PRELIMINARY HYDROLOGY STUDY

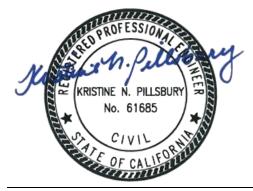
FOR

CORONA STATION DEVELOPMENT

Petaluma, California

Prepared By: CSW/Stuber-Stroeh Engineering Group, Inc. 45 Leveroni Court Novato, California 94949 (415)-883-9850

> Prepared: November 30, 2018


CSW | ST2 File No.: 5.1498.00

PRELIMINARY HYDROLOGY STUDY

FOR

CORONA STATION DEVELOPMENT

Kristine N. Pillsbury R.C.E. No. 61685

> Prepared By: CSW/ Stuber-Stroeh Engineering Group, Inc. 45 Leveroni Court Novato, California 94949 (415)-883-9850

> > Prepared: November 30, 2018

CSW | ST2 File No.: 5.1498.00

TABLE OF CONTENTS

1.	Introduction1							
2.	Pre-Project Conditions							
3.	Post-Project Conditions							
4.	Analysis 2 4.1 Criteria 4.2 Hydrology a. Rational Method b. Time of Concentration c. Rainfall Intensity d. Runoff Coefficient							
5.	Results							
6.	Conclusions							
7.	Appendices7.1Runoff Coefficients7.2Precipitation, K-Factor and Intensity-Duration-Frequency Data7.3Hydrology Calculations (10- & 100-Year Storm Events)							
8.	Exhibits FEMA National Flood Hazard Layer Firmette H1.0 – Hydrology Map – Pre-Project Conditions							

H1.1 – Hydrology Map – Post-Project Conditions

1. INTRODUCTION

This Preliminary Hydrology Study (Study) examines and compares the pre- and post-project peak flows for the Corona Station Development located at the intersection of North McDowell Boulevard and Corona Road in Petaluma, California.

2. PRE-PROJECT CONDITIONS

The Corona Station Development is located at the southeast corner of the intersection of North McDowell Boulevard and Corona Road in Petaluma, California. The Assessor's Parcel Number of the project property is 137-061-19.

The 6.75 acre project site is situated in an area of Petaluma that is comprised of a combination of residential, commercial, industrial and rural development. The project site is triangular in shape and bounded to the northwest by Corona Road and commercial property, and to the southwest by North McDowell Boulevard and commercial and residential property. To the east and southeast the project site is bounded by the SMART railroad and rural and residential property. Corona Creek is adjacent to the property at the southern tip of the site.

The site is mostly vacant with temporary outdoor operations for a trucking company located on the southern portion of the site. Largely, the site is covered by compacted gravel for parking, storage and staging vehicles and materials. A few buildings were located on the site but were removed in 2018 to facilitate cleanup of contaminated soil within the site. Vegetated areas, largely of grass, are limited to strips of land adjacent to Corona Road, North McDowell Boulevard, at the southern tip of the site adjacent to the railroad and the Corona Creek corridor, along the southern edge of the site.

The terrain of the project site is flat with a 0.5% slope across the property from the higher elevations in the north to the lower elevations in the south. Approximately 0.17 acres of the site drains to the east into the ditch within the railroad right-of-way and running parallel to the railroad. The railroad ditch flows to the south into Corona Creek. Approximately 0.82 acres of the site drains to the curb and gutter in Corona Road and is intercepted by the storm drain system in Corona Road. This system discharges into a drainage ditch on the opposite side of Corona Road from the project site. After passing under North McDowell Boulevard through a culvert, the drainage ditch continues to the southwest along Corona Road. At Highway 101, runoff from the drainage ditch is intercepted by an underground storm drain system which conveys and discharges runoff into the Petaluma River on the north side of Corona Road.

Runoff from the remainder of the site is intercepted by a storm drain system in North McDowell Boulevard which flows south along North McDowell Boulevard and discharges into a culvert under North McDowell Boulevard for Corona Creek. After exiting the culvert under North McDowell Boulevard, Corona Creek then flows through open channels to the eastern edge of Highway 101 where it is intercepted and then conveyed by culvert to the west side of Highway 101. After being discharged to the west side of Highway 101, Corona Creek continues as an open channel until it discharges into the Petaluma River.

3. POST-PROJECT CONDITIONS

The proposed project is comprised of a combination of single-family residences and multifamily housing in the mid- and southern portion of the site and sets aside the northern portion of the property directly abutting Corona Road and the SMART property along the railroad line to accommodate a future SMART railroad station and parking lot. A majority of the site will be covered by surfaces such as pavement and buildings. Landscape areas are proposed adjacent to the SMART railroad and along North McDowell Boulevard, in front of the houses and in numerous locations throughout the development, along walkways and to provide common open space areas. Bioretention planters and ponds are interspersed throughout the housing areas to treat runoff from roofs and pavement. Runoff from a majority of the project site will be intercepted by proposed storm drain pipe networks connected to the existing storm drain system in North McDowell Boulevard. Runoff from a small portion of the project site will continue to flow into the ditch next to the railroad and into Corona Creek.

4. ANALYSIS

4.1 <u>Criteria</u>

The Pre- and Post-Project peak flows were determined using the methodology contained within the Sonoma County Water Agency's (SCWA) Flood Control Design Criteria, dated 1983. Pre- and Post-Project peak flows rates were determined for the 10- and 100-year storm recurrence intervals.

- 4.2 <u>Hydrology</u>
 - a. <u>Rational Method</u>: The Rational Method was utilized to calculate design peak discharge in accordance with SCWA's Flood Control Design Criteria. The Rational method is based on the following formula:

Q=CIAK

- Where: Q = Peak Flow Rate (cubic feet per second, cfs)
 C = Runoff Coefficients
 I = Rainfall Intensity (inches per hour, in/hr)
 A = Tributary Area (acres, ac)
 K = K-factor from Plate B-4 of the SCWA Flood Control
 Design Criteria (dimensionless)
- b. <u>Time of Concentration</u>: Minimum times of concentration were applied according to the acreage of areas contributing to initial flows in the drainage areas. The

following minimum times of concentration are taken from the SCWA Flood Control Design Criteria manual:

Time of Concentration	Tributary Area				
7 minutes	Commercial or similar areas				
10 minutes	Areas smaller than $\frac{1}{2}$ acre				
15 minutes	Areas between $\frac{1}{2}$ and 2 acres				

 Table 4.1 – Time of Concentration

Velocities for pipe flow were determined using the Hydraflow Express computer program distributed by Autodesk which calculates normal depth in open channel flow regimes by the use of Manning's Formula.

- c. <u>Rainfall Intensity</u>: Intensities for the 10-year and the 100-year storm frequency events were determined from Plate B-2 of the SCWA Flood Control Design Criteria.
- d. <u>Runoff Coefficient</u>: Following the SCWA's criteria within Plate No. B-1, runoff coefficients were set at 0.90 for Commercial, Industrial & Multiple Residential Areas. Where vegetated area of the Drainage Areas examined for this study exceeded 20%, weighted runoff coefficients were calculated.
- e. <u>Detention</u>: Detention was modeled using the Hydraflow Hydrographs computer program distributed by Autodesk. The Hydrographs program developed hydrographs for the 10-year frequency storm event based on peak flows determined by the Rational Method.

5. RESULTS

Drainage Area	Pre-Project Tributary Area (ac)	C-Factor	Post-Project Tributary Area (ac)	C-Factor
1	2.79	0.79	2.44	0.90
2	1.33	0.90	2.53	0.90
3	1.67	0.90	1.30	0.90
4	0.82	0.90	0.27	0.90
5	0.17	0.44	0.24	0.44

Table 5.1 – Tributary Areas, Pre- vs. Post Project¹

1. See Appendix 7.3 for calculations.

Drainage Area	Pre-Project Q10 (cfs)	Post-Project Q10 (cfs)	Pre-Project Q100 (cfs)	Post-Project Q100 (cfs)
1	3.22	3.14	4.52	4.39
2	1.75	1.72 ³	2.45	4.51 ⁵
3	2.20	1.71	3.08	2.40
4	1.08	0.53	1.51	0.74
5	0.14	0.19 ⁴	0.19	0.27^{4}

 Table 5.2 – Peak Discharge Calculations²

2. See Appendix 7.3 for calculations.

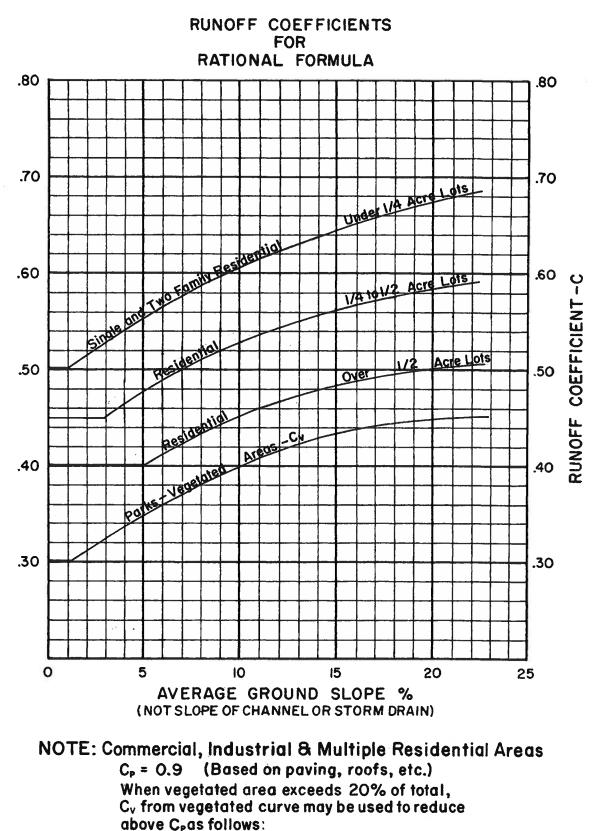
3. Peak flow as a result of incorporating detention within the proposed storm drain system. Without detention, Drainage Area 2 Post-Project peak flow is Q10 = 3.21cfs

- 4. The increase in peak flow from Area 5 can be mitigated to at or below pre-project conditions by grading the land so that the post-project area of Drainage Area 5 matches the pre-project area of Drainage Area 5. See page 17/17 of the Post-Project Calculations of Appendix 7.3.
- This occurs during a 100-year event, for which a majority of the site is projected to be inundated by floodwater. See FEMA National Flood Hazard Layer FIRMette in Appendix 8.

6. CONCLUSIONS

The calculations of this Preliminary Hydrology Study show that impacts, due to changes in the peak flow of runoff to the analyzed points of concentration around the Corona Station Development, are less than significant or can be mitigated to be less than significant.

Of the five points of concentration around the project site, three locations will have a decrease in peak runoff due to a decrease in tributary drainage area contributing runoff to the point of concentration. The three locations are Drainage Area 1, Drainage Area 3 and Drainage Area 4 (see Table 5.2, above).


The remaining two locations, Drainage Area 2 and Drainage Area 5, have increases in peak flow, largely due to an increase in tributary drainage area, however, the increases in peak flow can be mitigated to at or below pre-project conditions. Increases in peak flow from Drainage Area 2 can be mitigated to at or below pre-project conditions by providing volume and constrictions within the proposed storm drain system to detain and slow the release of runoff from the site. Increases in peak flow from Drainage Area 5 can be mitigated to at or below pre-project conditions by grading the site so that the footprint of Drainage Area 5 is the same between pre- and post-project conditions (see Table 5.2, above).

As is evident from the preceding study, the Corona Station Development project in Petaluma can be constructed so that impacts due to peak flows from the site are less than significant or can be mitigated to be less than significant.

As plans progress to a level commensurate for construction, analysis of the project should be provided in a Final Hydrology and Hydraulic Study to confirm that the proposed combination of site grading, routing of onsite storm water pipe facilities and storm water treatment systems continue to mitigate increases in calculated peak flows to the individual points of concentration around the site, to at or below pre-project conditions.

7.0 <u>APPENDICES</u>

Appendix 7.1 – Runoff Coefficients

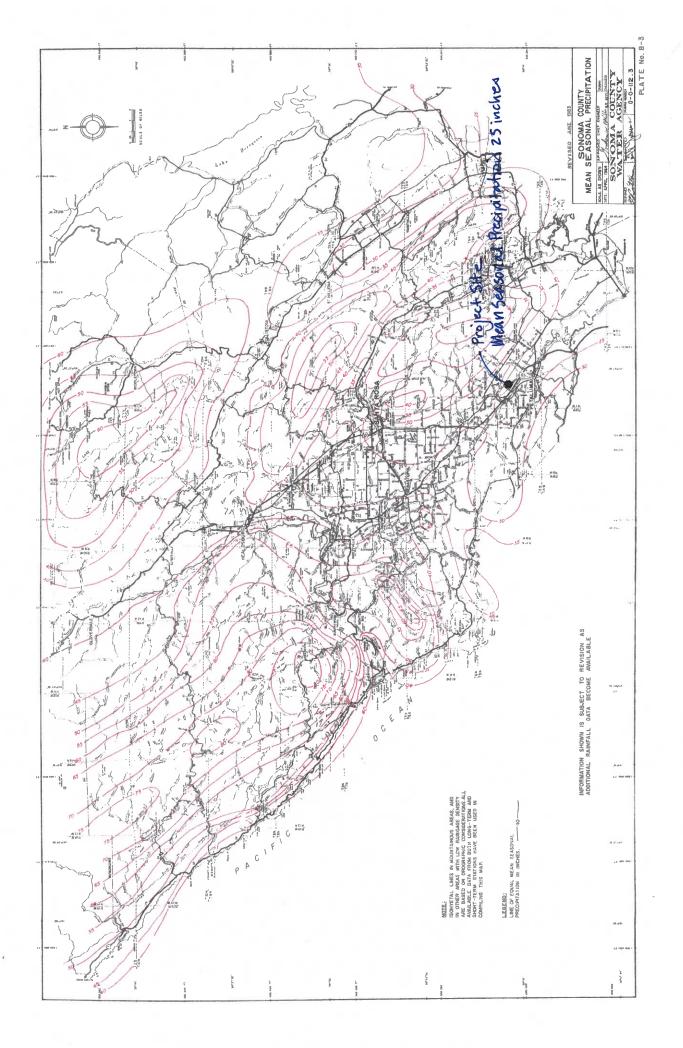
$$C_{\tau} = C_{v} \frac{A_{v}}{A_{\tau}} + C_{p} \frac{A_{p}}{A_{\tau}}$$

SONOMA COUNTY WATER AGENCY

810-19 July 1, 2015

Figure 819.2A

Runoff Coefficients for Undeveloped Areas Watershed Types


	Extreme	High	Normal	Low
Relief	.2835	.2028	.1420	.0814
	Steep, rugged terrain with average slopes above 30%	Hilly, with average slopes of 10 to 30%	Rolling, with average slopes of 5 to 10%	Relatively flat land, with average slopes of 0 to 5%
Soil	.1216	.0812	.0608	.0406
Infiltration	No effective soil cover, either rock or thin soil mantle of negligible infiltration capacity	Slow to take up water, clay or shallow loam soils of low infiltration capacity, imperfectly or poorly drained	Normal; well drained light or medium textured soils, sandy loams, silt and silt loams	High; deep sand or other soil that takes up water readily, very light well drained soils
Vegetal	.1216	.0812	.0608	.0406
Cover	No effective plant cover, bare or very sparse cover	Poor to fair; clean cultivation crops, or poor natural cover, less than 20% of drainage area over good cover	Fair to good; about 50% of area in good grassland or woodland, not more than 50% of area in cultivated crops	Good to excellent; about 90% of drainage area in good grassland, woodland or equivalent cover
Surface	.10 (.12)	.0810	.0608	.0406
Storage	Negligible surface depression few and shallow; drainageways steep and small, no marshes	Low; well defined system of small drainageways; no ponds or marshes	Normal; considerable surface depression storage; lakes and pond marshes	High; surface storage, high; drainage system not sharply defined; large floodplain storage or large number of ponds or marshes
Given	An undeveloped wate 1) rolling terrain wit 2) clay type soils, 3) good grassland an 4) normal surface de	th average slopes of 5%, rea, and	Solution: Relief Soil Infiltrati Vegetal Cove Surface Store	er 0.04
Find	The runoff coefficient watershed.	t, C, for the above		C = 0.32

C S W **ST2**

5 Leveroni Court, Novato, CA 94949 Tel 415.883.9850 Fax 415.883.9835 CSW/Stuber-Stroeh Engineering Group, Inc. 1310 Redwood Way, Suite 220, Petaluma, CA 94954 Tel 707.795.4764 www.cswst2.com

SHEET NO. JOB NO. 5149800 JOB Corona Station Development BY KNP DATE 11/5/18 SUBJECT Proliminary Hydrology CHKD _____ DATE____ CLIENT Undeveloped Area Runoff Gefficient, Cv From Figure 819.2A Runoff Coefficients for Undeveloped Arcas Caltrans, July 1, 2015, Highway Design Manual Cv : Relicf 0,08 Soil Infithation 0.12 Vegetal Gver 0.12 + Svrface Storage 0.12 $C_V = 0.44$ pre- El post- project

Appendix 7.2 – Precipitation, K-Factor and Intensity-Duration-Frequency Data

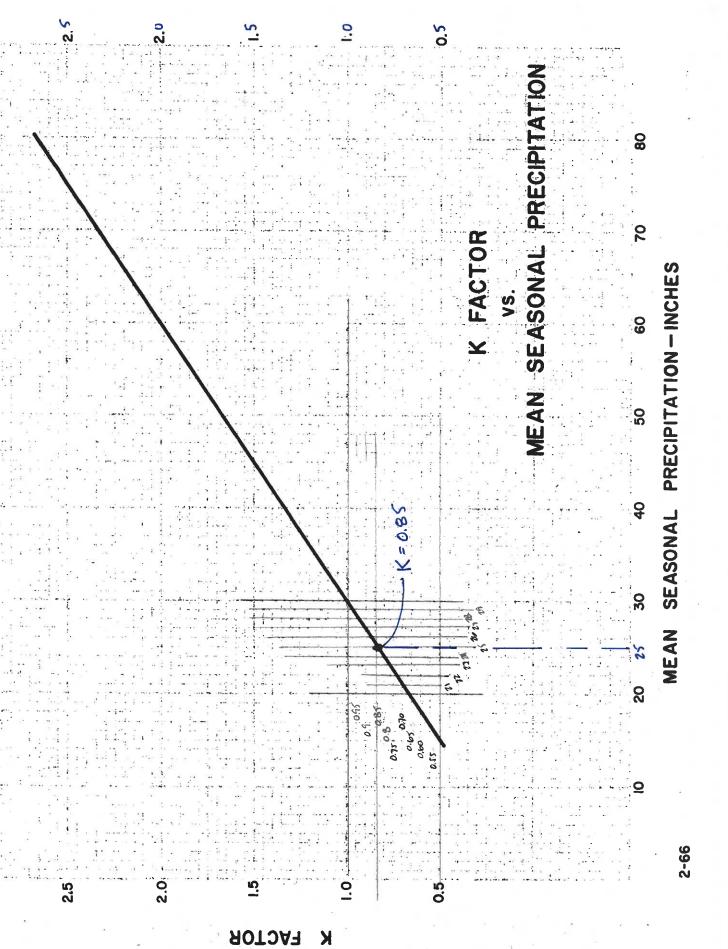
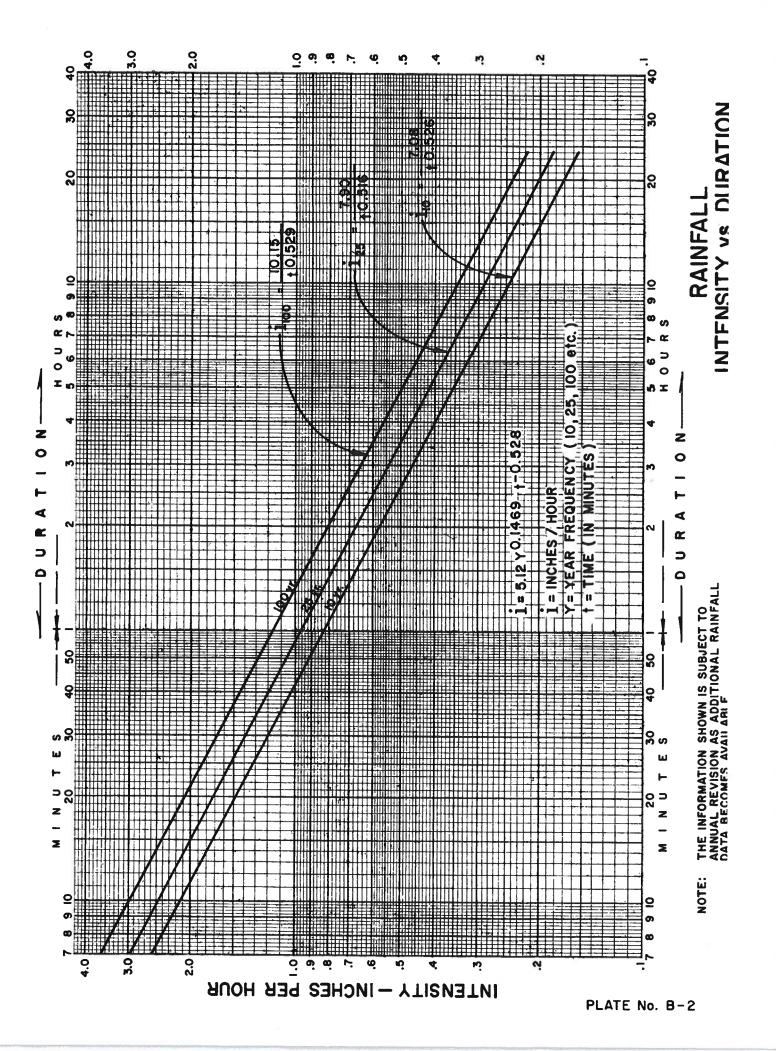



PLATE No. B-4

Appendix 7.3 – Hydrology Calculations (10- and 100-Year Storm Events)

CSW ST2 45 Leveroni Court, Novato, CA 94949 Tel 415.883.9850 Fax 415.883.9835 CSW/Stuber-Stroeh Engineering Group, Inc. 1310 Redwood Way, Suite 220, Petaluma, CA 94954 Tel 707.795.4764 www.cswst2.com SHEET NO. D/3JOB NO. 5149800 JOB CORONA Station Development BY KNP DATE 11/7/18 CLIENT______SUBJECT Preliminary Hydrology CHK'D_____ DATE_____ Pre-Project Condition Calculations

CSW ST2

45 Leveroni Court, Novato, CA 94949 Tel 415.883.9850 Fax 415.883.9835 CSW/Stuber-Stroeh Engineering Group, Inc. 1310 Redwood Way, Suite 220, Petaluma, CA 94954 Tel 707.795.4764 www.cswst2.com

13 SHEET NO. JOB NO. 5149800 JOB CONDIA Station Development BY KNP 11/7/18 DATE SUBJECT Preliminary Hydrology CHKD CLIENT DATE Pre-Project Conditions Drainage Arcas: Drainage Arca Designation Arca (sf) Arca Pervious Arca 1. C (Ac) Periousness (sF)sec CN, 22.9% 0 121473,43 27875,51 2.79 10.8% 2 58083,84 6280,06 0.90 1.33 10.1% * (3) 72753,82 1.67 7320.76 0.90 (9) 35875.36 14.4% * 0,82 5180,80 0,90 3 74 51.28 7451.28 100% 0,17 SEC CW5 * Per Plate No. B-1, Sonoma County Water Agency Flood Control Design Criteria C= 0.9 for Commercial & Industrial Areas Cw, : Per Plate NO. B-1, Sonoma Co, Water Agency, when vegetated area >20%. $CW_1 = CV \frac{AV}{AT} + CP \frac{AP}{AT}$ Cy=0.44 (Figure B19.2A Caltans Highway Design Manual) $C_{W_1} = (0.44) \left(\frac{27875.51}{121473.43} + (0.9) \left(\frac{93597.92}{121473.43} \right) \right)$ CW1= 0.79 pre-project CWS ! CWS = CV AV + CP AR AT CV = 0.44 $C_{W5} = (0.44) \left(\frac{7451,23}{7451,28} \right) + (0.90) \left(\frac{0}{7451,28} \right)$ Cws = 0.44 pre-project

CSW Stuber-Stroeh Engineering Group, Inc. 1310 Redwood Way, Suite 220, Petaluma, CA 94954 Tel 415.883.9850 Fax 415.883.9835 www.cswst2.com

SHEET NO. JOB NO. 5149800 JOB Corona Station Development BY KNP DATE 11/7/18 SUBJECT Proliminary Hydrology CHKD _____ DATE CLIENT Pre-Project Conditions time of Concentration for Areas 0, 0, 3 \$ D: (areas 2 acre to Zaeres, ScwA Flood Control) Design Criteria $T_c = 15 min$ Intensity for Areas O, O, 3 & D: (Plate B-Z SENA FEDC) /10 yr, 15 min = 5.12 (10) 0,14 cg (15) -0.528 = 1.72 in/he 100 yr, 15min = 5,12 (100) 0.1409 (15) -0.523 = 2.41 in/h Rational Method Arcas 0, 0, 3 & @: K=0.85 (Plate B-4, SCWA FCDC) Q=CIAK Area O Pre-Project $Q_{100} = (0.79)(1.72^{in}/hr)(2.79 Az)(0.85) = 3.22 cfs = Q_{10} D$ $Q_{100} = (0.79)(2.41^{in}/hz)(2.79 Az)(0.85) = 4.52 cfs = Q_{100} D$ Arca 1 Arra @ Q100 = (0.9) (1.72 in/hu) (1.33 Ac) (0.85) = 1.75 cf = Q100 Q1000 = (0.9) (2.41 in/m) (1.33 Ac) (0.85) = 2.45 cb = Q1000 Arraz Arca 3 Pre-Project Q10m = (0.9) (1.72 in/m) (1.67 Az) (0.85) = 2.20 c6 = Q00 p Q1093 = (0.9) (2.41 1/m/m) (1.67 Az) (0.85) = 3.08 cf = Q100 (3) Avra 3

CSW S T 2 45 Leveroni Court, Novato, CA 94949 Tel 415.883.9850 Fax 415.883.9835 CSW/Stuber-Stroeh Engineering Group, Inc. 1310 Redwood Way, Suite 220, Petaluma, CA 94954 Tel 707.795.4764 www.cswst2.com 3/3 SHEET NO. JOB NO. 5149800 JOB CONNA Station Development BY KNP DATE 11/7/18 subject <u>Preliminary Hydrology</u> CHKD _____ DATE_ CLIENT Pre-Project Conditions cont'd: Rational Method Areas O, O, 3 & O cont'd: tra 4 $\frac{rca(4)}{Q_{10}} = (0.9)(1.72^{in}/m)(0.82Ac)(0.85) = 1.08cb = Q_{10}G$ $\frac{Q_{10}}{Q_{10}} = (0.9)(2.41^{in}/m)(0.82Ac)(0.85) = 1.51cb = Q_{100}G$

Arca 4

$$Q_{100G} = (0.44)(2.99 \text{ m/m})(0.17 \text{ Ac})(0.85) = 0.19 \text{ cf} = Q_{100G}$$

Arca 5

										lopme slogi				SH	EET N	10.	0	/ 17	7
DB NO.	514	980	D JOE	з_Се)VOV	1a	Stat	INO)eve	loome	ent	_BY _	KI	JP	_ D/	ATE	11	171	18
.IENT			SUBJE	CT	Pre	lin	inar	u H	udu	Joan	vc	— - НК'D			— D/	ATE.			
			_					0)	00)						_		
-																			
				Do	st-	D.	-	· F	60	1:1	20.1	1							
				10		1 4	Je	9			100	,							
						0.	1	1.	4	ndit									
						la	icu	na	10										
								-											

			s oment_by_KNP ogy_CHKD		1/18
	t conditions		0.0		
Drainage Avec Designation	Area (sf)	Arra (Ac)	Penvious Area (sf)	Pervioriness	С
0	106387.44	2.44	*	L20%	0,90
٢	110371.69	2.53	*	120%	0.9 D
3	56595,47	1,30	*	< 20'/.	0.90
A	11929,56	0.27	*	420'/.	0.90
9	10211.38	0.23	CALTRANS HWY DESIGN MANUAL	100 %	0.44
N 2 11		C A N	Vatur Agency Flood		

C S W	ST2 CSW/Stuber-Stroeh Engine	eering Group, Inc.					Fax 415.883.9835 www.cswst2.com
						SHEET NO	2/17
JOB NO.	5149800 JOB	Corona	Station Deve	lopment 1	BY KN	DATE	11/7/18

Post-Project Conditions could:

$$Q = C | A K$$
 $K = 0.85$

(per Plate No. B-4 of the SCWA Flood Control Design Criteria)

DATE

DATE

Sub-arca = 1.47 acres

$$C = 0.90$$

time of concentration = to = 15 minutes (areas { acre to 2 acros) SCWA Flood Control Design Criteria

$$\frac{|\text{Ntensity}(\text{Plate B-2 SCWA FCDC})}{|\text{logrismin} = 5.12(10)^{0.1469}(15)^{-0.528}} = 1.72^{10}/\text{Mc}$$
$$\frac{|\text{logrismin} = 5.12(100)^{0.1469}(15)^{-0.528}}{|\text{logrismin} = 2.41^{10}/\text{Mc}}$$

At Point B:

$$Q_{B_{10}} = (0.9)(1.72 \text{ in}/\text{m})(1.47\text{Ac})(0.85) = 1.93 \text{ cf}$$

 $Q_{B_{10}} = (0.9)(2.41 \text{ in}/\text{m})(1.47\text{Ac})(0.85) = 2.71 \text{ cf}$

C S W | S T 2

45 Leveroni Court, Novato, CA 94949 Tel 415.883.9850 Fax 415.883.9835 CSW/Stuber-Stroeh Engineering Group, Inc. 1310 Redwood Way, Suite 220, Petaluma, CA 94954 Tel 707.795.4764 www.cswst2.com

SHEET NO. 3/ 17 JOB NO. 5149800 JOB Corona Station Development BY KNP DATE 11/7/18 SUBJECT <u>Proliminary Hydrology</u> CHK'D _____ DATE_ CLIENT_____ Post - Project Conditions cont'd : Find Qio & Qioo for Arra O, cont'd: From Point B to Point C: path length = 205 LF path type = 24" pipe assume N=0.018 Slope = 28.30 - 24.37 = 0.0094 fr/fr 105 If pipe is flowing full, v= 5.04 ft/s (calculated using Hydraylow Express) $t_{tB-c} = 205 LF \left(\frac{1sec}{5.04 ft}\right) \left(\frac{1min}{40 sec}\right) = 0.7 min$ Te = to + ttB-c = 15 min + 0.7 min = 15.7 min T_c = 15.7 min = time of concentration at Point c Intensity. 10yr 15.7 min = 5.12 (10) 0.1469 (15.7) -0.528 = 1.68 in/h 100yr, 15.7min = 5,12 (100) 0.1469 (15.7) -0.523 = 2.35 in/he At Point C. QC10 = (0.9) (1.68 in/m) (2.44 Az) (0.85) = 3.4 cf Qc100 = (0.9) (2.35 in/hr) (2.44 Ac) (0.85) = 4.39 cfs Arca 1 Q10 = 3. 14c6 Point of Concentration C Qc,00 = 4.39 cfs Post-Project

C S W **ST2** 45 Leveroni Court, Novato, CA 94949 Tel 415.883.9850 Fax 415.883.9835 CSW/Stuber-Stroeh Engineering Group, Inc. 1310 Redwood Way, Suite 220, Petaluma, CA 94954 Tel 707.795.4764 www.cswst2.com JOB NO. <u>5149800</u> JOB <u>Corona Station Developmentary</u> KNP DATE 11/7/18 CLIENT______SUBJECT Production that SUBJECT Preliminary Hydrology CHKD ____ DATE__ Post-Project Conditions cont'd: Find Qio, & Qios for Area @ ! K = 0.85 (Platz No. B-4) SCWA FCDC D=CIAK From Point D to Point E: Sub-area = 1.65 Acres C = 0.90time of concentration = to = 15 mmites (areas 1/2 acreto 2 acres) Intensity (Plate B-Z SEWA FEDC) 110yr 15min = 1.72 m/hr 7 (see Area O) 1100yr 15min = 2.41 in/hr 5 A+ Point E ! QE1 = (0.9) (1.72 in/he) (1.65) (0.85) = 2.17 cf QE100 = (0.9) (2.41 in/m) (1.65) (0.85) = 3.04 cf

2

	SHEET NO. 5/17
NO. 5149800 JOB CONDUL Statio	n Development BY KNP DATE 11/18
	Hydrology CHK'D DATE
Post- Project Conditions cont	
Find Qio 2 Qioo for Arza (2)	
From Point E to Point F!	9
	path type = 18" pipe assume n= 201
	2 lope = 0.002 ft/ft
if pipe is flowing full,	v= 1.92 ft/s (calculated using Hydraftons Explass)
$t_{EEF} = 113 LF \left(\frac{1sec}{1.92 f_{f}}\right)$	÷
$J_F = t_0 + t_{t_F-F} = 15n$	in + 1.0min = 16.0 min
	in + 1. Onin = 16.0 min time of concentration at point F
Intensity	
/10gr 16min = 5.12 (10) 0.14	469 (16) -0.528 = 1.66 in/h
10gr 1(enon -):12 (10)	$(16) = 1.60 m_{\odot}$ $469 / 1-0.528 = 2.5 m_{\odot}$
100 yr, 16 min = 5.12 (100) 0.1.	469 (16) -0.528 = 2,33 in/m
At Point F ;	
QF10 = (0.9) (1.66 in/he	-)(2.53Az)(0.85) = 3.21cfs
QF100 = (0.9) (2.33 in/m)(2.53 Ac)(0.85) = 4.51cfs
Area Z	
Point of Concentration F	QFID = 3.21 cf < See Page 9 g
Post-Project	QF100 = 4.51 cb for wingation

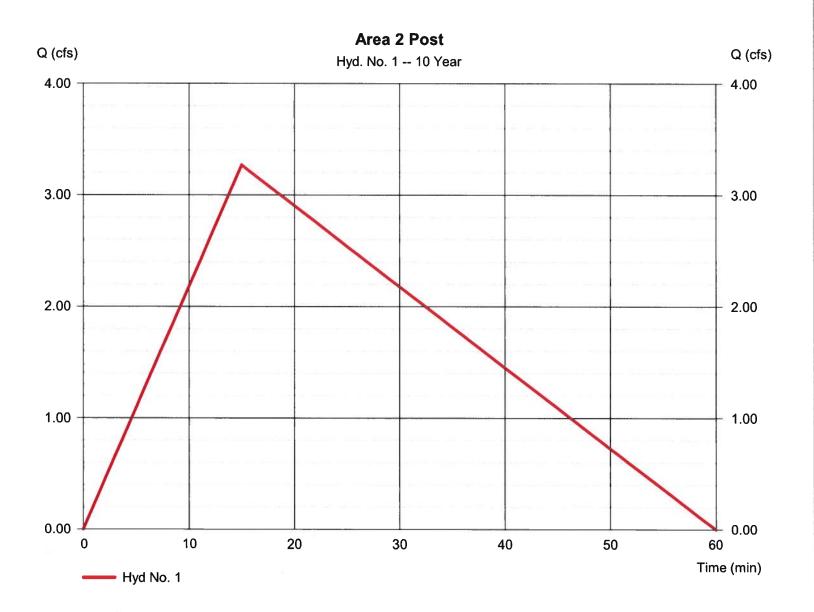
C S W ST 2 45 Leveroni Court, Novato, CA 94949 Tel 415.883.9850 Fax 415.883.9835 CSW/Stuber-Stroeh Engineering Group, Inc. 1310 Redwood Way, Suite 220, Petaluma, CA 94954 Tel 707.795.4764 www.cswst2.com SHEET NO. ______ 17 JOB NO. 5149800 JOB CONDUC Station Development BY KNP DATE 11/7/18 _SUBJECT <u>Preliminary Hydrology</u> CHK'D _____ DATE____ CLIENT_____ Post - Project Conditions contid! Find Q10 2 Rios for Area 3: K=0.85 (SENA FODC) Q=CIAK Area = 1.30 Ac C = 0.90to = 15 min (areas ± acre to 2 acres, SCWA FCDC) 110, 15 = 1.72 in/hr } see Area O calculations 1100, 15 = 2.41 in/hr } At Point of Concentration for Areas: Q10(3) = CIAK = (0.90) (1.72 in/hu) (1.30 Ac) (0.85) = 1.71 cfs Q100/3 = CIAK = (0A0) (2.41 in/hu) (1.30 Ac) (0.85) = 2.40 cb Arra 3 Q103 = 1.71 cf Q100 = 2.40 cf Post-Project

C S W **ST2** 45 Leveroni Court, Novato, CA 94949 Tel 415.883.9850 Fax 415.883.9835 CSW/Stuber-Stroeh Engineering Group, Inc. 1310 Redwood Way, Suite 220, Petaluma, CA 94954 Tel 707.795.4764 www.cswst2.com SHEET NO. 11/7/18 JOBNO. 5149800 JOB Carona Station Development BY KNP DATE SUBJECT Preliminary Hydrology CHKD ____ DATE____ CLIENT_____ Post-Project Conditions contid :. Find Qio & Qioo for Area ()! K=0.85 (SONA FODC) Q=CIAK Arca = 0.27 Ac C = 0.90to = 7 min (commercial & similar areas, SCWA FCDC) Intensity: /10, ymin = 5.12 (10) 0, 14 69 (7) - 0.528 = 2.57 in the 110, 7min = 5.12 (100) 0.1469 (7) -0.528 = 3.60 in/h At Point of Concentration for Area 4: Q10(1) = CIAK = (0.9) (2.57 in/hr) (0.27 Ac) (0.85) = 0.53 cfs Q100 (A) = CIAK = (0,9) (3,60 in/hu) (0.27 Az) (0.85) = 0.74 ch Q100 = 0.53 06 Arca 4 Post - Project Q100 (4) = 0.74 c6

CSW ST2 45 Leveroni Court, Novato, CA 94949 Tel 415.883.9850 Fax 415.883.9835 CSW/Stuber-Stroeh Engineering Group, Inc. 1310 Redwood Way, Suite 220, Petaluma, CA 94954 Tel 707.795.4764 www.cswst2.com

9/17 SHEET NO. 11/30/18 JOB NO. 5149 BOD JOB Corona Station Development BY KNP DATE SUBJECT Preliminary Hydrology CHKD CLIENT DATE Post-Project Conditions cont'd! For Arraz: Can post-project peak nooff, QF10 be mitigated to at or below pre-project conditions? O Create detention within proposed site storm drain within Area 2. • 24" diameter pipe at 0.5% slope · minimum 930 LF length (note Hydrographs program includes 3 barrels at 310 LF. each to model 930 LF of pipe) · orifices detaining noff have the following configuration (assumed for purposes of preliminary hydrology remander of 24' pipe Assumed that starting HGL is 1.5' above openner blocked to hold stormwater in si 5.6" diameter onfice at syskm. storm drain 1.27' above invert. system dowstream 29 diameter pipe. 0.5% of detention. 5" diameter orifice at most assumed length of p.pe used within Avea 2 for detention = 930 LF Area Z Detention Diagram NTS

IOB NO. <u>5149800</u> JOB <u>Corona Station Developmenter Kup</u> I CUENT <u>SUBJECT Preliminary Hydrology</u> CHKD <u>I</u> <u>Hydraflow Hydrographs Output</u> <u>Detention model for Arca 2</u>	_ DATE	10/1 11/32	2/18
Hydraflow Hydrographs Output	_ DATE		
Hydraflow Hydrographs Output			
Hydraflow Hydrographs Output Detention model for Area Z			
Hydraflow Hydrographs Output Detention model for Arca Z			
Hydraflow Hydrographs Output Detention model for Arca Z			
Hydreflow Hydrographo Output Detention model for Arca Z			
Hydraflow Hydrographs Output Detention model for Area Z			
Hydraflow Hydrographs Output Detention model for Arca Z			
Hydraflow Hydrographs Output Detention model for Area Z			
Hydraflow Hydrographo Output Detention model for Area Z			
Hydraflow Hydrographs Dutput Detention model for Area Z			
Hydraflow Hydrographs Output Detention model for Arca Z			
Detendron model for Area Z			
Detention model for Arca Z	-		
Detendron model gov Arch L			

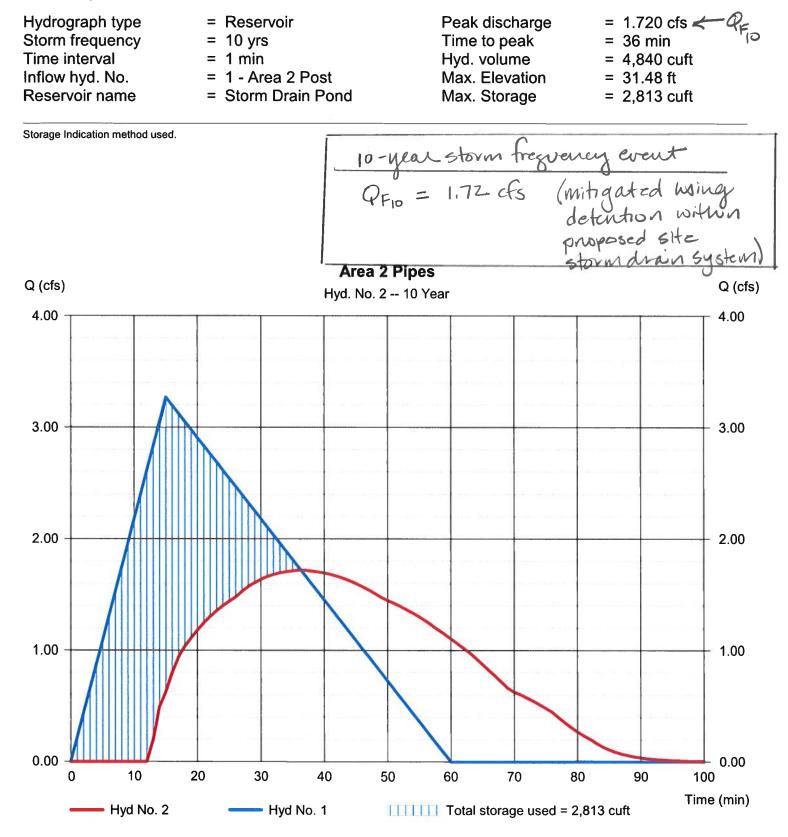

Hydrograph Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 1

Area 2 Post

Hydrograph type	= Rational	Peak discharge	= 3.269 cfs
Storm frequency	= 10 yrs	Time to peak	= 15 min
Time interval	= 1 min	Hyd. volume	= 5,884 cuft
Drainage area	= 2.530 ac	Runoff coeff.	= 0.9
Intensity	= 1.436 in/hr	Tc by User	= 15.00 min
IDF Curve	= Petaluma-Corona-hy	= 1/3	
Drainage area Intensity	= 2.530 ac = 1.436 in/hr	Runoff coeff.	= 0.9 = 15.00 min


Friday, 11 / 30 / 2018

Hydrograph Report

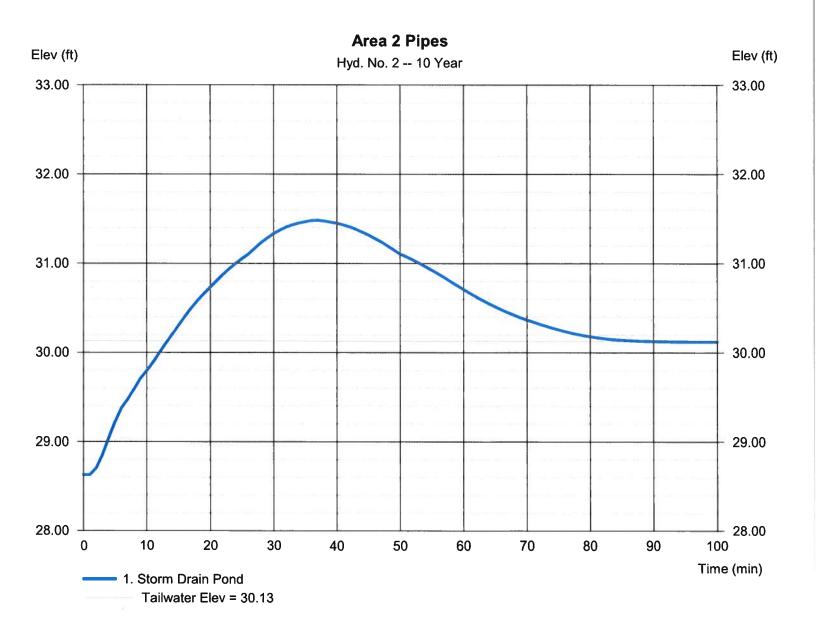
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 2

Area 2 Pipes

Friday, 11 / 30 / 2018

Hydrograph Report


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 2

Area 2 Pipes

Hydrograph type	= Reservoir	Peak discharge	= 1.720 cfs
Storm frequency	= 10 yrs	Time to peak	= 36 min
Time interval	= 1 min	Hyd. volume	= 4,840 cuft
Inflow hyd. No.	= 1 - Area 2 Post	Max. Elevation	= 31.48 ft
Reservoir name	= Storm Drain Pond	Max. Storage	= 2,813 cuft

Storage Indication method used.

Friday, 11 / 30 / 2018

Pond Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Pond No. 1 - Storm Drain Pond

Pond Data

UG Chambers -Invert elev. = 28.63 ft, Rise x Span = 2.00 x 2.00 ft, Barrel Len = 310.00 ft, No. Barrels = 3, Slope = 0.50%, Headers = Yes

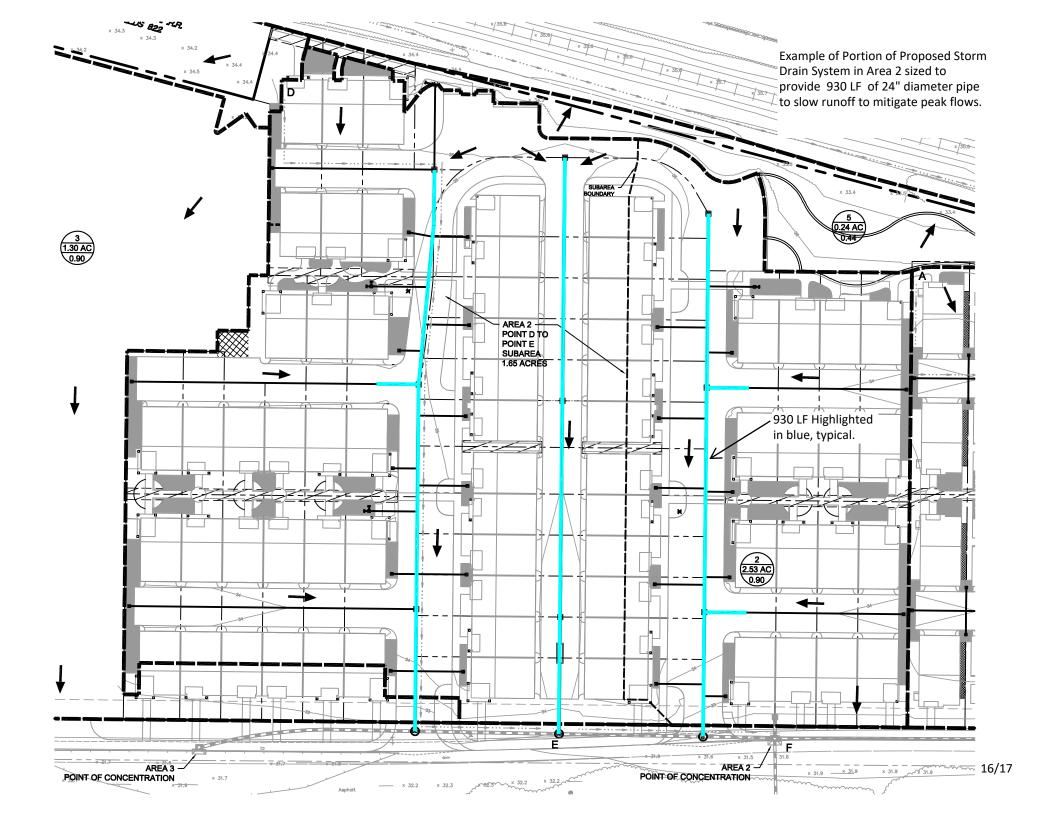
Stage / Storage Table

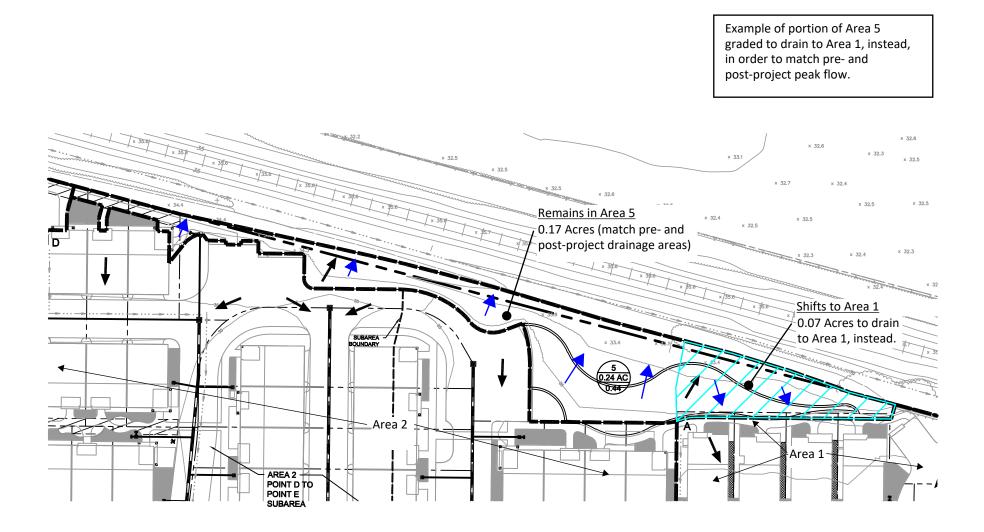
Stage (ft) Elevation (ft)		Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	28.63	n/a	0	0
0.35	28.98	n/a	61	61
0.71	29.34	n/a	102	163
1.06	29.69	n/a	289	452
1.42	30.05	n/a	480	932
1.77	30.40	n/a	554	1,487
2.13	30.76	n/a	554	2,041
2.48	31.11	n/a	480	2,521
2.84	31.47	n/a	289	2,810
3.19	31.82	n/a	101	2,911
3.55	32.18	n/a	61	2,973

Culvert / Orifice Structures

Weir Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 5.00	5.60	0.00	0.00	Crest Len (ft)	= 0.00	0.00	0.00	0.00
Span (in)	= 5.00	5.60	0.00	0.00	Crest El. (ft)	= 0.00	0.00	0.00	0.00
No. Barrels	= 1	1	1	0	Weir Coeff.	= 3.33	3.33	3.33	3.33
Invert El. (ft)	= 28.63	29.90	0.00	0.00	Weir Type	=			
Length (ft)	= 5.00	5.00	0.00	0.00	Multi-Stage	= No	No	No	No
Slope (%)	= 2.00	2.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	/ Contour)		
Multi-Stage	= n/a	No	No	No	TW Elev. (ft)	= 30.13			

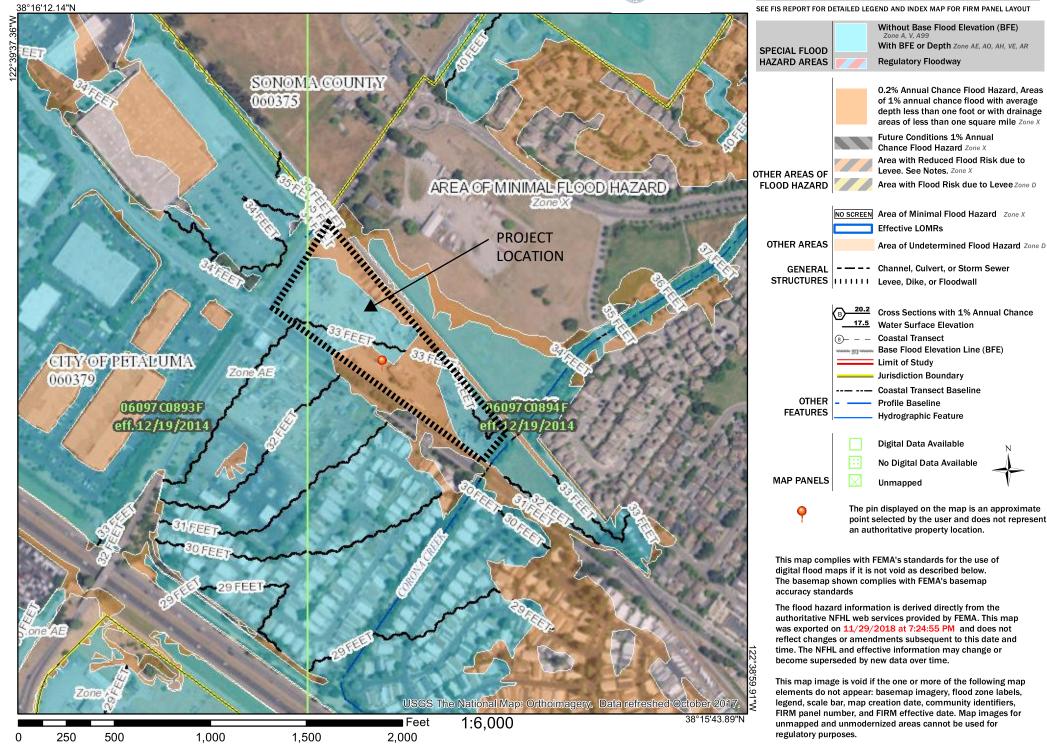

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s). Stage / Storage / Discharge Table

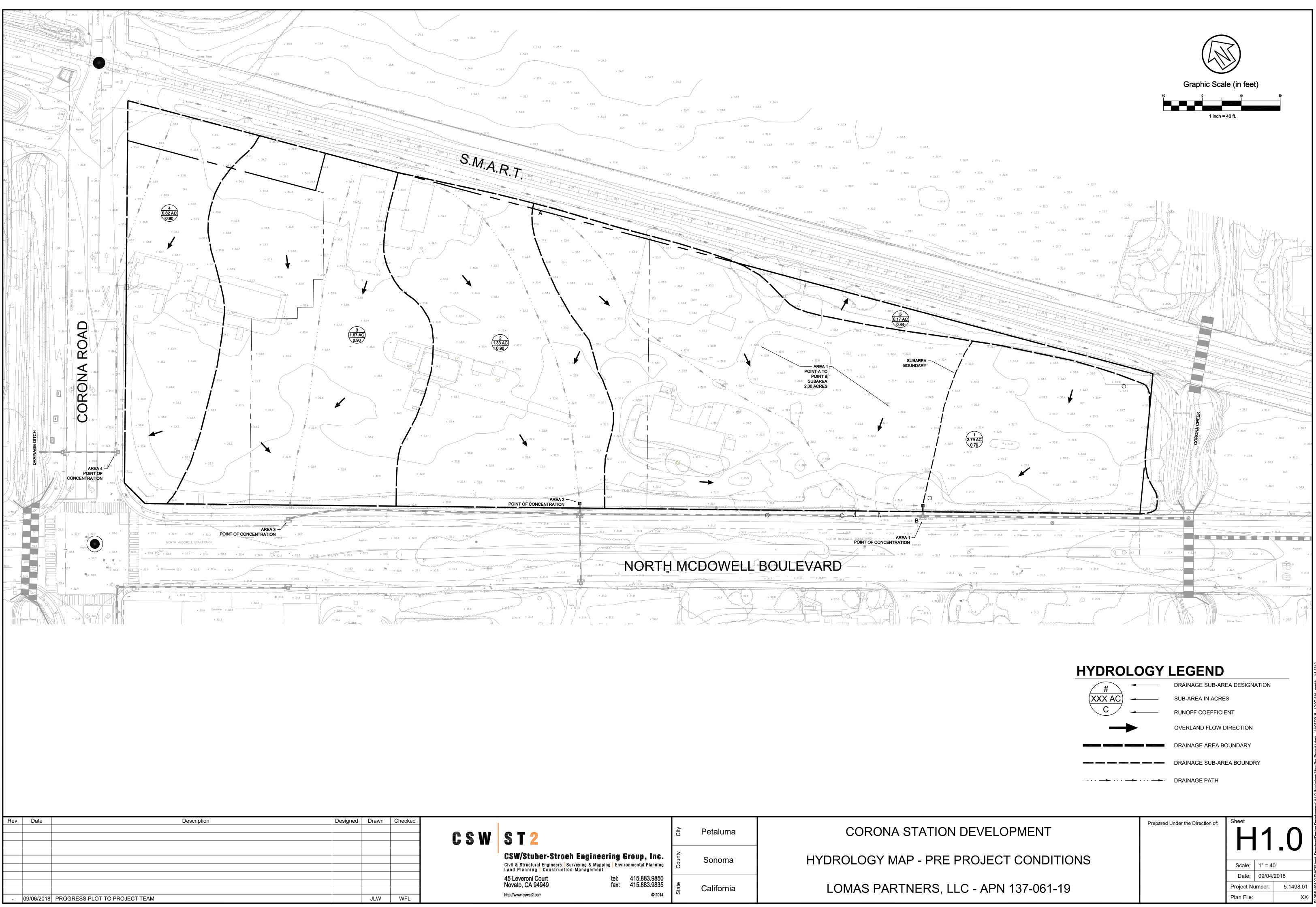

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	28.63	0.00	0.00									0.000
0.00	6	28.67	0.00	0.00					12020				
0.04	12	28.70	0.00	0.00									0.000
0.07	12	28.70	0.00	0.00									0.000
													0.000
0.14	25	28.77	0.00	0.00									0.000
0.18	31	28.81	0.00	0.00	2				10000				0.000
0.21	37	28.84	0.00	0.00									0.000
0.25	43	28.88	0.00	0.00						***			0.000
0.28	49	28.91	0.00	0.00			(111)))						0.000
0.32	55	28.95	0.00	0.00									0.000
0.35	61	28.98	0.00	0.00									0.000
0.39	72	29.02	0.00	0.00									0.000
0.43	82	29.06	0.00	0.00									0.000
0.46	92	29.09	0.00	0.00									0.000
0.50	102	29.13	0.00	0.00									0.000
0.53	112	29.16	0.00	0.00									0.000
0.57	122	29.20	0.00	0.00									0.000
0.60	133	29.23	0.00	0.00									0.000
0.64	143	29.27	0.00	0.00									0.000
0.67	153	29.30	0.00	0.00									0.000
0.71	163	29.34	0.00	0.00									0.000
0.75	192	29.38	0.00	0.00									0.000
0.78	221	29.41	0.00	0.00						***			0.000
0.82	250	29.45	0.00	0.00									0.000
0.85	279	29.48	0.00	0.00									0.000
0.89	307	29.52	0.00	0.00									0.000
0.92	336	29.55	0.00	0.00							***		0.000
0.96	365	29.59	0.00	0.00									0.000
0.99	394	29.62	0.00	0.00	***								0.000
1.03	423	29.66	0.00	0.00									0.000
1.06	452	29.69	0.00	0.00									0.000
1.10	500	29.73	0.00	0.00									0.000
	000	20.70	0.00	0.00							Continu	 es on nex	

Storm Drain Pond Stage / Storage / Discharge Table

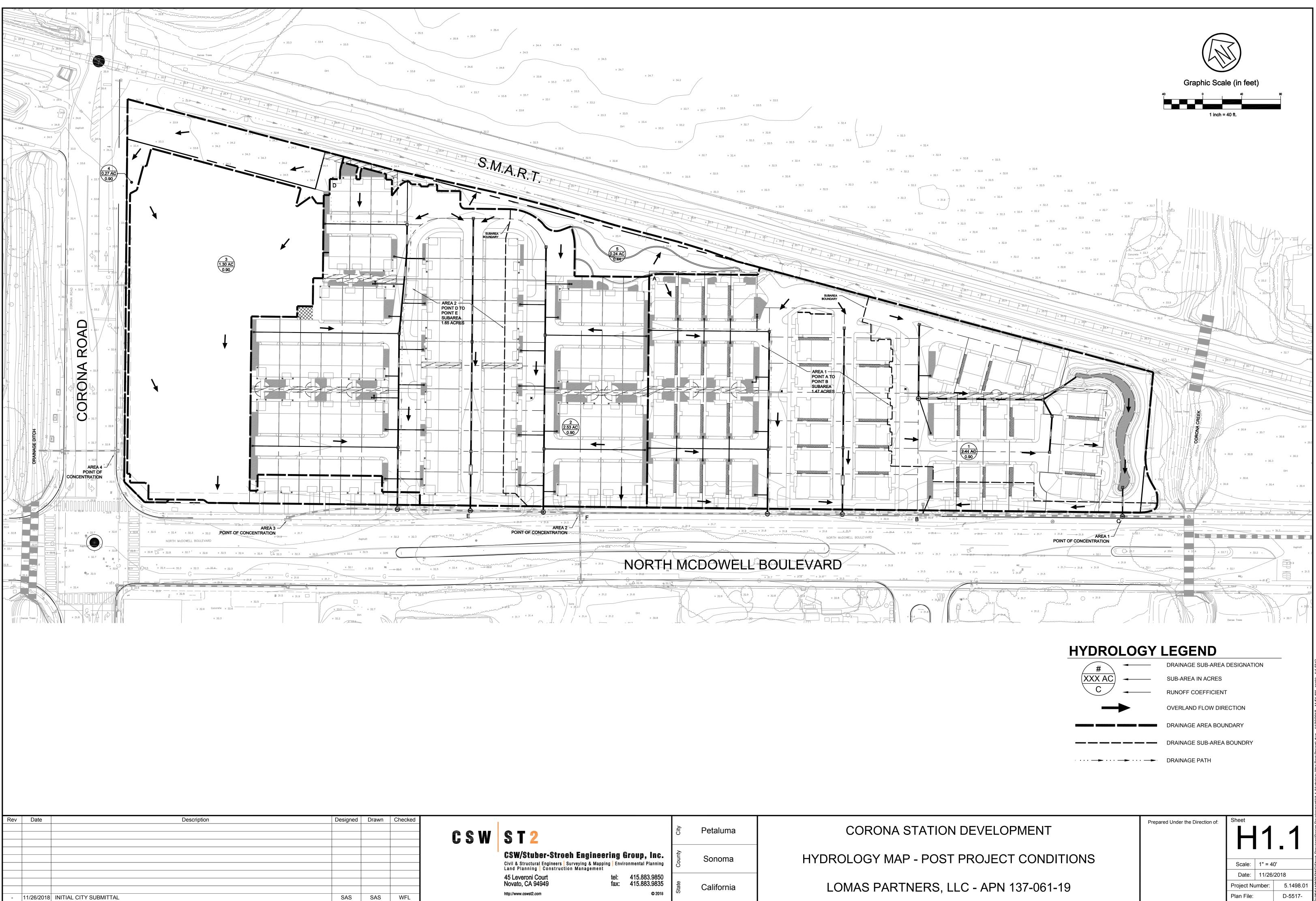
Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
1.14	548	29.77	0.00	0.00									0.000
1.17	596	29.80	0.00	0.00									0.000
1.21	644	29.84	0.00	0.00									0.000
1.24	692	29.87	0.00	0.00									0.000
1.28	740	29.91	0.00	0.00									0.000
1.31 1.35	788 836	29.94 29.98	0.00 0.00	0.00 0.00								***	0.000 0.000
1.35	884	30.01	0.00	0.00									0.000
1.42	932	30.05	0.00	0.00									0.000
1.46	988	30.09	0.00	0.00									0.000
1.49	1,043	30.12	0.00	0.00									0.000
1.53	1,099	30.16	0.11 ic	0.09 oc								m-m-m	0.198
1.56	1,154	30.19	0.16 ic	0.16 oc									0.328
1.60	1,209	30.23	0.20 ic	0.24 oc									0.442
1.63	1,265	30.26	0.24 ic	0.27 oc									0.507
1.67 1.70	1,320 1,376	30.30 30.33	0.27 ic 0.30 ic	0.29 oc 0.31 oc					***				0.561
1.74	1,431	30.33	0.30 ic 0.32 ic	0.31 0C									0.606 0.638
1.77	1,487	30.40	0.32 ic	0.32 oc									0.712
1.81	1,542	30.44	0.37 ic	0.41 oc									0.778
1.85	1,597	30.48	0.39 ic	0.45 oc									0.839
1.88	1,653	30.51	0.41 ic	0.49 oc									0.895
1.92	1,708	30.55	0.42 ic	0.52 oc									0.947
1.95	1,764	30.58	0.44 ic	0.55 ic									0.993
1.99	1,819	30.62	0.46 ic	0.57 ic									1.032
2.02	1,874	30.65	0.47 ic	0.59 ic									1.069
2.06 2.09	1,930 1,985	30.69 30.72	0.49 ic 0.51 ic	0.61 ic 0.63 ic						***			1.105
2.03	2,041	30.72	0.51 ic 0.52 ic	0.65 ic									1.139 1.173
2.17	2,089	30.80	0.54 ic	0.67 ic									1.206
2.20	2,137	30.83	0.55 ic	0.69 ic									1.237
2.24	2,185	30.87	0.56 ic	0.71 ic									1.268
2.27	2,233	30.90	0.58 ic	0.72 ic									1.299
2.31	2,281	30.94	0.59 ic	0.74 ic									1.328
2.34	2,329	30.97	0.60 ic	0.75 ic									1.357
2.38 2.41	2,377 2,425	31.01	0.62 ic 0.63 ic	0.77 ic 0.79 ic									1.386
2.41	2,425 2,473	31.04 31.08	0.63 ic 0.64 ic	0.79 ic 0.80 ic									1.413 1.441
2.48	2,521	31.11	0.65 ic	0.82 ic									1.441
2.52	2,550	31.15	0.66 ic	0.83 ic									1.494
2.56	2,579	31.19	0.67 ic	0.84 ic									1.519
2.59	2,608	31.22	0.69 ic	0.86 ic									1.545
2.63	2,636	31.26	0.70 ic	0.87 ic					***				1.570
2.66	2,665	31.29	0.71 ic	0.89 ic									1.594
2.70	2,694	31.33	0.72 ic	0.90 ic									1.619
2.73 2.77	2,723 2,752	31.36 31.40	0.73 ic 0.74 ic	0.91 ic 0.93 ic									1.642 1.666
2.80	2,781	31.43	0.74 ic 0.75 ic	0.93 ic 0.94 ic									1.689
2.84	2,810	31.47	0.76 ic	0.95 ic									1.712
2.88	2,820	31.51	0.77 ic	0.96 ic									1.735
2.91	2,830	31.54	0.78 ic	0.98 ic									1.757
2.95	2,840	31.58	0.79 ic	0.99 ic									1. 779
2.98	2,850	31.61	0.80 ic	1.00 ic									1.800
3.02	2,860	31.65	0.81 ic	1.01 ic									1.822
3.05	2,871	31.68	0.82 ic	1.03 ic									1.843
3.09 3.12	2,881 2,891	31.72 31.75	0.83 ic 0.84 ic	1.04 ic 1.05 ic									1.864
3.16	2,901	31.79	0.85 ic	1.06 ic									1.885 1.905
3.19	2,911	31.82	0.85 ic	1.07 ic									1.926
3.23	2,917	31.86	0.86 ic	1.08 ic			1	1 <u>-11</u>					1.946
3.27	2,923	31.90	0.87 ic	1.09 ic		() 							1.966
3.30	2,930	31.93	0.88 ic	1.10 ic							3 <u></u>		1.985
3.34	2,936	31.97	0.89 ic	1.12 ic						Sateria	3,000	200000	2.005
3.37	2,942	32.00	0.90 ic	1.13 ic									2.024
3.41	2,948	32.04	0.91 ic	1.14 ic						8 <u></u>			2.043
3.44 3.48	2,954 2,960	32.07 32.11	0.92 ic 0.92 ic	1.15 ic 1.16 ic			9- 		En la castal En la castal	0. 000	C. F. B.C.	0 000	2.062
3.40	2,960	32.11	0.92 ic 0.93 ic	1.16 IC 1.17 ic									2.081 2.100
3.55	2,973	32.14	0.94 ic	1.18 ic									2.100
	_,-··•												2.1.0

...End




8.0 EXHIBITS

National Flood Hazard Layer FIRMette



Legend

C S W	S T 2		City	Petaluma	CORONA S
	CSW/Stuber-Stroch Engineering Group, In Civil & Structural Engineers Surveying & Mapping Environmental Planni Land Planning Construction Management		County	Sonoma	HYDROLOGY MA
	45 Leveroni Court tel: 415.883.98 Novato, CA 94949 fax: 415.883.98 http://www.cswst2.com © 24	35	State	California	LOMAS PART

C S W	S T 2	City	Petaluma	CORONA S
	CSW/Stuber-Stroch Engineering Group, Inc. Civil & Structural Engineers Surveying & Mapping Environmental Planning Land Planning Construction Management		Sonoma	HYDROLOGY MAF
	45 Leveroni Court tel: 415.883.9850 Novato, CA 94949 fax: 415.883.9835 http://www.cswst2.com © 2018	State	California	LOMAS PART