROJECT:	Corona Rd - Petaluma		
		DATE	RECEIVED:04/07/17
MATRIX: SO	Б	DATE	EXTRACTED: 04/10/1
DAME CAMDI	ED.04/05/17	DATE	ANALYZED: 04/10/17

DATE SA	AMPLED:	<u>04/05/1</u>	. /
REPORT	TO:MR.	PETER	CLOVEN

DATE REPORTED: 04/13/17

4/10/17 /10/17

SAMPLE I.D.: TP-5-4

4.4.5.5.5.5

LAB I.D.: 170407-12

SEMI-VOLATILE ORGANICS, EPA 8270C, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
4,6-Dinitro-2-methylphenol	ND	0.50
2,4-Dinitrophenol	ND	0.50
2,4-Dinitrotoluene	ND	0.50
2,6-Dinitrotoluene	ND	0.50
Fluoranthene	<u>ND</u>	0.50
Fluorene	ND	0.50
Hexachlorobenzene	ND	0.50
Hexachlorobutadiene	ND	0.50
Hexachlorocyclopentadiene	ND	0.50
Hexachloroethane	ND	0.50
Indeno(1,2,3-cd rene	<u>ND</u>	0.50
Isophorone	ND	0.50
2-Methyl Phenol	ND	0.50
3/4-Methyl Phenol	ND	0.50
2-Methylnaphthalene	<u>ND</u>	0.50
N-Nitroso-di-n-dipropylamine	ND	0.50
N-Nitrosodimethylamine	ND	0.50
N-Nitrosodiphenylamine	ND	0.50
Naphthalene	ND	0.50
2-Nitroaniline	ND	0.50
3-Nitroaniline	ND	0.50
4-Nitroaniline	ND	0.50
Nitrobenzene	ND	0.50
2-Nitrophenol	ND	0.50
4-Nitrophenol	ND	0.50
Pentachlorophenol	ND	0.50
Phenanthrene	ND	0.50
Phenol	ND	0.50
Pyrene	ND	0.50
Pyridine	ND	0.50
1,2,4-Trichlorobenzene	ND	0.50
2,4,5-Trichlorophenol	ND	0.50
2,4,6-Trichlorophenol	ND	0.50

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

### 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Corona Rd - Petaluma DATE RECEIVED:04/07/17 DATE EXTRACTED:04/10/17

DATE SAMPLED:04/05/17DATE ANALYZED:04/10/17REPORT TO:MR. PETER CLOVENDATE REPORTED:04/13/17

SAMPLE I.D.: TP-5-9

LAB I.D.; 170407-13

SEMI-VOLATILE ORGANICS, EPA 8270C, PAGE 1 OF 2

PARAMETER	SAMPLE RESULT	PQL X1
Acenaphthene	ND	0.50
Acenaphthylene	ND	0.50
Anthracene	ND	0.50
Benzo(a)anthracene	ND	0.50
Benzo(b)fluoranthene	ND	0.50
Benzo(a)pyrene	ND	<u>0.50</u>
Benzo(g,h,i)pervlene	ND	0.50
Benzo(k) fluoranthene	ND	<u>0.50</u>
Benzoic Acid	ND	0.50
Benzyl Alcohol	ND	0.50
Bis(2-Chloroethoxy)methane	ND	0.50
Bis(2-Chloroethyl)ether	ND	0 <u>.50</u>
Bis(2-Chloroisopropyl)ether	ND	0.50
Bis(2-Ethylhexyl)Phthalate	ND	0.50
4-Bromophenyl Phenyl Ether	ND	0.50
Butylbenzylphthalate	ND	0.50
4-Chloro-3-Methylphenol	ND	0.50
<u>4-Chloroaniline</u>	ND	0.50
2-Chloronaphthalene	ND	0.50
2-Chlorophenol	ND	0.50
4-Chlorophenyl Phenyl Ether	ND	0.50
Chrysene	ND	0.50
<u>Di-n-butylphthalate</u>	ND	0.50
Di-n-octylphthalate	ND	0.50
Dibenzo(a, h) anthracene	ND	0.50
Dibenzofuran	ND	0.50
1,2-Dichlorobenzene	ND	0.50
1,3-Dichlorobenzene	ND	0.50
1,4-Dichlorobenzene	ND	0.50
3,3-Dichlorobenzidine	ND	0.50
2,4-Dichlorophenol	ND	0.50
Diethyl Phthalate	ND	0.50
2,4-Dimethylphenol	ND	0.50
Dimethyl Phthalate	ND	0.50

#### ---- TO BE CONTINUED ON PAGE #2

## 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER:	Pinnacle Environmenta	al, Inc
	P.O. Box 904	
	Clayton, CA 94517 (925)673-5500 Email:	pcloven@pei-env.com
PROJECT:	Corona Rd - Petaluma	
		DATE RECEIVED:04/07/17
MATRIX: SOI	<u>L</u>	DATE EXTRACTED: 04/10/1

MATRIX: SOIL	DATE	EXTRACTED: 04/10/17
DATE SAMPLED:04/05/17	DATE	ANALYZED: 04/10/17
REPORT TO:MR. PETER CLOVEN	DATE	REPORTED: 04/13/17

SAMPLE I.D.: TP-5-9

LAN I.D.; 170407-13

SEMI-VOLATILE	ORGANICS,	EPA	8270C,	PAGE	2 OF	2	
INTE. ma/Ka	- MILLICRA	M DEL	RTLOG	DAM -	DDM		

PARAMETER	SAMPLE RESULT	PQL X1
4,6-Dinitro-2-methylphenol	ND	0.50
2,4-Dinitrophenol	ND	0.50
2,4-Dinitrotoluene	ND	0.50
2,6-Dinitrotoluene	ND	0.50
<u>Fluoranthene</u>	ND	0.50
Fluorene	ND	0.50
Hexachlorobenzene	ND	0.50
Hexachlorobutadiene	ND	0.50
Hexachlorocyclopentadiene	ND	0.50
<u>Hexachloroethane</u>	<u>ND</u>	0.50
Indeno(1,2,3-cd) pyrene	ND	0.50
Isophorone	ND	0.50
2-Methyl Phenol	ND	0.50
3/4-Methyl Phenol	ND	0.50
2-Methylnaphthalene	ND	0.50
N-Nitroso-di-n-dipropylamine	ND	0.50
N-Nitrosodimethylamine	ND	0.50
N-Nitrosodiphenylamine	ND	0.50
Naphthalene	ND	0.50
2-Nitroaniline	ND	0.50
3-Nitroaniline	ND	0.50
4-Nitroaniline	ND	0.50
Nitrobenzene	ND	0.50
2-Nitrophenol	ND	0.50
4-Nitrophenol	ND	0.50
Pentachlorophenol	ND	0.50
Phenanthrene	ND	0.50
Phenol	ND	0.50
Pyrene	ND	0.50
Pyridine	ND	0.50
1,2,4-Trichlorobenzene	ND	0.50
2,4,5-Trichlorophenol	ND	0.50
	ND	0.50

US

DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER:	Pinnacle Environmenta P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email:	al, Inc pcloven@pei	-env.com
PROJECT:	Corona Rd - Petaluma		
		DATE	RECEIVED: 04/07/17
MATRIX: SOI	L	DATE	EXTRACTED: 04/10/1
DATE SAMPL	ED:04/05/17	DATE	ANALYZED: 04/10/17

MATRIX: SOIL	DATE	EXTRACTED: 04/10/17
DATE SAMPLED: 04/05/17	DATE	ANALYZED: 04/10/17
REPORT TO: MR. PETER CLOVEN	DATE	REPORTED: 04/13/17

SAMPLE I.D.: TP-7a-4

LAU I.D.: 170407-14

SEMI-VOLATILE	ORGANICS,	EPA	8270C,	PAGE	1	OF	2
IDITE:	- MITTI TOD		D WITCO				

PARAMETER	SAMPLE RESULT	PQL X1
Acenaphthene	ND	0.50
Acenaphthylene	ND	0.50
Anthracene	ND	0.50
Benzo(a) anthracene	ND	0.50
Benzo(b) fluoranthene	ND	0.50
Benzo(a)pyrene	ND	0.50
Benzo(q,h,i)perylene	ND	0.50
Benzo(k) fluoranthene	ND	0.50
Benzoic Acid	ND	0.50
Benzyl Alcohol	ND	0.50
Bis(2-Chloroethoxy)methane	ND	0.50
Bis(2-Chloroethyl) ether	ND	0.50
Bis(2-Chloroisopropyl)ether	ND	0.50
Bis(2-Ethylhexyl)Phthalate	ND	0.50
4-Bromophenyl Phenyl Ether	ND	0.50
Butylbenzylphthalate	ND	0.50
4-Chloro-3-Methylphenol	ND	0.50
<u>4-Chloroaniline</u>	ND	0.50
2-Chloronaphthalene	ND	0.50
<u>2-Chlorophenol</u>	ND	0.50
4-Chlorophenyl Phenyl Ether	ND	0.50
Chrysene	ND	0.50
<u>Di-n-butylphthalate</u>	ND	0.50
<u>Di-n-octyl</u> phthalate	ND	0.50
Dibenzo(a, h) anthracene	ND	0.50
Dibenzofuran	ND	0.50
1,2-Dichlorobenzene	ND	0.50
1,3-Dichlorobenzene	ND	0.50
1,4-Dichlorobenzene	ND	0.50
3,3-Dichlorobenzidine	ND	0.50
2,4-Dichlorophenol	ND	0.50
<u>Diethyl Phthalate</u>	ND	0.50
2,4-Dimethylphenol	ND	0.50
Dimethyl Phthalate	ND	0.50

TO BE CONTINUED ON PAGE #2

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER:	Pinnacle Environment P.O. Box 904 Clayton, CA 94517	al, Inc	
	(925)673-5500 Email:	pcloven@pei	-env.com
PROJECT:	Corona Rd - Petaluma		
		DATE	RECEIVED: <u>04/07/17</u>
MATRIX: SOI		DATE	EXTRACTED: 04/10/17
DATE SAMPI	ED: 04/05/17	DATE	ANALYZED: 04/10/17

SAMPLED: U REPORT TO: MR. PETER CLOVEN

DATE REPORTED: 04/13/17

SAMPLE I.D.: TP-7a-4

LAN I.D.: 170407-14

SEMI-VOLATILE ORGANICS, EPA 8270C, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
4,6-Dinitro-2-methylphenol	ND	0.50
2,4-Dinitrophenol	ND	0.50
2,4-Dinitrotoluene	ND	0.50
2,6-Dinitrotoluene	ND	0.50
Fluoranthene	ND	0.50
Fluorene	ND	0.50
Hexachlorobenzene	ND	0.50
Hexachlorobutadiene	ND	0.50
Hexachlorocyclopentadiene	ND	0,50
Hexachloroethane	ND	0.50
Indeno(1,2,3~cd) rene	ND	0.50
Isophorone	ND	0.50
2-Methyl Phenol	ND	0.50
3/4-Methyl Phenol	ND	0.50
2-Methylnaphthalene	ND	0.50
N-Nitroso-di-n-dipropylamine	ND	0.50
N-Nitrosodimethylamine	ND	0.50
N-Nitrosodiphenylamine	ND	0.50
Naphthalene	ND	0.50
2-Nitroaniline	ND	0.50
<u>3-Nitroaniline</u>	ND	0.50
<u>4-Nitroaniline</u>	ND	0.50
Nitrobenzene	ND	0.50
2-Nitrophenol	ND	0.50
4-Nitrophenol	ND	0.50
Pentachlorophenol	ND	0.50
Phenanthrene	ND	0.50
Phenol	ND	0.50
Pyrene	ND	0.50
Pyridine	ND	0.50
1,2,4-Trichlorobenzene	ND	0.50
2,4,5-Trichlorophenol	ND	0.50
2,4,6-Trichlorophenol	ND	0.50
COMMENTS PQL = PRACTICAL QUAN	TITATION LIMIT	

ND = NON-DETECTED OR BELOW THE PQL DATA REVIEWED AND APPROVED BY:

N CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER:	Pinnacle Environmental, Inc
	P.O. Box 904
	Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com
PROJECT:	Corona Rd - Petaluma
	DATE RECEIVED: <u>04/07/17</u>

MATRIX: SOIL DATE EXTRACTED:04/10/17 DATE SAMPLED:04/05/17 DATE ANALYZED: 04/10/17 REPORT TO:MR. PETER CLOVEN DATE REPORTED: 04/13/17 . . . . . . . . . . . . . . . . . . . .

SAMPLE I.D.: TP-7b-6

LAB I.D.: 170407-15

### SEMI-VOLATILE ORGANICS, EPA 8270C, PAGE 1 OF 2

#### UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM PARAMETER SAMPLE RESULT PQL X1 Acenaphthene 0.50 ND Acenaphthylene ND 0.50 Anthracene ND 0.50

<u>Benzo(a)anthracene</u>	<u>ND</u>	0.50
<u>Benzo(b) fluoranthene</u>	ND	0.50
Benzo(a)pyrene	ND	<u>0.50</u>
Benzo(g,h,i)pervlene	ND	0,50
Benzo(k) fluoranthene	ND	0.50
Benzoic Acid	ND	0.50
Benzyl Alcohol	ND	0.50
Bis(2-Chloroethoxy)methane	ND	0.50
Bis(2-Chloroethyl)ether	ND	0.50
Bis(2-Chloroisopropyl)ether	ND	0.50
Bis(2-Ethylhexyl)Phthalate	4.32	0.50
4-Bromophenyl Phenyl Ether	ND	0.50
<u>Butylbenzylphthalate</u>	ND	0.50
4-Chloro-3-Methylphenol	ND	0.50
<u>4-Chloroaniline</u>	ND	0.50
2-Chloronaphthalene	ND	0.50
2-Chlorophenol	ND	0.50
4-Chlorophenyl Phenyl Ether	ND	0.50
<u>Chrysene</u>	ND	0.50
<u>Di-n-butylphthalate</u>	ND	0.50
Di-n-octylphthalate	ND	0.50
Dibenzo(a,h)anthracene	ND	0.50
<u>Dibenzofuran</u>	ND	0.50
1,2-Dichlorobenzene	ND	0.50
1,3-Dichlorobenzene	ND	0.50
1,4-Dichlorobenzene	ND	0.50
3,3-Dichlorobenzidine	ND	0.50
2,4-Dichlorophenol	ND	0.50
Diethyl Phthalate	NĎ	0.50
2,4-Dimethylphenol	ND	0.50
Dimethyl Phthalate	ND	0.50

IM

#### 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER:	Pinnacle Environmental, Inc P.O. Box 904
	Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com
PROJECT:	Corona Rd - Petaluma DATE RECEIVED

MATRIX: SOILDPDATE SAMPLED: 04/05/17DPREPORT TO: MR. PETER CLOVENDP

DATE RECEIVED: 04/07/17 DATE EXTRACTED: 04/10/17 DATE ANALYZED: 04/10/17 DATE REPORTED: 04/13/17

SAMPLE I.D.: TP-7b-6

and an owner and an an or an infinite set

LAB I.D.: 170407-15

SEMI-VOLATILE ORGANICS, EPA 8270C, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE	RESULT	PQL X1
4,6-Dinitro-2-methylphenol	NE	)	0.50
2,4-Dinitrophenol	NE	)	0.50
2,4-Dinitrotoluene	NI	)	0.50
2,6-Dinitrotoluene	NE	)	0.50
Fluoranthene	ND	)	0.50
<u>Fluorene</u>	NE	<u>)</u>	0.50
<u>Hexachlorobenzene</u>	NE	<u>)</u>	0.50
<u>Hexachlorobutadiene</u>	NE	)	0.50
Hexachlorocyclopentadiene	NE	<u>)</u>	0.50
<u>Hexachloroethane</u>	NE	<u>)</u>	0.50
Indeno(1,2,3-cd rene	NE	)	0.50
Isophorone	<u>NE</u>	)	0.50
2-Methyl Phenol	NC	)	0.50
3/4-Methyl Phenol	NE	i	0.50
2-Methylnaphthalene	ND	)	0.50
N-Nitroso-di-n-dipropylamine	NE	2	0.50
<u>N-Nitrosodimethylamine</u>	NC		0.50
<u>N-Nitrosodiphenylamine</u>	ND		0.50
Naphthalene	NE	2	0.50
<u>2-Nitroaniline</u>	NE	)	0.50
<u>3-Nitroaniline</u>	NE	)	0.50
<u>4-Nitroaniline</u>	ND		0.50
Nitrobenzene	ND		0.50
2-Nitrophenol	ND	)	0.50
4-Nitrophenol	ND		0.50
Pentachlorophenol	ŃD		0.50
Phenanthrene	ND		0.50
Phenol	ND		0.50
Pyrene	ND		0.50
Pyridine	ND		0.50
1,2,4-Trichlorobenzene	ND		0.50
2,4,5-Trichlorophenol	ND		0.50
2,4,6-Trichlorophenol	ND		0.50
COMMENTS PQL = PRACTICAL QUAN	NTITATION	LIMIT	
ND = NON-DETECTED OR BELOW TH	IE POL	£ .	

DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

131

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

METHOD BLANK REPORT

CUSTOMER:	Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517
PROJECT:	(925)673-5500 Email: pcloven@pei-env.com Corona Rd - Petaluma
	DATE RECEIVED:04/07/17
ΜΔΨΡΪΥ・ΟΛΙ	

MATRIX: SOILDATEEXTRACTED: 04/10/17DATESAMPLED: 04/04-05/17DATEANALYZED: 04/10/17REPORTTO: MR. PETERCLOVENDATEREPORTED: 04/13/17

METHOD BLANK REPORT FOR LAB I.D.: 170407-10 THROUGH -15

SEMI-VOLATILE ORGANICS, EPA 8270C, PAGE 1 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM PARAMETER SAMPLE RESULT PQL X1 Acenaphthene ND 0.50 Acenaphthylene ND 0.50 Anthracene ND 0.50 Benzo(a) anthracene ND 0.50 Benzo(b) fluoranthene ND 0.50 Benzo(a)pyrene ND 0.50 Benzo(q, h, i)perylene 0.50 ND Benzo(k) fluoranthene ND 0.50 Benzoic Acid ND 0.50 Benzyl Alcohol ND 0.50 Bis(2-Chloroethoxy)methane ND 0.50 Bis(2-Chloroethyl) ether ND 0.50 Bis(2-Chloroisopropyl)ether ND 0.50 Bis(2-Ethylhexyl) Phthalate ND 0.50 4-Bromophenyl Phenyl Ether ND 0.50 Butylbenzylphthalate ND 0.50 4-Chloro-3-Methylphenol ND 0.50 4-Chloroaniline ND 0.50 2-Chloronaphthalene ND 0.50 2-Chlorophenol ND 0.50 4-Chlorophenyl Phenyl Ether ND 0.50 Chrysene ND 0.50 Di-n-butylphthalate ND 0.50 Di-n-octylphthalate ND 0.50 Dibenzo(a, h) anthracene ND 0.50 Dibenzofuran ND 0.50 1,2-Dichlorobenzene ND 0.50 1, 3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene ND 0.50 3.3-Dichlorobenzidine ND 0.50 2,4-Dichlorophenol ND 0.50 Diethyl Phthalate ND 0.50 2,4-Dimethylphenol ND 0.50 Dimethyl Phthalate ND 0.50

TO BE CONTINUED ØN PAGE #2

#### 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### METHOD BLANK REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925) 673-5500 Email: pcloven@pei-env.com PROJECT: Corona Rd - Petaluma DATE RECEIVED:04/07/17

MATRIX: SOILDATE EXTRACTED: 04/10/17DATE SAMPLED: 04/04-05/17DATE ANALYZED: 04/10/17REPORT TO: MR. PETER CLOVENDATE REPORTED: 04/13/17

METHOD BLANK REPORT FOR LAB I.D.: 170407-10 THROUGH -15

SEMI-VOLATILE ORC	GANICS, EPA 8270C, PAG	E 2 OF 2
PARAMETER	SAMPLE RESULT	POL X1
4.6-Dinitro-2-methylphenol	ND	0.50
2,4-Dinitrophenol	ND	0.50
2,4-Dinitrotoluene	ND	0.50
2,6-Dinitrotoluene	ND	0.50
Fluoranthene	ND	0.50
Fluorene	ND	0.50
Hexachlorobenzene	ND	0.50
<u>Hexachlorobutadiene</u>	ND	0.50
Hexachlorocyclopentadiene	ND	0.50
<u>Hexachloroethane</u>	ND	0.50
Indeno(1,2,3-cd uvrene	ND	0.50
Isophorone	ND	0.50
2-Methyl Phenol	ND	0.50
3/4-Methyl Phenol	ND	0.50
2-Methylnaphthalene	ND	0.50
N-Nitroso-di-n-dipropylamine	ND	0.50
N-Nitrosodimethylamine	ND	0.50
N-Nitrosodiphenylamine	ND	0.50
Naphthalene	ND	0.50
2-Nitroaniline	ND	0.50
<u>3-Nitroaniline</u>	ND	0.50
4-Nitroaniline	ND	0.50
Nitrobenzene	ND	0.50
2-Nitrophenol	ND	0.50
4-Nitrophenol	ND	0.50
Pentachlorophenol	ND	0.50
Phenanthrene	ND	0.50
Phenol	ND	0.50
Pyrene	ND	0.50
Pyridine	ND	0.50
1,2,4-Trichlorobenzene	ND	0.50
2,4,5-Trichlorophenol	ND	0.50
2,4,6-Trichlorophenol	ND	0.50
COMMENTS POL = PRACTICAL QUAN	TTTATION LIMIT	

COMMENTS POL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

Matrix: Date Analyzed:	Soil/So 4/10/2017	lid/Slud	qe/Oil				Unit:	IOO/KA (PP)	M
Matrix Spike (MS)	/Matrix S	pike Dup	licate (N	ISD)					
Spiked Sample Lab	I.D.:	170407	-10 MS	(MSD					_
Analyte	SR	spk conc	MS	%MS	INSD	%MSI	RP	ACP %MS	ACP RPD
Phenol	0.0	2.00	1.19	60%	.26	63%	5%	50-150	0-20
Pyrene	0.0	2.00	1.80	90%	.97	98%	9%	50-150	0-20
Laboratory Contr	ol Spike	(LCS);							
Analyte		spk conc	LCS	% RC	ACP %RC	В			
Phenol		2.00	1.83	92%	75-125				
1.4-Dichlorobenzene	_	2.00	1.86	93%	75-125				
2,4-Dichlorophenol		2.00	2.02	101%	75-125				
Hexachlorobutadiene		2.00	2.00	100%	75-125				
4-Chloro-3-methylpher	lor	2.00	2.18	109%	75-125				
Fluoranthene		2.00	2.02	101%	75-125				
Surrogate Recovery	sok conc	LACP%	NRC	0.00	%RC	MRC	SRC	1 558.0	Select.
Sample I D		1 101 10	MB	170407-10	170407-11	170407-12	170407-13	170407-14	170407-1
2. Eluorophonol	145	25 121	105%	73%	0.8%	05%	102%	101%	69%
Z-Fluorophenoi	40	20-121	10376	71%	04%	9370	102%	105%	66%
Nitrobenzene_d5	40	23-120	70%	74%	73%	94%	94%	76%	68%
2-Eluorobinhenvl	40	30-115	97%	74%	96%	95%	93%	95%	68%
2 4 6-Tribromonhenol	40	19-122	80%	59%	79%	89%	82%	83%	72%
Terphenyl-d14	40	18-137	106%	79%	99%	100%	96%	102%	70%
Summer ata Dagayan	ank ooso	ACD9/	- Ar faith	82612	in the second	ame	14.017	0.1625	# 027
Sunogate Recovery	spk conc		. nerva	3187554	TITIN	TREVAL	period.	Million.	THEORY
Sample I.D.			-						_
2-Fluorophenol	40	25-121							_
Phenol-d5	40	24-113		_					_
Nitrobenzene-d5	40	23-120							_
2-Fluorobiphenyl	40	30-115	_						
2,4,6-1 ribromophenol	40	19-122	_		_	-			
Terpnenyl-014	40	18-137	Ester	S. march			5 S 400 P-1	U ANTON S	
Sumanta Decours	spk conc	ACP%	N/RC	9690	2 PuRic	WRC	MAG	NRC -	75403
Surrogate Recovery									
Sample I.D.	100 million (100 million)				-				
Sample I.D. 2-Fluorophenol	40	25-121							
Sample I.D. 2-Fluorophenol Phenol-d5	40 40	25-121 24-113							
Surrogate Recovery Sample I.D. 2-Fluorophenol Phenol-d5 Nitrobenzene-d5	40 40 40	25-121 24-113 23-120							
Surrogate Recovery Sample I.D. 2-Fluorophenol Phenol-d5 Nitrobenzene-d5 2-Fluorobiphenyi	40 40 40 40	25-121 24-113 23-120 30-115							
Surrogate Recovery Sample I.D. 2-Fluorophenol Phenol-d5 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophenol	40 40 40 40 40	25-121 24-113 23-120 30-115 19-122							

Misc.POt	COMMERTS	they far	RWALYTICAL	Reichnests				Hart and the best of	728 -	restrich	R. well 2		- min	12	R. P. Pekeluma		us to Sama Surray Are Address	and a strain of the state of the state sta		- Ja Jan
NOITANRE NOITANRE NOITANRE NOITANRE SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN SAUTAN	Analysis Required	- XXXX			1									All Cloves	14 925-672-5500 AND HOLEN	in Fabular -5507 Longia	The the owners with the law manual	2 10.99 August 000	Desites	E CUSTODY RECORD
aboratories Turrarotind Time aboratories SameDay nue, 0.24 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49	TARIN SWATHE	1-2	the second of the second	the second of the	Jan Thy C	Child agence	111 V 1011							01	- Worman	T OF	Received by:	-V.M./ Repaired by	CY VUC Received by	CHAIN OF
Enviro-Chem, Inc. Li 1214 E. Lexington Ave Pomona, CA 91766 Tel: (100) 500-5905 Fuc (		SAMPLE IU	-1-1C-S	N.T.H	10-5-4	1-5-1	Landt	11 16 19						Company Name, / E	Kinacle -	NOME NOW	the summer	Releases and by Oin 4	a summer	Har

Mac.POM	COMMENTE	IL FAR	And write	TZ-mager		-	T				AR	PLL.	x - 1	ample Storage After Analysis:	Seturn to Client O Store (30 Days)			
	nalysis Required										Service and a service of the service	5500 Project Name/ID:	5597 CONA N	The Concern Instructions for S	Daily Control of Contr	Da <b>u a contraction of Other</b> .		
X = Contriners Ervtige Notton	IATAM 10.04 IAM91 IAM91 IAM91	1 mai	10165 /	1 1 ht		1	\				Project Contact:	Tel: 925-673-	Fax: Entry clip	AN THAT ON TRAC	5, WPP		OF CUSTODY RECOR	
Internation Time 1 Accession 1 Accession	SAMPLAG DATE THE	allela vous	4 Manuar	4417030	3 4 da 0815	745 145	V 1035				1		2413	Received by	Received by	Received by	CHAIN	
rc. Laboratories Avenue, 6 Fax: (906) 590-5907 FilcATE #1555	14810	1+totot1	TT 2	21-	2	17	1-1	2			Ewler +		ator OA	4021	L+YA/	714.171		
Enviro-Chem, Ir 1214 E. Lexington Pomona, CA 9176 Tel: (909) 580-5905 Tel: (909) 580-5905 CA-DHS ELAP CERT	SAMPLEID	TP-16-3	N-1-0+	78-5-4	10-5-01	H- H-dt	-1-76-G				Company Name:	Address:	City/State/Zip:	Relinquisi	Relinquished by:	Relinquished by:	Date: 4/5/1-	

Laboratory Data & Chain of Custody SOIL DATA - Soil Boring (SB-1 to SB-6) & Monitoring Well Installation (MW-1 to MW-8) June 2017

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

Date: June 9, 2017

Mr. Peter Cloven Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com

Project: Corona Rd - Petaluma LAB I.D.: 170602-25 through -48

Dear Mr. Cloven:

The **analytical results** for the soil samples, received by our laboratory on June 2, 2017, (via OnTrac), are attached. The samples were received chilled, intact and accompanying chain of custody record.

Enviro-Chem appreciates the opportunity to provide you and your company this and other services. Please do not hesitate to call us if you have any questions.

Sincerely,

Curtis Desilets Vice President/Program Manager

Course . Andy Wang

Laboratory Manager

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER:	Pinnacle Environmental, Inc P.O. Box 904
PROJECT:	Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com Corona Rd - Petaluma
	DATE RECEIVED:06/02/17

MATRIX: SOILDATEEXTRACTED: 06/05/17DATESAMPLED: 05/31/17DATEANALYZED: 06/05-06/17REPORT TO: MR. PETER CLOVENDATEREPORTED: 06/09/17

TOTAL PETROLEUM HYDROCARBONS (TPH) - CARBON CHAIN ANALYSIS METHOD: EPA 8015B

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

SAMPLE I.D.	LAB I.D.	C4-C10	C11-C22	C23-C35	DF
<u>MW-8-15</u>	<u>170602-27</u>	ND	ND	ND	7
<u>MW-4-15</u>	170602-33	ND	ND	ND	1
MW-4-25	170602-35	ND	ND	ND	1
<u>MW-1-15</u>	170602-39	ND	ND	ND	1
<u>MW-5-10</u>	170602-42	ND	ND	ND	1
MW-5-5	170602-43	ND	ND	ND	1
<u>MW-5-15</u>	170602-44	ND	ND	ND	1
<u>MW-5-25</u>	170602-46	ND	ND	ND	1
METHOD BLANK		80	80	30	1
	POL	10	10	50	

#### COMMENTS

C4-C10 = GASOLINE RANGE C11-C22 = DIESEL RANGE C23-C35 = MOTOR OIL RANGE DF = DILUTION FACTOR PQL = PRACTICAL QUANTITATION LIMIT ACTUAL DETECTION LIMIT = DF X PQL ND = NON-DETECTED OR BELOW THE ACTUAL DETECTION LIMIT

Data Reviewed and Approved by: _______ CAL-DHS ELAP CERTIFICATE No.: 1555

			E	nviro Che	em, Inc	_			
1214 E. Lex	ington	Avenue, F	Pomona,	CA 9176	6 Те	I (909)590	-5 <del>9</del> 05	Fax (909)59	90-5907
		8	015B	QA/C	QC Re	port			
Date Analyzed:		6/5-6/6/20	<u>017</u>				Units:	<u>mg/Kg (p</u>	<u>pm)</u>
Matrix:	Soil/	Solid/S	Sludg	e/Liqu	uid				
Matrix Spike (N	IS)/Mat	rix Spike D	Duplicate	(MSD)					
Spiked Sample	Lab I.I	D.:	17060	1-100	MS/M	SD			
Analyte	SR	spk conc	MS	%MS	MSD	%MSD	%RPD	ACP %MS	ACP RPD
C11~C22 Range	0	200	189	94%	192	96%	1%	75-125	0-20%
LCS STD RECC Analyte s C11~C22 Range	pk cone 200	c LCS   188	% REC 94%	ACP 75-125					
Analyzed and F	Review	ed By:	N	Q					
Final Reviewer		Up							

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Corona Rd - Petaluma

MATRIX: <u>SOIL</u>		DATE	RECEIVED: 06/02/17
DATE SAMPLED: 05/31/1	<u>17</u>	DATE	ANALYZED: 06/02/17
REPORT TO:MR. PETER	CLOVEN	DATE	REPORTED: 06/09/17

5ARE 18 1.D., MM-0-15	T'D': TIAPA-51					
ANALYSIS: VOLATILE ORGANICS, UNIT: mg/Kg = MII	, EPA METHOD 503 LLIGRAM PER KILO	OB/8260B, PAGE I OF ⊉ Gram = PPM				
PARAMETER	SAMPLE RESULT	PQL X1				
ACETONE	ND	0.020				
BENZENE	<u>ND</u>	0.005				
BROMOBENZENE	ND	0.005				
BROMOCHLOROMETHANE	ND	0.005				
BROMODICHLOROMETHANE	ND	0.005				
BROMOFORM	ND	0.005				
BROMOMETHANE	ND	0.005				
2-BUTANONE (MEK	ND	0.020				
N-BUTYLBENZENE	ND	0.005				
SEC-BUTYLBENZENE	ND	0.005				
TERT-BUTYLBENZENE	ND	0.005				
CARBON DISULFIDE	ND	0.010				
CARBON TETRACHLORIDE	ND	0.005				
CHLOROBENZENE	ND	0.005				
CHLOROETHANE	ND	0.005				
CHLOROFORM	ND	0.005				
CHLOROMETHANE	ND	0.005				
2-CHLOROTOLUENE	ND	0.005				
4-CHLOROTOLUENE	ND	0.005				
DIBROMOCHLOROMETHANE	ND	0.005				
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005				
1,2-DIBROMOETHANE	ND	0,005				
DIBROMOMETHANE	ND	0.005				
1,2-DICHLOROBENZENE	ND	0.005				
1, 3-DICHLOROBENZENE	ND	0.005				
1,4-DICHLOROBENZENE	ND	0.005				
DICHLORODIFLUOROMETHANE	ND	0,005				
1,1-DICHLOROETHANE	ND	0.005				
1,2-DICHLOROETHANE	ND	0.005				
1.1-DICHLOROETHENE	ND	0.005				

ANE ND C

ND

ND

0.005

0.005

DATA REVIEWED AND APPROVED BY:

CIS-1, 2-DICHLOROETHENE

1,2-DICHLOROPROPANE

TRANS-1, 2-DICHLOROETHENE

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT CUSTOMER: Pinnacle Environmental, Inc. P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Corona Rd - Petaluma MATRIX: SOIL DATE RECEIVED: 06/02/17 DATE SAMPLED: 05/31/17 DATE ANALYZED:06/02/17 REPORT TO: MR. PETER CLOVEN DATE REPORTED:06/09/17 SAMPLE I.D.: MW-8-15 I.D.: 170602-27 ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM PARAMETER SAMPLE RESULT POL X1 1,3-DICHLOROPROPANE ND 0.005 2, 2-DICHLOROPEOFANE ND 0.005 1,1-DICHLOROPROPENT ND 0.005 CII-1, 3-DICHLOBOPROPENH ND .005 TRANS-1, 3-DICHLOROPROPENE ND 0.005 ETHYLBENZENE ND 0.005 2-HEXANONE ND 0.020 HEXACULORCOUTADIENT ND 0.005 ISOPROPYLBENZENE ND 0.005 4-ISOPROPYLTOLUKNE ND 0.005 4-METHYL-2-PENTABONE (MTBR) ND 0.020 METHYL LEFT-BOTYL ETHER (WTHE) ND 0.005 METHYLENE CHLORIDE ND 0.010 NAPHTHALENE ND 0.005 N-PROFYLNEN2.KNC ND 0.005 STYRENE ND 0.005 1,1,1,2-TETRACHLOROETHANE ND 0.005 AL. Z. Z-TETRACHLOROETRANE ND 0.005 TETRACHLOROETHENS (PCE) ND 0.005 TOLUENE ND 0.005 1,2,3-TRICHLOHOHEN2ENE ND 0.005 1,2,4-TRICHLOGOREMZENE ND 0.005 1, 1, 1-TRICHLOROETHANE ND 0.005 1,1,2-TRICHLOROETHANE ND 0.005 TRICHLOROETRENE (TCE)

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE POL

DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

TRICHLOROPLOOROMETHANS

1.2.3-TRICHLOROPHOPANE

1.2.4-TRIMETHYLBENZENE

1,3,5-TRIMETHYLBENZENE

VINTL CHLORIDE

M/P-XYLENE

O-XYLENE

ND

ND

ND

ND

ND

ND

ND

ND

0.005

0.005

0.005

0.005

0.005

0.005

0.010

0.005
1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT CUSTOMER: Pinnacle Environmental, Inc. P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Corona Rd - Petaluma MATRIX: SOIL DATE RECEIVED: 06/02/17 DATE SAMPLED:05/31/17 DATE ANALYZED: 06/02/17 REPORT TO: MR. PETER CLOVEN DATE REPORTED: 06/09/17 SAMPLE I.D.: MW-4-15 LAB I.D.: 170602-33 ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM PARAMETER SAMPLE RESULT POL X1 CETONE ND 0.020 BENZENE ND 0.005 BROMOBENZENE ND 0.005 BROMOCHLOROMETHANK ND 0.005 BREMCOTCHLOROMETHDANE ND 0.005 BROMOFORM ND 0.005 BROMOMETHANE ND 0.005 <u>2-BUTANONE (MEK</u> ND 0.020 N-BUTYLBENZENE ND 0.005 SEC-BUTYLBENZENE ND 0.005 TERT-BUTTLEEB228NE ND 0.005 CARBON DISULFIDE ND 0.010 CARBON TETRACHLORIDE ND 0.005 CHLOROBENZENE ND 0.005 CHLOROETHANE ND 0.005 CHLOROFORM ND 0.005 CHLOROMETHANE ND 0.005 2-CHLOROTOLUENE ND 0.005 4-CHLOROTOLUENE ND 0.005 DIBROMOCHLOROMETRANE ND 0.005 1,2-DIBROMO-3-CHLOROPROPANE ND 0.005 1,2-DIBROMOETHANE ND 0.005 DIBROMOMETHANE 0.005 ND 1,2-DICHLORODENZENE ND 0.005 1.3-01CHLOSODENZERE ND 0.005 1.4-DICHLOROBENZENE ND 0.005 DICHLORODIFLUOROMETHANE ND 0.005 1,1-DICHLOROETHANE ND 0.005 1,2-DICHLOROETHANE ND 0.005 1,1-DICHLOROETHENE ND 0.005 CIR-1, 2-DICHLORONTHENE ND 0.005 THANS-1, 2-DICHLOROSTHENE ND 0.005 1.2-DICHLOROFROPANE ND 0.005

D APPROVED DY

DATA REVIEWED AND APPROVED

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei~env.com PROJECT: Corona Rd - Petaluma

MATRIX: <u>SOIL</u>	DATE RECEIVED:06/02/17
DATE SAMPLED: 05/31/17	DATE ANALYZED: 06/02/17
REPORT TO: MR. PETER CLOVEN	DATE REPORTED: 06/09/17
the second se	and the second of the second se

SAMPLE I.D.: MW-4-15

LAB I.D.: 170602-33

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2

PARAMETER	SAMPLE RESULT	POL X1
1, 3-DICHLOGOPROPANE	ND	0.005
Z, Z-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPHOFEME	ND	0.005
215+1,3-DICHLOROPROPENE	ND	0.005
TRANS-1.3-DICHLOSOPROPEND	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
EXACTLOROBETAD LEND	ND	0.005
ADPROPYLEENREHE	ND	0.005
1-ISOPROPYLTOLUENE	ND	0.005
1-METHYL-2-PENTANONE (MIBK)	ND	0.020
GUTHYE COTT-BUTYL ETHER IMTRE)	ND	0.005
ACTHYLENE CHLORIDE	ND	0.010
JAPHTHALENE	ND	0.005
I-PROPYLBENZENE	ND	0.005
TYRENE	ND	0.005
1,1,2-TETRACHLOROFTHANE	ND	0.005
112,2-TETRACHLOROETEAME	ND	0.005
ETRACHLOROGTHENE (PCP)	ND	0.005
OLUENE	ND	0.005
-Z-J-THICHLONCHENZKHE	ND	0.005
,2,4-TRICHLOROBENZENE	ND	0.005
1.1.1-TRICHLOROETHANE	ND	0.005
1.2-TRICHLOROETEANE	ND	0.005
RICHLOBOETHENS: (TCC)	ND	0.005
RICHLOROFLUGROMETHANE	ND	0.005
.2.3-TRICULOMOPROFANE	ND	0.005
2.3-TRIMETHYLBENZEME	ND	0.005
.3.5-TRIMETHYLBENZENE	ND	0.005
INYL CHLORIDE	ND	0.005
/P-XYLENE	ND	0.010
-XYLENE	ND	0 005

ND = NON-DETECTED OR BELOW THE PQL

DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

la

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925) 673-5500 Email: pcloven@pei-env.com PROJECT: Corona Rd - Petaluma MATRIX: SOIL DATE RECEIVED:06/02/17 DATE SAMPLED: 05/31/17 DATE ANALYZED: 06/02/17 REPORT TO: MR. PETER CLOVEN DATE REPORTED:06/09/17 SAMPLE I.D.: MW-4-25 I.D.: 170602-35 ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM PARAMETER SAMPLE RESULT POL X1 ACETONE ND 0.02 BENZENE ND 0.005 BROMOBENZENE ND .005 BROMOCHLOROMETHANE ND 0.005 SECMODICHLOROMETHANE ND 0.005 BROMOFORM ND 0.005 BROMOMETHANE ND 0.005 2-BUTANONE (MEK ND 0.020 R-BUTTLBENZENS ND 0.005 BEC-BUTYLEENSER ND 0.005 TERT-BUTYLBENZENE ND 0.005 CARRON DISULFIDE ND 0.010 CARBON TETRACHLORIDE ND 0.005 CHLOROBENZENE ND 0.005 CHLOROSCTHANE. ND 0.005 CHLOROFORM ND 0.005 CHLOROMETHANE ND 0.005 2-CHIMPOTOLAUNE ND 0.005 4-CHLOROTOLUENE ND 0.005 DIBROHOCHLOROMETHANK. ND 0.005 1,2-DIBROMO-3-CHLOROPROPARE ND 0.005 1, 2-DIBROMOETHANE ND 0.005 DIBLOMOMETRANE. ND 0.005 1, 2-DICHLOROHENZENE ND 0.005 1, 3-DICHLOROBENZENE ND 0.005 1.4-DICHLOBORENZENE ND 0.005 DICHLORODIFLUOROMETHANE ND 0.005 L. I-DICHLOROGTHANE ND 0.005 1.2-DIGHLOROGTHAME ND 0.005 1. I-DICHLORGE?HENE ND 0.005 CIR-1.2-DICHLORGETMENK ND 0.005 TRAES-1, 2-DICHLORGETHERIE ND 0.005 1. Z-DICHLOHOPBOPANE ND 0.005

TO BE CONTINUED ON PAGE

DATA REVIEWED AND APPROVED BY:

112

CUSTOMED	Pippalo Freinge	ALORI KEPUKT	
CODIOMER:	Primacie Environment	al, Inc	
	P.O. BOX 904		
	Clayton, CA 94517		
BDO TROM.	(925)6/3-5500 Email:	pcloven@pei-env	. com
PROJECT:	Corona Rd - Petaluma		
MATDIV. COT	r.		
DATE CAMPTI		DATE RECE	IVED: <u>06/02/17</u>
REDODT TON	AD DEWED OF OVEN	DATE ANAL	YZED: <u>06/02/17</u>
	AK. FETER CHOVEN	DATE REPO	RTED: <u>06/09/17</u>
SAMPLE I.D	.: MW-4-25	LAB I.D.:	170602-35
ANALYSI	S: VOLATILE ORGANICS	EPA METHOD 5030	B/8260B, PAGE 2 OF 2
	<b>UNIT:</b> $mg/Kg = MII$	LIGRAM PER KILOG	RAM = PPM
- ARADICICK	CODECTER NO.	SAMPLE RESULT	PQL X1
2.2-1101110	ISDOCIDANC	ND	0.005
1.1-0100128	CODODERNE	ND	0.005
TELL BODIE	ALCOROLOGICOURSEL	<u>ND</u>	0.005
TRUST -1 1-1	TONLOR SSERVER	ND	0.005
THUS, SPACE	W	ND	0.005
2-HEXANONE			0.005
HEXACHLOROF	NUTADIENE		0.020
SOPROPTLBE	NEEWE		0.005
I-LOOPROPTI	TOLURNE	ND	0.005
-METHYL-2-	PENTANONE (MIRE)	ND	0.003
AETHYL tert	-BUTYL ETHER (MTBE	ND	0.020
SETHYLESSE C	HLCHIDE	ND	0.010
NAPHTHALENE		ND	0.005
-PROPYLBEN	SENS	ND	0.005
STYRENE	NAME AND ADDRESS OF AD	ND	0.005
1,1,2-151	BACHLOBOILTHARE	ND	0.005
41,2,7-TET	RACHLOROFTHANE	ND	0.005
KTRACHLONG	STRUNE (PCE)	ND	0 005
OLUENE		ND	0.005
. Z. J-TRICH	LOROBENZENE	ND	0.005
,2,4-TRICH	LOBORENZENE	ND	0.005
.,1,1-TRICH	LOROETHANE	ND	0.005
.,1,2-TRICH	LOROETHANE	ND	0.005
RICHLORDET	HENS INCEL	ND	0.005
RICHLOROFL	DOROMETHANE.	ND	0.005
,2,3-TRICH	LOROPROPANE	ND	0.005
2.9 THIME	THYLBENZENI	ND	0.005
,3,5-TRIME	THYLBENZENE	ND	0.005
INYL CHLOR	IDE	ND	0.005
LINE OTHOR		NID	0.010
1/P-XYLENE			0.010

DATA REVIEWED AND APPROVED BY:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT CUSTOMER: Pinnacle Environmental, Inc. P.O. Box 904 Clayton, CA 94517 (925) 673-5500 Email: pcloven@pei-env.com PROJECT: Corona Rd - Petaluma MATRIX: SOIL DATE RECEIVED: 06/02/17 DATE SAMPLED:05/31/17 DATE ANALYZED: 06/02/17 REPORT TO: MR. PETER CLOVEN DATE REPORTED: 06/09/17 SAMPLE I.D.: MW-1-15 LAB I.D.: 170602-39 ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM PARAMETER SAMPLE RESULT POL X1 ACETONE ND 0.020 BENZENE ND 0.005 BROMOBENZENE ND 0.005 INFOMOCHLOROMETHAMIS ND 0.005 BROMODICHLOROMICTHANIS ND 0.005 BROMOFORM ND 0.005 BROMOMETHANE ND 0.005 2-BUTANONE (MEK ND 0.020 <u>N-BUTYLBENZENE</u> ND 0.005 BEC-BOTTLEENSENE ND 0.005 TERT-OUTVLBENCENE ND 0.005 CARDON DEBULFIDE ND 0.010 CARBON TETRACHLORIDE ND 0.005 CHLOROBERSENT. ND 0.005 CHLOROETHANE ND 0.005 CHLOROFORM ND 0.005 CHLOROMETHANE ND 0.005 2-CHLOROTOLUENE ND 0.005 4-CHLOROTOLUKNE ND 0.005 DIBEONOCHLOROMETRANE ND 0.005 L.Z-DIBROHO-2-CHLOROPBOPANE ND 0.005 1,2~DIBROMOETHANE ND 0.005 DIBROMOMETHANE ND 0.005 1, Z-DICHLOROBENZERE ND 0.005 1.3-DICHLOROBENZENE ND 0.005 1.4-DICHLORCECENZENE ND 0.005

ND

ND

0.005

0.005

0.005

0.005

0.005

0.005

0.005

 1,2-DICHLOROETHANE
 ND
 0

 1.1-DICHLOROETHENE
 ND
 0

 C15-1.2-DICHLOROETHENE
 ND
 0

 TBARS-1.2-DICHLOROETHENE
 ND
 0

 1.2-DICHLOROETHENE
 ND
 0

 1.2-DICHLOROETHENE
 ND
 0

 1.2-DICHLOROETHENE
 ND
 0

DATA REVIEWED AND APPROVED BY:

DICHLOROD1 PLOOROMETHANE

1,1-DICHLOROETEMME

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Corona Rd - Petaluma MATRIX: SOIL DATE RECEIVED: 06/02/17 DATE SAMPLED: 05/31/17 REPORT TO:MR. PETER CLOVEN DATE ANALYZED: 06/02/17 DATE REPORTED: 06/09/17 and the second SAMPLE I.D.: MW-1-15 LAB I.D.: 170602-39 the second s ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM DADAMETED SAMDLE DECTION DOT M

	SAMPLE RESULT	PQL XI
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1, 3-DICHLOROPROPENE	ND	0.005
TRANS-1.3-DICHLOROFBOFENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0,020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL LEFT-BUTYL STREE (MTDE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0,005
<u>N-PROPYLBENZENE</u>	ND	0.005
STYRENE	ND	0.005
1, 1, 1, 2-TETRACHLOROETHANE	ND	0.005
1.1.2.2-TETRACHLOROGTHASE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1.2.3-TRICHLOROBENZENE	ND	0.005
1, 2, 4-TRICHLOROBENZENE	ŇD	0.005
1, 1, 1-TRICHLOROETHANE	ND	0.005
1, 1, 2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROPLOONOMETHANE.	ND	0,005
1.2.3-TRICHLOROPBOPANE	ND	0.005
1.2.0-TRIMETHVLBENZENC	ND	0.005
1, 3, 5-TRIBETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
<u>O-XYLENE</u>	ND	0.005
COMMENTS PQL = PRACTICAL QUANTI	TATION LIMIT	
ND = NON-DETECTED OR BELOW THE	POL	

DATA REVIEWED AND APPROVED BY:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Corona Rd - Petaluma

MATRIX: <u>SOIL</u>	DATE RECEIVED: 06/02/17
DATE SAMPLED: 05/31/17	DATE ANALYZED: 06/02/17
REPORT TO: MR. PETER CLOVEN	DATE REPORTED: 06/09/17
	and a second of the second

SAMPLE I.D.: MW-5-10

LAB I.D.: 170602-42

And in the second

1.0.0

a di selata da se

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK	ND	0.020
N-BUTYLBENZENE	ND	0,005
SEC-BUTYLBENZENE	ND	0.005
CERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0,005
-CHLOROTOLUENE	ND	0,005
DIBROMOCHLOROMETHANE	ND	0.005
, 2-DIBROMO-3-CHLOROPROPANE	ND	0.005
,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
, 2-DICHLOROBENZENE	ND	0,005
., 3-DICHLOROBENZENE	ND	0,005
,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
,1-DICHLOROETHANE	ND	0.005
,2-DICHLOROETHANE	ND	0.005
, 1-DICHLOROETHENE	ND	0.005
CIS-1, 2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
,2-DICHLOROPROPANE	ND	0.005

DATA REVIEWED AND APPROVED BY

Enviro – Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

CUSTOMER:	LABOR Pinnacle Environments P.O. Box 904 Clayton, CA 94517 (925) 673-5500 Email:	ATORY REPORT	
PROJECT:	Corona Rd - Petaluma	beroveu@ber-eu	.com
MATRIX:SOT	L	DATE RECT	TVED-06/02/17
DATE SAMPL	ED:05/31/17	DATE ANAL	X7ED: 06/02/17
REPORT TO:	MR. PETER CLOVEN	DATE REPO	DRTED: 06/09/17
SAMPLE I.D	.: MW-5-10	LAB I.D.:	: 170602-42
ANALYSI	S: VOLATILE ORGANICS,	EPA METHOD 503	0B/8260B, PAGE 2 OF 2
	<b>UNIT:</b> $mg/Kg = MILI$	LIGRAM PER KILO	GRAM = PPM
C STATIC I EK	NATION NAME	AMPLE RESULT	PQL X1
2.3-1/010100	CORDONASION	<u>ND</u>	0.005
1. 1-BICHLOR	AND DALE PARTY	ND	0.005
TTULL I TOTOL	THE CONTRACTOR AND	ND	0.005
TDANG_1 2_T		ND	0.005
	IE	ND	0.005
2-HEVANONE		ND	<u> </u>
JEVACULODOL		ND	0.020
ILAACHLORUE	<u>SUTADIENE</u>	<u>ND</u>	0.005
TOTAL PROPERTY	atebola	<u>ND</u>	0.005
-LOUPPUPTI	CTULUESEE	<u>ND</u>	<u>0.005</u>
CONTRACTOR AND A	FERINANSHE (RIBS)	ND	0.020
AGINT PRE	-BOTTL ETHER (MTHE)	ND	0.005
זאים ד מעותונות מו	HILLINE COR	ND	0.010
L DRODVIDEN		ND	0.005
V-PROPILBEN	IZENE	ND	<u>0.005</u>
<u> STIKENE</u>	He is reacting on the second second second	<u>ND</u>	0.005
a ha ha di Taka	BACHLOROSET/IBRE	<u>ND</u>	0.005
A REPORT OF THE	ASSOCIATION AND AND AND AND AND AND AND AND AND AN	ND	0.005
OTHENE	ATHORN LINEL	ND	0.005
<u>OTOFNE</u>		ND	0.005
CARL D-TRICH	TENEDERSTENE	ND	0.005
AND 9-THICH	TOTALISH STERIE	ND	0.005
ALL TRICH	LONGETHARE	ND	<u>0.00</u> 5
111111111111	AGARINET THAN	ND	0.005
PARTICIPATION OF T	DESE ATER	ND	0.005
- 1 - 7 - NO. 14	LADOUT HADE	ND	0.005
A A MUMP	LOWATBOLDER	ND	0.005
A DATE THINK	A HY LISENGERNE	ND	0.005
ALL DT TRIME	THEFT REMEMBERS	ND	0.005
THEFT CHINE	105	ND	0.005
1/D V/// TINT		ND	0 010
<u>1/P-XYLENE</u>		ND	0.010

ND = NON-DETECTED OR BELOW THE FOL

DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

	LABO	DRATORY REPORT	
CUSTOMER:	Pinnacle Environmen	ntal, Inc	
	P.O. Box 904		
	Clayton, CA 94517		
	(925)673-5500 Email	: pcloven@pei-env.	Com
PROJECT:	Corona Rd - Petalur	1a.	
MATRIX: SOI	L	DATE RECEI	VED:06/02/17
DATE SAMPL	ED: 05/31/17	DATE ANALY	ZED:06/03/17
REPORT TO:	MR. PETER CLOVEN	DATE REPOR	RTED: 06/09/17
SAMPLE I.C	).: MW-5-5	LAB I.D.:	170602-43
ANALYS:	IS: VOLATILE ORGANIC	S, EPA METHOD 50301	3/8260B, PAGE 1 OF 2
PARAMETER	<b>UNIT:</b> $mg/Kg = M$	SAMPLE DESULT	RAM = PPM
ACETONE		ND	
BENZENE		ND	0.020
BROMOBENZE	NE	ND	0.005
BROMOCHLOR	OMETHANE	ND	0.005
BROMODICHL	OROMETHANE	ND	0 005
BROMOFORM		ND	0.005
BROMOMETHA	NE	ND	0.005
<u>2-BUTANONE</u>	(MEK	ND	0.020
N-BUTYLBEN	ZENE	ND	0.005
SEC-BUTYLB	ENZENE	ND	0.005
<u> TERT-BUTYL</u>	BENZENE	ND	0.005
CARBON DIS	ULFIDE	ND	0.010
TABBON TET	RACHLORIDE	ND	0.005
CHLOROBENZ	ENE	ND	0.005
CHLOROETHA	NE	ND	0.005
HLOROFORM		ND	0.005
HLOROMETH	ANE	ND	0.005
CHLOROTO	LUENE	ND	0.005
H-CHLOROTO	LUENE ODOMETUDNE	ND	0.005
JIBROMOCHL	OKOMETHANE	ND	0.005
L, Z-DIBROM	OF THE OF	ND	0.005
	UNE	<u>ND</u>	0.005
L, 2-DIBROM	<u>nang</u>	<u>ND</u>	0.005
2-DIBROMOMET	DODDWEINE		0 005
,2-DIBROMOMET	ROBENZENE	ND	0.005
,2-DIBROMOMET <u>JBROMOMET</u> ,2-DICHLO ,3-DICHLO	ROBENZENE ROBENZENE	ND ND	<u>0.005</u>
,2-DIBROMO DIBROMOMET ,2-DICHLO ,3-DICHLO ,4-DICHLO	ROBENZENE ROBENZENE ROBENZENE	ND ND ND	0.005 0.005 0.005
,2-DIBROM DIBROMOMET ,2-DICHLO ,3-DICHLO ,4-DICHLO 1-DICHLO	ROBENZENE ROBENZENE ROBENZENE ROBENZENE	ND ND ND ND	0.005 0.005 0.005 0.005
,2-DIBROMOMET DIBROMOMET ,2-DICHLO ,3-DICHLO ,4-DICHLO ICHLOBOOT ,1-DICHLO 2-DICHLO	ROBENZENE ROBENZENE ROBENZENE ROETHANE ROETHANE	ND ND ND ND ND	0.005 0.005 0.005 0.005 0.005
, 2-DIBROMOMET DIBROMOMET , 2-DICHLO , 3-DICHLO , 4-DICHLO LCHLO , 1-DICHLO , 2-DICHLO , 1-DICHLO	ROBENZENE ROBENZENE ROBENZENE ROETHANE ROETHANE ROETHANE	ND ND ND ND ND ND	0.005 0.005 0.005 0.005 0.005 0.005
, 2-DIBROMOMET DIBROMOMET , 2-DICHLO , 3-DICHLO , 4-DICHLO , 1-DICHLO , 2-DICHLO , 1-DICHLO , 1-DICHLO	ROBENZENE ROBENZENE ROBENZENE ROETHANE ROETHANE ROETHENE CHLOROETHENE	ND ND ND ND ND ND ND	0.005 0.005 0.005 0.005 0.005 0.005 0.005
L,2-DIBROM DIBROMOMET J,2-DICHLO ,3-DICHLO ,4-DICHLO HILL ,1-DICHLO ,2-DICHLO ,1-DICHLO SIS-1,2-DIC	ROBENZENE ROBENZENE ROBENZENE ROETHANE ROETHANE ROETHENE CHLOROETHENE	ND ND ND ND ND ND ND ND ND	0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005

TO BE CONTINUED ON PAGE 12 -----

DATA REVIEWED AND APPROVED

# 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER:	Pinnacle Environmental, Inc
	P.O. Box 904
	Clayton, CA 94517
	(925) 673-5500 Email: pcloven@pei-env.com
PROJECT:	Corona Rd - Petaluma

REPORT TO: MR. PETER CLOVEN	DATE REPORTED: 06/09/17
DATE SAMPLED: 05/31/17	DATE ANALYZED: 06/03/17
MATRIX: SOIL	DATE RECEIVED: 06/02/17

ANALYSIS: VOLATILE ORGANICS, UNIT: mg/Kg = MILL	EPA METHOD 5030	B/8260B, PAGE 2 OF : Dam - DDM
PARAMETER S	AMPLE RESULT	POL X10*
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1~DICHLOROPROPENE	ND	0.005
CIS-1, 3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1, 1, 1, 2-TETRACHLOROETHANE	ND	0.005
1, 1, 2, 2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1, 2, 3-TRICHLOROBENZENE	ND	0.005
1, 2, 4-TRICHLOROBENZENE	<u>ND</u>	0.005
1, 1, 1-TRICHLOROETHANE	ND	0.005
1, 1, 2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1, 2, 3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

* = PQL RAISED DUE TO MATRIX INTERFERENCE DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Corona Rd - Petaluma

MATRIX: SOIL	DATE RECEIVED: 06/02/17
DATE SAMPLED: 05/31/17	DATE ANALYZED: 06/02/17
REPORT TO: MR. PETER CLOVEN	DATE REPORTED: 06/09/17

SAMPLE I.D.: MW-5-15

LAB I.D.: 170602-44

------

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2

<b>UNIT:</b> $mg/Kg = M$	MILLIGRAM PER KILOGE	RAM = PPM
PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BRDMOCHLOROMETHANE	ND	0.005
BRDMODICHLOBOMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
<u>2-BUTANONE (MEK</u>	ND	0.020
<u>N-BUTYLBENZENE</u>	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON_DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
<u>4-CHLOROTOLUENE</u>	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1, 2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1.2-DICHLORCHENZENE	ND	0.005
1, 3-DICHLOROBENZENE	ND	0.005
1.4-DICHLOROBENSENE	ND	0.005
DICELOBODIFLOORCHETHASE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DIGHLOROETHENE	ND	0.005
C13-1.2-DICHLOBOETHENN	ND	0.005
TRANS-1.2-DICHLOHOETHENE	ND	0.005
1, 2-DICHLOBOPROPASE	ND	0.005

----- 10 MC CONTINUED ON PAGE 12 -----

DATA REVIEWED AND APPROVED HT

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT CUSTOMER: Pinnacle Environmental, Inc. P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Corona Rd - Petaluma MATRIX: SOIL DATE RECEIVED: 06/02/17 DATE SAMPLED: 05/31/17 DATE ANALYZED: 06/02/17 REPORT TO: MR. PETER CLOVEN DATE REPORTED: 06/09/17 SAMPLE I.D.: MW-5-15 LAB I.D.: 170602-44 ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM PARAMETER SAMPLE RESULT POL X1 1,3-DICHLOROPROPANE ND 0.005 2,2-DICHLOROPROPANE 0.005 ND 1,1-DICHLOROPROPENE ND 0.005 CIS-1, 3-DICHLOROPROPENE ND 005 TRANS-1.3-DICHLOBOPROPENE ND 0.005 ETHYLBENZENE ND 0.005 2-HEXANONE ND 0.020 HEGACHLORGBUTABIENE. ND 0.005 **ISOPROPYLBENZENE** ND 0.005 4-ISOPROPYLTOLUENE ND 0.005 4-METHYL-2-PENTANONE (MIBK) ND 0.020 METHYL tert-BUTYL ETHER (MTBE ND 0.005 METHYLENE CHLORIDE ND 0.010 NAPHTHALENE ND 0.005 N-PROPYLBENZENE ND 0.005 STYRENE ND 0.005 L.1.1.2-TETRACHLOROETHANE ND 0.005 1, 1, 2, 2-TETRACHLOROETHANE ND 0.005 TETRACHLORGETHEME (PCE) ND 0.005 TOLUENE 0.005 ND 1, 2, 3-TRICHLOROBENZENE ND 0.005 1, Z. 4-TRICHLODOBENZENE ND 0.005 1, 1, 1-TRICHLOROETHANE ND 0.005 1, 1, 2-TRICHLOROETHANE ND 0.005 TRICHLOROSTHEME (TCE) ND 0.005 TRICHLOROFLUOROMETHANE ND 0.005 1, 2, 3-TRICHLOROPROPANE ND 0.005 1,2,4-TRIMETHYLBENZENE ND 0.005 1, 3, 5-TRIMETHYLBENZENE ND 0.005 VINYL CHLORIDE ND 0.005 M/P-XYLENE ND 0.010 O-XYLENE ND 0.005

10

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE PQL DATA REVIEWED AND APPROVED BY:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925) 673-5500 Email: pcloven@pei-env.com PROJECT: Corona Rd - Petaluma MATRIX: SOIL DATE RECEIVED:06/02/17 DATE SAMPLED:05/31/17 DATE ANALYZED: 06/03/17 REPORT TO:MR. PETER CLOVEN DATE REPORTED:06/09/17 SAMPLE I.D.: MW-5-25 LAB I.D.: 170602-46 ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM PARAMETER SAMPLE RESULT POL X10* ACETONE ND 0.020 BENZENE ND 0.005 BROMOBENZENE ND 0.005 BROMOCHLOROMETHANE ND 0.005 BROMCOICHLOROMETHANS ND 0.005 BROMOFORM ND 0.005 BROMOMETHANE ND 0.005 2-BUTANONE (MEK ND 0.020 <u>N-BUTYLBENZENE</u> ND 0.005 SEC-BUTYLBENZENE 0.005 ND TERT-BUTYLBENZENE ND 0.005 CARBON DISULFIDE ND 0.010 CARBON TETRACHLORIDE ND 0,005 **CHLOROBENZENE** ND 0.005 CHLOROETHANE ND 0.005 CHLOROFORM ND 0.005 **CHLOROMETHANE** ND 0.005 2-CHLOROTOLUENE ND 0.005 4-CHLOROTOLUENE ND 0.005 **DIBROMOCHLOROMETHANE** ND 0.005 1, 2-DIHSOND-3-CHLOROPROPARE ND 0.005 1,2-DIBROMOETHANE 0.005 ND DIBROMOMETHANE ND 0.005 1,2-DICHLOROBENZENE ND 0.005 1, 3-DICHLOROBENZENE ND 0.005 1,4-DICHLOROBENZENE ND 0.005 DICHLORODIFLUOROMETHANE ND 0.005 1,1-DICHLOROETHANE ND 0.005 0.005

 1,2-DICHLOROETHANE
 ND
 0.005

 1,1-DICHLOROETHENE
 ND
 0.005

 CIS-1.2-DICHLOROETHENE
 ND
 0.005

 THANE-1.1-DICHLOROETHENE
 ND
 0.005

 1,2-DICHLOROETHENE
 ND
 0.005

 1,2-DICHLOROETHENE
 ND
 0.005

 1,2-DICHLOROPROPANE
 ND
 0.005

TO DE CONTINUED, ON PAGE

a

DATA REVIEWED AND APPROVED BY:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Corona Rd - Petaluma

MATRIX: SOIL	DATE RECEIVED: 06/02/17
DATE SAMPLED: 05/31/17	DATE ANALYZED: 06/03/17
REPORT TO: MR. PETER CLOVEN	DATE REPORTED: 06/09/17
	and the second

SAMPLE I.D.: MW-5-25

LAB I.D.: 170602-46

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2

UNIT: mg/Kg = MII	LLIGRAM PER KILOG	RAM = PPM
PARAMETER	SAMPLE RESULT	PQL X10*
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1, 3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
<u>N-PROPYLBENZENE</u>	ND	0.005
STYRENE	ND	0.005
1, 1, 1, 2-TETRACHLOROETHANE	ND	0.005
1, 1, 2, 2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1, 2, 3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1, 1, 1-TRICHLOROETHANE	ND	0.005
1, 1, 2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1, 2, 3-TRICHLOROPROPANE	ND	0.005
1, 2, 4-TRIMETHYLBENZENE	ND	0.005
1, 3, 5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005
COMMENTS PQL = PRACTICAL QUANTI	TATION LIMIT	

ND = NON-DETECTED OR BELOW THE PQL

PQL RAISED DUE TO MATRIX INTERFERENCE

DATA REVIEWED AND APPROVED BY:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## METHOD BLANK REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Corona Rd - Petaluma

MATRIX: SOILDATE RECEIVED: 06/02/17DATE SAMPLED: 05/31/17DATE ANALYZED: 06/02/17REPORT TO: MR. PETER CLOVENDATE REPORTED: 06/09/17

METHOD BLANK REPORT FOR LAB I.D.: 170602-27, -33, -35, -39, -42,-43, -44, -46

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	POL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0,005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0,005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0,005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
L, 2-DICHLOROBENZENE	ND	0.005
, 3-DICHLOROBENZENE	ND	0.005
1, 4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
L, 1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
L, 1-DICHLOROETHENE	ND	0.005
CIS-1 2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0,005
1,2-DICHLOROPROPANE	ND	0.005

-- TO HE CONTINUED OF PAGE 12 -----

DATA REVIEWED AND APPROVED BY:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## METHOD BLANK REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Corona Rd - Petaluma

MATRIX:SOILDATDATE SAMPLED:05/31/17DATREPORT TO:MR. PETER CLOVENDAT

DATE RECEIVED: 06/02/17 DATE ANALYZED: 06/02/17 DATE REPORTED: 06/09/17

the second second second second second

METHOD BLANK REPORT FOR LAB I.D. 170602-27, -33, -35, -39, -42, -43, -44, -46

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

1.3-DICHLOROPROPANE         ND         0.005           2.2-DICHLOROPROPANE         ND         0.005           1.1-DICHLOROPROPENE         ND         0.005           CIS-1.3-DICHLOROPROPENE         ND         0.005           TRANS-1.3-DICHLOROPROPENE         ND         0.005           ETHYLBENZENE         ND         0.005           2-HEXANONE         ND         0.005           HEXACLIOROBUTADIENE         ND         0.005           2-HEXANONE         ND         0.005           4-ISOPROPYLEENZENE         ND         0.005           4-ISOPROPYLEENZENE         ND         0.005           4-METHYL-2-PENTANONE (MIBK)         ND         0.005           4-METHYL-2-PENTANONE (MIBK)         ND         0.005           METHYL Lert-BUTYL ETHER (MTBE)         ND         0.005           METHYLENE CHLORIDE         ND         0.005           METHYLENE         ND         0.005           STYRENE         ND         0.005           NPOPYLBENZENE         ND         0.005           1.1.2-TETRACHLOROETHANE         ND         0.005           1.1.2-TETRACHLOROETHANE         ND         0.005           1.1.1-RICHLOROETHANE         ND	PARAMETER	SAMPLE RESULT	PQL X1
2.2-DICHLOROPROPANE         ND         0.005           1.1-DICHLOROPROPENE         ND         0.005           CIS-1.3-DICHLOROPROPENE         ND         0.005           TRANS-1.3-DICHLOROPROPENE         ND         0.005           ETHYLBENZENE         ND         0.005           ETHYLBENZENE         ND         0.005           2-HEXACHLOROBUTADIENE         ND         0.005           15OPROPYLEDZENE         ND         0.005           4-ISOPROPYLTOLUENE         ND         0.005           4-ISOPROPYLTOLUENE         ND         0.005           4-ISOPROPYLTOLUENE         ND         0.005           METHYLE-2-PENTANONE (MIBK)         ND         0.005           METHYLENE CHLORIDE         ND         0.005           METHYLENE CHLORIDE         ND         0.005           NPROPYLBENZENE         ND         0.005           NPROPYLBENZENE         ND         0.005           1.1.2-TETRACHLOROETHANE         ND         0.005           1.1.2-TETRACHLOROETHANE         ND         0.005           1.1.2.2-TETRACHLOROETHANE         ND         0.005           1.1.2.2-TETRACHLOROETHANE         ND         0.005           1.1.2-TRICHLOROETHANE <t< td=""><td>1,3-DICHLOROPROPANE</td><td>ND</td><td>0.005</td></t<>	1,3-DICHLOROPROPANE	ND	0.005
1.1-DICHLOROPROPENE         ND         0.005           CIS-1.3-DICHLOROPROPENE         ND         0.005           TRANS-1.3-DICHLOROPROPENE         ND         0.005           ZHANS-1.3-DICHLOROPROPENE         ND         0.005           Z-HEXANONE         ND         0.005           2-HEXANONE         ND         0.005           2-HEXANONE         ND         0.005           1SOPROPYLBENZENE         ND         0.005           4-ISOPROPYLBENZENE         ND         0.005           4-METHYL-2-PENTANONE (MIBK)         ND         0.005           4-METHYL-2-PENTANONE (MIBK)         ND         0.005           METHYL tert-BUTYL ETHER (MTBE)         ND         0.005           METHYLENE CHLORIDE         ND         0.005           NPROPYLBENZENE         ND         0.005           NPROPYLBENZENE         ND         0.005           NPROPYLBENZENE         ND         0.005           1.1.2-TETRACHLOROETHANE         ND         0.005           1.1.2-Z-TETRACHLOROETHANE         ND         0.005           1.1.2-Z-TETRACHLOROETHANE         ND         0.005           1.2.3-TRICHLOROETHANE         ND         0.005           1.2.4-TRICHLOROETHANE	2,2-DICHLOROPROPANE	ND	0.005
CIS-1, 3-DICHLOROPROPENE         ND         0.005           TRANS-1, 3-DICHLOROPROPENE         ND         0.005           ETHYLBENZENE         ND         0.005           Z-HEXANONE         ND         0.020           HEXACHLOROBUTADIENE         ND         0.005           JSOPROPYLBENZENE         ND         0.005           4-METHYL-2-PENTANONE (MIBK)         ND         0.005           4-METHYL tert-BUTYL ETHER (MTBE)         ND         0.005           METHYL tert-BUTYL ETHER (MTBE)         ND         0.005           METHYLENE CHLORIDE         ND         0.005           METHYLENE CHLORIDE         ND         0.005           METHYLENE         ND         0.005           METHYLENE         ND         0.005           METHYLENE         ND         0.005           METHYLENE         ND         0.005           STYRENE         ND         0.005           1.1.2-TETRACHLOROETHANE         ND         0.005           1.1.2.2-TETRACHLOROETHANE         ND         0.005           1.2.3-TRICHLOROBENZENE         ND         0.005           1.2.4-TRICHLOROBENZENE         ND         0.005           1.2.4-TRICHLOROETHANE         ND         <	1,1-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE         ND         0.005           ETHYLBENZENE         ND         0.005           2-HEXANONE         ND         0.020           HEXACHLOROBUTADIENE         ND         0.005           ISOPROPYLBENZENE         ND         0.005           4-ISOPROPYLBENZENE         ND         0.005           4-METHYL-2-PENTANONE (MIBK)         ND         0.020           METHYL-2-PENTANONE (MIBK)         ND         0.020           METHYL-2-PENTANONE (MIBK)         ND         0.005           METHYL-ENE CHLORIDE         ND         0.005           STYRENE         ND         0.005           STYRENE         ND         0.005           1.1.2-TETRACHLOROETHANE         ND         0.005           1.1.2.2-TETRACHLOROETHANE         ND         0.005           1.2.3-TRICHLOROBENZENE         ND         0.005           1.2.4-TRICHLOROBE	CIS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE         ND         0.005           2-HEXANONE         ND         0.020           HEXACHLOROBUTADIENE         ND         0.005           ISOPROPYLBENZENE         ND         0.005           4-ISOPROPYLBENZENE         ND         0.005           4-METHYL-2-PENTANONE (MIBK)         ND         0.005           4-METHYL-2-PENTANONE (MIBK)         ND         0.005           METHYL tert-BUTYL ETHER (MTBE)         ND         0.005           METHYLENE CHLORIDE         ND         0.005           METHYLENE         ND         0.005           METHYLENE         ND         0.005           NPROPYLBENZENE         ND         0.005           STYRENE         ND         0.005           1.1.2-Z-TETRACHLOROETHANE         ND         0.005           1.1.2.2-TETRACHLOROETHANE         ND         0.005           1.2.3-TRICHLOROETHANE         ND         0.005           1.2.3-TRICHLOROETHANE         ND         0.005           1.2.4-TRICHLOROETHANE         ND         0.005           1.2.3-TRICHLOROETHANE         ND         0.005           1.2.4-TRICHLOROETHANE         ND         0.005           1.1.1-TRICHLOROETHANE         ND	TRANS-1, 3-DICHLOROPROPENE	ND	0.005
2-HEXANONE         ND         0.020           HEXACHLOROBUTADIENE         ND         0.005           ISOPROPYLBENZENE         ND         0.005           4-ISOPROPYLDENZENE         ND         0.005           4-METHYL-2-PENTANONE (MIBK)         ND         0.020           METHYL tert-BUTYL ETHER (MTBE)         ND         0.005           METHYL tert-BUTYL ETHER (MTBE)         ND         0.005           METHYLENE CHLORIDE         ND         0.005           MAPHTHALENE         ND         0.005           NPROPYLBENZENE         ND         0.005           STYRENE         ND         0.005           1.1, 1.2-TETRACHLOROETHANE         ND         0.005           1.1, 1.2-TETRACHLOROETHANE         ND         0.005           1.1, 1.2-TETRACHLOROETHANE         ND         0.005           TOLUENE         ND         0.005           1.1, 2.3-TRICHLOROBENZENE         ND         0.005           1.2, 4-TRICHLOROETHANE         ND         0.005           1.1, 1.TRICHLOROETHANE         ND         0.005           1.1, 1.TRICHLOROETHANE         ND         0.005           1.1, 2-TRICHLOROETHANE         ND         0.005           1.1, 2-TRICHLOROETHANE <td>ETHYLBENZENE</td> <td>ND</td> <td>0.005</td>	ETHYLBENZENE	ND	0.005
HEXACHLOROBUTADIENE         ND         0.005           ISOPROPYLBENZENE         ND         0.005           4-ISOPROPYLDENZENE         ND         0.005           4-METHYL-2-PENTANONE (MIBK)         ND         0.020           METHYL tert-BUTYL ETHER (MTBE)         ND         0.005           METHYL tert-BUTYL ETHER (MTBE)         ND         0.005           METHYLENE CHLORIDE         ND         0.005           NPROPYLBENZENE         ND         0.005           NPROPYLBENZENE         ND         0.005           STYRENE         ND         0.005           1.1, 2TETRACHLOROETHANE         ND         0.005           1.1, 2.2-TETRACHLOROETHANE         ND         0.005           1.1, 2.2-TETRACHLOROETHANE         ND         0.005           1.1, 2.2-TETRACHLOROETHANE         ND         0.005           TOLUENE         ND         0.005           1.1, 2.7-TRICHLOROBENZENE         ND         0.005           1.2, 3-TRICHLOROETHANE         ND         0.005           1.1, 1-TRICHLOROETHANE         ND         0.005           1.1, 1.7-TRICHLOROETHANE         ND         0.005           1.1, 2-TRICHLOROETHANE         ND         0.005           TRICH	2-HEXANONE	ND	0.020
ISOPROPYLBENZENE         ND         0.005           4-ISOPROPYLTOLUENE         ND         0.005           4-METHYL-2-PENTANONE (MIBK)         ND         0.020           METHYL tert-BUTYL ETHER (MTBE)         ND         0.005           METHYL tert-BUTYL ETHER (MTBE)         ND         0.005           METHYL END CHLORIDE         ND         0.005           MAPHTALENE         ND         0.005           N-PROPYLBENZENE         ND         0.005           STYRENE         ND         0.005           1.1.1.2-TETRACHLOROETHANE         ND         0.005           1.1.2.2-TETRACHLOROETHANE         ND         0.005           1.1.2.2-TETRACHLOROETHANE         ND         0.005           1.1.2.2-TETRACHLOROETHANE         ND         0.005           1.1.2.2-TETRACHLOROETHANE         ND         0.005           1.1.2.2-TRICHLOROBENZENE         ND         0.005           1.2.3-TRICHLOROBENZENE         ND         0.005           1.1.1-TRICHLOROETHANE         ND         0.005           1.1.1.2-TRICHLOROETHANE         ND         0.005           1.1.1-TRICHLOROETHANE         ND         0.005           1.2.3-TRICHLOROETHANE         ND         0.005	HEXACHLOROBUTADIENE	ND	0.005
4-ISOPROPYLTOLUENE         ND         0.005           4-METHYL-2-PENTANONE (MIBK)         ND         0.020           METHYL tert-BUTYL ETHER (MTBE)         ND         0.005           METHYL tert-BUTYL ETHER (MTBE)         ND         0.005           METHYL tert-BUTYL ETHER (MTBE)         ND         0.005           METHYLENE CHLORIDE         ND         0.005           NAPHTHALENE         ND         0.005           N-PROPYLBENZENE         ND         0.005           STYRENE         ND         0.005           1.1.2.2-TETRACHLOROETHANE         ND         0.005           1.1.2.2-TETRACHLOROETHANE         ND         0.005           1.1.2.2-TETRACHLOROETHANE         ND         0.005           1.1.2.2-TETRACHLOROETHANE         ND         0.005           1.1.2.2-TRICHLOROBENZENE         ND         0.005           1.2.3-TRICHLOROBENZENE         ND         0.005           1.2.4-TRICHLOROETHANE         ND         0.005           1.1.2-TRICHLOROETHANE         ND         0.005           1.1.2-TRICHLOROETHANE         ND         0.005           1.1.2-TRICHLOROETHANE         ND         0.005           1.2.3-TRICHLOROETHANE         ND         0.005 <tr< td=""><td>ISOPROPYLBENZENE</td><td>ND</td><td>0.005</td></tr<>	ISOPROPYLBENZENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)         ND         0.020           METHYL tert-BUTYL ETHER (MTBE)         ND         0.005           METHYLENE CHLORIDE         ND         0.010           NAPHTHALENE         ND         0.005           N-PROPYLBENZENE         ND         0.005           STYRENE         ND         0.005           1.1.2.2-TETRACHLOROETHANE         ND         0.005           1.1.2.2-TETRACHLOROETHANE         ND         0.005           TETRACHLOROETHANE         ND         0.005           TOLUENE         ND         0.005           1.2.2-TETRACHLOROETHANE         ND         0.005           TOLUENE         ND         0.005           1.2.3-TRICHLOROBENZENE         ND         0.005           1.2.4-TRICHLOROBENZENE         ND         0.005           1.2.4-TRICHLOROETHANE         ND         0.005           1.1.2-TRICHLOROETHANE         ND         0.005           1.1.2-TRICHLOROETHANE         ND         0.005           1.1.2-TRICHLOROETHANE         ND         0.005           1.2.3-TRICHLOROETHANE         ND         0.005           1.2.3-TRICHLOROPROPANE         ND         0.005           1.2.3-TRICHLOROPROPANE	4-ISOPROPYLTOLUENE	ND	0.005
METHYL tert-BUTYL ETHER (MTBE)         ND         0.005           METHYLENE CHLORIDE         ND         0.010           NAPHTHALENE         ND         0.005           N-PROPYLBENZENE         ND         0.005           STYRENE         ND         0.005           1.1.2.2-TETRACHLOROETHANE         ND         0.005           1.1.2.2-TETRACHLOROETHANE         ND         0.005           1.1.2.2-TETRACHLOROETHANE         ND         0.005           TETRACHLOROETHENE (PCE)         ND         0.005           TOLUENE         ND         0.005           1.2.3-TRICHLOROBENZENE         ND         0.005           1.2.4-TRICHLOROBENZENE         ND         0.005           1.2.4-TRICHLOROETHANE         ND         0.005           1.1.1.2-TRICHLOROETHANE         ND         0.005           1.1.1.2-TRICHLOROETHANE         ND         0.005           1.1.1.2-TRICHLOROETHANE         ND         0.005           1.1.2.2-TRICHLOROETHANE         ND         0.005           1.1.2.2-TRICHLOROETHANE         ND         0.005           1.2.3-TRICHLOROFLANE         ND         0.005           1.2.3-TRICHLOROFLANE         ND         0.005           1.2.4-TRIMETHYLBE	4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYLENE CHLORIDE         ND         0.010           NAPHTHALENE         ND         0.005           N-PROPYLBENZENE         ND         0.005           STYRENE         ND         0.005           1, 1, 2TETRACHLOROETHANE         ND         0.005           TETRACHLOROETHENE (PCE)         ND         0.005           TOLUENE         ND         0.005           1, 2, 3-TRICHLOROBENZENE         ND         0.005           1, 2, 4-TRICHLOROBENZENE         ND         0.005           1, 1, 1-TRICHLOROETHANE         ND         0.005           1, 1, 1-TRICHLOROETHANE         ND         0.005           1, 1, 2-TRICHLOROETHANE         ND         0.005           1, 1, 2-TRICHLOROFTHANE         ND         0.005           1, 1, 2-TRICHLOROPROPANE         ND         0.005           1, 2, 3-TRICHLOROPROPANE         ND         0.005           1, 2, 3-TRICHLOROPROPANE         ND         0.005           1, 2, 4-TRIMETHYLBENZENE         ND         0.005           1,	METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
NAPHTHALENE         ND         0.005           N-PROPYLBENZENE         ND         0.005           STYRENE         ND         0.005           1, 1, 2-TETRACHLOROETHANE         ND         0.005           TETRACHLOROETHANE         ND         0.005           TOLUENE         ND         0.005           1, 2, 3-TRICHLOROBENZENE         ND         0.005           1, 2, 4-TRICHLOROBENZENE         ND         0.005           1, 1, 1-TRICHLOROBENZENE         ND         0.005           1, 1, 2-TRICHLOROETHANE         ND         0.005           1, 2, 3-TRICHLOROFENENE         ND         0.005           1, 2, 3-TRICHLOROPROPANE         ND         0.005           1, 2, 4-TRIMETHYLBENZENE         ND         0.005           1, 3, 5-	METHYLENE CHLORIDE	<u>ND</u>	0.010
N-PROPYLBENZENE         ND         0.005           STYRENE         ND         0.005           1, 1, 2-TETRACHLOROETHANE         ND         0.005           1, 1, 2TETRACHLOROETHANE         ND         0.005           1, 1, 2TETRACHLOROETHANE         ND         0.005           TETRACHLOROETHANE         ND         0.005           TETRACHLOROETHANE         ND         0.005           TOLUENE         ND         0.005           1, 2, 3-TRICHLOROBENZENE         ND         0.005           1, 2, 4-TRICHLOROBENZENE         ND         0.005           1, 1, 1-TRICHLOROBENZENE         ND         0.005           1, 1, 1-TRICHLOROETHANE         ND         0.005           1, 1, 2-TRICHLOROETHANE         ND         0.005           1, 1, 2-TRICHLOROETHANE         ND         0.005           1, 1, 2-TRICHLOROETHANE         ND         0.005           1, 2, 3-TRICHLOROETHANE         ND         0.005           1, 2, 3-TRICHLOROPROPANE         ND         0.005           1, 2, 4-TRIMETHYLBENZENE         ND         0.005           1, 3, 5-TRIMETHYLBENZENE         ND         0.005           1, 3, 5-TRIMETHYLBENZENE         ND         0.005	NAPHTHALENE	ND	0.005
STYRENE         ND         0.005           1.1.1.2-TETRACHLOROETHANE         ND         0.005           1.1.2.2-TETRACHLOROETHANE         ND         0.005           TETRACHLOROETHANE         ND         0.005           TETRACHLOROETHENE (PCE)         ND         0.005           TOLUENE         ND         0.005           1.2.3-TRICHLOROBENZENE         ND         0.005           1.2.4-TRICHLOROBENZENE         ND         0.005           1.1.1-TRICHLOROETHANE         ND         0.005           1.1.2-TRICHLOROETHANE         ND         0.005           1.1.2-TRICHLOROETHANE         ND         0.005           1.1.2-TRICHLOROETHANE         ND         0.005           TRICHLOROETHANE         ND         0.005           1.2.3-TRICHLOROETHANE         ND         0.005           TRICHLOROFLUOROMETHANE         ND         0.005           1.2.3-TRICHLOROPROPANE         ND         0.005           1.2.4-TRIMETHYLBENZENE         ND         0.005           1.3.5-TRIMETHYLBENZENE         ND         0.005           VINYL CHLORIDE         ND         0.005           M/P-XYLENE         ND         0.005	<u>N-PROPYLBENZENE</u>	ND	0.005
1,1,1,2-TETRACHLOROETHANE         ND         0.005           1,1,2,2-TETRACHLOROETHANE         ND         0.005           TETRACHLOROETHANE         ND         0.005           TOLUENE         ND         0.005           1,2,3-TRICHLOROBENZENE         ND         0.005           1,2,4-TRICHLOROBENZENE         ND         0.005           1,2,4-TRICHLOROBENZENE         ND         0.005           1,1,1-TRICHLOROETHANE         ND         0.005           1,1,2-TRICHLOROETHANE         ND         0.005           1,1,2-TRICHLOROETHANE         ND         0.005           1,1,2-TRICHLOROETHANE         ND         0.005           1,1,2-TRICHLOROETHANE         ND         0.005           1,2,3-TRICHLOROETHANE         ND         0.005           TRICHLOROFLUOROMETHANE         ND         0.005           1,2,3-TRICHLOROPROPANE         ND         0.005           1,2,4-TRIMETHYLBENZENE         ND         0.005           1,3,5-TRIMETHYLBENZENE         ND         0.005           VINYL CHLORIDE         ND         0.005           M/P-XYLENE         ND         0.005           0-XYLENE         ND         0.005	STYRENE	ND	0.005
1,1,2,2-TETRACHLOROETHANE         ND         0.005           TETRACHLOROETHENE (PCE)         ND         0.005           TOLUENE         ND         0.005           1,2,3-TRICHLOROBENZENE         ND         0.005           1,2,4-TRICHLOROBENZENE         ND         0.005           1,1,1-TRICHLOROBENZENE         ND         0.005           1,1,1-TRICHLOROETHANE         ND         0.005           1,1,2-TRICHLOROETHANE         ND         0.005           1,1,2-TRICHLOROETHANE         ND         0.005           1,1,2-TRICHLOROETHANE         ND         0.005           TRICHLOROETHENE (TCE)         ND         0.005           TRICHLOROFLUOROMETHANE         ND         0.005           1,2,3-TRICHLOROPROPANE         ND         0.005           1,2,4-TRIMETHYLBENZENE         ND         0.005           1,3,5-TRIMETHYLBENZENE         ND         0.005           VINYL CHLORIDE         ND         0.005           M/P-XYLENE         ND         0.010           O-XYLENE         ND         0.005	1, 1, 1, 2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)         ND         0.005           TOLUENE         ND         0.005           1,2,3-TRICHLOROBENZENE         ND         0.005           1,2,4-TRICHLOROBENZENE         ND         0.005           1,1,1-TRICHLOROBENZENE         ND         0.005           1,1,2-TRICHLOROETHANE         ND         0.005           1,1,2-TRICHLOROETHANE         ND         0.005           1,1,2-TRICHLOROETHANE         ND         0.005           TRICHLOROETHANE         ND         0.005           TRICHLOROFLUOROMETHANE         ND         0.005           1,2,3-TRICHLOROPROPANE         ND         0.005           1,2,4-TRIMETHYLBENZENE         ND         0.005           1,3,5-TRIMETHYLBENZENE         ND         0.005           VINYL CHLORIDE         ND         0.005           M/P-XYLENE         ND         0.010           O-XYLENE         ND         0.005	1, 1, 2, 2-TETRACHLOROETHANE	ND	0.005
TOLUENE         ND         0.005           1,2,3-TRICHLOROBENZENE         ND         0.005           1,2,4-TRICHLOROBENZENE         ND         0.005           1,1,1-TRICHLOROETHANE         ND         0.005           1,1,2-TRICHLOROETHANE         ND         0.005           1,1,2-TRICHLOROETHANE         ND         0.005           TRICHLOROETHANE         ND         0.005           TRICHLOROFLUOROMETHANE         ND         0.005           1,2,3-TRICHLOROPROPANE         ND         0.005           1,2,4-TRIMETHYLBENZENE         ND         0.005           1,2,4-TRIMETHYLBENZENE         ND         0.005           1,3,5-TRIMETHYLBENZENE         ND         0.005           VINYL CHLORIDE         ND         0.005           M/P-XYLENE         ND         0.005           0-XYLENE         ND         0.005	TETRACHLOROETHENE (PCE)	ND	0.005
1,2,3-TRICHLOROBENZENE         ND         0.005           1,2,4-TRICHLOROBENZENE         ND         0.005           1,1,1-TRICHLOROETHANE         ND         0.005           1,1,2-TRICHLOROETHANE         ND         0.005           1,1,2-TRICHLOROETHANE         ND         0.005           TRICHLOROETHANE         ND         0.005           TRICHLOROFLUOROMETHANE         ND         0.005           1,2,3-TRICHLOROPROPANE         ND         0.005           1,2,4-TRIMETHYLBENZENE         ND         0.005           1,3,5-TRIMETHYLBENZENE         ND         0.005           1,3,5-TRIMETHYLBENZENE         ND         0.005           M/P-XYLENE         ND         0.005           M/P-XYLENE         ND         0.010           O-XYLENE         ND         0.005	TOLUENE	ND	0.005
1, 2, 4-TRICHLOROBENZENE         ND         0.005           1, 1, 1-TRICHLOROETHANE         ND         0.005           1, 1, 2-TRICHLOROETHANE         ND         0.005           TRICHLOROETHENE (TCE)         ND         0.005           TRICHLOROFLUOROMETHANE         ND         0.005           1, 2, 3-TRICHLOROPROPANE         ND         0.005           1, 2, 4-TRIMETHYLBENZENE         ND         0.005           1, 3, 5-TRIMETHYLBENZENE         ND         0.005           VINYL CHLORIDE         ND         0.005           M/P-XYLENE         ND         0.005           0-XYLENE         ND         0.005	1,2,3-TRICHLOROBENZENE	ND	0.005
1, 1, 1-TRICHLOROETHANE       ND       0.005         1, 1, 2-TRICHLOROETHANE       ND       0.005         TRICHLOROETHENE (TCE)       ND       0.005         TRICHLOROFLUOROMETHANE       ND       0.005         1,2,3-TRICHLOROPROPANE       ND       0.005         1,2,4-TRIMETHYLBENZENE       ND       0.005         1,3,5-TRIMETHYLBENZENE       ND       0.005         VINYL CHLORIDE       ND       0.005         M/P-XYLENE       ND       0.010         O-XYLENE       ND       0.005	1, 2, 4-TRICHLOROBENZENE	ND	0.005
1, 1, 2-TRICHLOROETHANE         ND         0.005           TRICHLOROETHENE (TCE)         ND         0.005           TRICHLOROFLUOROMETHANE         ND         0.005           1, 2, 3-TRICHLOROPROPANE         ND         0.005           1, 2, 4-TRIMETHYLBENZENE         ND         0.005           1, 3, 5-TRIMETHYLBENZENE         ND         0.005           VINYL CHLORIDE         ND         0.005           M/P-XYLENE         ND         0.010           O-XYLENE         ND         0.005	1, 1, 1-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)         ND         0.005           TRICHLOROFLUOROMETHANE         ND         0.005           1,2,3-TRICHLOROPROPANE         ND         0.005           1,2,4-TRIMETHYLBENZENE         ND         0.005           1,3,5-TRIMETHYLBENZENE         ND         0.005           VINYL CHLORIDE         ND         0.005           M/P-XYLENE         ND         0.010           O-XYLENE         ND         0.005	1, 1, 2-TRICHLOROETHANE	ND	005
TRICHLOROFLUOROMETHANE         ND         0.005           1,2,3-TRICHLOROPROPANE         ND         0.005           1,2,4-TRIMETHYLBENZENE         ND         0.005           1,3,5-TRIMETHYLBENZENE         ND         0.005           VINYL CHLORIDE         ND         0.005           M/P-XYLENE         ND         0.010           O-XYLENE         ND         0.005	TRICHLOROETHENE (TCE)	ND	0.005
1,2,3-TRICHLOROPROPANE         ND         0.005           1,2,4-TRIMETHYLBENZENE         ND         0.005           1,3,5-TRIMETHYLBENZENE         ND         0.005           VINYL CHLORIDE         ND         0.005           M/P-XYLENE         ND         0.010           O-XYLENE         ND         0.005	TRICHLOROFLUOROMETHANE	ND	0.005
1,2,4-TRIMETHYLBENZENE         ND         0.005           1,3,5-TRIMETHYLBENZENE         ND         0.005           VINYL CHLORIDE         ND         0.005           M/P-XYLENE         ND         0.010           O-XYLENE         ND         0.005	1,2,3-TRICHLOROPROPANE	ND	0.005
1,3,5-TRIMETHYLBENZENE         ND         0.005           VINYL CHLORIDE         ND         0.005           M/P-XYLENE         ND         0.010           O-XYLENE         ND         0.005	1,2,4-TRIMETHYLBENZENE	ND	<u>0.005</u>
VINYL CHLORIDE         ND         0.005           M/P-XYLENE         ND         0.010           O-XYLENE         ND         0.005	1, 3, 5-TRIMETHYLBENZENE	ND	0.005
M/P-XYLENE         ND         0.010           O-XYLENE         ND         0.005	VINYL CHLORIDE	ND	0.005
<u>0-XYLENE ND 0.005</u>	M/P-XYLENE	ND	0.010
	<u>O-XYLENE</u>	ND	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT ND = NON-DETECTED OR BELOW THE PQL

DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Ave	nue, Pomo	na, CA 917	66	Tel (90	9)590-5905	Fax (	909)590-59	07	
			8260B QA	/QC Repor	t				
Data Applyzad	6/2.32347						Matrix:	Solid/Soll/L	iquid
Machine:	C						Unit:	mg/Kg (PP	<u>M)</u>
Matrix Spike (MS)/Matri	ix Spike Du	plicate (MSI	)						
Spiked Sample Lab I.D.	1	170602-15	MS/MSD				0/ DD=		
Analyte	<u>₽</u> .R	spk conc	MS	%RC	MSD	%RC	%RP	ACP %RC	ACP RPD
3enzene	0	0.050	0.061	122%	0.058	116%	6%	75-125	0-20
Chlorobenzene	0	0.050	0.054	108%	0.054	108%	0%	75-125	0-20
,1-Dichloroethene	0	0.050	0.057	114%	0.055	110%	470	75 125	0-20
Foluene	0	0.050	0.060	120%	0.058	104%	4 70	75 125	0-20
Frichloroethene (TCE)	0	0.050	0.050	100%	0.052	10/41%0	4 70	70-120	0-20
ab Control Spike (LCS	s);								
Analyte	spk conc	LCS	%RC	ACP %RC					
Benzene	0.050	0.059	118%	75-125					
Chlorobenzene	0.050	0.051	102%	75-125	1				
Chloroform	0.050	0.056	112%	75-125					
,1-Dichlorothene	0.050	0.061	122%	75-125					
Ethylbenzene	0.050	0.041	82%	75-125					
-Xylene	0.050	0.057	114%	75-125					
n,p-Xylene	0.100	0.119	119%	75-125					
oluene	0.050	0.056	112%	75-125					
,1,1-Trichloroethane	0.050	0.053	106%	75-125					
Frichloroethene (TCE	0.050	0.049	98%	75-125					
Surrogate Recovery	enk conc	ACP %RC	MB %BC	%RC	%RC	~ %RC	%RC	%RC	%RC
Sample I D	эрк сопс	7.07 /01.0	M-BLK	170602-15	170602-20	170022-27	170027-30	TID B2538	176602-29
)ibromofluoromethane	- 55/0	70-1:20	126%	120%	1013%	90%	124%	126%	141*%
oluono_d8	50.0	70-130	109%	107%	92%	87%	103%	95%	109%
L-Bromofluprobenzene	50.0	70-130	88%	89%	16*%	0*%	49*%	43*%	83%
-brombildorobenzene	1 treese	10-100	007/	0074	10 //				
Surrogate Recover	spk conc	ACP %RC	%RC	%RC	%RC	%RC	%RC	%RC	%RC
Sample I.D.			170602-42	470802-43	170002-44	170 162 46	170002-111	170902-114	170865-116
Dibromofluoromethane	50.0	70-130	115%	116%	135*%	120%-	141*%	113*%	139*%
oluene-d8	60.0	70-130	107%	104%	100%	107%	112%	115%	2111%
-Bromofluorobenzene	80.0	70-130	63*%	78%	78%	82%	87%	85%	86%
Surroante Decever	onk conc		04.PC	%pC	WRC.	%RC	%RC	5.80	MRG
Sample LD	SPK CODC	AUF 70RU			1 mail	170041.011	174443.412	-	
	40.5	70 120	150+0/	4.4.1*0/	1/2*0/	130%	1 101%	_	
	1000	70-130	100.%	141 %	140 70	13070	10170	1	
l oluene-dð	40.0	70-130	000/	000/	070/	84%	84%	-	
-Bromotiuorobenzene	20.0	70-130	00%	00%	0170	0-170	0470		
- Succession fail due to	matrix interf	aranco: LC	S MS MSD	are in contr	ol therefore i	the analysis	is in control.		
- Surroyale fall cue to	maank intern		0, 100, 1000		%RC = Poi	cent Recove	anv		
o.n Gample Results	ntrotion				ACP % PC	= Accented	Percent Rei	coverv	
spk conc = spike Conce MS = Motin Selles	ntration	10.000				hiy Snike Du	nlicate	,	
из = маілх Spike		D				an opine Du	protect		
Analyzed/Reviewed By		a	<u></u>						
	(In	1 6							
rinal Reviewer:	16.00 P								

Misc.POB	COMENTS	99						11000	Hert		hour		Here	Hold I	HOUD		Ire: C	R.L.	Petrolana	for Sample Storage After Analysis:	· O Return to Client 🔮 Store (30 Days)		Page of U
	alysis Required																Sampler's en atu	Project Nafme/ID:		Instructions	O Dispose of	at The O Other:	
F CONTRINERS BRUTARE NOITAVRE NOITAVRE	<b>Ал</b> темр ио. О	1410		XX						XX		XX			N - N	XXAL	Project Comments	Tel: 925/345-03	Fax:	TRAC	5		CUSTODY RECORD H SAMPLE • YELLOW TO CLIENT
irround Time e Day lours lours lours	SAMPLING	0740 Ser	OT45	0740	D'HSK	0280	082	0954	1000	1010	iors	1025	1035	1250	1255	1300	100 million (100 million)		517	Received by Ol	Received by:	Received by:	CHAIN OF WHITE WITT
aboratories         Turna 0 Sam 0	DA	YES-10902.	1, 90- 1	12-	35	22-	1-30	14	132	-33	12-	35	-36	-37	200	1 12- 1	Manuell	, 404	an CH 94	LX	Chtrat		
Enviro-Chem, Inc. L 1214 E. Lexington Ave Pomona, CA 91766 Tel: (909) 590-5905 Fax: ( CA-DHS ELAP CERTIFICA	SAMPLEID	14-8-5	Mu-8-10	M8-15	MW-8-17	MW-8-20	MW-8-25	MW-4-5	MUL-4-10	MW-4-15	MW-4-20	Miv-4-25	Miv -4-27-	Mn-1-5	01-1-NW	Mu-1-15	Company Name:	Address: D.O. Bay	City/State/Zip:	Reserved Dy - J. C.	Relinquished by:	Relinquished by:	Date: 6///7

ŧ



# Enviro – Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

Date: June 9, 2017

Mr. Peter Cloven
Pinnacle Environmental, Inc
P.O. Box 904
Clayton, CA 94517
(925)673-5500 Email: pcloven@pei-env.com

Project: Corona Rd - Petaluma LAB I.D.: 170602-13 through -24

Dear Mr. Cloven:

The **analytical results** for the soil samples, received by our laboratory on June 2, 2017, (via OnTrac), are attached. The samples were received chilled, intact and accompanying chain of custody record.

Enviro-Chem appreciates the opportunity to provide you and your company this and other services. Please do not hesitate to call us if you have any questions.

Sincerely,

Curtis Desilets Vice President/Program Manager

Harl

Andy Wang -Laboratory Manager

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER:	Pinnacle Environmenta	al, Inc	
	P.O. Box 904		
	Clayton, CA 94517		
	(925)673-5500 Email:	pcloven@pei-env.com	
PROJECT:	Corona Rd - Petaluma		
		DATE RECEIVED:06/	(02/17
MATRIX: SO1	Ъ	DATE EXTRACTED:00	5/05/1

MATRIX:SOILDATEEXTRACTED:06/05/17DATESAMPLED:05/30/17DATEANALYZED:06/05-06/17REPORTTO:MR. PETER CLOVENDATEREPORTED:06/09/17

TOTAL PETROLEUM HYDROCARBONS (TPH) - CARBON CHAIN ANALYSIS METHOD: EPA 8015B

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

SAMPLE I.D.	LAB I.D.	C4-C10	C11-C22	C23-C35	DF
<u>MW-3-15</u>	170602-15	ND	ND	ND	- 65
<u>MW-2-10</u>	170602-20	ND	ND	ND	1
METHOD BLANK		NP	MR	80	- 1
	PQL	10	10	50	

### COMMENTS

C4-C10 = GASOLINE RANGE C11-C22 = DIESEL RANGE C23-C35 = MOTOR OIL RANGE DF = DILUTION FACTOR PQL = PRACTICAL QUANTITATION LIMIT ACTUAL DETECTION LIMIT = DF X PQL ND = NON-DETECTED OR BELOW THE ACTUAL DETECTION LIMIT

Data Reviewed and Approved by: ______ CAL-DHS ELAP CERTIFICATE No.: 1555

			E	Enviro Che	m, Inc				
1214 E. Le	kington	Avenue, F	Pomona,	CA 91766	6 Te	I (909)590	-5905	Fax (909)5	90-5907
		8	015E	B QA/Q	C Re	port			
Date Analyzed	:	6/5-6/6/20	017				Units:	mg/Kg (p	pm)
Matrix:	Soil/	Solid/S	Sludg	<u>le/Liqu</u>	uid				
Matrix Spike (N	/IS)/Mat	rix Spike D	ouplicate	e (MSD)					
Spiked Sample	e Lab I.C	).:	17060	)1-100	MS/M	SD			
Analyte	SR.	spk conc	MS	%MS	MSD	MISO	5,890	ACP 9MS	ACP RPO
C11~C22 Range	0	200	189	94%	192	96%	1%	75-125	0-20%
LCS STD REC Analyte : C11~C22 Range	OVERY: spk cond 200	: LCS 188	% REC 94%	ACP 75-125					
Analyzed and I	Reviewe	ed By:	p	2					
Final Reviewe	r:	æ		-					
						-			

Enviro – Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LA CUSTOMER: Pinnacle Environm P.O. Box 904 Clayton, CA 94517 (925)673-5500 Ema	BORATORY REPORT ental, Inc il: pcloven@pei-env	.com
PROJECT: Corona Rd - Petal	uma	
DATE SAMPLED: 05/30/17 REPORT TO: MR. PETER CLOVEN	DATE RECE DATE ANAI DATE REPO	SIVED: <u>06/02/17</u> SYZED: <u>06/02/17</u> DRTED: <u>06/09/17</u>
SAMPLE I.D.: MW-3-15	LAB I.D.:	170602-15
ANALYSIS: VOLATILE ORGANI UNIT: mg/Kg =	CCS, EPA METHOD 5030 MILLIGRAM PER KILOO	DB/8260B, PAGE 1 DF 2 GRAM = PPM
A CERONE	SAMPLE RESULT	PQL X1
ACETONE DENZENE	ND	<u>U.020</u>
DENZENE	ND	0.005
DESIGNERATION.	ND	0.005
PROMODI CUIT OD ON DESUGA	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
DROMON DRM	ND	0.005
D DIMENSIONE (WERE	ND	0.005
Z-BUTANONE (MEK	ND	0.020
D-BOTTLEENEDAE	ND	0.005
ILC-BUTTLBENZENE	ND	0.005
TERT-BOTTLBERZERE	<u>ND</u>	0.005
LARBON DIBULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
Z-CHLOROTOLUENE	ND	0.005
1-CHLOROTOLOENE	ND	0.005
OTBROMOCHLOROMETHANE	ND	0.005
1,2-DIBRONG-3-CHLOROPHOPANK	ND	0.005
1,2-DIHRONGETHAME	ND	0.005
DIBROMOMETHANE	ND	0.005
1. Z-DICHLOSOBENZENE	ND	0.005
1, 3-DICHLOROBENZEME	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUXSROMETHAME	ND	0.005
1.1-DICHLORGETHANE	ND	0.005
1.Z-DICHLOROETMANE	ND	0.005
1.1-DICHLOROETHERE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLONCETHINE	ND	0.005
The second s	110	

----- TO BE CONTINUED ON PAGE 12 -----

Cell

DATA REVIEWED AND APPROVED BY:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Corona Rd - Petaluma

MATRIX: SOIL	DATE RECEIVED: 06/02/17
DATE SAMPLED: 05/30/17	DATE ANALYZED:06/02/17
REPORT TO: MR. PETER CLOVEN	DATE REPORTED: 06/09/17

SAMPLE I.D.: MW-3-15

and the second sec

LAB I.D.: 170602-15

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2

<b>UNIT:</b> $mg/Kg = MJ$	LLIGRAM PER KILOGRAM	= PPM
PARAMETER	SAMPLE RESULT	PQL X1
1.1-DICHLOROPHOPANE	ND	0.005
2.2-DICHLOROPROPAME	ND	0.005
1,1-DUCHLOROPROPEMU	ND	0.005
CIN-1, 3-DICHLOROPROPENE	ND	0.005
THANS-1, J-DICHLOROPHOPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACULOROBOTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
A-INOPROPYL/TOLDENE	ND	0.005
<u>4-METHYL-2-PENTANONE (MIBK</u>	ND	0.020
METHYL LEEL-BUTYL STHER (MTHE)	ND	0.005
METHYLENE CHICRIDE	ND	0.010
NAPHTHALENE	ND	0.005
<u>N-PROPYLBENZENE</u>	ND	0.005
STYRENE	ND	0.005
1, 1, 1, 2-TETRACHLOROETHAKE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLORGETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1.7.4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1.1.2-TRICHLOBARTHANE	ND	0.005
TRICHLOROSTHENE (TOE)	ND	0.005
TRICHLORDIT.UOROMETHANS	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1.2.4-TRIMETHYLBENZENE	ND	0.005
1, J. S. TRIMETRYLHENZERS	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
<u>O-XYLENE</u>	ND	0.005
COMMENTS PQL = PRACTICAL QUANTI	TATION LIMIT	

ND = NON-DETECTED OR BELOW THE POL .

DATA REVIEWED AND APPROVED BY:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925) 673-5500 Email: pcloven@pei-env.com Corona Rd - Petaluma PROJECT: MATRIX: SOIL DATE RECEIVED: 06/02/17 DATE SAMPLED: 05/30/17 DATE ANALYZED: 06/02/17 REPORT TO: MR. PETER CLOVEN DATE REPORTED: 06/09/17 SAMPLE I.D.: MW-2-10 LAB I.D.: 170602-20 ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2 **UNIT:** mg/Kg = MILLIGRAM PER KILOGRAM = PPM PARAMETER SAMPLE RESULT POL X1 ACETONE ND 0.020 BENZENE ND 0.005 BROMOBENZENE ND 0.005 BROMOCHLOROMETHANE ND 0.005 IROMODICHLOROMETHANE ND 0.005 BROMOFORM ND 0.005 BROMOMETHANE ND 0.005 2-BUTANONE (MEK ND .020 N-BUTYLBENZENE ND 0.005 SEC-BUTYLBENZENE ND 0.005 TERT-BUTYLBENEONS: ND 0.005 CARSON DIBULFICE ND 0.010 CARBON TETRACHLORIDE ND 0.005 CHLOROBENZENE ND 0.005 CHLOROETHANE ND 0.005 CHLOROFORM ND 0.005 CHLOROMETHANE ND 0.005 2-CHLOROVOLUENE ND 0.005 4-CHLOROTOLUENX ND 0.005 DIBROMOCHLOROMETHANE ND 0.005 1.2-DIBROND-3-CHLOROPROPANE ND 0.005 1,2-DIBROMOSTRANE ND 0.005 OIBROMOMETHANS: ND 0.005 I_2-DICHLOROBENSERS ND 0.005 1.1-DICHLOROBEWSENE ND 0.005 1.4-DICHLOROBENZENE ND 0.005 DICHLORODIFLUOROMETHANE ND 0.005 1,1-DICHLOROETHANE ND 0.005 1,2-DICHLOROETHANE ND 0.005 1,1-DICHLOROSTHENS ND 0.005 CIN-1, 2-DICHLOROETHEWE ND 0.005 TRANS-1, 2-DICHLOROETHENE ND 0.005 1.2-DICHLOSOPSOPANE ND 0.005

TO BE CONTINUED ON PAGE

DATA REVIEWED AND APPROVED TY

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER:	Pinnacle Environmental, Inc
	P.O. Box 904
	Clayton, CA 94517
	(925)673-5500 Email: pcloven@pei-env.com
PROJECT:	Corona Rd - Petaluma

MATRIX: SOIL	DATE RECEIVED: 06/02/17
DATE SAMPLED: 05/30/17	DATE ANALYZED: 06/02/17
REPORT TO: MR. PETER CLOVEN	DATE REPORTED: 06/09/17

SAMPLE I.D.: MW-2-10

and the local data and the second

LAB I.D.: 170602-20

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2

<b>UNIT:</b> $mg/Kg = MI$	LLIGRAM PER KILOGH	RAM = PPM
PARAMETER	SAMPLE RESULT	PQL X1
1, 3-DICHLOROFEOPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1.3-DICHLOROPHOPENE	ND	0.005
TRANS-1, 1-DICHLOROPHOPENC	ND	0.005
ETHYLBENZENE	ND	0.005
<u>2-hexanone</u>	ND	0.020
HEXACHLOBOBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
<u>4-ISOPROPYLTOLUENE</u>	ND	0.005
A-METHYL-2-PENTANONE (MIDE)	ND	0.020
METHYL LARL-BUTYL ETHER INTHE!	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLERWEINE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1.1.2.2-TETRACHLOBOETHARE	ND	0.005
TETRACHLOROSTHEME (PCE)	ND	0.005
TOLUENE	ND	0.005
1, 2, 3-TEICHLOROGENZENE	ND	0.005
1.2.4-TRICHLOROBENZENE	ND	0.005
1.1.1-TRICHLOROSTHAND	ND	0.005
1, 1, 2-TRICHLOBOUTHANE	ND	0.005
IRICHLOBORTHENE (TCE)	ND	0.005
TRICHLOROFLOOROMETHANS	ND	0.005
1.2.3-TRICHLOROPHOPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETRYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005
COMMENTS PQL = PRACTICAL QUANTI	TATION LIMIT	

ND = NON-DETECTED OR BELOW THE NOL

DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# METHOD BLANK REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Corona Rd - Petaluma

MATRIX: SOIL	DATE RECEIVED: 06/02/17
DATE SAMPLED: 05/30/17	DATE ANALYZED: 06/02/17
REPORT TO: MR. PETER CLOVEN	DATE REPORTED: 06/09/17

METHOD BLANK REPO	ORT FOR LAB I.D.:	170602-15, -20
ANALYSIS: VOLATILE ORGANI UNIT: mg/Kg =	CS, EPA METHOD 503 MILLIGRAM PER KILO	30B/8260B, PAGE 1 OF 2 DGRAM = PPM
PARAMETER	SAMPLE RESULT	POL X1
ACETONE	ND	0,020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK	ND	0.020
<u>N-BUTYLBENZENE</u>	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
<u>2-CHLOROTOLUENE</u>	ND	0.005
<u>4-CHLOROTOLUENE</u>	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0,005
1, 3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1, 1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1, 2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

--- TO BE CONTINUED ON PAGE

DATA REVIEWED AND APPROVED BY

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# METHOD BLANK REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Corona Rd - Petaluma

MATRIX: SOIL	DATE RECEIVED:06/02/17
DATE SAMPLED: 05/30/17	DATE ANALYZED:06/02/17
REPORT TO: MR. PETER CLOVEN	DATE REPORTED: 06/09/17
	***************************************

METHOD BLANK REPORT FOR LAB I.D.: 170602-15, -20

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIE-1, 3-DICHLOSOPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
-SETHYL-2-PENTABONE (BIBE)	ND	0.020
SETHYL LEFT-BUTYL ETHER (MTRE)	ND	0.005
SETHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1, 1, 1, 2-TETRACHLORGETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
ETRACHLOBORTHENS (PCE)	ND	0.005
TOLUENE	ND	0.005
.2.3-THICHLOROHENZENE	ND	0.005
L.2.4-TRICHLOBOBENZENE	ND	0.005
1.1.1-TRICHLOROETHANU	ND	0.005
1.2-TRICHLOROSTHAME	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TELCHLOWOFLOOROMETHANE	ND	0.005
.2.3-TRICHLOROPPOPARE	ND	0.005
1, Z. 4-ZRIMETHYLDERZERE	ND	0.005
4.3, 5-THIMKTHYLBENZERE	ND	0.005
VINYL CHLORIDE	ND	0.005
1/P-XYLENE	ND	0.010
)-XYLENE	ND	0.005

hit.

1214 E. Lexington Ave	enue, Pom	ona, CA 917	Enviro-Chi 766	em, Inc. Tel (9	09)590-590: -*	5 Fax	(909)590-59	07	
62.7			82608 QA	VQC Repo	π				
ane Analyzed;	6/2-3/201						Matrix:	SolipBoll	Liquid
Machine:	<u>e</u>						Unit:	maKa iPP	MI
Matrix Spike (MS)/Matr	ix Spike Du	plicate (MS	D)						
Spiked Sample Lab I.D	<u>.:</u>	170602-15	MS/MSD		_	_			
Analyte	<u>.R</u>	spk conc	MS	%RC	MSD	%RC	%RP	ACP %RC	ACP RPD
Benzene	0	0.050	0.061	122%	0.058	116%	6%	75-125	0-20
Chlorobenzene	0	0.050	0.054	108%	0.054	108%	0%	75-125	0-20
1,1-Dichloroethene	0	0.050	0.057	114%	0.055	110%	4%	75-125	0-20
Toluene	0	0.050	0.060	120%	0.058	116%	4%	75-125	0-20
Trichloroethene (TCE)	0	0.050	0.050	100%	0.052	104%	4%	75-125	0-20
Lab Control Spike ILCS	s):								
Analyte	spk conc	LCS	%RC	ACP %RC					
Benzene	0.050	0.059	118%	75-125					
Chlorobenzene	0.050	0.051	102%	75-125					
Chloroform	0.050	0.056	112%	75-125					
1,1-Dichlorothene	0.050	0.061	122%	75-125					
Ethylbenzene	0.050	0.041	82%	75-125	1				
p-Xylene	0.050	0.057	114%	75-125					
m,p-Xylene	0.100	0.119	119%	75-125	1				
Foluene	0.050	0.056	112%	75-125					
1,1,1-Trichloroethane	0.050	0.053	106%	75-125	1				
Trichloroethene (TCE)	0.050	0.049	98%	75-125	S				
Surrogate Recovery	spk conc	ACP %RC	MB%RC	%RC	%RC	%RC	%RC	%RC	%RC
Sample I.D.	1 I		M-BLH	170602-15	170602-20	170602-27	170602-33	170602-35	170602-39
Dibromofluoromethane	10.0	70-130	126%	120%	1013%	90%	124%	126%	141*%
Foluene-d8	- 50.0	70-130	109%	107%	92%	87%	103%	95%	109%
4-Bromofluorobenzene	50.0	70-130	88%	89%	16*%	<b>1</b> *%	49*%	43*%	83%
Surrogate Recovery	spk conc	ACP %RC	%RC	%RC	%RC	%RC	%RC	%RC	%RC
Sample I.D.			170602-42	170602-43	170602-44	170602-46	170602-113	170602-114	170602-11
Dibromofluoromethane	10.g	70-1:30	115%	116%	135*%	120%	141*%	113*%	139*%
Toluene-d8	50.0	70-130	107%	1045	1001	107%	10%	110	100 10
4-Bromofluorobenzene	50.0	70-130	63*%	78%	78%	82%	87%	85%	86%
Surrogate Recovery	spk conc	ACP %RC	%RC	%BC	%RC	%RC	%BC	SURE	SIDC
Sample I.D.			170602-116	170602-117	170602-118	170602-111	170602-112		1000
Dibromofluoromethane	50.0	70-130	156*%	141*%	148*%	130%	101%		
oluene-d8	50.0	70-130	114%	110%	113%	113%	108%		1 <u> </u>
-Bromofluorobenzene	50.0	70-130	86%	85%	87%	84%	84%		-
= Surrogate fail due to i R. = Sample Results k conc = Spike Concer	matrix interfe	erence; LC	s, MS, MSD	are in contro	ol therefore t %RC = Per ACP %RC =	he analysis for the analysis for the analysis for the cover and the cove	is in control. ary Percent Rec	overy	
no = matrix Spike malyzed/Reviewed By	00	By			MSD ≈ Mat	nx Spike Du	plicate		



# Enviro – Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

Date: June 12, 2017

Mr. Peter Cloven Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com

Project: Corona Rd - Petaluma LAB I.D.: 170606-8 through -36

Dear Mr. Cloven:

The **analytical results** for the soil samples, received by our laboratory on June 6, 2017, (via OnTrac), are attached. The samples were received chilled, intact and accompanying chain of custody record.

Enviro-Chem appreciates the opportunity to provide you and your company this and other services. Please do not hesitate to call us if you have any questions.

Sincerely,

Curtis Desilets Vice President/Program Manager

y Wang

Laboratory Manager

## 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER:	Pinnacle Environmenta: P.O. Box 904	l, Inc	
	Clayton, CA 94517 (925)673-5500 Email: j	pcloven@pei	-env.com
PROJECT:	Corona Rd - Petaluma		
		DATE	RECEIVED:06
MATRIX: SOI	L	DATE	EXTRACTED: 0
DATE SAMPT	ED-06/01&06/02/17	DATE	ANALYZED: 06

REPORT TO:<u>MR. PETER CLOVEN</u>

DATE RECEIVED:06/06/17 DATE EXTRACTED:06/07/17 DATE ANALYZED:06/07/17 DATE REPORTED:06/12/17

## TOTAL PETROLEUM HYDROCARBONS (TPH) - CARBON CHAIN ANALYSIS METHOD: EPA 8015B

## UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

SAMPLE I.D.	LAB I.D.	C4-C10	C11-C22	C23-C35	DF
MW-6-15	170606-10	ND	ND	ND	1
MW-6-20	170606-11	ND	ND	ND	1
MW-7-15	170606-17	ND	ND	<u>ND</u>	1
MW-7-20	170606-18	ND	ND	ND	1
SB-4-5	<u>170606-21</u>	ND	ND	ND	1
SB-4-15	170606-23	ND	ND	ND	1
SB-3-15	<u>170606-27</u>	<u>ND</u>	ND	ND	1
SB-5-5	170606-29	ND	ND	ND	1
<u>SB-5-15</u>	<u>170606-31</u>	ND	ND	ND	1
<u>SB-6-10</u>	170606-34	ND	ND	ND	1
SB-6-15	170606-35	ND	<u>ND</u>	ND	1
METHOD BLANK		ND	HD	ND	
	POL	10	19	50	

### COMMENTS

C4-C10 = GASOLINE RANGE C11-C22 = DIESEL RANGE DF = DILUTION FACTOR PQL = PRACTICAL QUANTITATION LIMIT ACTUAL DETECTION LIMIT = DF X PQL ND = NON-DETECTED OR BELOW THE ACTUAL DETECTION LIMIT

Data Reviewed and Approved by: CAL-DHS ELAP CERTIFICATE No.: 1555

			Ë	nviro Che	em, Inc				
1214 E. Lex	xington A	venue, l	Pomona,	CA 9176	6 Te	l (909)590-	<b>5905</b> 1	Fax (909)5	90-5907
		8	8015B	QA/G	C Re	port			
Date Analyzed	1: 6	6/7 <u>/2017</u>				1	Units:	<u>mg/Kg (p</u>	pm)
Matrix:	Soil/S	olid/	Sludg	e/Liq	uid				
Matrix Snike (	MSV/Matrix	x Spike	Duplicate	(MSD)					
Spiked Sample Lab I.D.: 170606-10 MS			/IS/MS	SD					
Analvte	SR	spk conc	MS	WAts	MSO	MSD	SRPD	ACP %MS	ACP R
C11~C22 Range	0	200	215	108%	214	107%	1%	75-125	0-20
LCS STD REC	OVERY:	1.66	IN DEC	ACP					
Analyte	apk cond	240	108%	75-125					
C11~C22 Range	200	210	105%	19-129					
Analyzed and	l Reviewed	d By:	p	<u>_</u>					
	8								

# 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Corona Rd - Petaluma

MATRIX: <u>SOIL</u>	DATE RECEIVED: <u>06/06/17</u>
DATE SAMPLED: 06/01/17	DATE ANALYZED: 06/07/17
REPORT TO: MR. PETER CLOVEN	DATE REPORTED: 06/12/17

SAMPLE I.D.: MW-6-15

LAB I.D.: 170606-10

-

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	POL X10*
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.00
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	<u>0.005</u>
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1.2-DIBROMORTHRNE	100	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1, 2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

----- TO BE CONTINUED ON PAGE #2 -----

610

DATA REVIEWED AND APPROVED

# 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Corona Rd - Petaluma

DATE SAMPLED:06/01/17DATE ANALYZED:06/07/1REPORT TO:MR. PETER CLOVENDATE REPORTED:06/12/1	MATRIX: <u>SOIL</u>	DATE RECEIVED: <u>06/06/17</u>
REPORT TO: MR. PETER CLOVEN DATE REPORTED: 06/12/1	DATE SAMPLED: 06/01/17	DATE ANALYZED: 06/07/17
	REPORT TO: MR. PETER CLOVEN	DATE REPORTED: 06/12/17

SAMPLE I.D.: MW-6-15

LAB I.D.: 170606-10

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X10*
1, 3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1, 3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.02
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1, 1, 2, 2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOHOMENEENE	ND	0,005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
<u>O-XYLENE</u>	ND	0.005
COMMENTS PQL = PRACTICAL QUANT	ITATION LIMIT	

ND = NON-DETECTED OR BELOW THE PQL

* = POL RAISED DUE TO MATRIX INTEREFERENCE

DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555
#### 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Corona Rd - Petaluma

MATRIX: SOIL	DATE RECEIVED: 06/06/17
DATE SAMPLED:06/01/17	DATE ANALYZED: 06/06/17
REPORT TO:MR. PETER CLOVEN	DATE REPORTED: 06/12/17

SAMPLE I.D.: MW-6-20

LAB I.D.: 170606-11

10 - 10 -

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

----

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
BEC-BOTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROND-3-CHLOROPROPARE	ND	0.005
-DIBROMO	80	0.003
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1.4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1.1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1.1-DICHLOROETHENE	ND	0.005
CIS-1, 2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

----- TO HE CONTINUED, ON PAGE #2 ----

DATA REVIEWED AND APPROVED BY:

## 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925) 673-5500 Email: pcloven@pei-env.com Corona Rd - Petaluma PROJECT:

MATRIX:SOIL	DATE RECEIVED: 06/06/1/
DATE SAMPLED:06/01/17	DATE ANALYZED: 06/06/17
REPORT TO:MR. PETER CLOVEN	DATE REPORTED: 06/12/17

SAMPLE I.D.: MW-6-20

CAL-DHS CERTIFICATE # 1555

LAB I.D.: 170606-11

PARAMETER	SAMPLE RESULT	POT YI
1. 3-DICHLOROFHOPANE	ND	0.005
2,2-DICHLOROPROPANE	<u>ND</u>	0.005
1,1-DICHLOROPROPENE	<u>ND</u>	0.005
CIS-1.3-DICHLOROPBORENE	ND	0.005
TIVAL-1, 3-DICHLOROPROPERE	ND	0.005
ETHYLBENZENE	<u>ND</u>	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	<u>ND</u>	0.005
I SOPROPYLBENZENE	<u>ND</u>	0.005
4-ISOPROPYLTOLUENE	<u>ND</u>	0.005
4-METHYL-2-PENTAEKONE (MTHE)	<u>ND</u>	0.020
METHYL Lort-BUTYL ETHER (MTH	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1, 1, 1, 2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETBACHLOROWTHANE	ND	0.005
TETRACHLORDETHENE (PCE)	<u>ND</u>	0.005
TOLUENE	<u>ND</u>	0.005
1,2,3-TRICHLOROBENZENE	DND	0.005
1972-1-XHIGHLOROBKS228HE	NU.	0.005
1,1,1-TRICHLOROETHANE	<u>ND</u>	0,005
1, 1, 2-TRICHLOROETHANE	<u>ND</u>	0.005
TRICHLOROETHENE (TCE	ND	0.005
TRICHLOROFLUOROMETHANE	<u>ND</u>	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	<u>ND</u>	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
	ND	0.005

#### LABORATORY REPORT

CUSTOMER:	Pinnacle Environmental, Inc P.O. Box 904
	Clayton, CA 94517
	(925)673-5500 Email: pcloven@pei-env.com
PROJECT:	Corona Rd - Petaluma

MATRIX: SOIL	DATE RECEIVED: 06/06/17
DATE SAMPLED:06/01/17	DATE ANALYZED: 06/06/17
REPORT TO:MR. PETER CLOVEN	DATE REPORTED: 06/12/17

SAMPLE I.D.: MW-7-15

LAB I.D.: 170606-17

ANALYSIS: VOLATILE ORGAN UNIT: mg/Kg =	ICS, EPA METHOD 5030E MILLIGRAM PER KILOGE	AM = PPM
PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
FERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOBOBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1.2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1.2-DIBROMOETHANE	ND	0.005
DIBROMONICTIIANI	100	0.005
1.2-DECHLOROBENZENE	ND	0.005
1. J-DICHLORDBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORIDIFLOOMMETHANE	<u>ND</u>	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CI2-2, 2-DICHLORDETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

DATA REVIEWED AND APPROVED BY:

## 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925) 673-5500 Email: pcloven@pei-env.com Corona Rd - Petaluma PROJECT:

MATRIX:SOIL	DATE RECEIVED: 06/06/1/
DATE SAMPLED: 06/01/17	DATE ANALYZED: 06/06/17
REPORT TO:MR. PETER CLOVEN	DATE REPORTED: 06/12/17
TUBLOUUL TOTALU	

SAMPLE I.D.: MW-7-15

LAB I.D.: 170606-17

00100117

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

DARAMETER	SAMPLE RESULT	PQL X1
1 3-MORTOBORGENSE	ND	0.005
3.2-STCRLOBDBORAR	ND	0.005
1.1-DICHLOROPSOPENE	ND	0.005
TIS-1. 3-DICHLOROPROPENE	ND	0.005
TRANS-1. 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
UPYACHLOROBUTADIENE	ND	0.005
15OPROPYLESSENE	ND	0.005
4-THOPROPYLTOLUENE	ND	0.005
A-METRYL-2-PERTANONE (HISE)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	<u>ND</u>	0.005
METHYLKNE CHLORIDE	<u>ND</u>	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1.1.1.2-TETRACHLOROETHANE	ND	0.005
1.1.2.2-TETBACHLOROETHANE	ND	0.005
TETRACHIOROETHERE (PCE)	ND	0.005
TOLUENE	ND	0.005
1.7.3-THICHLOROBENZENE	ND	0.005
1.2.4-TRICHLOROBENZERE	19D	0.005
1. T. T-TRICHLORDSISANE	ND	0.005
1.1.2-TRICHLORDETHANE	ND	0.005
TRICHLOROETHERE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1.7.3-TRICHLOROPROPAKE	ND	0.005
1.2.4-TRINETHYLDENEENE	ND	0.005
1, 3, 5-7RIMETHYLDENESSE	ND	0.005
VINYL CHLORIDE	ND	0,005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005
COMMENTS POL = PRACTICAL OUANT	TITATION LIMIT	
ND = NON-DETECTED OR BELOW THE	POL /	
DATA REVIEWED AND APPROVED BY:	111	
CAL-DHS CERTIFICATE # 1555	1205	

DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER:	Pinnacle Environmental, Inc
	P.O. Box 904
	Clayton, CA 94517
	(925) 673-5500 Email: pcloven@pei-env.com
PROJECT:	Corona Rd - Petaluma

REPORT TO:MR. PETER CLOVEN	DATE REPORTED: 06/12/17
DATE SAMPLED: <u>06/01/17</u>	DATE ANALYZED: 06/06/17
MATRIX:SOIL	DATE RECEIVED: 06/06/17

SAMPLE I.D.: MW-7-20

LAB I.D.: 170606-18

#### ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 PF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK	ND	0.020
<u>N-BUTYLBENZENE</u>	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	<u>0.010</u>
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBRONCHETHANE	ND.	0.005
1,2-DICHLOROBENZENE	ND	0.005
1, 3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2~DICHLOROETHANE	ND	0.005
<u>1,1-DICHLOROETHENE</u>	ND	0.005
CIS-1, 2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

----- TO BE CONTINUED ON PAGE #2 -----

DATA REVIEWED AND APPROVED BY

## 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Corona Rd - Petaluma

MATRIX:SOIL	DATE RECEIVED: 06/06/17
DATE SAMPLED.06/01/17	DATE ANALYZED: 06/06/17
DRIG SAMPIND. OUT IT	DATE REPORTED:06/12/17
REPORT TO: MR. PEIER CHOVEN	

SAMPLE I.D.: MW-7-20

LAB I.D.: 170606-18

C10 C107

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

DARAMETER	SAMPLE RESULT	PQL X1
1 3-DITULOBOBROBRE	ND	0.005
2 2 DICULOPOPROPANE	ND	0.005
	ND	0.005
TIR. 1. 3-DICHIGROPHOPENE	ND	0.005
TRANS-1 3-DICHLOROPROPENE	ND	0.005
TRANS-1, 5-DICHDOROTROIDAD	ND	0.005
P. H. V. KUTHY	ND	0.020
INVACULOBORUTADI ENE	ND	0.005
I CONTROLOGICAL DESCRIPTION OF THE OWNER	ND	0.005
A-ISOBODYLTOLUENE	ND	0.005
A-NETHYL-2-PENTANCHE (MIBE)	ND	0.020
THVL tort-HUTVL ETHER [WIRE]	ND	0.005
WITHYLKEE CHLOBIOK	ND	0.010
NAPHTHALENE	ND	0.005
K-PROPYLEENEKNE	ND	0.005
CTVDFNR	ND	0.005
1.1.1.2.TETHACHLOBOCTHASE	ND	0.005
1.5.2.2. TETRACHLOROSTHANE	ND	0.005
TETENCHLOBOETHENE: / PCEI	ND	0.005
TOTUENE	ND	0.005
1 2 J. TRICHLOROBENZENE	ND	0.005
1 2 4. THICHCORDENZERE	ND	0.005
1 1 1-TRICHLOBOETHANE	ND	0.005
1.1.2-THICHLOROETHANE	ND	0.005
TRICHLOROGTHEME (11CB)	ND	0.005
TRICHLOBOFLUDROMETHANE	ND	0.005
1.2 TRICHLOROPROFAME	ND	0.005
1. J. 4-TRIMETHYLEERSENE	ND	0.005
T. 3. 6-THIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-YYLENE	ND	0.005

ND = NON-DETECTED OR BELOW THE DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555 ____

## 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Corona Rd - Petaluma

MATRIX:SOIL	DATE RECEIVED:06/06/17
DATE SAMPLED: 06/01/17	DATE ANALYZED: 06/07/17
REPORT TO: MR. PETER CLOVEN	DATE REPORTED: 06/12/17

SAMPLE I.D.: SB-4-5

LAH I.D.: 170606-21

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X10*
ACETONE	ND	020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BRORDCHLOROMETHANE	<u>ND</u>	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-HUTANONE (HEE)	ND	0.020
N-BUTYLBENZENE	ND	0.005
HET-HUTTLEENERI	ND	0.005
TERT BUTYLAFRZENE	ND	0.005
CARGON DISHLETDE	ND	0.010
CARDON TETRACHIORIOS	ND	0.005
CHLODOBENZENE	ND	0.005
CHIOROFTHANT	ND	11.005
CHIODOFORM	ND	0.005
ITUT COCHOTTIANE	ND	0.005
2-CHIOROTOLUENE	ND	0.005
A-CHLOROTOLUENE	ND	0.005
	ND	0.005
1. T. DI BROND, J. CHLOROPROPANE.	ND	0.005
1.2 DTRR	810	0.008
L, Z-DIDA DIRDOMOMETHANE	ND	0.005
DIDROMOMENTARIA	ND	0.005
1 A DICUTOR STRATEGICS	ND	0.005
A THE REPORT OF THE PARTY AND A THE PARTY AND	ND	0.005
ATTENT OF CHARTENESS OF THE THE OF THE OF THE THE OF	ND	0.005
1. 1- DICUTOROFTUANE	ND	0.005
1 5 DICHTONDERUNN	ND	0.005
1 PERCENT ON OFFICE AND A DATE OF THE ADDRESS OF TH	ND	0.005
ATE 1 2 DICULOROFTHENE	ND	0.005
	ND	0.005
1 0 DECULOPODDODANE	ND	0.005

TO ME CONTINUED ON PAGE #2

DATA REVIEWED AND APPROVED BY:_

## 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER:	Pinnacle Environmental, Inc
	P.O. Box 904
	Clayton, CA 94517
	(925)673-5500 Email: pcloven@pei-env.com
PROJECT:	Corona Rd - Petaluma

MATRIX:SOIL	DATE RECEIVED: 06/06/17
DATE SAMPLED: 06/01/17	DATE ANALYZED: 06/07/17
REPORT TO: MR. PETER CLOVEN	DATE REPORTED: 06/12/17

SAMPLE I.D.: SB-4-5

LAB I.D.: 170606-21

1.00

Contract of the last of the loss of the

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X10*
1.3-DICHLORGPROPARE	ND	0.005
2,2-BICHLOROPROPARE	ND	0.005
1.1-DICHLOBDERCERE	ND	0.005
CIS-1, B-BICHLOBOPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
IXXACHLOBOBUTADI KNE	ND	0.005
I SOFROFYLBENZENE	<u>ND</u>	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1.1.1.2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1.2.3-THICHLOBOBENRER	ND	0.005
RTCHLORO	10	0,065
1.1.1-THICHLONGETHANE	ND	0.005
1.1.2-781CHLOROETHANE	ND	0.005
TRICHLOROFTHENE (TCE)	ND	0.005
TRICHLOROFLUGSOMETHANE	ND	0.005
1.2.3-TRICHLOROPROPARE	ND	0.005
1.2.4-TRIMETHYLBENZENE	ND	0.005
1.3.5-TRIMETRYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005
COMMENTS POL = PRACTICAL OUAN	TITATION LIMIT	
ND = NON-DETECTED OR BELOW THE	E POL	
* = POL RAISED DUE TO MATRIX I	NTURFERENCE	
DATA REVIEWED AND APPROVED BY	15	
CAL-DHS CERTIFICATE # 1555	fill.	

DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER:	Pinnacle Environmental, Inc
	P.O. Box 904
	Clayton, CA 94517
	(925)673-5500 Email: pcloven@pei-env.com
PROJECT:	Corona Rd - Petaluma

MATRIX: SOIL	DATE RECEIVED: 06/06/17
DATE SAMPLED: 06/01/17	DATE ANALYZED: 06/06/17
REPORT TO:MR. PETER CLOVEN	DATE REPORTED: 06/12/17

SAMPLE I.D.: SB-4-15

LAB I.D.: 170606-23

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0,020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ŅD	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBRONCHETHANE	RI	0,005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1,2-DICHLOROETHENE	ND	0.005
1.2~DICHLOROPROPANE	ND	0.005

TO BE CONTINUED ON PAGE #2

DATA REVIEWED AND APPROVED BY

## 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Corona Rd - Petaluma

MATRIX: <u>SOIL</u>	DATE RECEIVED: <u>06/06/17</u>
DATE SAMPLED: <u>06/01/17</u>	DATE ANALYZED: <u>06/06/17</u>
REPORT TO: <u>MR. PETER CLOVEN</u>	DATE REPORTED: <u>06/12/17</u>

SAMPLE I.D.: SB-4-15

LAB I.D.: 170606-23

-----

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ND ND ND ND ND ND ND ND	0.005 0.005 0.005 0.005 0.005 0.005
ND ND ND ND ND ND	0.005 0.005 0.005 0.005 0.005
ND ND ND ND ND ND	0.005 0.005 0.005 0.005
ND ND ND ND	0.005 0.005 0.005
ND ND ND	0.005
ND ND	0.005
ND	
	0.020
ND	0.005
ND	0.005
ND	005
ND	0.020
ND	0.005
ND	0.010
ND	0.005
	0.005
ND	0.010
ND	0.005
PCI.	
	ND ND ND ND ND ND ND ND ND ND

CAL-DHS CERTIFICATE # 1555

#### 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

Pinnacle Environmental, Inc
P.O. Box 904
Clayton, CA 94517
(925)673-5500 Email: pcloven@pei-env.com
Corona Rd - Petaluma

MATRIX: SOIL	DATE	RECEIVED: 06/06/17
DATE SAMPLED: 06/01/17	DATE	ANALYZED: 06/06/17
REPORT TO: MR. PETER CLOVEN	DATE	REPORTED: 06/12/17

SAMPLE I.D.: SB-3-15

LAB I.D.: 170606-27

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0 <u>.005</u>
DIBRONCHETHARE	MD.	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1, 2-DICHLOROETHENE	ND	<u>0.005</u>
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1 2-DICHLOROPROPANE	ND	0.005

----- TO BE CONTINUED IN PAGE #2 ----

DATA REVIEWED AND APPROVED BTL

# 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER:	Pinnacle Environmental, Inc
	P.O. Box 904
	Clayton, CA 94517
	(925) 673-5500 Email: pcloven@pei-env.com
PROJECT:	Corona Rd - Petaluma

MATRIX: <u>SOIL</u>	DATE RECEIVED: <u>06/06/17</u>
DATE SAMPLED: <u>06/01/17</u>	DATE ANALYZED: <u>06/06/17</u>
REPORT TO:MR. PETER CLOVEN	DATE REPORTED: <u>06/12/17</u>
REPORT TO, MR. THIM OBJUDIE	A CONTRACTOR OF A CONT

SAMPLE I.D.: SB-3-15

LAD I.D.; 170606-27

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

DADAMETER	SAMPLE RESULT	PQL X1
PROPERTOR AND	ND	0.005
T D DICHCOLORDING	ND	0.005
LA DIGHT CONTRACTOR	ND	0.005
LA-DICHMENTINERE	ND	0.005
CID-1-3-DIGROOMACEAN	ND	0.005
THAT PRICENCE	ND	0.005
ETHYLBENZENE	ND	0.020
Z-HEXANONE	ND	0.005
HEXACHLOROMUTAD I DAG	ND	0.005
TROPHOPTLATERAGOE	ND	0.005
4-TEOPROPTETOLOGISE	ND	0.020
4-METRYL-2-PERTANDAL DUART	ND	0.005
METHYL COLL-BUTTLE ETHER INCLUDE	ND	0.010
METHYLERS CHLORIDS	ND	0.005
NAPHTRALEPE	ND	0.005
N-DROFTLHERACOR	ND	0.005
STYRENE	ND	0.005
L. L. L. &-TETHALBLADEAE INSIS	ND	0.005
1,1,2,2-TETRACHIADSETHONG	ND	0.005
TETRACHLOROETHERE CPLEI	ND	0.005
TOLUENE	ND	0.005
1.7.3-TRICHLOSOBENZEDE	hath .	0.005
1,2,4-TRI HI PROPERTY	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-THICHLOBOETHANE		0 005
TRICHLURDETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE		0.005
1.2.4-TRIMETHYLDENZEME	<u>ND</u>	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	<u>ND</u>	0.005
M/P-XYLENE	ND	0.005
O-XYLENE	ND	0.005

ad

DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

# 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Corona Rd - Petaluma

MATRIX: <u>SOIL</u>	DATE RECEIVED: <u>06/06/17</u>
DATE SAMPLED: <u>06/02/17</u>	DATE ANALYZED: <u>06/06/17</u>
PEPORT TO:MR. PETER CLOVEN	DATE REPORTED: <u>06/12/17</u>
REPORT TO: MR. PETER CLOVEN	10 100 100 100 100 100 100 100 100 100

SAMPLE I.D.: SB-5-5

LAE I.D.: 170606-29

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

DADAMETER	SAMPLE RESULT	PQL X1
PARADELER	ND	0.020
ALDIUNE	ND	0.005
BENZENE	ND	0.005
DROMOCULI OROMETUANE	ND	0.005
BROMOCHLOROMETHANE	ND	005
PHLATAULAILAAUADIINNA	ND	0.005
BROMOFORM	ND	0.005
DECEMPTE TRADE	ND	0.020
PERITAMONA CODAL	ND	0.005
<u>N-BUTYLBENZENE</u>	ND	0.005
BEC-HOTYLDEMAISES	ND	0.005
THRT-BOTYLBERZERE	ND	0.010
CARLON DISELFIDE	ND	0.005
CARRON TETRACHISTRAS	ND	0.005
CHLOROBERSENS	ND	0.005
CHLOROETHAND	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETRANE	ND	0.005
2-CHLOROTOLOENE	ND	0,005
4-CHLOROTOLARME	ND	0.005
DIBROMOCHLOBOMETHAHE	ND	0.005
1,7-DIBRORD-3-CELOROPARE	<u>ND</u>	0.005
1.1-0)BRONOETHAND	ND	0.005
DIBROMOMETHANE		0.005
1.2-DICHLORODENZERE	ND	0.005
1, 3-DICHLOROBENZENE	ND	0.005
1.4-DICHLOROBENZENE		0.005
DICHLORODIFLOCSDEETHAME	ND	0.005
1,1-DICHLOROETHANE		0.005
1.7-DICHLOROETHAKE		0.005
1,1-DICHLOROETHENE		0.005
CT5-1.2-DICHLOROSTHEME	<u>ND</u>	0.005
TRANS-1, 2-DICHLOROETHEN	<u>ND</u>	0.005
1.2-DICHLOROPROPANE	ND	0.005

1 B CONTINUED ON PAGE #2 -----

DATA REVIEWED AND APPROVED BY

LABOR	ATORY REPORT	
CUSTOMER: Pinnacle Environmenta	al, Inc	
P.O. Box 904		
Clayton, CA 94517		
(925)673-5500 Email:	pcloven@pei-env.c	COM
ROJECT: Corona Rd - Petaluma		
ATRIX:SOIL	DATE RECEI	VED: 06/06/17
DATE SAMPLED: 06/02/17	DATE ANALY.	ZED: 06/06/17
REPORT TO:MR. PETER CLOVEN	DATE REPOR	TED: 06/12/17
	*********	170606 00
SAMPLE I.D.: SB-5-5	LAB I.D.:	170606-29
ANALYSIS: VOLATILE ORGANICS	, EPA METHOD 5030E	8/8260B, PAGE 2 OF 1
<b>UNIT:</b> $mg/Kg = MIJ$	LLIGRAM PER KILOGR	AM = PPM
PARAMETER	SAMPLE RESULT	PQL X1
. 3-DICHLOROPROPANE	ND	<b>P.</b> 005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1, 3-DICHLOROPROPENE	ND	0.005
TRAMS-1, 3-DICHLOROPROPERE	ND	0.005
CTHYLBENZENE	ND	0.005
-HEXANONE	ND ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
LEOPROPYLBENZEHE	<u>ND</u>	0.005
1-THOPROPYLTOLUESS	<u>ND</u>	0.005
1-METHYL-2-PENTABONE (MIRE)	ND ND	0.020
ATTHYL LOXL-BUTYL STHER ONTHEL	ND	0.005
SETHYLENE CHLORIDE	ND	0.005
GAPHTHALENE	ND	0.005
g-rhopylbenating	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE		0.005
1, 1, C. P. TETRALHIGSSIETHAME	ND	0.005
TETRACHLOBORTHERE, LPART		0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
	ND	0.005
	ND	0.005
TATASCHILANDASCHILAND	ND	0.005
TRACTOR AND A COMPANY OF THE OWNER	ND	0.005
1.2.3-7RTCHLOROPBOPANE	ND	0.005
1.2. A. THINKING PROPERTY	ND	0.005
1. 1. S-TRINKINT APRIL	ND	0.005
VINYL CHLORIDE	ND	0.005
	ND	0.010
M/P-XYLENE		

an

CAL-DHS CERTIFICATE # 1555

## 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER:	Pinnacle Environmental, Inc P.O. Box 904
	Clayton, CA 94517 (925) 673-5500 Email: pcloven@pai-env.com
PROJECT:	Corona Rd - Petaluma

MATRIX: SOIL	DATE RECEIVED: 06/06/17
DATE SAMPLED: 06/02/17	DATE ANALYZED: 06/07/17
REPORT TO: MR. PETER CLOVEN	DATE REPORTED: 06/12/17

SAMPLE I.D.: SB-5-15

LAB I.D.: 170606-31

and the second second	********	*********			*************		****
ANALYSIS:	VOLATILE	ORGANICS,	EPA	METHOD	5030B/8260B,	PAGE 1	OF 2
	UNIT: mg	J/Kg = MILI	LIGR	AM PER P	KILOGRAM = PPI	M	

PARAMETER	SAMPLE RESULT	PQL X10*
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1, 2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBRONONETHANE	10	0,005
1,2-DICHLOROBENZENE	ND	0.005
1, 3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1, 2-DICHLOROETHENE	ND	0.005
TRANS-1,2-DICHLOROETHENE	ND	0,005
1,2-DICHLOROPROPANE	ND	0.005

CONTINUED N PAGE #2

DATA REVIEWED AND APPROVED BY:

## 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925) 673-5500 Email: pcloven@pei-env.com Corona Rd - Petaluma PROJECT : DATE RECEIVED: 06/06/17 MATRIX: SOIL DATE ANALYZED: 06/07/17 DATE SAMPLED: 06/02/17 DATE REPORTED: 06/12/17 REPORT TO: MR. PETER CLOVEN LAP I.D.: 170606-31 SAMPLE I.D.: SB-5-15 A REPORT OF THE REPORT OF THE PARTY OF THE PARTY. ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM POL X10* SAMPLE RESULT PARAMETER 0.005 ND 1,3-DICHLOROPROFANE 0.005 ND 2,2-DICHLOROPROPANE 005 ND I, 1-DICHLOROPBOPEKE 0.005 ND CIS-1, 2-DICHLOROPROPESE 0.005 ND TRANS-1, 3-DICHLOROPROPENE 0.005 ND STOYLEEN2.SNE 0.020 ND 2-HEXANONE 0.005 ND HERACHLOROBUTADLENE 0.005 ND INOPHOPYLBENSERS. 0.005 ND 4-IUCIPROPELINLURAE 0.020 4-METHYL-2-PENYARORE (MIDE) ND 0.005 ND METHYL tert-BUTYL ETHER (MTHE). 0.010 ND METHYLERE CHLORIDE 0.005 ND NAPHTHALENE 0.005 ND N-PROPYLBENSERE 0.005 ND STYRENE 0.005 1, 1, 1, 2-TETRACHLOROETHANE ND 0.005 1, 1.2, 2-TETRACHLOHOKTHARE ND 0.005 TETRACHLOROETHENE (PCE) ND 0.005 ND TOLUENE 0.005 ND 1,2,3-TRICHLOHOBERSEN 0,005 40-2.4-THICHLOBORKNEED 0.005 ND 1, 1, 1-TRICHLOBOETHANE 0.005 ND 1, 1, 3-TELCHLORGETHANE 0.005 ND TRICHLOROXTREME (TCE) 0.005 ND TRICHLOROFLUOROMETHANE 0.005 1, 2, 3-TRICHLOROPROPANE ND 0.005 ND 1,2,4-TRIMETHYLBENZENE 0.005 ND 1,3,5-TRIMETHYLBENZENE 0.005 ND VINYL CHLORIDE 0.010 ND M/P-XYLENE 0.005 ND O-XYLENE COMMENTS PQL = PRACTICAL QUANTITATION LIMIT ND = NON-DETECTED OR BELOW THE PQL PQL RAISED DUE TO MATRIX INTERFERENCE DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

## 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925) 673-5500 Email: pcloven@pei-env.com Corona Rd - Petaluma PROJECT: DATE RECEIVED: 06/06/17 MATRIX: SOIL DATE ANALYZED: 06/06/17 DATE SAMPLED: 06/02/17 DATE REPORTED: 06/12/17 REPORT TO:MR. PETER CLOVEN LAB I.D.: 170606-34 SAMPLE I.D.: SB-6-10

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF F

PARAMETER	SAMPLE RESULT	PQL X1		
ACETONE	ND	0.020		
BENZENE	ND	0.005		
BROMOBENZENE	ND	0.005		
RECMOCHLOROMETHANE:	ND	0.005		
BROMODT CHLOBOMETHANE	ND	0.005		
BROMOFORM	ND	0.005		
BROMOMETHANE	ND	0.005		
2-BUTANONE (MEK	ND	0.020		
N-BUTYLBENZENE	ND	0.005		
SEC-BUTYLBENZENE	ND	0.005		
TERT-BUTYLNENZENE	ND	0.005		
CARBON DISULFIDE	ND	0.010		
CASHON TETRACHLOSIDE	ND	0.005		
CHLOROBENZENE	ND	0.005		
CHLOROETHANE	ND	0.005		
CHLOROFORM	ND	0.005		
CHLOROMETHANE	ND	0.005		
2-CHLOROTOLUENE	ND	0.005		
A-CHEOROTOLOENE	ND	0.005		
DIBROROCHLOROMETHANE	ND	0.005		
1,2-DIEROND+3-CHLOROPROPANE	ND	0.005		
1. J-DILLEDNOUTHANS	ND	0.005		
DIBROMOMETHANE	ND	0.005		
1.2-DICHLOBOBENZEME	ND	0.0 <u>05</u>		
1.3-DICHLOROBENZENE	ND	0.005		
1.4-TTCHLOBOBENZENE	ND	0.005		
DECHLORODIFIADROMETHANS	ND	0.005		
1.1-DICHLOROETHANE	ND	0.005		
1.2-DICHLOROETHANE	ND	0.005		
1.1-DICHLOROETHENE	ND	0.005		
CTS-1, 2-DICHLOROETHENE	ND	0.005		
TRANS-1.2-DICHLOROKTHENE	ND	0.005		
1.2-DICHLOBOPROPANE	ND	0.005		

DATA REVIEWED AND APPROVED HYP

# 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

	Electron Electron		
CUSTOMER:	Pinnacle Environmente	ii, inc	
	P.O. BOX 904		
	Clayton, CA 94517	naloven@pei-env.C	OT
PROJECT:	(925)675-5500 Email. Corona Rd - Petaluma	peroveneper entre	
	T.	DATE RECEIV	/ED: <u>06/06/17</u>
ATRIA: SUI	ED:06/02/17	DATE ANALYZ	ED:06/06/17
JATE SAMPI	MP PETER CLOVEN	DATE REPORT	ED: 06/12/17
REPORT TO.	MR. FEIDR CHOVEN		
SAMPLE I.I	D.: SB-6-10	LAB I.D.: 1	70606-34
ANALYS	IS: VOLATILE ORGANICS,	EPA METHOD 5030B	/8260B, PAGE 2 OF 2
	<b>UNIT:</b> $mg/Kg = MIL$	LIGRAM PER KILOGR	AM = PPM
PARAMETER		SAMPLE RESULT	
1,3-DICHLO	DROPROPANE	ND	0.005
2.2-DICHL	DROPROPAME	<u>ND</u>	0.005
1.1-DICEL	DROPPOPENS	<u>ND</u>	0.005
CIS-1,3-D	ICHLOROPROPENE	ND	0.005
TRA83-1.2	DICHLOROPPOPENE	ND	0.005
THTLERED 2	ENE	ND	0.000
2-HEXANON	<u>8</u>	ND	0.020
HEXACHLOR	OBUTADIENE		0.005
ISOPROPYL	DENZERE	ND	0.005
1-190PROP	AT DOPTHERE	ND	0.000
4-METHYL-	2-PENTANCINE (MIHE)		0.020
SILLING THE	rt-BOTYL STUSE DITES.		0.010
SETHATERS.	CHLORIDE		0.005
NAPHTHALE	<u>NE</u>	<u>ND</u>	0.005
R-PROPYLE	ENCENE	ND	0.005
STYRENE		ND ND	0.005
1,1,1,2-T	ETRACHLOROETHANE		0.005
Torrer and	ETRACHLESSES THANKS	ND	0.005
TETRACHLO	ROETHENE (PCE	ND	0.005
TOLUENE	COLL IN THE PROPERTY OF THE		0.005
11213-181	CH162SOBERZERE		0,005
1.2.9-101	CHIMPUNDALDOL	ND	0,005
Lilia Tell	OUT ODORTINNE	ND	0.005
<u>1,1,2-TR1</u>	CHLOROETHANE	ND	0.005
THICHLORD		ND	0,005
TRICHLORC	IL LOOKOMETRANE	ND	0.005
LIZE 2"THI		ND	0.005
1 1 4 007		ND	0,005
<u>1,2,4-TRI</u>	ON THE COLOR OF THE OWNER OWNER OF THE OWNER OWNE OWNER OWNE OWNER OWNE	ND	0,005
<u>1,2,4-TRI</u> 1,	A STATE OF	110	0 010
1,2,4-TRI 1,3,5-TRI VINYL CHI		ND	0.010
<u>1,2,4-TRI</u> 1,3,5-TPI VINYL CHI <u>M/P-XYLEN</u>	IE	<u>ND</u>	0.005

DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER:	Pinnacle Environmental, Inc
	P.O. Box 904
	Clayton, CA 94517
	(925)673-5500 Email: pcloven@pei-env.com
PROJECT:	Corona Rd - Petaluma

MATRIX: SOIL	DATE RECEIVED: 06/06/1/
DATE SAMPLED:06/02/17	DATE ANALYZED: 06/06/17
REPORT TO: MR. PETER CLOVEN	DATE REPORTED: 06/12/17
	***************************************

SAMPLE I.D.: SB-6-15

LAB I.D.: 170606-35

EPA METHOD 5030B/8260B, PAGE 1 OF 2 ANALYSTS: VOLATILE ORGANICS

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
D1880000070Ali8	80	0.00%
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1, 2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1 2-DICHLOBOPROPANE	ND	0.005

BE CONTINUE ON PAGE #2

DATA REVIEWED AND APPROVED BY

## 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER:	Pinnacle Environmental, Inc
	P.O. Box 904
	Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com
PROJECT:	Corona Rd - Petaluma

MATRIX:SOILDDATE SAMPLED:06/02/17DREPORT TO:MR. PETER CLOVEND	DATE RECEIVED: <u>06/06/17</u> DATE ANALYZED: <u>06/06/17</u> DATE REPORTED: <u>06/12/17</u>
---------------------------------------------------------------	----------------------------------------------------------------------------------------------------

SAMPLE I.D.: SB-6-15

I.D.: 170606-35

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

DADAMETER	SAMPLE RESULT	PQL X1
1.9. BTOM OBORDOVANE	ND	0.005
2.2. DICHLOROPSOTANE	ND	0.005
1 A DECRI ONOPROPENS	ND	0.005
TTT-DUCTION AND DATABASE	ND	0.005
TRANS 1 1-TICHLONDEROPENE	ND	0.005
CHARGE AT A PARTICULAR CONTRACTOR CONTRACTOR	ND	0.005
2 UEVANONE	ND	0.020
UEVACUI OPOBIITADI ENE	ND	0.005
TEODODYI BENZENE	ND	0.005
	ND	0.005
A MOTION - T. DESTRICTION (MIDE)	ND	0.020
WETTER INCLOSED AND INTERNATIONAL INTERNATIONAL INTERNATIONAL INCLUSION (MTHE)	ND	0.005
WETERLEY CHICGIDE	ND	0.010
ΝΑΡΟΨΟΛΙΕΝΕ	ND	0.005
NAPHTHALBING	ND	0.005
CTYDENE	ND	0.005
1 1 1 2_TETRACHLOROETHANE	ND	0.005
1 1 2 2-TETRACHLOROETHANE	ND	0.005
	ND	0.005
TOTUENE	ND	0.005
1 2 3-TRICHLOROBENZENE	ND	0.005
1.2 A_TPT/ HOHOBIKSEN	NO	0,005
LI LETHICHIOROFTHANK	ND	0.005
1.1 S-THICHLOROFTHAME	ND	0.005
TRACHT ORDETHENE (TEE)	ND	0.005
TRICHT OPOFLUOROMETHANE	ND	0.005
T. A. A. TRICHLOROPROPRINE	ND	0.005
1.2.4.THINETHYLEENSENSE	ND	0.005
1 3 5 TRANSPORT	ND	0.005
WINVI CHIORIDE	ND	0.005
M/D WYI ENE	ND	0.010
	ND	0.005
CONCINE DOL = DEACTICAL OHAN	TITATION LIMIT	
ND - NON-DETECTED OF BELOW TH	E POL a	
NU - NON-DELECTED OR DELOW III.	141	
DATA REVIEWED AND AFFROVED DI		
CAL-DES CERTIFICATE # 1999	- and the second se	

	METHO	D BLANK REPORT	
CURTOMED.	Pinnacle Environmen	tal. Inc	
COSTOMER.	P O Box 904		
	Clayton CA 94517		
	(925) 673-5500 Email	: pcloven@pei-env.	COR
DDO TROM.	(925) 075-5500 Amair	a peroveneper envi	
PROJECT:	Corona Rd - Petalum	¢	
MATRIX: SO	TL	DATE RECEI	VED: 06/06/17
DATE SAMP	LED:06/01&02/17	DATE ANALY	ZED: <u>06/06/17</u>
REPORT TO	MR. PETER CLOVEN	DATE REPOR	RTED: <u>06/12/17</u>
METHOD BI	LANK REPORT FOR LAB I -27, -	D   170606-10, -1 29, -31, -34, -35	1, -17, -18, 21, -23,
ANALYS	IS: VOLATILE ORGANICS	5, EPA METHOD 50301	B/8260B, PAGE 1 OF 2 RAM = PPM
DARAMETER	UNII: mg/kg = M	SAMPLE RESULT	PQL X1
ACETONE		ND	0.020
BENZENE		ND	0,005
BROMOBENZI	ENE	ND	0.005
BROMOCHLOI	ROMETHANE	ND	0.005
PROMODICIL	LOROMETHANE	ND	0.005
BROMOFORM		ND	0.005
BROMOMETH	ANE	ND	0.005
2-BUTANON	E (MEK)	ND	0.020
N-BUTYLBE	NZENE	ND	0.005
SEC-BUTYL	BENZENE	ND	0.005
TERT-BUTY	LBENZENE	ND	0.005
CARDON DI	SULFICE	ND	0.010
CARBON TE	TRACHLORIDE	ND	0.005
CHLOROBEN	ZENE	ND	0.005
CHLOROETH	ANE	ND	0.005
CHLOROFOR	M	ND	0.005
CHLOROMET	HANE	ND	0.005
2-CHLOROT	OLUENE	ND	0 <u>.005</u>
4-CHLOROT	OLUENE	ND	0.005
DIBROMOCH	LOBORETHANE	ND	0.005
1.2-DIREC	MO-3-CHLOROPROPANE	ND	0.005
1.2-07880	HOETHANE		0,005
DIBROMOME	THANE	ND	0.005
1.2-010011	GROBENZENE	ND	0.005
1,3-DICHL	OROBENZENE	ND	0.005
1.4-DICHL	GROBENZENE	ND	0.005
DICHLOROD	T FLOOROBIETHANE	ND	0.005
1.1-DICHI	ORDSTHANE	ND	0.005
1.2-DICHL	OBDETHARS	ND	0.005
I. I-DICHL	OBDETHERE	ND	0.005
C15-1.2-D	ICHLOROETHENE	ND	0.005
TRANS-1.2	- DICHLOROSTHENE	ND	0.005
And Statements	DROPROPANE	ND	0 <u>.005</u>

ND TO HE CONTINUED ON PAGE #2 ---

(UN

DATA REVIEWED AND APPROVED BY:

METHOD	BLANK REPORT	
CUSTOMER: Pinnacle Environmenta	l, Inc	
P.O. Box 904		
Clayton, CA 94517		
(925)673-5500 Email: ;	pcloven@pei-env.c	om
PROJECT: Corona Rd - Petaluma		
IATRIX: SOIL	DATE RECEIV	/ED:06/06/17
DATE SAMPLED: 06/01&02/17	DATE ANALY2	(ED: 06/06/17
EPORT TO:MR. PETER CLOVEN	DATE REPORT	TED: <u>06/12/1/</u>
METHOD BLANK REPORT FOR LAB I.D -27, -29	.: 170606-10, -11 , -31, -34, -35	(2260B DACE 3 OF 3
ANALYSIS: VOLATILE ORGANICS, UNIT: mg/Kg = MILL	EPA METHOD 5030B LIGRAM PER KILOGR	AM = PPM POL X1
PARAMETER S	ND	0.05
1, 3-DICHLOBOPROPANE	ND	0.005
2.2-DICHLONDPROPARE		0.005
I, I-DECHLOROPHOPERE	ND	0.005
111-1, 3-DICHLOROPHOPENE		0.005
RANG-1, 1-DICHLAMOREARE	<u>ND</u>	0.005
ETHYLBENZENE		0.020
2-HEXANONE	ND	0.005
HYACHLOROBUTADI ERE-	ND	0.005
ISOPROPYLBENZENE	ND	0.005
- 15 COURSE A COLORADOR CONTRACTOR	ND	0.020
	ND	0.005
METHYL CERC-BOILD EINER JEIDE,	ND	0.010
METHYLENE CHLORIDE	ND	0.005
NAPHTHALENE	ND	0.005
S-PROFILABLOAD	ND	0.005
STIRENE	ND	0.005
	ND	0.005
1,1,2,2-151 KACHBOKOB III/WB	ND	0.005
DALUENE	ND	0.005
TOBOENE	100	0,005
1 9 A TRICITORNINGTON	ND	0.005
1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	ND	0.005
1.1.2.TETCHLOROFTHERE	ND	0.005
TRACING ON OFFICIAL OFFICIAL OFFICIAL	ND	0.005
TOTOROFT. HOROMETHANE	ND	0.005
	ND	0.005
1 2 A_TOTMETHYLRENZENE	ND	0.005
	ND	0.005
VINYI CHIORIDE	ND	0.005
M/D_YVIENE	ND	0.010

A.

COMMENTS PQL = PRACTICAL COMMENTS PQL = PRACTICAL COMMENTS ND = NON-DETECTED OR BELOW THE POL DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

		_	Enviro-Che	m, Inc.					
1214 E. Lexington Ave	nue, Pomo	na, CA 917(	36 8260B QA	Tel (90 /QC Repor	9)590-5905 t	Fax	(909)590-59	07	
Date Analyzed: Machine:	<u>6/6-7/2017</u> Q						Matrix: Unit:	BolidSolid malKa (PPI	Japaint VD
Matrix Spike (MS)/Matri	x Spike Dup	olicate (MSC	))						
Spiked Sample Lab I.D.		170606-39	NS/MSD	_				1.00 / 00	
Analyte	.R.	spk conc	MS	%RC	MSD	%RC	%RPD	ACP %RC	
Benzene	0	0.050	0.059	118%	0.060	120%	2%	75-125	0-20
Chlorobenzene	0	0.050	0.051	102%	0.052	104%	2%	75-125	0-20
1,1-Dichloroethene	0	0.050	0.059	118%	0.052	104%	14%	75-125	0-20
Toluene	0	0.050	0.060	120%	0.060	120%	0%	75-125	0-20
Trichloroethene (TCE)	0	0.050	0.050	100%	0.049	98%	2%	/5-125	0-20
eh Control Sniko (  CS	2).								
Analita	snk conc	LCS	%RC	ACP %RC					
	0.050	0.059	118%	75-125					
Chlarahazzana	0.050	0.051	102%	75-125					
Chloroform	0.050	0.056	112%	75-125					
	0.050	0.000	120%	75-125					
	0.050	0.058	116%	75-125					
Ethylbenzene	0.050	0.058	116%	75-125					
o-Xylene	0.000	0.120	120%	75-125					
m,p-xyiene	0,100	0.120	108%	75-125					
loiuene	0.050	0.054	100%	75-125					
1,1,1-Inchloroethane	0,050	0.050	98%	75-125					
Themoloeulene (TO	0.000	0.010			Ramo	1.1.1.1.2.S		100000	1000
Surrogate Recover	spk conc	ACP %RC	MB %RC	7 WBC	16RO	10.3	N-RC	19103	To Rive
Sample I D		1	M-BLK	120601-12	Are - 1653.	170606.4	7 1 70 10 50	1 170686-21	170806-22
Dibromofluoromethane	56.0	70-130	124%	90%	107%	102%	102%	115%	126%
Toluene_d8	60.0	70-130	107%	11485	80%	105%	105%	100%	108%
1 Diuene-uo	50.0	70-130	86%	82%	64*%	75%	87%	56*%	54*%
4-DIOMONUOIODENZENE	A STATE		0070						(
Surrogate Recover	sok conc	ACP %RC	%RC	%RC	%RC	%RC	%RC	%RC	%RC
Sample LD	Spic Conto	11101 10110	170606-27	170606-2	120401-01	17.1015	2 170606 J	70606-39	170606-42
Dibremeflueremethane	50.0	70-130	118%	109%	97%	109%	123%	127%	122%
Dibromonuorometriane	50.0	70-130	104%	114%	113%	104%	99%	120%	121%
1 Divene-uo	50.0	Y0-110	10170	7475	12%	100110	42***	10%	
4-Bromoliuoropenzene	1 30.0				111111				
Surrogate Recovery	sok conc	ACP %RC	%RC	3446	杨阳这一	NRC .	16RG	DAVE	"BRC
Sample I D	Spic Corro	All Mills	170606-43		Design Research		12		1
Dibromoflucromothere	50.0	70-130	98%					10	
	60.0	70-130	115%				1.		
4-Bromofluorobenzene	50.0	70-130	76%	1			1		
4-Diomonuolobenzene		10100		100			1.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	1.00	W.
* = Surrogate fail due to	matrix interf	erence: LC	S. MS. MSE	) are in contr	ol therefore ti	he analysi	s is in contro	Ι.	
S.R. = Semple Results		,			%RC = Per	cent Reco	very		
sok conc = Soike Conce	entration				ACP %RC :	Accepte	d Percent Re	covery	
MS = Matrix Spike	muuuum				MSD = Mati	ix Spike L	Duplicate		
Analyzed/Reviewed By	/:[	Do-	<u>e</u> .,						
Final Reviewer	0	(							

Misc.PO#	equired	Here	Hech			(toc >	Heitz	Groff	Houp	12cs			Hacis	Hereb		+ Herry	intraction of the second		- Decrement Ted.	Petaluna	Terror Instructions for Sample Storage After Analysis	O Dispose of O Return to Client Store (30 Days)	O Other:	wh !	Page ( of
SUB DOMAN	Analysis R			××	×						X	X			××		1	0402	18-088-1	ashegan has	1 20143 08 11-2-7-	P Partic	Date at the	RECORD	ENT
Sraniatnos F contriners Fryttion	No. O TEMF PRES	61 100	IN BA			-			-		8	51			7	1 1	Project Contact	イキャー	Tel: 9 25- 5	- manal	11/00/11/27	500		F CUSTODY I	TE WITH SAMPLE • YELLOW TO CLI
naround Time ame Day 4 Hours 8 Hours 2 Hon- Week (Standard) er.	SAMPLING DATE TIME MATE	1 Ogassi	OSIC	CRIS	0530	2430	TH80	085-2-	1040	1040	1050	1001	1050	1105	1310	V 1317-1 W				A EN	tece div.t	Received by:	Received by:	CHAIN O	TIHW
<b>boratories</b> ue, 09) 590-5907 <b>E #1555</b>	LAB ID	2 8-0090F1	9	01-1	T	オー		1-1-	5-	-191-	11	-18	-19	22-	12-	1-22-1		~ NWONN	Pot -	-CA 9451	Co la	trac			
Enviro-Chem, Inc. La 1214 E. Lexington Aven Pomona, CA 91766 Tel: (909) 590-5905 Fax: (9 CA-DHS ELAP CERTIFICAT	SAMPLEID	MW-6-C	NW-6-10	MW-6-15	Nu-6-70	NW-6-25	42-9-MW	Mu-6-30	Mu-7-5-	01-1-11	Mw-7-15.	Mu-7-20	Min-7-25.	82- L- mm	58-4-5	01-4-95	Company Name: / 12	Tanacle	Address: 7.0. Soox	City/State/Zip: Clar bon	Relinquished b	Relinquished by:	Relinquished by:		Date:



Date: June 19, 2017

Mr. Peter Cloven Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com

Project: Corona Rd - Petaluma LAB I.D.: 1706069-37 through -45

Dear Mr. Cloven:

The **additional TPH and VOCs results** for the soil samples, received by our laboratory on June 6, 2017, (via OnTrac), are attached. The samples were received chilled, intact, accompanying chain of custody and also stored per the EPA protocols.

Enviro-Chem appreciates the opportunity to provide you and your company this and other services. Please do not hesitate to call us if you have any questions.

Sincerely,

Curtis Desilets

Andy Wang Laboratory Manager

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER:	Pinnacle Environmental, Inc P.O. Box 904	
DDO TECE	Clayton, CA 94517 (925)673-5500 Email: pcloven@pei~env.com	
PROJECT:	DATE RECEIVED: 06/06/1	7

MATRIX: SOIL	DATE EXTRACTED: 06/14/17	
DATE SAMPLED:06/02/17	DATE ANALYZED: 06/14-15/17	
REPORT TO:MR. PETER CLOVEN	DATE REPORTED: 06/19/17	

TOTAL PETROLEUM HYDROCARBONS (TPH) - CARBON CHAIN ANALYSIS METHOD: EPA 8015B

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

SAMPLE I.D.	LAB I.D.	C4-C10	C11-C22	C23-C35	DF
<u>SB-1-15</u>	170606- <u>38</u>	.102	310	345	1
METHOD BLANK		HD	310	NO	
	PQL	10	10	50	

#### COMMENTS

C4-C10 = GASOLINE RANGE C11-C22 = DIESEL RANGE C23-C35 = MOTOR OIL RANGE DF = DILUTION FACTOR PQL = PRACTICAL QUANTITATION LIMIT ACTUAL DETECTION LIMIT = DF X PQL ND = NON-DETECTED OR BELOW THE MILL DETECTION LIMIT Data Reviewed and Approved by:

CAL-DHS ELAP CERTIFICATE No.: 1555

			E	Inviro Che	m, Inc	_		
1214 E. Le	exington A	Avenue,	Pomona,	CA 91766	Tel	(909)590-8	5905	Fax (909)590-5907
	8015B QA/QC Report							
Date Analyzed: <u>6/14-15/2017</u>						U	nits:	<u>ma/Ka (ppm)</u>
Matrix:	Soil/S	Solid/	Sludg	e/Liqu	id			
Matrix Spike (	(MS)/Matri	ix Spike	Duplicate	e (MSD)		_		
Spiked Samp	le Lab I.D		17060	)6-32 M	S/MS	D		
Analyte	SR	spk conc.	MS	%M8	MSD	MMSD	WRPD	ACP %MS ACP RPD
C11-C22 Ratge	0	200	229	115%	235	118%	2%	75-125 0-20%
LCS STD REC Analyte C11~C22 Range	SOVERY: spk conc 200	LCS 224	% REC	ACP 75-125				
Analyzed and Final Reviewe	Reviewe	d By: 4	h	<u></u>				

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Corona Rd - Petaluma

MATRIX; <u>SOIL</u>	DATE RECEIVED: <u>06/06/17</u>
DATE SAMPLED:06/02/17	DATE ANALYZED: 06/15/17
REPORT TO:MR. PETER CLOVEN	DATE REPORTED: 06/19/17

SAMPLE I.D.: SB-1-15

LAB I.D.: 170606-38

_____

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X10*
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK	ND	0.020
N-BUTYLBENZENE	ND	0,005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0,005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	<u>ND</u>	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0,005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1, 2-DICHLOROETHENE	ND	0.005
TRANS-1,2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

----- TO BE CONTINUED OF PAGE #2 -----

DATA REVIEWED AND APPROVED BY:_

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Corona Rd - Petaluma

MATRIX: <u>SOIL</u>	DATE RECEIVED: <u>06/06/17</u>
DATE SAMPLED: 06/02/17	DATE ANALYZED: 06/15/17
REPORT TO: MR. PETER CLOVEN	DATE REPORTED: 06/19/17

SAMPLE I.D.: SB-1-15

LAB I.D.: 170606-38

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X10*
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1, 3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK	ND	0.020
METHYL tert-BUTYL ETHER (MTBE	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0 <u>.005</u>
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1, 2, 4-TRICHLOROBENZENE	<u>ND</u>	0.005
1, 1, 1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	<u>ND</u>	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005
COMMENTS PQL = PRACTICAL QUANT	ITATION LIMIT	
ND = NON-DETECTED OR BELOW THE	PQL	

PQL RAISED DUE TO MATRIX INTERIT, HONCE

DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

#### 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### METHOD BLANK REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Corona Rd - Petaluma

MATRIX: SOIL	DATE RECEIVED: 06/06/17
DATE SAMPLED: 06/02/17	DATE ANALYZED: 06/14/17
REPORT TO: MR. PETER CLOVEN	DATE REPORTED: 06/19/17

METHOD BLANK REPORT FOR LAB I.D.: 170606-38

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 1 UNIT: mg/kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0,005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK	ND	0.020
<u>N-BUTYLBENZENE</u>	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOL/UENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1, 4-DICHLOROBENZENE	ND	0,005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1,2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

----- TO BE CONTINUED ON PAGE #2 -----

DATA REVIEWED AND APPROVED HY

#### 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### METHOD BLANK REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Corona Rd - Petaluma

MATRIX: SOIL	DATE RECEIVED: 06/06/17
DATE SAMPLED:06/02/17	DATE ANALYZED: 06/14/17
REPORT TO:MR. PETER CLOVEN	DATE REPORTED: 06/19/17
and a second s	

METHOD BLANK REPORT FOR LAB I.D.: 170606-38

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2

	UNIT:	mg/Kg	=	MILLIGRAM	PER	KILOGRAM	=	PPM	
D				SAMPLE	RESU	T.97		POL X1	

PARAMETER	SAMPLE RESULT	PQL X1
1, 3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1, 3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1, 1, 1, 2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	<u>ND</u>	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	<u>ND</u>	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1, 1, 1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	<u>ND</u>	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0,010
O-XYLENE	ND	0.005
COMMENTS PQL = PRACTICAL QUANT	ITATION LIMIT	

ND = NON-DETECTED OR BELOW THE PUL

DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

			Enviro-Ch	em, Inc.					
1214 E. Lexington Ave	enue, Pom	ona, CA 91	766 8260B QA	Tel (9 A/QC Repo	09)590-590( rt	5 Fax	(909)590-59	907	
Date Analyzed: <u>6/14-15/2017</u> Machine:		917				Ma <b>rten <u>Solid/Soil</u> Unit marta (P)</b>		/Liquid !'M]	
Matrix Spike (MS)/Matr	ix Spike Du	iplicate (MS	D)						
Spiked Sample Lab I.D		170606-30	MS/MSD						
Analyte	5.R,	spk conc	MS	%RC	MsD	%RC	%RPD	ACP %RC	ACP RPD
Benzene	0	0.050	0.056	112%	0.055	110%	2%	75-125	0-20
Chlorobenzene	0	0.050	0.053	106%	0.053	106%	0%	75-125	0-20
1,1-Dichloroethene	0	0.050	0.048	96%	0.054	108%	12%	75-125	0-20
Toluene	0	0.050	0.056	112%	0.056	112%	0%	75-125	0-20
Trichloroethene	0	0.050	0.057	114%	0.055	110%	4%	75-125	0-20
Lab Control Spike (LCS	5):						054		
Analyte	spk conc	LCS	%RC	ACP %RC					
Benzene	0.050	0.057	114%	75-125					
Chlorobenzene	0.050	0.056	112%	75-125					
Chloroform	0.050	0.057	114%	75-125					
1.1-Dichlorothene	0.050	0.050	100%	75-125					
Ethylbenzene	0.050	0.057	114%	75-125					
-Xvlene	0.050	0.060	120%	75-125					
m.p-Xvlene	0.100	0.116	116%	75-125					
Foluene	0.050	0.056	112%	75-125					
1.1.1-Trichloroethane	0.050	0.048	96%	75-125					
Frichloroethene (TC	0.050	0.055	110%	75-125					
Surrogate Recover	snk conc	LACP %RC	MB %BC	%RC	%RC	%RC	%BC	%RC	%RC
Sample I D	opix conto		M-BLK	170613-12	170613-14	170613-16	170613-18	170613-20	170613.22
Dibromofluoremethane	20.0	70-130	940/	12196	100013-14	14 10/	02%	1220/	110010-22
	40.0	70-130	06%	105%	0.0%	0694	9070	0.000/	020/
4-Bromofluorobenzene	10.0	70-130	76%	73%	81%	78%	35*%	74%	80%
							(/		
Surrogate Recover	spk conc	ACP %RC	%RC	%RC	%RC	%RC	%RC	%RC	%RC
Sample I.D.			170613-24	170613-26	170614-1	170613-32	170606-30	170606-32	170606-36
Dibromofluoromethane	50.0	70-130	99%	113%	145*%	121%	114%	116%	138*%
foluene-d8	50.0	70-130	93%	103%	80%	98%	99%	93%	97%
-Bromofluorobenzene	50.0	70-130	80%	74%	78%	101%	69*%	74%	77%
Surrogate Recover	spk conc	ACH %RC	%h	≪RC	%RC	%RC	%RC	%RC	%RC
ample I.D.			170606-	170614-2	170614-3	170614-29	170614-30	170614-31	170614-32
)ibromofluoromethane	.50.0	10.000	11.3%	18%	101%	100%	106%	12104	110%
oluene-d8	50.0	70.120	96%	53+0/	77%	Q/10070	87%	060/	010/
-Bromofluorobenzene	10.0	70-1305	64*%	75	63*%	84%	78%	84%	70%
= Surrogate fail due to r S.R. = Sample Results	matrix interfe	arence; 10	NS, MSD	are in contro	l therefore ti %RC = Perc	he analysis i cent Recove	is in control. ry		
эрк conc = Spike Concer ИS = Matrix Spike	ntration			2	ACP %RC ≠ MSD = Matr	Accepted F ix Spike Duj	Percent Reci olicate	overy	

Analyzed/Reviewed By:

Y

0

Final Reviewer:



214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

Jessica Lin <envirocheminc@gmail.com>

## Re: Additional needed for Petaluma project

1 message

Francois Bush <francoisbush@gmail.com> To: Jessica Lin <envirocheminc@gmail.com>

Tue, Jun 13, 2017 at 5:39 PM

Sending you the analytical request again per your request

François A. Bush, P.G. sent from my mobile device at 707-975-5791

On Jun 13, 2017 10:48, "Francois Bush" <francoisbush@gmail.com> wrote: Hi Jessica,

We will not need any further analyses for the samples collected on 5/30 and 5/31.

However, for samples collected on 6/1 and 6/2, we would like to run TPH-carbon chain and VOCs on the following 4 soil samples:

SB-5-10 (lab no. 170606-30) SB-5-20 (lab no. 170606-32) 3B-1-15 (see 170606-36) 5B-1-15 (see 170606-38)

Let me know if you have any questions or need further information, thanks,

François A. Bush, PG 707/975-5791

On Mon, Jun 12, 2017 at 3:00 PM, envirocheminc@gmail.com <envirocheminc@gmail.com> wrote: Good Afternoon Francois,

I just want to follow up with you to see if the samples sampled from 05/30/17 & 05/31/17 will need any additional testing?

Please let me know by tomorrow as tomorrow will be the 14th day from when the sample is taken for 05/30/17. If you need any additional testing from these 2 sets of samples we need to get them on the instrument by tomorrow.

Thanks Jessica Lin

Enviro-Chem, Inc. 909-590-5905

Enviro-Chem, Inc. does not accept responsibility or liability with respect to the contents of this email. Enviro-Chem, Inc. also does not accept responsibility or liability in any way for any errors, omissions, damages or loss that results from the use of this email.

This email (including any attachments) is CONFIDENTIAL and may also be legally PRIVILEGED.

If you have received this email in error, please delete it and all other copies.

Please notify the sandar immediately by natura Email.

If you are not the intended recipient, you may not copy, transfer, use or disclose any part or in full.

Unauthorized use or dissemination of this email in whole or in part, is strictly prohibited.

Email is not guaranteed to be timely, secure or without errors.

Email may contain viruses or malicious code.

Date: June 12, 2017

Mr. Peter Cloven
Pinnacle Environmental, Inc
P.O. Box 904
Clayton, CA 94517
(925)673-5500 Email: pcloven@pei-env.com

Project: Corona Rd - Petaluma LAB I.D.: 1706069-37 through -45

Dear Mr. Cloven:

The **analytical results** for the soil samples, received by our laboratory on June 6, 2017, (via OnTrac), are attached. The samples were received chilled, intact and accompanying chain of custody record.

Enviro-Chem appreciates the opportunity to provide you and your company this and other services. Please do not hesitate to call us if you have any questions.

Sincerely,

Curtis Desilets Vice President/Program Manager

Andy Mang

Laboratory Manager

#### 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER:	Pinnacle Environmenta	al, Inc	
	P.O. Box 904		
	Clayton, CA 94517		
	(925)673-5500 Email:	pcloven@pei	-env.com
PROJECT:	Corona Rd - Petaluma		
		DATE	RECEIVED: 06/06/17
MATRIX: SOI	L	DATE	EXTRACTED: 06/07/17
DATE SAMPI	ED:06/02/17	DATE	ANALYZED:06/07/17

REPORT TO:<u>MR. PETER CLOVEN</u> DATE REPORTED:<u>06/12/17</u> TOTAL PETROLEUM HYDROCARBONS(TPH) - CARBON CHAIN ANALYSIS METHOD: EPA 8015B

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

SAMPLE I.D.	LAB I.D.	C4-C10	C11-C22	C23-C35	DF
SB-1-20	170606-39	ND	ND	ND	
SB-2-10	170606-42	ND	ND	ND	
<u>SB-2-15</u>	<u>170606-43</u>	ND	ND	ND	
METHOD BLANK		dB.	MD.	жø	-1
	19Q1	10	10	50	

#### COMMENTS

C4-C10 = GASOLINE RANGE C11-C22 = DIESEL RANGE C23-C35 = MOTOR OIL RANGE DF = DILUTION FACTOR PQL = PRACTICAL QUANTITATION LIMIT ACTUAL DETECTION LIMIT = DF X PQL ND = NON-DETECTED OR BELOW THE ACTUAL DETECTION LIMIT Data Reviewed and Approved by:

CAL-DHS ELAP CERTIFICATE No.: 1555
				Enviro Che	m, Inc				
1214 E. Le	exington	Avenue,	Pomona	, CA 91766	6 Te	l (909)590	0-5905	Fax (909)	590-5907
		ł	8015E	3 QA/Q	CRe	eport			
Date Analyze	d:	<u>6/7/2017</u>					Units:	<u>mg/Kg (</u>	ppm)
Matrix:	Soil/	Solid/	Sludo	<u>qe/Liqu</u>	ıid				
Matrix Spike (	MS)/Matr	ix Spike	Duplicate	e (MSD)					
Spiked Sampl	e Lab I.D	0.:	1706	06-10 M	IS/MS	D			
Analyte	SR	spk conc	MS	%MS	MSD	%MSD	%RPD	ACP %MS	ACP RPD
LCS STD REC	OVERY:	LCS	% REC	ACP					
C11~C22 Range Analyzed and Final Reviewe	200 Reviewe r:	210 d By:	<u>105%</u>	75-125					

# 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

### LABORATORY REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Corona Rd - Petaluma

MATRIX: SOIL	DATE RECEIVED: 06/06/17
DATE SAMPLED:06/02/17	DATE ANALYZED: 06/06/17
REPORT TO:MR. PETER CLOVEN	DATE REPORTED: 06/12/17

SAMPLE I.D.: SB-1-20

LAB I.D.: 170606-39

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1	
ACETONE	ND	0.020	
BENZENE	ND	0.005	2
BROMOBENZENE	ND	0.005	1
BROMOCHLOROMETHANE	ND	0.005	ž
BROMODICHLOROMETHANE	ND	0.000	
BROMOFORM	ND	0.005	ï
BROMOMETHANE	ND	0.005	÷
2-BUTANONE (MEK	ND	0.020	
N-BUTYLBENZENE	ND	0.005	
SEC-BUTYLBENZENE	ND	0.005	i.
TERT-BUTYLBENZENE	ND	0.005	ž
CARBON DISULFIDE	ND	0.010	ī.
CARBON TETRACHLORIDE	ND	0.005	į.
CHLOROBENZENE	ND	0.005	÷
CHLOROETHANE	ND	0.005	i.
CHLOROFORM	ND	0.005	d,
CHLOROMETHANE	ND	0.005	
2-CHLOROTOLUENE	ND	0,005	Z
4-CHLOROTOLUENE	ND	0.005	i.
DIBROMOCHLOROMETHANE	ND	0.005	
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005	
1,2-DIBROMOETHANE	ND	0.005	÷.
DIBROHONETHARE	112	0:005	E.
1,2-DICHLOROBENZENE	ND	0.005	2
1,3-DICHLOROBENZENE	<u>ND</u>	0.005	÷
1,4-DICHLOROBENZENE	ŇD	0.005	÷
DICHLORODIFLUOROMETHANE	ND	0.005	į.
1,1-DICHLOROETHANE	ND	0.005	
1,2-DICHLOROETHANE	ND	0.005	i.
1, 1-DICHLOROETHENE	ND	0.005	
CIS-1, 2-DICHLOROETHENE	ND	0.005	
TRANS-1, 2-DICHLOROETHENE	ND	0.005	1
1,2-DICHLOROPROPANE	ND	0.005	è

-- TO DE CONTINUED ON PAGE #2 -----

# 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

### LABORATORY REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Corona Rd - Petaluma

MATRIX: <u>SOIL</u>	DATE RECEIVED: 06/06/17
DATE SAMPLED:06/02/17	DATE ANALYZED: 06/06/17
REPORT TO:MR. PETER CLOVEN	DATE REPORTED: 06/12/17

SAMPLE I.D.: SB-1-20

......

LAB I.D.: 170606-39

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
1, 3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	<u>0.005</u>
1, 1-DICHLOROPROPENE	ND	0.005
CIS-1, 3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND.	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE	<u>ND</u>	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
<u>N-PROPYLBENZENE</u>	ND	0.005
STYRENE	ND	0.005
1, 1, 1, 2-TETRACHLOROETHANE	ND	0.005
1, 1, 2, 2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	<u>ND</u>	0.005
1,1,1-TRICHLOHOSTHAR	BID.	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1, 3, 5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
<u>O-XYLENE</u>	ND	0.005
COMMENTS PQL = PRACTICAL QUANT	ITATION LIMIT	

ND = NON-DETECTED OR BELOW THE DOM DATA REVIEWED AND APPROVED BY:

# 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

### LABORATORY REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Corona Rd - Petaluma

MATRIX: SOIL	DATE RECEIVED; <u>06/06/17</u>
DATE SAMPLED:06/02/17	DATE ANALYZED:06/07/17
REPORT TO:MR. PETER CLOVEN	DATE REPORTED: 06/12/17

SAMPLE I.D.: SB-2-10

LAB I.D.: 170606-42

ANALYSIS:	VOLATILE	ORGANICS,	EPA METHOD	5030B/8260B, P.	AGE 1 DF 1
	INTE M	$\pi/K\alpha = MTL$	LTCDAM DED	KTLOCDAM = DDM	

PARAMETER	SAMPLE RESULT	PQL X10*
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
<u>4-CHLOROTOLUENE</u>	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DISBROMOMETHARE	NU	0.005
1,2-DICHLOROBENZENE	ND	0.005
1, 3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	<u>ND</u>	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	<u>ND</u>	<u>0.0</u> 05
CIS-1, 2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

TO BE CONTINUED ON PAGE #2

### LABORATORY REPORT

CUSTOMER:	Pinnacle Environmental, Inc
	P.O. Box 904
	Clayton, CA 94517
	(925) 673-5500 Email: pcloven@pei-env.com
PROJECT:	Corona Rd - Petaluma

MATRIX: SOIL	DATE RECEIVED: 06/06/17
DATE SAMPLED: 06/02/17	DATE ANALYZED: 06/07/17
REPORT TO; MR. PETER CLOVEN	DATE REPORTED: 06/12/17

SAMPLE I.D.: SB-2-10

LAB I.D.: 170606-42

PARAMETER	SAMPLE RESULT	PQL X10*
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1, 1-DICHLOROPROPENE	ND	0.005
CIS-1, 3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
I SOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1, 1, 1, 2-TETRACHLOROETHANE	ND	0.005
1, 1, 2, 2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOBDETHANE	00	0.005
1,1,2-TRICHLOROETHANE	ND	0,005
TRICHLOROETHENE (TCE	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1, 3, 5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

Re DATA REVIEWED AND APPROVED BY:

# 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

### LABORATORY REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Corona Rd - Petaluma

MATRIX: SOIL	DATE RECEIVED: 06/06/17
DATE SAMPLED:06/02/17	DATE ANALYZED: 06/07/17
REPORT TO: MR. PETER CLOVEN	DATE REPORTED: 06/12/17

SAMPLE I.D.: SB-2-15

LAB I.D.: 170606-43

ANALYSIS: VOLATILE ORGANIC	CS, EPA METHOD 5030B	/8260B, PAGE 1 OF 2 AM = PPM
PARAMETER	SAMPLE RESULT	POL X10*
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	<u>0.005</u>
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0 <u>.005</u>
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMET	NO	0,005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	<u>0.005</u>
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1 2-DICHLOROETHENE	ND	0.005
TRANS-1,2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

--- TO UE CONTINUED OF PAGE #2 -----

# 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

### LABORATORY REPORT

CUSTOMER:	Pinnacle Environmental, Inc
	P.O. Box 904
	Clayton, CA 94517
	(925)673-5500 Email: pcloven@pei-env.com
PROJECT :	Corona Rd - Petaluma

and the second second second second

MATRIX: SOIL	DATE RECEIVED:06/06/17
DATE SAMPLED:06/02/17	DATE ANALYZED: 06/07/17
REPORT TO:MR. PETER CLOVEN	DATE REPORTED: 06/12/17

SAMPLE I.D.: SB-2-15

LAB I.D.: 170606-43

COLUMN DE LOS DE LOS

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X10*
1.3-DICHLOROPROFRME	ND	0.005
2.2-DICHLOBOPROPANE	ND	0.005
1.1-DICHLOROPROPENE	ND	0.005
CIS-1, 3-DICHLOROPROPERS	ND	0.005
TRANS-1, 3-DICHLOROPROPERE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
BEXACULOBOBUTADIENE	ND	0.005
TSOPROPYLBENZENE	ND	0.005
4-TEOPROFYL/TOLUENE	ND	0.005
4 - METHYL-2-PENTANONE IMIBLE	ND	0.020
METHYL LEFT-SUTYL ETHER INTEST	ND	0.005
METHYLENE DRIGHTER	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1, 1, 1, 2-TETRACHLUBOETHANE	ND	0.005
1,1,2,2-TETRACHLOHOETEANE	ND	0.005
TETRACHLOROETHERE (INCE)	ND	0.005
TOLUENE	ND	0.005
1.2.3-TRICHLOROBENZENE	ND	0.005
1.2.4-TRICHLOBOBENZSEE	ND	0.005
1.1.1.THTRICHLOROETHAME	10	9,995
1.1.2-TRICELORGETHANE	ND	0.005
THICHLOBORTHENE (TCE)	ND	0.005
TRICHLOBOFLOOROMETHANE	<u>ND</u>	0.005
1.2.3-TRICHLOROPROFANE	ND	0,005
1.2.4-TRIMETHYLBENZENE	ND	0.005
1.7.5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

COMMENTS PQL

ND = NON-DETECTED OR BELOW THE PQL

PQL RAISED DUE TO MATRIX INTERFORMED

DATA REVIEWED AND APPROVED BY:

### METHOD BLANK REPORT

CUSTOMER:	Pinnacle Environmental, Inc
	P.O. Box 904
	Clayton, CA 94517
	(925)673-5500 Email: pcloven@pei-env.com
PROJECT:	Corona Rd - Petaluma

MATRIX: SOIL	DATE RECEIVED: 06/06/17
DATE SAMPLED:06/02/17	DATE ANALYZED: 06/06/17
BEPORT TO:MR. PETER CLOVEN	DATE REPORTED: 06/12/17
	and the second

METHOD BLANK REPORT FOR LAB I.D.: 170606-39, -42, -43

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	<u>ND</u>	0.005
TERT-BUTYLBENZENE	<u>ND</u>	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	<u>ND</u>	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	<u>ND</u>	0.005
2-CHLOROTOLUENE	<u>ND</u>	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1, 2-DIBRONG-3-CHLOROPROPAGE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
UTBROMOMETHANE	1910	0005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUXROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
THANS-1.Z-DICHLEROETHERE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

1

# 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

### METHOD BLANK REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Corona Rd - Petaluma

MATRIX: SOIL	DATE RECEIVED: <u>06/06/17</u>
DATE SAMPLED:06/02/17	DATE ANALYZED: <u>06/06/17</u>
REPORT TO:MR. PETER CLOVEN	DATE REPORTED: 06/12/17

METHOD BLANK REPORT FOR LAB I.D.: 170606-39, -42, -41

PARAMETER	SAMPLE RESULT	PQL X1
L, 3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
, 1-DICHLOROPROPENE	ND	0.005
115-1, 3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
THYLBENZENE	ND	0.005
PHEXANONE	ND	0.020
IEXACHLOROBUTADI ENE	ND	0.005
SOPROPYLBENZENE	ND	0.005
-ISOPROPYLTOLUENE	ND	0.005
-METHYL-2-PENTABORE (MIDE)	ND	0.020
WTNYL LETT-BUTYL ETHER DYDET	<u>ND</u>	0.005
METHYLENE CHLORIDE	ND	0.010
APHTHALENE	ND	0.005
-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-7STRACHLOROSTRANE	ND	0.005
CETRACHLOROETEIENE (PCE)	ND	0.0 <u>05</u>
TOLUENE	ND	0.005
2,3-TRICHLOROBENEENE	ND	0.005
1.2.4-TRICHLOROBENZENE	ND	0.005
. I. 1-THICHLOROETHANE	110	0,005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1.7.3-TRICHLOROPROPANE	ND	0.005
1.2.4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

DATA REVIEWED AND APPROVED BY:

			Enviro-Ch	em, Inc.					
1214 E. Lexington Av	enue, Pom	ona, CA 91	766 8260B Q/	Tel (9 A/QC Repo	09)590-590) rt	5 Fax	(909)590-5	907	
Date Analyzed: Machine:	<u>6/6-7/2017</u>						Matrix: Unit:	<u>Solid/Soll/</u>	Liquid Mi
Matrix Spike (MS)/Mati	rix Spike Du	plicate (MS	D)						
Spiked Sample Lab I.D		170606-39	MS/MSD						
Analyte	<u>.R</u>	spk conc	MS	%RC	MsD	%RC	%RPD	ACP %RC	ACP RPD
Benzene	0	0.050	0.059	118%	0.060	120%	2%	75-125	0-20
Chlorobenzene	0	0.050	0.051	102%	0.052	104%	2%	75-125	0-20
1,1-Dichloroethene	0	0.050	0.059	118%	0.052	104%	14%	75-125	0-20
Toluene	0	0.050	0.060	120%	0.060	120%	0%	75-125	0-20
Trichloroethene TCE	0	0.050	0.050	100%	0.049	98%	2%	75-125	0-20
Lab Control Spike (LC)	S):								
Analyte	spk conc	LCS	%RC	ACP %RC	1				
Benzene	0.050	0.059	118%	75-125	11				
Chlorobenzene	0.050	0.051	102%	75-125	11				
Chloroform	0.050	0.056	112%	75-125					
1,1-Dichlorothene	0.050	0.060	120%	75-125					
Ethylbenzene	0.050	0.058	116%	75-125					
o-Xylene	0.050	0.058	116%	75-125					
m.p-Xvlene	0.100	0.120	120%	75-125					
Toluene	0.050	0.054	108%	75-125					
1,1,1-Trichloroethane	0.050	0.050	100%	75-125					
Trichloroethene (TC	0.050	0.049	98%	75-125					
Surrogate Recovery	sok conc	ACP %RC	MB %RC	%RC	%RC	%RC	%RC	%RC	%RC
Sample I.D.	opic come	, lot joirte	M-BLK	170606-10	170606-11	170606-17	170606-18	170606-21	170606-23
Dibromofluoromethane	50.0	70-130	124%	00%	107%	10.2%	102%	110%	128%
Toluene-d8	50.0	70-130	107%	0070	10770	102.70	10270	1.976	108%
4-Bromofluorobenzene	50.0	70-130	86%	82%	64*%	75%	1000	56*%	54*%
	Per Construction of the second				•1 //	1070			
Surrogate Recove	spk conc	ACP %RC	%RC	%RC	%RC	%RC	%RC	%RC	%Rì
Sample I.D			170606-27	170606-29	170606-31	170606-34	170606-35	170606-39	170606-42
Dibromofluoromethane	30.0	70-130	118%	109%	97%	109%	123%	127%	122%
Foluene-d8	90.0	70-130	104%	114%	113%	104%	99%	120%	121
+ Eromefluorebarzene	58.0	-70-150-	50*1	2010	82%	55*%	42*%	198	112.75
Duman t D		100.00			10.0000000	in a second	in the second	1	hannen
Surrogate Recovery	spk conc	ACP %	%RC	WRC:	%RC	MRC	MIC	%RC	
	LAND.	the same	170000-43			-			-
	00.0	70-120	98%	-			-		
oldene-do	23.0	10-130	115%						
-Bromofluorobenzene	50.9	10-138 A	76%		- 11		<u></u>	Ú	
' = Surrogate fail due to r S.R. = Sample Results spk conc = Spike Concer	matrix interfe	erence; ccl	MSD	are in contro	l therefore tl %RC = Perc ACP %RC =	he analysis i cent Recove - Accepted F	s in control. ry Percent Rec	overy	

Analyzed/Reviewed By:

Final Reviewer:

MSD = Matrix Spike Duplicate

	MiscuPO#	COMMENTS	1104.73	Herz	Herry	Vant			1000	4012			X	Rd-	Petermen	or Sample Storage After Analysis:	O Return to Client O Store (30 Days)		22=7 -
1		Ilysis Required										Bagetter's Sarahura		Frujer Name/ID:	ames con	Instructions fo	O Dispose of	0 Other:	P
	ARUTARA NOITAVRA	Ana	Ne	X	2		××	X				parties -1 as	Rev ( Boak	125- 349-085	Silance orshang	211127220143 Da	S	Dat	<b>TODY RECORD</b> • YELLOW TO CLIENT
	F CONTAINERS	ATAM	20							+			1	Sil	and have	"Di co	1		OF CUS HITE WITH SAMPLE
_	Turnground Time Same Day 0 24 Hours 0 48 Hours 0 72 Hours 0 1 Week (Standard) Other	D.Y TIME	Colt wests	Etol	1055	12:14	12:19	12:2+	V 12:3	HE:ON T			7		2 LISH	Received by:	Received by:	Received by:	CHAIN
	Laboratories enue, (909) 590-5907 ATE #1555	nen		XX XX	-40-	1-4-	4-1	-P	44-1	1-4-1			The DATE HA	904	x-CA 9.	N	Chtvac		1
	Enviro-Chem, Inc. I 1214 E. Lexington Avi Pomona, CA 91766 Tel: (909) 590-5905 Fax: CA-DHS ELAP CERTIFIC,	SAMPLE ID	58-1-10	513-1-15 516-1-20	88-1-25	58.2.5	58-2-10	58-2-15	58-2-20	5-1-55		Control Name:	1 11 AC 16 T	Address: 20 80.	City/State/Zip: C a s	Relinquished by:	Relinquished by:	Relinquished by:	Date:

Laboratory Data & Chain of Custody Soil Boring (SB-1 to SB-6) & Monitoring Well Installation (MW-1 to MW-8) Initial Well Sampling - Second Quarter 2017 June 2017

Date: June 15, 2017

Mr. Peter Cloven Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com

Project: Corona Rd - Petaluma LAB I.D.: 170609-46, -47, -48

Dear Mr. Cloven:

The **analytical results** for the water samples, received by our laboratory on June 9, 2017, (via OnTrac), are attached. The samples were received chilled, intact and accompanying chain of custody record.

Enviro-Chem appreciates the opportunity to provide you and your company this and other services. Please do not hesitate to call us if you have any questions.

Sincerely,

Curtis Desilets Vice President/Program Manager

Andy Wang Laboratory Manager

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

CUSTOMER: 1	LAB( Pinnacle Environmen P.O. Box 904	ORATORY RE	PORT		
PROTECT: C	(925)673-5500 Email	L: pcloven@p	ei-env.com		
raobior. c	Jorona ka - Petalun	<b>תמ</b> .		0.000 (1	
MATRIX: WATER	2		LE RECEIVED	06/09/17	
DATE SAMPLEI	06/05/17	DAI	TE EXTRACTE	D: 06/09/17	
REPORT TO:ME	PETER CLOVEN		TE REDODUED	06/15/17	
	DETROLEUM HYDROCA MET UNIT: uG/L = 1	RBONS (TPH) HOD: EPA 80 MICROGRAM PE	- CARBON C 15B ER LITER =	HAIN ANALYS PPB	SIS
SAMPLE I.D.	LAB I.D.	ARBONS (TPH) THOD: EPA 80 MICROGRAM PE C4-C10	- CARBON C 15B ER LITER = C11-C22	HAIN ANALYS PPB C23-C35	SIS DF
SAMPLE I.D. <u>MW-1</u>	DETROLEUM HYDROCA MET UNIT: uG/L = 1 LAB I.D. <u>170609-46</u>	ARBONS (TPH) THOD: EPA 80 MICROGRAM PH C4-C10 ND	- CARBON C: 15B ER LITER = C11-C22 ND	HAIN ANALYS PPB C23-C35	IS DF
<b>SAMPLE I.D.</b> <u>MW-1</u> <u>MW-2</u>	DETROLEUM HYDROCA MET UNIT: uG/L = 1 LAB I.D. <u>170609-46</u> 170609-47	ARBONS (TPH) THOD: EPA 80 MICROGRAM PR C4-C10 ND ND	- CARBON C: 15B ER LITER = C11-C22 <u>ND</u> ND	HAIN ANALYS PPB C23-C35 <u>ND</u> ND	DF
SAMPLE I.D. <u>MW-1</u> <u>MW-2</u> MW-3	DETROLEUM HYDROCA MET UNIT: uG/L = 1 LAB I.D. <u>170609-46</u> <u>170609-47</u> <u>170609-48</u>	ARBONS (TPH) THOD: EPA 80 MICROGRAM PH C4-C10 <u>ND</u> ND ND	- CARBON C: 15B ER LITER = C11-C22 <u>ND</u> ND ND	HAIN ANALYS PPB C23-C35 <u>ND</u> ND ND	DF
SAMPLE I.D. <u>MW-1</u> <u>MW-2</u> MW-3 MUTHOD BLANK	DETROLEUM HYDROCA MET UNIT: uG/L = 1 LAB I.D. <u>170609-46</u> <u>170609-47</u> <u>170609-48</u>	ARBONS (TPH) THOD: EPA 80 MICROGRAM PE C4-C10 ND ND ND	- CARBON C: 15B ER LITER = C11-C22 <u>ND</u> ND	HAIN ANALYS PPB C23-C35 <u>ND</u> ND ND	DF
SAMPLE I.D. <u>MW-1</u> <u>MW-2</u> MW-3 MUTHOD BLANK	PETROLEUM HYDROCA MET UNIT: uG/L = 1 LAB I.D. <u>170609-46</u> <u>170609-47</u> <u>170609-48</u>	ARBONS (TPH) THOD: EPA 80 MICROGRAM PH C4-C10 ND ND ND ND	- CARBON C: 15B ER LITER = C11-C22 <u>ND</u> <u>ND</u> ND ND	HAIN ANALYS PPB C23-C35 <u>ND</u> ND ND ND ND	D

C4-C10 = GASOLINE RANGE C11-C22 = DIESEL RANGE C23-C35 = MOTOR OIL RANGE DF = DILUTION FACTOR PQL = PRACTICAL QUANTITATION LIMIT ACTUAL DETECTION LIMIT = DF X PQL ND = NON-DETECTED OR BELOW THE ACTUAL DETECTION LIMIT Data Reviewed and Approved by:

CAL-DHS ELAP CERTIFICATE No.: 1555

-			E	viro Chei	m, Inc				
1214 E. L	exington	Avenue,	Pomona,	CA 91766	Tel (	909)590-59	905 F	ax (909)590	-5907
		8	3015B	QA/Q	C Rep	ort			
Date Analyzed	:	<u>6/13/2017</u>					Units:	ug/L (PP	<u>B)</u>
Matrix:	Wate	er/Liqu	iid						
Matrix Spike (MS) Spiked Sample	Matrix Sp	ike Duplicat	_{e (MSD)} 170612·	-19 MS/	MSD				
Analyte	SR	spk conc	MS	%MS	MSD	%MSD	%RPD	LACP %MS	LACP RPD
C11-C22 PANCE		12000	12600	1130/	14500	1210/	60/	75 125	
LCS STD REC	OVERY:		W DEC	409					
	12000	12600	70 REC	75 495					
Analyzed and I Final Reviewer	Reviewed	i by:	-Jnl	2					
							_		

CUSTOMER:	LAB Pinnacle Environme P.O. Box 904	ORATORY REPORT ntal, Inc	
PRATECT	Clayton, CA 94517 (925)673-5500 Emai.	l: pcloven@pei-env.	com
FROUDELT:	Corona Rd - Petalu	na	
MATRIX: WATE	R		VED.06/00/17
DATE SAMPLE	D:06/05/17	DATE ANALY	VED: 06/10/17
REPORT TO:M	R. PETER CLOVEN	DATE REPOR	100.00/10/17
SAMPLE I.D.	: MW-1	LAB I.D.: :	170609-46
ANALYSIS PARAMETER	: VOLATILE ORGANIC UNIT: ug/L = 1	S, EPA METHOD 5030B MICROGRAM PER LITER	/8260B, FAGE 1 OF 2 = PPB
ACETONE		ND	POL XI
BENZENE		ND	10
BROWONREESE		ND	
BROMOCHLORO	METHANE	ND	
BROMODICHLO:	ROMETHANE	ND	1
BROMOFORM		ND	1
HIGHOMETHAR	6	ND	î
2-BUTANONE	(MEK)	ND	10
II-SEPTYL DEM28	2002	ND	10 P
SEC-BUTYLBE	NZENE	ND	10.
TRUE-BUTYLH	INZIENE	ND	1
CARBON DISQU	31105	ND	5
CARBON TETRS	CHLOBIDE	ND	
HLOROBENEES	12	ND	T.
CHILDHORDE TRACE		ND	1
UT OB CHINESE		<u>ND</u>	
L-Car obcrach	1E.	ND	
- THE OR OTHER	NEME:	ND	
TRROMOCUT OF		ND	
27 DROMOCHTOP	OMETHANE	<u>ND</u>	1
2-DIRDOMOR	TUANE	ND	
	NE	ND	
	Linde for the factor	ND	
-3-DICHLORD	RENTERNO	<u>ND</u>	
4-DICHLORD	BENZENE		
ICHLORODIFT	UOROMETHANE		4
1-DICHLOSO	ETHANE		1
- R-DICHLOSC	ETHANI	ND	1
-1-DICHLOBO	ETHENE	ND	
IS-1,2-DICH	LOROETHENE	ND	
BASS-1.2-DI	CHLOROETHENH	ND	1
2-DICHLORD	EPOPASE	ND	1
the second se			

TO DE CONTINUED ON PAGE

CUSTOMER DAL	RATORY REPORT	
COSTOMER: Pinnacle Environmen	tal, Inc	
F.O. BOX 904		
(925) 672 5500 TH (1		
PROJECT: Corona Rd - Petaluma	: pcloven@pei-env.co a	mc
MATRIX: WATER	DATE RECEIV	$FD \cdot 0 < /00 / 17$
DATE SAMPLED: 06/05/17	DATE ANALYZ	ED: $06/10/17$
REPORT TO: MR. PETER CLOVEN	DATE REPORT	ED:06/15/17
SAMPLE I.D.: NN-1	LAB I.D.: 1	70609-46
ANALYSIS: VOLATILE OPCANICS		
UNIT: $ug/L = M$	, EPA METHOD 5030B/ ICROGRAM PER LITER :	8260B, PAGE 2 OF 2 = PPR
PARAMETER	SAMPLE RESULT	201. 81
2,2-DICHLOROPROPANE	ND	a sea and
1.1-DICHLONOFROPERT	ND	1
CIS-1, 3-DICHLOROPROPENE	ND	1
TRANS-1, 3-DICHLOROPHOPENE	ND	1
ETHYLARMSENE	ND	î.
<u>2-HEXANONE</u>	ND	14
HEXACHLOROBUTADIENE	ND	
ISOPROPYLBENZERE	ND	1
L-ISOPROFYLTOLDENE	ND	24 P
E-NETHYL-2-PENTARKNE (MIBR)	ND	10
SKTHVL LEFT-BUTYL ETHER (MTRE)	ND	1
<u>METHYLENE CHLORIDE</u>	ND	9
VAPHTHALENE	ND	1
<u>N-PROPYLBENZENE</u>	ND	1
<u>STYRENE</u>	ND	- 3
1.1.1.2-TETRACHLOROSTHERU	ND	1
ALAR.2-TETRACHLOROETHANE	ND	
TETRACHLOROSTHERE (PCE)	ND	
<u>'OLUENE</u>	ND	1
ARA J-TRICHLOROMENZENC	ND	1
-2-4-TRICHLOROBENZENE	ND	
1,1-TRICHLORDETHAME	ND	1
1.1.Z-TRICHLOROETRANE	ND	
HICHLONORTHENE (TCE)	ND	1
BISHLOHOFTOOROMETHAME	ND	
A CA A-TRICKLOROPROPANE	ND	1
ANA -TRIBETRYLBENZERE	ND	1
A LABOTRIMETHYLSENZENE	ND	
LWIL CHLORIDE	ND	
VVI PAR	ND	2
TAILENE	ND	1
UMMENTS POL = PRACTICAL ONANTT	ATTON LIMIT	
Design of the second gorantin	TITTON DILLIT	
D = NON-DETECTED OR BELOW THE H	PQL /	

CAL-DHS CERTIFICATE # 1555

# 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

CUSTOMED .	LAB(	DRATORY REPORT	
COSIOMER:	Pinnacie Environmer	ntal, Inc	
	F.O. BOX 904		
	$(925) 672 = 5500 \pi - 41$		
PROJECT	(923) 873-9300 Email	: pcloven@pei-env.c	Com
11000001,	corona Rd - Petalui	na	
MATRIX:WAT	ER		750.06/00/17
DATE SAMPL	ED:06/05/17	DATE ANALY	$\frac{10}{10} \frac{10}{17}$
REPORT TO:	MR. PETER CLOVEN	DATE REPORT	PED: 06/15/17
********			<u>50715711</u>
SAMPLE I.D	.: MW-2	LAB I.D.: ;	170609-47
ANALYSI PARAMETER	S: VOLATILE ORGANICS UNIT: ug/L = 1	S, EPA METHOD 5030B, MICROGRAM PER LITER	/8260B, PAGE 1 OF 2 = PPB
ACETONE		SAMPLE RESULT	PQL X1
BENZENE		ND	10
BROMOBENERS	NX	ND	
BROMORTHLORG	OMETHANE		1
HEOMODICHLO	SROMETHANE	ND	1
BROMOFORM		ND	1
BROMOMETHAN	NE	ND	1
Z-BUTANONE.	09233	ND	10
H-BOTYLBEN:	SENE.	ND	1
<b>BEC-BOTYLEE</b>	ENGENE .	ND	
TERL-BULLI	HENELME	ND	1
CARBON DISI	LLET DE	ND	5
CARBON TETT	OVCHLORIDE.	ND	1
CHLORDBENZ -	SNR	ND	1
CHLOROETHAN	1E	ND	1
CHLOROFORM		ND	
L-CHLOROTOL	STOULD	ND	
A-FWI OPOTOL	710:00	<u>ND</u>	
DTREOMOCHLC	ACCOUNT AND A STOLEN	ND NO	
1.2-DTBBOM	-1-CHLOROMOUTER	ND	
1.2-DIBROMO	PTHANE	ND	
DI BROMOMS TH	ANK	ND	
1,2-DICHLOR	OHENZENE		
1.3-DICHLOR	OBENZENE	ND	
L.4-DICHLOR	OBENZENE	ND	
DICELORODIF	LOOBOMETHANE	ND	
1,1-DICHLOR	DETENKI	ND	
1,2-DICHLOR	OETHANE	ND	1
1,1-DICHLON	ONTHENN	ND	
CI8-1.2-DIC	HLOBORTHENE	ND	
TRANS-1.2-D	ICHLOROETHERE	ND	1
1, 2-DICHLOR	OPROPANE	ND	1
1, 3-DICHLOR	OPROPANE	ND	1

----- TO DE CONTINUE ON PAGE

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT CUSTOMER: Pinnacle Environmental, Inc. P.O. Box 904 Clayton, CA 94517 (925) 673-5500 Email: pcloven@pei-env.com Corona Rd - Petaluma PROJECT: MATRIX: WATER DATE RECEIVED: 06/09/17 DATE SAMPLED: 06/05/17 DATE ANALYZED: 06/10/17 REPORT TO: MR. PETER CLOVEN DATE REPORTED: 06/15/17 SAMPLE I.D.: MM-1 LAB I.D.: 170609-47 and the second second second ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2 UNIT: ug/L = MICROGRAM PER LITER = PPB PARAMETER SAMPLE RESULT FOL X1 2,2-DICHLOROPHOPANE ND 1,1-DICHLOROFROPENT ND CIS-1, 3-DICHLOROPROPENE ND TRANS-1, 3-DICHLOROPROPENE ND ETHYLBENZENE ND Т 2-HEXANONE ND 10. HEXACHLOROBUTADIENE ND X 1SOPROPYLBENZENE ND 1 A-ISOPROPYL'TOLOGNE ND 4-RETHYL-2-PENTANORE INTER: ND 10 HENRYL LACT-BUTYL ETHER (MTHE) ND 3 HETHYLENE CHLORIDE ND 5 MACUTHALSNE ND N-PROFFLARMZERE ND т STYRENE ND 1, 1, 1, 2-TETHACHLOROGITHANE ND 3 1, 1, 2, 2-TETRACULOROGTHANE ND TETRACHLOROSTHENS (PCR) ND TOLUENE ND 1.2.3-TRICHIOMONENZENE ND 1,2,4-TRICHLOROHENZENE ND 1, 1, 1-THICHLOROUTHANE ND 1,1,2-TRICHLORGETHAME ND TRICHLOROSTHENE (TCS) ND TRICHLOROFLUOROMETHANE ND 1.2. J-TRICHLOROPROPANE ND 1.2.0-TRIMETHYLBENZENE ND 1, 3, 5-TRIMETHYLBENZENE ND VIEYL CHEONTOR ND M/P-XILESE ND O-XYLENE ND COMMENTS PQL = PRACTICAL QUANTITATION LIMIT ND = NON-DETECTED OR BELOW THE POL DATA REVIEWED AND APPROVED BY: Al. CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT CUSTOMER: Pinnacle Environmental, Inc. P.O. Box 904 Clayton, CA 94517 (925) 673-5500 Email: pcloven@pei-env.com PROJECT: Corona Rd - Petaluma MATRIX: WATER DATE RECEIVED:06/09/17 DATE SAMPLED: 06/05/17 DATE ANALYZED: 06/10/17 REPORT TO: MR. PETER CLOVEN DATE REPORTED: 06/15/17 SAMPLE I.D.: MW-3 LAB I.D.: 170609-48 ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, FACE 1 OF 1 UNIT: ug/L = MICROGRAM PER LITER = PPB PARAMETER SAMPLE RESULT IOL II ACETONE ND 10 BENZENE ND 1 BROMOBENZENE ND 1 BREMOCHLOROMETHANE ND 1 BROMODICHLOROMETHAME ND 1 BROMOFORM ND 1 BROMOMETHANE ND 1 2-BUTANONE (MEK ND 10 N-BUTYLBENZENE ND 1 SEC-BUTYLBENZENE ND 1 TERT-BUTYLBENZENE ND 1 CARBON DISULFIDE ND 5 CARHON TETHACHLORIDE ND 1 CHLOROBENZENE ND 1 CHLOROETHANE ND 1 CHLOROFORM ND 1 CHLOROMETHANE ND 1 2-CHLOROTOLUENE ND 1 4-CHLOROTOLUENE ND 1 DIBROMOCHLOROMETHANE ND 1 1,2-DIBURGMO-3-CHLOROPROPAKE ND 1 1,2-DIBROMOETHANE ND 1 DIBROHOMETHANE ND 1 1,2-DICHLOROBENZENE ND 1 1.3-DICHLOSOBENZENE ND 1 1, 4-DICHLOROBENZENE ND 1 DICHLORODIFLUOROMETHANE ND 1 1,1-DICHLOROETHANE ND 1 1,2-DICHLOROETHANE ND 1 1,1-DICHLOROETHENE ND 1 CIS-1, 2-DICHLOROETHENE ND 1 TRANS-1, 2-DICHLOROETRENE ND 1 1,2-DICHLOROPROPANE ND 1 1,3-DICHLOROPROPANE ND 1

---- TO BE CONTINUED ON PAGE 12 -----

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925) 673-5500 Email: pcloven@pei-env.com PROJECT : Corona Rd - Petaluma MATRIX: WATER DATE RECEIVED: 06/09/17 DATE SAMPLED: 06/05/17 DATE ANALYZED: 06/10/17 REPORT TO: MR. PETER CLOVEN DATE REPORTED: 06/15/17 SAMPLE I.D.: MW-3 LAB I.D.: 170609-48 ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2 UNIT: ug/L = MICROGRAM PER LITER = PPB PARAMETER SAMPLE RESULT POL 31. 2.2-DICHLOROFROPANT ND 1,1-DICHLOBORNOPENS ND C18-1, J-DICHLOROPROPERE ND TRANS-1, 3-DICHLOROPHOPENH ND ETHYLBENZENE ND 2-HEXANONE ND 101 HEXACIL ORDBUTADIENE ND 3 ISOPROPYLBENZENE ND 1 4-ISOPROPYLTDLOBME. ND 4-MUTHYL-2-PENTADONE (HIBR) ND 20 METHYL tort-BUTYL ETHER [M7BE] ND 3 METHYLENE CHLORIDE ND 3 MAPHTHALENE ND N-PROPYLBENZERS. ND 1 STYRENE ND 1,1,1,2-TETRACHLOBOETHARE ND 1,1,2,2-TETRACHLOROETHANE ND TETRACHLOROETHENE (PCE) ND TOLUENE: ND 1,2,3-THICHLOROBENSENE ND 1,2,4-TRICHLOROBANSHNE ND 1.1.1-TRICHLORDETHAME ND L. L. Z-TRICHLORGETHANE ND TRICHLOROETNERE (TCE) ND TRICHLOBOPLUORCMETHANE ND 1.2.3-THICHLOROPHOPANE ND 1 1.2.4-TRIMETHYLBESZENE ND 1.3.5-TRIMETHYLESNEEN ND VINYL CHLORIDE ND MZP-KYLENE ND 2 O-XYLENE ND 1 COMMENTS PQL = PRACTICAL QUANTITATION LIMIT ND = NON-DETECTED OR BELOW THE PQL DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

Enviro – Chem, Inc. 2009 CA 91766 Tel (909) 590-5905 Fax (909) 590-5907 1214

CUSTOMER:	METHO Pinnacle Environme P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email	D BLANK REPORT ntal, Inc 1: pcloven@pei-env	. com
FRODECI,	Corona Kd - Petalu	na	
MATRIX : WAT.	ER	DATE RECE	IVED: <u>06/09/17</u>
DATE SAMPL	ED: <u>06/05/17</u>	DATE ANAL	YZED: <u>06/09/17</u>
REPORT TO:	MR. PETER CLOVEN	DATE REPO	RTED: <u>06/15/17</u>
М	ETHOD BLANK REPORT	FOR LAB I.D.: 1706	09-46, -47, -48
ANALYSI	S: VOLATILE ORGANIC UNIT: ug/L =	S, EPA METHOD 5030 MICROGRAM PER LITE	B/8260B, FAGE 1 OF 2
PARAMETER	5.	SAMPLE RESULT	
ACETONE		ND	10
BENZENE		ND	1
DROMOBILIER DR	110	ND	1
BROMOCITLORG	CHETHANE	ND	1
BROMODICHLO	DROMETHANE	ND	1
BROMOFORM		ND	
BROMONUTHAN	ar	ND	
2-BUTANONE	(MER)	ND	10
R-BUTYL BENS	232	ND	1
EXC-BOTYLEE	BISISNE	ND	1
IEBT-BUTYLI	ENZENE.	ND	1
CARRON DIST	LETOE	ND	5
CARBON TETR	ACHLORIDE	ND	1
CHLOROBENZE	NE	ND	1
CHLOROETHAN	<u>E</u>	ND	1
CHLOROFORM		ND	1
<u>CHLOROMETHA</u>	NE	ND	1
Z-CHLOROTON	UENE	ND	1
-CHLOROTOL	ODAL	ND	11
STERCHOCHUZ	ROMETHANK	ND	1
· 2-DIBROW	-1-CHLOROPROPARE	<u>ND</u>	_1
L 2-DIBROW	ETRANE	ND	11
STREEMONDART T	BNE	ND	_1
2 DIGHIOR	OHENZENE	<u>ND</u>	1
1, 3-DICHLOR	OBENZENE	<u>ND</u>	1
TOUTODODTE	LUGARABAS	ND	1
JICHLORODIF	LUCKOMETHANE	ND	11
2-0100100		<u>ND</u>	1
Z-DICHLOR		ND	1
278-102-01-01	ARE CONTRACTOR	ND	1
PANEL T. T. N	LCRI ONORTHERE	ND	1
9-TITUTION	ODDOODANK	ND	1
the second	AND ANY MENDAL PROPERTY AND	INT 1	1

ND ND ND ND NO NE CONTINUED ON PAGE 12 -----

	METHO	D BLANK REPORT	
CUSTOMER:	Pinnacle Environme	ntal, Inc	
	P.O. Box 904		
	(025) 672 EE00 =		
PROJECT :	Corona Rd - Petalu	1: pcloven@pei-env.c	on
	torona na recara	ng	
MATRIX: WAT	ER	DATE RECEIV	/ED: <u>06/09/17</u>
DATE SAMPL	ED: <u>06/05/17</u>	DATE ANALY	ED: 06/09/17
REPORT TO:	MR. PETER CLOVEN	DATE REPORT	ED: <u>06/15/17</u>
М	ETHOD BLANK REPORT I	FOR LAB I.D.: 170609	-46, -47, -48
ANALYSI	S: VOLATILE ORGANIC	S, EPA METHOD 5030B	/8260B, FAGE 2 OF 2
PARAMETER	UNIT: ug/L = .	SAMDLE DESILT	= PPB
222-DICHLO	ROPROPANE	ND	PQL XI
L. L-DICHLO	SOPROPEDI	ND	1
CIS-1, 3-DI	CHLOROPROPENE	ND	1
TRANS-1.3-1	DICHLOROPROPENE	ND	1
ETHYLBENZEI	NE	ND	
2-HEXANONE		ND	10
IEXACHE/OROS	SUTADIENC	ND	1
BOPBOPYLIN	CN235NE	ND	1
I-ISOPROLY	TOLUENE	ND	1
I-BETHYL-2-	PERTABORE (NTRS)	ND	10
1ETHYL tert	-BUTYL ETHER (MTBE	ND	3
ACTHYLENE C	HLORIDE	ND	5
NAPHTHALENE	<u> </u>	ND	1
1-PROPYLBEN	NZENE	ND	1
STYRENE		ND	1
1. J. J. Z - T.E.	BACHLOROSTHASE	ND	1
1. 2.2-TEI	BACHLOROETHANE	ND	1
TETRACHLOR	RTHENE (FCE)	ND	1
OLUENE	Contract of the second	ND	1
<u>,2,3-TRIC</u>	LOROBENZENE	ND	1
ALL 4-TRICK	LOROBENZENE	ND	1
.1.1-TRICH	LOROSTHANZ	ND	1
11.2-1810	LOROSTHANS	ND	1
*11-11080R)	DEDE (TCE)	ND	1
STURIO CONT	ADROMETHABLE	ND	1
A DA DE TRACE	LOBOPROPANE	ND	1
ALCO ATTRING	THTLEENZENE	<u>ND</u>	1
THE REPORT OF THE REPORT	LINI LUEPSERE	ND	1
TNUT OUT OF	LDE	ND	1
INYL CHLOR		ND	0
/INYL CHLOR			

nue, Pom								
	iona, CA 9	1766 8260B Q	To A/QC Rep	el (909)590 ort	-5905	Fax (909)	590-5907	
6/9-10/201 B	17					Matrix: Unit:	Water/Lig visi/Lippe	uid Sj
c Spike Dr	uplicate (M	SD)						
	170608-23	MS/MSD				1		
L.R	spk conc	MS	%RC	MSD	%RC	%RPD	ACP %RC	ACP RPD
0	25.0	30.1	120%	28.4	114%	7%	75-125	0-20
0	25.0	29.3	117%	26.3	105%	12%	75-125	0-20
0	25.0	22.3	89%	20.6	82%	7%	75-125	0-20
0	25.0	28.9	116%	27.5	110%	6%	75-125	0-20
0	25.0	28.4	114%	27.4	109%	4%	75-125	0-20
spk conc	LCS	%RC	ACP %RC					
25.0	30.8	123%	75-125	1				
25.0	28.1	112%	75-125					
25.0	30.5	122%	75-125					
25.0	28.1	112%	75-125					
25.0	30.0	120%	75-125	à:				
25.0	30.3	121%	75-125					
50.0	60.1	120%	75-125					
25.0	29.4	118%	75-125					
25.0	30.8	123%	75-125					
25.0 25.0	30.8 28.4	123% 114%	75-125 75-125	i.				
25.0 25.0 spk conc	30.8 28.4 ACP %RC	123% 114% MB %RC	75-125 75-125 %RC	%RC	%RC	%RC	%RC	%RC
25.0 25.0 spk conc	30.8 28.4 ACP %RC	123% 114% MB %RC M-BLK	75-125 75-125 %RC 170608-23	%RC 170608-24	%RC  170608-25	%RC 170608-26	%RC	%RC
25.0 25.0 spk conc	30.8 28.4 ACP %RC 70-130	123% 114% MB %RC M-BLK 107%	75-125 75-125 %RC 170608-23 93%	%RC 170608-24 98%	%RC   <b>170608-25</b>   101%	%RC 170608-26 102%	%RC 170608-27 116%	%RC 170608-21
25.0 25.0 spk conc 25.0 25.0	30.8 28.4 ACP %RC 70-130 70-130	123% 114% MB %RC M-BLK 107%	75-125 75-125 %RC 170608-23 93%	%RC 170608-24 98%	%RC 170608-25 101%	%RC 170608-26 102%	%RC 170608-27 116%	%RC 170608-21 123%
25.0 25.0 spk conc 25.0 25.0 25.0 25.0	30.8 28.4 ACP %RC 70-130 70-130 70-130	123% 114% MB %RC M-BLK 107% 101% 88%	75-125 75-125 %RC 170608-23 93% 93% 84%	%RC 170608-24 98% 112% 87%	%RC   <b>170608-25</b>  101%  98%  87%	%RC 170608-26 102% 83%	%RC 170608-27 116% 101%	%RC 170608-21 123% 107% 86%
25.0 25.0 spk conc 25.0 25.0 25.0 25.0	30.8 28.4 ACP %RC 70-130 70-130 70-130	123% 114% MB %RC M-BLK 107% 101% 88%	75-125 75-125 %RC 170608-23 93% 93% 84%	%RC 170608-24 98% 102% 87%	%RC   <b>170608-25</b>  101%   68%   87%	%RC 170608-26 102% 83% %RC	%RC 170608-27 116% 101%	%RC 170608-21 123% 107 86%
25.0 25.0 spk conc 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	30.8 28.4 ACP %RC 70-130 70-130 70-130 ACP %RC	123% 114% MB %RC M-BLK 107% 101% 88% %RC 170609-22	75-125 75-125 %RC 170608-23 93% 93% 84% %RC 170609-23	%RC 170608-24 98% 112% 87% %RC 170609-24	%RC 170608-25 101% 87% %RC 170609-46	%RC 170608-26 102% 101 83% %RC 170609-47	%RC 170608-27 116% 101% 101%	%RC 170608-23 123% 1074 86% %RC 170609-92
25.0 25.0 spk conc 25.0 25.0 25.0 25.0 25.0 25.0	30.8 28.4 ACP %RC 70-130 70-130 70-130 ACP %RC	123% 114% MB %RC M-BLK 107% 101 88% %RC 170609-22 114%	75-125 75-125 %RC 170608-23 93% 93% 93% 84% %RC 170609-23 134*%	%RC 170608-24 98% 112-% 87% %RC 170609-24	%RC 170608-25 101% 87% %RC 170609-46 120%	%RC 170608-26 102% 101% 83% %RC 170609-47 126%	%RC 170608-27 116% 101% 101% 101% 121%	%RC 170608-28 123% 1074 86% %RC 170609-92 120%
25.0 25.0 spk conc 25.0 25.0 25.0 25.0 spk conc 25.0 25.0 25.0	30.8 28.4 ACP %RC 70-130 70-130 70-130 ACP %RC 70-130 70-130	123% 114% MB %RC M-BLK 107% 101% 88% %RC 170609-22 114% 101%	75-125 75-125 %RC 170608-23 93% 93% 84% %RC 170609-23 134*% 102%	%RC 170608-24 98% 102% 87% %RC 170609-24 142*% 103%	<pre>%RC 170608-25 101% 601% 87% </pre> %RC 170609-46 120% 102%	%RC 170608-26 102% 101% 83% %RC 170609-47 126% 102%	%RC 170608-27 116% 101% 101% NRC 170609-40 121% 102%	%RC 170608-23 123% 1074 86% %RC 170609-93 120% 102%
25.0 25.0 spk conc 25.0 25.0 25.0 spk conc 25.0 25.0 25.0 25.0	30.8 28.4 ACP %RC 70-130 70-130 70-130 70-130 70-130 70-130	123% 114% MB %RC M-BLK 107% 101% 88% %RC 170609-22 114% 101% 95%	75-125 75-125 %RC 170608-23 93% 93% 84% %RC 170609-23 134*% 102% 100%	%RC 170608-24 98% 102% 87% %RC 170609-24 142*% 103% 59*%	%RC 170608-25 101% 9414 87%	%RC 170608-26 102% 83% %RC 170609-47 126% 102% 95%	%RC 170608-27 116% 101% 101% 101% 121% 102% 94%	%RC 170608-28 123% 107 86% %RC 170609-92 120% 102% 94%
25.0 25.0 spk conc 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	30.8 28.4 ACP %RC 70-130 70-130 70-130 70-130 70-130 70-130	123% 114% MB %RC M-BLK 107% 101% 88% %RC 170609-22 114% 101% 95% %RC	75-125 75-125 %RC 170608-23 93% 93% 93% 84% %RC 170609-23 134*% 102% 102%	%RC 170608-24 98% 102% 87% %RC 170609-24 142*% 103% 59*%	%RC 170608-25 101% 87% 87% ∑%RC 170609-46 120% 102% 94%	%RC 170608-26 102% 83% %RC 170609-47 126% 102% 95%	%RC 170608-27 116% 101% 101% 101% 121% 102% 94%	%RC 170608-28 123% 107 86% %RC 170609-92 120% 102% 94%
25.0 25.0 spk conc 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	30.8 28.4 ACP %RC 70-130 70-130 70-130 70-130 70-130 70-130 70-130	123% 114% MB %RC M-BLK 107% 101% 88% %RC 170609-22 114% 101% 95% %RC	75-125 75-125 %RC 170608-23 93% 93% 93% 84% %RC 170609-23 134*% 102% 100%	%RC 170608-24 98% 112% 87% %RC 170609-24 142*% 103% 59*%	%RC 170608-25 101% 87% 87% ↓ 70609-46 ↓ 120% 102% 94%	%RC 170608-26 102% 101% 83% %RC 170609-47 126% 102% 95%	%RC 170608-27 116% 101% 101% 101% 121% 102% 94%	%RC 123% 123% 86% %RC 179609-92 120% 102% 94%
25.0 25.0 spk conc 25.0 25.0 25.0 25.0 25.0 25.0 spk conc 25.0	30.8 28.4 ACP %RC 70-130 70-130 70-130 ACP %RC 70-130 70-130 ACP %RC	123% 114% MB %RC M-BLK 107% 101% 88% %RC 170609-22 114% 101% 95% %RC	75-125 75-125 %RC 170608-23 93% 93% 84% %RC 170609-23 134*% 102% 100%	%RC 170608-24 98% 1112-% 87% %RC 102% 142*% 103% 59*%	%RC 170608-25 101% 87% 87% 7% 7% 7% 7% 7% 7% 102% 94% 7% 7% 7% 7% 7% 7% 7% 7% 7% 7	%RC 102% 102% 83% %RC 170609-47 126% 102% 95%	%RC 170608-27 116% 101% 101% 101% 121% 102% 94%	%RC 170608-28 123% 107% 86% %RC 170609-92 120% 102% 94%
25.0 25.0 spk conc 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	30.8 28.4 ACP %RC 70-130 70-130 70-130 70-130 70-130 ACP %RC 70-130 70-130 70-130	123% 114% MB %RC M-BLK 107% 101% 88% %RC 170609-22 114% 101% 95% %RC	75-125 75-125 %RC 170608-23 93% 93% 84% %RC 170609-23 134*% 102% 100%	%RC 170608-24 98% 102% 87% %RC 170609-24 142*% 103% 59*%	%RC 170608-25 101% 987% 87% 2 %RC 170609-46 102% 94% 	%RC 170608-26 102% 83% %RC 170609-47 126% 102% 95%	%RC 170608-27 116% 101% 101% 101% 121% 102% 94%	%RC 170608-21 123% 107% 86% %RC 170609-92 120% 102% 94%
	Spike D R 0 0 0 0 0 0 0 0 0 0 0 0 0	Spike Duplicate (M           170608-23           R         spk conc           0         25.0           0         25.0           0         25.0           0         25.0           0         25.0           0         25.0           0         25.0           0         25.0           0         25.0           0         25.0           25.0         30.8           25.0         28.1           25.0         28.1           25.0         30.0           25.0         30.3           50.0         60.1	Spike Duplicate (MSD)           170608-23 MS/MSD           Image: Image	Spike Duplicate (MSD)           170608-23 MS/MSD           R         spk conc         MS         %RC           0         25.0         30.1         120%           0         25.0         29.3         117%           0         25.0         22.3         89%           0         25.0         28.9         116%           0         25.0         28.9         116%           0         25.0         28.4         114%           spk conc         LCS         %RC         ACP %RC           25.0         30.8         123%         75-125           25.0         28.1         112%         75-125           25.0         28.1         112%         75-125           25.0         30.0         120%         75-125           25.0         30.3         121%         75-125           25.0         30.3         121%         75-125           25.0         30.3         121%         75-125           25.0         30.3         121%         75-125           25.0         30.3         121%         75-125           25.0         30.3         121%         75-125	Spike Duplicate (MSD)           170608-23 MS/MSD           R         spk conc         MS         %RC         MSD           0         25.0         30.1         120%         28.4           0         25.0         29.3         117%         26.3           0         25.0         22.3         89%         20.6           0         25.0         28.9         116%         27.5           0         25.0         28.9         116%         27.4           spk conc         LCS         %RC         ACP %RC           25.0         28.1         112%         75-125           25.0         28.1         112%         75-125           25.0         28.1         112%         75-125           25.0         28.1         112%         75-125           25.0         30.3         121%         75-125           25.0         30.3         120%         75-125           25.0         30.3         121%         75-125           25.0         30.3         121%         75-125           25.0         30.3         120%         75-125           25.0         30.3	Spike Duplicate (MSD)           170608-23 MS/MSD           R         spk conc         MS         %RC         MSD         %RC           0         25.0         30.1         120%         28.4         114%           0         25.0         29.3         117%         26.3         105%           0         25.0         22.3         89%         20.6         82%           0         25.0         28.9         116%         27.5         110%           0         25.0         28.4         114%         27.4         109%           0         25.0         28.4         114%         27.4         109%           spk conc         LCS         %RC         ACP %RC           25.0         30.8         123%         75-125           25.0         30.5         122%         75-125           25.0         28.1         112%         75-125           25.0         30.0         120%         75-125           25.0         30.3         121%         75-125           25.0         30.3         121%         75-125           25.0         30.3         121%         75-125	Unit:           Spike Duplicate (MSD)           170608-23 MS/MSD           R         spk conc         MS         %RC         MSD         %RC         %RPD           0         25.0         30.1         120%         28.4         114%         7%           0         25.0         29.3         117%         26.3         105%         12%           0         25.0         22.3         89%         20.6         82%         7%           0         25.0         28.9         116%         27.5         110%         6%           0         25.0         28.4         114%         27.4         109%         4%           spk conc         LCS         %RC         ACP %RC           25.0         30.8         123%         75-125         25.0         30.5         122%         75-125           25.0         28.1         112%         75-125         25.0         30.3         121%         75-125           25.0         30.3         121%         75-125         25.0         30.3         121%         75-125           25.0         30.3         121%         75-125         25.0         30.3	Spike Duplicate (MSD)         MS/MSD         %RC         MSD         %RC         %RPD         ACP %RC           0         25.0         30.1         120%         28.4         114%         7%         75-125           0         25.0         29.3         117%         26.3         105%         12%         75-125           0         25.0         22.3         89%         20.6         82%         7%         75-125           0         25.0         28.9         116%         27.5         110%         6%         75-125           0         25.0         28.4         114%         27.4         109%         4%         75-125           0         25.0         28.4         114%         27.4         109%         4%         75-125           0         25.0         28.1         112%         75-125         25.0         28.1         112%         75-125           25.0         28.1         112%         75-125         25.0         30.3         121%         75-125           25.0         28.1         112%         75-125         25.0         30.3         121%         75-125           25.0         30.3         121% <t< td=""></t<>

	MisciPCM	CONNENTS								N.V.	)	ILe	ple Storage After Analysis:	urn to Client 😿 Store (30 Days)		1 of 1
\$ 10	10000000000000000000000000000000000000	Analysis Required			X					Cloren Englandure:	3-5500 Project Name/D:	shush ad nailion - Corona	To 11 Dec Strine: 10:00 Instructions for Sam	O Dispose of O Retu	Date	Page
	F Contriners Frontainers Fration	PRES Vo. O	Wath H von cc	4 ALL	1 4 10 200 A					Project Contact:	Tel: 725/67	a ma the francois	N- # (1,00,11,29815			WHITE WITH SAMPLE • YELLOW TO CLIENT
	Turnaround Time 8 Same Day 0 24 Hours 0 48 Hours 0 72 Hours 0 72 Hours 0 1 Week (Standard) Other:	SAMPLING DATE TIME	6-5-1630	06+1	V 1530					had	•	4517 201	Received	Received	Received	CUAI
	Laboratories enue, (909) 590-5907 ATE #1555	LABID	190009-94	67-7 L	1-44					rifron me	× 904	01-9	N	METAC		1
	Enviro-Chem, Inc. 1 1214 E. Lexington Av Pomona, CA 91766 Tel: (909) 590-5905 Fax: CA-DHS ELAP CERTIFIC	SAMPLEID	MW-1	12- MW	8- M					Commenter E	Address: P.O. &	City/State/Zip: C. C.	Relinquished by.	Refinquished by:	Keilinguisned by	Date: 6/8/17

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

Date: June 16, 2017

Mr. Peter Cloven Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com

Project: Corona Rd - Petaluma LAB I.D.: 170612-14 through -19

Dear Mr. Cloven:

The **analytical results** for the water samples, received by our laboratory on June 12, 2017, (via OnTrac), are attached. The samples were received chilled, intact and accompanying chain of custody record.

Enviro-Chem appreciates the opportunity to provide you and your company this and other services. Please do not hesitate to call us if you have any questions.

Sincerely,

Curtis Desilets Vice President/Program Manager

Andy Wang

Laboratory Manager

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

### LABORATORY REPORT

CUSTOMER:	Pinnacle Environmental, Inc P.O. Box 904
PROJECT:	Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com Corona Rd - Petaluma
	DATE RECEIVED: 06

	DATE RECEIVED: 06/12/17
MATRIX: <u>WATER</u>	DATE EXTRACTED: 06/12/17
DATE SAMPLED: <u>06/08/17</u>	DATE ANALYZED: 06/13/17
REPORT TO: MR. PETER CLOVEN	DATE REPORTED: 06/16/17

# TOTAL PETROLEUM HYDROCARBONS (TPH) - CARBON CHAIN ANALYSIS METHOD: EPA 8015B

# UNIT: uG/L = MICROGRAM PER LITER = PPB

SAMPLE I.D.	LAB I.D.	C4-C10	C11-C22	C23-C35	DF
<u>MW 4</u>	170612-14	ND	ND	ND	1
<u>MW 5</u>	<u>170612-15</u>	ND	ND	ND	1
<u>MW-6</u>	<u>170612-16</u>	ND	ND	ND	1
<u>MW-7</u>	170612-17	ND	ND	ND	1
<u>MW- 8</u>	170612-18	ND	ND	ND	1
MW-9	<u>170612-19</u>	ND	ND	ND	1
METHOD BLANK			80	302	_1
	PQL	500	500	3000	

```
300
```

500 3000

### COMMENTS

C4-C10 = GASOLINE RANGE C11-C22 = DIESEL RANGE C23-C35 = MOTOR OIL RANGE DF = DILUTION FACTOR PQL = PRACTICAL QUANTITATION LIMIT ACTUAL DETECTION LIMIT = DF X PQL ND = NON-DETECTED OR BELOW THE ACTUAL DETECTION LIMIT Data Reviewed and Approved by:

CAL-DHS ELAP CERTIFICATE No.: 1555

		E	nviro Che	m, Inc				
1214 E. Lexin	gton Avenue,	Pomona,	CA 91766	Tel (	909)590-5	i905 Fa	x (909)590	-5907
	8	3015B	QA/Q	C Rep	ort			
Date Analyzed:	6/13/2017					Units:	ug/L (PP	<u>B)</u>
Matrix: <u>W</u>	ater/Liqu	id						
/latrix Spike (MS)/Mat	rix Spike Duplicat	e (MSD)						
Spiked Sample La	b l.D.:	<u>170612</u>	-19 MS/	MSD				
Analyte	SR spk conc	MS	%MS	MSD	%MSD	%RPD	ACP %MS	ACP RPD
Analyte spk	RY: conc LCS 2000 13600	% REC 113%	ACP 75-125					
Analyzed and Revi	ewed by:	no						
Final Reviewer:	ø							

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

	LA	BORATORY REPORT		
CUSTOMER:	Pinnacle Environm	ental, Inc		
	P.O. Box 904			
	Clayton, CA 94517			
	(925)673-5500 Ema:	il: pcloven@pei-env.c	om	
PROJECT:	Corona Rd - Petal	uma		
MATRIX: WAT	ER	DATE RECEIV	ED:06/12/17	
DATE SAMPLED: 06/08/17 DATE ANALYZED: 06/12/17		ED:06/12/17		
REPORT TO: MR. PETER CLOVEN		DATE REPORT	DATE REPORTED: 06/16/17	
SAMPLE I.D.: MW-4 LAB I.D.: 170612-14		70612-14		
ANALYSI	IS: VOLATILE ORGANI UNIT: ug/L =	CS, EPA METHOD 5030B/ MICROGRAM PER LITER	/8260B, PAGE 1 OF 2 = PPB	
PARAMETER		SAMPLE RESULT	PQL X1	
ACETONE		ND	10	
BENZENE		ND	1	
RECEIODENCE	TAK.	ND	1	
BROHOGHLOH	OMITHANE	ND	1	
BREWGULLCHE	DEOMETHANE	ND	1	
BROMOFORM		ND	1	
SKOMOMETHAN	NE	ND	1	
-BUTANONE	(MEK)	ND	10	
<u>A-ROLATBEN;</u>	ZENE	ND	1	
BOW HULLE	SHALME.	ND	. 1	
TRUNCH ST	2EDISENE	ND	1	
ARRENDE DU DU	ALA I DE.	ND	5	
医马克氏试验检尿道 医白色的 化二乙基苯基乙基乙基	The state of some state			
UI ODODDNA	MONLORIBE	ND	1	
CHLOROBENZI	MOILORIDE SNE	ND ND	<u>1</u>	
CHLOROBENZI CHLOROETHAN	VACHLORIBE ENE NE	ND ND ND	<u>1</u>	
CHLOROBENZI CHLOROETHAN CHLOROFORM	VACHLORIBE ENE NE	ND ND ND ND	<u>1</u>  	
CHLOROBENZI CHLOROETHAN CHLOROFORM	NACHLORIDE ENE NE	ND ND ND ND ND		
CHLOROBENZI CHLOROETHAN CHLOROFORM	SACHLORIDE ENE NE DENE DENE	ND ND ND ND ND ND		
CHLOROBENZI CHLOROETHAN CHLOROFORM	NACHLORIDE SNE NE JUENE JUENE	ND ND ND ND ND <u>ND</u> ND		
CHLOROBENZI CHLOROETHAN CHLOROFORM	AACHLORIDE ENE NE JUENE JUENE JUENE JUENE	ND ND ND ND ND ND ND ND ND		
CHLOROBENZI CHLOROETHAN CHLOROFORM	SACHLORIDE SNE NE JUENE JUENE JUENE JUENE JUENE JUENE JUENE JUENE JUENE JUENE JUENE JUENE JUENE	ND ND ND ND ND ND ND ND ND ND		
CHLOROBENZI CHLOROFORM CHLOROFORM	SACHLORIDE SNE NE JUENE JUENE JUENE JUENE JUENE JUENE JETHANE JETHANE JANE	ND		
CHLOROBENZI CHLOROETHAN CHLOROFORM	ACHLORIDE ENE NE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE DENE	ND		
CHLOROBENZI CHLOROFORM CHLOROFORM	NACHLORIDE ENE NE JUENE JUENE JUENE JUENE JUENE JAOMETHANE JANE JORENNENE JORENNENE	ND		
CHLOROBENZI CHLOROETHAN CHLOROFORM	ACHLORIDE SNE NE JUENE JUENE JUENE JUENE JUENE JANE JOBENEENE JOBENEENE JOBENEENE	ND ND ND ND ND ND ND ND ND ND ND ND ND N		
CHLOROBENZI CHLOROETHAN CHLOROFORM	ACHLORIDE SNE NE JUENE JUENE JUENE JUENE JUENE JUENE SETHANE JUENE SETHANE JUENE SETHANE JUENE SETHANE JUENE SETHANE JUENE SETHANE JUENE SETHANE	ND		
CHLOROBENZI CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFOR	ACHLORIDE ENE NE DENE DENE DENE DENE DENE DENE DENE ENE	ND ND ND ND ND ND ND ND ND ND ND ND ND N		
CHLOROBENZI CHLOROFORM CHLOROFORM CHLOROFORM I BROMOMETH	ACHICRIDE ENE NE DENE JERNE JECHE JECHEOROPHOVAKE JETHANE IOBENEENE IOBENEENE DOBENEENE DOBENEENE SOBENEENE SOBENEENE SOBENEENE SOBENEENE	ND ND ND ND ND ND ND ND ND ND ND ND ND N		
CHLOROBENZI CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFO CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFO CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHL	ACHLORIDE ENE NE UENE JUENE JUENE JUENE JUONETHANE IANE IGBENEENE IOBENEENE IOBENEENE IOBENEENE IOBENEENE IOBENEENE IOBENEENE IOBENEENE IOBENEENE IOBENEENE IOBENEENE IOBENEENE IOBENEENE IOBENEENE IOBENEENE IOBENEENE	ND           ND		
CHLOROBENZI CHLOROETHAN CHLOROFORM HIGHOROFORM HIGHOROFORM IBROMOMETH IBROMOMETH IBROMOMETH IBROMOMETH IBROMOMETH IBROMOMETH IBROMOMETH IBROMOMETH	ACHLORIDE ENE NE NE JUENE JUENE JUENE JUENE JUENE JUENE KORTHANE GRENZENE GRENZENE GRENZENE GRENZENE GRENZENE GRENZENE GRENZENE GRENZENE GRENZENE GRENZENE GRENZENE GRENZENE GRENZENE GRENZENE GRENZENE GRENZENE GRENZENE GRENZENE GRENZENE GRENZENE GRENZENE GRENZENE GRENZENE	ND           ND		
CHLOROBENZI CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFOR	ACHLORIDE ENE NE NE DEME DEME DEME DEME DEMETHANE IDEMETHANE IDEMETHANE IDEMEENE DECHLOROFTHENE HLOROETHENE DICHLOROETHENE	ND           ND		
CHLOROBENZI CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFOR	VACHLORIDE ENE VE VE JUENE JUENE JUENE JUENE JUENE JUENE JUENE VETHANE VETHANE VETHANE VETHANE VETHANE VETHANE VETHANE VETHANE VETHANE VETHANE VETHANE VETHANE VETHANE	ND           ND		

- TO BE CONTINUED ON PAGE

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT Pinnacle Environmental, Inc CUSTOMER: P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Corona Rd - Petaluma MATRIX:WATER DATE RECEIVED: 06/12/17 DATE SAMPLED: 06/08/17 DATE ANALYZED:06/12/17 REPORT TO: MR. PETER CLOVEN DATE REPORTED: 06/16/17 stration in the second second SAMPLE I.D.: MW-4 LAB I.D.: 170612-14 and the second se ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2 UNIT: ug/L = MICROGRAM PER LITER = PPB PARAMETER SAMPLE RESULT POL X1 2,2-DICHLOROPROPANE ND 1,1-DICALOROPHOPERE ND C13-1, 3-DICHLONDPROPENE ND TRANS-1, 3-DICHLOROPROPENE ND L'THYL CHEENE ND 2-HEXANONE ND 1.0HEXACHLOROBUTADIENE ND ISOPROPYLBENZENE ND 4-ISOUROPYLTOLUERS ND 4-METHYL-2-PENTANONE (MIBK) ND 10 METHYL tert-BUTYL ETHER (MTBE) ND ъ METHYLENE CHLORIDE ND 5 NAPHTHALENE ND N-PROPYLBENZENE ND STYRENE ND 1,1,1,2-TETRACHLORDETHANK ND 1,1,2,2-TETRACHLOROETHANE ND TETRACHIOROGTHENE (PCE) ND TOLUENE ND 1, 2, 3-TRICHLOROBENZENE ND 1, 2, 4-THICHLOROBENZENE ND 1, 1, 1-TRICHLOROETHANE ND 1.1.2-TRICHLORGETHANE ND TRICHLOROGTHENE (TCH) ND TRICHLOSOFLUDROMETHANE ND 1,2,3-TRICHLOROPROPANE ND 1, 2, 4-TRIMETHYLBENZENE ND 1, 3, 5-TRIMETRYLHUNZENE ND VINYL CHLORIDE ND M/P-XYLENE ND O-XYLENE ND COMMENTS PQL = PRACTICAL QUANTITATION LIMIT ND = NON-DETECTED OR BELOW THE TOLE DATA REVIEWED AND APPROVED BY:

L	ABORATORY REPORT		
CUSTOMER: Pinnacle Environ P.O. Box 904 Clayton, CA 9451	onmental, Inc 517		
(925)673-5500 Em PROJECT: Corona Rd - Peta	ail: pcloven@pei-env.co luma	om	
MATRIX:WATERDATE RECEIVED:06/12/17DATE SAMPLED:06/08/17DATE ANALYZED:06/12/17REPORT TO:MR. PETER CLOVENDATE REPORTED:06/16/17SAMPLE I.D.: MW-5LAB I.D.: 170612-15			
			ANALYSIS: VOLATILE ORGAN
DARAMETED	= MICROGRAM PER LITER		
ACETONE	SAMPLE RESULT	PQL X1	
RENZEME	<u>ND</u>	10	
BROMORENZENE	ND	1	
BRONDENDENE BRONDENTOROUSER	ND		
REMODICILLOUGHVERDAR		1	
BROMOFORM			
NUCHONETHART		<u>+</u>	
2-BUTANONE (MEK		<u>↓</u>	
N-BUTYLBENZENE		1	
SEC-BUTYLBENZENF.	ND	1	
TERT-BUTYLDENZENE	ND	1	
CARBON DISULFIDE	ND	<u> </u>	
CARBON TETRACHLORIDE	ND	1	
CHLOROBENZENE	ND	1	
CHLOROETHANE	ND	1	
CHLOROFORM	ND	1	
CHLOROMETHANE	ND	1	
2-CHLOROTOLUENE	ND	1	
4-CHLOROTOLUENE	ND	1	
DIBROMOCHLOROMETHANE	ND	1	
.Z-DIBROND-J-CHLOROPROPARE	ND	1	
.2-DIBRIMORTHANE	ND	1	
DIBROMOMETHANE	ND	1	
.Z-DICHLOROBENZENE	ND	1	
. 2-DICHLOROBENZENE	ND	1	
A-DICHLOROBENZENE	ND	1	
ICHLOBODI FLASROMETHANI	ND	1	
JI-DICHLOBORTHANE	ND	1	
SZ-DICHLOROSTIIANT	17.4	1	
-1-DICHLOROETHENE	ND	1	
18-1, Z-DICHLOROSTHENE	ND	1	
<u>'RANS-1,2-DICHLOROETHENE</u>	ND	1	
-2-DICHLONOPROPASE	ND	1	
.3-DICHLOROPROFASE	ND	1	

TO BE CONTINUE ON PAGE 12 -----

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925) 673-5500 Email: pcloven@pei-env.com PROJECT: Corona Rd - Petaluma MATRIX:WATER DATE RECEIVED: 06/12/17 DATE SAMPLED: 06/08/17 DATE ANALYZED: 06/12/17 REPORT TO: MR. PETER CLOVEN DATE REPORTED: 06/16/17 and the second second second second SAMPLE I.D.: MW-5 LAB I.D.; 170612-15 ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, FACE 2 OF 2 UNIT: ug/L = MICROGRAM PER LITER = PPB PARAMETER SAMPLE RESULT FOL X1 2.2-DICHLOROFROPARE ND 1. I-DICHLOROPHOPENU ND C18-1.3-DICHLOROPHOPENE ND TRANS-1, 3-DICHLOROPONE ND E7HYLDEMSENE. ND 2-HEXANONE ND 10HEXACHLOROBUTADIENE ND ISOPROPYLBENZERE : ND 4-ISOPROPYLTOLUENE ND 1 A-METHYL-2-PENTADONE IMIBRI ND 10 METRYL LEFT-BUTYL STREE (NYHE) ND 3 METHYLENE CHUCHTOE ND 5 NAPHTHALENE ND 3 N-PROPYLBENZENE ND 3 STYRENE ND I.I.I.Z-TETHACHLOROETHANE ND 1.1.2.2-TETRACHLORONTHAND ND 1 TETRACHLOROETHENK (PCE) ND TOLUENE ND 1.2.3-THICHLOBOBENZENE ND 1.2.4-TRICHLORDBENZEME ND 1,1,1-TRICHLOROSTNAME ND 1.1.2-TRICHLOROETHANE ND TRICHLOROETHENE (TCE) ND TRICHLOROFLUOROMETHANE ND 1.Z. 3-THICHLOROPHOPANE ND 1, 2, 4-TRIMETHYLBENSERE ND 1, 3, 5-IRIMETRYLBENZENS ND VINTL CHLORIDE ND M/P-XYLENE ND O-XYLENE ND COMMENTS PQL = PRACTICAL QUANTITATION LIMIT ND = NON-DETECTED OR BELOW THE FOL DATA REVIEWED AND APPROVED BY:

	LABO	RATORY PROOP	
CUSTOMER:	Pinnacle Environmen	tal. Inc	
	P.O. Box 904		
	Clayton, CA 94517		
	(925)673-5500 Email	: poloven@pei-epy o	0 <b>m</b>
PROJECT:	Corona Rd - Petalum	a	
MATRIX: WAT	ER	DATE RECEIV	ED:06/12/17
DATE SAMPLED: 06/08/17 DATE ANALYZED: 06/12/17		ED:06/12/17	
REPORT TO:	MR. PETER CLOVEN	DATE REPORT.	ED: <u>06/16/17</u>
SAMPLE I.D	.: 38/-6	LAB I.D.: 1	70612-16
ANALYSI	S: VOLATILE ORGANICS UNIT: ug/L = N	5, EPA METHOD 5030B/ IICROGRAM PER LITER	8260B, PAGE 1 OF 2
PARAMETER	5.	SAMPLE RESULT	POL X1
ACETONE		ND	10
BENZENE		ND	1
BROHODERSEI	9E	ND	1
BUCHCCHLOR:	OMETHANK	ND	1
BROMODICHL	OROMETHANE	ND	1
BROMOFORM		ND	Î.
BROMOMETHAI	NE	ND	. 1
2-BUTANONE	(MEK	ND	10
H-BUTATBER	SEME	ND	10.00
SEC-BOTYLES	ENZERU	ND	T.
LESI-BOLAT	BENZENE	ND	11
CARDIN DISC	TPLIDE.	ND	
CARBON TETH	RACHLORIDE	ND	E
CALOROBENZI	.805	ND	1
CHLOROETHAN	NE	ND	1
CHLOROFORM	101077	<u>ND</u>	1
CHLOROPETER	LINE .	ND	1
A GUL OD OT OT	DENE	<u>ND</u>	
4-CHLOROTOI	JUENE	<u>ND</u>	
DIBROMOCHLC	DROMETHANE	<u>ND</u>	
1 2-DIRHOM	-1-CHLOROPSOPANE.	ND	1
DTRROMOMERT	A LINAR	<u>ND</u>	L
DIDKOMOMETE		<u>ND</u>	I
1 1 DICHLOR	OBERTERS	ND	1
1.4-DICHLON	CODENCE NO DE CODENCE	ND	1.
DICHLORDITE	LUOROMETHANN	ND	
1.1-DICHLOR	OFTHAND		
.2-DICHLOR	OFTHANT		
L. I-DICHIM	OFTHENE	<u> </u>	
CI8-1,2-DIC	HI CONTRACTORNEY		
TPA99-1.2-0	T CHI CHARGE THE INC.		
1.2-D1CHLOR	ADROBAND COLUMN AS		1
- 3-DICHLOD	noonpage	ND	1
And the State of Fight P.	MUNDERING.	ND	

- TO BE CONTINUED ON PAGE 12 -----

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925) 673-5500 Email: pcloven@pei-env.com PROJECT: Corona Rd - Petaluma MATRIX : WATER DATE RECEIVED:06/12/17 DATE SAMPLED: 06/08/17 DATE ANALYZED: 06/12/17 REPORT TO: MR. PETER CLOVEN DATE REPORTED: 06/16/17 the second second the second se attaction in the second second second second and the second second second SAMPLE I.D.: MW-6 LAB I.D.: 170612-16 ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2 UNIT: ug/L = MICROGRAM PER LITER = PPB PARAMETER

PARAMETER	SAMPLE RESULT	QL XI
2.2-DICHLORGPBOPANE	ND	
1, I-DICHLOROPHOPENE	ND	1
CIS-1, 3-DICHLOROPROPENE	ND	1
TEANS-1, 3-DICHLOROPHOPENE	ND	1
ETHYLBENZENE	ND	1
<u>2-hexanone</u>	ND	10
HEXACILOROBUTADIENE	ND	1
ISOPROPYLBENZENE	ND	1
<u>4-ISOPROPYLTOLUENE</u>	ND	1
4-HETHYL-2-PENZANONE IMIBRI	ND	10
METHYL Lert-BUTYL ETHER (MTDE)	ND	3
METHYLENE CHLORIDE	ND	5
NAPHTHALENE	ND	1
N-PROPYLBENZENE	ND	1
STYRENE	ND	1
1, 1, 1, 2-TETRACHLORDETHANE	ND	1
1, 1, 2, 2-TETRACHLOROETHANE	ND	1
TETRACHLOROETHENE (PCE	ND	1
TOLUENE	ND	1
L. J. J-TRICHLOBOBENZENE	ND	1
1.2.4-TRICHLOROBENSENE	ND	1
1,1,1-TRICHLONGETHARE	ND	1
1.1.2-TRICHLOROETHABE	ND	1
TEICHLOROETHESE (TCE)	ND	1
THICHLOROFLUOROMSTHANE	ND	1
1,2,3-TRICHLOROPROPANE	ND	1
L.2.4-TRIMETHYLBENZENE	ND	1
L.J. 5-THIMETHYLBENZENE	ND	1
VINYL CHLORIDE	ND	1
M/P-XYLENE	ND	2
O-XYLENE	ND	1

NON-DETECTED OR BELOW THE DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

	LAB	ORATORY REPORT		
CUSTOMER:	Pinnacle Environmen	ntal, Inc		
	P.O. Box 904			
	(925) 672_EE00 W			
PROJECT;	Corona Rd - Petalur	JU Emall: pcloven@pei-env.com Petaluma		
MATRIX: WAT	ER	DATE RECEIV	ED: <u>06/12/17</u>	
DATE SAMPLED: 06/08/17 DATE ANALYZED: 06/12/17		ED: <u>06/12/17</u>		
REPORT TO:	MR. PETER CLOVEN	DATE REPORT	ED; <u>06/16/17</u>	
SAMPLE I.D	AMPLE I.D.: MW-7 LAB I.D.: 170612-17		70612-17	
ANALYSI	S: VOLATILE ORGANIC	S, EPA METHOD 5030B/	8260B, PAGE 1 OF 2	
	<b>UNIT:</b> $ug/L = 1$	MICROGRAM PER LITER	= PPB	
ACETONE		SAMPLE RESULT	PQL X1	
BENZENE		<u>ND</u>	10	
	CH	ND		
REPAIR HILLS	MICTURES NO.	ND	V	
CONTRACTOR FORMATION	DOMESTIC AVE	ND		
BROMOFORM	CONTRACT PROPERTY	<u>ND</u>		
LEONOME THAN	(F			
2-BUTANONE	(MEK	ND		
- SULVENT				
ICC-BUTYLEE	NUMME			
ERT-BUTYLE	ENZENE	ND		
ARROW DIGU	LFILLE	ND		
ABSON TETR	ACHLORIDE	ND		
TILOROBE N2.8	NE	ND		
CHLOROETHAN	E	ND		
CHLOROFORM	2.9	ND	*	
CHLOROMETHA	NE	ND		
-CILCROTOL	UEKK	ND	1	
-CHEXHOTOL	URNE.	ND		
IBROMOCHLO	ROMETHANE	ND	1	
.2-DIBRORD	+1-CHLOROPHOPANE	ND		
,2-D1080H0	ETHANE	ND	1/	
TRRCHOMETH	ANE	ND	1	
,2-DICHLOR	OBENZENE	ND	1	
J-DICHLOR	OBENZENE	ND	1	
.4-DICHLOR	OBENZENE	ND	1.1	
ICHLORODIF	LUOROMETHANE	ND		
1-DICHLOR	OKTHANE	ND	1	
2-DICHLOW	OETHANE	ND		
-1-DICHL08	QETHENE	ND	1	
18-1.2-010	HLOBORTHENE	ND	1	
BARS-1, 2-D	LEHLOROETHENS	ND	1	
,2-DICHLOR	OPROPANE	ND		
CONTRACTOR OF A	OPROPANE	ND		

TO DE CONTINUED ON PAGE 12 -----

CUSTOMER:	Pinnacle Environmen P.O. Box 904	tal, Inc		
PROJECT:	Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com Corona Rd - Petaluma			
MATRIX:WAT	ER	DATE RECETV	FD.06/12/17	
DATE SAMPL	ATE SAMPLED: 06/08/17 DATE ANALYZED: 06/12/17		$ED \cdot 06/12/17$	
REPORT TO: <u>MR. PETER CLOVEN</u> DATE REPORTED: <u>06/12/17</u>			ED: <u>06/16/17</u>	
SAMPLE I.D.: MW-7 LAB I.D.: 170612-17				
ANALYSI	S: VOLATILE ORGANICS	, EPA METHOD 5030B/	8260B, PAGE 2 OF 2	
DARAMETED	UNIT: $ug/L = M$	IICROGRAM PER LITER	= PPB	
	INFORMATION CONTRACTOR AND INC.	SAMPLE RESULT	PQL X1	
1.1-ртсньо	RODRODENE	ND		
CIS-1.3-DT(	CHLOROPROPENE	ND		
TRANS-1.3-I	DICHLOROPROPENE			
THYLBENZEN	JE	ND		
2-HEXANONE		ND ND		
IERACHLOROS	TADIENE	ND	10	
SOPROPYLE	ONSERVE.	ND		
-ISOPROPYT	TOLUENE	ND		
-METHYL-2-	PENTANONE IMIEKI	ND	110	
IETHYL tert	-BUTYL ETHER (MTBE	ND	3	
KTRYLENE (	MIGRIDE	ND		
APHTHALENE		ND	10	
-PROPYLREN	<b>法教授</b> 的	ND	T	
TYRENE	Comment of the second sec	ND	1	
1111.2-713	RACHLORDETHANK	ND		
,1,2,2-TET	RACHLOROETHANE	ND		
ETRACHLORC	ETHENE (PCE	ND	I.	
OLUENE		ND	1	
<u>,2,3-TRICH</u>	LOROBENZENE	ND	1	
12,9-THICH	LOROHENZENR	ND	1	
.1.1-TRICH	LOROETHANE	ND	1	
*1*5-181CB	LOROETHANE	ND	54N	
RICHLORDET	HENE ATCEL	ND	1	
SILHLOW/PL	MOROPHETRAME	ND	1	
2 4 2012240	LABOACHURSAME	ND		
3 5_TDIME		ND	1	
INVI. CHIOD	INT DENZENE	ND		
	<u>- 10</u>	ND	1	
-XAI'ENE			2	
			-	
D = NON - DF	TECTED OD DELOU THE	TATION LIMIT		
ATA REVIEW	THOTHD OK BELOW THE	ege /		
	ED AND APPROVED BI:	1.9		
1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT CUSTOMER: Pinnacle Environmental, Inc. P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Corona Rd - Petaluma MATRIX: WATER DATE RECEIVED: 06/12/17 DATE SAMPLED:06/08/17 DATE ANALYZED: 06/12/17 REPORT TO: MR. PETER CLOVEN DATE REPORTED:06/16/17 SAMPLE I.D.: MW-8 LAB I.D.: 170612-18 ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2 UNIT: ug/L = MICROGRAM PER LITER = PPB PARAMETER SAMPLE RESULT QL II ACETONE ND 10 BENZENE ND 1 BROMOBENZENE ND 1 INCOMPOSITION ON FURTHER ND 1 BROMODI CHLOROMETHANE ND 1 BROMOFORM ND 1 BROMOMETHANE ND 2-BUTANONE (MEK ND 10 N-BUTYLBENZENE ND 1 SEC-BUTYLBENZENE ND 1 TERT-BUTYLBENZENE ND 1 CARSON DISULFIDE ND 5 CARDON TETRACHIZORI DE ND 1 CHLOROBENZENE ND 1 CHLOROETHANE ND 1 CHLOROFORM ND 1 CHLOROMETHANE ND 1 2-CHLOROTOLUENE ND 1 **4-CHLOROTOLUENE** ND 1 DIBROMOCHLOROMETHANE ND 1 1,2-DIBROMD-3-CHLOROPROPART ND 1 1,2-DIBROMULTHANE ND 1 DIBROMOMETHANE ND 1 1.Z-DICHLOROBENZENE ND 1 1.3-DICHLOROBENZENZ ND 1 1, 4-DICHLOROBENZENE ND 1 **DICHLORODIFLUOROMETHANE** ND 1 1,1-DICHLOROETHANE ND 1 1.2-DICHLOROETRANE ND 1 1.1-DICHLOBORTHENE ND 1 CIS-1, 2-DICHLOROETHENE ND 1 TRANS-1.2-DICULORGETHENE ND 1 1, 2-DICHLOROPROPANE ND 1 1.3-DICHLOROPROPARE ND 1

TO BE CONTINUED ON PAGE

DATA REVIEWED AND APPROVED III

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925) 673-5500 Email: pcloven@pei-env.com PROJECT: Corona Rd - Petaluma MATRIX: WATER DATE RECEIVED: 06/12/17 DATE SAMPLED: 06/08/17 DATE ANALYZED:06/12/17 REPORT TO: MR. PETER CLOVEN DATE REPORTED: 06/16/17 SAMPLE I.D.: MW-8 LAB I.D.: 170612-18 ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2 UNIT: ug/L = MICROGRAM PER LITER = PPB PARAMETER SAMPLE RESULT PQL EI 2,2-DICHLOROPROPANE ND 1 <u>1,1-DICHLOROPROPENE</u> ND 1 CII-1. 3-DICHLOROFROPENE ND 1 TRANS-1, 3-DICHLOROPROPENE ND 1 ETHYLBENZENE ND 1 2-HEXANONE ND 10 HEXACILLOROBUTAD1ENE ND 1 ISOPROPYLBENZENE ND 1 4-ISOPROPYLTOLUENE ND 1 A-METHYL-2-PENTANONE (MIDE) ND 10 METHYL LOTT-BUTYL ETHER DETERI ND 3 METHYLENE CHLORIDE ND 5 NAPHTHALENE ND 1 N-PROPYLBENZENE ND 1 STYRENE ND 1 1, 1, 2-TETRACHLOROPTHAND ND 1 1,1,2,2-TETRACHLOROETHANE ND 1 TETRACHLORDSTHENS (PCE) ND 1 TOLUENE ND 1 1,2,3-TRICHLOROBENZENE ND 1 1,2,4-TRICHLOROBENZENE ND 1 1, 1, 1-TELCHLOROSTHANS ND 1 1,1,2-TRICHLOROETHANE ND 1 TRIUNICHOETHENE (TCE) ND 1 TRICHLOROFLUOROMETRANE ND 1 1.2.3-THICHLOROPROPANE ND 1 1, 2, 4-TRIMETHYLBENZENE ND 1 1, 3, 5-TRIMETRYLBENZENE ND 1 VINYL CHLORIDE ND 1 M/P-XYLENE ND 2 **O-XYLENE** ND 1 COMMENTS PQL = PRACTICAL QUANTITATION LIMIT ND = NON-DETECTED OR BELOW THE POL DATA REVIEWED AND APPROVED BY: ut CAL-DHS CERTIFICATE # 1555

Enviro – Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

	LAB	ORATORY REPORT	
CUSTOMER:	Pinnacle Environmen	ntal, Inc	
	P.O. Box 904		
	Clayton, CA 94517		
	(925)673-5500 Email	l: pcloven@pei-env.co	ЭШ
PROJECT:	Corona Rd - Petalur	na	
MATRIX:WAT	ER	DATE RECEIV	ED:06/12/17
DATE SAMPL	ED:06/08/17	DATE ANALYZ	ED: 06/12/17
REPORT TO:	MR. PETER CLOVEN	DATE REPORT	ED:06/16/17
		····	
SAMPLE I.D	0.: MW-9	LAB I.D.: 1	70612-19
ANALYSI	IS: VOLATILE ORGANIC UNIT: ug/L = 1	S, EPA METHOD 5030B/ MICROGRAM PER LITER	8260B, <b>PAGE 1 OF 2</b> = PPB
PARAMETER		SAMPLE RESULT	PQL X1
ACETONE		ND	<u>10</u>
BENZENE		ND	1
BROMOBENZE	NE	ND	1
BROMOCHLOR	OMETHANE	ND	1
BROMODICHL	OROMETHANE	ND	1
BROMOMETUR	NE	ND	1
2 DITANONE		ND	1
Z-DUTANUNE		<u>ND</u>	10
SEC-BURNEN	<u>26NG</u> EN7ENE	ND	
PEDT_DUTILB.	BEN7ENE		
CARBON DIG	DBNZANE UT. PT DP		
CARBON TET	RACHLORIDE		
CHLOROBENZ	ENE		1
CHLOROETHAI	NE	ND	
CHLOROFORM		ND	1
CHLOROMETH	ANE	ND	1
2-CHLOROTO	LUENE	ND	1
4-CHLOROTO	LUENE	ND	<u>_</u> 1
DIBROMOCHL	OROMETHANE	ND	1
1,2-DIBROM	0-3-CHLOROPROPANE	ND	1
1,2-DIBROM	OETHANE	ND	1
DIBROMOMETI	HANE	ND	1
1,2-DICHLO	ROBENZENE	ND	1
1, 3-DICHLO	ROBENZENE	ND	1
1,4-DICHLO	ROBENZENE	ND	1
DICHLORODI	FLUOROMETHANE	ND	1
L, 1-DICHLO	ROETHANE	ND	1
1,2-DICHLO	ROETHANE	1.91	1
1,1-DICHLOR	ROETHENE	ND	1
CIS-1,2-DIC	CHLOROETHENE	ND	1
TRANS-1,2-I	DICHLOROETHENE	ND	1
1,2-DICHLON	ROPROPANE	ND	1
1,3-DICHLON	ROPROPANE	ND	1

10 BE CONTINUED ON PAGE 12 ----

DATA REVIEWED AND APPROVED BY:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Corona Rd - Petaluma MATRIX: WATER DATE RECEIVED: 06/12/17 DATE SAMPLED: 06/08/17 DATE ANALYZED: 06/12/17 REPORT TO: MR. PETER CLOVEN DATE REPORTED:06/16/17 and the state of where the state in the last of the SAMPLE I.D.: HA LAB I.D.: 170612-19 and the second sec ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 CF 2 UNIT: ug/L = MICROGRAM PER LITER = PPB PARAMETER SAMPLE RESULT POL X1 2.2-DICHLOROPROPANE ND 1, 1-DICHLOROPROPENE ND CIS-1, 3-DICHLOROPROPENE ND TRANS-1, 3-DICHLOROPROPENE ND ETHYLBENZENE ND 2-HEXANONE ND 18 HEXACHLOROBUTADIENE ND ISOPROPYLBENZENE ND 3-IBGEROFYLTOLUENE ND 1 \$-METHYL-2-PERTABONE (MIBR) ND t0 HETHYL LEFT-BUTYL BYREE IMTER! ND 3 METHYLENE CHLOSIDE ND 5 NAPHTHALENE ND H-PROPYLEZESENE ND STYRENE ND 1,1,1, 3-TETRACHLORDETHARE ND 1,1.2,2-TETRACHLOROETHANE ND a, TETRACHLOROETHEME (PCE) ND TOLUENE ND 1.2.3-THICHLOROBENZENE ND 1,2,4-TRICHLOROBENZENE ND 1, 1, 1-TRICHLOROFTMANE ND 1, 1, 2-THICHLOROWTHANE ND TRICHLOROETHENE (TCE) ND TRICHLOROFLUOROMETHANE ND 1.2.3-TRICHLOROPHOFANE ND 1,2,4-TRIMETHYLBENZENE ND 1,2/5-TRIMETHYLBENZENE ND WINYL CHLOBIDE ND M/P-XYLENE ND O-XYLENE ND COMMENTS PQL = PRACTICAL QUANTITATION LIMIT ND = NON-DETECTED OR BELOW THE POL # DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

	METHOD	BLANK REPORT	
CUSTOMER: Pinnac	le Environment	al, Inc	
P.O. 1	Box 904		
Clayto	on, CA 94517		
(925) 6	573-5500 Email:	pcloven@pei-env	V. COM
PROJECT: Corona	a Rd - Petaluma		
MATRIX: WATER		DATE RECI	ETVED:06/12/17
DATE SAMPLED:06/0	8/17	DATE ANA	LYZED: 06/12/17
REPORT TO: MR. PET	ER CLOVEN	DATE REPO	ORTED: 06/16/17
METHOD BI	ANK REPORT FOR	LAB I.D.: 17060	09-14 THROUGH -19
ANALYSTS . VOL	ATTLE ORGANICS		
	UNIT: $ug/L = MI$	CROGRAM PER LITT	ER = PPR
PARAMETER		SAMPLE RESULT	POL X1
ACETONE		ND	10
BENZENE		ND	1
BROMOBENZENE		ND	1
BROMOCHLOROMETHAN	E	ND	1
BSONODICHLOBOMETH	ABE	<u>ND</u>	1
BROMOFORM		ND	1
BROMOMETHANE		ND	1
2-BUTANONE (MEK)		ND	10
<u>N-BUTYLBENZENE</u>		ND	1
BEC-BUTYLBENZENE		ND	1
TERT-BUTYLBENZENE		ND	
CARBON DISULFIDE	0.00	ND	5
CASHOS TETRACHLOR	136	ND	.1.
CHLOROBENZENE	22310	ND	1
CHLOROETHANE		ND	
CHLOROFORM		ND	
CHLOROMETHANE		ND	1
Z-CHLOROTOLUENE		<u>ND</u>	1
4-CHLOROTOLUEINE	1 1/10	ND	1
1 DINDROCHLOROSETH	ANK	ND	1
1.2 DIPPONOLUTIONE	MULTIOPANE.	<u>ND</u>	
DIBROMOMETUANE		ND	1
DIDKOMONEIMANE	u p	ND	1
1 3-DICULODORRAD	NE		1
1 A-DICHIOROBENZE		ND ND	1
TT - DIGUNOKODENZE	C TO LE REPRESENTATION DE LA COMPACTICIÓN DE LA COMPACTICICA DE LA COM	ND	
1.1-DICHLOPOETUNN	R		1
1.2-DICHLOROFTHAN			
1.1-DICHLOROFTHEN	<u> </u>		
	TREEP	ND	
TRANS-1.2-51C01.000	A A GARGE BERTAR		
1.7-DICHLOROPPORT	GENERAL COLOURS		
1. 3-DICHLOROPROPA	NE		
TI DI		ND	

----- TO BE CONTINUED ON PAGE 12 -----

DATA REVIEWED AND APPROVED BY:

Enviro – Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (1999) 590-5907

CUSTOMER:	Pinnacle Environmer P.O. Box 904	ital, Inc	
	Clayton, CA 94517		
	(925)673-5500 Email	: pcloven@pei-env.com	n
PROJECT:	Corona Rd - Petalum	a	
MATRIX: WAT	ER	DATE RECEIVE	0:06/12/17
DATE SAMPL	ED: <u>06/08/17</u>	DATE ANALYZEI	0:06/12/17
REPORT TO:	MR. PETER CLOVEN	DATE REPORTER	0:06/16/17
ME	THOD BLANK REPORT FO	R LAB I.D.: 170609-14	THROUGH -19
ANALYSI	S: VOLATILE ORGANICS	5 EPA METHOD 50300/0	
	UNIT: $ug/L = h$	ICROGRAM PER LITER =	PPB
PARAMETER		SAMPLE RESULT	PQL X1
<u>2,2-DICHLO</u>	KOPROPANE	ND	
L, I-DICHLO	KUPROPENE	ND	1
<u>-10-1,3-D1</u> PRANG_1 2		ND	
THYT PENZEN	DICHTOKOLKOLENE	ND	
- HEXANONE	N C	ND	
<u>. IIEAANONE</u>	TTE DI CHI	<u>ND</u>	10
SOPSOFT B	CHORENE CHORENE	ND	
-ISOPROPY	TOLUENE		
-HETHYL-J	PENTARONE INTRES	ND	
UTION text	-BUTTL ETHER INTER!	ND	
UCTRYLERE O	DLOBIDE	ND	
APHTHALENH	C	ND	
-PROPYLEED	ZENE	ND	
TYRENE		ND	
,1,1,2-TET	RACELORDETHARE	ND	
,1,2,2-TET	RACHLOROETHANE	ND	· · · · ·
ETRACHLOR	ETHENE (PCE	ND	1
OLUENE	and a second	ND	1
2. J-TRICE	LOBOBENZENE	ND	
Z.4-THICK	LOROBERZENE	ND	
,1,1-TRICH	LOROETHANE	ND	
.L.Z-THICH	LOROKTHANK	ND	1
RICHLOROSI	HESE TICES	ND	
RICHLOROFT	UDBONETHANE	ND	
the second se	LOROPROPANE	ND	1
and the second	THILDENZERE	ND	1
2.4-TRIME	A HILLIENSKNE	ND	1
.2.4-TRIME .3.5-TRIME	W MARK .	ND	
2.4-TRIMI .3.5-TRIMI INTL CHLOR /D_VVIENE	106		
/ - TRIMI - TRIMI INTL CHION /P-XYLENE - YYLENE	IDE	ND	2

1214 E. Lexington Av	enue, Pom	iona, CA 9	Enviro-Ci 1766 8260B Q	nem, Inc. Te A/QC Rep	el (909)590 ort	-5905	Fax (909	)590-5907	
Date Analyzed: Machine:	<u>6/12/2017</u> ⊟						Matrix: Unit:	Water/Lig up/L/PPE	<u>uid</u> D
Matrix Spike (MS)/Matr	ix Spike Di	uplicate (M	SD)						
Spiked Sample Lab I.D Analyte	T AR	170612-17	MS	%RC	MSD	%RC	%RPD	ACP %RC	ACP RP
Denzone		25.0	31.1	124%	29.0	116%	8%	75-125	0-20
Chlorobonzone	0	25.0	28.0	112%	283	113%	1%	75-125	0-20
1 1 Dichloroothene	0	25.0	20.0	80%	20.6	82%	6%	75-125	0-20
Taluana	0	25.0	30.6	122%	28.3	113%	0%	75-125	0-20
Trichleroothone (TCE)	0	25.0	20.7	110%	27.5	110%	0%	75-125	0.20
Themoroeutene (TCE)	0	20.0	23.1	11070	21.5	11070	370	75-125	0-20
Lab Control Spike (LC)	5):								
Analyte	spk conc	LCS	%RC	ACP %RC					
Benzene	25.0	29.6	118%	75-125					
Chlorobenzene	25.0	28.0	112%	75-125					
Chloroform	25.0	29.6	118%	75-125					
1 1-Dichloroethene	25.0	26.1	104%	75-125					
Ethylbenzene	25.0	29.6	118%	75-125	2				
o-Xviene	25.0	29.9	120%	75-125					
m n-Xylene	50.0	61.1	122%	75-125					
Toluene	25.0	28.9	116%	75-125					
1 1 1 Trichloroethane	25.0	20.0	116%	75-125					
	25.0	28.6	11.4%	75 125					
	20.0	20.0	11470	10-120					
Surrogate Recovery	sok conc	ACP %RC	MB %RC	%RC	%RC	%RC	1 %RC	1 %RC	%RC
Sample I D			M-BLK	170612-14	170612-15	170612-16	170612-17	170612-18	170612-19
Dibromofluoromethane	2.0	70-130	0444	12246	11236	116%	12655	1175	1111
Toluene-d8	25.0	70-130	08%	08%	97%	97%	98%	98%	97%
A Bromofluorobonzono	25.0	70-130	90%	03%	0/1%	70%	90%	64*%	58*%
4-bromonobenzene	20.0	70-150	30 /0	5070	3070	7070	3070	1 04 70	00 /0
Surrogate Recovery	snk conc	ACP %RC	%RC	16RC	SRC	9680	SRC	WRC	T-RC
Sample ( D	opir cone								
Dibromofluoromethane	25.0	70-130	<u> </u>						
Toluene_d8	25.0	70-130	-						
A-Bromofluorobenzene	25.0	70-130		-	-		_		
4-Bromondorobenzene	23.0	70-150							
Surrogate Recovery	spk conc	ACP %RCI	%RC	3880	SIRC	9/RC	56RQ	%RC	MRC
Sample I D				CONTRACTOR CONTRACTOR					
Dibromofluoromethane	25.0	7 3			_				<u> </u>
	25.0	70.130		-			-		100 B
A Bromofluoroboozooo	25.0	701130			-				
4-DIOMONUOIODENZENE	200	100100					1		

S.R. = Sample Results

spk conc = Spike Concentration

MS = Matrix Spike

Analyzed/Reviewed By:

Final Reviewer:

%RC = Percent Recovery ACP %RC = Accepted Percent Recovery MSD = Matrix Spike Duplicate

Misc.POM	COMMENTS											1	50	60: 1	Shore	ctions for Sample Storage After Analysis:	pose of O Return to Client @ Store (30 Days)	ler:	Pana   of
Inter and	Analysis Require		X	X	X	X	XX						Car 2, Samples	73-5501 Project Nam	nishe nail - 1 an	Date & Trye: 12.100 Instru	Opertual 3 3	Date & Time:	CORD
XI 2reniation 2rotare 2rotare Noitavre	MATR No. O PRESI	where where	1 4 1924	14 7-6			1 4 420	xu /	い書くと言				Project Contact:	11 025-0	Francoich	Writche	wo		OF CUSTODY RE
Turmaround Time 0 Same Day 0 24 Hours 0 48 Hours 0 72 Hours 0 72 Hours 0 1 Week (Standard) Other:	SAMPLING DATE TIME	CELT 1130 W	1 1823	12.50	13.50	0474	1 245						Sind		- 945	Received	Received by:	Received by:	CHAIN
Laboratories /enue, :: (909) 590-5907 :ATE #1555	0.941	170612-14-	51 - 15	1 16	1-19	1 - 18	61 - 1						Fallona	106 -	ton CA	281	NAVACE		4
Enviro-Chem, Inc. 1214 E. Lexington Av Pomona, CA 91766 Tel: (909) 590-5905 Fax CA-DHS ELAP CERTIFIC	SAMPLEID	t-nw	14-5	Mu-6	Mu-1-	Mr -	ma-1						CHU Name:	Address: PD R	City/State/Zip:	Relinquish	Relinquished by	Relinquished by:	Date: 5 8/1-3

Date: June 12, 2017

Mr. Peter Cloven Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com

Project: Corona Rd - Petaluma LAB I.D.: 170606-46 through -51

Dear Mr. Cloven:

The **analytical results** for the water samples, received by our laboratory on June 6, 2017, (via OnTrac), are attached. The samples were received chilled, intact and accompanying chain of custody record.

Enviro-Chem appreciates the opportunity to provide you and your company this and other services. Please do not hesitate to call us if you have any questions.

Sincerely,

Curtis Desilets Vice President/Program Manager

Andy Wang Laboratory Manager

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER:	Pinnacle Environmenta P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: Corona Bd - Petaluma	al, Inc pcloven@pei	-env.com
ricollor.		DATE	RECEIVED:06/0
MATRIX: WAT	ER	DATE	EXTRACTED: 06/
DATE SAMPLI	ED: <u>06/01&amp;02/17</u>	DATE	ANALYZED: 06/0

REPORT TO: MR. PETER CLOVEN

6/17 06/17 7/17DATE REPORTED:06/12/17 A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A

TOTAL PETROLEUM HYDROCARBONS (TPH) - CARBON CHAIN ANALYSIS METHOD: EPA 8015B

### UNIT: uG/L = MICROGRAM PER LITER = PPB

			the second se		
SAMPLE I.D.	LAB I.D.	C4-C10	C11-C22	C23-C35	DF
SB-4-GW	170606-46	ND	ND	ND	1
SB-3-GW	170606-47	ND	ND	ND	1
SB-5-GW	170606-48	50	173	ND	1
SB-6-GW	170606-49	ND	ND	ND	1
SB-1-GW	170606-50	ND	ND	ND	<u>1</u>
SB-2-GW	170606-51	ND	ND	<u>ND</u>	1
METHOD BLANK		10 D	0.0	. ND	1
	PQL	500	500	3000	

#### COMMENTS

C4-C10 = GASOLINE RANGE

C11-C22 = DIESEL RANGE

C23-C35 = MOTOR OIL RANGE

DF = DILUTION FACTOR

PQL = PRACTICAL QUANTITATION LIMIT

ACTUAL DETECTION LIMIT = DF X PQL

ND = NON-DETECTED OR BELOW THE ACTUAL DETECTION LIMIT

- ^ = PEAKS IN GASOLINE RANGE BUT CHROMATOGRAM DOES NOT MATCH THAT OF GASOLINE STANDARD
- * = PEAKS IN DIESEL RANGE BUT CHROMATOGRAM DOES NOT MATCH THAT OF DIESEL STANDARD

Data Reviewed and Approved by: CAL-DHS ELAP CERTIFICATE No.: 1555 Cycle



Result File : D:\GC DATA\GC-l\l02017\l1706\l170606\A010.rst Sequence File : D:\GC DATA\GC-l\l02017\l1706\l170606\l170606.seq



Date Data Acquisition Time Channel Operator Dilution Factor

6/8/2017 1:34:37 PM 6/7/2017 10:26:26 AM

邀

GC 1.000000

8015 Results

Component	Area	Adjusted
Name	[uV"sec]	Amount
C4-C10	1702276	341.5
C11-C22	760002	112.2
	2462277	453.7

			E	Enviro Che	m, Inc				
1214 E. Le	exington	Avenue,	Pomona,	CA 91766	Tel (	909)590-5	905 Fa	ax (909)590	-5907
		8	8015E	B QA/Q	C Rep	ort			
Date Analyzed:	19	<u>6/7/2017</u>					Units:	ug/L (PP	<u>B)</u>
Matrix:	Wate	r/Liqu	lid						
Matrix Spike (MS)/	Matrix Spi	ke Duplicat	te (MSD)						
Spiked Sample	Lab I.D.:		170606	6-46 MS/	MSD				
Analyte	SR	spk conc	MS	%MS	MSD	%MSD	%RPD	ACP %MS	ACP RPD
LCS STD RECO	VERY:								
Analyte	spk conc	LCS	% REC	ACP					
	12000	13100	10370	13-123	ų.				
Analyzed and F	leviewed	by y	han						
Final Reviewer	-	Ę	<u></u>						

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Corona Rd - Petaluma

MATRIX: <u>WATER</u>	DATE	RECEIVED: 06/06/17
DATE SAMPLED: 06/1/17	DATE	ANALYZED: 06/08/17
REPORT TO: MR. PETER CLOVEN	DATE	REPORTED: 06/12/17

SAMPLE I.D.: SB-4-GW

LAB I.D.: 170606-46

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, FAGE 1 OF 2

<b>UNIT:</b> $ug/L =$	MICROGRAM PER LITE	R = PPB
PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	1 <u>0</u>
BENZENE	ND	1
BROMOBENZENE	ND	1
BROMOCHLOROMETHANE	ND	<u> </u>
BROMODICHLOROMETHANE	ND	<u>1</u>
BROMOFORM	ND	<u>1</u>
BROMOMETHANE	ND	1
2-BUTANONE (MEK	ND	1 <u>0</u>
N-BUTYLBENZENE	ND	<u>1</u>
<u>SEC-BUTYLBENZENE</u>	ND	<u> </u>
TERT-BUTYLBENZENE	ND	1
CARBON DISULFIDE	ND	5
CARBON TETRACHLORIDE	ND	<u> </u>
CHLOROBENZENE	ND	
CHLOROETHANE	ND	
CHLOROFORM	ND	<u>1</u>
CHLOROMETHANE	ND	<u> </u>
<u>2-CHLOROTOLUENE</u>	ND	<u> </u>
4-CHLOROTOLUENE	ND	1
DIBROMOCHLOROMETHANE	<u>ND</u>	<u>1</u>
1,2-DIBROMO-3-CHLOROPROPANE	ND	1
1,2-DIBROMOETHANE	ND	1,
DIBROMOMETHANE	ND	1
1,2-DICHLOROBENZENE	ND	
1,3-DICHLOROBENZENE	ND	1
1,4-DICHLOROBENZENE	ND	1
DICHLORODIFLUOROMETHANE	ND	<u> </u>
1,1-DICHLOROETHANE	ND	<u>1</u>
1,2-DICHLOROETHANE	ND	<u>1</u>
1,1-DICHLOROETHENE	ND	1
CIS-1, 2-DICHLOROETHENE	ND	1
TRANS-1,2-DICHLOROETHENE	ND	<u>1</u> ,
1,2-DICHLOROPROPANE	ND	1
1,3-DICHLOROPROPANE	ND	1

CONTINUED ON PAGE

DATA REVIEWED AND APPROVED BY

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Corona Rd - Petaluma

MATRIX: WATER	DATE	RECEIVED: 06/06/17
DATE SAMPLED: <u>06/1/17</u>	DATE	ANALYZED: 06/08/17
REPORT TO: MR. PETER CLOVEN	DATE	REPORTED: 06/12/17

SAMPLE I.D.: SB-4-GW

-----

LAB I.D.: 170606-46

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2 INTT: ug/L = MICROGRAM PER LITER = PPB

PARAMETER	SAMPLE RESULT	PQL X1
2,2-DICHLOROPROPANE	ND	11
1,1-DICHLOROPROPENE	ND	1
CIS-1, 3-DICHLOROPROPENE	ND	<u>1</u>
TRANS-1, 3-DICHLOROPROPENE	ND	1
ETHYLBENZENE	ND	1
2-HEXANONE	ND	10
HEXACHLOROBUTADIENE	ND	1
ISOPROPYLBENZENE	ND	1
4-ISOPROPYLTOLUENE	ND	1
4-METHYL-2-PENTANONE (MIBK	ND	<u>0</u>
METHYL tert-BUTYL ETHER (MTBE)	ND	<u>3</u>
METHYLENE CHLORIDE	ND	5
NAPHTHALENE	ND	1
<u>N-PROPYLBENZENE</u>	ND	1
STYRENE	ND	<u>1</u>
1,1,1,2-TETRACHLOROETHANE	ND	1
1,1,2,2-TETRACHLOROETHANE	ND	1
TETRACHLOROETHENE (PCE)	ND	1
TOLUENE	ND	<u>1</u>
1,2,3-TRICHLOROBENZENE	ND	<u> </u>
1,2,4-TRICHLOROBENZENE	ND	<u> </u>
1,1,1-TRICHLOROETHANE	ND	1
1,1,2-TRICHLOROETHANE	ND	<u> </u>
TRICHLOROETHENE (TCE)	ND	1
TRICHLOROFLUOROMETHANE	<u>ND</u>	11
1,2,3-TRICHLOROPROPANE	ND	1
1,2,4-TRIMETHYLBENZENE	ND	1
1,3,5-TRIMETHYLBENZENE	ND	1
VINYL CHLORIDE	ND	1
M/P-XYLENE	ND	2
<u>O-XYLENE</u>	ND	1
COMMENTS PQL = PRACTICAL QUANT	ITATION LIMIT	

ND = NON-DETECTED OR BELOW THE TURNED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Corona Rd - Petaluma MATRIX:WATER DATE RECEIVED:06/06/17 DATE SAMPLED: 06/1/17 DATE ANALYZED:06/08/17 REPORT TO:MR. PETER CLOVEN DATE REPORTED: 06/12/17 SAMPLE I.D.: SB-3-GW LAB I.D.: 170606-47 ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2 **UNIT:** ug/L = MICROGRAM PER LITER = PPBPARAMETER QL II SAMPLE RESULT ACETONE ND 10 BENZENE ND 1 BROMOBENZENE ND 1 BROMOCHLOROMETHANE ND 1 BROMODICHLOROMETHANE ND 1 BROMOFORM 1 ND BROMOMETHANE ND 1 2-BUTANONE (MEK) 0 ND <u>N-BUTYLBENZENE</u> ND 1 SEC-BUTYLBENZENE ND 1 TERT-BUTYLBENZENE ND 1 CARBON DISULFIDE 5 ND CARBON TETRACHLORIDE 1 ND CHLOROBENZENE ND 1 CHLOROETHANE 1 ND CHLOROFORM ND 1 CHLOROMETHANE ND 1 2-CHLOROTOLUENE ND 1 4-CHLOROTOLUENE ND 1 DIBROMOCHLOROMETHANE ND 1 1,2-DIBROMO-3-CHLOROPROPANE ND 1 1,2-DIBROMOETHANE ND 1 DIBROMOMETHANE ND 1 1,2-DICHLOROBENZENE 1 ND 1, 3-DICHLOROBENZENE ND 1 1,4-DICHLOROBENZENE ND 1 DICHLORODIFLUOROMETHANE 1 ND 1,1-DICHLOROETHANE ND 1 1,2-DICHLOROETHANE ND 1 1, 1-DICHLOROETHENE ND 1 CIS-1, 2-DICHLOROETHENE ND 1 TRANS-1, 2-DICHLOROETHENE ND 1 1,2-DICHLOROPROPANE ND 1

> ANE ND 10 BE CONTINUED ON PAGE 12 -----

1

DATA REVIEWED AND APPROVED BY:

1, 3-DICHLOROPROPANE

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Corona Rd - Petaluma MATRIX:WATER DATE RECEIVED: 06/06/17 DATE SAMPLED:06/1/17 DATE ANALYZED:06/08/17 REPORT TO: MR. PETER CLOVEN DATE REPORTED:06/12/17 Contraction of the second s SAMPLE I.D.: SB-3-GW LAB I.D.: 170606-47 ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2 UNIT: ug/L = MICROGRAM PER LITER = PPB PARAMETER SAMPLE RESULT POL X1 2,2-DICHLOROPROPANE ND 1 1,1-DICHLOROPROPENE ND 1 CIS-1, 3-DICHLOROPROPENE ND 1 TRANS-1, 3-DICHLOROPROPENE ND 1 ETHYLBENZENE ND 1 2-HEXANONE ND 0 HEXACHLOROBUTADIENE ND 1 ISOPROPYLBENZENE ND 1 4-ISOPROPYLTOLUENE ND 1 4-METHYL-2-PENTANONE (MIBK) ND 0 METHYL tert-BUTYL ETHER (MTBE ND 3 METHYLENE CHLORIDE ND 5 NAPHTHALENE ND 1 N-PROPYLBENZENE ND 1 STYRENE ND 1 1,1,1,2-TETRACHLOROETHANE ND 1 1,1,2,2-TETRACHLOROETHANE ND 1 TETRACHLOROETHENE (PCE) ND 1 TOLUENE ND 1 1,2,3-TRICHLOROBENZENE 1 ND 1,2,4-TRICHLOROBENZENE ND 1 1,1,1-TRICHLOROETHANE ND 1 1,1,2-TRICHLOROETHANE ND 1 TRICHLOROETHENE (TCE ND 1 TRICHLOROFLUOROMETHANE ND 1 1,2,3-TRICHLOROPROPANE ND 1 1, 2, 4-TRIMETHYLBENZENE ND 1 1,3,5-TRIMETHYLBENZENE 1 ND VINYL CHLORIDE ND 1 M/P-XYLENE ND 2 O-XYLENE ND 1 **COMMENTS** PQL = PRACTICAL QUANTITATION LIMIT ND = NON-DETECTED OR BELOW THE POL

DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Corona Rd - Petaluma

MATRIX: <u>WATER</u>	DATE	RECEIVED: <u>06/06/17</u>
DATE SAMPLED: 06/1/17	DATE	ANALYZED: 06/08/17
REPORT TO: MR. PETER CLOVEN	DATE	REPORTED: 06/12/17

SAMPLE I.D.: SB-5-GW

LAB I.D.: 170606-48

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2 UNIT: ug/L = MICROGRAM PER LITER = PPB

PARAMETER	SAMPLE RESULT	FQL XID
ACETONE	ND	10
BENZENE	864	1
BROMOBENZENE	ND	1
BROMOCHLOROMETHANE	ND	1
BROMODICHLOROMETHANE	ND	1
BROMOFORM	ND	1
BROMOMETHANE	ND	1
2-BUTANONE (MEK	ND	0
N-BUTYLBENZENE	ND	1
SEC-BUTYLBENZENE	ND	1
TERT-BUTYLBENZENE	ND	1
CARBON DISULFIDE	ND	5
CARBON TETRACHLORIDE	ND	1
CHLOROBENZENE	ND	1
CHLOROETHANE	ND	1
CHLOROFORM	ND	1
CHLOROMETHANE	ND	1
2-CHLOROTOLUENE	ND	1
4-CHLOROTOLUENE	ND	1
DIBROMOCHLOROMETHANE	ND	1
1,2-DIBROMO-3-CHLOROPROPANE	ND	1
1,2-DIBROMOETHANE	ND	1
DIBROMOMETHANE	ND	1
1,2-DICHLOROBENZENE	ND	1
1,3-DICHLOROBENZENE	ND	1
1,4-DICHLOROBENZENE	ND	1
DICHLORODIFLUOROMETHANE	ND	1
1,1-DICHLOROETHANE	ND	1
1,2-DICHLOROETHANE	ND	1
1,1-DICHLOROETHENE	ND	1
CIS-1, 2-DICHLOROETHENE	ND	1
TRANS-1,2-DICHLOROETHENE	ND	1
1,2-DICHLOROPROPANE	ND	1
1,3-DICHLOROPROPANE	ND	1

----- 10 IL CONTINUED ON PAGE 12 -----

DATA REVIEWED AND APPROVED

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Corona Rd - Petaluma MATRIX:WATER **DATE** RECEIVED: 06/06/17 DATE ANALYZED: 06/08/17 DATE SAMPLED: 06/1/17 REPORT TO: MR. PETER CLOVEN DATE REPORTED: 06/12/17 a state and a state with the state of the state of the state of the A REAL POINT OF A REAL PROPERTY OF A REAL PROPERTY. SAMPLE I.D.: SB-5-GW LAB I.D.: 170606-48 -------a la la secol a second s ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2 UNIT: ug/L = MICROGRAM PER LITER = PPB PARAMETER SAMPLE RESULT PQL X10 2 2-DICULODODDODNE NTD 1

Z, Z-DICHLOROPROPANE	ND	<u>_</u>
1,1-DICHLOROPROPENE	ND	1
CIS-1, 3-DICHLOROPROPENE	ND	1
TRANS-1, 3-DICHLOROPROPENE	ND	1
ETHYLBENZENE	ND	1
2-HEXANONE	ND	10
HEXACHLOROBUTADIENE	ND	1
ISOPROPYLBENZENE	42.5	1
4-ISOPROPYLTOLUENE	ND	1
4-METHYL-2-PENTANONE (MIBK	ND	0
METHYL tert-BUTYL ETHER (MTBE)	ND	3
METHYLENE CHLORIDE	ND	5
NAPHTHALENE	ND	1
N-PROPYLBENZENE	ND	<u> </u>
STYRENE	ND	1
1,1,1,2-TETRACHLOROETHANE	ND	<u>1</u>
1,1,2,2-TETRACHLOROETHANE	ND	1
TETRACHLOROETHENE (PCE)	ND	1
TOLUENE	ND	<u> </u>
1,2,3-TRICHLOROBENZENE	ND	1
1,2,4-TRICHLOROBENZENE	ND	1
1,1,1-TRICHLOROETHANE	ND	1
1,1,2-TRICHLOROETHANE	ND	1
TRICHLOROETHENE (TCE)	ND	1
TRICHLOROFLUOROMETHANE	ND	1
1,2,3-TRICHLOROPROPANE	ND	1
1,2,4-TRIMETHYLBENZENE	ND	1
1,3,5-TRIMETHYLBENZENE	ND	1
VINYL CHLORIDE	ND	1
M/P-XYLENE	ND	2
<u>O-XYLENE</u>	11.8	1
COMMENTS PQL = PRACTICAL QUANTITA	TION LIMIT	

ND = NON-DETECTED OR BELOW THE DUL DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue. Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Corona Rd - Petaluma MATRIX: WATER DATE RECEIVED:06/06/17 DATE SAMPLED:06/1/17 DATE ANALYZED:06/08/17 DATE REPORTED: 06/12/17 REPORT TO: MR. PETER CLOVEN NAMES AND ADDRESS OF TAXABLE PARTY OF TAXABLE PARTY. LAB I.D.: 170606-49 SAMPLE I.D.: SB-6-GW ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2 **UNIT**: ug/L = MICROGRAM PER LITER = PPBPARAMETER SAMPLE RESULT FQL X1 ACETONE ND 10 BENZENE ND 1 BROMOBENZENE ND 1 BROMOCHLOROMETHANE ND 1 BROMODICHLOROMETHANE 1 ND BROMOFORM ND 1 BROMOMETHANE ND 1 2-BUTANONE (MEK ND 10 N-BUTYLBENZENE ND 1 SEC-BUTYLBENZENE ND 1 TERT-BUTYLBENZENE ND 1 CARBON DISULFIDE 5 ND CARBON TETRACHLORIDE ND 1 CHLOROBENZENE ND 1 CHLOROETHANE ND 1 CHLOROFORM ND 1 CHLOROMETHANE ND 1 2-CHLOROTOLUENE ND 1 4-CHLOROTOLUENE ND 1 DIBROMOCHLOROMETHANE ND 1 1,2-DIBROMO-3-CHLOROPROPANE ND 1 1,2-DIBROMOETHANE ND 1 DIBROMOMETHANE ND 1 1,2-DICHLOROBENZENE ND 1 1,3-DICHLOROBENZENE ND 1 1,4-DICHLOROBENZENE ND 1 DICHLORODIFLUOROMETHANE ND 1 1,1-DICHLOROETHANE ND 1 1,2-DICHLOROETHANE 18.1 1 1,1-DICHLOROETHENE ND 1 CIS-1, 2-DICHLOROETHENE ND 1 TRANS-1, 2-DICHLOROETHENE ND 1 1,2-DICHLOROPROPANE 1

> ND -- IU III CONTINUED ON PAGE

ND

1

DATA REVIEWED AND APPROVED

1,3-DICHLOROPROPANE

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Corona Rd - Petaluma MATRIX:WATER DATE RECEIVED:06/06/17 DATE SAMPLED:06/1/17 DATE ANALYZED: 06/08/17 REPORT TO: MR. PETER CLOVEN DATE REPORTED: 06/12/17 and the state of t SAMPLE I.D.: SB-6-GW LAB I.D.: 170606-49 ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2 UNIT: ug/L = MICROGRAM PER LITER = PPB PARAMETER SAMPLE RESULT POL X1 2,2-DICHLOROPROPANE ND 1 1,1-DICHLOROPROPENE ND 1 CIS-1, 3-DICHLOROPROPENE ND 1 TRANS-1, 3-DICHLOROPROPENE ND 1 ETHYLBENZENE ND 1 2-HEXANONE ND 10 HEXACHLOROBUTADIENE ND 1 ISOPROPYLBENZENE ND 1 4-ISOPROPYLTOLUENE ND 1 4-METHYL-2-PENTANONE (MIBK) ND 10 METHYL tert-BUTYL ETHER (MTBE ND 3 METHYLENE CHLORIDE ND 5 NAPHTHALENE ND 1 N-PROPYLBENZENE ND 1 STYRENE ND 1 1,1,1,2-TETRACHLOROETHANE ND 1 1,1,2,2-TETRACHLOROETHANE ND 1 TETRACHLOROETHENE (PCE) ND 1 TOLUENE ND 1 1,2,3-TRICHLOROBENZENE ND 1 1,2,4-TRICHLOROBENZENE ND 1 1,1,1-TRICHLOROETHANE ND 1 1,1,2-TRICHLOROETHANE ND 1 TRICHLOROETHENE (TCE) ND 1 TRICHLOROFLUOROMETHANE ND 1 1,2,3-TRICHLOROPROPANE ND 1 1,2,4-TRIMETHYLBENZENE ND 1 1, 3, 5-TRIMETHYLBENZENE ND 1 VINYL CHLORIDE ND 1 M/P-XYLENE ND 2 O-XYLENE ND **COMMENTS** PQL = PRACTICAL QUANTITATION LIMIT ND = NON-DETECTED OR BELOW THE DATA REVIEWED AND APPROVED BY: 20 CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Corona Rd - Petaluma

MATRIX: <u>WATER</u>	<b>DATE</b> RECEIVED: 06/06/17
DATE SAMPLED: 06/1/17	DATE ANALYZED: 06/08/17
REPORT TO: MR. PETER CLOVEN	DATE REPORTED: 06/12/17
	the second s

SAMPLE I.D.: SB-1-GW

LAB I.D.: 170606-50

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2 UNIT: ug/L = MICROGRAM PER LITER = PPB

PARAMETER	SAMPLE RESULT	FQL X1
ACETONE	ND	10
BENZENE	ND	1
BROMOBENZENE	ND	1
BROMOCHLOROMETHANE	ND	1
BROMODICHLOROMETHANE	ND	1
BROMOFORM	ND	1
BROMOMETHANE	ND	1
2-BUTANONE (MEK	ND	10
N-BUTYLBENZENE	ND	1
SEC-BUTYLBENZENE	ND	1
TERT-BUTYLBENZENE	ND	1
CARBON DISULFIDE	ND	5
CARBON TETRACHLORIDE	ND	1
CHLOROBENZENE	ND	1
CHLOROETHANE	ND	1
CHLOROFORM	ND	1
CHLOROMETHANE	ND	1
<u>2-CHLOROTOLUENE</u>	ND	1
<u>4-CHLOROTOLUENE</u>	ND	1
DIBROMOCHLOROMETHANE	ND	1
1,2-DIBROMO-3-CHLOROPROPANE	ND	1
1,2-DIBROMOETHANE	ND	1
DIBROMOMETHANE	ND	1
1,2-DICHLOROBENZENE	ND	1
1, 3-DICHLOROBENZENE	ND	1
1,4-DICHLOROBENZENE	ND	1
DICHLORODIFLUOROMETHANE	ND	1
1,1-DICHLOROETHANE	ND	1
1,2-DICHLOROETHANE	8.03	1
1,1-DICHLOROETHENE	ND	1
CIS-1,2-DICHLOROETHENE	ND	1
TRANS-1,2-DICHLOROETHENE	ND	1
1,2-DICHLOROPROPANE	ND	1
1,3-DICHLOROPROPANE	ND	1

- TO RE CONTINUED ON PAGE 12 -----

DATA REVIEWED AND APPROVED BY

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Corona Rd - Petaluma

MATRIX: <u>WATER</u>	DATE	RECEIVED: <u>06/06/17</u>
DATE SAMPLED: <u>06/1/17</u>	DATE	ANALYZED: 06/08/17
REPORT TO: PETER CLOVEN	DATE	REPORTED: 06/12/17

SAMPLE I.D.: SB-1-GW

LAB I.D.: 170606-50

all of the local distribution of the

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2 **IINTT:**  $u\sigma/L = MTCROGRAM PER LITTER = PPB$ 

2,2-DICHLOROPROPENE       ND       1         1,1-DICHLOROPROPENE       ND       1         CIS-1,3-DICHLOROPROPENE       ND       1         TRANS-1,3-DICHLOROPROPENE       ND       1         ETHYLBENZENE       ND       1         2-HEXANONE       ND       0         HEXACHLOROBUTADIENE       ND       1         2-HEXANONE       ND       1         4-ISOPROPYLEDENZENE       ND       1         NAPHTHALENE       ND       1         NAPHTHALENE       ND       1         NPOPYLBENZENE <t< th=""><th>PARAMETER</th><th>SAMPLE RESULT</th><th>PQL X1</th></t<>	PARAMETER	SAMPLE RESULT	PQL X1
1.1-DICHLOROPROPENE       ND       1         CIS-1,3-DICHLOROPROPENE       ND       1         TRANS-1,3-DICHLOROPROPENE       ND       1         TRANS-1,3-DICHLOROPROPENE       ND       1         TRANS-1,3-DICHLOROPROPENE       ND       1         TRANS-1,3-DICHLOROPROPENE       ND       1         Z-HEXANONE       ND       1         2-HEXANONE       ND       0         HEXACHLOROBUTADIENE       ND       1         1SOPROPYLBENZENE       ND       1         4-ISOPROPYLDENZENE       ND       1         4-METHYL-2-PENTANONE (MIBK)       ND       0         METHYL tert-BUTYL ETHER (MTBE)       ND       3         METHYLENE CHLORIDE       ND       1         N-PROPYLBENZENE       ND       1         NPROPYLBENZENE       ND       1         NPROPYLBENZENE       ND       1         1,1,1,2-TETRACHLOROETHANE       ND       1         1,1,1,2-TETRACHLOROETHANE       ND       1         1,2,2-TETRACHLOROETHANE       ND       1         1,2,2-TETRACHLOROETHANE       ND       1         1,2,4-TRICHLOROBENZENE       ND       1         1,2,4-TRICHLOROBETHANE </td <td>2,2-DICHLOROPROPANE</td> <td>ND</td> <td>1</td>	2,2-DICHLOROPROPANE	ND	1
CIS-1, 3-DICHLOROPROPENEND1TRANS-1, 3-DICHLOROPROPENEND1ETHYLBENZENEND1Z-HEXANONEND0HEXACHLOROBUTADIENEND1ISOPROPYLBENZENEND14-ISOPROPYLBENZENEND14-METHYL-2-PENTANONE (MIBK)ND0METHYL tert-BUTYL ETHER (MTBE)ND3METHYLLENECHLORIDEND3METHYLENEND1N-PROPYLBENZENEND1N-PROPYLBENZENEND1N-PROPYLBENZENEND1N-PROPYLBENZENEND11,1,2,2-TETRACHLOROETHANEND11,1,2,2-TETRACHLOROETHANEND11,2,4-TRICHLOROBENZENEND11,1,1-TRICHLOROBENZENEND11,1,2-TRICHLOROETHANEND11,2,3-TRICHLOROETHANEND11,2,4-TRICHLOROETHANEND11,2,3-TRICHLOROETHANEND11,2,4-TRICHLOROETHANEND11,2,4-TRICHLOROETHANEND11,2,4-TRICHLOROETHANEND11,2,4-TRIMETHYLENZENEND11,3,5-TRIMETHYLENZENEND11,3,5-TRIMETHYLENZENEND11,4/ENENEND11,2,4-TRIMETHYLENZENEND11,2,4-TRIMETHYLENZENEND11,2,4-TRIMETHYLENZENEND11,2,4-TRIMETHYLENZENEND11,2,4-TRIMETHYLENZENE <td< td=""><td>1,1-DICHLOROPROPENE</td><td>ND</td><td>1</td></td<>	1,1-DICHLOROPROPENE	ND	1
TRANS-1, 3-DICHLOROPROPENEND1ETHYLBENZENEND12-HEXANONEND0HEXACHLOROBUTADIENEND1ISOPROPYLBENZENEND14-ISOPROPYLBENZENEND14-METHYL-2-PENTANONE (MIBK)ND0METHYL tert-BUTYL ETHER (MTBE)ND3METHYLENE CHLORIDEND1NAPHTHALENEND1N-PROPYLBENZENEND1NAPHTHALENEND11,1,2-TETRACHLOROETHANEND11,1,2-TETRACHLOROETHANEND11,2,3-TRICHLOROETHANEND11,2,3-TRICHLOROBENZENEND11,1,2-TRICHLOROETHANEND11,1,2-TRICHLOROETHANEND11,2,3-TRICHLOROETHANEND11,2,3-TRICHLOROETHANEND11,2,3-TRICHLOROETHANEND11,2,3-TRICHLOROETHANEND11,2,3-TRICHLOROETHANEND11,2,3-TRICHLOROETHANEND11,2,3-TRICHLOROETHANEND11,2,4-TRIMETHYLBENZENEND11,2,4-TRIMETHYLBENZENEND11,3,5-TRIMETHYLBENZENEND11,3,5-TRIMETHYLBENZENEND11,42,4-TRIMETHYLBENZENEND11,74,5-TRIMETHYLBENZENEND11,74,5-TRIMETHYLBENZENEND11,74,5-TRIMETHYLBENZENEND11,74,5-TRIMETHYLBENZENEND11,74,5-TRI	CIS-1, 3-DICHLOROPROPENE	ND	1
ETHYLBENZENEND12-HEXANONEND0HEXACHLOROBUTADIENEND1ISOPROPYLBENZENEND14-ISOPROPYLTOLUENEND14-METHYL-2-PENTANONE (MIBK)ND0METHYL tert-BUTYL ETHER (MTBE)ND3METHYLENE CHLORIDEND3MAPHTHALENEND1N-PROPYLBENZENEND1NPROPYLBENZENEND11,1,2-TETRACHLOROETHANEND11,1,2-TETRACHLOROETHANEND1TOLUENEND11,2,3-TRICHLOROBENZENEND11,1,2-TRICHLOROBENZENEND11,1,2-TRICHLOROETHANEND11,2,3-TRICHLOROETHANEND11,1,2-TRICHLOROETHANEND11,1,2-TRICHLOROETHANEND11,2,4-TRICHLOROETHANEND11,1,2-TRICHLOROETHANEND11,1,2-TRICHLOROETHANEND11,1,2-TRICHLOROETHANEND11,1,2-TRICHLOROETHANEND11,1,2-TRICHLOROETHANEND11,1,2-TRICHLOROETHANEND11,1,2,3-TRICHLOROPOPANEND11,2,4-TRIMETHYLBENZENEND11,3,5-TRIMETHYLBENZENEND11,3,5-TRIMETHYLBENZENEND11,1,2-TRICHLOROIDEND11,1,2-TRICHLOROIDEND11,2,4-TRIMETHYLBENZENEND11,2,4-TRIMETHYLBENZENEND<	TRANS-1, 3-DICHLOROPROPENE	ND	1
2-HEXANONEND0HEXACHLOROBUTADIENEND1ISOPROPYLBENZENEND14-ISOPROPYLDENZENEND14-METHYL-2-PENTANONE (MIBK)ND0METHYL tert-BUTYL ETHER (MTBE)ND3METHYL tert-BUTYL ETHER (MTBE)ND3METHYLENE CHLORIDEND1N-PROPYLBENZENEND1N-PROPYLBENZENEND1N-PROPYLBENZENEND11,1,2-TETRACHLOROETHANEND11,1,2-TETRACHLOROETHANEND1TOLUENEND11,2,3-TRICHLOROBENZENEND11,1,2-TRICHLOROBENZENEND11,1,2-TRICHLOROETHANEND11,2,3-TRICHLOROETHANEND11,1,2-TRICHLOROETHANEND11,1,2-TRICHLOROETHANEND11,1,2-TRICHLOROETHANEND11,1,2-TRICHLOROETHANEND11,1,2-TRICHLOROETHANEND11,1,2-TRICHLOROETHANEND11,1,2-TRICHLOROETHANEND11,1,2-TRICHLOROFTANEND11,1,2,3-TRICHLOROPROPANEND11,2,4-TRIMETHYLBENZENEND11,3,5-TRIMETHYLBENZENEND11,3,5-TRIMETHYLBENZENEND11,3,5-TRIMETHYLBENZENEND11,1,2-TRICHLOROIDEND11,2,4-TRIMETHYLBENZENEND11,2,0-TRIMETHYLBENZENEND11,1,2,5-TRI	ETHYLBENZENE	ND	1
HEXACHLOROBUTADIENEND1ISOPROPYLBENZENEND14-ISOPROPYLBENZENEND14-METHYL-2-PENTANONE (MIBK)ND0METHYLET-BUTYL ETHER (MTBEND3METHYLENE CHLORIDEND5NAPHTHALENEND1N-PROPYLBENZENEND1N-PROPYLBENZENEND11,1,2,-TETRACHLOROETHANEND11,1,2,-TETRACHLOROETHANEND11,1,2,-TETRACHLOROETHANEND11,1,2,3-TRICHLOROBENZENEND11,2,4-TRICHLOROBENZENEND11,1,1-TRICHLOROETHANEND11,1,2-TRICHLOROETHANEND11,2,3-TRICHLOROETHANEND11,2,4-TRICHLOROETHANEND11,2,3-TRICHLOROETHANEND11,2,4-TRIMETHYLBENZENEND11,3,5-TRIMETHYLBENZENEND11,3,5-TRIMETHYLBENZENEND11,4,2-TRICHLOROETHANEND11,2,4-TRIMETHYLBENZENEND11,3,5-TRIMETHYLBENZENEND11,3,5-TRIMETHYLBENZENEND11,3,5-TRIMETHYLBENZENEND11,4,2-TRICHLOROETHANEND11,3,5-TRIMETHYLBENZENEND11,3,5-TRIMETHYLBENZENEND11,3,5-TRIMETHYLBENZENEND11,3,5-TRIMETHYLBENZENEND11,4,4-TRIMETHYLBENZENEND11,5,5-TRIMETHYLBENZENEND1<	<u>2-hexanone</u>	ND	0
ISOPROPYLBENZENEND14-ISOPROPYLTOLUENEND14-METHYL-2-PENTANONE (MIBK)ND0METHYL tert-BUTYL ETHER (MTBEND3METHYLENE CHLORIDEND1NAPHTHALENEND1N-PROPYLBENZENEND1N-PROPYLBENZENEND11,1,2,2-TETRACHLOROETHANEND11,1,2,2-TETRACHLOROETHANEND11,1,2,2-TETRACHLOROETHANEND1TOLUENEND11,2,3-TRICHLOROBENZENEND11,2,4-TRICHLOROBENZENEND11,1,2-TRICHLOROETHANEND11,1,2-TRICHLOROETHANEND11,2,4-TRICHLOROETHANEND11,2,3-TRICHLOROETHANEND11,2,3-TRICHLOROETHANEND11,2,3-TRICHLOROETHANEND11,2,3-TRICHLOROPROPANEND11,2,4-TRIMETHYLBENZENEND11,3,5-TRIMETHYLBENZENEND11,3,5-TRIMETHYLBENZENEND11,3,5-TRIMETHYLBENZENEND1M/P-XYLENEND10-XYLENEND1	HEXACHLOROBUTADIENE	ND	<u>1</u>
4-ISOPROPYLTOLUENEND14-METHYL-2-PENTANONE (MIBK)ND0METHYL tert-BUTYL ETHER (MTBEND3METHYL tert-BUTYL ETHER (MTBEND3METHYLENE CHLORIDEND1NAPHTHALENEND1N-PROPYLBENZENEND1STYRENEND11,1,2-TETRACHLOROETHANEND11,1,2,2-TETRACHLOROETHANEND1TOLUENEND11,2,3-TRICHLOROETHANEND11,2,3-TRICHLOROBENZENEND11,1,2-TRICHLOROETHANEND11,1,2-TRICHLOROETHANEND11,2,4-TRICHLOROETHANEND11,1,2-TRICHLOROETHANEND11,2,3-TRICHLOROETHANEND11,2,4-TRICHLOROETHANEND11,2,3-TRICHLOROETHANEND11,2,3-TRICHLOROPROPANEND11,2,3-TRICHLOROPROPANEND11,2,3-TRICHLOROPROPANEND11,2,4-TRIMETHYLBENZENEND11,2,4-TRIMETHYLBENZENEND11,3,5-TRIMETHYLBENZENEND1VINYL CHLORIDEND1M/P-XYLENEND10-XYLENEND1	ISOPROPYLBENZENE	ND	<u> </u>
4-METHYL-2-PENTANONE (MIBK)ND0METHYL tert-BUTYL ETHER (MTBE)ND3METHYLENE CHLORIDEND5NAPHTHALENEND1N-PROPYLBENZENEND1STYRENEND11,1,2,2-TETRACHLOROETHANEND11,1,2,2-TETRACHLOROETHANEND1TOLUENEND11,2,3-TRICHLOROETHANEND11,2,3-TRICHLOROBENZENEND11,1,2-TETRACHLOROETHANEND11,2,4-TRICHLOROBENZENEND11,1,2-TRICHLOROETHANEND11,1,2-TRICHLOROETHANEND11,2,3-TRICHLOROETHANEND11,2,3-TRICHLOROETHANEND11,2,3-TRICHLOROETHANEND11,2,3-TRICHLOROETHANEND11,2,3-TRICHLOROETHANEND11,2,3-TRICHLOROPROPANEND11,2,4-TRIMETHYLBENZENEND11,3,5-TRIMETHYLBENZENEND11,3,5-TRIMETHYLBENZENEND11,3,5-TRIMETHYLBENZENEND11,7,2-TRICHORIDEND11,2,4-TRIMETHYLBENZENEND11,3,5-TRIMETHYLBENZENEND11,3,5-TRIMETHYLBENZENEND11,2,4-TRIMETHYLBENZENEND11,2,4-TRIMETHYLBENZENEND11,3,5-TRIMETHYLBENZENEND11,2,4-TRIMETHYLBENZENEND11,2,4-TRIMETHYLBENZENEND11,	4-ISOPROPYLTOLUENE	ND	1
METHYL tert-BUTYL ETHER (MTBE       ND       3         METHYLENE CHLORIDE       ND       5         NAPHTHALENE       ND       1         N-PROPYLBENZENE       ND       1         STYRENE       ND       1         1,1,2,2-TETRACHLOROETHANE       ND       1         1,1,2,2-TETRACHLOROETHANE       ND       1         1,1,2,2-TETRACHLOROETHANE       ND       1         1,1,2,2-TETRACHLOROETHANE       ND       1         TOLUENE       ND       1         1,2,3-TRICHLOROBENZENE       ND       1         1,2,4-TRICHLOROBENZENE       ND       1         1,1,2-TRICHLOROETHANE       ND       1         1,1,2-TRICHLOROETHANE       ND       1         1,1,2,4-TRICHLOROETHANE       ND       1         1,1,2,4-TRICHLOROETHANE       ND       1         1,1,2,5-TRICHLOROETHANE       ND       1         1,2,3-TRICHLOROFTHANE       ND       1         1,2,3-TRICHLOROPROPANE       ND       1         1,2,3-TRICHLOROPROPANE       ND       1         1,2,4-TRIMETHYLBENZENE       ND       1         1,3,5-TRIMETHYLBENZENE       ND       1         VINYL CHLORIDE	4-METHYL-2-PENTANONE (MIBK)	ND	0
METHYLENE CHLORIDEND5NAPHTHALENEND1N-PROPYLBENZENEND1STYRENEND11,1,2-TETRACHLOROETHANEND11,1,2,2-TETRACHLOROETHANEND11,1,2,2-TETRACHLOROETHANEND1TETRACHLOROETHENE (PCE)ND1TOLUENEND11,2,3-TRICHLOROBENZENEND11,2,4-TRICHLOROBENZENEND11,1,1-TRICHLOROETHANEND11,1,2-TRICHLOROETHANEND11,2,3-TRICHLOROETHANEND11,2,3-TRICHLOROETHANEND11,2,3-TRICHLOROETHANEND11,2,3-TRICHLOROPROPANEND11,2,4-TRIMETHYLBENZENEND11,3,5-TRIMETHYLBENZENEND1VINYL CHLORIDEND1M/P-XYLENEND2Q-XYLENEND1	METHYL tert-BUTYL ETHER (MTBE	ND	3
NAPHTHALENEND1N-PROPYLBENZENEND1STYRENEND11,1,1,2-TETRACHLOROETHANEND11,1,2,2-TETRACHLOROETHANEND11,1,2,2-TETRACHLOROETHANEND1TETRACHLOROETHENE (PCE)ND1TOLUENEND11,2,3-TRICHLOROBENZENEND11,2,4-TRICHLOROBENZENEND11,1,1-TRICHLOROETHANEND11,1,2-TRICHLOROETHANEND11,1,2-TRICHLOROETHANEND11,2,3-TRICHLOROETHANEND11,2,3-TRICHLOROPROPANEND11,2,4-TRIMETHYLBENZENEND11,3,5-TRIMETHYLBENZENEND1VINYL CHLORIDEND1M/P-XYLENEND2Q-XYLENEND1	METHYLENE CHLORIDE	ND	5
N-PROPYLBENZENEND1STYRENEND11,1,1,2-TETRACHLOROETHANEND11,1,2,2-TETRACHLOROETHANEND1TETRACHLOROETHENE (PCE)ND1TOLUENEND11,2,3-TRICHLOROBENZENEND11,2,4-TRICHLOROBENZENEND11,1,1-TRICHLOROETHANEND11,1,2-TRICHLOROETHANEND11,1,2-TRICHLOROETHANEND11,1,2-TRICHLOROETHANEND11,2,3-TRICHLOROETHANEND11,2,3-TRICHLOROPROPANEND11,2,4-TRIMETHYLBENZENEND11,3,5-TRIMETHYLBENZENEND11,3,5-TRIMETHYLBENZENEND1VINYL CHLORIDEND1M/P-XYLENEND10-XYLENEND1	NAPHTHALENE	ND	<u> </u>
STYRENEND11,1,1,2-TETRACHLOROETHANEND11,1,2,2-TETRACHLOROETHANEND1TETRACHLOROETHENE (PCE)ND1TOLUENEND11,2,3-TRICHLOROBENZENEND11,2,4-TRICHLOROBENZENEND11,1,1-TRICHLOROETHANEND11,1,2-TRICHLOROETHANEND11,1,2-TRICHLOROETHANEND11,1,2-TRICHLOROETHANEND11,1,2-TRICHLOROETHANEND11,2,3-TRICHLOROFTHANEND11,2,3-TRICHLOROPROPANEND11,2,4-TRIMETHYLBENZENEND11,3,5-TRIMETHYLBENZENEND1VINYL CHLORIDEND1M/P-XYLENEND20-XYLENEND1	<u>N-PROPYLBENZENE</u>	ND	1
1,1,1,2-TETRACHLOROETHANEND11,1,2,2-TETRACHLOROETHANEND1TETRACHLOROETHENE (PCE)ND1TOLUENEND11,2,3-TRICHLOROBENZENEND11,2,4-TRICHLOROBENZENEND11,1,1-TRICHLOROETHANEND11,1,2-TRICHLOROETHANEND11,1,2-TRICHLOROETHANEND1TRICHLOROETHANEND1TRICHLOROFLUOROMETHANEND11,2,3-TRICHLOROPROPANEND11,2,4-TRIMETHYLBENZENEND11,3,5-TRIMETHYLBENZENEND1VINYL CHLORIDEND1M/P-XYLENEND2O-XYLENEND1	STYRENE	ND	<u>1</u>
1,1,2,2-TETRACHLOROETHANEND1TETRACHLOROETHENE (PCE)ND1TOLUENEND11,2,3-TRICHLOROBENZENEND11,2,4-TRICHLOROBENZENEND11,1,1-TRICHLOROETHANEND11,1,2-TRICHLOROETHANEND1TRICHLOROETHENE (TCEND11,2,3-TRICHLOROPROPANEND11,2,3-TRICHLOROPROPANEND11,2,4-TRIMETHYLBENZENEND11,3,5-TRIMETHYLBENZENEND1VINYL CHLORIDEND1M/P-XYLENEND2O-XYLENEND1	1,1,1,2-TETRACHLOROETHANE	ND	<u> </u>
TETRACHLOROETHENE (PCE)ND1TOLUENEND11,2,3-TRICHLOROBENZENEND11,2,4-TRICHLOROBENZENEND11,1,1-TRICHLOROETHANEND11,1,2-TRICHLOROETHANEND1TRICHLOROETHENE (TCE)ND1TRICHLOROFLUOROMETHANEND11,2,3-TRICHLOROPROPANEND11,2,4-TRIMETHYLBENZENEND11,3,5-TRIMETHYLBENZENEND1VINYL CHLORIDEND1M/P-XYLENEND2Q-XYLENEND1	1,1,2,2-TETRACHLOROETHANE	ND	1
TOLUENEND11,2,3-TRICHLOROBENZENEND11,2,4-TRICHLOROBENZENEND11,1,1-TRICHLOROETHANEND11,1,2-TRICHLOROETHANEND1TRICHLOROETHENE (TCEND1TRICHLOROFLUOROMETHANEND11,2,3-TRICHLOROPROPANEND11,2,4-TRIMETHYLBENZENEND11,3,5-TRIMETHYLBENZENEND1VINYL CHLORIDEND1M/P-XYLENEND2Q-XYLENEND1	TETRACHLOROETHENE (PCE)	ND	1
1,2,3-TRICHLOROBENZENEND11,2,4-TRICHLOROBENZENEND11,1,1-TRICHLOROETHANEND11,1,2-TRICHLOROETHANEND1TRICHLOROETHENE (TCEND1TRICHLOROFLUOROMETHANEND11,2,3-TRICHLOROPROPANEND11,2,4-TRIMETHYLBENZENEND11,3,5-TRIMETHYLBENZENEND1VINYL CHLORIDEND1M/P-XYLENEND2O-XYLENEND1	TOLUENE	ND	<u> </u>
1,2,4-TRICHLOROBENZENEND11,1,1-TRICHLOROETHANEND11,1,2-TRICHLOROETHANEND1TRICHLOROETHENE (TCE)ND1TRICHLOROFLUOROMETHANEND11,2,3-TRICHLOROPROPANEND11,2,4-TRIMETHYLBENZENEND11,3,5-TRIMETHYLBENZENEND1VINYL CHLORIDEND1M/P-XYLENEND2O-XYLENEND1	1,2,3-TRICHLOROBENZENE	ND	<u> </u>
1,1,1-TRICHLOROETHANEND11,1,2-TRICHLOROETHANEND1TRICHLOROETHENE (TCEND1TRICHLOROFLUOROMETHANEND11,2,3-TRICHLOROPROPANEND11,2,4-TRIMETHYLBENZENEND11,3,5-TRIMETHYLBENZENEND1VINYL CHLORIDEND1M/P-XYLENEND2Q-XYLENEND1	1,2,4-TRICHLOROBENZENE	ND	1
1,1,2-TRICHLOROETHANEND1TRICHLOROETHENE (TCEND1TRICHLOROFLUOROMETHANEND11,2,3-TRICHLOROPROPANEND11,2,4-TRIMETHYLBENZENEND11,3,5-TRIMETHYLBENZENEND1VINYL CHLORIDEND1M/P-XYLENEND2Q-XYLENEND1	1,1,1-TRICHLOROETHANE	ND	<u> </u>
TRICHLOROETHENE (TCEND1TRICHLOROFLUOROMETHANEND11,2,3-TRICHLOROPROPANEND11,2,4-TRIMETHYLBENZENEND11,3,5-TRIMETHYLBENZENEND1VINYL CHLORIDEND1M/P-XYLENEND2Q-XYLENEND1	1,1,2-TRICHLOROETHANE	ND	<u> </u>
TRICHLOROFLUOROMETHANEND11,2,3-TRICHLOROPROPANEND11,2,4-TRIMETHYLBENZENEND11,3,5-TRIMETHYLBENZENEND1VINYL CHLORIDEND1M/P-XYLENEND2Q-XYLENEND1	TRICHLOROETHENE (TCE)	ND	<u> </u>
1,2,3-TRICHLOROPROPANEND11,2,4-TRIMETHYLBENZENEND11,3,5-TRIMETHYLBENZENEND1VINYL CHLORIDEND1M/P-XYLENEND2Q-XYLENEND1	TRICHLOROFLUOROMETHANE	ND	1
1,2,4-TRIMETHYLBENZENE     ND     1       1,3,5-TRIMETHYLBENZENE     ND     1       VINYL CHLORIDE     ND     1       M/P-XYLENE     ND     2       Q-XYLENE     ND     1	1,2,3-TRICHLOROPROPANE	ND	1
1,3,5-TRIMETHYLBENZENE         ND         1           VINYL CHLORIDE         ND         1           M/P-XYLENE         ND         2           Q-XYLENE         ND         1	1,2,4-TRIMETHYLBENZENE	ND	11
VINYL CHLORIDE         ND         1           M/P-XYLENE         ND         2           O-XYLENE         ND         1	1,3,5-TRIMETHYLBENZENE	ND	<u>1</u>
<u>M/P-XYLENE ND 2</u> O-XYLENE ND 1	VINYL CHLORIDE	ND	1
O-XYLENE ND 1	M/P-XYLENE	ND	2
	O-XYLENE	ND	1
	ND = NON - DETECTED OR BELOW THE	FOL #	

lu DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Corona Rd - Petaluma

MATRIX: WATER	<b>DATE</b> RECEIVED: 06/06/17
DATE SAMPLED: 06/1/17	DATE ANALYZED: 06/08/17
REPORT TO: MR. PETER CLOVEN	DATE REPORTED: 06/12/17
the starting of the starting o	en an

SAMPLE I.D.: SB-2-GW

LAB I.D.: 170606-51

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2 UNIT: ug/L = MICROGRAM PER LITER = PPB

PARAMETER	SAMPLE RESULT	IQL X1
ACETONE	ND	10
BENZENE	ND	1
BROMOBENZENE	ND	1
BROMOCHLOROMETHANE	ND	1
BROMODICHLOROMETHANE	ND	1
BROMOFORM	ND	1
BROMOMETHANE	ND	1
2-BUTANONE (MEK	ND	10
N-BUTYLBENZENE	ND	_1_
SEC-BUTYLBENZENE	ND	1_
TERT-BUTYLBENZENE	ND	1
CARBON DISULFIDE	ND	5
CARBON TETRACHLORIDE	ND	1
CHLOROBENZENE	ND	1
CHLOROETHANE	ND	_1
CHLOROFORM	ND	1
CHLOROMETHANE	ND	1
2-CHLOROTOLUENE	ND	1
4-CHLOROTOLUENE	ND	1
DIBROMOCHLOROMETHANE	ND	1
1,2-DIBROMO-3-CHLOROPROPANE	ND	1
1,2-DIBROMOETHANE	ND	1
DIBROMOMETHANE	ND	1
1,2-DICHLOROBENZENE	ND	1
1,3-DICHLOROBENZENE	ND	1
1,4-DICHLOROBENZENE	ND	1
DICHLORODIFLUOROMETHANE	ND	1
1,1-DICHLOROETHANE	ND	1
1,2-DICHLOROETHANE	ND	1
1,1-DICHLOROETHENE	ND	1
CIS-1, 2-DICHLOROETHENE	ND	1
TRANS-1,2-DICHLOROETHENE	ND	1
1,2-DICHLOROPROPANE	ND	1
1,3-DICHLOROPROPANE	ND	1

-- II CONTINU, N PAGE #2 -----

DATA REVIEWED AND APPROVED MY

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT Pinnacle Environmental, Inc CUSTOMER: P.O. Box 904 Clayton, CA 94517 (925) 673-5500 Email: pcloven@pei-env.com PROJECT: Corona Rd - Petaluma MATRIX:WATER DATE RECEIVED:06/06/17 DATE SAMPLED: 06/1/17DATE ANALYZED:06/08/17 REPORT TO: MR. PETER CLOVEN DATE REPORTED:06/12/17 SAMPLE I.D.: SB-2-GW LAB I.D.: 170606-51 ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2 **UNIT**: ug/L = MICROGRAM PER LITER = PPBPARAMETER POL N1 SAMPLE RESULT 2,2-DICHLOROPROPANE ND 1 1,1-DICHLOROPROPENE ND 1 CIS-1, 3-DICHLOROPROPENE ND 1 TRANS-1, 3-DICHLOROPROPENE 1 ND ETHYLBENZENE ND 1 2-HEXANONE ND 0 **HEXACHLOROBUTADIENE** ND 1 ISOPROPYLBENZENE 1 ND 4-ISOPROPYLTOLUENE ND 1 4-METHYL-2-PENTANONE (MIBK) ND 0 METHYL tert-BUTYL ETHER (MTBE 3 ND METHYLENE CHLORIDE ND 5 NAPHTHALENE ND 1 N-PROPYLBENZENE ND 1 STYRENE 1 ND 1,1,1,2-TETRACHLOROETHANE ND 1 1, 1, 2, 2-TETRACHLOROETHANE ND 1 TETRACHLOROETHENE (PCE) ND 1 TOLUENE 1 ND 1,2,3-TRICHLOROBENZENE ND 1 1, 2, 4-TRICHLOROBENZENE ND 1 1, 1, 1-TRICHLOROETHANE ND 1 1, 1, 2-TRICHLOROETHANE ND 1 TRICHLOROETHENE (TCE ND 1 TRICHLOROFLUOROMETHANE ND 1 1,2,3-TRICHLOROPROPANE ND 1 1, 2, 4-TRIMETHYLBENZENE ND 1 1, 3, 5-TRIMETHYLBENZENE ND 1 VINYL CHLORIDE ND 1 M/P-XYLENE ND 2 O-XYLENE ND 1 **COMMENTS** PQL = PRACTICAL QUANTITATION LIMIT ND = NON-DETECTED OR BELOW THE TOL DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

# 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

	METHOD BLANK REPORT
CUSTOMER:	Pinnacle Environmental, Inc
	P.O. Box 904
	Clayton, CA 94517
	(925)673-5500 Email: pcloven@pei-env.com
PROJECT:	Corona Rd - Petaluma

MATRIX: WATER	DATE	RECEIVED: <u>06/06/17</u>
DATE SAMPLED: 06/1/17	DATE	ANALYZED: <u>06/08/17</u>
REPORT TO: MR. PETER CLOVEN	DATE	REPORTED: <u>06/12/17</u>

METHOD BLANK REPORT FOR LAB I.D.: 170606-46 THROUGH -51

ANALYSIS: VOLATILE ORGANICS	, EPA METHOD 503	0B/8260B, FAGE 1 OF 2 ER = PPB
PARAMETER	SAMPLE RESULT	POL X1
ACETONE	ND	10
BENZENE	ND	1
BROMOBENZENE	ND	1
BROMOCHLOROMETHANE	ND	_ 1
BROMODICHLOROMETHANE	ND	1
BROMOFORM	ND	<u>1</u>
BROMOMETHANE	ND	1
2-BUTANONE (MEK	ND	0
N-BUTYLBENZENE	ND	<u>1</u>
SEC-BUTYLBENZENE	ND	<u>1</u>
TERT-BUTYLBENZENE	ND	1
CARBON DISULFIDE	ND	5
CARBON TETRACHLORIDE	ND	<u>1</u>
CHLOROBENZENE	<u>ND</u>	1
CHLOROETHANE	ND	<u>1</u>
CHLOROFORM	ND	<u> </u>
CHLOROMETHANE	ND	<u>1</u>
2-CHLOROTOLUENE	<u>ND</u>	<u>1</u>
4-CHLOROTOLUENE	ND	<u>1</u>
DIBROMOCHLOROMETHANE	ND	1
1,2-DIBROMO-3-CHLOROPROPANE	ND	<u>1</u>
1,2-DIBROMOETHANE	ND	<u>1</u>
DIBROMOMETHANE	ND	1
1,2-DICHLOROBENZENE	ND	<u> </u>
1,3-DICHLOROBENZENE	ND	<u> </u>
<u>1,4-DICHLOROBENZENE</u>	ND	<u> </u>
DICHLORODIFLUOROMETHANE	ND	1
1,1-DICHLOROETHANE	ND	1
1,2-DICHLOROETHANE	ND	1
1,1-DICHLOROETHENE	ND	1
CIS-1,2-DICHLOROETHENE	ND	1.
TRANS-1, 2-DICHLOROETHENE	ND	<u>1</u>
1,2-DICHLOROPROPANE	ND	1
1,3-DICHLOROPROPANE	ND	1

----- 10 DE CONTINUED ON PAGE 12 -----

DATA REVIEWED AND APPROVED

# 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

	MERUOD	ANT DEDOD	
CUSTOMER:	Pinnacle Environmental P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: p	ocloven@pei-env	.com
PROJECT:	Corona Rd - Petaluma		
MATRIX: <u>WAT</u> DATE SAMPI REPORT TO:	<u>TER</u> SED: <u>06/1/17</u> MR. PETER CLOVEN	DATE RECI DATE ANAI DATE REPO	EIVED: <u>06/06/17</u> LYZED: <u>06/08/17</u> DRTED: <u>06/12/17</u>
ME	THOD BLANK REPORT FOR I	AB I.D.: 17060	)6-46 THROUGH -51
ANALYS	IS: VOLATILE ORGANICS,	EPA METHOD 503	0B/8260B, PAGE 2 OF 2
PARAMETER	UNIT: ug/L = MIC	ROGRAM PER LIT	ER = PPB
2.2-DICHLO	BOPROPANE	ND	1
1.1-DICHLO	)ROPROPENE	ND	
CIS-1.3-DI	CHLOROPROPENE	ND	1
TRANS-1.3-	DICHLOROPROPENE	ND	1
ETHYLBENZE	CNE	ND	1
2-HEXANONE		ND	10
HEXACHLORO	BUTADIENE	ND	1
ISOPROPYLE	BENZENE	ND	1
4-ISOPROPY	LTOLUENE	ND	1
4-METHYL-2	2-PENTANONE (MIBK)	ND	10
METHYL ter	TT-BUTYL ETHER (MTBE	ND	3
METHYLENE	CHLORIDE	ND	5_
NAPHTHALEN	IE	ND	1
N-PROPYLBE	INZENE	ND	_ 1
STYRENE		ND	1
1,1,1,2-TE	TRACHLOROETHANE	ND	1
1,1,2,2-TE	TRACHLOROETHANE	ND	1
TETRACHLOF	ROETHENE (PCE)	ND	1
TOLUENE		ND	1

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE HOL DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

1,2,3-TRICHLOROBENZENE

1,2,4-TRICHLOROBENZENE

1,1,1-TRICHLOROETHANE

1,1,2-TRICHLOROETHANE

TRICHLOROETHENE (TCE)

TRICHLOROFLUOROMETHANE

1,2,3-TRICHLOROPROPANE

1,2,4-TRIMETHYLBENZENE

1, 3, 5-TRIMETHYLBENZENE

VINYL CHLORIDE

M/P-XYLENE

O-XYLENE

ND

1

1

1

1

1

1

1

1

2

1

			Enviro-Ch	em, Inc.					
1214 E. Lexington Ave	enue, Pom	ona, CA 9 ⁻	1766	Те	el (909)590-	5905	Fax (909)	590-5907	
			8260B Q/	A/QC Rep	ort				
Date Analyzed: Machine:	6/8/2017 1						Matrix: Unit	Water/Liqu yg/L (PPB	uid 1
Matrix Spike (MS)/Matr	ix Spike Du	uplicate (M	SD) MS/MSD						
Analyte	S.R	spk conc	MS	%RC	MSD	%RC	RPD	ACP %RC	ACP RP
Benzene	0	25.0	28.5	114%	24.6	98%	6%	75-125	0-20
Chlorobenzene	0	25.0	26.8	107%	23.9	96%	11%	75-125	0-20
1 1-Dichloroethene	0	25.0	19.0	76%	23.1	92%	16%	75-125	0-20
Toluene	0	25.0	23.7	95%	24.2	97%	2%	75-125	0-20
	0	25.0	26.9	108%	30.6	122%	15%	75-125	0-20
							· · · · · ·		
Lab Control Spike (LC	S):		_		<u>k</u>				
Analyte	spk conc	LCS	%RC	ACP %RC					
Benzene	25.0	29.4	118%	75-125	6				
Chlorobenzene	25.0	27.0	108%	75-125					
Chloroform	25.0	29.4	118%	75-125					
1,1-Dichloroethene	25.0	27.2	109%	75-125					
Ethylbenzene	25.0	29.4	118%	75-125	8				
o-Xylene	25.0	29.3	117%	75-125					
m,p-Xylene	50.0	60.5	121%	75-125					
Toluene	25.0	28.3	113%	75-125	1				
1.1.1-Trichloroethane	25.0	30.0	120%	75-125	1				
Trichloroethene (TCE)	25.0	27.4	110%	75-125					
							0/00		0/DO
Surrogate Recover	apk conc.	ACP NRC	MB %RC	C NHC	TUNG	%RC	%RC	%RC	%RU
Sample I.D.	-		M-BLK	170606-46	170606-4	120630-00		170008-50	0.4.0/
Dibromofluoromethane	2 0	70-130	99% \	107%	101%	96%	106%	91%	91%
Toluene-d8	2 0	70-130	99%	101%	101%	97%	101%	96%	98%
4-Bromofluorobenzene	2 0	70-130	84%	85%	83%	88%	85%	88%	90%
O			0/ PC	%PC	WRC	%RC	WRC	MRC	SRC
Surrogate Recovery	spк сопс	ACF %RC	470607.1	170607.2	170607-3	170607-4	170608-17	170608-3	and the second
Sample I.D.	0.0	70.400	0.40/	170007-2	170007-5	110001 4	1110000 11	10000	
Dibromotluoromethane	210	70-130	94%	00%	1000/	1020/	1000/	78%	
Toluene-d8	2 0	70-130	99%	99%	100%	040/	100%	10.00/	-
4-Bromofluorobenzene	2 0	/0-130	88%	88%	98%	04%	1 101%	100%	-
Surrogate Recovery	Lanix cone	IACP SRC	MRC	MRG	NRC.	%RC	%RC	1680	%RC
Sampla LD	Press and the	Proof All Vice			and the second second			1	
	2-1	70 130	-	*					-
Dipromotiuorometnane	2	10-100	-			_			
7.1	2	70 400							
Toluene-d8	2	70-130	-				-		

* = Surrogate fail due to matrix interference; LCS, MS, MSD are in control therefore the analysis is in control.

S.R. = Sample Results

spk conc = Spike Concentration

MS = Matrix Spike

Final Reviewer:

Analyzed/Reviewed By:

%RC = Percent Recovery ACP %RC = Accepted Percent Recovery MSD = Matrix Spike Duplicate



Laboratory Data & Chain of Custody Third Quarter 2017 Groundwater Sampling (MW-1 to MW-8) September 2017 Date: September 15, 2017

Mr. Francois Bush Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 Tel: (707)975-5791 Email: Francoisbush@gmail.com

Project: Corona Road Station LAB I.D.: 170908-7 through -13

Dear Mr. Bush:

The **analytical results** for the water samples, received by our laboratory on September 8, 2017, (via Ontrac), are attached. The samples were received chilled, intact and accompanying chain of custody record.

Enviro-Chem appreciates the opportunity to provide you and your company this and other services. Please do not hesitate to call us if you have any questions.

Sincerely,

Cirtin Desilets Vice President/Program Manager

Andy Wang Laboratory Manager

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER:	Pinnacle Environmental, P.O. Box 904 Clayton, CA 94517	Inc	
PROJECT:	Tel: (707) 975-5791 Email: Corona Road Station	Francoi	sbush@gmail.com
110000011	Colona Road Blation	DATE	RECEIVED: 09/08/17
MATRIX: WAT	ER	DATE	EXTRACTED:09/08/1
DATE SAMPL	ED: <u>09/06/17</u>	DATE	ANALYZED: 09/11/17
REPORT TON	UD FDANCOTS BUSU	DADE	DEDODEED. 00 /15 /17

		* HD: 00/ VV
DATE SAMPLED: 09/06/17	DATE ANALYZ	ED:09/11/
REPORT TO: MR. FRANCOIS BUSH	DATE REPORT	ED: 09/15/
	the second se	

TOTAL PETROLEUM HYDROCARBONS (TPH) - CARBON CHAIN ANALYSIS METHOD: EPA 8015B

UNIT: uG/L = MICROGRAM PER LITER = PPB

SAMPLE I.D.	LAB I.D.	C4-C10	C11-C22	C23-C35	DF
DW-1	170908-7	ND	ND	ND	1
<u>MW-7</u>	<u>170908-8</u>	ND	ND	ND	1
<u>MW-6</u>	<u>170908-9</u>	ND	ND	ND	1
MW-4	<u>170908-10</u>	ND	ND	ND	1
<u>MW-9</u>	<u>170908-11</u>	ND	ND	ND	1
<u>MW-8</u>	<u>170908-12</u>	ND	ND	ND	1
<u>MW-5</u>	<u>170908-13</u>	ND	ND	ND	1
METHOD BLANK		NQ.	ND	. NO	_1
	POL	500	500	3000	

#### COMMENTS

C4-C10 = GASOLINE RANGE C11-C22 = DIESEL RANGE C23-C35 = MOTOR OIL RANGE DF = DILUTION FACTOR PQL = PRACTICAL QUANTITATION LIMIT ACTUAL DETECTION LIMIT = DF X PQL ND = NON-DETECTED OR BELOW THE ACTUAL DETECTION LIMIT Data Reviewed and Approved by: CAL-DHS ELAP CERTIFICATE No.: 1555

1214 E. Lexington Avenue, Pomona, CA 91766       Tel (909)590-5905       Fax (909)590-5907         A015B QA/QC Report         Units: ug/L (PPB)         Oate Analyzed: 9/11-12/2017         Units: ug/L (PPB)         Matrix: Water/Liquid         Matrix Spike MS)/Matrix Spike Duplicate (MSD)         Spiked Sample Lab I.D.: 170908-183 MS/MSD         Vmalyte         0         11000         11000         Spiked Sample Lab I.D.: 170908-183 MS/MSD         Vmalyte         0         1000         Spiked Sample Lab I.D.: 17000         VMS ACP RPD				E	nviro Cher	n, Inc			_	
Butsb QA/QC Report         Date Analyzet       Pith 22017         Watrix       Pither/Liquid         Matrix       Water/Liquid         Matrix Spike (MS)/Matrix Spike Duplicate (MSD)         Spiked Sample Lab I.D.:       10908-183 MS/MSD         Matrix Spike (MS)/Matrix Spike Duplicate (MSD)         Spiked Sample Lab I.D.:       10908-183 MS/MSD         Matrix Spike (MS)/Matrix Spike Duplicate (MSD)         Spiked Sample Lab I.D.:       10908 13100         Matrix Spike (MS)/Matrix Spike Duplicate (MSD)         Spiked Sample Lab I.D.:       10908 13100         Matrix Spike (MS)/Matrix Spike Duplicate (MSD)         Spiked Sample Lab I.D.:       10908 13100         Matrix Spike (MS)/Matrix Spike Duplicate (MSD)         Spike Sonc       11000         11-022 RANGE       0         12000       11900         11-022 RANGE       12000         11-022       106	1214 E. L	exington	Avenue,	Pomona,	CA 91766	Tel (	909)590-5	905 Fax	x (909)590	-5907
Date Analyzed:         9/11-12/2017         Units:         ug/L (PPB)           Matrix:         Water/Liquid         Matrix Spike (MS)/Matrix Spike Duplicate (MSD)           Spiked Sample Lab I.D.:         170908-183 MS/MSD         % MS         % PD         ACP % MS ACP % MS ACP RPD           Matrix:         SR         spk conc         MS         % MS         MSD         % MPD         ACP % MS ACP RPD           Malyte         SR         spk conc         MS         % MS         MSD         % MPD         ACP % MS ACP RPD           CS STD RECOVERY:			8	8015B	QA/Q	C Rep	ort			
Matrix:         Water/Liquid           Matrix Spike (MS)/Matrix Spike Duplicate (MSD)           Spiked Sample Lab I.D.:         ITO908-183 MS/MSD           Malyte         SR         spk conc           0         12000         11900         99%           CS STD RECOVERY:         Imalyte         Spk conc         KREC           Malyte         Spk conc         KREC         ACP           11-C22 RANGE         12000         12700         106%         75-125	Date Analyzed	23	9/11-12/20	017				Units:	ug/L (PPI	<u>3)</u>
Matrix Spike (MS)/Matrix Spike Duplicate (MSD)         Spiked Sample Lab I.D.:       170908-183 MS/MSD         Malyte       SR       spk conc       MS         0       12000       11900       99%       13100       109%       0%       75-125       0-20%         CS STD RECOVERY:         Malyte       spk conc       LCS       % REC       ACP         211-C22 RANGE       12000       12700       106%       75-125         Analyte         spk conc       LCS       % REC       ACP         211-C22 RANGE       12000       12700       106%       75-125	Matrix:	Wate	r/Liqu	id						
Spiked Sample Lab I.D.:         170908-183 MS/MSD           Malyte         SR         spk conc         MS         %MS         MSD         %MSD         %CP PD         ACP %MS ACP RPD           211-C22 RANGE         0         12000         11900         99%         13100         109%         10%         75-125         0-20%           -CS STD RECOVERY:	Matrix Spike (MS)	/Matrix Spil	ke Duplicate	e (MSD)						
Analyte         SR         spk conc         MS         %MS         MSD         %MSD         %RPD         ACP %MS         ACP RPD           211-C22 RANGE         0         12000         11900         99%         13100         109%         10%         75-125         0-20%           LCS STD RECOVERY:	Spiked Sample	a Lab I.D.:		170908	<u>-183 MS</u>	MSD				
C11-C22 RANGE       0       12000       11900       99%       13100       10%       75-125       0-20%         LCS STD RECOVERY:       Analyte       spk conc       LCS       % REC       ACP         C11-C22 RANGE       12000       12700       106%       75-125         Analyte       spk conc       LCS       % REC       ACP         C11-C22 RANGE       12000       12700       106%       75-125	Analvte	SR	spk conc	MS	%MS	MSD	%MSD	%RPD	ACP %MS	ACP RPD
-CS STD RECOVERY:         Analyte       spk conc       LCS       % REC       ACP         >11-C22 RANGE       12000       12700       106%       75-125	C11-C22 RANGE		12000	11900	99%	13100	109%	10%	75-125	0-20%
Analyzed and Reviewed by:	LCS STD REC	OVERY:	LCS	% REC	ACP					
Analyzed and Reviewed by:	C11-C22 RANGE	12000	12700	106%	75-125					
	Analyzed and Final Reviewe	Reviewed	l by:	2	9					

# 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

	LABC	RATORY REPORT	
CUSTOMER:	Pinnacle Environmen P.O. Box 904 Clayton, CA 94517 Tel: (707) 975-5791 E	mail: Francoisbush@gm	nail.com
PROJECT :	Corona Road Station		
MATRIX: <u>WAT</u> DATE SAMPI REPORT TO:	<u>TER</u> LED: <u>09/06/17</u> MR. FRANCOIS BUSH	DATE RECEIVE DATE ANALYZE DATE REPORTE	D: <u>09/08/17</u> D: <u>09/13/17</u> D: <u>09/15/17</u>
SAMPLE I.D	).: <b>DW-1</b>	LAB I.D.: 17	0908-7
ANALYS	IS: VOLATILE ORGANIC UNIT: ug/L = 1	S, EPA METHOD 5030B/8 MICROGRAM PER LITER =	260B, PAGE 1 OF 2 PPB
ACETONE		ND	10
LIVE STILL			1

UNIT: $ug/L = M$	IICROGRAM PER LITER =	= PPB
PARAMETER	SAMPLE RESULT	
ACETONE	<u>ND</u>	10
BENZENE	ND	<u>_</u>
BROMOBENZENE	ND	<u>+</u>
BROMOCHLOROMETHANE	N <u>D</u>	<u> </u>
BROMODICHLOROMETHANE	ND	1
BROMOFORM	ND	
BROMOMETHANE	ND	<u> </u>
2-BUTANONE (MEK	<u>ND</u>	10
N-BUTYLBENZENE	ND	1
SEC-BUTYLBENZENE	ND	<u>_</u>
TERT-BUTYLBENZENE	ND	<u> </u>
CARBON DISULFIDE	ND	5
CARBON TETRACHLORIDE	ND	1
CHLOROBENZENE	ND	1
CHLOROETHANE	ND	1
CHLOROFORM	ND	1
CHLOROMETHANE	ND	<u> </u>
2-CHLOROTOLUENE	ND	<u> </u>
4-CHLOROTOLUENE	ND	1
DIBROMOCHLOROMETHANE	<u>ND</u>	1
1,2-DIBROMO-3-CHLOROPROPANE	ND	1
1,2-DIBROMOETHANE	ND	1
DIBROMOMETHANE	ND	1
1,2-DICHLOROBENZENE	ND	1
1,3-DICHLOROBENZENE	ND	1
1,4-DICHLOROBENZENE	<u>ND</u>	1
DICHLORODIFLUOROMETHANE	ND	1
1,1-DICHLOROETHANE	ND	1
1,2-DICHLOROETHANE	ND	1
1,1-DICHLOROETHENĖ	ND	1
CIS-1, 2-DICHLOROSTHENS	ND	1
TRANS-1, 2-DICHLOROETHENE	ND	1
1,2-DICHLOROPROPANE	ND	1
1,3-DICHLOROPROPANE	ND	1

TO BE CONTINUED ON PAGE

DATA REVIEWED AND APPROVED BY

Enviro – Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

	LABORA	TORY REPORT	
CUSTOMER: 1	Pinnacle Environmental P.O. Box 904	l, Inc	
	LIAYLON, CA 94517		
DRO TECT.	Tel:(/U/)9/5-5/91 Emaj	1: Francoisbush@g	mail.com
PRODECT: (	Corona Road Station		
MATRIX: <u>WATE</u>	R	DATE RECEIVE	ED: <u>09/08/17</u>
DATE SAMPLEI	D: <u>09/06/17</u>	DATE ANALYZE	ED: <u>09/13/17</u>
REPORT TO:M	R. FRANCOIS BUSH	DATE REPORTE	ED: <u>09/15/17</u>
SAMPLE I.D.:	: DW-1	LAB I.D.: 17	70908-7
ANALYSIS	: VOLATILE ORGANICS, 1 UNIT: ug/L = MIC	EPA METHOD 50308/ Rogram Per Liter :	8260B, PAGE 2 OF 2 = PPB
2 2. DICHIOR	SA	MPLE RESULT	PQL X1
1.1-DICHLORU	DENDENE	ND	
CIS-1.3-DICE			<u>↓</u>
TRANS-1 3-DICE			1
ETHYLBENZENE	R R R R R R R R R R R R R R R R R R R		
2-HEXANONE		ND ND	10
HEXACHLOROBI	TADTENE	ND	<u>1</u>
ISOPROPYLER	JZENE		
4-ISOPROPYLT	OLUENE	ND	1
4 - METHYL - 2 - F	ENTANONE (MTRK)	ND	10
METHYL tert-	BUTYL ETHER (MTRE	ND	<u>70</u>
METHYLENE CF	ILORIDE	ND	
APHTHALENE		ND	1
-PROPYLBENZ	ZENE	ND	
STYRENE		ND	1
1, 1, 1, 2-TETF	ACHLOROETHANE	ND	1
1 1 2 2-7575	ACHLOROETHANE	ND	1
TITUTUTUTUTU		ND	
TETRACHLOROF	THENE (PCE)	ND	
TETRACHLOROE TOLUENE	THENE (PCE	ND	1
TETRACHLOROE TOLUENE 1,2,3-TRICHI	OROBENZENE	ND ND	<u> </u>
TETRACHLOROF TOLUENE 1,2,3-TRICHI 1,2,4-TRICHI	ITHENE (PCE) IOROBENZENE IOROBENZENE	ND ND ND ND	1
TETRACHLOROE TOLUENE 1,2,3-TRICHI 1,2,4-TRICHI 1,1,1-TRICHI	OROBENZENE JOROBENZENE JOROBENZENE JOROETHANE	ND ND ND ND ND	
TETRACHLOROF TOLUENE 1,2,3-TRICHI 1,2,4-TRICHI 1,1,1-TRICHI 1,1,2-TRICHI	UROBENZENE JOROBENZENE JOROETHANE JOROETHANE	ND ND ND ND ND ND	
TETRACHLOROF TOLUENE 1,2,3-TRICHI 1,2,4-TRICHI 1,1,1-TRICHI 1,1,2-TRICHI TRICHLOROETH	THENE (PCE LOROBENZENE LOROBENZENE LOROETHANE LOROETHANE LENE (TCE)	ND ND ND ND ND ND ND	
TETRACHLOROF TOLUENE L, 2, 3-TRICHI L, 2, 4-TRICHI L, 1, 1-TRICHI L, 1, 2-TRICHI TRICHLOROFLU	INTHENE       (PCE         JOROBENZENE       JOROBENZENE         JOROETHANE       JOROETHANE         IENE       (TCE         JOROMETHANE       JOROMETHANE	ND ND ND ND ND ND ND	
TETRACHLOROF TOLUENE L, 2, 3-TRICHI L, 2, 4-TRICHI L, 1, 1-TRICHI L, 1, 2-TRICHI TRICHLOROFTU TRICHLOROFLU L, 2, 3-TRICHL	UNCOBENZENE         JOROBENZENE         JOROBENZENE         JOROETHANE         JOROETHANE         JOROETHANE         JOROMETHANE         JOROMETHANE         JOROMETHANE         JOROMETHANE         JOROMETHANE         JOROMETHANE         JOROMETHANE	ND ND ND ND ND ND ND ND ND ND	
TETRACHLOROF TOLUENE 1,2,3-TRICHI 1,2,4-TRICHI 1,1,1-TRICHI 1,1,2-TRICHI TRICHLOROFLU TRICHLOROFLU 1,2,3-TRICHL 1,2,4-TRIMET	THENE (PCE OROBENZENE OROBENZENE OROETHANE OROETHANE IENE (TCE) OROMETHANE OROPROPANE CHYLBENZENE	ND ND ND ND ND ND ND ND ND ND	
TETRACHLOROF TOLUENE 1,2,3-TRICHI 1,2,4-TRICHI 1,1,1-TRICHI 1,2-TRICHI TRICHLOROFTHU RICHLOROFTU 1,2,3-TRICHL 1,2,4-TRIMET 1,3,5-TRIMET	UNCOBENZENE         UOROBENZENE         UOROETHANE         UOROETHANE         UOROMETHANE         UOROMETHANE         UOROMETHANE         UOROPROPANE         CHYLBENZENE	ND ND ND ND ND ND ND ND ND ND ND ND	
TETRACHLOROF TOLUENE 1,2,3-TRICHI 1,2,4-TRICHI 1,1,1-TRICHI 1,1,2-TRICHI CRICHLOROFTU CRICHLOROFTU 1,2,4-TRIMET 1,3,5-TRIMET /INYL CHLORI	UTHENE       (PCE         JOROBENZENE       JOROBENZENE         JOROETHANE       JOROETHANE         JOROMETHANE       JOROMETHANE         JOROPROPANE       HYLBENZENE         HYLBENZENE       JORO         JOE       JORO	ND ND ND ND ND ND ND ND ND ND ND ND ND N	
TETRACHLOROF TOLUENE 1,2,3-TRICHI 1,2,4-TRICHI 1,1,1-TRICHI 1,1,2-TRICHI TRICHLOROETH TRICHLOROFLU 1,2,3-TRICHL 1,2,4-TRIMET 1,3,5-TRIMET 7INYL CHLORI 4/P-XYLENE	STHENE (PCE)         SOROBENZENE         SOROETHANE         SOROPROPANE         CHYLBENZENE         SDE	ND ND ND ND ND ND ND ND ND ND ND ND ND N	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$

CUSTOMER:	Pinnacle Environme	The stal Inc	
CODI CLIDIC.	P.O. Box 904	arcar, inc	
	Clayton CA 94517		
	Tel: (707) 975-5791	Empil: Emproprishush0-	
PROJECT:	Corona Road Statio	n	all.com
MATRIX.WAT	ER		. 00/09/117
DATE SAMPL	ED: 09/06/17	DATE ANALVARI	$\frac{09700717}{12717}$
REPORT TO:	MR. FRANCOIS BUSH	DATE REPORTEI	0:09/15/17
SAMPLE I.D	.: MW-7	LAB I.D.: 17(	0908-8
ANALYS	S: VOLATILE ORGANIC	S. EPA METHOD 5030B/8	
	UNIT: ug/L =	MICROGRAM PER LITER =	PPB
PARAMETER		SAMPLE RESULT	IQL X1
ACETONE		ND	10
BENZENE		ND	1
BROMOBENZE	NE	ND	1
BROMOCHLOR	OMETHANE	ND	1
BROMODICHL	OROMETHANE	ND	1
BROMOFORM		ND	1
BROMOMETHA	NE	ND	1
Z-BUTANONE	(MEK)	ND	<u> </u>
CEC DUGYID	<u>ZENE</u>	ND	1
DEC-BUIILE	<u>ENGENE</u>	ND	1
CARRON DIG	BENZENE	<u>ND</u>	
CARBON UTS	DACHLORIDE	ND	
CHLOPOBENZ	FNF	ND	
CHLOROETHA	NE	ND	
CHLOROFORM			
CHLOROMETH.	ANE	ND	1
2-CHLOROTO	LUENE	ND	1
4 - CHLOROTO	LUENE	ND	
DIBROMOCHL	OROMETHANE	ND	1
1.2-DIBROM	0-3-CHLOROPROPANE	ND	
1,2-DIBROM	OETHANE	ND	1
DIBROMOMET	HANE	ND	
1,2-DICHLO	ROBENZENE	ND	1
1,3-DICHLO	ROBENZENE	ND	
1,4-DICHLO	ROBENZENE	ND	1
DICHLORODI	FLUOROMETHANE	ND	1
L, 1-DICHLO	ROETHANE	ND	1
L, 2-DICHLO	ROETHANE	ND	1
L, 1-DICHLO	ROETHENE	ND	1
CIS-1,2-DIC	CHLOROETHENE	ND	1
TRANS-1,2-1	DICHLOROETHENE	ND	1
.2-DICHLO	ROPROPANE	ND	1
., 3-DICHLO	ROPROPANE	ND	1
	TO BE C	ONTINUE ON PAGE	S.4.

Enviro – Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

DATE RECEIVED: <u>09/08/17</u> DATE RECEIVED: <u>09/13/17</u> DATE ANALYZED: <u>09/13/17</u> DATE REPORTED: <u>09/15/17</u> LAB I.D.: 170908-8
Cancoisbush@gmail.com DATE RECEIVED: <u>09/08/17</u> DATE ANALYZED: <u>09/13/17</u> DATE REPORTED: <u>09/15/17</u> LAB I.D.: 170908-8
Cancoisbush@gmail.com DATE RECEIVED: <u>09/08/17</u> DATE ANALYZED: <u>09/13/17</u> DATE REPORTED: <u>09/15/17</u> LAB I.D.: 170908-8
DATE RECEIVED: <u>09/08/17</u> DATE RECEIVED: <u>09/08/17</u> DATE ANALYZED: <u>09/13/17</u> DATE REPORTED: <u>09/15/17</u> LAB I.D.: 170908-8
DATE RECEIVED: <u>09/08/17</u> DATE ANALYZED: <u>09/13/17</u> DATE REPORTED: <u>09/15/17</u> LAB I.D.: 170908-8
DATE RECEIVED: <u>09/08/17</u> DATE ANALYZED: <u>09/13/17</u> DATE REPORTED: <u>09/15/17</u> LAB I.D.: 170908-8
DATE RECEIVED: <u>09/08/17</u> DATE ANALYZED: <u>09/13/17</u> DATE REPORTED: <u>09/15/17</u> LAB I.D.: 170908-8
DATE ANALYZED: <u>09/13/17</u> DATE REPORTED: <u>09/15/17</u> LAB I.D.: 170908-8
DATE REPORTED: 09/15/17 LAB I.D.: 170908-8
LAB I.D.: 170908-8
FTUOD 5030B/9260B BACK 3 OF 5
M PER LITER = PPB
RESULT FOL X1
1
) 1
) 1
)1
)1
<u>10</u>
)1
)1
<u> </u>
<u>10</u>
<u>3</u>
)5
21
<u> </u>
<u>, 1</u> ,
)1
1
1
1
<u> </u>
1
<u> </u>
<u>_</u>

CAL-DHS CERTIFICATE # 1555
1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORA	TORY REPORT
CUSTOMER: Pinnacle Environmental P.O. Box 904 Clayton, CA 94517 Tel: (707) 975-5791 Emai	l, Inc il: Francoisbush@gmail.com
PROJECT: Corona Road Station	
MATRIX: <u>WATER</u> DATE SAMPLED: <u>09/06/17</u> REPORT TO: <u>MR. FRANCOIS BUSH</u>	DATE RECEIVED: <u>09/08/17</u> DATE ANALYZED: <u>09/13/17</u> DATE REPORTED: <u>09/15/17</u>
SAMPLE I.D.: MW-6	LAB I.D.: 170908-8
ANALYSIS: VOLATILE ORGANICS, UNIT: ug/L = MIC	EPA METHOD 5030B/8260B, PAGE 2 OF 2 CROGRAM PER LITER = PPB
PARAMETER S	AMPLE RESULT POL MI
2,2-DICHLOROPROPANE	<u>ND</u> 1
1.1-DICHLOBODBOPENE	<u>ND</u> <u>1</u>
CIS-1, 3-DICHLONOPSOPENE	<u>ND</u>
TRANS-1, 3-DICHLOROPHOPENE	<u>ND</u> <u>1</u>
ETHYLBENZENE	<u>ND</u> <u>1</u>
2-HEXANONE	<u>ND</u> <u>0</u>
HEXACHLOROBUTADIERE	<u>ND</u> <u>1</u>

PARAMETER	SAMPLE RESULT	PQL X1
2.2-DICHLOROPROPANE	ND	<u> </u>
1.1-DICHLOBODECPENE	ND	1
CIS-1, 3-DICHLONOPROPENE	ND	1
TRANS-1, I-DICHLOROPHOPENE	ND	1
ETHYLBENZENE	ND	1
2-HEXANONE	ND	0
HXXACHLOBOBUTAD1E80	ND	1
I SOPROPYLBENZENE	ND	1
4-ISOPROPYLTOLUENE	<u>ND</u>	1
4-METHYL-2-PENTANONE (MIBK)	ND	0
METHYL text-BUTYL ETHER (MTRE)	ND	3
METHYLERE CHICKIDE	ND	<u> </u>
NAPHTHALENE	ND	<u> </u>
N-PROPYLBENZENE	ND	<u> </u>
STYRENE	ND	1
1, 1, 1, 2-TETRACHLOROSTHANS	ND	<u> </u>
1,1,2,2-TETRACHLORDETHANE	ND	<u> </u>
TETRACHLOROETHENE (PCE	<u>ND</u>	1
TOLUENE	ND	1
1.2.3-TRICHLOROBUNZENE	ND	1
1,2,4-TRICHLOROBENZENE	ND	1
1.1.1-TRICHLOBOKTHASE	ND	1
1,1,2-TRICHLOROETHANE	ND	1
TRICHLOROETHENE (TCE)	ND	1
TRICHLOROFLUOROMETHANE	<u>ND</u>	1
1.2.3-TRICHLODOFROPANE	<u>ND</u>	1
1,2,4-TRIMETHYLBENZENE	ND	
1, 3, 5-TRIMETHYLEENZERE	ND	1
VINYL CHLORIDE	ND	1
M/P-XYLENE	ND	2
O-XYLENE	ND	1

28

ND = NON-DETECTED OR BELOW THE POL

DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 Tel: (707) 975-5791 Email: Francoisbush@gmail.com Corona Road Station PROJECT:

MATRIX: WATER	DATE RECEIVED: 09/08/17
DATE SAMPLED:09/06/17	DATE ANALYZED: 09/13/17
REPORT TO:MR. FRANCOIS BUSH	DATE REPORTED: 09/15/17

SAMPLE I.D.: MW-6 

LAB I.D.: 170908-9

and the set of the divert

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2

UNIT: $ug/L = MI$	CROGRAM PER LITER = PPB	30
PARAMETER	SAMPLE RESULT	QL XI
ACETONE	<u>ND</u>	10
BENZENE	ND	1
BROMOBENZENE	ND	1
BROMOCHLOROMETHANE	ND	1
BROMODICHLOROMETHANE	ND	1
BROMOFORM	ND	_1
BROMOMETHANE	ND	1
2-BUTANONE (MEK)	ND	1.0
N-BUTYLBENZENE	ND	<u>    1                                </u>
SEC-BUTYLBENZENE	ND	1
TERT-BUTYLBENZENE	ND	1
CARBON DISULFIDE	ND	5
TARBON TETRACHLORIDE	ND	
CHLOROBENZENE	ND	1
CHLOROETHANE	ND	
CHLOROFORM	ND	1
CHLOROMETHANE	ND	
2-CHLOROTULUENE	ND	
4-CHLOROTOLUENE	<u>ND</u>	
DISRONOCHLUROMETHANE	ND	1
1,2-DIBROND-3-CHLOROPROPANE	ND	1
1,2-DIBROMOETHANE	<u>ND</u>	1
DIBROMOMETHANE	<u>ND</u>	1
1,2-DICHLOROBENZENE	ND	1
1,3-DICHLOROBENZENE	ND	
1,4-DICHLOROBENZENE	<u>ND</u>	
DICHLORODIFLUOROMETHANE	ND	1
1,1-DICHLOROETHANE	ND	1
1.2-DICHLOROETHABE	ND	
1.T-DICHLOROETHENE	ND	_1
CIT-1, 2-DICHLOROSTHENE	ND	_1
TRANS-1, 2-DICHLOROETHENE	ND	
1,2-DICHLOROPROPANE	ND	1
1.3-DICHLOBOPBOPANE	ND	

- CONTINIO N PAGE

all

DATA REVIEWED AND APPROVED NY:_

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

	LABOR	ATORY REPORT		
CURTOMED.	Pippacle Environments	l. Inc		
COSTOMER.	P O Boy 904			
	Clawton Ch 94517			
	mol · (707) 975-5791 Ems	il: Francoisbush@c	mail.com	
DBO TROW .	Corona Road Station			
PRODECT:	COTONA ROAD DEALTON			
MATRIX:WAT	TER	DATE RECEIV	ED: <u>09/08/17</u>	
DATE SAMPI	LED:09/06/17	DATE ANALYZ	ED: <u>09/13/17</u>	
REPORT TO	MR. FRANCOIS BUSH	DATE REPORT	DATE REPORTED: 09/15/17	
SAMPLE I.	D.: MW-6	LAB I.D.: 1	70908-9	
ANALYS	SIS: VOLATILE ORGANICS,	EPA METHOD 5030B/	8260B, PAGE 2 OF 2	
DADAMETER	ONIT: UG/L = MI	SAMPLE RESULT	PQL X1	
2.2-DICHLO	OROPROPANE	ND		
1,1-DICHLO	OROPROPENE	ND	1	
CIS-1.3-D	ICHLOROPROPENE	ND	1	
TRANS-1, 3-BICHLOROPROPERE		ND	1	
ETHYLBENZ	ENE	ND	1	
2-HEXANON	E	ND	0	
HEXACHLOR	OBUTADIENE	<u>ND</u>	1	
ISOPROPYL	BENZENE	ND	1	
4-ISOPROP	YLTOLUENE	ND	<u>1</u>	
4-RETHYL-	2-PERTANONE (MIHE)	ND	<u> </u>	
MATHYL te.	rt-BUTYL BTHER (MTSE)	ND	3	
METHYLENE	CHLORIDE	ND	5	
NAPHTHALE	NE	ND	1	
N-PROPYLB	ENZENE	<u>ND</u>	<u> </u>	
STYRENE		ND	1	
Leleles I	ET BACHLOROETHANE	ND	- <u>+</u> -	
Trisser.	ETRACHLOROF THANK	ND	<u>+</u>	
TETRACHLO	ROETHENE CPCKI	ND ND		
TOLUENE	and the second second			
1.Z. 7-TR1	CHUIRSBENZEME		<u> </u>	
<u>1,2,4-TRI</u>	CHLOROBENZENE			
1.1.1-TBI	CHLOBOLTHARE	ND ND		
Lal, 2-TRI	CHLOBORTHANK	ND ND	1	
TRICHLORO	DETHENE (TCE		<u>+</u> 1	
TRICHLORO	FLUOROMETHANE	ND		

ND

ND

ND

ND

ND

ND

1

1

1

1

2

1

ND = NON-DETECTED OR BELOW THE FOL DATA REVIEWED AND APPROVED BY: de

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

CAL-DHS CERTIFICATE # 1555

1, 2, 3-TRICHLOHDPROPANE

1.2.4-TRIMETHYLBENGENE

1, 3, 5-TRINETHYLBERSERE

VINYL CHLORIDE

M/P-XYLENE

O-XYLENE

# 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

	LABO	RATORY REPORT	
CUSTOMER:	Pinnacle Environmen	tal, Inc	
	P.O. Box 904		
	Clayton, CA 94517		
	Tel: (707) 975-5791 E	mail: Francoisbush@	gmail.com
PROJECT:	Corona Road Station		
		1000	
MATRIX: WAT	TER	DATE RECEIV	/ED: <u>09/08/1/</u>
DATE SAMPI	ED: <u>09/06/17</u>	DATE ANALYZ	ED: 09/13/17
REPORT TO:	MR. FRANCOIS BUSH	DATE REPORT	ED: <u>09/15/17</u>
SAMPLE I.I	).: MW-4	LAB I.D.: 1	170908-10
ANALYS	IS: VOLATILE ORGANIC	S, EPA METHOD 5030B	/8260B, PAGE 1 OF 2
PARAMETER	UNIT: ug/L =	SAMPLE RESULT	TQL XL
ACETONE		ND	10
BENZENE		ND	1
BROMOBENZI	ENE	ND	1
BROMOCHLOI	ROMETHANE	ND	1
BROMODICHI	LOROMETHANE	ND	<u>1</u>
BROMOFORM		ND	1
BROMOMETH	ANE	ND	1
2-BUTANONI	E (MEK	ND	10
N-BUTYLBEI	NZENE	ND	<u></u>
SEC-BUTYL	BENZENE	ND	1
TERT-BUTY	LBENZENE	ND	1
CARBON DI	SULFIDE	ND	5
CARBON TE	TRACHLORIDE	ND	1
CHLOROBEN	ZENE	ND	1
CHLOROETH	ANE	ND	1
CHLOROFOR	М	ND	1
CHLOROMET'	HANE	ND	1
2-CHLOROT	OLUENE	ND	<u>1</u>
4-CHLOROT	OLUENE	ND	1
DIRROMOCH	LOROBETHANS	ND	1
1,2-DIBRO	MO-3-CHLOROPROPANE	<u>ND</u>	1
1,2-DIBRO	MOETHANE	ND	1
DIBROMOME	THANE	ND	1
1.2-DICHL	OROBERZENE	ND	1
1.3-DICHL	OROBENSEN	ND	1
1.4-DICHL	OROBENZENE	ND	
DICHLOROD	1PLOOROBETHARE	ND	
1,1-DICHL	OROETHANE	ND	
1.2-DICHL	OFCETHANE	2,17	
1,1-DICHL	OROETHENE	<u>ND</u>	
CIS-1,2-D	ICHLOROETHENE	ND	
IN588-1/2	-DICHLORGETHEM	<u>ND</u>	1
1.2-DICHL	OROPROPANE	ND	
1.3-DICHL	OROPROPANE	ND	1

----- TO ME CONTINUED ON PAGE #2

N

DATA REVIEWED AND APPROVED BY:

# 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER:	Pinnacle Environmental, Inc
	P.O. Box 904
	Clayton, CA 94517
	Tel: (707) 975-5791 Email: Francoisbush@gmail.com
PROJECT:	Corona Road Station

MATRIX: WATER

DATE	SAMPLED	: <u>09/06/17</u>		
REPOR	T TO:MR	. FRANCOIS	BUSH	

_____

DATE RECEIVED: <u>09/08/17</u> DATE ANALYZED: <u>09/13/17</u> DATE REPORTED: <u>09/15/17</u>

SAMPLE I.D.: MW-4

LAB I.D.: 170908-10

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2 UNIT: ug/L = MICROGRAM PER LITER = PPB

PARAMETER	SAMPLE RESULT	POL X1
2, 2-DICHLOROPROPANE	ND	<u> </u>
1.1-DICHLOROPROPENE	ND	<u>1</u>
CIS-1.3-DICHLOROPENE	ND	1
TRANS-1, 1-DICHLOROPSOPENE	ND	1
ETHYLBENZENE	ND	<u> </u>
2-HEXANONE	ND	0
HEXACHLOROBUTADIENE	ND	1
ISOPROPYLBENZENE	ND	<u> </u>
4-ISOPROPYLTOLUENE	ND	<u> </u>
4-METHYL-2-PENTASONE (MINE)	ND	1 <u>0</u>
METRYL LOCT-BUTYL BITHER INTIK!	ND	3
METHYLENE CHLORIDE	ND	5
NAPHTHALENE	ND	1
N-PROPYLBENZENE	ND	1
STYRENE	ND	1
1,1,1,2-TETRACHLOBOETHANE	ND	1
1,1,2,2-TETRACHLOROGINANE	ND	1
TETRACHLOROETHENE (PCE	<u>ND</u>	1
TOLUENE	ND	1
1.2.3-THICHLORGBENZENE	ND	1
1,2,4-TRICHLOROBENZENE	ND	
1.1.1.THICHLORGETHANE	ND	1
1.1.2-TRICHLOROSTHAME	ND	1
TRICHLOROETHENE (TCE)	ND	1
TRICHLOROFLUOROHETHAME	ND	1
1,2,3-TRICHLOROPROPANE	ND	1
1,2,4-TRIMETHYLBENZENE	ND	1
1,3,5-TRIMETHYLBENZENE	ND	1
VINYL CHLORIDE	ND	1
M/P-XYLENE	ND	2
<u>O-XYLENE</u>	ND	1

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED ON BELOW THE POL DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

N

# Enviro – Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tei (909) 590-5905 Fax (909) 590-5907

	- LABO	RATORY REPORT	
CUSTOMER	Pinnacle Environmer	ntal, Inc	
CODIONDIC.	P.O. Box 904	,	
	Clayton, CA 94517		
	$T_{e1}$ : (707) 975-5791 1	Smail: Francoisbush@g	mail.com
	Corona Road Statio		
PRODECT	COLONA ROAD SCACED.	•	
MATRIX·WAT	PE R	DATE RECEIVE	D:09/08/17
DATE SAMPI	ED.09/06/17	DATE ANALYZE	D:09/13/17
REPORT TO:	MR. FRANCOIS BUSH	DATE REPORTS	SD: <u>09/15/17</u>
SAMPLE I.I	D.: MW-9	LAB I.D.: 17	70908-11
ANALYS	IS: VOLATILE ORGANIC	S, EPA METHOD 5030B/ MICROGRAM PER LITER	8260B, PAGE 1 OF 2 = PPB
PARAMETER	UNIT: Ug/D	SAMPLE RESULT	PQL X1
ACETONE		ND	1 <u>0</u>
BENZENE		ND	1
BROMOBENZI	ENE	ND	1
BROMOCHLOI	ROMETHANE	ND	1
BROMODICH	LOROMETHANE	ND	<u> </u>
BROMOFORM		ND	1
BROMOMETH	ANE	ND	1
2-BUTANONE (MEK		ND	10
N-BUTYLBE!	NZENE	ND	1
SEC-BUTYL	BENZENE	ND	
TERT-BUTY.	LBENZENE	<u>ND</u>	<u>+</u>
CARBON DI	SULFIDE	<u>ND</u>	<u> </u>
CARBON TE	TRACHLORIDE	ND ND	<u>J_</u>
CHLOROBEN	ZENE	ND ND	1
CHLOROETH.	ANE		1
CHLOROFOR		ND	1
CHLOROMET	HANE OTHENE	ND	1
A CHIOROT	OLUENE	ND	1
DIBROMOCH	LOROMETHANE	ND	1
DIBROMOCII	NO-1-CHICROPROPANE	ND	1
1.2-DIBRO	MOETHANE	ND	1
DIBROMOME	THANE	ND	1
1.2-DICHL	OROBENZENE	ND	1
1,3-DICHL	OROBENZENE	ND	1
1,4-DICHL	OROBENZENE	ND	1
DICHLOROD	IFLUOROMETHANE	ND	1
1,1-DICHL	OROETHANE	ND	<u> </u>
1,2-DICHL	OROETHANE	1.74	1
1,1-DICHL	OROETHENE	ND	1
CIS-1,2-D	DICHLOROETHENE	<u>ND</u>	<u>1</u>
TRANS-1.2	-DICHLOROSTHEME	ND	1
1,2-BICH1	OBOPBOPANE	ND	
1,3-BICHL	AROPHOPANK	ND	l

----- TO BE CONTINUED ON PAGE #2 -----

DATA REVIEWED AND APPROVED BY:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 Tel:(707)975-5791 Email: Francoisbush@gmail.com PROJECT: Corona Road Station

MATRIX:WATER	DATE RECEIVED: 09/08/17
DATE SAMPLED:09/06/17	DATE ANALYZED: 09/13/17
REPORT TO:MR. FRANCOIS BUSH	DATE REPORTED: 09/15/17

SAMPLE I.D.: MW-9

PARAMETER

LAB I.D.: 170908-11

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2

UNIT:	ug/L = MICROGRAM PER LITER = PPB	
	SAMPLE RESULT	PQL X1
		a second s

2.2-DICHLOROPBOPANE	N <u>D</u>	1
1,1-DICHLOROPROPENE	ND	1
CIS-1, 3-DICHLOROPROPENE	ND	1
TRANS-1. J-DICHLOROFROPERE	ND	1
ETHYLBENZENE	<u>ND</u>	1
2-HEXANONE	ND	10
HENACHLORODUTADITENT	<u>ND</u>	1
13OPROPYLISENZERE	ND	1
4-150PROPYLTOLAENE	ND	11
4-METHYL-2-PENTANONE (MIBK	ND	10
METHYL tert-BUTYL ETHER (MTBE	ND	3
METHYLENE CELORIDE	ND	5
NAPHTHALENE	ND	1
12-PROPYLEENE	<u>ND</u>	1
STYRENE	ND	1
1.1.1.2-TETRACHLOBOETHANE	ND	1
1.1.2.2-TETRACHLOROETHANE	ND	1
TETRACHLOROETHERE (PCE)	ND	<u> </u>
TOLUENE	ND	1
1.2.3-TRICHLOROBERZENE	ND	1
1.2.4-TRICHLOSOBEN2ENE	ND	1
1.1.1-TRICHLOBOSTHANK	ND	1
1.1.2-TRICHLOROETHANE	ND	1
TETCHLORGETHEME [TCE]	ND	1
TRICHLOROFTUOROMETHANE	ND	1
1.2.3-TRICHLOROPROPANE	ND	1
1 2 4-TRIMETHYLBENZENE	ND	1
1.3.5-7RIMETHYLEENZENH	ND	1
VINYL CHIGHIGE	ND	1
M/P-XYLENE	ND	2
O-YYLENE	ND	1

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE MOL DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER:	Pinnacle Environmental, Inc
	P.O. Box 904
	Clayton, CA 94517
	Tel: (707) 975-5791 Email: Francoisbush@gmail.com
PROJECT :	Corona Road Station

MATRIX:WATER	DATE RECEIVED: <u>09/08/17</u>
DATE SAMPLED: 09/06/17	DATE ANALYZED: 09/13/17
REPORT TO:MR. FRANCOIS BUSH	DATE REPORTED: 09/15/17

SAMPLE I.D.: MW-8

LAB I.D.: 170908-12

A 14 14 14 14 15 15 16 16 16

-----ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2

	UNIT:	ug/L	=	MICROGRAM	PER	LITER	=	PPB	
--	-------	------	---	-----------	-----	-------	---	-----	--

PARAMETER	SAMPLE RESULT	FQL X1
ACETONE	ND	10
BENZENE	ND	1
BROMOBENZENE	ND	1
BROMOCHLOBOMETHANE	ND	1
BRONCOTCHLOROMETHANE	ND	1
BROMOFORM	ND	1
BROMOMETHANE	ND	1
2-BUTANONE (MEK	<u>ND</u>	.0
N-BUTYLBENZENE	ND	1.
SEC-BUTYLBENZENE	ND	1
TERT-BUTYLINENZINE	ND	1,
CARBON DISULFIDE	ND	5
CARBON TETRACHLORIDE	ND	1
CHLOROBENZENE	ND	1.
CHLOROETHANE	ND	1
CHLOROFORM	ND	1
CHLOROMETHANE	ND	1
2-CHLOROTOLUENE	ND	1
4 -CHIOROTOLUENE	ND	1
DIRRONOCHLOROMETHANE	ND	1
1.2-DIBSOND-3-CHLOROPROPAGE	ND	1
1.7+DIBROMONTHANE	ND	1
DIBROMOMETHANE	ND	_1
1.2-DICHLOROBENZENE	ND	1
1.3-DICRLOROBERZENE	ND	1
1.4-DICHLOROBENZENE	ND	1
DTCHLOBODI FLUOROMETRANE	ND	1
1.1-OICHLOBOETHANE	ND	1
1.2-DICHLOROETHANE	ND	1
1.1-DICHLOBOETHENE	ND	1
CIS-1, 2-DICHLOROSTHEME	ND	1
TRANS-1, 2-DICHLOROETHENE	ND	1
1.2-DICULOROPHODANE	ND	_1
1. 3-DICHLOROPHORANE	ND	11

----- TO HE CONTINUE, ON PAGE 12

w

DATA REVIEWED AND APPROVED BTr_

# Enviro – Chem, Inc. 1214 E. Lexington Avenue. Pomona. CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

CUSTOMER:	Pinnacle Environmenta	l, Inc	
	P.O. Box 904		
	Clavton, CA 94517		
	Tel: (707) 975-5791 Ema	il: Francoisbush@	gmail.com
PROJECT :	Corona Road Station		
MATRIX: WAT	TER	DATE RECEIV	ED: <u>09/08/17</u>
DATE SAMPI	ED: 09/06/17	DATE ANALYZ	ED: <u>09/13/17</u>
REPORT TO:	MR. FRANCOIS BUSH	DATE REPORT	ED: <u>09/15/17</u>
SAMPLE I.I	).: MW-8	LAB I.D.: 1	70908-12
ANALYS	IS: VOLATILE ORGANICS,	EPA METHOD 5030B/	8260B, PAGE 2 OF 2
	UNIT: $ug/L = MIC$	ROGRAM PER LITER	= PPB
PARAMETER	S	AMPLE RESULT	PgL XI
2,2-DICHLO	DROPROPANE	ND ND	1
I, I-DICHLO	DRUPRUPENE		1
<u>CIS-1,3-D</u>	ICHLOROPROPENE	ND	1
	NE	ND	1
2 UEVANONE	2005	ND	10
Z-HEXANONE		ND	1
T CODDODVI I	DENTENE	ND	1
A TROPPODI	SENGENE	ND	1
	2-PENTANONE (MIBK)	ND	0
	T-BUTYL THER OFTEL	ND	3
METHYLENE	CHLOBIDE	ND	5
NAPHTHALEN	VE	ND	1
N-PROPYLBI	ENZENE	ND	1
STYRENE		ND	1
1.1.1.2-TI	ETRACHLOROETHARE.	ND	1
1.1.2.2.2	ET BACHLOROFTHANE	ND	1
TETRACHLO	ROETHENE (PCE)	ND	1
TOLUENE		ND	1
1.2.3-TRI	CHLOROBENZENE	ND	1
1,2,4-TRI	CHLOROBENZENE	ND	1
1, 1, 1-TRI	CHLOROETHANE	ND	1
1,1,2-TRI	CHLOROETHANE	ND	<u>1</u>
TRICHLORO	ETHENE (TCE	<u>ND</u>	<u>1</u>
TRICHLORO	FLUOROMETHANE	<u>ND</u>	1
1,2,3-TRI	CHLOROPROPANE	ND	1
1,2,4-TRI	METHYLBENZENE	ND	<u> </u>
1.3.5-TRI	METHYLBENZENE	ND	1
	ORIDE	<u>ND</u>	1
VINYL CHL		ND	2
VINYL CHL	<u>E</u>	ND	

68

DATA REVIEWED AND APPROVED CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER:	Pinnacle Environmental, Inc P.O. Box 904
	Clayton, CA 94517 Tel:(707)975-5791 Email: Francoisbush@gmail.com
PROJECT :	Corona Road Station

MATRIX: WATER	DATE	RECEIVED: 09/08/17
DATE SAMPLED:09/06/17	DATE	ANALYZED: 09/13/17
REPORT TO:MR. FRANCOIS BUSH	DATE	REPORTED: 09/15/17
	44444	

SAMPLE I.D.: MW-5

LAB I.D.: 170908-13

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2

UNIT:	ug/L =	MICROGRAM	PER	LITER	=	PPB	
-------	--------	-----------	-----	-------	---	-----	--

PARAMETER	SAMPLE RESULT	IQL X1
ACETONE	ND	10
BENZENE	ND	1
BROMOBENZENE	ND	<u> </u>
BROMOCHLOROMETHANE	ND	<u> </u>
BROMODICHLOROMETHANE	ND	1
BROMOFORM	ND	1
BROMOMETHANE	ND	1
2-BUTANONE (MEK	ND	1 <u>0</u>
N-BUTYLBENZENE	ND	<u> </u>
SEC-BUTYLBENZENE	ND	1
TERT-BUTYLBENZENE	ND	1
CARBON DISULFIDE	ND	5
CARBON TETRACHLORIDE	ND	1
CHLOROBENZENE	ND	1
CHLOROETHANE	ND	1
CHLOROFORM	ND	1
CHLOROMETHANE	ND	1
2-CHLOROTOLUENE	ND	1
4-CHLOROTOLUENE	ND	<u> </u>
DIBROMOCHLOROMETHANE	ND	1
1.2-DIBROMO-3-CHLOROPROPARE	ND	1
1.2-DIBROMOETHANE	ND	1
DIBROMOMETHANE	ND	1
1.2-DICHLOROBENZENE	ND	1
1.3-DICHLOROBENZENE	ND	1
1.4-DICHLOROBENZENE	ND	1
DICHLOHODIFLUGBOMETHANK	ND	1
1.1-DICHLOROETHANE	ND	1
1.2-DICHLOROETHANE	3.97	1
1.1-DICHLOROETHENE	ND	1
CIS-1, 2-DICHLOROETHENE	ND	1
TRANS-U. 2-DICHLOROETHENE	ND	1
1.2-DICHLOROPROPANE	ND	1
1.3-DICHLOROPROPANE	ND	1

----- TO DE CONTINUED ON PAGE 12 -----

DATA REVIEWED AND APPROVED

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

CUSTOMER:	LABORAT Pinnacle Environmental P.O. Box 904 Clayton, CA 94517 Tel: (707)975-5791 Email	ORI REPORT , Inc 1: Francoisbush@gmail.com
PROJECT:	Corona Road Station	
MATRIX: WAT DATE SAMPI REPORT TO:	<u>TER</u> LED: <u>09/06/17</u> <u>MR. FRANCOIS_BUSH</u>	DATE RECEIVED: <u>09/08/17</u> DATE ANALYZED: <u>09/13/17</u> DATE REPORTED: <u>09/15/17</u>
SAMPLE I.I	D.: MW−5	LAB I.D.: 170908-13
ANALYS	IS: VOLATILE ORGANICS, E UNIT: ug/L = MICF	EPA METHOD 5030B/8260B, PAGE 2 OF 2 ROGRAM PER LITER = PPB

PARAMETER	SAMPLE RESULT	PQL X1
2,2-DICHLOROPROPANE	ND	<u> </u>
1,1-DICHLOROPROPENE	ND	<u> </u>
C15-1, 3-DICHLOBOP%OPENE	ND	<u> </u>
TRANS-1, 3-DICHLOROPROPERE	ND	1
ETHYLBENZENE	ND	1
2-HEXANONE	ND	
HEXACHLOROBUTADIENE	ND	1
ISOPROPYLBENZENE	ND	1
4-ISOPROPYLTOLUENE	ND	1
4-MUTHYL-2-PENTANONE (MILHE)	ND	0
METHYL text-BUTYL ETHER (NTRE)	ND	3
METHYLENE CHLORIDE	ND	5_
NAPHTHALENE	ND	1
N-PROPYLBENZENE	ND	1
STYRENE	ND	1
1, 1, 1, 2-757EACHLOSOSTHAND	ND	1
1, 1, 2, 2-TETRACHLOROETHANK	ND	1
TETRACHLOROSTHENE [PCK]	<u>ND</u>	1
TOLUENE	ND	1
1.2.3-TRICHLOROBENZENE	ND	1
1.2.4-TRICHLOBOBENZENE	ND	1
1,1,1-TRICHLOBOETHANE	ND	1
1,1,2-TRICHLOHOETHANK	<u>ND</u>	1
TRICHLOROETHENE (TCE)	ND	1
THICHLOROPLUOROMETHANE	ND	1
1.2.3-TRICHLOROPROPANE	ND.	1
1.2.4-7BIMETHYLBERZERE	ND	
1,3,5-TRIMETHYLSENZENE	ND	_1
VINYL CHLORIDE	ND	1
M/P-XYLENE	ND	2
O-XYLENE	ND	1

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE POL

DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

# 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

	METHO	D BLANK REPORT	
CURTOMED.	Pinnacle Environme	ntal. Inc	
COSTONER.	P O Box 904		
	Classical CA 94517		
	m-1 (707) 075-5701	Email: Francoisbush@on	mail.com
DDO TROM.	Ter: (707) 975-5791		
PROJECT:	Corona Road Statio		
MATOTY, MAT	TED	DATE RECEIVE	D:09/08/17
DATE CAMDI	ED.09/06/17	DATE ANALYZE	D:09/12/17
DALE SAULT	MP FRANCOIS BUSH	DATE REPORTE	D:09/15/17
KEEOKI IO.	MR, HURCOID DOOM		******
м	ETHOD BLANK REPORT I	TOR LAB I.D.: 170908-7	THROUGH -13
ANALYS	IS: VOLATILE ORGANI	CS, EPA METHOD 5030B/8	260B, PAGE 1 OF 2
	<b>UNIT</b> : $ug/L =$	MICROGRAM PER LITER =	= PPB
PARAMETER		SAMPLE RESULT	FQL M1
ACETONE		ND	10
BENZENE		ND	1
BROMOBENZI	ENE	ND	1
BROMOCHLOI	ROMETHANE	ND	1
BROMODICH	LOROMETHANE	ND	1
BROMOFORM		ND	1
BROMOMETH	ANE	ND	1
2-BUTANON	E (MEK	ND	<u>IQ</u>
N-BUTYLBE	NZENE	ND	1
含めた一般の主义し	HEAZERE	ND	1
TERT-BUTY.	LBENZENE	ND	<u>1</u>
CARBON DI	BOLFICE	ND	5
CARBON TE	TRACHLOBIDE	ND	
CHLOROBEN	ZENE	ND	<u>+</u>
CHLOROETH	ANE	<u>ND</u>	
CHLOROFOR	<u>M</u>	ND	
CHLOROMET	HANE	ND	
Z-CHLOROT	SLUENE	<u>ND</u>	<u>+</u>
4+011/0801	OLUENE	<u>ND</u>	1
DIRECTOR	LOROMETHIANE	ND	
1,2-DIHBO	MO-3-CHLOROFBOEAHE	<u>ND</u>	<u>1</u>
1,2-01080	MOETHANE	<u>ND</u>	
DIBROMOME	THANE	<u>ND</u>	<u>L</u>
1.2+DICHL	ORDRENZENE	ND	1
1, J-01 DEL	OHOBENZENE	<u>ND</u>	1
1.4-DICHI	OROBERZEND	ND	<u>4</u>
DICHLOROE	DIFLUOROMETHANE		
1,1-81081	ABORTHARE		<u>1</u>
1,2-DICHI	JOROETHANE	ND	1
1,1-DICH1	OBCETHENE		1
<u>CIS-1,2-</u>	DICHLOROETHENE	<u>ND</u>	1
TRANS-1.2	-DICHLOROFTHERE	ND	1
1.2-DICHI	OROPBOPANE	<u>ND</u>	<u>+</u>
110-01000	OROPSOPARE	ND	1

- TO DE CONTINUED ON PAGE

DATA REVIEWED AND APPROVED BY:_

# 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

	METHOD	BLANK REPORT	
CUSTOMER:	Pinnacle Environment	al, Inc	
	P.O. Box 904		
	Clayton, CA 94517		
	Tel: (707) 975-5791 Em	ail: Francoisbush	gmail.com
PROJECT:	Corona Road Station		
ΜΔΨRΤΧ·WAT	'ER-	DATE RECEI	VED: 09/08/17
DATE SAMPI	ED:09/06/17	DATE ANALY	ZED: 09/12/17
REPORT TO:	MR. FRANCOIS BUSH	DATE REPOR	TED: <u>09/15/17</u>
м	ETHOD BLANK REPORT FOR	LAB I.D.: 170908	-7 THROUGH -11
ANALYS	IS: VOLATILE ORGANICS UNIT: ug/L = M	, EPA METHOD 5030E ICROGRAM PER LITER	8/8260B, PAGE 2 OF 2 R = PPB
PARAMETER		SAMPLE RESULT	PQL X1
2.2-DICH14	ROPROPARE	ND	<u></u>
1.1-DICHLO	DROPBOPERE	<u>ND</u>	<u> </u>
CIS-1,3-DI	ICHLOROPROPENE	<u>ND</u>	
TRANS-1.J.	DICHLOROFHOPSHS	<u>ND</u>	<u>L</u>
ETHYLBENZE	ENE	<u>ND</u>	10
2-HEXANONI	3	ND	
HEXACULORS	DESITAGIENE	<u>ND</u>	<u>1</u>
ISCEROFYL.	BEN2ENE.	<u>ND</u>	
4-INOPROPT	Y1/TOL/JUNE	<u>ND</u>	10
4-METHYL-2	2-PENTANONE (MIBK	ND	
METHYL te:	rt-BUTYL ETHER (MTBE	<u>ND</u>	<u>2</u>
METHYLERS	CHLORIDE	<u>ND</u>	
NAPHTRALE	88	<u>ND</u>	
N-2ROPYLE	ENZENE	<u>ND</u>	<u> </u>
STYRENE	and the second	<u>ND</u>	
Librid-T	ETBACHLOBGETHANE	<u>ND</u>	<u>_</u>
1,1,2,2-T	ETRACHLOROETHANE	ND	
TETRACHLO	ROETHENE (PCE	ND	
TOLUENE		<u>ND</u>	
1,2,3-TRI	CHLOROBENZENE	<u>ND</u>	1
1.2.4-TEL	CHLOROBENZERE	ND	1
L.L.I-TRI	CHLOBOLTHANK	ND	1
1.1.2-TRL	CHLOROETHANE	<u>ND</u>	1
TRICHLORD	ETHENS ITCEL	ND ND	1
TRICHLORC	FLUOROMETHANE	ND	1
1,2,3-TRI	CHLOROPROPANE		1
1.2.4-781	METHYLHENZERE	ND ND	1
1,3,5-TRI	METHYLBENZENE		1
VINYL CHI	0810%	ND	
M/P-XYLEN	<u>IE</u>		1
<u>O-XYLENE</u>			

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE FOL DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

			Enviro-Ch	em, Inc.					
1214 E. Lexington Ave	enue, Pom	ona, CA 9 [.]	1766	Te	l (909)590	-5905	Fax (909)	590-5907	
			8260B Q/	A/QC Rep	ort				
Date Analyzed: Machine:	<u>9/12-13/20</u> □	17					Matrix: Unit:	Water/Lig yg/L (PPB	and I
Matrix Snika (MS)/Matri	iv Snike Dr	unlicate (M	eD)						
Snikod Sample Lah [ D		170908-7 1	MS/MSD						
Analyte	T .R	spk conc	MS	%RC	MSD	%RC	%RPD	ACP %RC	ACP RPD
Benzene	0	25.0	27.6	110%	28.7	115%	4%	75-125	0-20
Chlorobenzene	0	25.0	27.1	108%	30.5	122%	14%	75-125	0-20
1 1-Dichlorgethene	0	25.0	26.9	108%	28.3	113%	6%	75-125	0-20
Toluene		25.0	27.7	111%	28.8	115%	4%	75-125	0-20
Trichloroethene	0	25.0	26.7	107%	28.8	115%	8%	75-125	0-20
Lab Control Spike (LCS	S):				13				
Analyte	spk conc	LCS	%RC	ACP %RC					
Benzene	25.0	26.0	104%	75-125					
Chlorobenzene	25.0	27.4	110%	75-125					
Chloroform	25.0	26.7	107%	75-125					
1,1-Dichloroethene	25.0	25.5	102%	75-125					
Ethylbenzene	25.0	26.2	105%	75-125					
o-Xylene	25.0	25.0	100%	75-125					
m,p-Xylene	50.0	53.8	108%	75-125	2				
Toluene	25.0	26.1	104%	75-125					
1,1,1-Trichloroethane	25.0	25.8	103%	75-125					
Trichloroethene (TCE	25.0	24.3	97%	75-125	1				
				AV 20	N DO	W DO			WPC
Surrogate Recovery	spk conc	ACP %RC	MB %RC	%RC	%KU	70RU	7000	70000	470000 4
Sample I.D.	in market		M-BLK	70908-7	170908-8	170908-9	170908-10	170908-11	170900-1
Dibromofluoromethane	210	70-130	124%	150*%	106%	137*%	146*%	140*%	135 %
Toluene-d8	25.0	70-130	100%	104%	99%	103%	104%	104%	108%
4-Bromofluorobenzene	25.0	70-130	85%	84%	81%	83%	86%	86%	91%
Surrogate Recovery	sok conc	IACP %RC	%RC	%RC	%RC	%RC	%RC	%RC	%RC
Sample I D	Op		170908-13	170908-180	170908-181	170908-182	170908-183	170912-18	170911-2
Dibromofluoromethane	25.0	70-130	146*%	104%	125%	120%	111%	129%	133*%
Toluene-d8	25.0	70-130	104%	103%	101%	102%	103%	102%	101%
A Bromofluorobenzene	25.0	70-130	90%	82%	82%	82%	86%	83%	85%
4-Diomondorobenzene	200	10 100	0070	• LIN					
Surrogate Recover	spk conc	ACP %RC	%RC	WRC	Sec.	MAC	%RC	%RQ_	Serie
Sample I.D.	i sama		170912-27		1			-	_
Dibromofluoromethane	2	70-130	129%	1		1			
	25.0	70-130	102%						_
Toluene-d8	4								

spk conc = Spike Concentration

 $\mathcal{O}$ 

MS = Matrix Spike

Analyzed/Reviewed By:

Final Reviewer:

ACP %RC = Accepted Percent Recovery MSD = Matrix Spike Duplicate

	Macipow	COMMENTS	Wax's, in	w Nail	20/2/2	Sproker	N.	\$1/1/10	9	20	That Station	Sample Storage After Analysis: Return to Client 💣 Store (30 Days)	age
4	100 - FUL	<b>Analysis Required</b>			XX					Rugh manus	75 - 579/ Manual	O Other:	CORD
	XI F Contriners Brutare Notton	ятам О.ои 9мэт Зэр9	X Espin	N N	, X		V 3 Stelvic	19. 2		Project Contact:	Tel: 707/9 Fax:	W. ON TIZACO	VI OF CUSTODY RE WHITE WITH SAMPLE - YELLOW TO CLIENT
	<ul> <li>Turnaround Time</li> <li>Same Day</li> <li>Same Day</li> <li>24 Hours</li> <li>48 Hours</li> <li>48 Hours</li> <li>72 Hours</li> <li>72 Hours</li> <li>72 Hours</li> <li>0 72 Hours</li> <li>0 70 Hours</li> </ul>	SAMPLING DAJE TIME	2 9/6 1200	051 5	10 530	12 1605	13 V 1620			Lal .	to	Received t	CHAIN
	Enviro-Chem, Inc. Laboratori 1214 E. Lexington Avenue, Pomona, CA 91766 Tel: (909) 590-5905 Fax: (909) 590-590 CA-DHS ELAP CERTIFICATE #1555	SAMPLE ID LAB ID	- Inu-1 1-1008-	Ru-6	A	Mk-B	Mund V			Financia Environment	Address:	Relinquished by: Relinquished by:	Date: 9/6/7

Laboratory Data & Chain of Custody Soil Sampling Data & Vapor (SV-1 to SV-21) September 2017

### Enviro – Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

Date: September 14, 2017

Mr. Francois Bush Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 Tel: (925)673-5500 Email: Francoisbush@gmail.com

Project: Corona Station LAB I.D.: 170907-8 through -14

Dear Mr. Bush:

The **analytical results** for the soil samples, received by our laboratory on September 7, 2017, (via Ontrac), are attached. The samples were received chilled, intact and accompanying chain of custody record.

Enviro-Chem appreciates the opportunity to provide you and your company this and other services. Please do not hesitate to call us if you have any questions.

Sincerely,

Curtis Desilets Vice President/Program Manager

Andy Wang Laboratory Manager

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER:	Pinnacle Environmental, P.O. Box 904 Clayton, CA 94517 Tel:(925)673-5500 Email	, Inc 1: Francoisbush@gmail.com
PROJECT :	Corona Station	DATE RECEIVED:09/07/17
MATRIX: <u>SOI</u> DATE SAMPL REPORT TO:]	L ED: <u>09/05/17</u> MR. FRANCOIS BUSH	DATE EXTRACTED: <u>09/11/17</u> DATE ANALYZED: <u>09/11-12/17</u> DATE REPORTED: <u>09/14/17</u>

TOTAL PETROLEUM HYDROCARBONS (TPH) - CARBON CHAIN ANALYSIS METHOD: EPA 8015B

# UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

and the second second second second

SAMPLE I.D.	LAB I.D.	C4-C10	C11-C22	C23-C35	DF
SV-1-4	170907-8	16.1	92 2	<u>ND</u>	1
SV-1-8	170907-9	ND	<u>59</u> .8	ND	1
sv-1-12	170907-10	ND	ND	ND	1
<u>88-4-2 5</u>	170907-11	ND	ND	ND	5
SS-5-2 5	170907-12	ND	ND	ND	1
SS-6-2.5	170907-13	ND	ND	ND	1
<u>SS-7-2.5</u>	170907-14	ND	ND	ND	1
METHOD BLANK		80	http	89	1
	POL	10	2.0	50	

#### COMMENTS

C4-C10 = GASOLINE RANGE C11-C22 = DIESEL RANGE C23-C35 = MOTOR OIL RANGE DF = DILUTION FACTOR PQL = PRACTICAL QUANTITATION LIMIT ACTUAL DETECTION LIMIT = DF X PQL ND = NON-DETECTED OR BELOW THE ACTUAL DETECTION LIMIT ^ = PEAKS IN GASOLINE RANGE BUT CHROMATOGRAM DOES NOT MATCH THAT OF GASOLINE STANDARD * = ACTUAL DETECTION LIMIT RAISED TO MATRIX INTERFERENCE

Data Reviewed and Approved by: _____ CAL-DHS ELAP CERTIFICATE No.: 1555 
 Software Version
 6.3.2,0646

 Sample Name
 170907-8
 20/2

 Instrument Name
 GC-4

 Rack/Vial
 0/13

 Sample Amount
 5,000000

 Oycle
 14

 Date
 : 9/12/2017 10:49:18 AM

 Data Acquisition Time
 : 9/11/2017 11:36:36 AM

 Channel
 : A

 Operator
 GC

 Dilution Factor
 1.000000

Result File : D:\GC DATA\GC-\V02017\1709\170911\4014.rst Sequence File : D:\GC DATA\GC-\V02017\1709\170911\170911.seq



8015 Results

(Wheel)	Annount
483294	161.3
11333667	921.9
51298	71.7
	483294 11333667 51298

11868260 1154.8

			E	nviro Chei	m, Inc				
1214 E. Lex	ington A	Avenue,	Pomona,	CA 91766	Te	I (909)590	-5905	Fax (909)59	90-5907
		8	8015B	QA/Q	C Re	eport			
Date Analyzed:		<u>9/11/201</u>	7				Units:	<u>mg/Kg (p</u>	<u>pm)</u>
Matrix:	Soil/S	Solid/	Sludg	e/Liqu	id				
85			60						
Matrix Spike (M	IS)/Matri	ix Spike I	Duplicate	(MSD)					
Spiked Sample	Lab I.D.	.:	17090	7-10 M	S/MS	D			
Analyte	SR [	spk conc	MS	%MS	MSD	%MSD	%RPD	ACP %MS	ACP RPD
C11~C22 Range	0	200	201	100%	186	93%	8%	75-125	0-20%
LCS STD RECC Analyte s C11~C22 Range	VERY: pk conc 200	LCS 195	% REC   97%	ACP 75-125					
Analyzed and F	leviewe	d By:	2	0					
		O							
Final Reviewer		-							
Final Reviewer		-							
Final Reviewer	-	-							

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER:	Pinnacle Environmental, Inc
	P.O. Box 904 Claston CA 94517
	Tel: (925) 673-5500 Email: Francoisbush@gmail.com
PROJECT:	Corona Station

MATRIX·SOIL	DATE RECEIVED: <u>09/07/17</u>
DATE SAMPLED:09/05/17	DATE ANALYZED:09/08/17
REPORT TO:MR. FRANCOIS BUSH	DATE REPORTED: <u>09/14/17</u>

SAMPLE I.D.: SS-5-2.5

LAB I.D.: 170907-12

The second s

-----TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT ANALYZED	SAMPLE RESULT	PQL.	DP	TTLC LIMIT	STLC LIMIT	epa Method
Chromium Total(Cr)	49.5	0.5	1	2,500	560/50	6010B

#### COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal is recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR/TITLE 22 (if marked)

Data Reviewed and Approved by:__ CAL-DHS ELAP CERTIFICATE No.: 1555

# Enviro – Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

CUSTOMER:	Pinnacle P.O. Box Clayton, Tel: (925) Corona St	METHO Environmen 904 CA 94517 673-5500 E ation	D BLANN tal, Ind mail: F:	rancoi	sbush@gma	ail.com	
MATRIX: <u>SO</u> DATE SAMPJ REPORT TO	<u>IL</u> LED: <u>09/05/</u> : <u>MR. FRANCO</u>	<u>L7</u> DIS <u>BUSH</u>		DATE DATE DATE	RECEIVED ANALYZED REPORTED	: <u>09/07/17</u> : <u>09/08/17</u> : <u>09/14/17</u>	
	METHON TOTAL UNIT :	D BLANK REI THRESHOLD mg/Kg = M	PORT FOR LIMIT CO ILLIGRAM	LAB I DNCENTI 4 PER 1	.D.: 170 RATION AN KILOGRAM	907-12 Alysis = PPM	*********
ELEMENT ANALYZED		SAMPLE RESULT	PQI,	DF	TTLC LIMIT	STLC LIMIT	EPA METHOD
Chromium	Total(Cr)	ND	0.5	1	2,500	560/50	6010B
COMMENTS DF = Dilu PQL = Pra Actual De ND = Non TTLC = To TTLC = To C = Must C = Must Addl *** = The defined Data Revi	tion Facto ctical Qua tection Li Detected o tal Thresh meet both concentra as hazardo	r ntitation I mit = PQL I r Below the old Limit ( hold Li	Limit X DF e Actual Concentr imit at al in o init at al in o ds the T s per C :	Detection 560 ar TLC Li -TITI	tion Lim d EPA-TO d d lif all to d mit, and LE 22 (if	it IF Limit marked) Incurs (I the samp marked)	at 5 f marked le is

INIATEIX Spike/ M	atrix Spike	Duplicat									
ANAL	YSIS DATE:	9/8/2017							Unit	: m <u>g/Kq(p</u>	(mo
Analysis	Spk.Sample ID	LCS CONC.	LCS %Rec.	LCS STATUS	Sample Result	Spike Conc.	MS	% Rec MS	MSD	% Rec MSD	% RPD
Chromium(Cr)	170906-33	50.0	86	PASS	16.2	50.0	70.1	108%	70.5	109%	1%
Lead(Pb)	170906-33	50.0	105	SSNA	2.89	50.0	50.2	86%	20.05	%\$5	150
Nickel(Ni)	170906-33	50.0	86	PASS	6.78	50.0	51.5	89%	51.8	%06	154
ANAL	YSIS DATE. :	9/8/2017									
Analysis	Spk.Sample ID	LCS CONC.	LCS %Rec.	LCS STATUS	Sample Result	Spike Conc.	WS	% Rec MS	MSD	% Rec MSD	% RPD
Mercury (Hg)	170907-15	0.108	66	PASS	0	0.125	0.120	96%	0.123	98%	2%
<b>MS/MSD Status</b>					1						
Analysis	SM%	%MSD	%LCS	%RPD							
Chromium(Cr)	PASS	PASS	PASS	PASS	1000		1	ſ			
Lead(Pb)	PASS	PASS	PASS	PASS			1	7			
Nickel(Ni)	PASS	SSNA	SSN9	PASS		ANALYST:					
Mercury (Hg)	PASS	PASS	RASS	PASS				G.			
Accepted Range	75 ~ 125	75 ~ 125	85 ~ 115	0~20		FINAL REV	'IEWER:	}			

# 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

	LABO	RATORY REPORT	
CUSTOMER:	Pinnacle Environmen	stal, Inc	
000101200	P.O. Box 904		
	Clavton, CA 94517		
	Tel: (925) 673-5500 H	Email: Francoisbush(	gmail.com
PROJECT:	Corona Station		
	-	DATE DECET	VED-09/07/17
MATRIX: <u>SOI</u>		DATE RECHT	7ED: 09/08/17
DATE SAMPI	ED: 09/05/17	DALE ANALL	$\frac{09}{14}$
REPORT TO:	MR. FRANCOIS BUSH	DAIL MICK	110. <u>097 117 1.</u>
SAMPLE I.I	).: <b>SV-1-4</b>	LAB I.D.:	170907-8
ANALYS	IS: VOLATILE ORGANIC	S, EPA METHOD 5030B	/8260B, PAGE 1 OF 2
	<b>UNIT:</b> $mg/Kg = M$	ILLIGRAM PER KILOGR	AM = PPM
PARAMETER		SAMPLE RESULT	PQL X50
ACETONE		ND	0.020
BENZENE		ND	0.005
BROMOBENZE	ENE	ND	0.005
TRANOCHLO	COMETHANE	ND	0.005
RECIMONT CHI	CIRCIMETHARE	ND	0.005
BROMOFORM		ND	0.005
BROMOMETH	ANE	ND	0.005
2-BUTANONI	E (MEK	ND	0.020
N-BUTYLEE	NZENE	0.549	0.005
SEC-BUTYL	DENZENE	ND	0.005
TERT-BUTY	LBENZENE	ND	0.005
CARBON DI	SULFTDE	ND	0.010
CARBON TE	TRACHLORIDE	ND	0.005
CHLOROBEN	ZENE	ND	0.005
CHLOROETH	ANE	ND	0.005
CHLOROFOR	M	ND	0.005
CHLOROMET	HANE	ND	0.005
2-CHLOROT	OLUENE	ND	0.005
4-CHLOROT	OLUENE	ND	0.005
DIRROHOCH	LOROMETHANE	ND	0.005
1.2-DTBRO	MO-3-CHLOROPROPANE	ND	0.005
1.7-DIBBO	NGETHANE	ND	0.005
DISTONCE	TRANE	ND	0.005
1.2-D1CHL	OROBENZENE	ND	0.005
1.1-DICHL	DEORENSERE	ND	0.005
1. 1-BTCHL	OBOBINZENE	ND	0.005
DICHLOHOD	T PLUORCMETHANE	ND	0.005
1.1-DICHT	OROETHANE	ND	0.005
1.2-DICHT	OROETHANE	ND	0.005
L. D. DICHL	ORGETHENE	ND	0.005
CTS-1.2-D	I CHLOROSTHENE	ND	0.005
Construction of the Party of the	DICUTODORTHENE	ND	0.005
TRANS-1 2			

----- TO HE CONTINUED ON PAGE 12 -----

DATA REVIEWED AND APPROVED BY

# Enviro – Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

CUSTOMER: Pinnacle Environment P.O. Box 904 Clayton, CA 94517 Tel: (925) 673-5500 En	al, Inc	l@gmail.com
PROJECT: Corona Station		
MATRIX:SOIL	DATE RECEN	IVED: <u>09/07/17</u>
DATE SAMPLED:09/05/17	DATE ANALY	YZED: <u>09/08/17</u>
REPORT TO: MR. FRANCOIS BUSH	DATE REPOR	RTED: <u>09/14/17</u>
		120007 8
SAMPLE I.D.: SV-1-4	LAB I.D.:	1/0907-8
ANALYSIS: VOLATILE ORGANICS	, EPA METHOD 5030	B/8260B, PAGE 2 OF 2
<b>UNIT:</b> $mg/Kg = MI$	LLIGRAM PER KILOG	RAM = PPM
PARAMETER	SAMPLE RESULT	PQL X50
1.3-DICHLOROPROFASE	ND	0.005
2, 2-DICHLOSOPROPAME	ND	0.005
1.1-DICHLOROPROPERE	ND	0.005
CIS-1, 3-DICHLOROPROPENE	ND	0.005
TRANS-1,3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	0.485	0.005
2- <u>HEXANONE</u>	<u>ND</u>	0.020
HEXACHLOROBUTADIENE	<u>ND</u>	0.005
ISOPROPYLAUNZENE	<u>ND</u>	0.005
4-ISOPROPYLTOLUENE	<u>ND</u>	0.003
A-METHYL-2-PENTANONE IMIDEL	ND	0.020
METHYL tert-BUTYL ETHER (MTBE	ND	0.005
METHYLERE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-DHOLXTHENXENE	0.41 <u>5</u>	0.005
<u>STYRENE</u>		0.005
	ND	0.005
1,1,2,2-TETRACHLOROEIHANE		0.005
TERRETIGUEURULTHERE LEEL	ND	0.005
TOPOPHE	ND	0.005
1. S. S. TRITCHLOROBERS/SUR	ND	0.005
1. 1. 1. THE CHLOROSTUANE	ND	0.005
1 1 2-TRICHLOROETHANE	ND	0.005
	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1.2.1-TRICHLOROPROPANE	ND	0.005
1.2.4-TRINETHYLBENZENE	2.33	0.005
1.3.5-TRIMETHYLBENZENE	0.937	0.005
VINYL CHLOSIDE	ND	0.005
M/P-XYLENE	1.07	0.010
	0 337	0.005

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

	LABOR	ATORY REPORT	
CUSTOMER:	Pinnacle Environmenta P.O. Box 904 Clayton, CA 94517 Tel: (925)673-5500 Ema	al, Inc ail: Francoisbush@	gmail.com
PROJECT:	Corona Station		
MATRIX: <u>SOI</u> DATE SAMPI REPORT TO:	L .ED: <u>09/05/17</u> <u>MR. FRANCOIS BUSH</u>	DATE RECEIV DATE ANALYZ DATE REPORT	7ED: <u>09/07/17</u> XED: <u>09/08/17</u> YED: <u>09/14/17</u>
SAMPLE I.I	).: <b>SV-1-8</b>	LAB I.D.: 1	170907-9
ANALYS	IS: VOLATILE ORGANICS, UNIT: mg/Kg = MIL	EPA METHOD 5030B LIGRAM PER KILOGR SAMPLE RESULT	/8260B, PAGE 1 OF 2 AM = PPM PQL X10
ACETONE		ND	0.020
DENTENE		ND	0.005
BENGENE BEOMOREN71	ZNE:	ND	0.005
DROHODENZI	DOMETTIC REDE	ND	0.005
TROMODICE	COCHETHANE	ND	0.005
BROMOFORM	A CONTRACTOR OF	ND	0.005
DROMONETH	ANE	ND	0.005
BROMOMETIN	T INTERT	ND	0.020
AT DUTTING DRA	ing de	0.105	0.005
COC-MATRIA	ARM 25 ME	ND	0.005
SECTION 14	LARSZENE	ND	0.005
CONDING BT	BOT BIOS	ND	0.010
CARDON PE	TUNCULORIDE	ND	0.005
CHIEF CONCUMPTION	CONSC	ND	0.005
CULOBORTH	ANE	ND	0.005
CHLODOFOD	M	ND	0.005
CHLOROMET	HANE	ND	0.005
2_CHLODOT	OLUENE	ND	0.005
A-CHIOROT	OLUENE	ND	0.005
DIBROMOCH	LOROMETHANE	ND	0.005
	MO-3-CHLOROPROPANE	ND	0.005
1.2-DIBRO	MOETHANE	ND	0.005
DIBOUNONS	THANE	ND	0.005
DIDKONOME	OBCAENZENE	ND	0.005
北京の市内の時間	OBOBENZENE	ND	0.005
1 3_DTCH		ND	0.005
<u>1,3-DICHL</u>			0.005
1,3-DICHL	TELUOROMETHANE	ND	0.000
1,3-DICHL DICHLOROE	DIFLUOROMETHANE	<u>ND</u>	0.005
1,3-DICHI DICHLOROD	DIFLUOROMETHANE CIDOLTHANE	ND ND ND	0.005
<u>1,3-DICHI</u> DICHLOROF	DIFLUOROMETHANE CIRCETHANE CIRCETHANE	ND ND ND ND	0.005 0.005 0.005
1,3-DICHI DICHLOROF	DIFLUOROMETHANE OBOETHARE OBOETHARE OBOETHERE OBOETHERE	ND ND ND ND ND ND	0.005 0.005 0.005 0.005 0.005
1,3-DICHI 1,3-DICHI DICHLOROF 1,1-DICHI 1,1-DICHI 1,1-DICHI CII-1,2-I	DIFLUOROMETHANE OBOETHANE OBOETHANE OROETHENE UICHLOROETHENE	ND ND ND ND ND ND ND	0.005 0.005 0.005 0.005 0.005 0.005

- TO HE CONTINUED ON PAGE

DATA REVIEWED AND APPROVED BY: _

# 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER:	Pinnacle Environmental, Inc
	P.O. Box 904
	Clayton, CA 94517
	Tel: (925) 673-5500 Email: Francoisbush@gmail.com
PROJECT:	Corona Station

MATRIX: SOIL	DATE RECEIVED: <u>09/07/17</u>
DATE SAMPLED:09/05/17	DATE ANALYZED: 09/08/17
REPORT TO:MR. FRANCOIS BUSH	DATE REPORTED: 09/14/17

SAMPLE I.D.: SV-1-8

LAB I.D.: 170907-9

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2

UNIT: mg	g/Kg = MILLIGRAM PER KILOGRAM	= PPM
PARAMETER	SAMPLE RESULT	PQL X10
1,3-DICHLOROPROPANE	ND	0.005
O O DIGULOBODDODAND	ND	0 005

2, 2-DICHLOROPROPANE	ND	0.005
1, 1-DICHLOROPROPENE	ND	0.005
CIS-1, 3-DICHLOROPROPENE	ND	0.005
TRANS-1.3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	<u>ND</u>	0.005
4-METHYL-2-PENTANONE (MIBK	ND	0.020
METHYL text-BUTYL ETHER DETREL	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	0.076	0.005
STYRENE	ND	0.005
1, 1, 1, 2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	<u>ND</u>	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1, 1, 1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1, 2, 4-TRIMETHYLBENZENE	ND	0.005
1, 3, 5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	<u>ND</u>	0.010
O-XYLENE	ND	0.005

21

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE POL

DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

### 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT Pinnacle Environmental, Inc. CUSTOMER: P.O. Box 904 Clayton, CA 94517 Tel: (925) 673-5500 Email: Francoisbush@gmail.com Corona Station PROJECT: DATE RECEIVED: 09/07/17 MATRIX: SOIL DATE ANALYZED: 09/08/17 DATE SAMPLED:09/05/17 DATE REPORTED: 09/14/17 REPORT TO: MR. FRANCOIS BUSH and the second second second LAB I.D.: 170907-10 SAMPLE I.D.: SV-1-12 ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM PQL X10 SAMPLE RESULT PARAMETER 0.020 ND ACETONE 0.005 ND BENZENE 0.005 ND BROMOBENZENE 0.005 BROMOCHLOROMETHANE ND 0.005 ND BRONODICHLOREMETHABE 0.005 ND BROMOFORM 0.005 ND BROMOMETHANE 0.020 ND 2-IUTANOME (HER) 0.005 0.065 N-BUTYLBENZENE 0.005 ND SEC-BUTYLBENZENE 0.005 ND TENT-BUTYLBENZENE. 0.010 ND CARRON DISULFIDE 0.005 ND CARBON TETRACHLORIDE. 0.005 ND CHLOROBENZENE 0.005 ND CHIOROETEARE-0.005 ND CHLOROFORM 0.005 ND CHLOROMETHANE 0.005 ND 2-CHLOSOTOLUEME 0.005 ND 4-CHLOROTOLUENE 0.005 ND DIBROMOCHLOROMETHARE 0.005 1,2-DIBROMO-3-CHLOROPROPANE ND 0.005 ND L. 2-DIBROMONTERINE 0.005 ND DIBROHOMETHANE 0.005 ND 1,2-DICHLOROBENZENN 0.005 ND 1, 3-DICHLOROMENSENS 0.005 ND 1,4-DICHLOROBENZERE 0.005 ND DIGHLORODIFLUGROMETUANE 0.005 ND 1,1-DICHLOROETHANE 0.005 ND 1, 2-DICHLOROSTHASE 0.005 ND 1,1-DICHLORDETHENE 0.005 ND CIS-I, 2-DICHLOROETHEDE 0.005 TRANS-1, 2-DICHLOROETHERE ND 0.005

ND ---- TO BE CONTINUED ON PAGE . ---Ú

DATA REVIEWED AND APPROVED BY:

1.2-DICHLOROPROFANE

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 Tel:(925)673-5500 Email: Francoisbush@gmail.com PROJECT: Corona Station

MATRIX: SOIL	DATE RECEIVED: <u>09/07/17</u>
DATE SAMPLED: 09/05/17	DATE ANALYZED: 09/08/17
REPORT TO: MR. FRANCOIS BUSH	DATE REPORTED: 09/14/17

SAMPLE I.D.: SV-1-12

and the second second

LAB I.D.: 170907-10

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X10
1, 3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1, 1-DICHLOROPROPENE	ND	0.005
CIS-1, 3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1, 1, 2, 2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	<u>ND</u>	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1, 2, 3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0,005
1, 3, 5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	<u>ND</u>	0.005

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE POL

DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

### 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### METHOD BLANK REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 Tel:(925)673-5500 Email: Francoisbush@gmail.com PROJECT: Corona Station

MATRIX: SOIL	DATE RECEIVED: 09/07/17
DATE SAMPLED:09/05/17	DATE ANALYZED: <u>09/07/17</u>
REPORT TO:MR. FRANCOIS BUSH	DATE REPORTED: 09/14/17
and so the province the second second	

METHOD BLANK REPORT FOR LAB I.D.: 170907-8, -9, -10

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM PQL X1 SAMPLE RESULT PARAMETER 0.020 ND ACETONE 0.005 ND BENZENE 0.005 ND BROMOBENZENE 0.005 ND BROMOCHLOROMETHANE 0.005 BROMODICHLOROMETHANE ND 0.005 ND BROMOFORM 0.005 ND BROMOMETHANE 0.020 ND 2-BUTANONE (MEK) 0.005 ND N-BUTYLBENZENE 0.005 ND SEC-BUTYLBENZENE 0.005 ND TERT-BUTYLBENZENE 0.010 ND CARBON DISULFIDE 0.005 ND CARBON TETRACHLORIDE 0.005 ND CHLOROBENZENE 0.005 ND CHLOROETHANE 0.005 ND CHLOROFORM 0.005 ND CHLOROMETHANE 0.005 ND 2-CHLOROTOLUENE 0.005 ND 4-CHLOROTOLUENE 0.005 ND DI BROMOCHLOROMSTHANE. 0.005 ND 1, 2-DIBROMO-3-CHLOROEROPANE 0.005 ND 1,2-DIBROMOETHANE 0.005 ND DIBROMOMETHANE 0.005 ND 1,2-DICHLOROBENZENE 0.005 ND 1,3-DICHLOROBENZENE 0.005 1,4-DICHLOROBENZENE ND 0.005 ND DICHLORODIFLUOROMETHANE 0.005 ND 1, 1-DICHLOROETHANE 0.005 1.2-DICHLORGETHANE ND 0.005 ND 1,1-DICHLORGETHERE 0.005 ND CIS-1, 2-DICHLOROUTSENE 0.005 ND TRANS-1, 2-DICHLOROETHENS. 0.005 ND 1,2-DICHLOROPROPANE

APPROVED BY

DATA REVIEWED AND APPROVED BY:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### METHOD BLANK REPORT

CUSTOMER:	Pinnacle Environmental, Inc
	P.O. Box 904
	Clayton, CA 94517
	Tel: (925) 673-5500 Email: Francoisbush@gmail.com
PROJECT:	Corona Station

MATRIX: SOIL	DATE RECEIVED: 09/07/17
DATE SAMPLED: 09/05/17	DATE ANALYZED; 09/07/17
REPORT TO:MR. FRANCOIS BUSH	DATE REPORTED: 09/14/17

METHOD BLANK REPORT FOR LAB I.D.: 170907-8, -9, -10

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2

------

<b>UNIT:</b> $mg/Kg = MI$	LLIGRAM PER KILOGR	AM = PPM
PARAMETER	SAMPLE RESULT	PQL X1
1.3-DICHLOROPROFAME	ND	0.005
2.2-DICHLOROPROPANE	ND	0.005
.1-DICHLOROPROPENE	ND	0.005
TIB-1, 3-DICHLOROPHOPENE	ND	0.005
BANS-1, 3-DICHLOROPHOPENE	ND	0.005
THYLBENZENE	ND	0.005
HEXANONE	ND	0.020
IEXACHLOROBUTADIENE	ND	0.005
SOPROPYLBENZENE	ND	0.005
-ISOPROPYLTOLUENE	ND	0.005
-HETHYL-2-FENTANONE IMIDED	ND	0. <u>020</u>
UTHYL Lert-BUTYL ETHER (MTBEI	ND	0.005
GETHYLENE CHLORIDE	ND	0.010
IAPHTHALENE	ND	0.005
I-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
.1.1.2-TETRACHLOROETHASE	ND	0.005
1.2.2-TETRACHLOMONTHANE	ND	0.005
TETRACHLOROSTHENE (PUE)	ND	0.005
FOLUENE	ND	0.005
1.2.3-TRICHLOBOBENSENE	ND	0.005
,2,4-TRICHLOROBENZENE	ND	0,005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
NRICHLOROETHEME (TCE)	ND	0.005
TESCHLOROFLOOROMETHANE	ND	0.005
1, 2, 3-TRICHLOROPROPARE	<u>ND</u>	0.005
.2.4-TRINETHTLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005

6 de

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE

DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

			Enviro-Che	em, Inc.					
1214 E. Lexington Ave	nue, Pomo	na, CA 917	66 8260B QA	Tel (90 VQC Repo	09)590-5905 t	Fax	(909)590-59	07	
Date Analyzed: Machine:	<u>9/7-8/2017</u> C						Matrix: Unit:	Solid/Solit matka (PP	Anseld MJ
Matrix Spike (MS)/Matri	x Spike Du	olicate (MSE	0)						
Spiked Sample Lab I.D.	:	170907-LC	, 51/2						
Analyte	R	spk conc	MS	%RC	MSD	%RC	%RP	ACP %RC	ACP RPD
Benzene	ō	0.050	0.049	98%	0.045	90%	8%	75-125	0-20
Chlorobenzene	0	0.050	0.046	92%	0.045	90%	2%	75-125	0-20
1.1-Dichloroethene	0	0.050	0.046	92%	0.042	84%	8%	75-125	0-20
Toluene	0	0.050	0.045	90%	0.042	84%	6%	75-125	0-20
Trichloroethene	0	0.050	0.044	88%	0.041	82%	6%	75-125	0-20
Lab Control Spike (LCS	):	100	0(100	AODWDC	ł.				
Analyte	spk conc	LCS	%RU	ACP %RC					
Benzene	0.050	0.046	92%	/5-125					
Chlorobenzene	0.050	0.045	90%	75-125					
Chloroform	0.050	0.041	82%	75-125					
1,1-Dichlorothene	0.050	0.049	98%	75-125					
Ethylbenzene	0.050	0.052	104%	75-125					
o-Xylene	0.050	0.047	94%	75-125					
m,p-Xylene	0.100	0.106	106%	75-125					
Toluene	0.050	0.043	86%	75-125					
1,1,1-Trichloroethane	0.050	0.043	86%	75-125					
Trichloroethene (TCE)	0.050	0.042	84%	75-125					
Surrogate Recovery	enk conc	ACP % RC	MR %RC	%RC	%RC	%RC	%RC	%RC	%RC
Sample I D	Spk cono	7101 76110	M-RLK	170907-1~4	170906-65	170906-66	170906-67	170908-68	170906-69
Dihaamafiyaamathana	10.0	70,120	000/	9904	70%	113%	05%	70%	82%
	10.0	70-130	90%	00%	05%	00%	04%	03%	0270
I giuene-as	10.0	70-130	90%	92.70	90%	20%	040/	90%	9076
4-Bromotiuoropenzene	59.9	70-130	75%	00"%	0170	30 %	0470	0070	0170
Surrogate Recovery	sok conc	ACP %RC	%RC	%RC	%RC	%RC	%RC	%RC	%RC
Sample I D	opk cono		170906-70	170907-8	170907-9	170907-10	170907-15	170907-17	170907-18
Dibromofluoremothere	40.0	20,130	04%	04%	84%	86%	143*%	86%	76%
	50.0	70.130	05%	104%	03%	100%	61*%	64*%	73%
1 Diverte-do	100	20.130	710/	0.70/	0.00%	820/	20*%	52*0/	/0//
4-Bromonuorobenzene	24,914	10-120	7 1 70	0770	0270	0370	39 70	55 76	40 /0
Surrogate Recover	spk conc	ACP %RC	NAC .	NAC	540	SHC	WHC .	96802	WRC .
Sample I.D			and the second second	and the ball of the second		a francis	Contraction of the		
Dibromofluoromethane	50.0	70-130	_						
Toluene_d8	10.0	70-130							11
4-Bromofluorobenzene	500	70-130	-	-					
* = Surrogate fail due to S.R. = Sample Results spk conc = Spike Concel MS = Matrix Spike	matrix interfe	erence; LCS	3, MS, MSD	are in contro	ol therefore ti %RC = Pen ACP %RC = MSD = Mati	he analysis i cent Recove = Accepted i rix Spike Du	is in control. ny Percent Rec plicate	оvелу	

CM

Final Reviewer:



#### Enviro – Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

Date: September 15, 2017

Mr. Francois Bush
Pinnacle Environmental, Inc
P.O. Box 904
Clayton, CA 94517
Tel:(707)975-5791 Email: Francoisbush@gmail.com

Project: Corona Road Station Petaluma LAB I.D.: 170908-163 through -179

Dear Mr. Bush:

The **analytical results** for the soil and water samples, received by our laboratory on September 8, 2017, (via United Parcel Service), are attached. The samples were received chilled, intact and accompanying chain of custody record.

Enviro-Chem appreciates the opportunity to provide you and your company this and other services. Please do not hesitate to call us if you have any questions.

Sincerely,

Curtis Desilets Vice President/Program Manager

Britty

Laboratory Manager

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER:	Pinnacle Environmental, P.O. Box 904	Inc	
	Clavton, CA 94517		
	Tel: (925) 673-5500 Email	: Francoi	.sbush@gmail.com
PROJECT:	Corona Road Station Peta	aluma	
		DATE	RECEIVED: 09/08/17
MATRIX: SOI	L	DATE	EXTRACTED: 09/13/17
DATE SAMPL	ED: <u>09/06/17</u>	DATE	ANALYZED: 09/13&14/17
REPORT TO:	MR. FRANCOIS BUSH	DATE	REPORTED:09/15/17

TOTAL PETROLEUM HYDROCARBONS (TPH) - CARBON CHAIN ANALYSIS METHOD: EPA 8015

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

SAMPLE I.D.	LAB I.D.	C4-C10	C11-C22	C23-C35	DF
SV-17-4	170908-163	ND	ND	ND	1
SV-2-4	<u>170908-165</u>	ND	20	ND	2
SV-11-8	<u>170908-168</u>	ND	ND	ND	1
<u>SB-21-4</u>	<u>170908-169</u>	ND	38	ND	1
<u>SV-12-8</u>	<u>170908-172</u>	ND	ND	ND	1
SV-19-4	<u>170908-173</u>	ND	ND	ND	1
<u>sv-20-4</u>	170908-175	ND	ND	ND	1
METHOD BLANK		ND.	HD	NO	1
	PQL	1.0	10	50	

#### COMMENTS

C4-C10 = GASOLINE RANGE C11-C22 = DIESEL RANGE C23-C35 = MOTOR OIL RANGE DF = DILUTION FACTOR PQL = PRACTICAL QUANTITATION LIMIT ACTUAL DETECTION LIMIT = DF X PQL ND = NON-DETECTED OR BELOW THE ACTUAL DETECTION LIMIT Data Reviewed and Approved by:

CAL-DHS ELAP CERTIFICATE No.: 1555

			E	Enviro Ch	em, Inc				
1214 E. Le	xington A	venue,	Pomona,	, CA 9176	6 Te	I (909)590	-5905	Fax (909)5	90-5907
		8	8015B	QA/C	QC Re	port			
Date Analyzed	li i	9/13-14/	2017				Units:	<u>mg/Kg (p</u>	<u>pm)</u>
Matrix:	Soil/S	Solid/	Sludg	e/Liq	uid				
Matrix Spike (	MS)/Matri	x Spike	Duplicate	e (MSD)					
Spiked Sampl	e Lab I.D.	:	17090	)8-128	MS/M	SD			
Analyte	SR	spk conc	MS	%MS	MSD	%MSD	%RPD	ACP %MS	ACP RPL
Analyte C11~C22 Range	SR   0	spk conc 200	MS 196	%MS   98%	MSD 178	%MSD 89%	%RPD	ACP %MS	ACP RPE 0-20%
Analyte C11~C22 Range LCS STD REC	SR   0	spk conc 200	MS 196	%MS 98%	MSD 178	%MSD 89%	%RPD 10%	ACP %MS	ACP RPI 0-20%
Analyte C11~C22 Range LCS STD REC Analyte	SR 0 OVERY:	spk conc 200 LCS	MS 196	%MS 98%	MSD 178	%MSD 89%	%RPD 10%	ACP %MS	ACP RPI 0-20%
Analyte C11~C22 Range LCS STD REC Analyte C11~C22 Range	SR   0 OVERY: spk conc 200	spk conc 200 LCS 183	MS 196 <b>% REC</b> 92%	%MS 98%	MSD 178	%MSD 89%	%RPD	ACP %MS	ACP RPI 0-20%
1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER:	Pinnacle Environmental P.O. Box 904 Clayton, CA 94517 Tel: (925) 673-5500 Email	, Inc 1: Francoisbush@gmail.com	
PROJECT:	Corona Road Station Per	taluma	
		DATE RECEIVED: 09/08/17	
MATRIX: WAT	ER	DATE EXTRACTED: 09/11/17	
DATE SAMPL	ED:09/07/17	DATE ANALYZED: 09/11/17	
REPORT TO:	MR. FRANCOIS BUSH	DATE REPORTED: 09/15/17	
TOTAL PETR	OLEUM HYDROCARBONS (TPH)	- CARBON CHAIN ANALYSIS	

METHOD: EPA 8015B

#### UNIT: uG/L = MICROGRAM PER LITER = PPB

The second s		the set of	the set of	the state of the second state of the state o	CONTRACTOR OF A
SAMPLE I.D.	LAB I.D.	C4-C10	C11-C22	C23-C35	DF
MW-1	170908-177	ND	ND	ND	- 2
<u>MW-2</u>	170908-178	ND	ND	ND	- 1
MW-3	<u>170908-179</u>	ND	ND	ND	1
METHOD BLANK		ND	ND	ND	1
	PQL	500	500	3000	

#### COMMENTS

C4-C10 = GASOLINE RANGE C11-C22 = DIESEL RANGE C23-C35 = MOTOR OIL RANGE DF = DILUTION FACTOR PQL = PRACTICAL QUANTITATION LIMIT ACTUAL DETECTION LIMIT = DF X PQL ND = NON-DETECTED OR BELOW THE ACTUAL DETECTION LIMIT

Data Reviewed and Approved by: ______ CAL-DHS ELAP CERTIFICATE No.: 1555 

			E	nviro Chei	n, Inc					
1214 E. L	exington	Avenue,	Pomona,	CA 91766	Tel	(909)590-5	5905	Fax	c (909)590	0-5907
			8015B	QA/Q	C Rej	oort				
Date Analyzed		9/11-12/2	017				Units	5:	ug/L (PF	<u>PB)</u>
Matrix:	Wate	r/Liqu	uid							
Matrix Spike (MS)	/Matrix Spil	ke Duplicat	e (MSD)							
Spiked Sample	Lab I.D.:		170908	<u>-183 MS</u>	MSD					
Analyte	SR	spk conc	MS	%MS	MSD	%MSD	%R	PD	ACP %MS	ACP RPD
C11-C22 RANGE	0	12000	11900	99%	13100	109%	109	%	75-125	0-20%
	OVERY:	1.00	W 850							
	Spk Conc	12700	% REC	75 125						
Analyzed and I Final Reviewer	Reviewed	by:	2-4	9-						
		_								

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER:	Pinnacle Environmental, Inc
	P.O. Box 904
	Clayton, CA 94517
	Tel: (925) 673-5500 Email: Francoisbush@gmail.com
PROJECT:	Corona Road Station Petaluma

REPORT TO:MR. FRANCOIS BUSH	DATE REPORTED:09/15/17
DATE SAMPLED: 09/06/17	DATE ANALYZED: <u>09/09/17</u>
MATRIX: SOIL	DATE RECEIVED: 09/08/17

SAMPLE I.D.: SV-17-4

LAB I.D.: 170908-163

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2

UNIT: m	g/Kg = MILLIGRAM	PER KILOGRAM =	PPM
---------	------------------	----------------	-----

PARAMETER	SAMPLE RESULT	PQL X25*
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1, 3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1, 2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1, 2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

TO BE CONTINUED ON PAGE

DATA REVIEWED AND APPROVED

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER:	Pinnacle Environmental, Inc
	P.O. Box 904
	Clayton, CA 94517
	Tel: (925) 673-5500 Email: Francoisbush@gmail.com
PROJECT:	Corona Road Station Petaluma

MATRIX: SOIL	DATE RECEIVED: 09/08/17
DATE SAMPLED: 09/06/17	DATE ANALYZED: 09/09/17
REPORT TO: MR. FRANCOIS BUSH	DATE REPORTED: 09/15/17

SAMPLE I.D.: SV-17-4

LAB I.D.: 170908-163

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2

UNIT: $mg/Kg = MI$	LLIGRAM PER KILOG	RAM = PPM
PARAMETER	SAMPLE RESULT	PQL X25*
1, 3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1, 3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
<u>2-HEXANONE</u>	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
<u>ISOPROPYLBENZENE</u>	ND	0.005
<u>4-ISOPROPYLTOLUENE</u>	ND	0.005
4-METHYL-2-PENTANONE (MIBK	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	<u>ND</u>	0.005
1, 1, 1, 2-TETRACHLOROETHANE	ND	0.005
1, 1, 2, 2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1, 1, 1-TRICHLOROETHANE	ND	0.005
1, 1, 2-TRICHLOROETHANE	<u>ND</u>	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1, 3, 5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
<u>O-XYLENE</u>	ND	0.005
<b>COMMENTS</b> PQL = PRACTICAL QUANT: ND = NON-DETECTED OR BELOW THE	ITATION LIMIT PQL	

64

PQL RAISED DUE TO MATRIX INTERIAL NCE

DATA REVIEWED AND APPROVED BY:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 Tel: (925) 673-5500 Email: Francoisbush@gmail.com PROJECT: Corona Road Station Petaluma

MATRIX:SOIL	DATE	RECEIVED: 09/08/17
DATE SAMPLED: 09/06/17	DATE	ANALYZED: 09/09/17
REPORT TO: MR. FRANCOIS BUSH	DATE	REPORTED: 09/15/17

SAMPLE I.D.: SV-2-4

LAB I.D.: 170908-165

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 QF 2

UNIT:	mg/Kg	= MILLIGRAM	PER	KILOGRAM	=	PPM	
-------	-------	-------------	-----	----------	---	-----	--

PARAMETER	SAMPLE RESULT	PQL X500*
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	<u>0.005</u>
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK	ND	0.020
N-BUTYLBENZENE	<u>ND</u>	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1, 3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1, 2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

----- TO BE CONTINUED ON PAGE #2 -----

DATA REVIEWED AND APPROVED IT

# 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER:	Pinnacle Environmental, Inc
	P.O. Box 904
	Clayton, CA 94517
	Tel: (925) 673-5500 Email: Francoisbush@gmail.com
PROJECT:	Corona Road Station Petaluma

MATRIX: SOIL	DATE RECEIVED: <u>09/08/17</u>
DATE SAMPLED: 09/06/17	DATE ANALYZED: 09/09/17
REPORT TO: MR. FRANCOIS BUSH	DATE REPORTED: 09/15/17
	the second se

SAMPLE I.D.: SV-2-4

LAB I.D.: 170908-165

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2

UNIT: mg/Kg	= MILLIGRAM	PER KILOGRAM	= PPM
-------------	-------------	--------------	-------

PARAMETER	SAMPLE RESULT	PQL X500*
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1, 3-DICHLOROPROPENE	<u>ND</u>	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
I SOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	<u>0.010</u>
NAPHTHALENE	ND	0.005
<u>N-PROPYLBENZENE</u>	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1, 1, 2, 2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005
COMMENTS DOL = PRACTICAL OUANT	TTATION LIMIT	

ND = NON-DETECTED OR BELOW THE PQL

PQL RAISED DUE TO MATRIX INTERFERENCE.

DATA REVIEWED AND APPROVED BY:

File :D:\Data\2017DATA\C1709\C170908\C17090830.D Operator Acquired 9 Sep 2017 4:37 am using AcqMethod 8260C098.M Instrument Instrument #1 Sample Name: 170908-165 500X Misc Info Vial Number: 30



1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER:	Pinnacle Environmental, Inc
	P.O. Box 904
	Clayton, CA 94517
	Tel: (925) 673-5500 Email: Francoisbush@gmail.com
PROJECT:	Corona Road Station Petaluma

MATRIX: SOIL	DATE RECEIVED: 09/08/17
DATE SAMPLED: 09/06/17	DATE ANALYZED: 09/09/17
REPORT TO: MR. FRANCOIS BUSH	DATE REPORTED: 09/15/17

SAMPLE I.D.: SV-11-8

LAB I.D.: 170908-168

#### ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2

UNIT: mq	/Kg =	MILLIGRAM	PER	KILOGRAM	=	PPM	
----------	-------	-----------	-----	----------	---	-----	--

PARAMETER	SAMPLE RESULT	PQL X25*
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
<u>N-BUTYLBENZENE</u>	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
<u>4~CHLOROTOLUENE</u>	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	<u>ND</u>	0.005
1,2-DICHLOROBENZENE	ND	0.005
1, 3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	<u>0.005</u>
1,1-DICHLOROETHENE	ND	0.005
CIS-1, 2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0,005
1,2-DICHLOROPROPANE	ND	0.005

ON PAGE #2

DATA REVIEWED AND APPROVED BY:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER:	Pinnacle Environmental, Inc
	P.O. Box 904
	Clayton, CA 94517
	Tel: (925) 673-5500 Email: Francoisbush@gmail.com
PROJECT:	Corona Road Station Petaluma

MATRIX: SOIL	DATE RECEIVED: 09/08/17
DATE SAMPLED: 09/06/17	DATE ANALYZED: 09/09/17
REPORT TO: MR. FRANCOIS BUSH	DATE REPORTED: 09/15/17

SAMPLE I.D.: SV-11-8

LAB I.D.: 170908-168

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2

UNIT: $mg/Kg = MI$	LLIGRAM PER KILOG	RAM = PPM
PARAMETER	SAMPLE RESULT	PQL X25*
1, 3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1, 3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK)	ND	0.020
METHYL tert-BUTYL ETHER (MTBE	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1,1,1,2-TETRACHLOROETHANE	ND	0.005
1, 1, 2, 2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1, 1, 1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005
COMMENTS POL = PRACTICAL OUANT	ITATION LIMIT	

ND = NON-DETECTED OR BELOW THE PQL

- PQL RAISED DUE TO MATRIX INTERFECENCE

DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 Tel: (925) 673-5500 Email: Francoisbush@gmail.com PROJECT: Corona Road Station Petaluma

MATRIX: SOIL	DATE RECEIVED: 09/08/17
DATE SAMPLED: 09/06/17	DATE ANALYZED: 09/09/17
REPORT TO: MR. FRANCOIS BUSH	DATE REPORTED: 09/15/17

The show in the second second second

SAMPLE I.D.: SB-21-4

LAB I.D.: 170908-169

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM	
--------------------------------------------	--

PARAMETER	SAMPLE RESULT	PQL X20*
ACETONE	ND	0.020
BENZENE	ND	005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0,005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK	ND	0.020
<u>N-BUTYLBENZENE</u>	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2~CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1, 3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
L, 2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

----- TO DE CONTINUEØ ON PAGE

DATA REVIEWED AND APPROVED HY

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 Tel:(925)673-5500 Email: Francoisbush@gmail.com PROJECT: Corona Road Station Petaluma

MATRIX: SOIL	DATE RECEIVED: 09/08/17
DATE SAMPLED:09/06/17	DATE ANALYZED: 09/09/17
REPORT TO:MR. FRANCOIS BUSH	DATE REPORTED: 09/15/17

SAMPLE I.D.: SB-21-4

LAB I.D.: 170908-169

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X20*
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1, 3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	<u>ND</u>	0.005
4-METHYL-2-PENTANONE (MIBK	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1, 1, 1, 2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	<u>ND</u>	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1, 2, 4-TRICHLOROBENZENE	ND	0.005
1, 1, 1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1, 3, 5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005
COMMENTS POL - PRACTICAL OUANT	TTATION LIMIT	

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT ND = NON-DETECTED OR BELOW THE PQL

PQL RAISED DUE TO MATRIX IN THE REPORT

DATA REVIEWED AND APPROVED BY:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 Tel:(925)673-5500 Email: Francoisbush@gmail.com PROJECT: Corona Road Station Petaluma

MATRIX: SOIL	DATE RECEIVED: 09/08/17
DATE SAMPLED: 09/06/17	DATE ANALYZED: 09/09/17
REPORT TO: MR. FRANCOIS BUSH	DATE REPORTED: 09/15/17

SAMPLE I.D.: SV-12-8

LAB I.D.; 170908-172

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2

UNIT:	mg/Kg	=	MILLIGRAM	PER	KILOGRAM	=	PPM	
			CI 2 2 (20) 7 12		7.00		DOT	a se al

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK	ND	0.020
<u>N-BUTYLBENZENE</u>	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	<u>ND</u>	0.005
1, 3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1, 2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

TO BE CONTINUED ON PAGE 12 -----

DATA REVIEWED AND APPROVED BY:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 Tel: (925) 673-5500 Email: Francoisbush@gmail.com PROJECT: Corona Road Station Petaluma

MATRIX: <u>SOIL</u>	DATE RECEIVED: <u>09/08/17</u>
DATE SAMPLED: 09/06/17	DATE ANALYZED: 09/09/17
REPORT TO: MR. FRANCOIS BUSH	DATE REPORTED: 09/15/17
***************************************	***************************************

-----

SAMPLE I.D.: SV-12-8

LAB I.D.: 170908-172

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2

UNIT: $mg/Kg = MI$	LLIGRAM PER KILOG	RAM = PPM
PARAMETER	SAMPLE RESULT	PQL X1
1,3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1, 3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
<u>2-HEXANONE</u>	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
4-ISOPROPYLTOLUENE	ND	0.005
4-METHYL-2-PENTANONE (MIBK	ND	0.020
METHYL tert-BUTYL ETHER (MTBE	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1, 1, 1, 2-TETRACHLOROETHANE	ND	0.005
1, 1, 2, 2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE	ND	0.005
TOLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	<u>ND</u>	0.005
1,1,1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1, 3, 5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
O-XYLENE	ND	0.005
COMMENTE DOT - DRACETCAT OUANE	TTATION TIME	

UNS

**COMMENTS** PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE

DATA REVIEWED AND APPROVED BY:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 Tel: (925) 673-5500 Email: Francoisbush@gmail.com PROJECT: Corona Road Station Petaluma

MATRIX ; SOIL	DATE RECEIVED: 09/08/17
DATE SAMPLED: 09/06/17	DATE ANALYZED: 09/09/17
REPORT TO: MR. FRANCOIS BUSH	DATE REPORTED: 09/15/17

SAMPLE I.D.: SV-19-4

LAB I.D.: 170908-173

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2

PARAMETER	SAMPLE RESULT	POL X20*
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
<u>2-CHLOROTOLUENE</u>	ND	0.005
<u>4-CHLOROTOLUENE</u>	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1, 2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

TO BE CONTINUED ON PAGE

DATA REVIEWED AND APPROVED

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 Tel: (925) 673-5500 Email: Francoisbush@gmail.com PROJECT: Corona Road Station Petaluma

MATRIX: SOIL	DATE RECEIVED: <u>09/08/17</u>
DATE SAMPLED: 09/06/17	DATE ANALYZED: 09/09/17
REPORT TO: MR. FRANCOIS BUSH	DATE REPORTED: 09/15/17

SAMPLE I.D.: SV-19-4

LAB I.D.: 170908-173

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2

UNIT: $mg/Kg = MI$	LLIGRAM PER KILOG	RAM = PPM
PARAMETER	SAMPLE RESULT	PQL X20*
1, 3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1, 3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
<u>ETHYLBENZENE</u>	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADIENE	ND	0.005
ISOPROPYLBENZENE	ND	0.005
<u>4-ISOPROPYLTOLUENE</u>	ND	0.005
4-METHYL-2-PENTANONE (MIBK	ND	0.020
METHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
<u>N-PROPYLBENZENE</u>	ND	0.005
STYRENE	ND	0.005
1, 1, 1, 2-TETRACHLOROETHANE	ND	0.005
1, 1, 2, 2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE	ND	0.005
TOLUENE	ND	0.005
1, 2, 3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1, 1, 1-TRICHLOROETHANE	ND	0.005
1,1,2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1, 3, 5-TRIMETHYLBENZENE	ND	0.005
VINYL CHLORIDE	ND	0.005
M/P-XYLENE	ND	0.010
<u>O-XYLENE</u>	ND	0.005
COMMENTS POL = PRACTICAL OUANT	ITATION LIMIT	

ND = NON-DETECTED OR BELOW THE PQL

PQL RAISED DUE TO MATRIX INTERPORT

DATA REVIEWED AND APPROVED BY:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 Tel:(925)673-5500 Email: Francoisbush@gmail.com PROJECT: Corona Road Station Petaluma

MATRIX: SOIL	DATE RECEIVED:09/08/17
DATE SAMPLED: <u>09/06/17</u>	DATE ANALYZED: 09/09/17
REPORT TO: MR. FRANCOIS BUSH	DATE REPORTED: 09/15/17

SAMPLE I.D.: SV-20-4

LAB I.D.: 170908-175

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 1 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	POL X1	
ACETONE	ND	0.020	
BENZENE	ND	0.005	-
BROMOBENZENE	ND	0.005	-
BROMOCHLOROMETHANE	ND	0.005	
BROMODICHLOROMETHANE	ND	0.005	_
BROMOFORM	ND	0.005	-
BROMOMETHANE	ND	0.005	
2-BUTANONE (MEK	ND	0.020	
<u>N-BUTYLBENZENE</u>	ND	0.005	
<u>SEC-BUTYLBENZENE</u>	ND	0.005	_
TERT-BUTYLBENZENE	ND	0.005	
CARBON DISULFIDE	ND	0.010	
CARBON TETRACHLORIDE	ND	0.005	=
CHLOROBENZENE	ND	<u>0.005</u>	
CHLOROETHANE	ND	0.005	
CHLOROFORM	<u>ND</u>	0.005	
CHLOROMETHANE	ND	0.005	=
<u>2-CHLOROTOLUENE</u>	ND	0.005	
4-CHLOROTOLUENE	ND	0.005	
DIBROMOCHLOROMETHANE	ND	0.005	
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005	
1,2-DIBROMOETHANE	ND	0.005	
DIBROMOMETHANE	ND	0.005	
1,2-DICHLOROBENZENE	ND	0.005	
1,3-DICHLOROBENZENE	ND	0.005	
1,4-DICHLOROBENZENE	ND	0.005	
DICHLORODIFLUOROMETHANE	ND	0.005	
1,1-DICHLOROETHANE	ND	0,005	
1,2-DICHLOROETHANE	ND	0.005	
1,1-DICHLOROETHENE	ND	0.005	
CIS-1, 2-DICHLOROETHENE	ND	0.005	
TRANS-1, 2-DICHLOROETHENE	ND	0.005	
1,2-DICHLOROPROPANE	ND	0.005	

--- TO BE CONTINUED ON PAGE 12 -----

DATA REVIEWED AND APPROVED BY:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 Tel: (925) 673-5500 Email: Francoisbush@gmail.com PROJECT: Corona Road Station Petaluma MATRIX: SOIL DATE RECEIVED:09/08/17 DATE SAMPLED: 09/06/17 DATE ANALYZED: 09/09/17 REPORT TO: MR. FRANCOIS BUSH DATE REPORTED: 09/15/17 SAMPLE I.D.: SV-20-4 LAB I.D.: 170908-175 ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 CF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM PARAMETER SAMPLE RESULT POL X1 1, 3-DICHLOROPROPANE ND 0.005 2,2-DICHLOROPROPANE ND 0.005 1,1-DICHLOROPROPENE ND 0.005 CIS-1, 3-DICHLOROPROPENE ND 0.005 TRANS-1, 3-DICHLOROPROPENE ND 0.005 ETHYLBENZENE ND 0.005 2-HEXANONE ND 0.020 HEXACHLOROBUTADIENE ND 0.005 ISOPROPYLBENZENE ND 0.005 4-ISOPROPYLTOLUENE ND 0.005 4-METHYL-2-PENTANONE (MIBK) ND 0.020 METHYL tert-BUTYL ETHER (MTBE) ND 0.005 METHYLENE CHLORIDE ND 0.010 NAPHTHALENE ND 0.005 N-PROPYLBENZENE ND 0.005 STYRENE ND 0.005 1, 1, 1, 2-TETRACHLOROETHANE 0.005 ND 1, 1, 2, 2-TETRACHLOROETHANE ND 0.005 TETRACHLOROETHENE (PCE) ND 0.005 TOLUENE 0.005 ND 1, 2, 3-TRICHLOROBENZENE ND 0.005 1, 2, 4-TRICHLOROBENZENE ND 0.005 1, 1, 1-TRICHLOROETHANE ND 0.005 1, 1, 2-TRICHLOROETHANE ND 0.005 TRICHLOROETHENE (TCE ND 0.005 TRICHLOROFLUOROMETHANE ND 0.005 1, 2, 3-TRICHLOROPROPANE ND 0.005

 I.2.4-TRIMETHYLBENZENE
 ND
 0.005

 1.3.5-TRIMETHYLBENZENE
 ND
 0.005

 VINYL CHLORIDE
 ND
 0.005

 M/P-XYLENE
 ND
 0.010

 O-XYLENE
 ND
 0.005

Ø

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE

DATA REVIEWED AND APPROVED BY:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### METHOD BLANK REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 Tel: (925) 673-5500 Email: Francoisbush@gmail.com PROJECT: Corona Road Station Petaluma

MATRIX ; SOIL	DATE	RECEIVED: 09/08/17
DATE SAMPLED: 09/06/17	DATE	ANALYZED: 09/08/17
REPORT TO: MR. FRANCOIS BUSH	DATE	REPORTED: 09/15/17
	and the second second	

METHOD BLANK REPORT FOR LAB I.D.: 170908-163, 170908-165, 170908-168, 170908-169, 170908-172, 170908-173, 170908-175

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2 UNIT: mg/kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0,020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK	ND	0.020
<u>N-BUTYLBENZENE</u>	ND	0.005
SEC-BUTYLBENZENE	ND	0,005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ŇD	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
<u>4-CHLOROTOLUENE</u>	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1, 2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1, 3-DICHLOROBENZENE	ND	0.005
1, 4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1, 1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1, 2-DICHLOROETHENE	ŇD	0.005
TRANS-1,2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

CONTINUED ON PAGE

an

DATA REVIEWED AND APPROVED BY:

------

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### METHOD BLANK REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 Tel:(925)673-5500 Email: Francoisbush@gmail.com PROJECT: Corona Road Station Petaluma

MATRIX: SOIL	DATE RECEIVED: <u>09/08/17</u>
DATE SAMPLED: 09/06/17	DATE ANALYZED: 09/08/17
REPORT TO: MR. FRANCOIS BUSH	DATE REPORTED: 09/15/17

CONTRACTOR OF A DESCRIPTION OF A DESCRIP

METHOD BLANK REPORT FOR LAB I.D.: 170908-163, 170908-165, 170908-168, 170908-169, 170908-172, 170908-173, 170908-175

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

-----

PARAMETER	SAMPLE RESULT	PQL X1	
1, 3-DICHLOROPROPANE	ND	0.005	
2,2-DICHLOROPROPANE	ND	0.005	
1,1-DICHLOROPROPENE	ND	0.005	
CIS-1, 3-DICHLOROPROPENE	ND	0.005	_
TRANS-1, 3-DICHLOROPROPENE	ND	0.005	
ETHYLBENZENE	ND	0.005	
<u>2-HEXANONE</u>	ND	0.020	
HEXACHLOROBUTADIENE	ND	0.005	
ISOPROPYLBENZENE	ND	0.005	
4-ISOPROPYLTOLUENE	ND	0.005	
<u>4-METHYL-2-PENTANONE</u> (MIBK)	ND	0.020	
METHYL tert-BUTYL ETHER (MTBE	ND	0.005	
METHYLENE CHLORIDE	ND	0.010	
NAPHTHALENE	ND	0.005	
N-PROPYLBENZENE	ND	0.005	_
STYRENE	ND	0.005	
1, 1, 1, 2-TETRACHLOROETHANE	ND	0.005	-
1, 1, 2, 2-TETRACHLOROETHANE	ND	0.005	
TETRACHLOROETHENE (PCE	ND	0.005	
TOLUENE	ND	0.005	
1,2,3-TRICHLOROBENZENE	ND	0.005	
1,2,4-TRICHLOROBENZENE	ND	0.005	
1, 1, 1-TRICHLOROETHANE	ND	0.005	=
1, 1, 2-TRICHLOROETHANE	ND	0.005	
TRICHLOROETHENE (TCE)	ND	0.005	
TRICHLOROFLUOROMETHANE	ND	0.005	
1, 2, 3-TRICHLOROPROPANE	ND	0.005	
1,2,4-TRIMETHYLBENZENE	ND	0.005	_
1, 3, 5-TRIMETHYLBENZENE	ND	0.005	
VINYL CHLORIDE	ND	0.005	
M/P-XYLENE	ND	0.010	
<u>O-XYLENE</u>	ND	0.005	
COMMENTS PQL = PRACTICAL QUANTI	TATION LIMIT		

ND = NON-DETECTED OR BELOW THE POL DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

			Enviro-Che	em, Inc.					
1214 E. Lexington Ave	enue, Pomo	ona, CA 917	766 8260B QA	Tel (9 QC Repo	09)590-5905 rt	Fax (	(909)590-59	07	
Date Analyzed: Machine:	<u>9/8-9/2017</u> C						Matrix: Unit:	Solid/Soll/I mg/Kg (PP	<u>-iauid</u> Mi
Matrix Spike (MS)/Matr	ix Spike Du	plicate (MSI	D)						
Spiked Sample Lab I.D		170908-LC	S1/2	_					_
Analyte	S.R	spk conc	MS	%RC	MSD	%RC	<u>%RPD</u>	ACP %RC	ACP RPD
Benzene	0	0.050	0.052	104%	0.051	102%	2%	75-125	0-20
Chlorobenzene	0	0.050	0.047	94%	0.045	90%	4%	75-125	0-20
1,1-Dichloroethene	0	0.050	0.057	114%	0.052	104%	10%	75-125	0-20
Toluene	0	0.050	0.048	96%	0.046	92%	4%	75-125	0-20
Trichloroethene	0	0.050	0.046	92%	0.044	88%	4%	75-125	0-20
Lab Control Spike (LCs	S):								
Analyte	spk conc	LCS	%RC	ACP %RC					
Benzene	0.050	0.052	104%	75-125					
Chlorobenzene	0.050	0.044	88%	75-125					
Chloroform	0.050	0.046	92%	75-125					
1 1-Dichlorothene	0.050	0.054	108%	75-125					
Ethylhenzene	0.050	0.051	102%	75-125					
o-Xviene	0.050	0.048	96%	75-125					
m p-Xvlene	0,100	0.103	103%	75-125					
Toluene	0.050	0.047	94%	75-125					
1 1 1-Trichloroethane	0.050	0.058	116%	75-125					
	0.050	0.045	90%	75-125					
I richloroothono (I CE	0.050	111000-1	V V V V V						
	0.050	0.040							
Surrogate Recover	spk conc	ACP %RC	MB %RC	%RC	%RC	%RC	%RC	%RC	%RC
Surrogate Recovery Sample I.D.	spk conc	ACP %RC	MB %RC	%RC 170908-128	%RC 170908-129	%RC 170908-130	%RC 170908-131	%RC	%RC 170908-13
Surrogate Recover Sample I.D. Dibromofluoromethane	spk conc	ACP %RC	MB %RC M-BLK 101%	% RC 170908-128 102%	%RC [170908-129]	%RC 170908-130	%RC 170908-131	%RC 170908-132	%RC [ <b>170908-13</b> 106%
Surrogate Recover Sample I.D. Dibromofluoromethane	spk conc	ACP %RC	MB % RC M-BLK 101% 100%	% RC 170908-128 102% 94%	%RC 170908-129 1035 94%	%RC 170908-130 91%	%RC 170908-131 1014 94%	%RC 170908-132 110%	%RC   <b>170908-13</b> 106% 98%
Surrogate Recover Sample I.D. Dibromofluoromethane Toluene-d8 4-Bromofluorobenzene	0.050 spk conc 60.0 60.0	ACP %RC 70-130 70-130 70-130	MB % RC M-BLK 101% 100% 82%	% RC 170908-128 102% 94% 79%	%RC (170908-129) (113%) 94% 79%	% RC 170908-130 91% 70%	%RC 170908-131 94% 74%	% RC [170908-132 100% 78%	%RC   <b>170908-13</b>  106%  98%  76%
Surrogate Recover Sample I.D. Dibromofluoromethane Toluene-d8 4-Bromofluorobenzene	0.050 spk conc 60.0 60.0 60.0	ACP %RC 70-130 70-130 70-130	MB % RC M-BLK 101% 100% 82%	% RC 170908-128 102% 94% 79%	%RC 170908-129} 94% 79%	%RC 170908-130 91% 70% %RC	%RC 170908-131 94% 74% %RC	%RC 170908-132 100% 78%	%RC 170908-13 106% 98% 76% %RC
Surrogate Recover Sample I.D. Dibromofluoromethane Toluene-d8 4-Bromofluorobenzene Surrogate Recover Sample I.D.	spk conc 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.	ACP %RC 70-130 70-130 70-130 70-130	MB % RC M-BLK 101% 100% 82% % RC 170908-134	% RC 170908-128 102% 94% 79% %RC 170908-135	%RC 170908-129 94% 79% %RC 170908-1	%RC 170908-130 91% 70%	%RC 170908-131 94% 74% %RC 170908-165	%RC 170908-132 100% 78% %RC 170908-168	%RC 170908-13 106% 98% 76% %RC 170908-16
Surrogate Recover Sample I.D. Dibromofluoromethane Toluene-d8 4-Bromofluorobenzene Surrogate Recover Sample I.D.	spk conc 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.	ACP %RC 70-130 70-130 70-130 ACP %RC	MB %RC M-BLK 101% 100% 82% %RC 170908-134	% RC 170908-128 102% 94% 79% %RC 170908-135	%RC 170908-129 94% 79% %RC 170908-1	%RC 170908-130 91% 70% ~ %RC 170908-163 90%	%RC 170908-131 94% 74% %RC 170908-165	%RC 170908-132 100% 78% %RC 170908-168 80%	%RC 170908-13 106% 98% 76% %RC 170908-16 92%
Surrogate Recover Sample I.D. Dibromofluoromethane Toluene-d8 4-Bromofluorobenzene Surrogate Recover Sample I.D. Dibromofluoromethane	0.050 spk conc 60.0 60.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 1	ACP %RC 70-130 70-130 70-130 ACP %RC 70-130 70-130	MB % RC M-BLK 101% 100% 82% % RC 170908-134 108% 08%	% RC 170908-128 102% 94% 79% %RC 170908-135 108%	%RC 170908-129} 94% 79% %RC 170908-1	% RC 170908-130 91% 70% ~ % RC 170908-163 90% 08%	%RC 170908-131 94% 74% %RC 170908-165 101%	%RC 170908-132 100% 78% %RC 170908-168 89% 96%	%RC 170908-13 106% 98% 76% %RC 170908-16 92% 97%
Surrogate Recover Sample I.D. Dibromofluoromethane Toluene-d8 4-Bromofluorobenzene Surrogate Recover Sample I.D. Dibromofluoromethane Toluene-d8 4-Bromofluorobenzene	0.050 spk conc 60.0 60.0 60.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 5	ACP %RC 70-130 70-130 70-130 ACP %RC 70-130 70-130 70-130	MB % RC M-BLK 101% 100% 82% % RC 170908-134 108% 98% 74%	% RC 170908-128 102% 94% 79% %RC 170908-135 108% 98% 76%	%RC 170908-129} 94% 79% %RC 170908-1 106% 99% 76%	% RC 170908-130 91% 70% % RC 170908-163 90% 98% 72%	%RC 170908-131 94% 74% %RC 170908-165 101% 99% 79%	%RC 170908-132 100% 78% %RC 170908-168 89% 96% 70%	%RC 170908-13 106% 98% 76% %RC 170908-16 92% 92% 97% 68*%
Sample I.D. Dibromofluoromethane Toluene-d8 4-Bromofluorobenzene Surrogate Recover Sample I.D. Dibromofluoromethane Toluene-d8 4-Bromofluorobenzene	0.050 spk conc 60.0 60.0 60.0 60.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 5	ACP %RC 70-130 70-130 70-130 ACP %RC 70-130 70-130 70-130	MB % RC M-BLK 101% 100% 82% % RC 170908-134 108% 98% 74%	% RC 170908-128 102% 94% 79% %RC 170908-135 108% 98% 76%	%RC 170908-129 94% 79% %RC 170908-1 106% 99% 76%	% RC 170908-130 91% 70% % RC 170908-163 90% 98% 72%	%RC 170908-131 94% 74% %RC 170908-165 101% 99% 79%	%RC 170908-132 100% 78% %RC 170908-168 89% 96% 70%	%RC 170908-13 106% 98% 76% %RC 170908-16 92% 97% 68*%
Surrogate Recover Sample I.D. Dibromofluoromethane Toluene-d8 4-Bromofluorobenzene Surrogate Recover Sample I.D. Dibromofluoromethane Toluene-d8 4-Bromofluorobenzene Surrogate Recover	0.050 spk conc 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 5	ACP %RC 70-130 70-130 70-130 ACP %RC 70-130 70-130 70-130	MB % RC M-BLK 101% 100% 82% % RC 170908-134 108% 98% 74% % RC	% RC 170908-128 102% 94% 79% %RC 170908-135 108% 98% 76% %RC	%RC 170908-129} 94% 79% %RC 170908-1 106% 99% 76% %RC 1	%RC 170908-130 91% 70% %RC 170908-163 90% 98% 72%	%RC 170908-131 94% 74% %RC 170908-165 101% 99% 79%	%RC 170908-132 100% 78% %RC 170908-168 89% 96% 70%	%RC 170908-13 106% 98% 76% %RC 170908-16 92% 97% 68*%
Surrogate Recover Sample I.D. Dibromofluoromethane Toluene-d8 4-Bromofluorobenzene Surrogate Recover Sample I.D. Dibromofluoromethane Toluene-d8 4-Bromofluorobenzene Surrogate Recover Sample I.D.	0.050 spk conc 60.0 60.0 60.0 50.0 50.0 50.0 50.0 50.0 50.0	ACP %RC 70-130 70-130 70-130 ACP %RC 70-130 70-130 70-130 ACP %RC	MB % RC M-BLK 101% 100% 82% % RC 170908-134 108% 98% 74% % RC 170908-172	% RC 170908-128 102% 94% 79% % RC 170908-135 108% 98% 76% % RC 170908-173	%RC 170908-129} 94% 79% %RC 170908-1 106% 99% 76% %RC 1 170908-175	% RC 170908-130 91% 70% % RC 170908-163 90% 98% 72%	%RC 170908-131 94% 74% %RC 170908-165 101% 99% 79%	%RC 170908-132 100% 78% %RC 170908-168 89% 96% 70%	%RC 106% 98% 76% %RC 170908-16 92% 92% 97% 68*%
Surrogate Recover Sample I.D. Dibromofluoromethane Toluene-d8 4-Bromofluorobenzene Surrogate Recover Sample I.D. Dibromofluoromethane Toluene-d8 4-Bromofluorobenzene Surrogate Recover Sample I.D. Dibromofluorobenzene	0.050 spk conc 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 5	ACP %RC 70-130 70-130 70-130 ACP %RC 70-130 70-130 70-130 ACP %RC	MB % RC M-BLK 101% 100% 82% % RC 170908-134 108% 98% 74% % RC 170908-172 110%	% RC 170908-128 102% 94% 79% % RC 170908-135 108% 98% 76% % RC 170908-173 92%	%RC 170908-129 94% 79% %RC 170908-1 106% 99% 76% %RC 1 170908-175 98%	% RC 170908-130 91% 70% % RC 170908-163 90% 98% 72%	%RC 170908-131 94% 74% %RC 170908-165 101% 99% 79%	%RC 170908-132 100% 78% %RC 170908-168 89% 96% 70%	%RC 170908-13 106% 98% 76% %RC 170908-16 92% 97% 68*%
Surrogate Recovery Sample I.D. Dibromofluoromethane Toluene-d8 4-Bromofluorobenzene Surrogate Recovery Sample I.D. Dibromofluorobenzene Surrogate Recovery Sample I.D. Surrogate Recovery Sample I.D. Dibromofluorobenzene Surrogate Recovery	0.050 spk conc 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 5	ACP %RC 70-130 70-130 70-130 ACP %RC 70-130 70-130 70-130 70-130 70-130 70-130	MB % RC M-BLK 101% 100% 82% % RC 170908-134 108% 98% 74% % RC 170908-172 110% 100%	% RC 170908-128 102% 94% 79% %RC 170908-135 108% 98% 76% %RC 170908-173 92% 100%	%RC 170908-129 94% 79% %RC 170908-1 106% 99% 76% %RC 1 170908-175 98% 99%	% RC 170908-130 91% 70% % RC 170908-163 90% 98% 72%	%RC 170908-131 94% 74% %RC 170908-165 101% 99% 79%	%RC 170908-132 100% 78% %RC 170908-168 89% 96% 70%	%RC 170908-13 106% 98% 76% %RC 170908-16 92% 97% 68*%

S.R. = Sample Results spk conc = Spike Concentration MS = Matrix Spike

	5
Analyzed/Reviewed By:	10
60	100
Final Reviewer:	1

%RC = Percent Recovery ACP %RC = Accepted Percent Recovery MSD = Matrix Spike Duplicate

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 Tel:(925)673-5500 Email: Francoisbush@gmail.com PROJECT: Corona Road Station Petaluma

MATRIX: <u>WATER</u>	DATE	RECEIVED: 09/08/17
DATE SAMPLED: 09/06/17	DATE	ANALYZED: 09/12/17
REPORT TO: MR. FRANCOIS BUSH	DATE	REPORTED: 09/15/17
	Call of the local dist	A REAL PROPERTY OF A REAL PROPERTY.

SAMPLE I.D.: MW-1

LAB I.D.: 170908-177

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, MAGE 1 OF 2

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	10
BENZENE	ND	1
BROMOBENZENE	ND	1
BROMOCHLOROMETHANE	ND	1
BROMOGICHLOROMETHANE	ND	1
BROMOFORM	ND	1
BROMOMETHANE	ND	1
<u>2-BUTANONE (MEK</u>	ND	10
<u>N-BUTYLBENZENE</u>	ND	1
SEC-BUTYLBENZENE	ND	1
TERT-BUTYLBENZENE	ND	1
CARBON DISULFIDE	ND	5
CARBON TETRACHLORIDE	ND	1
CHLOROBENZENE	ND	1
CHLOROETHANE	ND	1
CHLOROFORM	ND	1
CHLOROMETHANE	ND	1
2-CHLOROTOLUENE	ND	1
4-CHLOROTOLUENE	ND	1
DIBRORDCHLOROMETHANE	ND	1
1.2-DIBROMO-1-CHLOROPROPANE	ND	1
1,2-DIBROMOETHANE	ND	1
DIBROMOMETHANE	ND	1
1,2-DICHLOROBENZENE	ND	1
1, 3-DICHLOROBENZENE	ND	1
1,4-DICHLOROBENZENE	ND	1
DICHLORODIFLUOROMETHANE	ND	1
1,1-DICHLOROETHANE	ND	1
1,2-DICHLOROETHANE	ND	1
1, 1-DICHLOROETHENE	ND	1
CIS-1,2-DICHLOROETHENE	ND	_1
TRANS-1,2-DICHLOROSTHENE	ND	1
1,2-DICHLOROPROPANE	ND	1
1,3-DICHLOROPROPANE	ND	1

---- TO BE CONTINUED ON PAGE 12 -----

DATA REVIEWED AND APPROVED BT

Enviro – Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

CUSTOMER: Pinnacle Environmen P.O. Box 904 Clayton, CA 94517 Tel: (925) 673-5500 E PROJECT: Corona Road Station	mail: Francoisbush@g Petaluma	gmail.com
ΜΑΨΟΙΧ·ΜΆΨΕΡ		
DATE SAMPLED: 09/06/17	DATE RECEIV	ED: 09/08/17
REPORT TO: MR. FRANCOIS BUSH	DATE ANALIZ. DATE REPORT	ED: <u>09/12/17</u> ED:09/15/17
SAMPLE I.D.: MW-1	LAB I.D.: 1	70908-177
ANALYCIC, VOLDELLE ADDRESS	************************	***************
INTT: UC/L = N	5, EPA METHOD 5030B/	8260B, PAGE 2 OF 2
PARAMETER	SAMPLE PESILT	= PPB
2,2-DICHLOROPROPANE	ND	POL XI
1.1-DICHLOROPROPENE	ND	
CIS-1, 3-DICHLOROPROPENE	ND	
TEAMS+1.3-DICHLOROPROFFME	ND	1
ETHYLBENZENE	ND	
2-HEXANONE	ND	10.
HEXACULOBOBUTADIENE	ND	
ISOPROPYLSKHRENE -	ND	
d-130980PFLV0LUENE	ND	
4-METHYL-2-PENTANONE (MISK)	ND	10
METHYL tert-BUTYL ETHER (MTBE)	ND	40
METHYLENE CHLORIDE	ND	
NAPHTHALENE	ND	210
N-PROPYLBENZENE	ND	
STYRENE	ND	
1, 1, 1, 2-TETRACHLOROETHANE	ND	
1,1,2,2-TETRACHLOROETHANE	ND	
TETRACHLORORTHENE (PCE)	ND	14
TOLUENE	ND	
1.2.3-TEICHLOROBENZENE	ND	
1,2,4-TRECHLOROBENZENE	ND	
1,1,1-TRICHLOROETHANE	ND	
1,1,2-TRICHLORGETHAME	ND	
	ND	
TRICHLORDETHENE (TCE)		
TRICHLOROSTHENE (TCE) TRICHLOROFICIOROMETHANE	ND	
1,2,3-TRICHLOROPROPANE	<u>ND</u>	
1,2,3-TRICHLOROPROPANE	ND ND ND	1
1,2,3-TRICHLOROPROPANE	ND ND ND ND	1
TRICHLORDSTHENE (TCC) TRICHLORDSTOROMETHANE 1,2,3-TRICHLOROPROPANE 1,2,3-TRIMETHILDERZENE 1,1,5-TRIMETHILDERZENE TIMIL CHLORIDE	ND ND ND ND ND	
1,2,3-TRICHLOROPROPANE         1,3-TRICHLOROPROPANE         1,4,5-TRICHLOROPROPANE         1,4,5-TRICHLOROPROPANE         1,4,5-TRICHLOROPROPANE         1,4,5-TRICHLOROPROPANE         1,4,5-TRICHLOROPROPANE         1,4,5-TRICHLOROPROPANE         1,4,5-TRICHLOROPROPANE         1,5-TRICHLOROPROPANE         1,5-TRICHLOROPROPANE         1,5-TRICHLOROPROPANE         1,5-TRICHLOROPROPANE         1,5-TRICHLOROPROPANE         1,5-TRICHLOROPROPANE         1,5-TRICHLOROPROPANE         1,5-TRICHLOROPROPANE         1,5-TRICHLOROPROPANE         1,5-TRICHLOROPROPANE	ND ND ND ND ND ND	

DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

Enviro – Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

	TARO		
CHSTOMED.		RATORI REPORT	
COSTOMER:	Pinnacie Environment	al, Inc	
	P.O. BOX 904		
	Clayton, CA 94517		
	Tel: (925) 673-5500 Em	ail: Francoisbush@g	mail.com
PROJECT:	Corona Road Station	Petaluma	
MATRIX: WAT	ER	DATE RECEIVE	D: <u>09/08/1</u> 7
DATE SAMPL	ED: <u>09/06/17</u>	DATE ANALYZE	D:09/12/17
REPORT TO:	<u>MR. FRANCOIS BUSH</u>	DATE REPORTE	D:09/15/17
SAMPLE I.D	.: MW-2	LAB I.D.: 17	0908-178
<b>ANALYS</b> I	S: VOLATILE ORGANICS UNIT: ug/L = M	, EPA METHOD 5030B/8 ICROGRAM PER LITER =	260B, PAGE 1 OF 2 PPB
PARAMETER		SAMPLE RESULT	POL N1
ACETONE		ND	10
BENZENE		ND	1
BROMOBENZE:	NE	ND	1
DROMOCHLOR	ORIGINARIE	ND	1
BROMODICHL	OHOMSTHANE	ND	1
BROMOFORM		ND	1
BROMOMETHA	NE	ND	1
2-BUTANONE	(MEK)	ND	10
<u>N-BUTYLBEN:</u>	ZENE	ND	1
BRC-BOTYLE	KN2EME.	ND	1
LEUL-BUAAP	BENZEHE	ND	1
CARBON DIST	JLFIDE	ND	5_
CARBON TETY	RACHLORIDE	<u>N</u> D	1
CHLOROBENZI	ENE	ND	1
CHLOROETHAI	NE	<u>ND</u>	1
CHLOROFORM		<u>ND</u>	1
CHLOROMETHA	ANE	ND	1
A CULOROTO		ND	1
4-CHLOROTOI	LUENE	ND	1
TORUGUENDA	ANALYSIS I THANKS	<u>ND</u>	1
1 2-010000		<u>ND</u>	1
			1
JEDROMOMETT	1/11/15	<u>ND</u>	1
L R-Dicaro	CONTRACTOR		
	OBENZENE	ND	1
		ND	1
1-DICHLOR	CETHANE	ND	
	OFTHANE		
1-DICHLOR	OETHENE		
	THLOROFTHEWE	ND	
TRANS-1.2-r	TCHLOROETHENE		1
2-DICHLOR	OPROPANE	ND	<u></u>
- 3-DICHLOF	OPROPANE	ND	- <u>+</u>
CO PIONION	OLIVELINE CONTRACT	1117	

TO BE CONTINUED, ON PAGE 12

DATA REVIEWED AND APPROVED BY

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

### LABORATORY REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 Tel: (925) 673-5500 Email: Francoisbush@gmail.com PROJECT: Corona Road Station Petaluma

MATRIX:WATERDATE RECEIVED:09/08/17DATE SAMPLED:09/06/17DATE ANALYZED:09/12/17REPORT TO:MR. FRANCOIS BUSHDATE REPORTED:09/15/17

SAMPLE I.D.: MW-2

*******************************

LAB I.D.: 170908-178

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, FAGE 2 OF 2

PARAMETER S	AMPLE RESULT	PQL X1
2,2-DICHLOROPROPANE	ND	1
1,1-DICHLOROPROPENE	ND	1
CIS-1, 3-DICHLOROPROPENE	ND	1
TRANS-1, 3-DICHLOROPROPENE	ND	1
<u>ETHYLBENZENE</u>	ND	1
<u>2-HEXANONE</u>	ND	10
HEXACHLOROBUTADIENE	ND	1
ISOPROPYLBENZENE	ND	1
4-ISOPROPYLTOLUENE	ND	1
4-NETHYL-2-PENCANONE INTUKI	ND	10
METHYL LOTT-HUTYL ETHER (MTRE)	ND	3
METHYLENE CHLORIDE	ND	5
NAPHTHALENE	<u>ND</u>	1
N-PROPYLBENZENE	ND	1
STYRENE	ND	1
1, 1, 1, 2-TETRACHLOROETHANE	ND	1
1, 1, 2, 2-TETRACHLOROETHANE	ND	1
TETRACHLOROETHENE (PCE	ND	1
TOLUENE	ND	1
1, 2, 3-TRICHLOROBENZENE	ND	1
1,2,4-TRICHLOROBENZENE	ND	1
1, 1, 1-TRICHLOROETHANE	ND	1
1, 1, 2-TRICHLOROETHANE	ND	1
TRICHLOROETHENE (TCE)	ND	1
TRICHLOROFLUOROMETHANE	ND	1
1,2,3-TRICHLOROPROPANE	ND	1
1,2,4-TRIMETHYLBENZENE	ND	1
1, 3, 5-TRIMETHYLBENZENE	ND	1
VINYL CHLORIDE	ND	1
M/P-XYLENE	ND	2
O-XYLENE	ND	1

ND = NON-DETECTED OR BELOW THE POL DATA REVIEWED AND APPROVED BY:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 Tel: (925) 673-5500 Email: Francoisbush@gmail.com PROJECT: Corona Road Station Petaluma

MATRIX: WATER	DATE RECEIVED: 09/08/17
DATE SAMPLED: 09/06/17	DATE ANALYZED: 09/12/17
REPORT TO: MR. FRANCOIS BUSH	DATE REPORTED: 09/15/17

SAMPLE I.D.: MW-3

LAB I.D.: 170908-179

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, FAGE 1 OF 2

UNIT: $ug/L =$	MICROGRAM PER LITER =	= PPB
PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	10
BENZENE	ND	1
BROMOBENZENE	ND	1
BROMOCHLOROMETHANE	ND	_ 1,
BROMODICHLOROMETHANE	ND	1
BROMOFORM	ND	1
BROMOMETHANE	ND	1
<u>2-BUTANONE (MEK</u>	ND	<u>10</u>
<u>N-BUTYLBENZENE</u>	ND	_ 1
SEC-BUTYLBENZENE	ND	_1
TERT-BUTYLBENZENE	ND	
CARBON DISULFIDE	ND	5_
CARBON TETRACHLORIDE	ND	
CHLOROBENZENE	ND	1.
<u>CHLOROETHANE</u>	ND	1
CHLOROFORM	ND	
CHLOROMETHANE	ND	1.
2-CHLOROTOLUENE	ND	1
<u>4-CHLOROTOLUENE</u>	ND	11
DIBROMOCHLOROMETHANE	ND	1
1,2-DIBROMO-3-CHLOROPROPANE	ND	1
1,2-DIBROMOETHANE	ND	1
DIBROMOMETHANE	ND	1
1,2-DICHLOROBENZENE	ND	1
1, 3-DICHLOROBENZENE	ND	1
1,4-DICHLOROBENZENE	ND	1
DICHLORODIFLUOROMETHANE	ND	1
1,1-DICHLOROETHANE	ND	1
1,2-DICHLOROETHANE	ND	1
1,1-DICHLOROETHENE	ND	1
CIS-1, 2-DICHLOROETHENE	ND	1
TRANS-1, 2-DICHLOROETHENE	ND	1
1,2-DICHLOROPROPANE	ND	1
1,3-DICHLOROPROPANE	ND	1

-- TO BE CONTINUED N PAGE #2

DATA REVIEWED AND APPROVED BY:

Enviro – Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABC CUSTOMER: Pinnacle Environmen P.O. Box 904 Clayton, CA 94517 Tel: (925) 673-5500 E	MATORY REPORT ital, Inc	Mail.com
PROJECT: Corona Road Station	Petaluma	
MANDIV - STANDS		
MAIKIX; WAIEK DATE SAMDIED, 00/06/17	DATE RECEIVE	D: <u>09/08/17</u>
REPORT TO US FRANCOIS BUCH	DATE ANALYZE	D: <u>09/12/17</u>
TELEVITE TO: TRANCOTS BUSH	DATE REPORTE.	D: <u>09/15/17</u>
SAMPLE I.D.: MW-3	LAB I.D.: 17	0908-179
ANALYSIS: VOLATILE ORGANICS UNIT: ug/L = M	5, EPA METHOD 5030B/8 MICROGRAM PER LITER =	260B, PAGE 2 OF 2 PPB
PARAMETER	SAMPLE RESULT	PQL X1
L 1 DICHLOROPBOPANE	ND	
I, I-DICHLOROPROPENE	ND	
DIS-1, 3-DICHLOROPROPENE	ND	1
TRANS-1, 3-DICHLOROPROPENE	ND	
2-HEYANONE	ND	(1)
FYACHI ODODUTA DI ENE	ND	10
TEACHLOROBOTADTENE	ND ND	1
- ISODRODVI TOLDING	ND	1
-SETUYI-2-DENTANTINE (MATHE)	ND	
(ETHYI, tert-BUTYI FTUED (MTDE)	ND ND	10
ETHYLENE CHLORIDE		
IAPHTHALENE	ND	
-PROPTLINENZENI	ND	
TYRENE	ND	
1,1,1,2-TETRACHLORDETRANE		
1.2.2-TETRACHLOROETHANE	ND	
ETRACHLOROETHENE (PCE)	ND	
OLUENE	ND	
. 2. 3-TRICHLOROBENZENE	ND	
,2,4-TRICHLOROBENZENE	ND	
1.1.TRICHLORDETRANE	ND	
. I. D. THICHLOROPTURES	ND	
TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT		-
RICHLOROETHENE ITCEI	ND	
RICHLOROFLUOROMETHANE	ND ND	1
RICHLOROFLUOROMETHANE	ND	1
RICHLOROFLUOROMETHANE	ND ND ND ND ND	1
HICHLOROFTHENE   TCT  RICHLOROFLUOROMETHANE .1.1-THICHLOROPROPAGE .2.4 TRIMETHYLBENZENE .1.5-TRIMETHYLBENZENE	ND ND ND ND ND ND	1
HICHLOROFTHENE  TCE  RICHLOROFLUOROMETHANE .1.1-THICHLOROPPOPARE .2.4 TRIMETHYLBENZENE .1.5-TRIMETHYLBENZENE INT. CHLORIPE	ND ND ND ND ND ND ND	
HICHLOROFLUOROMETHANE RICHLOROFLUOROMETHANE A.J.THICHLOROPPOPARE A.J.TRIMETHYLBENZERE A.J.S.TRIMETHYLBENZERE INTLICHLORIPE /P-XYLENE	ND           ND	

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

	METH	OD BLANK REPORT	
CUSTOMER:	Pinnacle Environm	ental. Inc	
	P.O. Box 904	,	
	Clayton, CA 94517		
	Tel: (925) 673-5500	Email: Francoisbush@	omail.com
PROJECT:	Corona Road Static	on Petaluma	g===22 . 00m
M2 HD TV . M2m			
MATRIX: WAT		DATE RECEIV	ED: <u>09/08/17</u>
DALE SAMPL	ED: 09/06/17	DATE ANALYZ	ED: <u>09/11/17</u>
REPORT TO:	MR. FRANCUIS BUSH	DATE REPORT	ED: <u>09/15/17</u>
MET	HOD BLANK REPORT F	OR LAB T D · 170908-1	77 _178 _176
****			.,, -110, -179
ANALYS	IS: VOLATILE ORGANI UNIT: ug/L =	CS, EPA METHOD 5030B/ MICROGRAM PER LITER	8260B, PAGE 1 OF 2 = PPB
PARAMETER		SAMPLE RESULT	PQL X1
ACETONE		ND	10
BENZENE		ND	1
BROMOBENZE	NE	ND	1
BROMOCHLOR	OMETHANE	ND	1
INSUMPLY INSUM	AND THANK	ND	1
BROMOMETERS	NP	ND	1
2-BUTANONE	MERI	ND	1
E DOTANONE			10
BEC-BRYTH	CNZEDE		1
TERT-BUTYT.	BENZENE		
CARBON DISI	JLFIDE		<u>+</u>
CARBON TETT	VACHLORIDE		<u> </u>
CHLOROBENZI	ENE	ND	1
CHLOROETHAN	NE	ND	1
CHLOROFORM		ND	1
CHLOROMETHS	ANI.	ND	1
2-CHLOROTOI	LUENE	ND	1
-CHLOROTON	UENE	ND	1
DIBROMOCHLO	DROMETHANE	ND	1
.2-DIBBOM	-3-CHLOROPROPANE	ND	1
L_2-DIBROM	ETHANE	ND	1
OT BROKENET!	IANE	ND	1
1.Z-DICHLOP	OBENZENE	ND	-1
L. 3-DICHLOF	OBENZENE	ND	1
4-DECHLOI	OBENZENE	ND	1
TUATOSOBLE	LUOROMETHAN	ND	1
-1-DICHLOF	IQET HANT	ND	1
	WETHAN	ND	1
LICHLOF	<u>KOETHENE</u>	ND	1
<u>.15-1,2-DIC</u>	HLOROETHENE	ND	1
	ACREADETHERE	ND	1
2-DICHLOR	OPROPANE	ND	1
L, J-DICHLOR	OPROPANE	ND	1

TO BE CONTINUED ON PAGE 1

DATA REVIEWED AND APPROVED WY1

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### METHOD BLANK REPORT CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 Tel: (925) 673-5500 Email: Francoisbush@gmail.com PROJECT; Corona Road Station Petaluma MATRIX: WATER DATE RECEIVED:09/08/17 DATE SAMPLED: 09/06/17 DATE ANALYZED: 09/11/17 REPORT TO: MR. FRANCOIS BUSH DATE REPORTED: 09/15/17 METHOD BLANK REPORT FOR LAB I.D.: 170908-177, -178, -179 ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, FAGE 2 OF 2 TINTER . .....

PARAMETER	SAMPLE RESULT	= PPB
2,2-DICHLOROPROPANE	ND	
1,1-DICHLOROPROPENE	ND	
CIS-1, 3-DICHLOROPROPENE	ND	
IBANS-1, 3-DICHLOROPROFENE	ND	
ETHYLBENZENE	ND	1
<u>2-hexanone</u>	ND	10
HERACHLOROBUTADIENS	ND	1
ISOPROPYLBENZENE	ND	1
4-ISOPROFYLTCLUENE	ND	
d-SETHYL-2-PENTAMONE (MIBE)	ND	18
METRYL LOCT-BUTYL ETHER (MTHE)	ND	1
METHYLENE CHLORIDE	ND	5
NAPHTHALENE	ND	
<u>N-PROPYLBENZENE</u>	ND	
STYRENE	ND	1
1,1,1,2-TETRACHLOROETHANE	ND	
1.1.2.2-TETRACHLOROETHANE	ND	1
TETRACHLOBOLTHENE (PCE)	ND	1
TOLUENE	ND	1
1.2.3-TRICHLOROBENZEME	ND	
1.2,4-TRICHLOROBENZENE	ND	
1,1,1-TRICHLORDETHAME	ND	1
1.1.2-TRICKLOROETHANE	ND	
TRICHLOROFTHENE (TCE)	ND	
TRICHLOPOPLUGROMETHANE	ND	
1,2,3-TRICHLOROPROPANE	ND	
1.2.4-THIMETHYLBENZENE	ND	
1,3,5-TRIMETHYLBENZENE	ND	
VINYL CHLORIDE	ND	-
M/P-XYLENE	ND	2
<u>O-XYLENE</u>	ND	- 1
COMMENTS PQL = PRACTICAL QUANTI	TATION LIMIT	
ND = NON-DETECTED OR BELOW THE	POL /	
DATA REVIEWED AND APPROVED BY:	BA.	

1214 E. Lexington Av	enue, Pon	iona, CA 9	Enviro-Cl 1766 8260B Q	nem, Inc. T A/QC Rep	el (909)590 )ort	-5905	Fax (909)	)590-5907	
Date Analyzed: Machine:	9/11-12/20 11	017					Matrix Unit	WaterriLig ym/L (PPS	uid D
Matrix Spike (MS)/Matu Spiked Sample Lab LD	rix Spike D	uplicate (M	SD)						
Analyte	B.R.	spk conc	MS MS	%RC	MSD	%RC	%RPD	ACP %RC	ACP RP
Benzene	0	25.0	30.5	122%	26.6	106%	16%	75-125	0-20
Chlorobenzene	0	25.0	31.1	124%	29.3	117%	7%	75-125	0-20
1.1-Dichloroethene	0	25.0	29.1	116%	26.8	107%	9%	75-125	0-20
Toluene	0	25.0	30.9	124%	26.5	106%	18%	75-125	0-20
Trichloroethene (TCE	0	25,0	26.9	108%	25.2	101%	7%	75-125	0-20
		N	7						
Analyte	spk conc	LCS	%RC	ACP %RC	1				
Benzene	25.0	27.6	110%	75-125	1				
Chlorobenzene	25.0	27.3	109%	75-125					
Chloroform	25.0	29.6	118%	75-125	1				
1.1-Dichloroethene	25.0	26.8	107%	75-125					
Ethylbenzene	25.0	25.8	103%	75-125	1				
o-Xvlene	25.0	25.3	101%	75-125	1				
m.p-Xvlene	50.0	53.5	107%	75-125	1				
Toluene	25.0	27.9	112%	75-125	1				
1 1 1-Trichloroethane	25.0	27.7	111%	75-125	1				
Trichloroethene (TCE)	25.0	25.3	101%	75-125					
0						~ ~ ~ ~	1 / DO		0/20
Surrogate Recovery	spk conc	ACP %RC	MB %RC	9₀RC	90RC	9₀RC	96RC	%RC	%RC
Sample I.D.	Concession in the local division in the loca		M-BLK	170907-83	170907-84	170907-85	170907-86	170907-87	170907-88
Dibromofluoromethane	.5	70-130	12996	130%	114%	120%	110%	119%	100%
Toluene-d8	250	70-130	102%	102%	-99%	100%	102%	102%	103%
4-Bromofluorobenzene	.5	70-130	85%	84%	93%	89%	89%	94%	94%
Surrogate Recover	spk conc	ACP %RC	%RC	%RC	%RC	%RC	%RC	%RC	%RC
Sample I.D			170907-89	170907-90	170907-91	170907-92	170907-93	170907-94	170907-98
Dibromofluoromethane	25	70-130	99%	131*%	119%	130%	149*%	105%	139*%
Toluene-d8	25 0	70-130	103%	103%	106%	105%	103%	104%	104%
4-Bromofluorobenzene	25 0	70-130	100%	85%	92%	97%	93%	95%	96%
Suttogate Recover	ank onne		W.RC	Ø.PC	V.PC	K PC	%.PC	%.PC	84 DATE
Sample LD	Spik Cond	AUL MILL	170007.00	170007 07	10100	170000 470	470000 470	70000 000	Pallog.
Dampie I.D. Dikwana filiana a filiana	25	70.400	1/0301-30	1/030/-3/	4000/	170906-178	1/0908-1/9	10908-228	
	25	70-130	142*%	112%	109%	100%	115%	108%	
i oluene-do	25	70-130	104%	105%	104%	100%	81%	104%	
4-Bromofilloropenzene	20	70-130	96%	90%	96%	96%	103%	96%	

* = Surrogate fail due to matrix interference; LCS, MS, MSD are in control therefore the analysis is in control.

S.R. = Sample Results

spk conc = Spike Concentration

22

MS = Matrix Spike

# Analyzed/Reviewed By:

Final Reviewer:

%RC = Percent Recovery ACP %RC = Accepted Percent Recovery MSD = Matrix Spike Duplicate



Enviro - Chem, Inc. 1214 E. Laxington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

Date: September 21, 2017

Mr. Francois Bush Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 Tel:(707)975-5791 Email: Francoisbush@gmail.com

Project: Corona Road Station Petaluma LAB I.D.: 170908-163 through -179

Dear Mr. Bush:

The additional TPH and VOCs results for the soil and water samples, received by our laboratory on September 8, 2017, (via United Parcel Service), are attached. The samples were received chilled, intact, accompanying chain of custody and also stored per the EPA protocols.

Enviro-Chem appreciates the opportunity to provide you and your company this and other services. Please do not hesitate to call us if you have any questions.

Sincerely,

Curiis Deallets Vice Fresident/Program Manager

Andy Wang Laboratory Manager

1214 E. Lexington Avenue, Pomona, CA 91786 Tel (909) 380-5905 Fax (908) 580-5907

#### LABORATORY REPORT

CUSTOWER:	Finnacle Environmental, Inc
	P.O. Box 904
	Clayton, CA 94517
	Tel: (925) 673-5500 Enail: Francoisbush@gmail.com
PROJECTI	Corona Road Station Petaluma

	DATE RECEIVED:09/08/17
MATRIX: SOIL	DATE EXTRACTED: 09/21/17
DATE SAMPLED:09/06/17	DATE ANALYZED:09/21/17
REPORT TO:MR. PEANCOIS HUSH	DATE REPORTED:09/21/17

#### TOTAL PETROLEUM HYDROCARBONS (TPH) - CARSON CHAIN ANALISIS METHOD: EPA 80158

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

SAMPLE I.D.	LAB I.D.	C4-C10	C11-C22	C23-C35	DF
SV-2-8	170908-166	ND.	HD	50	1
5B-21-B	170908-170	HD	160	80	1
METHOD HLANK		80	ND	10	1
	PQL	10	10	50	

#### COMMENTS

C4-C10 = GASOLINE RANGE C11-C22 = DIESEL WANGE C21-C35 = NOTOB OIL WANGE DF = DILOTION FACTOR POL = PRACTICAL QUANTITATION LIMIT ACTUAL DETECTION LIMIT = DF % PQL ND = NON-DETECTION LIMIT = DF % PQL ND = NON-DETECTED ON BELOW THE ACTUAL DETECTION LIMIT Date Reviewed and Approved by:

CAL-DES ELAP CERTIFICATE No.: 1555

1214 E. Lexington Avenue, Pomona, CA 91766         Tel (909)590-5905         Fax (909)590-590           8015B QA/QC Report           Date Analyzed:         9/21/2017         Units:         mg/Kg (ppm)           Matrix:         Soil/Solid/Sludge/Liquid           Matrix Spike (MS)/Matrix Spike Duplicate (MSO)         Spiked Sample Lab 1.D.:         170908-166 MS/MSD           Analyte         SR         spk conc         MS         MSD         1000         75-125         0-200           LCS STD RECOVERY:         Analyte         Spike conc         LCS         % REC         ACP         ACP           Analyzed and Reviewed By:         MAD         120%         75-125				E	Enviro Chei	m, Inc				
B015B QA/QC Report         Date Analyzed:       9/21/2017       Units:       ma/Kg (ppm)         Matrix:       Soil/Solid/Sludge/Liquid       Matrix Spike (MS)/Matrix Spike Duplicate (MSD)         Spiked Sample Lab I.D.:       170908-166 MS/MSD         Analyze       SR       hpk conc       MS       MSD       MMSD       MSPD       ACDP MARS ACPP (C11-C22 Range)       0       200       183       91%       184       92%       1%       75-125       0-200         LCS STD RECOVERY:         Analyzed and Reviewed By:       MAM       MAM       MAM       MAK       MSD       1%       75-125       0-200	1214 E. Le	exington A	venue,	Pomona,	CA 91766	To	H (909)590	-5905	Fax (909)5	90-5907
Date Analyzed:       9/21/2017       Units:       mg/Kg (ppm)         Matrix:       Soil/Solid/Sludge/Liquid         Matrix Spike (MS)/Matrix Spike Duplicate (MSD)         Spiked Sample Lab I.D.:       170908-166 MS/MSD         Analyze       SR       spiccore         Old       183       91%         LCS STD RECOVERY:       Analyzed and Reviewed By:       ACP				B015E	QA/Q	C Re	eport			
Matrix:       Soil/Solid/Sludge/Liquid         Matrix Spike (MS)/Matrix Spike Duplicate (MSD)         Spiked Sample Lab I.D.:       170908-166 MS/MSD         Analyte       SR       spk come       MS       1908       184       92%       1%       75-125       0-20         LCS STD RECOVERY:       Analyte       Spk come       LCS       % REC       ACP       6         Analyte       spk come       LCS       % REC       ACP       6       120%       75-125       0-20	Date Analyzed	d: 1	9/21/201	Z				Units:	ma/Ka (p	em)
Matrix Spike (MS)/Matrix Spike Duplicate (MSD)           Spiked Sample Lab I.D.:         170908-166 MS/MSD           Analyte         SR         spk conc         MS         MSD         NMPD         ACP 9MS         ACP 9MS <td>Matrix:</td> <td>Soil/S</td> <td>iolid/</td> <td>Sludg</td> <td>le/Liqu</td> <td>id</td> <td></td> <td></td> <td></td> <td></td>	Matrix:	Soil/S	iolid/	Sludg	le/Liqu	id				
Spiked Sample Lab I.D.:         170908-166 MS/MSD           Analyte         SR         spk conc         MS         MSD         MMSD         MSD         MSD         MSD         ACP 3MS         ACP 3         ACP	Matrix Spike (	MS)/Matri	x Spike	Duplicate	(MSD)					
Analyte         SR         spk core         MS         NMS         MSD         NMSD         NRPD         ACP % MS         ACP %           G11-C22 Range         0         200         183         91%         184         92%         1%         75-125         0-20           LCS STD RECOVERY:         Analyte         spk conc         LCS         % REC         ACP           Analyte         spk conc         LCS         % REC         ACP           C11-C22 Range         200         240         120%         75-125	Spiked Samp	le Lab I.D.		17090	)8-166 M	NS/M	SD			
C11-C22 Range         0         200         183         91%         184         92%         1%         75-125         0-20           LCS STD RECOVERY:         Analyte         spk conc         LCS         % REC         ACP	Analyte	SR I	spk conc	I MS	WMS.	MSD	1 MMSD	%RPD	TACP 9MS	ACP RPD
LCS STD RECOVERY: <u>Analyte spik conc LCS % REC ACP</u> <u>C11-C22 Range 200 240 120% 75-125</u> Analyzed and Reviewed By:	C11-C22 Rangel	0	200	183	91%	184	92%	1%	75-125	0-20%
Analyzed and Reviewed By:	LCS STD REC	OVERY:	LCS	% REC	ACP					
Analyzed and Reviewed By:	C11-C22 Range	209	240	1 120%	75-125					
Final Reviewer:	Analyzed and Final Reviewo	Reviewed	By: _	1	LQ					

1214 E. Lexington Avenue, Pamana, CA 91786 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

COSTOMERI	Pinnacle Environmental, Inc
	P.O. Box 904
	Clayton, CA 94517
	Tel: (925) 673-5500 Email: Francoisbush@gmail.com
PROJECTI	Corona Road Station Petaluna

MATHIX: DOIL-	DATE HECEIVED: 09/00/17
DATE SAMPLED: 09/06/17	DATE ANALYZED: 09/20/17
DEPONT TOINE, FRANCOLS BUILT	DATE REPORTED:09/21/17

SAMPLE I.D.1 SV-2-8

LAB 1.0.1 170908-166

and the state of t

ANALYSIS: VOLATILE ORGANICS, SPA METHOD 50308/82608, PAGE 1 OF 2 UNIT: B0/K0 = MILLIGRAM PER MILOGRAM = FPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	NG-	0.020
HENSENE	ND.	0.005
BROMORENZENE	310	0.005
BRONOLDI LOSOMETHANE	ND	0.005
HROMODICHLOROMETHANE	ND	0.005
BROWDFORM	ND.	0.005
BROWDMETHANE	ND.	0.005
2-BOTANORS (MER)	ND	0.020
N-INTYLBENZENE	BD.	0.005
SEC-BOTYLBEBIENS	BD	0.005
TERT-BUTYLOENZENE	RD-	0.000
CARBON DISULFIDE	MD:	0.010
CARBOR TETRACHIORIDE		0.005
CHLOBOBENZIENE	8112	0,003
CHLOROFTHANE	ND	0,005
CHLOROFDEM	NO	0,005
CHLOROMETHANE	NO.	Q, 005.
2-CHLOROTOLUIUM	ND	0,005
4-CHLOBOTGLUENE	ND	0,005
DIBROHOCHLOSCHETHASE	80	0.005
1,2-DIBROHD-3-CHLOROPROPARE	NO	0.005
1,2-DEBRICHORTHANS	NQ	0,005
DIBROMOMETHANK	NO.	0.005
1.2-DICHLORONKWEENS	ND-	0.005
1, 3-DICHLOROBENSENS	8D.	0.005
1.4-DICHLOBORENZENS	50	0.005
DICULOBODI PLUOROMETISANE	SD.	0.005
1. I-DICHLOSOFTHANE	9912	0.005
1.2-DICHLOROETHANE	NO	0.005
L.1-DICHLOROETHERE	ND	6,005
CIS-1.2-DICKLOBOETHENS	5023	0,005
TRANS+1,2-DICHLOROETHENK	SLD	0,005
1.2-DICHLOSOPHUFANE	80	0,005

--- TO BE CONTINUED ON FACE \$2 -----

DATA REVIEWED AND APPROVED BY: ___

1214 E. Laxington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUUTOMER: Finnacle Environmental, Inc. F.O. Box 904 Clayton, CA 94517 Tel: (925)673-5500 Email: Francoisbush@gmail.com PROJECT: Corona Road Station Petaluma

BATHIAT DUIL	INTE BECETVED: 09/00/17
DATE SAMPLED: 09/06/17	DATE ANALYSED: 09/20/17
REFORT TO:MR. FRANCOIS BUSH	DATE HEPORTED: 09/21/17
********************************	***************************************

SAMPLE 1.D.: 89-2-8

LAB 1.0.: 170908-166

# ANALYSIS: VOLATILE OBGANICE, EPA METHOD 50305/82608, PAGE 2 OF 2 17017: mg/Kg = MILLIGRAM PER RILOSSAM = PRM

PARAMETER	SAMPLE RESULT	POL X1
1.3-BICHLOROPHOFAME	MD	0.005
2.2-DICHLOROPROFAME	MD.	0,005
1,1-DICHLOROPHOFENE	402	0,005
CIS-1.3-DICHLOROPROPENE	BD.	0.005
IBANS-1.J-DICHLOROPROPENE	BU2	0,005
KTWYLBENZENE	819	0.005
Z-BEXAMORE	ND	0.020
HEAACHLOROBUTADIENE	Di Di	0.005
ISOPBOPYLBENZENE	N(D)	0.005
I-ISOPROPYLYSLOPME	NO	0.005
L-BETHYL-2-PENTAMONE (MIHR)	ND	0.020
SETAYL tort-BUTYL STHEN (MIR)	ND ND	0.005
SETRYLENE CHLORIDE	ND .	0.010
IRPATEALERK	ND	0,005
H-PROPYLAEMZENE	NI2	0.005
STYRENE.	80	0.005
1.1.1.2-TETRACHLOROSTHANT	ND	0,005
1.1.2.2.TETRACHLOROGTHANE	NO	0.005
FETRACHLOROGTHENE (PCE)	MD	0.005
COLUENS	NO	0.005
1.2.3-TRICHLOROBERZENE	ND	0,005
L. Z. 4-TEICHLOROBENZENT	82	0.005
1,1,1-TRICHLOROBTHAME	190	0.005
1.1.2-TRICHLOROETHAME	100	0.005
RICHLOBOSTHERE (TCE)	HSD	0.005
TRICH/ORDFS/UOROMSTHAND	ND	0.055
1,2,3-TRICULOROPHOPANE	ND	0.005
L.2.4-TEIMETHYLEENZENE	190	0.005
. 3. 5-TRIMETHYLDENZENE	. HSD	0.005
INVL CHLORIDE	ND	0.005
	4400	1.010
UP-ATLENE		- W. W. W.
1214 E. Lasington Avenue, Pomona, CA 91788 Tel (905) 590-5905 Fax (905) 590-5907

## METHOD BLANK REPORT

CUSTORER: Pinnacle Environmental, Inc F.O. Box 904 Clayton, CA 94517 Tel: (925) 673-5500 Email: Françoisbushègeail.com FROJECT: Corona Road Station Petaluna

MATRIX (BOIL	DATE RECEIVED: 09/08/11
DATE SAMPLED: 09/06/17	DATE ANALYZED: 09/20/17
REPORT TO:MR. PRANCOIS BOIH	DATE REPORTED: 09/21/27

METHOD BLANK REPORT FOR LAB 1.D.: 170908-166

## ANALYSIS: VOLATILE ORGANICS, EPA METHOD 50308/02608, PAGE 1 OF 2 UNIT: mg/Kg = MILLIGRAM PES HILOGRAM = PIM

PARAMETER	SAMPLE RESULT	POL X1
ACEUGNE	KD	0.020
BENARME	NO	0.005
ARCHODESCENE	ND	0.005
BROMOCHLOROMETHANE	NO.	0.009
BROMODICHLOROMETHARE	NO	0.005
BHONOFORM	NO .	0.005
BROMETHANE	SUB .	0,005
Z-HUTANONZ (MER)	ND2	0,020
H-DUTYLEENSENS	SID .	0,005
BEC-BUTTLEENEE	ND	0,005
IEEL-BUTYLBERZERE	ND	0,005
CASBON DISULFINE	MD	0,010
CARBON TETRACHLORIDE	MD	0.005
CELOROBENZENE	ND	8,005
CHLOROSTHANE	ND	0,005
CHLOROFORM	ND:	0,005
CHLORIMETHANS	ND .	0,002
2-CHLOROTIZADERS	1800	0,005
A-CHLOBOTOLOUNE	NO.	0,905
DIRROROCHLOROMSTHAME	ND-	0.005
1.2-DIBROMD-3-CHLONOPROPANE	NO-	0.805
1.2-DIBROMONTHAND	NO	0,005
DIBBORONETHARE	NO	B.005
1.2-DICHLOROBENZENR	ND	0.005
1.J-DICHLOROBENSERN	90	0,005
1.4-DICHLOBODENSENS -	ND	0.005
DICHLORODIFLUGROSSETHARS	100	0,005
L.I-DICHLOROETHAME	NO	0.005
1.Z-DICELOROSTHAME	NO	0.005
I.I-DICHLOHDSTHENE	ND	0.005
CIS-1, 2-DICHLOROETHERE	1910	0.005
TRAED-1, Z-DICHLOBOKTHENE	hip	0.005
1,2-DICHLOROPROPANE	10/	0,005

-- TO BE CONTINUED ON PAGE #2 -----

-

DATA REVIEWED AND APPROVED BY:

# Enviro - Chom, Inc.

1214 E. Lexington Avenue, Pomona, CA 91796 Tel (909) 590-5905 Fax (909) 580-5907

# METHOD BLANK REPORT

CUSTOMES:	Pinnacle Environmental, Inc
	F.O. Box 904
	Clayton, CA 94517
	Tol: (925) 673-5500 Email: Francoisbush@gmail.com
PROJECTI	Corona Road Station Petaluma

PMTREAT20211	DRTE HECELVED: 09/08/17
DATE SAMPLED: 09/06/17	DATE ANALY280:09/20/17
REPORT TOIME. FRANCOIS BUSH	DATE REPORTED:09/21/17
	and a second second shares and second shares and second second second second second second second second second

METHOD BLANK REPORT FOR LAB 1.D.: 170908-166

## ANALTRIS: VOLATILE ORGANICE, EFA METHOD 50308/82608, PAGE 2 OF 2 UNIT: mg/Rg = MILLIGRAM PER EILOGRAM = PEM

PARAMETER	SAMPLE RESULT	POL XI
1.3-DICHLOBOPHOPANE	hD.	0.005
2.2-DICHLOROPODPANE	ND	0.005
1,1-DICHLOSOPROFENE	MD	0.805
CIS+1. J-DICHLUBOPHOPENE	502	0.005
TRANS-1, 3-01CHLOROPBOPENE	ND.	0,005
CTHYLBENZENE	ND:	0.005
2-BIXAMONE	MD.	0.028
HERACHLOROBUTADIENE	60D	6,005
ISOPBORYLBENZENE	NO	0.005
4-JBOPROPYLTOLUENE	MD	0.005
S-METHYL-2-PENTANONE INCHAI	ND .	0.020
METHYL LEFT-BUTYL SYNER (MTHE)	ND	0.005
METHYLERE CHLORIDE	ND.	0,916
NAPRTHALENE	ND	0.005
N-PROPYLBENZENS	ND	0.005
STYPENE	ND:	0.005
1.1.1.2-TETRACHLOWORTHANK	ND	0,005
1,1,2,2-TETRACHLORGETHARE	ND	0,005
TETRACHLOROSTHEME (FCE)	NO	0.005
TOLUCHE	NR	0.005
1.2.3-TRICHLOROBERZENE	NG5	0.005
L. 2. 4-TRICHIOMOHENZENS	N/2	0,005
1.1.1-TRICHLOROGTHANE	NO	0,005
1.1.2-TRICHLOBORTHANE	MO	0,005
TELCHLORDETHERE (TCE)	190	0.005
THICHLOROFLOOROMETHANX	ND	0.005
1.7.3-THICHLOROPROPARE	ND	0.005
1.2.4-TRIMETHYLBENZENE	MD .	0,005
1.3.5-TELMETHYLDENZEDE	NO	0.005
VINYL CHLORIDE	ND	0,005
M/F-XVLENE	NO	0,010
D-XYLENK	8P	0,005
COMMENTS POL - PRACTICAL QUANT	ITATION LIMIT	

ND = NON-DETECTED ON BELOW THE POL ...

DATA REVIEWED AND APPROVED DY:

CAL-DES CERTIFICATE # 1555

deline have been

			Elwino Chi	im, Inc.					
1214 E. Lexington Ave	nue, Pomo	Ma, CA 917	se BZ60B QA	Tel (9	enjsoc-suès t	Fas	(909)580-5	ua?	
Date Analyzeiti Machine:	<u>9/20-21/20</u> C	17					Mateta: Qetti	TolidiSeld malKa (PP	Nang Mi
Matrix Spike (MB)/Matri	s Spike Du	plicate (MSC	79						
Spiked Sample Lab LO.	1 mar	170920-1 М	5/450	Contraction of the	10000 T	and the second	The second	Tariy Martin	LACE HER
Ansong	0.0	SSR CONC	MG	- Yeard	MGO	2000	- ANKARD	ALLE SHOLE	ALC: NPD
Derporte		0.050	0.003	10018	0.001	12278	10%	10-120	0-90
Chlortoertrane	<u> </u>	0.050	12/24/2	86/78	0.046	35079	-16%	70-125	-64
1,1-Oreneroemone	0	0.020	0.000	100%	0.057	1000	10%	10-100	8.99
COLORNO COLORN		10,050	0.043	14716	0.005	102.0	14.18	10-100	1.20
LICORDENSITIES IN LICEL	1 0	0.030	Giged		0,000	100%	10.00	10-169	
Lab Control Splike (LCS	R	A CONTRACTOR		1964 B. 1974 B	N. I				
Anteline	-54R (000C	LCS	NAC.	ACP NRC					
Sargene	0.050	0.054	TOP%	15-125					
Chlorodienizene	0.060	0.042	645	15/125					
Chievenhiven	0.050	0.043	60%	79-125					
1.1.Okstikuroffunne	0.000	0.013	100%	75-129					
Emytrations	0.050	0.052	104%	75-125					
s-Xi/ens	0.050	D-046	102%	75-426					
m.p.Xeldite	0.400	D.102	102%	75-125					
Subartes	0.650	0.045	90%	75-125					
1.1.1.Trichlocostions	0.050	0.002	124	75-125					
Trictlatorbena (TCE)	0.050	D 046	12%	75.325				-	
	harpenant			in mar second			- Simon	-	
Samujate Recovery	with contra	ACP %HE	MBN/RC	19AC	NRC .	ALC:	NRC-	N-RC	THRC .
Stope ( 0	in the second	- and the second	MHILN	170919-1	Troute-2	110910-0	True to	1.00090-195	-
Novement and	50.0	30-130	693	322%	90%	113%	- 80% )	0.00	
Tousing-diff	20.0	10-130	101%	10076	101%	1000	102%	- HOPE	
4 Bromenuerbergene	- 99.9	1 10-130	- 19.0	7.0%	100%	10975	7108	1 Stew	
Surroume Recovery	i sut cont.	ACP SHC	NRC	1 9AC	NRC 1	1440	1 1980	NAC	NRC .
Sample LD	1			- Contraction		_			
Distortalistosensitiane	10.0	79-738				_			
Tokara di	.52.0	70-130							-
4-Bromofluoroberginne	50.0	70 130							
				10000	-			-	
Remogiste Recovery	aph unit.	ACP %/RC	WRC .	WRC	5.80	SAC	THRC	WRC	/WRC
serring 112.	1. and 10.	1000 1000					-		
Distomenuelocational	100.0	30-138	_				-		-
Tokiene-dil	09.9	712-1312					-	-	
4-Bromuniu/robergiese	00.0	10-130	-			_			
* = Surrigole Ani due Io S R = Sample Results tale conz = Spike Crince MS = Mohrs Anke Analyzed/Reviewed By	stator	anne 201	E ME MS2	ann in contro	r therefore d SLRC + Perp ACP SLRC + ASD + Moto	e analysis ant Perce Accepted a Spike Di	ia in eskitei kry Parcent Ro giścała	owy	



# Fwd: FW: Corona Road Station Petaluma

Curtis B. Desilets <curt.envirocheminc@gmail.com> To: Jessica Lin <envirocheminc@gmail.com> Wed, Sep 20, 2017 at 8:06 AM

FORUR-166

See below ...

------Forwarded message -------From: Peter Cloven cloven@pei-env.com>
Date: Tue, Sep 19, 2017 at 4:37 PM
Subject: FW: Corona Road Station Petaluma
To: "Curtis B. Desilets" <curt.envirochemino@gmail.com>, Jessica Huang
<jh04envirocheminc@gmail.com>

Could you please run the following:

For additional analyses , please request tph-cc and VOCs for held sample SV-2-8 and tph-CC (only) for held sample sb-21-8.

170 978 -174

Respectfully,

Peter K. Cloven

Pinnacle Environmental, Inc.

pcloven@pai-env.com

(925) 673-5500

(925) 673-5507 fax



MW-1 5-22 1/20		and a	Inter		BHUMB	NOLOMUS	2011	BISTON				_	
1011 2-mm w	OIE O	Date -	250 Mil	HDWI	16991 10 791	CTH-	L	Ana	ilysis	Requi	red	8	COLUMN T
2-mw w	101-826	6/6	200	Water .	5 1000	X	×	X					
1. m w - 3	10-1	14/6	120	-	A PE	7	*	X					
	667-4	44	1000	7	m	~	*						
				T	+			+			-		
					-								
												-	
					+			+					
Pinnede Environmenta	1				Shed Co	11	And			Ņ	N	2	1
inet.					0E 11	3) 9	2-54	140		Į,	Nutario 0	1 01 1	
manual Claster Ch	Y				展				8	š	24 14	VOUNT -	
C - C A MARTIN	3	1	Family	1 Ou	-Ya	242	e		Sec.	00	named in the	Sample Ronge	And And
Minutes On Tra	Tue-		Received	N N	1 Kin	4º	1	1	(IXII)	HODD	Comme o	Number Carl	and and
Intradual by			HOOMMER	1 ×				8	atta		D Devel		
			CHAIN	V OF C	UST	VO0	RECC	DNO				2	à
				The second second		dimport.						inter al	7

Shallow Soil Vapor Data & Chain September 2017



18 September 2017

Mr. Francois Bush Pinnacle Environmental, Inc. PO Box 1956 Paradise, CA 95967

# SUBJECT: DATA REPORT - Pinnacle Environmental, Inc. Project Corona Road / 890 North McDowell Boulevard, Petaluma, California

TEG Project # 70905F

Mr. Bush:

Please find enclosed a data report for the samples analyzed from the above referenced project for Pinnacle Environmental, Inc. The samples were analyzed on site in TEG's mobile laboratory. TEG conducted a total of 22 analyses on 22 soil vapor samples.

~ 22 analyses on soil vapors for volatile organic hydrocarbons by EPA method 8260B.

The results of the analyses are summarized in the enclosed tables. Applicable detection limits and calibration data are included in the tables.

TEG appreciates the opportunity to have provided analytical services to Pinnacle Environmental, Inc. on this project. If you have any further questions relating to these data or report, please do not hesitate to contact us.

Sincerely,

Mark Jerpbak Director, TEG-Northern California



TEG Project #70905F

EDA Mothod 8260B	VAC Anohioon of SAU	VADOD in minmamme	oor aubia mater of Veper
LCA MOUND 0200D		. VAFOR IN INVOGIBINS	per cubic meter or vapor

SAMPLE NUMBER:		Probe Blank	Probe Blank	SV-1	SV-2	SV-3	SV-4
SAMPLE DEPTH (feet):			1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	5.0	50	5.0	4.0
PURGE VOLUME:				3	3	3	3
COLLECTION DATE:		8/5/17	9/6/17	9/5/17	9/6/17	9/5/17	9/5/17
COLLECTION TIME:		10:03	7:39	11:38	12:24	12:57	13:25
DILUTION FACTOR:	RL	1	1	1	1	1	1
Dichlorodifluoromethane	100	nď	nd	nd	nd	nd	nd
Vinyl Chloride	100	nd	nd	nd	nđ	nd	nđ
Chloroethane	100	nd	nd	nd	nd	ođ	nd
Trichlorofluoromethene	100	nd	nd	nď	n¢.	nd	nd
1,1-Dichloroethene	100	nd	nd	nd	nd	nđ	nd
1,1,2-Trichioro-triffuoroethane	100	nd	nď	nď	ad	nd	nd
Methylene Chioride	100	nd	nđ	nď	nd	nd	nd
trans-1,2-Dichloroethene	100	nd	nd	nd	nd	nd	nd
1,1-Dichloroethane	100	nd	nd	nď	nd	nd	rtol
cls-1,2-Dichloroethene	100	nd	nđ	nd	nd	nd	nd
Chloroform	100	nd	nđ	nd	nd	nd	nd
1,1,1-Trichloroethane	100	nd	nd	nd	nd	nd	nd
Carbon Tetrachloride	100	nd	nd	60	nd	nd	nd
1,2-Dichioroethane	100	nd	nd	nd	nd	nd	nd
Benzene	80	nd	nd	11000	4000	nd	nd
Trichloroethene	100	nd	nd	nd	nd	nd	nd
Toluene	200	nd	nd	1000	5300	ad	nd
1,1,2-Trichloroethane	100	nd	20	nd	nď	ad	nd
Tetrachloroethene	100	nd	00	nd	nd	nd	nd
Ethylbenzene	100	nd	nd	3300	2200	nd	nd
1, 1, 1, 2-Tetrachloroethane	100	nd	nd	nd	nd	nd	nd
m,p-Xylene	200	bn	nd	11000	8600	nd	nd
o-Xylene	100	nd	nd	2800	1700	nd	nd
1,1,2,2-Tetrachiorcethane	100	nd	nd	ad	nd	00	nď
1,1 Dilluoroethane (leak check)	10000	nd	nd	nd	nd	nd	nď
Surrogala Recovery (DBFM) Surrogala Recovery (Toluana-d9) Surrogala Recovery (1,4-BFS)		89% 02% 90%	87% 90% 84%	82% 103% 86%	79% 112% 81%	87% 90% 90%	89% 04% 93%

'FL' Indicates reporting limit et a dilution factor of 1 'nd' Indicates not detected at listed reporting limits

Analyses performed in TEG-Northern California's lab Analyses performed by: Ma. Lorene Williams



TEG Project #70905F

EPA Method 8260B VOC Analyses of SOIL VAPOR in micrograms per cubic meter of Vapo
-----------------------------------------------------------------------------------

SAMPLE NUMBER:		SV-4	SV-5	SV-6	SV-7	SV-B	SV-9
		dup					
SAMPLE DEPTH (feet):		4.0	5.0	5.0	5.0	5.0	5.0
PURGE VOLUME:		3	3	3	3	3	3
COLLECTION DATE:		9/5/17	8/5/17	9/5/17	<b>9/5/1</b> 7	9/5/17	8/5/17
COLLECTION TIME:		13:25	14:20	14:51	8:25	15:18	16:43
DILUTION FACTOR:	RL	1	1	1	7	1	f
Dichlorodifluoromethane	100	nd	nđ	ođ	nd	nd	nd
Vinyi Chioride	100	nd	ođ	nd	mi	nd	nd
Chloroethane	100	nd	nd	ad	ad	nď	nd
Trichlorofluoromethane	100	nd	nd	nd	20	pd.	ođ
1,1-Dichloroethene	100	nd	nd	nd	nd	od	ođ
1,1,2-Trichloro-triffuoroethane	100	nd	nd	nd	nd	nd	nd
Methylene Chloride	100	od	nd	nd	nd	nd	nd
trans-1,2-Dichloroethene	100	nd	nd	nd	nd	nd	nd
1,1-Dichioroethana	100	nd	nd	nd	nd	nd	mű
cls-1,2-Dichloroethene	100	nd	od	nd	nd	nd	nď
Chloroform	100	nd	nd	nd	nd	nd	nd
1,1,1-Trichloroethane	100	nď	nd	nd	nd	od	od
Carbon Tetrachloride	100	nd	nd	nd	nd	nd	nd
1,2-Dichloroethane	100	od	nd	nd	ođ	nd	nd
Benzene	80	nd	nd	nđ	nd	nd	nd
Trichloroethene	100	nd	ođ	ođ	nd	nd	nd
Toluene	200	nci	nd	ođ	nd	nd	nd
1,1,2-Trichloroethane	100	nd	nd	nd	nd	nđ	nd
Tetrachlorcethene	100	nd	nd	ಸ್	nď	nd	ođ
Ethylbenzene	100	nd	nd	nd	nd	nd	nd
1,1,1,2-Tetrachioroethane	100	nd	nd	nď	od	nd	nd
m,p-Xylene	200	nd	nď	nd	nd	nd	rtoʻ
o-Xylene	100	nd	ođ	nd	nd	nď	nď
1,1,2,2-Tetrachloroethane	100	nd	nd	nd	nd	nđ	nd
1,1 Diffuoroethane (leak check)	10000	nd	nd	nd	nd	nd	nd
Surrogate Recovery (DBFM) Surrogate Recovery (Toluene-d8) Surrogate Recovery (1,4-BFB)		87% 91% 87%	86% 23% 90%	82% 87% 86%	86% 83% 80%	90% 84% 95%	81% 83% 85%

'RL' Indicates reporting limit at a dilution factor of 1

'nd' indicates not detected at listed reporting limits

Analyses performed in TEG-Northern California's lab Analyses performed by: Ma. Lorena Williams



TEG Project #70905F

EPA Method 8260B VOC Analyses of SOIL VAPOR in micrograms per cubic meter of Vapor

SAMPLE NUMBER:		SV-10	SV-10	SV-11	SV-12	SV-13	SV-14
		54	oup co		5.0		
		3	30	30	0.0	5.0	5.0
COLLECTION DATE:		0647	3	3	3	ۍ ۲۳	3
COLLECTION TIME		8.53	8-52	SUG(1)	10-22	9/19/17	9/6/17
DILUTION FACTOR		1	0.03	9.44	70:06	10:31	10:58
	RL	·	· · · · · · · · · · · · · · · · · · ·	·	1		1
Dichlorodifluoromethane	100	nd	nd	ad	nd	nd	nd
Vinyl Chlodde	100	nd	nd	nd	nd	nd	nd
Chloroethane	100	nd	nd	nd	nd	nd	nd
Trichlorofluoromethane	100	nd	nd	nd	nd	nd	nd
1,1-Dichloroethane	100	nd	nd	nd	nd	nd	nd
1,1,2-Trichloro-triftuoroethene	100	nd	nd	nd	nd	nd	nd
Methylene Chloride	100	nd	nd	nd	ಗರ	nd	nd
trans-1,2-Dichloroethene	100	nd	ad	nd	nd	nd	nď
1,1-Dichloroethane	100	nd	od	nd	ad	nd	nd
cls-1,2-Dichlomethene	100	nd	nd	nd	ad	nd	nď
Chloroform	100	nd	nd	nd	nd	nd	nď
1,1,1-Trichlomethane	100	nd	nd	nd	nd	nd	nď
Carbon Tetrachloride	100	od	nd	nd	nd	nd	nd
1,2-Dichloroethane	100	nd	nd	nd	nd	nd	nd
Benzena	80	nd	nd	nd	nđ	nd	nd
Trichloroethene	100	nd	nd	nd	nd	nd	nd
Toluene	200	ad	nd	nd	nd	ad	nd
1, 1, 2-Trichioroethane	100	nd	nd	nd	nd	nd	nd
Tetrachloroethene	100	nd	nd	nd	nd	nd	nd
Ethylbenzene	100	nd	nd	nd	nd	nd	ಗಳ
1, 1, 1, 2-Tetrachioroethane	100	nd	190	nd	nd	nd	nd
m,p-Xylena	200	nd	nd	nd	ad	ad .	nd
o-Xylene	100	nđ	nd	<i>n</i> d	nd	60	nd
1,1,2,2-Tetrachioroethane	100	nd	nd	nd	nd	nd	nd
1,1 Diffuornathane (leak oheck)	10000	nd	nd	nd	nd	nd .	nd
Surrogale Recovery (DBFM) Surrogale Recovery (Toluene-d8) Surrogale Recovery (1,4–BFB)		78% 86% 78%	82% 92% 85%	85% 92% 86%	83% 92% 85%	87% 94% 89%	84% 89% 82%

'FL' Indicates reporting limit at a dilution factor of 1 'nd' Indicates not detected at fisted reporting limits

Analyses performed in TEG-Northern Celifornia's lab Analyses performed by: Ms. Lorene Williams



TEG Project #70905F

EPA Method 8260B VOC Analyses of SOIL VAPOR in micrograms per cubic meter of Vapor

SAMPLE NUMBER:		SV-15	SV-16	SV-17	SV-18	SV-19	SV-20
SAMPLE DEPTH (feet):		5.0	6.0	6.0	5.0	50	5.0
PURGE VOLUME:		3	3	3	3	з	з
COLLECTION DATE:		9/6/17	9/6/17	9/6/17	9/8/17	9/8/17	9/6/17
COLLECTION TIME:		11:27	11:49	12:18	12:48	13:19	14:11
DILUTION FACTOR:	RL	1	1	1	1	1	1
Dichlorodifluoromethane	100	od	nd	nd	od	nd	nd
Vinyi Chloride	100	nd	nď	nď	nd	nd	nd
Chloroethane	100	nd	nd	nd	nd	nd	nci
Trichlorofluoromethane	1 <b>00</b>	nd	od	od	nd	nd	nď
1,1-Dichloroethene	100	nd	nd	nd	nd	ođ	nd
1,1,2-Trichloro-trifluoroethane	100	nd	nd	nd	nd	nd	nd
Methylene Chloride	100	nd	nd	nd	nd	ođ	ad
trans-1,2-Dichloroethene	100	nd	nd	nd	nd	od	nd
1,1-Dichloroethane	100	ođ	nd	nd	od	nd	nd
cis-1,2-Dichloroethene	100	od	nd	nd	od	nd	nd
Chloroform	100	nd	nd	nd	nd	nd	nd
1,1,1-Trichloroethane	100	nd	ad .	ođ	nd	nd	nd
Carbon Tetrachlorida	100	nd	nd	nd	nd	nd	ođ
1,2-Dichloroethane	100	nd	nd	nd	nd	nd	nd
Benzene	80	nď	nd	กซ์	nď	2800	nd
Trichloroethene	100	nd	nd	nd	nd	ad	nd
Toluene	200	ođ	oď	nd	ođ	nd	nd
1,1,2-Trichloroethane	100	nd	nď	nd	nd	nd	nd
Tetrachloroethane	100	nd	nď	nď	nd	nd	nd
Ethylbenzene	100	nd	ođ	ođ	nd	2900	nd
1,1,1,2-Tetrachloroethane	100	nd	ođ	od	nd	nď	nď
m,p-Xylene	200	nd	nd	nd	nď	7900	<i>nd</i>
o-Xylana	100	nď	nd	80	nd	150	nd
1,1,2,2-Tetrachioroethane	100	nd	nd	nd	nd	nd	nd
1,1 Diffuorcethane (leek chack)	10000	nd	nd	nd	nd	nd	nd
Surrogate Recovery (DBFM) Surrogate Recovery (Toluene-d8) Surrogate Recovery (1,4-BFB)		88% 91% 88%	77% 88% 81%	85% 92% 88%	89% 94% 93%	82% 89% 83%	67% 61% 86%

'RL' Indicates reporting limit et a dilution factor of 1 'nd' Indicates not detected at listed reporting limits

Analyses performed in TEG-Northern California's lab Analyses performed by: Ms. Lorene Williams



TEG Project #70905F

CALIBRATION DATA - Calibration Check Compounds

	Vinyl Chloride	1,1 DCE	Chloroform	1,2 DCP	Tokene	Ethylbenzene
Midpoint	10.0	10.0	10.0	10.0	10.0	10.0
Continuing Cali	bration - Midpoint					
9/5/17	9.0 90%	9.1 91%	8.5 85%	9.6 96%	10.7 107%	9.9 99%
9/6/17	9.0 90%	9.0 90%	8.2 82%	8.8 88%	9.6 96%	9.2 92%

Laboratory Data & Chain of Custody Shallow Soil Sampling Data (SS-1 to SS-10) June & September 2017

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

Date: June 15, 2017

Mr. Peter Cloven Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com

Project: Petaluma - Corona Station LAB I.D.: 170608-29 through -38

Dear Mr. Cloven:

The **analytical results** for the soil samples, received by our laboratory on June 8, 2017, (via OnTrac), are attached. The samples were received chilled, intact and accompanying chain of custody record.

Enviro-Chem appreciates the opportunity to provide you and your company this and other services. Please do not hesitate to call us if you have any questions.

Sincerely,

Curtis Desilets Vice President/Program Manager

Andy Wan Laboratory Manager

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER:	Pinnacle Environmental, In P.O. Box 904 Clayton, CA 94517	c	
	(925)673-5500 Email: pclov	en@pei	-env.com
PROJECT:	Petaluma - Corona Station		
		DATE	RECEIVED: 06/08/17
MATRIX: SOI	L	DATE	EXTRACTED: 06/12/11
DATE SAMPL	ED: <u>06/06/17</u>	DATE	ANALYZED: 06/12-13.
REPORT TO:	MR. PETER CLOVEN	DATE	REPORTED: 06/15/17

TOTAL PETROLEUM HYDROCARBONS (TPH) - CARBON CHAIN ANALYSIS METHOD: EPA 8015B

2/17-13/17

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

SAMPLE I.D.	LAB I.D.	C4-C10	C11-C22	C23-C35	DF
<u>SS-1-0.5</u>	170608-29	ND	ND	ND	1
SS-2-0.5	170608-30	ND	ND	ND	1
<u>85-3-0.5</u>	170608-31	ND	ND	177	2
<u>SS-4-0.5</u>	<u>170608-32</u>	ND	110 *	<u>3430</u>	0
SS-5-0.5	170608-33	ND	<u>631 *</u>	13700	0
<u>SS-6-0.5</u>	170608-34	ND	110	4100	10
<u>SS-7-0.5</u>	170608-35	ND	ND	2370	10
<u>ss-8-0.5</u>	170608-36	ND	ND	522	5
<u>ss-9-0.5</u>	170608-37	ND	ND	ND	1
<u>ss-10-0.5</u>	170608-38	ND	ND	340	5
METHOD BLANK		ND	ND	1925	1
	PQL	10	10	50	

#### COMMENTS

C4-C10 = GASOLINE RANGEC11-C22 = DIESEL RANGEC23-C35 = MOTOR OIL RANGE DF = DILUTION FACTOR PQL = PRACTICAL QUANTITATION LIMIT ACTUAL DETECTION LIMIT = DF X PQL ND = NON-DETECTED OR BELOW THE ACTUAL DETECTION LIMIT * = PEAKS IN DIESEL RANGE BUT CHROMATOGRAM DOES NOT MATCH THAT OF DIESEL STANDARD

Data Reviewed and Approved by: CAL-DHS ELAP CERTIFICATE No.: 1555

Software Version	:	6.3.2.0646	
Sampie Name	;	170608-32	20/20***
Instrument Name	1	GC-I	
Rack/Vial	ŝ	0/16	
Sample Amount	÷	1.000000	
Cycle	ż	22	

 Channel
 : 6/13/2017 8:05:55 AM

 Data Acquisition Time
 : 6/12/2017 2:02:09 PM

 Channel
 : A

 Operator
 : GC

 Dilution Factor
 : 1.000000

Result File ; D:\GCDATA\GCI\02017\1706\170612\A022.rst Sequence File : D:\GC DATA\GC-\\02017\1706\170612\170612\170612.seq



8015 Results

Name	[uV*sec]	Amount
C11-C22	724478 28600203	09. 125.
	29324681	3535.0

Software Version	6.3.2.0646
Sample Name	170608-33
Instrument Name	GC-I
Rack/Vial	0/11
Sample Amount	1.000000
Cycle	0

 : 6/14/2017 1202:10 PM

 Data Acquisition Time
 : 6/13/2017 9:41:14 AM

 Channel
 : A

 Operator
 : manager

 Dilution Factor
 : 1.000000

Result File ; D;\GC DATA\GC-I\02017\1706\170612\A096.rst Sequence File : D:\GC DATA\GC-I\02017\1706\170612\170612\170612,seq



8015 Results

Component Name	Area [uV*sec]	Adjusted Amount
C11-C22	1356356 28687539	157.8 3435.8
	30043896	3593.6

Software Version 6,32,0648 Sample Name 170608-34 20/20*** Instrument Name GC-I Rack/Vial 0/18 Sample Amount 1,000000 Cycle 27 
 Date
 : 6/13/2017 8:07:44 AM

 Data Acquisition Time
 : 6/12/2017 3:02:41 PM

 Channel
 : A

 Operator
 : GC

 Dilution Factor
 : 1.000000

Result File : D:\GC DATA\GC-I\D2017\1706\1706\2\0027.rst Sequence File : D:\GC DATA\GC-I\02017\1706\1706\2\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170612\170000\170612\170612\170612\17000\170612\1



1015 Results

Component Name	Area [uV*sec]	Adjusted
C11-C22 C23-C35	731000 34359621	110.0 4102.1
	35090621	4212.1

the second se

		Enviro Che	m, Inc		
1214 E. Lexingt	on Avenue, F	omona, CA 91766	Tel (909)590-59	905 Fax (909)59	90-5907
	8	015B QA/Q	C Report		
Date Analyzed:	6/12-13/2	<u>017</u>	Un	nits: <u>mg/Kq (p</u>	om)
Matrix: <u>So</u>	il/Solid/S	Sludge/Liqu	iid		
Matrix Spike (MS)/M	latrix Spike D	ouplicate (MSD)			
Spiked Sample Lab	I.D.:	170608-19 M	S/MSD		
Analyte SF	spk conc	MS SMS	MSD SMBD 1	SRPD ACP SMS	ACP RPD
LCS STD RECOVEI Analyte spk c C11~C22 Range 20	<b>RY:</b> onc <u>LCS</u> 0 188	% REC ACP 94% 75-125			
Analyzed and Revi	ewed By:	pp			
Final Reviewer:	- (A)				

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER:	Pinnacle Environmental, Inc
	P.O. Box 904
	Clayton, CA 94517
	(925) 673-5500 Email: pcloven@pei-env.com
PROJECT:	Petaluma - Corona Station

REPORT TO: MR. PETER CLOVEN	DATE REPORTED: <u>06/15/17</u>
DATE SAMPLED: 06/06/17	DATE ANALYZED: 06/09/17
MATRIX: SOIL	DATE RECEIVED: 06/08/17

SAMPLE I.D.: SS-1-0.5

IAN I.D.: 170608-29

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	10	500	15	6010B
Arsenic(As)	3.98	0.3	10	500	5.0	6010B
Barium(Ba)	166	5.0	10	10,000	100	6010B
Beryllium(Be)	ND	0.5	10	75	0.75	6010B
Cadmium(Cd)	ND	0.5	10	100	1.0	6010B
Chromium Total(Cr)	39.9	0.5	10	2,500	560/58	6010B
Chromium VI (Cr6)		0.1	100	500	5.0	7196A
Cobalt(Co)	18.9	1.0	10	8,000	80	6010B
Copper(Cu)	33.0	1.6	1.0	2,500	25	6010B
Lead(Pb)	9.47	8.5	10	1,000	5.0	6010B
Mercury(Hg)	0.355	0.01	1.12	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	10	3,300	350	6010B
Nickel(Ni)	59.6	2.5	1.0	2,000	20	6010B
Selenium(Se)	ND	1.0	10	100	1.0	6010B
Silver(Ag)	ND	1.0	10	500	5.0	6010B
Thallium(Tl)	ND	1.0	10	700	7.0	6010B
Vanadium(V)	71.9	5.0	1.0	2,400	24	6010B
Zinc(Zn)	71.8	0.5	10	5,000	250	6010B

#### COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) = Not analyzed/not requested

Data Reviewed and Approved by: ______ CAL-DHS ELAP CERTIFICATE No.: 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER:	Pinnacle Environmental, Inc
	P.O. Box 904
	Clayton, CA 94517
	(925)673-5500 Email: pcloven@pei-env.com
PROJECT:	Petaluma - Corona Station

MATRIX: <u>SOIL</u>	DATE RECEIVED: <u>06/08/17</u>
DATE SAMPLED: 06/06/17	DATE ANALYZED: 06/09/17
REPORT TO: MR. PETER CLOVEN	DATE REPORTED: 06/15/17

SAMPLE I.D.: SS-2-0.5

I.D.: 170608-30

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony (Sb)	ND	1.0	10	500	15	6010B
Arsenic (As)	ND	0.3	10	500	5.0	6010B
Barium(Ba)	97.5	5.0	10	10,000	100	6010B
Beryllium(Be)	ND	0.5	10	75	0.75	6010B
Cadmium (Cd)	ND	0.5	10	100	1.0	6010B
Chromium Total(Cr)	50.6	0.5	10	2,500	560/50	6010B
Chromium VI (Cr6)		0.1		500	5.0	7196A
Cobalt(Co)	17.9	1.0	10	8,000	80	6010B
Copper(Cu)	26.8	1.0	10	2,500	25	6010B
Lead (Pb)	7.62	0.5	10	1,000	5.0	6010B
Mercury(Hg)	0.329	0.01	- 1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	10	3,500	350	6010B
Nickel(Ni)	62.8	2.5	10	2,000	20	6010B
Selenium(Se)	ND	1.0	10	100	1.0	6010B
Silver(Ag)	ND	1.0	10	500	5.0	6010B
Thallium(Tl)	ND	1.0	10	700	7.0	6010B
Vanadium(V)	72.1	5.0	10	2,400	24	6010B
Zinc(Zn)	116	0.5	10	5,000	250	6010B

#### COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) --- = Not analyzed/not requested

Data Reviewed and Approved by: CAL-DHS ELAP CERTIFICATE No.: 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Petaluma - Corona Station

MATRIX: SOIL	DATE	RECEIVED: 06/08/17
DATE SAMPLED: 06/06/17	DATE	ANALYZED: 06/09/17
REPORT TO: MR. PETER CLOVEN	DATE	REPORTED: 06/15/17
the second se		

SAMPLE I.D.: **SS-3-0.5** 

LAB I.D.: 170608-31

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	10	500	15	6010B
Arsenic(As)	6.36	0.3	10	500	5.0	6010B
Barium(Ba)	112	5.0	10	10,000	100	6010B
Beryllium(Be)	ND	0.5	10	75	0.75	6010B
Cadmium(Cd)	ND	0.5	10	100	1.0	6010B
Chromium Total(Cr)	40.8	0.5	10	2,500	560/50	6010B
Chromium VI (Cr6)	-	0.1		500	5.0	7196A
Cobalt(Co)	20.0	1.0	10	8,000	80	6010B
Copper(Cu)	30.9	1.0	10	2,500	25	6010B
Lead(Pb)	16.6	0.5	10	1,000	5.0	6010B
Mercury(Hg)	0.059	0.01	- 3	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	10	3,500	350	6010B
Nickel(Ni)	61.3	2.5	10	2,000	20	6010B
Selenium(Se)	ND	1.0	10	100	1.0	6010B
Silver(Ag)	ND	1.0	10	500	5.0	6010B
Thallium(Tl)	ND	1.0	10	700	7.0	6010B
Vanadium(V)	80.0	5.0	10	2,400	24	6010B
Zinc(Zn)	72.1	0.5	10	5,000	250	6010B

#### COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) = Not analyzed/not requested

Data Reviewed and Approved by: _____ CAL-DHS ELAP CERTIFICATE No.: 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER:	Pinnacle Environmental, Inc
	P.O. Box 904
	Clayton, CA 94517
	(925) 673-5500 Email: pcloven@pei-env.com
PROJECT:	Petaluma - Corona Station

MATRIX: SOIL	DATE	RECEIVED: 06/08/17
DATE SAMPLED: 06/06/17	DATE	ANALYZED: 06/09/17
REPORT TO: MR. PETER CLOVEN	DATE	REPORTED: 06/15/17

SAMPLE I.D.: SS-4-0.5

LAB I.D.: 170608-32

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	10	500	15	6010B
Arsenic(As)	ND	0.3	10	500	5.0	6010B
Barium(Ba)	107	5.0	10	10,000	100	6010B
Beryllium(Be)	ND	0.5	10	75	0.75	6010B
Cadmium(Cd)	ND	0.5	10	100	1.0	6010B
Chromium Total(Cr)	33.3	0.5	10	2,500	560/50	6010B
Chromium VI (Cr6)		0.1		500	5.0	7196A
Cobalt(Co)	20.1	1.0	10	8,000	80	6010B
Copper(Cu)	30.4	1.0	10	2,500	25	6010B
Lead(Pb)	5.85	0.5	10	1,000	5.0	6010B
Mercury(Hg)	0.121	0.01	- 1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	10	3,500	350	6010B
Nickel(Ni)	38.7	2.5	10	2,000	20	6010B
Selenium(Se)	ND	1.0	10	100	1.0	6010B
Silver(Ag)	ND	1.0	10	500	5.0	6010B
Thallium(Tl)	ND	1.0	10	700	7.0	6010B
Vanadium(V)	98.4	5.0	10	2,400	24	6010B
Zinc(Zn)	87.0	0.5	10	5,000	250	6010B

#### COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) = Not analyzed/not requested

Data Reviewed and Approved by: ______ CAL-DHS ELAP CERTIFICATE No.: 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei~env.com PROJECT: Petaluma ~ Corona Station

MATRIX: SOILDATE RECEIVED: 06/08/17DATE SAMPLED: 06/06/17DATE ANALYZED: 06/09/17REPORT TO: MR. PETER CLOVENDATE REPORTED: 06/15/17

SAMPLE I.D.: SS-5-0.5

I.D.: 170608-33

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	10	500	15	6010B
Arsenic(As)	3.50	0.3	10	500	5.0	6010B
Barium(Ba)	120	5.0	10	10,000	100	6010B
Beryllium(Be)	ND	0.5	10	75	0.75	6010B
Cadmium(Cd)	ND	0.5	10	100	1.0	6010B
Chromium Total(Cr)	66.5	0.5	10	2,500	560/50	6010B
Chromium VI (Cr6)	1000	0.1		500	5.0	7196A
Cobalt(Co)	18.0	1.0	10	8,000	80	6010B
Copper(Cu)	34.4	1.0	10	2,500	25	6010B
Lead (Pb)	10.5	0.5	10	1,000	5.0	6010B
Mercury(Hg)	0.078	0.01	-1	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	10	3,500	350	6010B
Nickel(Ni)	65.9	2.5	10	2,000	20	6010B
Selenium(Se)	ND	1.0	10	100	1.0	6010B
Silver(Ag)	ND	1.0	10	500	5.0	6010B
Thallium(Tl)	ND	1.0	10	700	7.0	6010B
Vanadium(V)	109	5.0	10	2,400	24	6010B
Zinc(Zn)	95.1	0.5	10	5,000	250	6010B

#### COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit = 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) = Not analyzed/not requested

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Petaluma - Corona Station

MATRIX: <u>SOIL</u>	DATE	RECEIVED: <u>06/08/17</u>
DATE SAMPLED: 06/06/17	DATE	ANALYZED: <u>06/09/17</u>
REPORT TO: MR. PETER CLOVEN	DATE	REPORTED: 06/15/17

SAMPLE I.D.: SS-6-0.5

I.D.: 170608-34

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE		002110	TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	10	500	15	6010B
Arsenic (As)	3.21	0.3	10	500	5.0	6010B
Barium(Ba)	138	5.0	10	10,000	100	6010B
Beryllium(Be)	ND	0.5	10	75	0.75	6010B
Cadmium(Cd)	ND	0.5	10	100	1.0	6010B
Chromium Total(Cr)	44.2	0.5	10	2,500	560/50	6010B
Chromium VI (Cr6)		0.1	-	500	5.0	7196A
Cobalt(Co)	19.0	1.0	10	8,000	80	6010B
Copper(Cu)	24.8	1.0	10	2,500	25	6010B
Lead (Pb)	7.30	0.5	10	1,000	5.0	6010B
Mercury (Hg)	0.440	0.01	1.	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	10	3,500	350	6010B
Nickel(Ni)	55.2	2.5	10	2,000	20	6010B
Selenium(Se)	ND	1.0	10	100	1.0	6010B
Silver(Ag)	ND	1.0	10	500	5.0	6010B
Thallium(Tl)	ND	1.0	10	700	7.0	6010B
Vanadium(V)	87.0	5.0	10	2,400	24	6010B
Zinc(Zn)	74.0	0.5	10	5,000	250	6010B

#### COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit = * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) ---= Not analyzed/not requested

Data Reviewed and Approved by: CAL-DHS ELAP CERTIFICATE No.: 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER:	Pinnacle Environmental, Inc
	P.O. Box 904
	Clayton, CA 94517
	(925)673-5500 Email: pcloven@pei-env.com
PROJECT:	Petaluma - Corona Station

MATRIX: <u>SOIL</u>	DATE	RECEIVED: 06/08/17
DATE SAMPLED: 06/06/17	DATE	ANALYZED: 06/09/17
REPORT TO: MR. PETER CLOVEN	DATE	REPORTED: 06/15/17
*********	0.00 m 10.000	

SAMPLE I.D.: SS-7-0.5

LAD I.D.: 170608-35

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EpA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	10	500	15	6010B
Arsenic(As)	ND	0.3	10	500	5.0	6010B
Barium(Ba)	106	5.0	10	10,000	100	6010B
Beryllium(Be)	ND	0.5	10	75	0.75	6010B
Cadmium(Cd)	ND	0.5	10	100	1.0	6010B
Chromium Total(Cr)	44.1	0.5	10	2,500	560/50	6010B
Chromium VI (Cr6)		0.1	-	500	5.0	7196A
Cobalt(Co)	16.1	1.0	10	8,000	80	6010B
Copper (Cu)	23.9	1.0	10	2,500	25	6010B
Lead (Pb)	7.95	0.5	10	1,000	5.0	6010B
Mercury(Hg)	0.087	0.01	- 3	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	10	3,500	350	6010B
Nickel(Ni)	50.7	2.5	10	2,000	20	6010B
Selenium(Se)	ND	1.0	10	100	1.0	6010B
Silver(Ag)	ND	1.0	10	500	5.0	6010B
Thallium(Tl)	ND	1.0	10	700	7.0	6010B
Vanadium(V)	72.5	5.0	10	2,400	24	6010B
Zinc(Zn)	80.9	0.5	10	5,000	250	6010B

#### COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) = Not analyzed/not requested

Data Reviewed and Approved by: CAL-DHS ELAP CERTIFICATE No.: 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Petaluma - Corona Station

MATRIX: SOIL	DATE RECEIVED: 06/08/17
DATE SAMPLED:06/06/17	DATE ANALYZED: 06/09/17
REPORT TO: MR. PETER CLOVEN	DATE REPORTED: 06/15/17

SAMPLE I.D.: SS-8-0.5

LAB I.D.: 170608-36

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EpA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony (Sb)	ND	1.0	10	500	15	6010B
Arsenic(As)	6.31	0.3	10	500	5.0	6010B
Barium(Ba)	187	5.0	10	10,000	100	6010B
Beryllium(Be)	ND	0.5	10	75	0.75	6010B
Cadmium(Cd)	ND	0.5	10	100	1.0	6010B
Chromium Total(Cr)	61.3	0.5	10	2,500	560/50	6010B
Chromium VI (Cr6)		0.1		500	5.0	7196A
Cobalt(Co)	20.9	1.0	1.1.0	8,000	80	6010B
Copper(Cu)	41.8	1.0	10	2,500	25	6010B
Lead(Pb)	11.7	0.5	1.0	2.000	5.0	6010B
Mercury (Hg)	0.150	0.01	1.1	20	0.2	7471A
Molybdenum (Mo)	ND	5.0	1.0	3,500	350	6010B
Nickel(Ni)	73.2	2.5	1.0	5.000	20	6010B
Selenium(Se)	ND	1.0	10	100	1.0	6010B
Silver(Ag)	ND	1.0	10	500	5.0	6010B
Thallium(Tl)	ND	1.0	10	700	7.0	6010B
Vanadium(V)	68.6	5.0	10	2,400	24	6010B
Zinc (Zn)	92.4	0.5	10	5,000	250	6010B

#### COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) --- = Not analyzed/not requested

Data Reviewed and Approved by: CAL-DHS ELAP CERTIFICATE No.: 155

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER:	Pinnacle Environmental, Inc
	P.O. Box 904
	Clayton, CA 94517
	(925)673-5500 Email: pcloven@pei-env.com
PROJECT:	Petaluma - Corona Station

MATRIX: SOIL	DATE RECEIVED: 06/08/17
DATE SAMPLED: 06/06/17 D.	ATE ANALYZED: 06/09/17
REPORT TO: MR. PETER CLOVEN D	ATE REPORTED: 06/15/17
	which an at a fact the second s

SAMPLE I.D.: SS-9-0.5

LAB I.D.: 170608-37

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EpA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	10	500	15	6010B
Arsenic(As)	ND	0.3	10	500	5.0	6010B
Barium(Ba)	231	5.0	10	10,000	100	6010B
Beryllium(Be)	ND	0.5	10	75	0.75	6010B
Cadmium(Cd)	ND	0.5	10	100	1.0	6010B
Chromium Total(Cr)	50.8	0.5	10	2,500	560/50	6010B
Chromium VI (Cr6)	100.00	0.1	-	500	5.0	7196A
Cobalt(Co)	31.3	1.0	10	8,000	80	6010B
Copper(Cu)	51.3	1.0	10	2,500	25	6010B
Lead(Pb)	6.15	0.5	10	1,000	5.0	6010B
Mercury(Hg)	0.068	0.01	3.	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	10	3,500	350	6010B
Nickel(Ni)	98.2	2.5	10	2,000	20	6010B
Selenium(Se)	ND	1.0	10	100	1.0	6010B
Silver(Ag)	ND	1.0	10	500	5.0	6010B
Thallium(Tl)	ND	1.0	10	700	7.0	6010B
Vanadium(V)	88.2	5.0	10	2,400	24	6010B
Zinc(Zn)	63.8	0.5	10	5,000	250	6010B

#### COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) = Not analyzed/not requested

Data Reviewed and Approved by: CAL-DHS ELAP CERTIFICATE No.: 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER:	Pinnacle Environmental, Inc
	P.O. Box 904
	Clayton, CA 94517
	(925)673-5500 Email: pcloven@pei-env.com
PROJECT:	Petaluma - Corona Station

MATRIX: SOIL	DATE RECEIVED; <u>06/08/17</u>
DATE SAMPLED:06/06/17	DATE ANALYZED: <u>06/09/17</u>
REPORT TO: MR. PETER CLOVEN	DATE REPORTED: 06/15/17

SAMPLE I.D.: SS-10-0.5

LAB I.D.: 170608-38

TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

ELEMENT	SAMPLE			TTLC	STLC	EPA
ANALYZED	RESULT	PQL	DF	LIMIT	LIMIT	METHOD
Antimony(Sb)	ND	1.0	10	500	15	6010B
Arsenic(As)	ND	0.3	10	500	5.0	6010B
Barium(Ba)	166	5.0	10	10,000	100	6010B
Beryllium(Be)	ND	0.5	10	75	0.75	6010B
Cadmium(Cd)	ND	0.5	10	100	1.0	6010B
Chromium Total(Cr)	60.5	0.5	10	2,500	560/50	6010B
Chromium VI (Cr6)		0.1		500	5.0	7196A
Cobalt(Co)	18.7	1.0	10	8,000	80	6010B
Copper(Cu)	28.8	1.0	10	2,500	25	6010B
Lead(Pb)	22.4	0.5	10	1,000	5.0	6010B
Mercury(Hg)	0.266	0.01	1.000	20	0.2	7471A
Molybdenum(Mo)	ND	5.0	10	3,500	350	6010B
Nickel(Ni)	61.2	2.5	10	2,000	20	6010B
Selenium(Se)	ND	1.0	10	100	1.0	6010B
Silver(Ag)	ND	1.0	10	500	5.0	6010B
Thallium(Tl)	ND	1.0	10	700	7.0	6010B
Vanadium(V)	66.7	5.0	10	2,400	24	6010B
Zinc(Zn)	81.1	0.5	10	5,000	250	6010B

### COMMENTS

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = PQL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit = = * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) --= Not analyzed/not requested

Data Reviewed and Approved by: ______ CAL-DHS ELAP CERTIFICATE No.: 1555

1214 E. Lexington Avenue. Pomona. CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## METHOD BLANK REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925) 673-5500 Email: pcloven@pei-env.com PROJECT: Petaluma - Corona Station

MATRIX: SOIL	DATE	RECEIVED: 06/08/17
DATE SAMPLED: 06/06/17	DATE	ANALYZED: 06/09/17
REPORT TO: MR. PETER CLOVEN	DATE	REPORTED: 06/15/17
***************************************		

METHOD BLANK REPORT FOR LAB I.D.: 170608-29 THROUGH -38

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM ELEMENT SAMPLE TTLC STLC EPA RESULT PQL DF LIMIT METHOD ANALYZED LIMIT 1.0 1 15 Antimony(Sb) ND 500 6010B 0.3 ND 5.0 Arsenic(As) 1 500 6010B 
 ND
 5.0
 1
 10,000

 ND
 0.5
 1
 75

 ND
 0.5
 1
 100

 ND
 0.5
 1
 2,500

 ND
 0.5
 1
 2,500
 100 Barium(Ba) 6010B 0.75 Beryllium(Be) 75 6010B Cadmium(Cd) 1.0 6010B 2,500 560/50 Chromium Total(Cr) 6010B 0.1 Chromium VI (Cr6) -500 5.0 100.000 7196A 1.018,0001.012,5000.511,000 ND Cobalt(Co) 80 6010B 2,500 25 1,000 5.0 Copper(Cu) ND 6010B Lead(Pb) ND 6010B 20 Mercury(Hq) ND 0.01 1 0.2 7471A 5.0 1 2.5 1 3,500 350 Molybdenum(Mo) ND 6010B 20 2.5 1 1.0 1 1.0 1 Nickel(Ni) 2,000 ND 6010B ND 1.0 Selenium(Se) 100 6010B Silver(Ag) ND 500 5.0 6010B 1.0 1 700 7.0 Thallium(Tl) ND 6010B 1 5.0 24 Vanadium(V) ND 2,400 6010B Zinc(Zn) ND 0.5 1 5,000 250 6010B

# TOTAL THRESHOLD LIMIT CONCENTRATION ANALYSIS

#### COMMENTS

the second second

DF = Dilution Factor PQL = Practical Quantitation Limit Actual Detection Limit = POL X DF ND = Below the Actual Detection Limit or non-detected TTLC = Total Threshold Limit Concentration STLC = Soluble Threshold Limit Concentration @ = Must meet both the STLC Limit at 560 and EPA-TCLP Limit at 5 * = STLC analysis for the metal <u>is</u> recommended (if marked) ** = Additional Analysis required, please call to discuss (if marked) *** = The concentration exceeds the TTLC Limit, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked) --- = Not analyzed/not requested

Data Reviewed and Approved by: CAL-DHS ELAP CERTIFICATE No.: 1555

ANAL	YSIS DATE: 6	3/9/2017							Unit	: m <u>g/Kg(p</u>	(md
Analysis	Spk.Sample ID	CONC.	LCS %Rec.	LCS STATUS	Sample Result	Spike Conc.	Wa	% Rec MS	MSD	% Rec MSD	% RPD
Chromium(Cr)	170609-LCS	50.0	95	RASS	a	50.0	47.5	86%	47.8	M-96	1%
Lead(Pb)	170609-LCS	50.0	104	PASS	0	50.0	53.4	107%	53.4	107%	%0
Nickel(Ni)	170609-LCS	50.0	105	PASS	ø	50.0	47.8	94.96	48.0	%96	16
ANAL	YSIS DATE. : (	5/9/2017									
Analysis	Spk.Sample ID	170508- <b>CONC</b> .	LCS %Rec.	LCS STATUS	Sample Result	Spike Conc.	SM	% Rec MS	MSD	% Rec MSD	% RPD
Mercury (Hg)	170608-18	0.125	86	PASS	.0	0.125	0.112	%06	0.106	85%	6%
<b>MS/MSD Status:</b>											
Analysis	SW%	%MSD	SO1%	%RPD							
Chromium(Cr)	PASS	PASS	PASS	PASS	11 (11.4			1			
Lead(Pb)	PASS	PASS	PASS	PASS			38	ñ			
Nickel(Ni)	PASS	PASS	PASS	PASS		ANALYST:	3	1			
Mercury (Hg)	PASS	PASS	RASS	PASS				5			
Accepted Range	75 ~ 125	75 ~ 125	85 ~ 115	0~20		FINAL REV	IEWER:	05			

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER:	Pinnacle Environmental, Inc
	P.O. Box 904
	Clayton, CA 94517
	(925) 673-5500 Email: pcloven@pei-env.com
PROJECT:	Petaluma - Corona Station

MATRIX: SOIL	DATE RECEIVED: 06/08/17
DATE SAMPLED:06/06/17	DATE ANALYZED: 06/08/17
REPORT TO: MR. PETER CLOVEN	DATE REPORTED: <u>06/15/17</u>

SAMPLE I.D.: SS-1-0.5	LAB I.D.:	170608-29
ANALYSIS: VOLATILE ORGANICS UNIT: mg/Kg = MI	, EPA METHOD 5030E LLIGRAM PER KILOGR	X8260B, PAGE 1 OF 2 XAM = PPM
PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
<u>2-CHLOROTOLUENE</u>	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	<u>ND</u>	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005

1,1-DICHLOROETHENE CIS-1, 2-DICHLOROETHENE ND 0.005 TRANS-1, 2-DICHLOROETHENE ND 0.005 0.005 1,2-DICHLOROPROPANE ND

----- TU BE CONTINUED ON PAGE 12 -----4

ND

ND

ND

ND

0.005

0.005

0.005

0.005

DATA REVIEWED AND APPROVED BY:

DICHLORODIFLUOROMETHANE

1,1-DICHLOROETHANE

1,2-DICHLOROETHANE

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925) 673-5500 Email: pcloven@pei-env.com Petaluma - Corona Station PROJECT: MATRIX: SOIL DATE RECEIVED: 06/08/17 DATE SAMPLED: 06/06/17 DATE ANALYZED:06/08/17 REPORT TO: MR. PETER CLOVEN DATE REPORTED: 06/15/17 SAMPLE I.D.: SS-1-0.5 LAB I.D.: 170608-29 ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM PARAMETER SAMPLE RESULT PQL X1 1, 3-DICHLOROPROPANE ND 0.005 2, 2-DICHLOROPROPANE ND 0.005 1, 1-DICHLOROPROPENE ND 0.005 CIS-1, 3-DICHLOROPROPENE ND 0.005 TRANS-1, 3-DICHLOROPROPENE ND 0.005 ETHYLBENZENE ND 0.005 2-HEXANONE ND 0.020 **HEXACHLOROBUTADIENE** 0.005 ND ISOPROPYLBENZENE ND 0.005 **4-ISOPROPYLTOLUENE** ND 0.005 4-METHYL-2-PENTANONE (MIBK) ND 0.020 METHYL tert-BUTYL ETHER (MTBE) ND 0.005 METHYLENE CHLORIDE ND 0.010 NAPHTHALENE ND 0.005 N-PROPYLBENZENE ND 0.005 STYRENE ND 0.005 1, 1, 1, 2-TETRACHLOROETHANE ND 0.005 1, 1, 2, 2-TETRACHLOROETHANE ND 0.005 TETRACHLOROETHENE (PCE) ND 0.005 TOLUENE ND 0.005 1, 2, 3-TRICHLOROBENZENE ND 0.005 1, 2, 4-TRICHLOROBENZENE ND 0.005 1, 1, 1~TRICHLOROETHANE ND 0.005 1, 1, 2-TRICHLOROETHANE ND 0.005 TRICHLOROETHENE (TCE ND 0.005 TRICHLOROFLUOROMETHANE ND 0.005 1, 2, 3-TRICHLOROPROPANE ND 0.005 1, 2, 4-TRIMETHYLBENZENE ND 0.005 1,3,5-TRIMETHYLBENZENE ND 0.005 VINYL CHLORIDE ND 0.005 M/P-XYLENE ND 0.010 O-XYLENE 0.005 ND

**COMMENTS** PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE POL .

DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

## LABORATORY REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925) 673-5500 Email: pcloven@pei-env.com PROJECT: Petaluma - Corona Station

MATRIX: SOIL	DATE RECEIVED: 06/08/17
DATE SAMPLED: <u>06/06/17</u>	DATE ANALYZED: 06/08/17
REPORT TO:MR. PETER CLOVEN	DATE REPORTED: 06/15/17
	and the second

SAMPLE I.D.: SS-2-0.5

LAB I.D.: 170608-30

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2

UNIT: $mg/Kg =$	MILLIGRAM PER KILOG	RAM = PPM
PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK	ND	0.020
<u>N-BUTYLBENZENE</u>	ND	0.005
SEC-BUTYLBENZENE	ND	<u>0.005</u>
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
<u>4-CHLOROTOLUENE</u>	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1, 3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1, 2-DICHLOROETHENE	ND	0.005
TRANS~1,2~DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005
70 88	CONTINUED ON PACE	

DATA REVIEWED AND APPROVED BY

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

	LABC	RATORY REPORT	
CUSTOMER:	Pinnacle Environmen	tal, Inc	
	P.O. Box 904		
	Clayton, CA 94517		
	(925)673-5500 Email	: pcloven@pei-env	.com
PROJECT:	Petaluma - Corona S	tation	
MATRIX: <u>SOI</u>	L	DATE RECE	SIVED: <u>06/08/17</u>
DATE SAMPL	ED: <u>06/06/17</u>	DATE ANAL	LYZED: <u>06/08/17</u>
REPORT TO:	MR. PETER CLOVEN	DATE REPO	DRTED: <u>06/15/17</u>
SAMPLE I.D	.: SS-2-0.5	LAB I.D.:	170608-30
NALYSIS:	VOLATILE ORGANICS, E	PA METHOD 5030B/8	260B, PAGE 2 OF 2
	UNIT: $mg/Kg = M$	ILLIGRAM PER KILO	GRAM = PPM
PARAMETER		SAMPLE RESULT	PQL X1
L, 3-DICHLO	ROPROPANE	ND	0.005
2.2-DICHLO	ROPROPANE	ND	0.005
1,1-DICHLO	ROPROPENE	ND	0.005
<u>215-1,3-DI</u>	CHLOROPROPENE	ND	0.005
<u>RANS-1,3-</u>	DICHLOROPROPENE	ND	0.005
THYLBENZE	NE	ND	0.005
-HEXANONE		ND	0.020
EXACHLORO	BUTADIENE	ND	0.005
SOPROPYLB	ENZENE	<u>ND</u>	0.005
I-ISOPROPY	LTOLUENE	<u>ND</u>	0.005
<u>I-METHYL-2</u>	-PENTANONE (MIBK	<u>ND</u>	0.020
<u>1ETHYL ter</u>	t-BUTYL ETHER (MTBE	<u>ND</u>	0.005
<u>IETHYLENE</u>	CHLORIDE	<u>ND</u>	0.010
APHTHALEN	<u>E</u>	<u>ND</u>	0.005
I-PROPYLBE	NZENE	ND	0.005
1 1 0 mm	TOLOUT ODODTUDNE		0.005
<u>, I, I, Z-TE</u>	TRACHLOROSTHANS	ND	0.005
	<u>IRACHLORUETHANE</u>		0.005
OT UPNE	OBIHENE (FCE		0.005
2 2. UDIC	UT OD OD EN 7 EN W	ND	0.005
2 A_TRIC	HICKUDENZENE		0.005
1 1_00TC	HIOROFTUNNE		0.005
1 2 DBTC	HICKULINANE		0.005
DICULODOR	TUTNE / TOE		0.005
RICHLOROE			0.005
2 2 MDTC	HI ODODDODANE		0.005
12, 3-1RIC			0.005
2 A	EIRIBOSNZENS FTUVI SFN7FNF		0.005
2. 5. TRIM		ND	0.005
., 2, 4-TRIM	RINIBANZENA	ND	0.005
.,2,4-TRIM .,3,5-TRIM /INYL CHLO	RIDE	ND	0.005

MENTS POL PRAC.

ND = NON-DETECTED OR BELOW THE POL

DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE #

llet
1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Petaluma - Corona Station

MATRIX: SOIL	DATE RECEIVED: <u>06/08/17</u>
DATE SAMPLED: 06/06/17	DATE ANALYZED: 06/08/17
REPORT TO:MR. PETER CLOVEN	DATE REPORTED: 06/15/17

SAMPLE I.D.: SS-3-0.5

LAB I.D.: 170608-31

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0,005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0 <u>.005</u>
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	<u>0.005</u>
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0 <u>.005</u>
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	<u>ND</u>	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1, 3-DICHLOROBENZENE	ND	0.005
1, 4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1, 2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

----- TO BE CONTINUED ON PAGE #2 -----

DATA REVIEWED AND APPROVED BY

Enviro – Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATO	DRY REPORT
CUSTOMER: Pinnacle Environmental,	Inc
P.O. Box 904	
Clayton, CA 94517	
<b>(925)673-5500 Email</b> : pc	loven@pei-env.com
PROJECT: Petaluma - Corona Static	on
MATTRA ACTI	
MAIRIX: SOIL	DATE RECEIVED: 06/08/17
DATE SAMPLED: U0700717	DATE ANALYZED: 06/08/17
REPORT TO:MR. PETER CLOVEN	DATE REPORTED: 06/15/17
SAMPLE I.D.: SS-3-0.5	LAB I.D.: 170608-31
ANALYSIS: VOLATILE ORGANICS, EPA M	ETHOD 5030B/8260B, PAGE 2 OF
UNIT: mg/Kg = MILLIG	RAM PER KILOGRAM = PPM
PARAMETER SAM	PLE RESULT PQL X1
1, 3-DICHLOROPROPANE	<u>ND</u> 0.005
2, Z-DICHLOROPROPANE	<u>ND</u> 0.005
<u>1, 1-DICHLOROPROPENE</u>	<u>ND</u> <u>0.005</u>
CIS-1, 3-DICHLOROPROPENE	<u>ND</u> 0.005
TRANS-1, 3-DICHLOROPROPENE	<u>ND 0.005</u>
ETHYLBENZENE	<u>ND</u> <u>0.005</u>
Z-HEXANONE	<u>ND</u> <u>0.020</u>
HEXACHLOROBUTADIENE	<u>ND</u> <u>0.005</u>
A TROPPODY TOL VEND	ND 0.005
4-ISOPROPILITOLUENE	ND 0.005
4-MEIHIL-ZAPENTANONE (MIBKI	ND 0.020
METUVIENE CULOTDE	ND 0.005
MADUTURT FRE	ND 0.010
N_DDODYI RENZENE	ND 0.005
STADENTE	
	ND 0.005
$1 1 2 2 - \pi \epsilon \tau \rho a c \mu l o \rho \sigma \tau \sigma \lambda n \epsilon$	ND 0.005
$\frac{1}{1} \frac{1}{2} \frac{2}{2} \frac{2}{2} \frac{1}{2} \frac{1}$	ND 0,005
TOLIENE	ND 0.005
1 2 3-TRICHLOROBENZENE	ND 0.005
1 2 4-TRICHLOROBENZENE	ND 0.005
1, 1, 1-TRICHLOROFTHANE	ND 0.005
1, 1, 2-TRICHLOROFTHANE	ND 0.005
TRICHLOROETHENE (TOF)	ND 0.005
TRICHLOROFLUOROMETHANE	ND 0.005
1.2.3-TRICHLOROPROPANE	ND 0.005
1.2.4-TRIMETHYLBENZENE	ND 0.005
1. 3. 5-TRIMETHYLBENZENE	ND 0.005
VINYL CHLORIDE	ND 0.005
M/P-XYLENE	ND 0.000
O-XYLENE	ND 0.005

ND = NON-DETECTED OR BELOW THE

DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Petaluma - Corona Station

MATRIX:SOIL	DATE RECEIVED: 06/08/17
DATE SAMPLED:06/06/17	DATE ANALYZED: 06/08/17
REPORT TO:MR. PETER CLOVEN	DATE REPORTED: 06/15/17
the second s	

SAMPLE I.D.: SS-4-0.5

LAB I.D.: 170608-32

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.0 <u>05</u>
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	<u>ND</u>	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.0 <u>05</u>
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1.4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1, 2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1 2-DICHLOROPROPANE	ND	0.005

----- TO DE CONTINUED ON PAGE 12 -----

DATA REVIEWED AND APPROVED BY:

# Enviro – Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

	LABO	DRATORY REPORT	
CUSTOMER:	Pinnacle Environmen	ntal, Inc	
	P.O. Box 904		
	Clayton, CA 94517		
	(925)673-5500 Email	i: pcloven@pei-env	. com
PROJECT:	Petaluma - Corona S	Station	
MATRIX	Т.	DATE RECE	TVED:06/08/17
DATE SAMPT	ED.06/06/17	DATE ANAL	YZED: 06/08/17
REPORT TO	MB PETER CLOVEN	DATE REPO	BTED: 06/15/17
REFORT TO:	Mr. THIMK MICCOM	DAILD HELO	
SAMPLE I.D	).: SS-4-0.5	LAB I.D.:	170608-32
ANALYSIS:	VOLATILE ORGANICS,	EPA METHOD 5030B/8	260B, PAGE 2 OF 2
	UNIT: $mg/Kg = M$	ILLIGRAM PER KILOG	RAM = PPM
PARAMETER		SAMPLE RESULT	PQL X1
1,3-DICHLC	ROPROPANE	<u>ND</u>	0.005
2,2-DICHLC	ROPROPANE	ND	0.005
1,1-DICHLC	ROPROPENE	ND	0.005
<u>CIS-1,3-DI</u>	CHLOROPROPENE	ND	0.005
TRANS-1,3-	DICHLOROPROPENE	ND	0.005
ETHYLBENZE	INE	ND	0.005
2-HEXANONE		ND	0.020
HEXACHLORC	BUTADIENE	<u>ND</u>	0.005
ISOPROPYLE	ENZENE	ND	0.005
4-ISOPROPY	LTOLUENE	ND	0.005
4-METHYL-2	-PENTANONE (MIBK	ND	0.020
METHYL ter	T-BUTYL ETHER (MTBE	ND	0.005
METHYLENE	CHTOKIDE	ND	0.010
NAPHTHALEN		ND	0.005
N-PROPILSE	INZEINE	ND	0.005
STIRENE 1 1 1 0 mm	MDA QUI ODOEMUANE	ND	0.005
1,1,1, <u>2-TE</u>	TRACHLORUETHANE	ND	0.005
T, I, Z, Z-TE	ATRACHLOROETHANE	ND	0.005
TOTRACHLOR	VEINENE (PCE)		0.005
1 2 2 MDTC	UTODODENZENE		0.005
1 2 A_TDIC	UT ODODENZENE	ND	0.005
1, 2, 4 - 1KIU	HIORODANAANA WI.ODORTUANA		0.005
1, 1, 2-9010			0.005
TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	THUCKUEI DANE		0.005
TRICHLOROE	TIOROMETHANE	ND	0.005
1.2.3-TRTC	HLOROPROPANE	ND	0.005
1.2.4-TRIN	ETHYLBENZENE	ND	0.005
1.3.5-TRIM	ETHYLBENZENE	ND	0.005
VINYL CHLC	RIDE	ND	0.005
M/P-XYLENE		ND	0.010
O-XYLENE	s	ND	0.005
COMMENTS D	$OI_{L} = PRACTICAL OUAN$	TTTATTON LIMIT	
ND = NON-F	ETECTED OR BELOW TH		
DATA REVIE	WED AND APPROVED BY	1	
CAL-DHS CE	RTIFICATE # 1555	het	

DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Petaluma - Corona Station

a state of the second state of	
REPORT TO:MR. PETER CLOVEN	DATE REPORTED: 06/15/17
DATE SAMPLED: 06/06/17	DATE ANALYZED: 06/08/17
MATRIX: <u>SOIL</u>	DATE RECEIVED: 06/08/17

SAMPLE I.D.: SS-5-0.5

LAB I.D.: 170608-33

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1, 2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1, 2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1, 4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0,005
1,2-DICHLOROETHANE	ND	0.005
1, 1-DICHLOROETHENE	ND	0.005
CIS-1, 2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0, <u>005</u>
1,2-DICHLOROPROPANE	ND	0.005

----- TO BE CONTINUED ON PAGE 12 -----

DATA REVIEWED AND APPROVED BY:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

	LABO	RATORY REPORT	
CUSTOMER:	Pinnacle Environment	tal, Inc	
	P.O. Box 904		
	Clayton, CA 94517		
	(925)673-5500 Email:	: pcloven@pei-env.com	
PROJECT :	Petaluma - Corona Si	tation	
MATRIX: SOJ	<u>II.</u>	DATE RECEIVED	: <u>06/08/17</u>
DATE SAMPI	LED: <u>06/06/17</u>	DATE ANALYZED	: <u>06/08/17</u>
REPORT TO:	MR. PETER CLOVEN	DATE REPORTED	): <u>06/15/17</u>
SAMPLE I.I	D.: SS-5-0.5	LAB I.D.: 170	608-33
		*******	
ANALYSIS:	VOLATILE ORGANICS, EL	PA METHOD 5030B/8260B	, PAGE 2 OF 1
	UNIT: $mg/Kg = MI$	LLIGRAM PER KILOGRAM	= PPM
PARAMETER		SAMPLE RESULT	PQL X1
1,3-DICHLC	DROPROPANE	ND	0.005
2,2-DICHLC	DROPROPANE	ND	0.005
1,1-DICHLC	DROPROPENE	ND	0.005
<u>CIS-1,3-DI</u>	ICHLOROPROPENE	ND	0.005
<u>TRANS-1,3-</u>	-DICHLOROPROPENE	ND	0.005
ETHYLBENZE	ENE	ND	0.005
Z-HEXANONE		ND	0.020
HEXACHLORC	DBUTADIENE	ND	0.005
I SOPROPYLE	SENZENE	ND	0.005
4-ISOPROPY	LTOLUENE	ND	0.005
	-PENTANONE (MIBK	ND	0.020
<u>METHIL Lei</u> Metuviene	CULOBIDE	ND	0.005
MEINILENE MADUTUATEN	IP IP	ND	0.010
N-DRODVI.BE	ND FNF	ND	0.005
STVRENE	ANZENE	ND	0.005
1.1.1.2-TE	TRACHLOROETHANE	ND	0.005
1,1,2,2-TE	TRACHLOROETHANE	ND	0.005
TETRACHLOR	OETHENE (PCE	ND	0.005
TOLUENE	Martinetti (1.011	ND	0.005
1.2.3-TRTC	CHLOROBENZENE	ND	0.005
1.2.4-TRIC	CHLOROBENZENE	ND	0.005
1,1,1-TRIC	CHLOROETHANE	ND	0.005
1,1,2-TRIC	CHLOROETHANE	ND	0.005
TRICHLOROF	THENE (TCE	ND	0.005
	LUOROMETHANE	ND	0.005
TRICHLOROF	CHLOROPROPANE	ND	0.005
TRICHLOROF		ND	0.005
TRICHLOROF 1,2,3-TRIC 1,2,4-TRIM	<u>METHYLBENZENE</u>		0 005
TRICHLOROF 1,2,3-TRIC 1,2,4-TRIM 1,3,5-TRIM	<u>METHYLBENZENE</u> METHYLBENZENE	ND	0.005
TRICHLOROF 1,2,3-TRIC 1,2,4-TRIM 1,3,5-TRIM VINYL CHLC	METHYLBENZENE METHYLBENZENE DRIDE	ND ND	0.005
TRICHLOROF 1,2,3-TRIC 1,2,4-TRIM 1,3,5-TRIM VINYL CHLC M/P-XYLENE	METHYLBENZENE METHYLBENZENE DRIDE	ND ND ND	0.005 0.010

DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER:	Pinnacle Environmental, Inc
	P.O. Box 904
	Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com
PROJECT:	Petaluma - Corona Station

MATRIX: <u>SOIL</u>	DATE RECEIVED: 06/08/17
DATE SAMPLED: 06/06/17	DATE ANALYZED: 06/08/17
REPORT TO: MR. PETER CLOVEN	DATE REPORTED: 06/15/17

SAMPLE I.D.: 55-6-0.5

LAB I.D.: 170608-34

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK	ND	0.020
<u>N-BUTYLBENZENE</u>	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	<u>.005</u>
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1, 3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0,005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

-- TO BE CONTINUED ON PAGE 12 -----

DATA REVIEWED AND APPROVED

Enviro – Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

	T.AB	ORATORY PEDORT	
CHETOMED.	Rippede Truiner-	CRAICKI REPORT	
COSTOMER.	P O Pow 904	antar, ine	
	Clowbon C3 04517		
	(02E) 672 EEOO Too	1	
DDATECT	(925) 073-5500 Emai	1: pcloven@pel-env.c	om
FROUDELT:	Petaruma - Corona	Station	
MATRIX.SOTI		DATE DECETS	<b>ΦD</b> • 06 /09 /17
DATE SAMPLE	D·06/06/17	DATE ANALYS	$\frac{1}{10} \frac{1}{100} \frac{1}{$
REPORT TO:N	AB. PETER CLOVEN	DATE ANALIZ	$\frac{00700717}{15000000000000000000000000000000000000$
		DATE REPORT	ED: <u>00715717</u>
SAMPLE I.D.	: \$\$-6-0.5	LAB I.D.: 1	70608-34
ANALYSIS: V	OLATILE ORGANICS	EPA METHOD 5030B/826	
	UNIT: $mg/Kg = M$	ILLIGRAM PER KTLOGRA	M = PPM
PARAMETER		SAMPLE RESULT	POL X1
1,3-DICHLOF	ROPROPANE	ND	0 005
2,2-DICHLOF	ROPROPANE	ND	0.005
1,1-DICHLOF	ROPROPENE	ND	0.005
CIS-1,3-DIC	HLOROPROPENE	ND	0.005
TRANS-1,3-D	DICHLOROPROPENE	ND	0.005
ETHYLBENZEN	IE	ND	0,005
2-HEXANONE		ND	0.020
HEXACHLOROE	BUTADIENE	ND	0.005
ISOPROPYLBE	NZENE	ND	0.005
4~ISOPROPYL	TOLUENE	ND	0.005
4-METHYL-2-	PENTANONE (MIBK	ND	0.020
METHYL tert	-BOTYL ETREE INTRE	<u>ND</u>	0.005
METHYLENE C	HLORIDE	ND	0.010
NAPHTHALENE		ND	0.005
N-PROPYLBEN	ZENE	ND	0.005
STYRENE		ND	0.005
<u>1, 1, 1, 2-TET</u>	RACHLOROETHANE	<u>ND</u>	0.005
I, I, Z, Z-TET	RACHLOROETHANE	ND	0.005
TETRACHLORO	ETHENE (PCE)	ND	0.005
1 2 2. TDICH	LODODENZENE	ND	0.005
1, 2, 3-IRICH	LOROBENZENE	<u>ND</u>	0.005
1, 2, 4 - 1	T ODOFTHAND	ND	0.005
1 1 2_TRICH	T ODORTHANE	ND	0.005
TRICHLOROFT	HENE (TOR		0.005
TRICHLOROFI	HOROMETHANE	ND	0.005
1.2.3-TRICH	LOROPROPANE	ND	0.005
1, 2, 4 - TRIME	THYLBENZENE		0.005
1.3.5-TRIME	THYLBENZENE		0.005
VINYL CHLOR	IDE	ND	0.005
M/P-XYLENE		ND	0.010
O-XYLENE		ND	0.005
COMMENTS PO	L = PRACTICAL OUAN	TITATION LIMIT	
ND = NON - DE	TECTED OR BELOW THE	s Pail /	
DATA REVIEW	ED AND APPROVED BY	1.	
CAL-DHS CER	TIFICATE # 1555	ag 1	

# 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

	LABC	RATORY REPORT	
CUSTOMER:	Pinnacle Environmen	tal, Inc	
	P.O. Box 904		
	Clayton, CA 94517		
	(925)673-5500 Email	: pcloven@pei-env.c	om
PROJECT:	Petaluma - Corona S	tation	
MATRIX: SO	TT.	DATE RECEIN	JED:06/08/17
DATE SAMP	LED: 06/06/17	DATE ANALY	ZED: 06/08/17
REPORT TO	MR. PETER CLOVEN	DATE REPOR	$r_{ED} \cdot 06/15/17$
SAMPLE I.	D.: SS-7-0.5	LAB I.D.: 3	170608-35
ANALYS	IS: VOLATILE ORGANICS UNIT: mg/Kg = M	S, EPA METHOD 5030B Illigram per kilogr	/8260B, PAGE 1 OF 2 Am = PPM
PARAMETER		SAMPLE RESULT	PQL X1
ACETONE		ND	0.020
BENZENE		ND	0.005
BROMOBENZI	ENE	ND	0.005
BROMOCHLO	ROMETHANE	ND	0.005
BROMODICH:	LOROMETHANE	ND	0.005
BROMOFORM		ND	0.005
BROMOMETH	ANE	ND	0.005
2-BUTANONI	E (MEK)	ND	0.020
M_DIITVI DEI	N C ENTE	ND	0.005

BROMOMETHANE	ND	0.005
2-BUTANONE (MEK	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	<u>0.010</u>
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO~3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1, 3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	<u>ND</u>	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

- 10 BE CONTINUED ON PAGE 12 -----

DATA REVIEWED AND APPROVED BY

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABOR	TORY REPORT	
CUSTOMER: Pinnacle Environmenta	l, Inc	
P.O. Box 904		
Clayton, CA 94517		
(925)673-5500 Email:	pcloven@pei-env	. COM
PROJECT: Petaluma - Corona Sta	tion	
MATRIX: SOIL	DATE RECE	IVED: <u>06/08/17</u>
DATE SAMPLED: <u>06/06/17</u>	DATE ANAL	YZED: <u>06/08/17</u>
REPORT TO: <u>MR. PETER CLOVEN</u>	DATE REPO	RTED: <u>06/15/17</u>
SAMPLE I.D.: <b>SS-7-0.5</b>	LAB I.D.:	170608-35
ANALYSIS: VOLATILE ORGANICS, EPA	METHOD 5030B/8	260B, PAGE 2 OF 2 DAM = DDM
PARAMETER S	AMPLE RESULT	POL X1
1, 3-DICHLOROPROPANE	ND	0.005
2,2-DICHLOROPROPANE	ND	0.005
1,1-DICHLOROPROPENE	ND	0.005
CIS-1, 3-DICHLOROPROPENE	ND	0.005
TRANS-1, 3-DICHLOROPROPENE	ND	0.005
ETHYLBENZENE	ND	0.005
2-HEXANONE	ND	0.020
HEXACHLOROBUTADI ENE	ND	0.005
[SOPROPYLBENZENE	ND	0.005
-ISOPROPYLTOLUENE	ND	0.005
-METHYL-2-PENTANONE (MIBK	ND	0.020
4ETHYL tert-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	<u>0.010</u>
1APHTHALENE	ND	0,005
1-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1, 1, 1, 2-TETRACHLOROETHANE	ND	0.005
1,1,2,2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE	ND	0.005
POLUENE	ND	0.005
1,2,3-TRICHLOROBENZENE	<u>ND</u>	0.005
1,2,4-TRICHLOROBENZENE	<u>ND</u>	0.005
1, 1, 1-TRICHLOROETHANE	ND	0.005
1, 1, 2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
2, 3-TRICHLOROPROPANE	ND	0.005
, 2, 4-TRIMETHYLBENZENE	ND	0.005
1, 3, 5-TRIMETHYLBENZENE	ND	0.005
	ND	0.005
	110	0 010
M/P-XYLENE	ND	0.010

DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

hel

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Petaluma - Corona Station

MATRIX: <u>SOIL</u>	DATE RECEIVED: 06/08/17
DATE SAMPLED:06/06/17	DATE ANALYZED: 06/08/17
REPORT TO: MR. PETER CLOVEN	DATE REPORTED: 06/15/17

SAMPLE I.D.: SS-8-0.5

LAB I.D.: 170608-36

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2

UNIT: $mg/Kg = M$	ILLIGRAM PER KILOGI	RAM = PPM
PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK	ND	0.020
N-BUTYLBENZENE	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	<u>0.005</u>
DIBROMOCHLOROMETHANE	ND	0.005
L, 2-DIBROMO-3-CHLOROPROPANE	ND	0.005
, 2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
, 3-DICHLOROBENZENE	ND	0.005
, 4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
L, 1-DICHLOROETHANE	ND	0.005
,2-DICHLOROETHANE	ND	0.005
L, 1-DICHLOROETHENE	ND	0.005
CIS-1, 2-DICHLOROETHENE	ND	0.005
TRANS-1,2-DICHLOROETHENE	ND	0.005
L, 2-DICHLOROPROPANE	ND	0.005

- TO BE CONTINUED ON PAGE 🚺 ----

REVIEWED AND APPROVED BY:

Enviro – Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

CHOROMED, Dimension		
CUSTOMER: Pinnacle Environmental	, Inc	
P.O. Box 904		
Clayton, CA 94517		
(925)673-5500 Email: p	cloven@pei-env	.com
PROJECT: Petaluma - Corona Stat	ion	
MATRIX: SOIL	DATE RECE	IVED:06/08/17
DATE SAMPLED:06/06/17	DATE ANALYZED 06/08/17	
REPORT TO:MR. PETER CLOVEN	DATE REPO	RTED: 06/15/17
SAMPLE I.D.: SS-8-0.5	LAB I.D.;	170608-36
ANALYSIS: VOLATILE ORGANICS, EPA	METHOD 5030B/8	260B, PAGE 2 OF 1
UNIT: $mg/Kg = MILL$	IGRAM PER KILO	GRAM = PPM
PARAMETER SA	MPLE RESULT	PQL X1
1, 3-DICHLOROPROPANE	ND	0.005
1 1 DICHLOROPROPANE	ND	0.005
CIR 1 2 DICHLOROPROPENE	ND	0.005
TRANS, 1, 2, DICHLOROPROPENE		0.005
TRANS-1, S-DICHLOROPROPENE		0.005
2-UEVANONE		0.000
		0.020
TSADDADVI BENZENE	ND	0.005
A-ISODDODVI TOT UENE	ND	0.005
A _METHYL_2_ DENTANONE (MIRK	ND	0.000
METHYL tort-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE CHLORIDE	ND	0.010
NAPHTHALENE	ND	0.005
N-PROPYLBENZENE	ND	0.005
STYRENE	ND	0.005
1.1.1.2-TETRACHLOROETHANE	ND	0.005
1, 1, 2, 2-TETRACHLOROETHANE	ND	0.005
TETRACHLOROETHENE (PCE)	ND	0.005
TOLUENE	ND	0.005
1.2.3-TRICHLOROBENZENE	ND	0.005
1,2,4-TRICHLOROBENZENE	ND	0.005
1, 1, 1-TRI CHLOROETHANE	ND	0.005
1, 1, 2-TRICHLOROETHANE	ND	0.005
TRICHLOROETHENE (TCE)	ND	0.005
TRICHLOROFLUOROMETHANE	ND	0.005
1,2,3-TRICHLOROPROPANE	ND	0.005
1,2,4-TRIMETHYLBENZENE	ND	0.005
1,3,5-TRIMETHYLBENZENE	ND	0.005
WINNE OUT OF THE	ND	0.005
VINIL CHLORIDE		
M/P-XYLENE	ND	0.010

ND = NON-DETECTED OR BELOW THE ICL

DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

Enviro – Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

T.ABC		P
CUSTOMER: Dippedia Environmen	ALL TAS	
PO Boy 904	ital, inc	
Clauten C3 04517		
(02E) 672 EEOO		
(925)673-5500 Email	: pcloven@pe1-e	nv.com
PROJECT: Petaluma - Corona S	station	
MATRIX : SOTI.	האיד אד	CETVED.06/08/17
DATE SAMPLED: 06/06/17	DATE AN	ALYZED: 06/08/17
REPORT TO:MR. PETER CLOVEN	DATE RE	PORTED: $06/15/17$
SAMPLE I.D.: SS-9-0.5	LAB I.D	.: 170608-37
ANALYSIS: VOLATILE ORGANIC UNIT: mg/Kg = M	S, EPA METHOD 50 ILLIGRAM PER KIL	30B/8260B, PAGE 1 OF 2 OGRAM = PPM
PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK)	ND	0.020
<u>N-BUTYLBENZENE</u>	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	<u>0.01</u>
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	<u>0.</u> 005
CHLOROMETHANE	<u>ND</u>	0.005
2-CHLOROTOLUENE	ND	0.005
<u>4-CHLOROTOLUENE</u>	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
<u>1,2-DICHLOROBENZENE</u>	ND	0.005
1, 3-DICHLOROBENZENE	<u>ND</u>	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1, 1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1, 1-DICHLOROETHENE	ND	0.005
CIS-1,2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

TO DE CONTINUED ON PAGE 12  $\mathcal{X}$ 

DATA REVIEWED AND APPROVED BY:

# 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

	I.ABC	RATORY REPORT	
CUSTOMER ·	Pinnacle Environmen	tal Inc	
oobionon.	P C Boy 904	ical, inc	
	Clayton CA 94517		
	(925) 673-5500 Email	- palovopůpoj -opy	
DDO.TROT.	(925) 073-5500 Email	: pcroven@pei-env	.com
FROULCI.	Fecaluma - Corona S	cation	
MATRIX: SOI	L	DATE RECE	TVED:06/08/17
DATE SAMPT	ED:06/06/17	DATE ANAL	YZED: 06/08/17
REPORT TO:	MR. PETER CLOVEN	DATE REPO	RTED:06/15/17
SAMPLE I.C	).: SS-9-0.5	LAB I.D.:	170608-37
ANAL.YSTS-	VOLATILE ORGANICS F	203 METHOD 5030B/8	2600 DACE 2 DE 1
	UNIT: $ma/Ka = M$	LLITGRAM PER KILO	RAM = PDM
PARAMETER		SAMPLE RESULT	POT. X1
1,3-DICHLO	ROPROPANE	ND	0 005
2.2-DICHLO	ROPROPANE	ND	0,005
1,1-DICHLO	ROPROPENE	ND	0.005
CIS-1,3-DI	CHLOROPROPENE	ND	0,005
TRANS-1,3-	DICHLOROPROPENE	ND	0.005
ETHYLBENZE	NE	ND	0.005
2-HEXANONE		ND	0.020
HEXACHLORO	BUTADIENE	ND	0.005
ISOPROPYLB	ENZENE	ND	0.005
4-ISOPROPY	LTOLUENE	ND	0.005
4-METHYL-2	-PENTANONE (MIBK	ND	0,020
METHYL ter	t-BUTYL ETHER (MTBE)	ND	0.005
METHYLENE	CHLORIDE	ND	0.010
NAPHTHALEN	Ε	ND	0.005
N-PROPYLBE	NZENE	ND	0.005
STYRENE		ND	0.005
1,1,1, <u>2-</u> TE	TRACHLOROETHANE	ND	0.005
1,1,2,2-TE	TRACHLOROETHANE	ND	0.005
TETRACHLOR	OETHENE (PCE)	ND	0.005
TOLUENE		ND	0.005
1,2,3-TRIC	HLOROBENZENE	ND	0.005
1, 2, 4-TRIC	HLOROBENZENE	ND	0.005
1, 1, 1-TRIC	HLOROETHANE	<u>ND</u>	0.005
1, 1, 2-TRIC	<u>HLOROETHANE</u>	ND	0.005
TRICHLOROE	THENE (TCE	ND	0.005
TRICHLOROF	LUOROMETHANE	ND	0.005
1,2,3-TRIC	HLOROPROPANE	ND	0.005
1,2,4-TRIM	ETHYLBENZENE	ND	0.005
	ETHYLBENZENE	ND	0.005
1,3,5-TRIM			0.005
1,3,5-TRIM VINYL CHLO	RIDE	<u>ND</u>	0.005
<u>1,3,5-TRIM VINYL CHLO M/P-XYLENE</u>	RIDE	ND ND	0.005

ND = NON-DETECTED OR BELOW THE

DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Petaluma - Corona Station

MATRIX: SOIL	DATE RECEIVED: <u>06/08/17</u>
DATE SAMPLED: 06/06/17	DATE ANALYZED: 06/08/17
REPORT TO: MR. PETER CLOVEN	DATE REPORTED: 06/15/17

SAMPLE I.D.: SS-10-0.5

LAB I.D.: 170608-38

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 DF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK	ND	0.020
<u>N-BUTYLBENZENE</u>	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
2-CHLOROTOLUENE	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1, 2-DICHLOROETHENE	ŇD	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1.2-DICHLOROPROPANE	ND	0.005

----- TO ME CONTINUED ON PAGE 1

DATA REVIEWED AND APPROVED BY:

Enviro – Chem, Inc. 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

	LABORA	TORY REPORT	
CUSTOMER:	Pinnacle Environmental	, Inc	
	P.O. Box 904		
	Clayton, CA 94517		
	(925)673-5500 Email: T	cloven@pei-env	.com
PROJECT:	Petaluma - Corona Stat	ion	
MATRIX: SOII	1	DATE RECI	EIVED: <u>06/08/1</u> 7
DATE SAMPLE	ED: <u>06/06/17</u>	DATE ANAL	LYZED: 06/08/17
REPORT TO:	IR. PETER CLOVEN	DATE REPO	ORTED: 06/15/17
		the second s	100000000000000000000000000000000000000
SAMPLE I.D.	: SS-10-0.5	LAB I.D.	: 170608-38
ANALYSIS: V	OLATILE ORGANICS, EPA	METHOD 5030B/8	B260B, PAGE 2 OF 1
PARAMETER	UNIT: mg/Kg = MILL	IGRAM PER KILO	GRAM = PPM POL X1
1.3-DICHLOR	OPROPANE	ND	0 005
2.2-DICHLOR	OPROPANE	ND	0.005
1.1-DICHLOF	OPROPENE	ND	0.005
CIS-1, 3-DIC	CHLOROPROPENE	ND	0.005
TRANS-1.3-D	TCHLOROPROPENE	ND	0.005
ETHYLBENZEN	IE	ND	0.005
2-HEXANONE		ND	0.020
HEXACHLOROE	BUTADIENE	ND	0.005
ISOPROPYLBE	NZENE	ND	0.005
4-ISOPROPYL	TOLUENE	ND	0.005
4-METHYL-2-	PENTANONE (MIBK	ND	0.020
METHYL tert	-BUTYL ETHER (MTBE	ND	0.005
METHYLENE C	HLORIDE	ND	0.010
NAPHTHALENE		ND	0.005
<u>N-PROPYLBEN</u>	ZENE	ND	0.005
STYRENE		ND	0.005
1, 1, 1, 2-TET	RACHLOROETHANE	<u>ND</u>	0.005
<u>1,1,2,2-TET</u>	RACHLOROETHANE	ND	0.005
TETRACHLORC	ETHENE (PCE	ND	0.005
TOLUENE		ND	0.005
1,2,3-TRICH	LOROBENZENE	ND	0.005
<u>1,2,4-TRICH</u>	LOROBENZENE	ND	0.005
<u>1,1,1-TRICH</u>	LOROETHANE	ND	0.005
1,1,2-TRICH	LOROETHANE	ND	0.005
TRICHLOROET	HENE (TCE	ND	0.005
TRICHLOROFL	UOROMETHANE	ND	0.005
	LOROPROPANE	ND	0.005
1,2,3-TRICH	THYLBENZENE	ND	0.005
1,2,3-TRICH 1,2,4-TRIME		ATES	0.005
<u>1,2,3-TRICH</u> 1,2,4-TRIME 1,3,5-TRIME	THYLBENZENE	ND	
1,2,3-TRICH 1,2,4-TRIME 1,3,5-TRIME VINYL CHLOR	THYLBENZENE IDE	ND ND	0.005
1,2,3-TRICH 1,2,4-TRIME 1,3,5-TRIME VINYL CHLOR M/P-XYLENE	THYLBENZENE IDE	<u>ND</u> ND ND	0.005 0.010

Q.

DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

# 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### METHOD BLANK REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Petaluma - Corona Station

MATRIX: SOIL	DATE RECEIVED: 06/08/17
DATE SAMPLED: 06/06/17	DATE ANALYZED: 06/08/17
REPORT TO: MR. PETER CLOVEN	DATE REPORTED: 06/15/17

METHOD BLANK REPORT FOR LAB I.D.: 170608-29 THROUGH -3

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 1 OF 2

PARAMETER	SAMPLE RESULT	PQL X1
ACETONE	ND	0.020
BENZENE	ND	0.005
BROMOBENZENE	ND	0.005
BROMOCHLOROMETHANE	ND	0.005
BROMODICHLOROMETHANE	ND	0.005
BROMOFORM	ND	0.005
BROMOMETHANE	ND	0.005
2-BUTANONE (MEK	ND	0.020
<u>N-BUTYLBENZENE</u>	ND	0.005
SEC-BUTYLBENZENE	ND	0.005
TERT-BUTYLBENZENE	ND	0.005
CARBON DISULFIDE	ND	0.010
CARBON TETRACHLORIDE	ND	0.005
CHLOROBENZENE	ND	0.005
CHLOROETHANE	ND	0.005
CHLOROFORM	ND	0.005
CHLOROMETHANE	ND	0.005
<u>2-CHLOROTOLUENE</u>	ND	0.005
4-CHLOROTOLUENE	ND	0.005
DIBROMOCHLOROMETHANE	ND	0.005
1,2-DIBROMO-3-CHLOROPROPANE	ND	0.005
1,2-DIBROMOETHANE	ND	0.005
DIBROMOMETHANE	ND	0.005
1,2-DICHLOROBENZENE	ND	0.005
1,3-DICHLOROBENZENE	ND	0.005
1,4-DICHLOROBENZENE	ND	0.005
DICHLORODIFLUOROMETHANE	ND	0.005
1,1-DICHLOROETHANE	ND	0.005
1,2-DICHLOROETHANE	ND	0.005
1,1-DICHLOROETHENE	ND	0.005
CIS-1, 2-DICHLOROETHENE	ND	0.005
TRANS-1, 2-DICHLOROETHENE	ND	0.005
1,2-DICHLOROPROPANE	ND	0.005

----- TO HE CONTINUED ON PAGE #2 -----

DATA REVIEWED AND APPROVED

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# METHOD BLANK REPORT

CUSTOMER:	Pinnacle Environmental, Inc
	P.O. Box 904
	Clayton, CA 94517
	(925)673-5500 Email: pcloven@pei-env.com
PROJECT:	Petaluma - Corona Station

an existing a substantial behavior from a first for a first state of the substantial state of the substantia	
REPORT TO: MR. PETER CLOVEN	DATE REPORTED: 06/15/17
DATE SAMPLED: 06/06/17	DATE ANALYZED: 06/08/17
MATRIX: SULL	DATE RECEIVED: 06/08/17

METHOD BLANK REPORT FOR LAB I.D.: 170608-29 THROUGH - 31

ANALYSIS: VOLATILE ORGANICS, EPA METHOD 5030B/8260B, PAGE 2 OF 2

ILLIGRAM PER KILOGR	AM = PPM
SAMPLE RESULT	PQL X1
ND	0.005
ND	0 <u>.005</u>
ND	0.005
<u>ND</u>	0.020
ND	0.005
ND	0.005
ND	0.005
ND	0.020
ND	0.005
ND	0.010
ND	0.005
ND	0.005
ND	0.005
ŇD	0.005
ND	0.010
ND	0.005
	ND           ND

ND = NON-DETECTED OR BELOW THE POL

DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

			Enviro-Ch	em, Inc.					
1214 E. Lexington Av	enue, Pom	ona, CA 91	766 8260B QA	Tel (9 VQC Repo	09)590-590 rt	5 Fax	(909)590-59	907	
Date Analyzed: Machine:	<u>6/8-9/2017</u> C						Matrix: Unit	SolidSolf MaKa (PP	Lagadd 190
Matrix Spike (MS)/Matr	Ix Spike Du	plicate (MS	D)						
Spiked Sample Lab I.D		170608-29	MS/MSD		L HeD				
Analyte	S.R	spk conc	MS	%RC	MSD	%RC	%RP	ACP %RC	ACP RPU
Benzene	0	0.050	0.052	104%	0.052	104%	0%	75-125	0-20
Chlorobenzene	0	0.050	0.050	100%	0.051	102%	2%	75-125	0-20
1,1-Dichloroethene	0	0.050	0.050	100%	0.052	104%	4%	75-125	0-20
l oluene	<u> </u>	0.050	0.051	102%	0.049	98%	4%	75-125	0-20
Trichloroethene	0	0.050	0.050	100%	0.051	102%	2%	75-125	0-20
Lab Control Spike /I C!	5).								
Analyte	sok conc.	LCS	%RC	ACP %RC	1				
Benzene	0.050	0.053	106%	75-125	•				
Chlorohenzene	0.050	0.053	106%	75-125	t				
Chloroform	0.050	0.051	102%	75-125	t				
1 1-Dichlorothene	0.050	0.048	96%	75-125	ŧ				
Ethylhenzene	0.050	0.053	106%	75-125	ŧ				
	0.050	0.000	110%	75-125	f .				
m n-Yulene	0.000	0.000	109%	75-125	ŧ				
Toluene	0.050	0.105	108%	75-125	ŧ				
1 1 1 Trichloroothana	0.000	0.060	120%	75-125	ł				
Trichloroethene (TC	0.050	0.050	100%	75-125	1				
Surrogate Recove	spk conc	ACP % RC	MB %RC	%RC	%RC	%RC	%RC	%RC	%RC
Sample I.D.			M-BLK	170608-19	170608-20	170608-21	170608-22	170608-6	170608-29
Dibromofluoromethane	90.0	70-130	114%	111%	124%	110%	106%	96%	140*%
Toluene-d8	50.0	70-130	97%	98%	91%	96%	95%	96%	103%
4-Bromofluorobenzene	50.D	70-130	82%	84%	49*%	84%	81%	75%	75%
			0/ DO	W D0	0/ D.O.	1/ Do	NDO	< D(2	0/ 00
Surrogale Recovery	Spk conc	ACP %RC	%KU	70KU	70KC	%KC	70KC	%RC	70 KU
Sample I.D.	the second	10.000	170608-30	170608-31	170608-32	170608-3	170508-34	170608-35	170608-36
Dibromotiuoromethane	90.0	70-130	125%	126%	123%	128%	127%	129%	130%
l oluene-d8	- 2020	70-130	102%	96%	87%	74%	90%	90%	95%
4-Bromofluorobenzene	92.0	70-138	79%	64*%	58*%	51*%	62*%	57*%	70%
Surrogate Recovery	snk conc	ACP %RC	%RC	%RC	%RC	SRC	MRC	MRC	3.86
Sample I.D.	opir conte		70608-37	170608-38	Jointo				-
Dibromofluoromethane	10.0	75.130	135*%	110%					
Toluene-d8	- 50.0	70-130	103%	95%					
4-Bromofluorobenzene	. 50.0	70.100	80%	62*%					
	matrix interfe	arance: LCs		are in contri	h therefore ti	ho analueie	is in control		
S Q = Samola Doculto		Nonue, LO	5, 100, 1000			no una yora			
onk oppo z Spiko Conco	ntration					- Accented	ny Domoní Dec	over	
MC - Motrix Collice	ni auUri				MOD - M-H	- Accepted :	r Gruenii KeC	Overy	
ию – машх эріке					พอม = พลแ	ix opike Du	pricate		

Analyzed/Reviewed By: day'

Final Reviewer:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

### LABORATORY REPORT

CUSTOMER:	Pinnacle Environmental, Inc
	P.O. Box 904
	Clayton, CA 94517
	(925)673-5500 Email: pcloven@pei-env.com
PROJECT:	Petaluma - Corona Station

	DATE	RECEIVED:06/08/17
MATRIX: SOIL	DATE	EXTRACTED: 06/09/17
DATE SAMPLED: 06/06/17	DATE	ANALYZED:06/09/17
REPORT TO: MR. PETER CLOVEN	DATE	REPORTED: 06/15/17

SAMPLE I.D.: SS-1-0.5

LAB I.D.: 170608-29

SEMI-VOLATILE ORGANICS, EPA 8270C, PAGE 1 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
Acenaphthene	ND	0.50
Acenaphthylene	ND	0.50
Anthracene	ND	0.50
Benzo(a) anthracene	ND	0.50
Benzo(b)fluoranthene	ND	0.50
Benzo(a)pyrene	ND	0.50
Benzo(q,h,i)perylene	ND	0.50
Benzo(k) fluoranthene	ND	0.50
Benzoic Acid	ND	0.50
Benzyl Alcohol	ND	0.50
Bis(2-Chloroethoxy)methane	ND	0.50
Bis(2-Chloroethyl)ether	ND	0.50
Bis(2-Chloroisopropyl)ether	ND	0.50
Bis(2-Ethylhexyl)Phthalate	ND	0.50
4-Bromophenyl Phenyl Ether	ND	<u>0.50</u>
Butylbenzylphthalate	ND	0.50
4-Chloro-3-Methylphenol	ND	0.50
<u>4-Chloroaniline</u>	ND	0.50
2-Chloronaphthalene	ND	<u>0.50</u>
2-Chlorophenol	ND	0.50
4-Chlorophenyl Phenyl Ether	ND	0.50
<u>Chrysene</u>	ND	0.50
<u>Di-n-butylphthalate</u>	ND	0.50
Di-n-octylphthalate	ND	0.50
Dibenzo(a, h) anthracene	ND	<u>0.50</u>
Dibenzofuran	ND	0.50
1,2-Dichlorobenzene	ND	<u>0.50</u>
1,3-Dichlorobenzene	ND	0.50
1,4-Dichlorobenzene	ND	<u>0.50</u>
3,3-Dichlorobenzidine	ND	<u>0,50</u>
2,4-Dichlorophenol	ND	0.50
Diethyl Phthalate	ND	0,50
2,4-Dimethylphenol	ND	0,50
Dimothyl Bhthalata	ND	0.50

TO BE CONTINUED ON PAGE #2

DATA REVIEWED AND APPROVED BY:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Petaluma - Corona Station

	DATE	RECEIVED: 06/08/17
MATRIX: SOIL	DATE	EXTRACTED: 06/09/17
DATE SAMPLED: 06/06/17	DATE	ANALYZED: 06/09/17
REPORT TO: MR. PETER CLOVEN	DATE	REPORTED: 06/15/17

SAMPLE I.D.: SS-1-0.5

LAB I.D.: 170608-29

SEMI-VOLATILE ORGANICS, EPA 8270C, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
4,6-Dinitro-2-methylphenol	ND	0.50
2,4-Dinitrophenol	ND	0,50
2,4-Dinitrotoluene	ND	0.50
2,6-Dinitrotoluene	ND	0.50
<u>Fluoranthene</u>	ND	0.50
<u>Fluorene</u>	ND	0.50
Hexachlorobenzene	ND	0.50
<u>Hexachlorobutadiene</u>	ND	0.50
<u>Hexachlorocyclopentadiene</u>	ND	0.50
Hexachloroethane	ND	0.50
Indeno(1,2,3-cd pyrene	ND	0.50
Isophorone	ND	0.5
2-Methyl Phenol	ND	0.50
3/4-Methyl Phenol	ND	<u>0.5</u>
<u>2-Methylnaphthalene</u>	ND	0.50
N-Nitroso-di-n-dipropylamine	ND	0.50
<u>N-Nitrosodimethylamine</u>	ND	0.50
<u>N-Nitrosodiphenylamine</u>	ND	0.50
Naphthalene	ND	0.50
<u>2-Nitroaniline</u>	ND	0.50
<u>3-Nitroaniline</u>	ND	0.50
<u>4-Nitroaniline</u>	ND	0.50
Nitrobenzene	ND	0.50
2-Nitrophenol	ND	0.50
<u>4-Nitrophenol</u>	ND	0.50
Pentachlorophenol	ND	0.50
<u>Phenanthrene</u>	ND	0.50
Phenol	ND	0.50
Pyrene	ND	0.50
Pyridine	ND	0.50
1,2,4-Trichlorobenzene	ND	0.50
2,4,5-Trichlorophenol	ND	0.50
2,4,6-Trichlorophenol	ND	0.50

ND = NON-DETECTED OR BELOW THE POLY

DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER:	Pinnacle Environmental, Inc
	P.O. Box 904
	Clayton, CA 94517
	(925)673-5500 Email: pcloven@psi-env.com
PROJECT:	Petaluma - Corona Station

	DATE	RECEIVED: 06/08/17
MATRIX: SOIL	DATE	EXTRACTED: 06/09/17
DATE SAMPLED: 06/06/17	DATE	ANALYZED: 06/09/17
REPORT TO: MR. PETER CLOVEN	DATE	REPORTED: 06/15/17

SAMPLE I.D.: SS-2-0.5

LAB I.D.: 170608-30

SEMI-VOLATILE ORGANICS, EPA 8270C, PAGE 1 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	POL X1
Acenaphthene	ND	0.50
Acenaphthylene	ND	0.50
Anthracene	ND	0.50
Benzo(a) anthracene	ND	0.50
<u>Benzo(b) fluoranthene</u>	ND	0.50
Benzo(a)pyrene	ND	0.50
Benzo(q,h,i)pervlene	ND	0.50
Benzo(k) fluoranthene	ND	0.50
Benzoic Acid	ND	0.50
Benzyl Alcohol	ND	0.50
Bis(2-Chloroethoxy)methane	ND	0.50
Bis(2-Chloroethyl)ether	ND	0.50
Bis(2-Chloroisopropyl)ether	ND	0.50
Bis(2-Ethylhexyl)Phthalate	ND	0.50
4-Bromophenyl Phenyl Ether	ND	0.50
Butylbenzylphthalate	ND	0.50
4-Chloro-3-Methylphenol	ND	0.50
<u>4-Chloroaniline</u>	ND	0.50
2-Chloronaphthalene	ND	0.50
<u>2-Chlorophenol</u>	ND	0.50
4-Chlorophenyl Phenyl Ether	ND	0,50
Chrysene	ND	0.50
<u>Di-n-butylphthalate</u>	ND	0.50
<u>Di-n-octylphthalate</u>	ND	0.50
Dibenzo(a,h) anthracene	ND	0.50
Dibenzofuran	ND	0.50
1,2-Dichlorobenzene	ND	0.50
1,3-Dichlorobenzene	ND	0.50
1,4-Dichlorobenzene	ND	0.50
3,3-Dichlorobenzidine	ND	0.50
2,4-Dichlorophenol	ND	0.50
Diethyl Phthalate	ND	0.50
2,4-Dimethylphenol	ND	0,50
Dimethyl Phthalate	ND	0.50

TO BE CONTINUED ON PAGE

DATA REVIEWED AND APPROVED BY:___

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER:	Pinnacle Environmental, Inc
	P.O. Box 904
	Clayton, CA 94517
	(925)673-5500 Email: pcloven@pei-env.com
PROJECT:	Petaluma - Corona Station

	DATE RECEIVED:06/08/17
MATRIX: SOIL	DATE EXTRACTED:06/09/17
DATE SAMPLED: 06/06/17	DATE ANALYZED:06/09/17
REPORT TO: MR. PETER CLOVEN	DATE REPORTED: 06/15/17

SAMPLE I.D.: SS-2-0.5

LAB I.D.: 170608-30

SEMI-VOLATILE ORGANICS, EPA 8270C, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
4,6-Dinitro-2-methylphenol	ND	0.50
2,4-Dinitrophenol	ND	0.50
2,4-Dinitrotoluene	ND	0.50
2,6-Dinitrotoluene	ND	0.50
<u>Fluoranthene</u>	ND	0.50
Fluorene	ND	0.50
<u>Hexachlorobenzene</u>	ND	0.50
<u>Hexachlorobutadiene</u>	ND	0.50
<u>Hexachlorocyclopentadiene</u>	ND	0.50
<u>Hexachloroethane</u>	ND	0.50
Indeno(1,2,3-cd rene	ND	0.50
Isophorone	ND	0.50
<u>2-Methyl Phenol</u>	ND	0.50
<u>3/4-Methyl Phenol</u>	ND	0.50
<u>2-Methylnaphthalene</u>	ND	0.50
<u>N-Nitroso-di-n-dipropylamine</u>	ND	0.50
<u>N-Nitrosodimethylamine</u>	ND	0.50
<u>N-Nitrosodiphenylamine</u>	ND	0.50
Naphthalene	ND	0.50
<u>2-Nitroaniline</u>	ND	0.50
<u>3-Nitroaniline</u>	ND	0.50
<u>4-Nitroaniline</u>	ND	0.50
Nitrobenzene	ND	0.50
<u>2-Nitrophenol</u>	ND	0.50
<u>4-Nitrophenol</u>	ND	0.50
<u>Pentachlorophenol</u>	ND	0.50
Phenanthrene	ND	0.50
Phenol	ND	0.50
Pyrene	ND	0.50
Pyridine	ND	0.50
1,2,4-Trichlorobenzene	ND	0.50
2,4,5-Trichlorophenol	ND	0.50
2,4,6-Trichlorophenol	ND	0.50

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE POL DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925) 673-5500 Email: pcloven@pei-env.com PROJECT: Petaluma - Corona Station DATE RECEIVED:06/08/17 MATRIX: SOIL DATE EXTRACTED:06/09/17 DATE SAMPLED: 06/06/17 DATE ANALYZED: 06/09/17 REPORT TO: MR. PETER CLOVEN DATE REPORTED: 06/15/17 SAMPLE I.D.: SS-3-0.5 I.D.; 170608-31 *********************************** SEMI-VOLATILE ORGANICS, EPA 8270C, PAGE 1 OF 2

 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

 PARAMETER
 SAMPLE RESULT
 PQL X2*

 Acenaphthene
 ND
 0.50

 Acenaphthylene
 ND
 0.50

Acenaphichyrene	<u>ND</u>	0.50
Anthracene	ND	0.50
<u>Benzo(a)anthracene</u>	ND	0.50
<u>Benzo(b)fluoranthene</u>	ND	0.50
<u>Benzo(a)pyrene</u>	ND	0.50
Benzo(q,h,i)perylene	ND	0.50
<u>Benzo(k)fluoranthene</u>	<u>N</u> D	0.50
Benzoic Acid	ND	0.50
Benzyl Alcohol	ND	<u>0.50</u>
Bis(2-Chloroethoxy)methane	ND	0.50
<u>Bis(2-Chloroethvl)ether</u>	ND	.50
Bis(2-Chloroisopropyl)ether	ND	0.50
Bis(2-Ethylhexyl)Phthalate	ND	0.50
<u>4-Bromophenyl Phenyl Ether</u>	ND	0.50
<u>Butylbenzylphthalate</u>	ND	1.50
4-Chloro-3-Methylphenol	ND	0.50
<u>4-Chloroaniline</u>	ND	0.50
<u>2-Chloronaphthalene</u>	ND	0.50
2-Chlorophenol	ND	0.50
4-Chlorophenyl Phenyl Ether	ND	0.50
Chrysene	ND	0.50
<u>Di-n-butylphthalate</u>	ND	<u>0.50</u>
<u>Di-n-octylphthalate</u>	<u>ND</u>	0.50
<u>Dibenzo(a, h) anthracene</u>	ND	0.50
<u>Dibenzofuran</u>	ND	0.50
<u>1,2-Dichlorobenzene</u>	<u>ND</u>	0.50
1,3-Dichlorobenzene	ND	0.50
<u>1,4-Dichlorobenzene</u>	ND	0.50
3,3-Dichlorobenzidine	ND	0.50
2,4-Dichlorophenol	ND	0.50
Diethyl Phthalate	ND	0.50
2,4-Dimethylphenol	ND	0.50
Dimethyl Phthalate	ND	0.50

TO BE CONTINUED ON PAGE #2

DATA REVIEWED AND APPROVED BY:__

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER:	Pinnacle Environmental, Inc
	P.O. Box 904
	Clayton, CA 94517
	(925) 673-5500 Email: pcloven@pei-env.com
PROJECT:	Petaluma - Corona Station

distant in the

	DATE	RECEIVED:06/08/17
MATRIX: SOIL	DATE	EXTRACTED: 06/09/17
DATE SAMPLED: 06/06/17	DATE	ANALYZED: 06/09/17
REPORT TO: MR. PETER CLOVEN	DATE	REPORTED: 06/15/17

SAMPLE I.D.: SS-3-0.5

LAB I.D.: 170608-31 ************************

SEMI-VOLATILE ORGANICS, EPA 8270C, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X2*
4,6-Dinitro-2-methylphenol	ND	0.50
2,4-Dinitrophenol	ND	0.5
2,4-Dinitrotoluene	ND	0.50
2,6-Dinitrotoluene	ND	50
<u>Fluoranthene</u>	ND	0.50
Fluorene	ND	.50
Hexachlorobenzene	ND	0.50
<u>Hexachlorobutadiene</u>	ND	0.50
<u>Hexachlorocyclopentadiene</u>	ND	0.50
Hexachloroethane	ND	50
Indeno(1,2,3-cd prene	ND	0.50
Isophorone	ND	0.50
2-Methyl Phenol	ND	0.50
3/4-Methyl Phenol	ND	0.50
2-Methylnaphthalene	ND	1.50
<u>N-Nitroso-di-n-dipropylamine</u>	ND	0.50
<u>N-Nitrosodimethylamine</u>	ND	0.50
<u>N-Nitrosodiphenylamine</u>	ND	0.50
Naphthalene	ND	0.50
<u>2-Nitroaniline</u>	<u>ND</u>	0.50
<u>3-Nitroaniline</u>	ND	0.50
<u>4-Nitroaniline</u>	ND	0.50
Nitrobenzene	ND	0.50
<u>2-Nitrophenol</u>	ND	0.50
<u>4-Nitrophenol</u>	<u>ND</u>	0.50
Pentachlorophenol	ND	0.50
Phenanthrene	ND	0.50
Phenol	ND	0.50
Pyrene	ND	0.50
Pyridine	ND	0.50
1,2,4-Trichlorobenzene	ND	0.50
2,4,5-Trichlorophenol	ND	0.50
2,4,6-Trichlorophenol	ND	0.50

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT ND = NON-DETECTED OR BELOW THE PQL

* = PQL RAISED DUE TO MATRIX INTERFERENCE DATA REVIEWED AND APPROVED BY: an

CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT CUSTOMER: Pinnacle Environmental, Inc. P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Petaluma - Corona Station DATE RECEIVED: 06/08/17 MATRIX: SOIL DATE EXTRACTED:06/09/17 DATE SAMPLED: 06/06/17 DATE ANALYZED: 06/09/17 REPORT TO: MR. PETER CLOVEN DATE REPORTED:06/15/17 The second second second SAMPLE I.D.: SS-4-0.5 LAB I.D.: 170608-32 and the strength of the state SEMI-VOLATILE ORGANICS, EPA 8270C, PAGE 1 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM PARAMETER SAMPLE RESULT PQL X2* Acenaphthene ND 0.50 Acenaphthylene ND 0.50 Anthracene ND 0.5 Benzo(a) anthracene ND 0.50 Benzo(b) fluoranthene ND 0.50 Benzo(a)pyrene ND 0.5 Benzo(q,h,i)perylene ND 0.50 Benzo(k) fluoranthene ND 0.50 Benzoic Acid ND 0.50 Benzyl Alcohol 0.50 ND Bis(2-Chloroethoxy) methane 0.50 ND Bis(2-Chloroethyl)ether ND 0.50 Bis(2-Chloroisopropyl)ether ND 0.50 Bis(2-Ethylhexyl) Phthalate ND 0.5 4-Bromophenyl Phenyl Ether ND 0.50 Butylbenzylphthalate ND 0.50 4-Chloro-3-Methylphenol ND 0.50 4-Chloroaniline ND 0.50 2-Chloronaphthalene ND 0.50 2-Chlorophenol ND 0.50 4-Chlorophenyl Phenyl Ether ND 0.50 Chrysene ND 0.50 Di-n-butylphthalate ND 0.50 Di-n-octylphthalate ND 0.50 Dibenzo(a, h) anthracene ND 0.50 Dibenzofuran ND 0.50 1,2-Dichlorobenzene ND 0.50 1,3-Dichlorobenzene ND 0.50 1,4-Dichlorobenzene 0.50 ND 3,3-Dichlorobenzidine ND 0.50 2,4-Dichlorophenol ND 0.50 Diethyl Phthalate ND 0.50 2,4-Dimethylphenol ND 0.50

TO BE CONTINUED ON PAGE #2

0.50

DATA REVIEWED AND APPROVED BY:

Dimethyl Phthalate

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Petaluma - Corona Station

	DATE RECEIVED: 06/08/17
MATRIX: SOIL	DATE EXTRACTED: 06/09/17
DATE SAMPLED: 06/06/17	DATE ANALYZED: 06/09/17
REPORT TO: MR. PETER CLOVEN	DATE REPORTED: 06/15/17

SAMPLE I.D.: SS-4-0.5

the second second second second

I.D.: 170608-32

SEMI-VOLATILE ORGANICS, EPA 8270C, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X2*
4,6-Dinitro-2-methylphenol	ND	50
2,4-Dinitrophenol	ND	0.50
2,4-Dinitrotoluene	ND	0.50
2,6-Dinitrotoluene	ND	50
Fluoranthene	ND	0.50
Fluorene	ND	0.50
Hexachlorobenzene	ND	0.50
Hexachlorobutadiene	ND	0.50
<u>Hexachlorocyclopentadiene</u>	ND	0.50
Hexachloroethane	ND	0.50
Indeno(1,2,3-cd rene	ND	0.50
Isophorone	ND	0.50
2-Methyl Phenol	ND	0.50
3/4-Methyl Phenol	ND	0.50
2-Methylnaphthalene	ND	0.50
<u>N-Nitroso-di-n-dipropylamine</u>	ND	0.50
N-Nitrosodimethylamine	ND	0.50
N-Nitrosodiphenylamine	ND	0.50
Naphthalene	ND	0.50
<u>2-Nitroaniline</u>	ND	0.50
<u>3-Nitroaniline</u>	ND	0.50
4-Nitroaniline	ND	0.50
Nitrobenzene	ND	0.50
<u>2-Nitrophenol</u>	ND	0.50
<u>4-Nitrophenol</u>	ND	0.50
Pentachlorophenol	ND	0.50
Phenanthrene	ND	0.50
Phenol	ND	0.50
Pyrene	ND	0.50
<u>Pyridine</u>	ND	0.50
1,2,4-Trichlorobenzene	ND	0.50
2,4,5-Trichlorophenol	ND	0.50
2,4,6-Trichlorophenol	ND	0.50

ND = NON-DETECTED OR BELOW THE PQL * = PQL RAISED DUE TO MATRIX INTERFERENCE DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com Petaluma - Corona Station PROJECT : DATE RECEIVED: 06/08/17 MATRIX: SOIL DATE EXTRACTED:06/09/17 DATE SAMPLED: 06/06/17 DATE ANALYZED:06/09/17 REPORT TO: MR. PETER CLOVEN DATE REPORTED: 06/15/17 SAMPLE I.D.: SS-5-0.5 LAB I.D.; 170608-33 a server of the strategy of the server of the -----SEMI-VOLATILE ORGANICS, EPA 8270C, PAGE 1 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM PARAMETER SAMPLE RESULT POL X2* Acenaphthene ND 0.50 Acenaphthylene 0.50 ND Anthracene ND 0.50 Benzo(a) anthracene ND 0.50 Benzo (b) flooranthene ND 0.50 Benzo(a)pyrene ND 0.50 Benzola.h.ilpervlene ND 0.50 Benzo(k)fluoranthene ND 0.50 Benzoic Acid ND 0.50 Benzyl Alcohol ND 0.50 Bis(2-Chloroethoxy)methane ND 0.50 Bis(2-Chloroethyl) ether ND 0.50 Hisi2-Chloroisopropyllether ND 0.50 Bis(2-Ethy)nexy1)Phthalate ND 0.50 4-Brosophenyl Phenyl Ether ND 0.50 Butylbenzylphthalate ND 0.50 4-Chloco-3-Nethylphonol ND 0.50 4-Chloroaniline ND 0.50 2-Chloronaphthalene ND 0.50 2-Chlorophenol ND 0.50 4-Chlurophenyl Phonyl Ether ND 0.50 Chrysene ND 0.50 Di-n-butylphthalate ND 0.50 Di-n-octylphthalate ND 0.50 Dibenzo(s, h) anthracene ND 0.50 Dibenzofuran ND 0.50 1,2-Dichlorobenzene ND 0.50 1,3-Dichlorobenzene ND 0.50 1.4-Dichlorobenzené ND 0.50 3.3-Dichloropenzidine ND 0.50 2,4-Dichlorophenol ND 0.50 Diethyl Phthalate ND 0.50 2,4-Dimethylphenol ND 0.50 Dimethyl Phthalate ND 0.50

TO BE CONTINUED ON PAGE

DATA REVIEWED AND APPROVED BY:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER:	Pinnacle Environmental, Inc
	P.O. Box 904
	Clayton, CA 94517
	(925)673-5500 Email: pcloven@pei-env.com
PROJECT:	Petaluma - Corona Station

MATRIX: SOIL DATE EXTRACTED: 06/09/1		
	ATRIX: SOIL	DATE EXTRACTED: 06/09/17
DATE SAMPLED: 06/06/17 DATE ANALYZED: 06/09/17	ATE SAMPLED: <u>06/06/17</u>	DATE ANALYZED:06/09/17
REPORT TO: <u>MR. PETER CLOVEN</u> DATE REPORTED: <u>06/15/17</u>	EPORT TO: MR. PETER CLOVEN	DATE REPORTED: 06/15/17

SAMPLE I.D.: SS-5-0.5

I.D.: 170608-33

DATE DECETVED, 0c/00/17

# SEMI-VOLATILE ORGANICS, EPA 8270C, PAGE 2 OF 2

UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM PARAMETER SAMPLE RESULT PQL X2* 4,6-Dinitro-2-methylphenol 0.50 ND 2,4-Dinitrophenol ND 0.50 2,4-Dinitrotoluene ND 0.50 2,6-Dinitrotoluene ND 0.50 Fluoranthene 0.50 ND Fluorene ND 0.50 Hexachlorobenzene ND 0.50 Hexachlorobutadiene ND 0.50 <u>Hexachlorocyclopentadiene</u> 0.50 ND Hexachloroethane 0.50 ND Indeno(1,2,3-cd vrene ND 0.50 Isophorone ND 0.50 2-Methyl Phenol ND 0.50 3/4-Methyl Phenol ND 0.50 2-Methylnaphthalene ND 0.50 N-Nitroso-di-n-dipropylamine 0.50 ND N-Nitrosodimethylamine 0.50 ND N-Nitrosodiphenylamine ND 0.50 Naphthalene 0.50 ND 2-Nitroaniline ND 0.50 3-Nitroaniline 0.50 ND 4-Nitroaniline ND 0.50 Nitrobenzene 0.50 ND 2-Nitrophenol ND 0.50 4-Nitrophenol 0.50 ND Pentachlorophenol ND 0.50 Phenanthrene ND 0.50 Phenol ND 0.50 Pyrene ND 0.50 Pyridine ND 0.50 1,2,4-Trichlorobenzene ND 0.50 2,4,5-Trichlorophenol ND 0.50 2,4,6-Trichlorophenol ND 0.50 **COMMENTS** PQL = PRACTICAL QUANTITATION LIMIT

ND = NON-DETECTED OR BELOW THE POL

* = PQL RAISED DUE TO MATRIX INTERFERENCE DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER:	Pinnacle Environmental, Inc
	P.O. Box 904
	Clayton, CA 94517
	(925)673-5500 Email: pcloven@pei-env.com
PROJECT:	Petaluma - Corona Station

	DATE	RECEIVED:06/08/17
MATRIX: SOIL	DATE	EXTRACTED: 06/09/17
DATE SAMPLED: 06/06/17	DATE	ANALYZED: 06/09/17
REPORT TO: MR. PETER CLOVEN	DATE	REPORTED: 06/15/17

SAMPLE I.D.: SS-6-0.5

I.D.: 170608-34

a set in the set of the set of

SEMI-VOLATILE ORGANICS, EPA 8270C, PAGE 1 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X2*
Acenaphthene	ND	0.5
Acenaphthylene	ND	0.50
Anthracene	ND	0.50
Benzo(a) anthracene	ND	0.50
Benzo(b) fluoranthene	ND	0.50
<u>Benzo(a)</u> pyrene	ND	0.50
Benzo(g,h,i)pervlene	ND	0.50
Benzo(k) fluoranthene	ND	<u>0.50</u>
Benzoic Acid	ND	0.50
Benzyl Alcohol	ND	0.50
Bis(2-Chloroethoxy)methane	ND	0.50
Bis(2-Chloroethyl)ether	ND	0.50
Bis(2-Chloroisopropyl)ether	ND	0.50
Bis(2-Ethylhexyl)Phthalate	ND	0.50
4-Bromophenyl Phenyl Ether	ND	0.50
Butylbenzylphthalate	ND	0.50
4-Chloro-3-Methylphenol	ND	0.50
<u>4-Chloroaniline</u>	ND	0.50
2-Chloronaphthalene	ND	0.50
2-Chlorophenol	ND	0.50
4-Chlorophenyl Phenyl Ether	ND	0.50
Chrysene	ND	0.50
<u>Di-n-butylphthalate</u>	ND	0.50
<u>Di-n-octvlphthalate</u>	ND	0.50
Dibenzo(a, h) anthracene	ND	0.50
<u>Dibenzo</u> furan	ND	0.50
1,2-Dichlorobenzene	ND	0.50
1,3-Dichlorobenzene	ND	0.50
1,4-Dichlorobenzene	ND	0.50
3,3-Dichlorobenzidine	ND	0.50
2,4-Dichlorophenol	ND	0.50
Diethyl Phthalate	ND	0.50
2,4-Dimethylphenol	ND	0.50
Dimethyl Phthalate	ND	0.50

TO BE CONTINUED ON PAGE #2

DATA REVIEWED AND APPROVED BY:

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Petaluma - Corona Station

	DATE	RECEIVED: 06/08/17
MATRIX: SOIL	DATE	EXTRACTED:06/09/17
DATE SAMPLED: 06/06/17	DATE	ANALYZED:06/09/17
REPORT TO: MR. PETER CLOVEN	DATE	REPORTED: 06/15/17

SAMPLE I.D.: SS-6-0.5

I.D.: 170608-34

CONTRACTOR OF STREET, STREET,

SEMI-VOLATILE ORGANICS, EPA 8270C, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X2*
5.5-Dinitro-2-methylphenol	ND	0.50
2.4-Dinitrophenol	ND	0.50
2.A-Dinitrotoluene	ND	0.50
2,6-Dinitrotoluene	ND	0.50
Fluoranthene	ND	0.50
<u>Fluorene</u>	ND	0.50
Hexachlorobenzene	ND	0.5
<u>Hexachlorobutadiene</u>	ND	0.50
<u>Mexachiorocyclupentadiene</u>	ND	0.50
<u>Hexachloroethane</u>	ND	0.50
Indeno(1,2,3-cd) rene	ND	0.50
Isophorone	ND	0.50
2-Methyl Phenol	ND	0.50
3/4-Methyl Phenol	ND	0.50
2-Methylnaphthalane	ND	0.50
N-Nitruss-di-n-dipropylaning	ND	0.50
N-Bitrosodimethylamine	ND	0.50
<u>N-Nitroandiphenylanine</u>	ND	0.50
Naphthalene	ND	0.50
<u>2-Nitroaniline</u>	ND	0.50
<u>3-Nitroaniline</u>	ND	0.50
<u>4-Nitroaniline</u>	ND	0.50
Nitrobenzene	ND	0.50
<u>2-Nitrophenol</u>	ND	0.50
<u>4-Nitrophenol</u>	ND	0.50
Pentachlorophenol	ND	0.50
Phenanthrene	ND	0.50
Phenol	ND	0.50
Pyrene	ND	0.50
Pyridine	ND	0.50
1,2,4-Trichlorobenzene	ND	0.50
2,4,5-Trichlorophenol	ND	0.50
2.4.6-Trichlocombane]	ND	0.50

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT ND = NON-DETECTED OR BELOW THE PQL * = PQL RAISED DUE TO MATRIX INTERVENCE DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

### LABORATORY REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Petaluma - Corona Station

	DATE RECEIVED:06/08/1	7
MATRIX:SOIL	DATE EXTRACTED.06/00/	/17
DATE SAMPLED.06/06/17	DATE INDIVIED. 0C (00/19/	1/
REPORT TO:MD DETED CLOVEN	DATE ANALYZED: 06/09/1	
REPORT TO.MR. PETER CLOVEN	DATE REPORTED: 06/15/1	.7

SAMPLE I.D.: SS-7-0.5

LAB I.D.: 170608-35

SEMI-VOLATILE ORGANICS, EPA 8270C, PAGE 1 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	POT. X2*
Acenaphthene	ND	0 50
Acenaphthylene	ND	0.50
Anthracene	ND	0.50
Bansula) anthracena.	ND	0.50
Benzo(b)fluoranthene	ND	0.50
<u>Benzo(a)pyrene</u>	ND	0.50
Benzolg.h.llperviece	ND	0.50
Banio Iki fluoranthens	ND	0.50
<u>Benzoic Acid</u>	ND	0.50
Benzyl Alcohol	ND	0.50
Bls:2-Chloroethoxy)methane	ND	0.50
Bis/2-Chioroothyliether	ND	0.50
Bisl2-ChioroIsopropyl)ether	ND	0.50
Bis/Z-Ethylhexyl/Phthalate	ND	0.50
1-Bromophenyl Fhenyl Ether	ND	0.50
Batylbenzylphthalate	ND	0.50
-Chloro-3-Methylphenol	ND	0.50
<u>4-Chloroaniline</u>	ND	0.50
2-Chluconaphthalane	ND	0.50
2-Chlorophenol	ND	0.50
4-Chlorophonyl Frenyl Ether	ND	0.50
Chrysene	ND	0.50
Di-n-butylphthalate	ND	0.50
li-n-octylphthalate	ND	0.50
Dibenzo(a.h)anthragene	ND	0.50
Dibenzofuran	ND	0.50
1,2-Dichtorobenzene	ND	0.50
, 3-Dichlorobenzene	ND	0.50
.4-Dichlozobenzese	ND	0.50
1. J-Dichlorobenzidine	ND	0.50
2,4-Dichlorophenol	ND	0.50
Mathyl Phthalate	ND	0.50
2,4-Dimethylphenol	ND	0.50
limethyl Fotbalate	ND	0.50

TO BE CONTINUE ON PAGE #2

DATA REVIEWED AND APPROVED BY:_

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Petaluma - Corona Station

	DALE	KECEIVED: 00/08/1/
MATRIX: SOIL	DATE	EXTRACTED: 06/09/17
DATE SAMPLED: 06/06/17	DATE	ANALYZED: 06/09/17
REPORT TO: MR. PETER CLOVEN	DATE	REPORTED: 06/15/17

SAMPLE I.D.: SS-7-0.5

LAB I.D.: 170608-35

DATE DECETTED, OC/OC/45

SEMI-VOLATILE ORGANICS, EPA 8270C, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X2*
4,6-Dinitro-2-methylphenol	ND	0.50
2.4-Dinitrophenol	ND	0.50
2,4-Dinitrotoluene	ND	0.50
2,6-Dinitrotoluene	ND	0.50
Fluoranthene	ND	0.50
Fluorene	ND	0.50
<u>Hexachlorobenzene</u>	ND	0.50
<u>Hexachlorobutadiene</u>	ND	0.50
<u>Hexachlorocyclopentadiene</u>	ND	0.50
<u>Hexachloroethane</u>	ND	0.50
Indeno(1,2,3-cd)pyrene	ND	0.50
Isophorone	ND	0.50
2-Methyl Phenol	ND	0.50
3/4-Methyl Phenol	ND	0.50
2-Methylnaphthalene	ND	0.50
N-Nitroso-di-n-dipropylamine	ND	0.50
N-Nitrosodimethylamine	ND	0.50
N-Nitrosodiphenylamine	ND	0.50
Naphthalene	ND	0.50
<u>2-Nitroaniline</u>	ND	0.50
3-Nitroaniline	ND	0.50
<u>4-Nitroaniline</u>	ND	0.50
Nitrobenzene	ND	0.50
2-Nitrophenol	ND	0.50
4-Nitrophenol	ND	0.50
Pentachlorophenol	ND	0.50
Phenanthrene	ND	0.50
Phenol	ND	0.50
Pyrene	ND	0.50
Pyridine	ND	0.50
1,2,4-Trichlorobenzene	ND	0.50
2,4,5-Trichlorophenol	ND	0.50
2,4,6-Trichlorophenol	ND	0.50

ND = NON-DETECTED OR BELOW THE POL

* = PQL RAISED DUE TO MATRIX INTERFERENCE

DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER:	Pinnacle Environmental, Inc
	P.O. Box 904
	Clayton, CA 94517
	(925)673-5500 Email: pcloven@pei-env.com
PROJECT:	Petaluma - Corona Station

	DATE	RECEIVED: 06/08/17
MATRIX: SOIL	DATE	EXTRACTED: 06/09/17
DATE SAMPLED: 06/06/17	DATE	ANALYZED: 06/09/17
REPORT TO: MR. PETER CLOVEN	DATE	REPORTED: 06/15/17

SAMPLE I.D.: SS-8-0.5

LAB I.D.: 170608-36

PARAMETER	SAMPLE RESULT	POL X2*
Acenaphthene	ND	0.50
Acenaphthylene	ND	0.50
Anthracene	ND	0.50
Benzolalanthrocene	ND	0.50
Bengaibifluoranthene	ND	0.50
Benzo(a)pyrene	ND	0.50
Benzo(g,h,llperylane	ND	0.50
Benzorkifluoranthene	ND	0.50
<u>Benzoic A</u> cid	ND	0.50
Hentyl Alcohol	ND	0.50
Bis/2-Chloroethoxy)methane	ND	0.50
Bis(2-Chloroethyl)ether	ND	0.50
Bis12-Chloroisopropyliether	ND	0.50
Uisl2-EthylhexyllPhthalate	ND	0.50
4-Bromophenvl Phenvl Ether	ND	0.50
Butylbenzylphthelate	ND	0.50
4-Chloro-J-Methylphenbl	ND	0.50
4-Chloroaniline	ND	0.50
2-Chloronaphthalene	ND	0.50
2-Chlorophenol	ND	0.50
A-Chlaraphenyl Phenyl Ether	ND	0.50
Chrysene	ND	0.50
D1-n-buty1phthalate	ND	0.50
Disn-actylphthalate	ND	0.50
Dibento (a, h) anthracene	ND	0.50
Dibenzofuran	ND	0.50
.7-Dichlogobenzene	ND	0.50
. A:Dishlerobenrene	ND	0.50
. 4-Dichlorobenzene	ND	0.50
1.1-Dichlorobenzidine	ND	0.50
1.1-Dichlorbathenol	ND	0.50
liethyl Phthaláts	ND	0.50
2.4-Dinethylphenoi	ND	0.50
limethyl Ehtheinte	ND	0.50

TO BE CONTINUED ON PAGE

all

DATA REVIEWED AND APPROVED BY:___

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925) 673-5500 Email: pcloven@pei-env.com PROJECT: Petaluma - Corona Station

	DATE RECEIVED: 06/08/17
MATRIX: SOIL	DATE EXTRACTED: 06/09/17
DATE SAMPLED: 06/06/17	DATE ANALYZED: 06/09/17
REPORT TO: MR. PETER CLOVEN	DATE REPORTED: 06/15/17

SAMPLE I.D.: SS-8-0.5

LAD I.D.: 170608-36

DATE DECETURD, OC/OO/17

-----SEMI-VOLATILE ORGANICS, EPA 8270C, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	POL X2*
1.5-Dinitro-2-methylphenol	ND	0.50
2.4-Dimitrophenol	ND	0.50
2.4-Dinitrotoluene	ND	0.50
2.6-Dimitrotologne	ND	0.50
Fluoranthene	ND	0.50
Fluorene	ND	0.50
Hexachlozobenzene	ND	0.50
Hexachlorobutadiene	ND	0.50
Mexachlorocyclopentadiene	ND	0.50
Héxachlercethane	ND	0.50
Indeno(1,2,3-cd) rene	ND	0.50
Isophorone	ND	0.5
I-Bathyl Phonol	ND	0.50
3/4-Hethyl Phonol	ND	0.50
2-Methylnaphthalene	ND	0.50
N-Ditroso-di-n-dipropylamine	ND	0.50
E-RitrasodimethyLanine	ND	0.50
N-Hitrosodiphenylanine	ND	0.50
Naphthalene	ND	0.50
2-Nitroaniline	ND	0.50
<u>3-Nitroaniline</u>	ND	0.50
4-Nitroaniline	ND	0.50
Nitrobenzene	ND	0.50
2-Nitrophenol	ND	0.50
4-Nitrophenol	ND	0.50
Pentachlorophenol	ND	0.50
<u>Phenanthrene</u>	ND	0.50
<u>Phenol</u>	ND	0.50
Pyrene	ND	0.50
Pyridine	ND	0.50
.2.4-Trichlorobenzenm	ND	0.50
2,4,5-Trichlorophenol	ND	0.50
1, 4, 6-Tripblorophenol	ND	0.50

PQL RAISED DUE TO MATRIX INTERIMENT DATA REVIEWED AND APPROVED BY: W

CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

# LABORATORY REPORT

CUSTOMER:	Pinnacle Environmental, Inc
	P.O. Box 904
	Clayton, CA 94517
	(925)673-5500 Email: pcloven@pei-env.com
PROJECT;	Petaluma - Corona Station

	DATE RECEIVED:06/08/17
MATRIX: <u>SOIL</u>	DATE EXTRACTED:06/09/17
DATE SAMPLED: 06/06/17	DATE ANALYZED:06/09/17
REPORT TO: MR. PETER CLOVEN	DATE REPORTED: 06/15/17

SAMPLE I.D.: SS-9-0.5

LAM I.D.: 170608-37

SEMI-VOLATILE	ORGANICS, H	EPA 8270C,	PAGE 1	OF 2	
UNIT: mg/Kg	= MILLIGRAM	PER KILO	GRAM =	PPM	

PARAMETER	SAMPLE RESULT	POL X1
Acenaphthene	ND	0.50
Acenaphthylene	ND	0.50
Anthracene	ND	0.50
Benro (al anthracene	ND	0.50
Bengo(b)fluoranthene	ND	0.50
<u>Benzo(a)pyrene</u>	ND	0.50
Benro(g,b,l)perylene	ND	0.50
Benzolk2Eluoranthene.	ND	0.50
Benzoic Acid	ND	0.50
Benzyl Alcohol	ND	0.50
Bis(2-Chloroethoxy)methane	ND	0.50
Bis(2-Chloroethyl)ether	ND	0.5
Bis(2-Chloroisopropyl)ether	ND	0.50
Bis(2-Ethylbexyl)Phthalate	ND	0.50
4-Bronophenyl Phenyl Ether	ND	0.50
Butylbenzylphthalate	ND	0.50
4-Chloce-3-Methylphensl	ND	0.50
<u>4-Chloroaniline</u>	ND	0.50
2-Chlurgnaphthalene	ND	0.50
<u>2-Chlorophenol</u>	ND	0.50
A-Chlorophenyl Fnanyl Ether	ND	0.50
<u>Chrysene</u>	ND	0.50
Di-n-butylphthalate	ND	0.50
Bi-n-octylphthslate	ND	0.50
Ditenzo la, hlanthracena	ND	0.50
Dibenzofuran	ND	0.50
1.2-Dichlorobenzane	ND	0.50
1.3-Dichlorobenzene	ND	0.50
1.4-Dichlorobenzene	ND	0.50
3.3-Dichlorsbenzidine	ND	0.50
2.4-Dichlorophenel	ND	0.50
Diethyl Phthalate	ND	0.50
2.4-Dinethylphenol	ND	0.50
Dimethyl Phthalate	ND	0.50

TO BE CONTINUED ON PAGE #2

44

DATA REVIEWED AND APPROVED BY:_
1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER: Pinnacle Environmental, Inc P.O. Box 904 Clayton, CA 94517 (925)673-5500 Email: pcloven@pei-env.com PROJECT: Petaluma - Corona Station

	DATE	RECEIVED:06/08/17
MATRIX: SOIL	DATE	EXTRACTED: 06/09/17
DATE SAMPLED: 06/06/17	DATE	ANALYZED: 06/09/17
REPORT TO: MR. PETER CLOVEN	DATE	REPORTED: 06/15/17

SAMPLE I.D.: SS-9-0.5

LAB I.D.: 170608-37

SEMI-VOLATILE ORGANICS, EPA 8270C, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	POL X1
4.5-Dimitro-2-methylphonol	ND	1.50
2,4-Dinitrophenol	ND	0.50
2.A:Binitrotoluene	ND	1.50
2.5-Dinitrotoluene	ND	0.50
Fluoranthene	ND	0.50
Fluorene	ND	0.50
Hazachlorobenzene	ND	0.50
Hexachlorobutadiene	ND	0.50
<u>Hexachlorocyclopentadiene</u>	ND	0.50
<u>Hexachloroethane</u>	ND	0.50
Indeno(1,2,3-cd rene	ND	0.50
Isophorone	ND	0.50
2-Methyl Phenol	ND	0.50
3/4-Methyl Phenol	ND	1.50
Z-Methylnaphthalene	ND	0.50
N-Nitroad-di-n-dipropylanipe	ND	0.50
S-Mitrosodimethylamine	ND	0.50
<u>N-Nitrosodiphenylamine</u>	ND	0.50
Naphthalene	ND	0.50
<u>2-Nitroaniline</u>	ND	0.50
<u>3-Nitroaniline</u>	ND	0.50
<u>4-Nitroaniline</u>	ND	0.50
Nitrobenzene	ND	0.50
2-Nitrophenol	ND	0.50
<u>4-Nitrophenol</u>	ND	0.50
Pentachlorophenol	ND	0.50
Phenanthrene	ND	0.50
Phenol	ND	0.50
Pvrene	ND	0.50
Pyridine	ND	0.50
1.2.9-Trichlorobenrene	ND	0.50
2.4.5-Trichlerophenol	ND	0.50
Z.4.6-7richlarephanel	ND	0.50

de

COMMENTS PQL = PRACTICAL QUANTITATION LIMIT ND = NON-DETECTED OR BELOW THE FOL DATA REVIEWED AND APPROVED BY:

CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

### LABORATORY REPORT

CUSTOMER:	Pinnacle Environmental, Inc
	P.O. Box 904
	Clayton, CA 94517
	(925)673-5500 Email: pcloven@pei-env.com
PROJECT:	Petaluma - Corona Station

	DATE RECEIVED:06	/08/17
MATRIX: SOIL	DATE EXTRACTED:0	6/09/17
DATE SAMPLED: 06/06/17	DATE ANALYZED:06	/09/17
REPORT TO: MR. PETER CLOVEN	DATE REPORTED:06	/15/17

SAMPLE I.D.: 55-10-0.5

LAD I.D.: 170608-38

SEMI-VOLATILE ORGANICS, EPA 8270C, PAGE 1 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	POL X1
<u>Acenaphthene</u>	ND	0.50
Acenaphthylene	ND	0.51
Anthracene	ND	0.50
Banzolalanthracone	ND	0.50
Bunza (b) fluocanthene	ND	0.50
<u>Benzo(a)pyrene</u>	ND	0.50
Henzo (d. h. Liperviene	ND	0.50
Henro(k) fluoranthene	ND	0.50
Benzoic Acid	ND	0.50
Benzyl Alcohol	ND	0.50
Bis 12-Chlorosthoxyimethane	ND	0.50
Bin12-Chloroethyi)ether	ND	0.50
Bis(2-Chlorolsopropyl)ether	ND	0.50
Bls(2-Ethylbexy1)Phthalate	ND	0.50
6-Bromophenyl Phenyl Ether	ND	0.50
Butylbanzylphthalate	ND	0.50
4-Chloro-J-Methylphenol	ND	0.50
<u>4-Chloroanilin</u> e	ND	0.50
2-Chiurenaphthalene	ND	0.50
2-Chlorophenol	ND	0.50
-Chlorophenyl Fornyl Ether	ND	0.50
Chrysene	ND	0.50
li-n-bulylphthalate	ND	0.50
Di-n-octylphthalate	ND	0.50
Dibenzo (a, hlantbracene	ND	0.50
Dibenzofuran	ND	0.50
1.2-Dichiscobenzene	ND	0.50
1.3-Dichlorohenzene	ND	0.50
L4-Dichlorobenzene	ND	0.50
.3-Dichlorobenridine	ND	0.50
LA-Dichlerophenel	ND	0.50
Methy) Phthalate	ND	0.50
L4-Dimethylphenol	ND	0.50
limethyl Phthalate	ND	0 50

TO BE CONTINUED ON PAGE

DATA REVIEWED AND APPROVED BY:____

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### LABORATORY REPORT

CUSTOMER:	Pinnacle Environmental, Inc
	P.O. Box 904
	Clayton, CA 94517
	(925) 673-5500 Email: pcloven@pei-env.com
PROJECT:	Petaluma - Corona Station

	DATE RECEIVED:06/08/17
MATRIX: <u>SOIL</u>	DATE EXTRACTED: 06/09/17
DATE SAMPLED: 06/06/17	DATE ANALYZED:06/09/17
REPORT TO: MR. PETER CLOVEN	DATE REPORTED: 06/15/17

SAMPLE I.D.: SS-10-0.5

LAB I.D.: 170608-38

Charles in the second line of

SEMI-VOLATILE ORGANICS, EPA 8270C, PAGE 2 OF 2 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

PARAMETER	SAMPLE RESULT	PQL X1
4,6-Dinitro-2-methylphenol	ND	0.50
2,4-Dinitrophenol	ND	0.50
2,4-Dinitrotoluene	ND	0.50
2,6-Dinitrotoluene	ND	0.50
<u>Fluoranthene</u>	ND	0.50
Fluorene	ND	0.50
<u>Hexachlorobenzene</u>	ND	0.50
<u>Hexachlorobutadiene</u>	ND	0.50
Hexachlorocyclopentadiene	ND	0.50
<u>Hexachloroethane</u>	ND	0.50
Indeno(1,2,3-cd pyrene	ND	0.50
Isophorone	ND	0.50
2-Methyl Phenol	ND	0.50
<u>3/4-Methyl Phenol</u>	ND	0.50
<u>2-Methylnaphthalene</u>	ND	0.50
<u>N-Nitroso-di-n-dipropylamine</u>	ND	0.50
<u>N-Nitrosodimethylamine</u>	ND	0.50
<u>N-Nitrosodiphenylamine</u>	ND	0.50
<u>Naphthalene</u>	ND	0.50
<u>2-Nitroaniline</u>	ND	0.50
<u>3-Nitroaniline</u>	ND	0.50
<u>4-Nitroaniline</u>	ND	0.50
Nitrobenzene	ND	0.50
<u>2-Nitrophenol</u>	ND	<u>0.</u> 50
<u>4-Nitrophenol</u>	ND	0.50
Pentachlorophenol	ND	0.50
<u>Phenanthrene</u>	ND	0.50
Phenol	ND	0.50
Pyrene	ND	0.50
Pyridine	ND	0.50
1,2,4-Trichlorobenzene	ND	0.50
2,4,5-Trichlorophenol	ND	0.50
2,4,6-Trichlorophenol	ND	0.50
COMMENTS POL = PRACTICAL OUANT	TITATION LIMIT	

ND = NON-DETECTED OR BELOW THE POL DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### METHOD BLANK REPORT

CUSTOMER:	Pinnacle Environmental, Inc
	P.O. Box 904
	Clayton, CA 94517
	(925)673-5500 Email: pcloven@pei-env.com
PROJECT:	Petaluma - Corona Station

	DATE	RECEIVED: 06/08/17
MATRIX: SOIL	DATE	EXTRACTED: 06/09/17
DATE SAMPLED: 06/06/17	DATE	ANALYZED: 06/09/17
REPORT TO: MR. PETER CLOVEN	DATE	REPORTED: 06/15/17

#### METHOD BLANK REPORT FOR LAB I.D.: 170608-29 THROUGH -38

PARAMETER	SAMPLE RESULT	POL X1
Acenaphthene	ND	0.50
Acenaphthylene	ND	0.50
Anthracene	ND	0.50
Benzo(a) anthracene	ND	0.50
Benzo(b) fluoranthene	ND	0.50
Benzo(a)pyrene	ND	0.50
Benzo(g,h,i)perylene	ND	0.50
Benzo(k) fluoranthene	ND	0.50
Benzoic Acid	ND	0.50
Benzyl Alcohol	ND	0.50
Bis(2-Chloroethoxy)methane	ND	0.50
<u>Bis(2-Chloroethyl)ether</u>	ND	0.50
Bis(2-Chloroisopropyl)ether	ND	0.50
Bis(2-Ethylhexyl)Phthalate	ND	0.50
4-Bromophenyl Phenyl Ether	ND	0.50
Butylbenzylphthalate	ND	0.50
4-Chloro-3-Methylphenol	ND	0.50
<u>4-Chloroaniline</u>	ND	0.50
2-Chloronaphthalene	ND	0.50
<u>2-Chlorophenol</u>	ND	0.50
4-Chlorophenyl Phenyl Ether	ND	0.50
Chrysene	ND	0.50
<u>Di-n-butylphthalate</u>	ND	0.50
<u>Di-n-octylphthalate</u>	ND	0.50
Dibenzo(a, h) anthracene	ND	0.50
<u>Dibenzofuran</u>	ND	0.50
1,2-Dichlorobenzene	ND	0.50
1,3-Dichlorobenzene	ND	0.50
1,4-Dichlorobenzene	ND	0.50
3,3-Dichlorobenzidine	ND	0.50
2,4-Dichlorophenol	ND	0.50
Diethyl Phthalate	ND	0.50
2,4-Dimethylphenol	ND	0.50
Dimethyl Phthalate	ND	0.50

TO BE CONTINUED ON PAGE #2

DATA REVIEWED AND APPROVED BY:

# 1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

#### METHOD BLANK REPORT

CUSTOMER:	Pinnacle Environmental, Inc
	P.O. Box 904
	Clayton, CA 94517
	(925)673-5500 Email: pcloven@pei-env.com
PROJECT:	Petaluma - Corona Station

	DATE	RECEIVED: 06/08/17
MATRIX: SOIL	DATE	EXTRACTED: 06/09/17
DATE SAMPLED: 06/06/17	DATE	ANALYZED: 06/09/17
REPORT TO: MR. PETER CLOVEN	DATE	REPORTED: 06/15/17

METHOD BLANK REPORT FOR LAB I.D.: 170608-29 THROUGH -38

SEMI-VOLATILE ORG UNIT: mg/Kg = M	ANICS, EPA 8270C, F Illigram Per Kilogr	PAGE 2 OF 2 Am = PPM
PARAMETER	SAMPLE RESULT	POL X1
4,6-Dinitro-2-methylphenol	ND	0.50
2,4-Dinitrophenol	ND	0.50
2,4-Dinitrotoluene	ND	0.50
2,6-Dinitrotoluene	ND	0.50
Fluoranthene	ND	0.50
Fluorene	ND	0.50
Hexachlorobenzene	ND	0.50
Hexachlorobutadiene	ND	0.50
<u>Hexachlorocyclopentadiene</u>	ND	0.50
Hexachloroethane	ND	0.50
Indeno(1,2,3-cd)pyrene	ND	0.50
Isophorone	ND	0.50
2-Methyl Phenol	ND	0.50
<u>3/4-Methyl Phenol</u>	ND	0.50
2-Methylnaphthalene	ND	0.50
N-Nitroso-di-n-dipropylamine	ND	0,50
N-Nitrosodimethylamine	ND	0.50
N-Nitrosodiphenylamine	ND	0.50
Naphthalene	ND	0.50
2-Nitroaniline	ND	0.50
3-Nitroaniline	ND	0.50
<u>4-Nitroaniline</u>	ND	0.50
Nitrobenzene	ND	0.50
2-Nitrophenol	ND	0.50
4-Nitrophenol	ND	0.50
Pentachlorophenol	ND	0.50
Phenanthrene	ND	0.50
Phenol	ND	0.50
<u>Pyrene</u>	ND	0.50
<u>Pyridine</u>	ND	0.50
1,2,4-Trichlorobenzene	ND	0.50
2,4,5-Trichlorophenol	ND	0.50
2,4,6-Trichlorophenol	ND	0.50

ND = NON-DETECTED OR BELOW THE POL DATA REVIEWED AND APPROVED BY: CAL-DHS CERTIFICATE # 1555

		En	viro-Chem,	nc.				
ngton Ave	nue, Pom	ona, CA 91	766 Tel (9	09)590-5905	Fax (909)5	590-5907		
	3	8270C	QA/QC	Repor	t			
Soil/So	lid/Slug	dae/Oil				Unit:	make iPP	M
6/9/2017		2.4 (2.41)					050656500	1793 b
Matrix S	pike Du	plicate (Mi	SD)					
.D.:	170608	3-30 MS/	NSD	1150	A/110D	0/000		
SR	spk conc	MS	%MS	M	%MSD	%RPD	ACP %WS	ACP RPL
0.0	2.00	1.61	80%	1.15	87%	8%	50-150	0.20
0.0	2.00	2.52	120%	2, 9	109%	1470	50-150	0-20
Spike (	LCS):							
	spk conc	LCS	% RC	ACP %RC	F.			
	2.00	2.04	102%	75-125				
	2.00	2.01	101%	75-125				
_	2.00	2.21	111%	75-125				
	2.00	2.30	115%	75-125				
o	2.00	2.20	110%	75-125				
	2.00	2.10	105%	75-125				
spk conc	ACP%	%RC	1680	MRC	SAC	N-RC	1680	%RC
_	č	MB	170608-29	170608-30	170608-31	170608-32	170608-33	170608-34
40	25-121	102%	95%	89%	85%	91%	95%	86%
40	24-113	100%	93%	86%	63%	78%	85%	73%
40	23-120	113%	105%	99%	89%	95%	103%	90%
40	30-115	100%	97%	89%	118*%	96%	101%	93%
40	19-122	76%	82%	80%	90%	96%	111%	101%
40	18-137	125%	117%	106%	130%	199*%	214*%	220*%
spk.conc	ACP%	9480	580	MRC	MAG	MAG	NRC	SAC
Spr conc		470609-35	170609-26	470609-37	170609-39		-	
-	0= 404	000	110000-30	110000-01	000/			
40	25-121	90%	62.90	95%	02%		-	
40	24-113	83%	70%	93%	00%			
40	23-120	95%	83%	96%	84%			
40	30-115	92%	92%	94%	106%			
40	19-122	101%	94%	99%	245*0/			
40	10-137	240 %	13 70	229 70	215 70	<u>.</u>		-
spk conc	ACP%	MRC	MRC	NRC	MRC	%RC	MRC	SRC
					11111		1	personal second
40	25-121							
	24-113							
40								
40 40	23-120		A					
40 40 40	23-120 30-115							
40 40 40 40	23-120 30-115 19-122							
	Soil/So 5/9/2017 Matrix S D.: SR 0.0 0.0 0.0 1 Spike ( 40 40 40 40 40 40 40 40 40 40	Soil/Solid/Slue   Syle Dur   Matrix Splke Dur   D.: 170602   SR spk conc   0.0 2.00   0.0 2.00   0.0 2.00   0.0 2.00   2.00 2.00   2.00 2.00   2.00 2.00   2.00 2.00   2.00 2.00   2.00 2.00   2.00 2.00   2.00 2.00   2.00 2.00   2.00 2.00   2.00 2.00   2.00 2.00   2.00 2.00   2.00 2.00   2.00 2.00   2.00 2.00   3.01 2.00   40 25-121   40 30-115   40 19-122   40 30-115   40 23-120   40 30-115   40 30-115   40 30-115 <t< td=""><td>8270C   Soil/Solid/Sludge/Oil   Sylke Duplicate (Main Spike Duplicate (Main Spike Duplicate (Main Spike Spike conc MS 0.0 2.00 1.61 0.0 2.00 1.61 0.0 2.00 2.52   SR spik conc MS 0.0 2.00 1.61 0.0 2.00 2.52   Spike (LCS):   Spike conc LCS   2.00 2.01 2.00 2.01 2.00 2.01 2.00 2.01 2.00 2.00</td><td>8270C QA/QC     Soil/Solid/Sludge/Oil     Jy/2017     Matrix Spike Duplicate (MSD)     D.: 170608-30 MS/MSD     SR spk conc   MS   %MS     0.0   2.00   1.61   80%     0.0   2.00   2.52   126%     Spk conc   LCS   % RC     2.00   2.04   102%     2.00   2.01   101%     2.00   2.01   101%     2.00   2.01   105%     2.00   2.10   105%     2.00   2.10   105%     9   2.00   2.10   105%     9   2.00   2.10   105%     9   40   25-121   102%   95%     40   24-113   100%   93%     40   25-121   102%   95%     40   19-122   76%   82%     40   19-122   76%   82%     40</td><td>8270C QA/QC Repor     Soil/Solid/Sludge/Oil     Syle Duplicate (MSD)     D.: 170608-30 MS/MSD     SR spk conc MS %MS MED     0.0 2.00 1.61 80% 1.75     0.0 2.00 2.52 126% 2.19     Spk conc LCS % RC ACP%RC     2.00 2.04 102% 75-125     2.00 2.01 101% 75-125     2.00 2.01 101% 75-125     2.00 2.21 111% 75-125     2.00 2.20 110% 75-125     2.00 2.20 110% 75-125     Spk conc   ACP%     MBE 170608-29 170608-30     40 25-121 102% 95% 89%     40 25-121 102% 95% 89%     40 24-113 100% 93% 86%     40 23-120 113% 105% 99%     40 25-121 102% 95% 89%     40 25-121 102% 95% 89%     40 25-121 100% 97% 93%     A Spk conc ACP% MEC   MEC     A MEC   MEC     MB 170608-36 170608-37     40 25-121 90% 82% 95%     40 25-121 90% 82% 95%</td><td>S27OC QA/QC Report     Soli/Solid/Sludge/Oil     Soli/Solid/Sludge/Oil     Solid Subscription     Site Duplicate (MSD)     D: 170608-30 MS/MSD     SR spic conc   MS %MS MSD %MSD     SR spic conc   MS %MS   MSD %MSD     SR spic conc   LCS % RC ACP %RC     2.00   2.01   101% 75-125   2.00   2.01   101% 75-125     2.00   2.01   101% 75-125   2.00   2.00   115% 75-125     2.00   2.10   105% 75-125   2.00   2.00   110% 75-125     2.00   2.10   105% 75-125   170608-30   170608-31     MBE 170608-29   170608-30   170608-31     MB 170608-29   170608-30   170608-31     MB 170608-32   170608-31     MB 105%   99%   85%     40   24-113   100%   97%   89%   118%     40   30.4</td><td>S270C QA/QC Report     Soli/Solid/Sludge/Oil   Unit:     System Colspan="2"&gt;Unit:     System Colspan="2"&gt;Unit:     System Colspan="2"&gt;Matrix Spike Duplicate (MSD)     D:   170608-30 MS/MSD     System Colspan="2"&gt;MS   %MS   MED   % System Colspan="2"&gt;% System Colspan="2"   % System Colspan="2</td><td>8270C QA/QC Report     Soil/Solid/Sludge/Oil   Unit: make IPP     Matrix Spike Duplicate (MSD)     D: 170608-30 MS/MSD     SR spk conc   MS %MS   MED   %MSD   %RPD   ACP %MSD     SR spk conc   MS %MS   MED   %MSD   %RPD   ACP %MSD     Six conc   LCS   % RC   ACP %RC     2.00   2.01   101%   75-125   2.00   2.00   2.01   105%   75-125     2.00   2.10   105%   75-125   2.00   2.10   105%   75-125     2.00   2.10   105%   75-125   2.00   2.10   105%   89%   83%   91%   85%     MB conc   ACP%   MRC   MRC   MRC   MRC     MRC   %RC   MRC   MRC     MR</td></t<>	8270C   Soil/Solid/Sludge/Oil   Sylke Duplicate (Main Spike Duplicate (Main Spike Duplicate (Main Spike Spike conc MS 0.0 2.00 1.61 0.0 2.00 1.61 0.0 2.00 2.52   SR spik conc MS 0.0 2.00 1.61 0.0 2.00 2.52   Spike (LCS):   Spike conc LCS   2.00 2.01 2.00 2.01 2.00 2.01 2.00 2.01 2.00 2.00	8270C QA/QC     Soil/Solid/Sludge/Oil     Jy/2017     Matrix Spike Duplicate (MSD)     D.: 170608-30 MS/MSD     SR spk conc   MS   %MS     0.0   2.00   1.61   80%     0.0   2.00   2.52   126%     Spk conc   LCS   % RC     2.00   2.04   102%     2.00   2.01   101%     2.00   2.01   101%     2.00   2.01   105%     2.00   2.10   105%     2.00   2.10   105%     9   2.00   2.10   105%     9   2.00   2.10   105%     9   40   25-121   102%   95%     40   24-113   100%   93%     40   25-121   102%   95%     40   19-122   76%   82%     40   19-122   76%   82%     40	8270C QA/QC Repor     Soil/Solid/Sludge/Oil     Syle Duplicate (MSD)     D.: 170608-30 MS/MSD     SR spk conc MS %MS MED     0.0 2.00 1.61 80% 1.75     0.0 2.00 2.52 126% 2.19     Spk conc LCS % RC ACP%RC     2.00 2.04 102% 75-125     2.00 2.01 101% 75-125     2.00 2.01 101% 75-125     2.00 2.21 111% 75-125     2.00 2.20 110% 75-125     2.00 2.20 110% 75-125     Spk conc   ACP%     MBE 170608-29 170608-30     40 25-121 102% 95% 89%     40 25-121 102% 95% 89%     40 24-113 100% 93% 86%     40 23-120 113% 105% 99%     40 25-121 102% 95% 89%     40 25-121 102% 95% 89%     40 25-121 100% 97% 93%     A Spk conc ACP% MEC   MEC     A MEC   MEC     MB 170608-36 170608-37     40 25-121 90% 82% 95%     40 25-121 90% 82% 95%	S27OC QA/QC Report     Soli/Solid/Sludge/Oil     Soli/Solid/Sludge/Oil     Solid Subscription     Site Duplicate (MSD)     D: 170608-30 MS/MSD     SR spic conc   MS %MS MSD %MSD     SR spic conc   MS %MS   MSD %MSD     SR spic conc   LCS % RC ACP %RC     2.00   2.01   101% 75-125   2.00   2.01   101% 75-125     2.00   2.01   101% 75-125   2.00   2.00   115% 75-125     2.00   2.10   105% 75-125   2.00   2.00   110% 75-125     2.00   2.10   105% 75-125   170608-30   170608-31     MBE 170608-29   170608-30   170608-31     MB 170608-29   170608-30   170608-31     MB 170608-32   170608-31     MB 105%   99%   85%     40   24-113   100%   97%   89%   118%     40   30.4	S270C QA/QC Report     Soli/Solid/Sludge/Oil   Unit:     System Colspan="2">Unit:     System Colspan="2">Unit:     System Colspan="2">Matrix Spike Duplicate (MSD)     D:   170608-30 MS/MSD     System Colspan="2">MS   %MS   MED   % System Colspan="2">% System Colspan="2"   % System Colspan="2	8270C QA/QC Report     Soil/Solid/Sludge/Oil   Unit: make IPP     Matrix Spike Duplicate (MSD)     D: 170608-30 MS/MSD     SR spk conc   MS %MS   MED   %MSD   %RPD   ACP %MSD     SR spk conc   MS %MS   MED   %MSD   %RPD   ACP %MSD     Six conc   LCS   % RC   ACP %RC     2.00   2.01   101%   75-125   2.00   2.00   2.01   105%   75-125     2.00   2.10   105%   75-125   2.00   2.10   105%   75-125     2.00   2.10   105%   75-125   2.00   2.10   105%   89%   83%   91%   85%     MB conc   ACP%   MRC   MRC   MRC   MRC     MRC   %RC   MRC   MRC     MR

