

RSLogix 500 Project Report


```
Processor Type: 1747-L532C/D 5/03 CPU - 16K Mem. OS302
```

Processor Name: PLC_2605
Total Memory Used: 1527 Instruction Words Used - 432 Data Table Words Used
Total Memory Left: 10761 Instruction Words Left
Program Files: 6
Data Files: 13
Program ID: 352d

1747-L532C/D	5/03 CPU - 16K Mem. OS302
1746-HSCE2	High Speed Counter - Class 4
1746-NI4	Analog 4 Channel Input Module
1746-NO4I	Analog 4 Ch . Current Output
1746-NO4V	Analog 4 Ch . Voltage Output
1746-IA16	16-Input 100/120 VAC
1746-IA16	16-Input 100/120 VAC
1746-IA16	16-Input 100/120 VAC
1746-OA16	16-Output (TRIAC) 100/240 VAC
1746-OA16	16-Output (TRIAC) 100/240 VAC
1746-OA16	16-Output (TRIAC) 100/240 VAC

```
GENERAL
    Channel 1 Write Protected: No
    Channel 1 Edit Resource/Owner Timeout(x1 sec): 60
    Channel 1 Passthru Link ID(dec): 2
    Channel 0 Write Protected: No
    Channel 0 Edit Resource/Owner Timeout(x1 sec): 60
    Channel 0 Passthru Link ID(dec): 1
    Channel 0 Current Mode: System
    Channel 0 Mode Change Enabled: No
    Channel 0 Mode Change Attention Character: \1b
    Channel 0 Mode Change System Character: S
    Channel O Mode Change User Character: U
CHANNEL 1 (SYSTEM) - Driver: DH485
    Node : 1 (decimal)
    Baud: 19200
    Token Hold Factor: 1
    Max Node Address: }3
CHANNEL 0 (SYSTEM) - Driver: DF1 Half Duplex Master
    Node : 1 (decimal)
    Baud: 19200
    Parity: NONE
    Stop Bits: 1
    Control Line : No Handshaking
    Error Detection: CRC
    Polling Mode: Msg, Allow Slaves to Initiate
    Duplicate Packet Detect: Yes
    Reply Message Timeout(x20 ms): 1
    ACK Timeout(x20 ms): 50
    Message Retries: 3
    Pre Transmit Delay(x1 ms): 0
```

CHANNEL 0 (USER) - Driver: Shutdown

Name	Number	Type	Rungs	Debug	Bytes
[SYSTEM]	0	SYS	0	No	0
	1	SYS	0	No	0
	2	LADDER	55	No	4467
	3	LADDER	88	No	3164
	4	LADDER	13	No	363
	5	LADDER	6	No	238

```
Data File List
```

Name	Number	Type	Scope	Debug	Words	Elements	Last
OUTPUT	0	O	Global	No	57	19	O:18
INPUT	1	I	Global	No	90	30	I:29
STATUS	2	S	Global	No	0	83	S:82
BINARY	3	B	Global	No	3	3	B3:2
TIMER	4	T	Global	No	51	17	T4:16
COUNTER	5	C	Global	No	6	2	C5:1
CONTROL	6	R	Global	No	3	1	R6:0
INTEGER	7	N	Global	No	33	33	N7:32
FLOAT	8	F	Global	No	42	21	F8:20
	9	N	Global	No	15	15	N9:14
	10	N	Global	No	67	67	N10:66
	11	N	Global	No	15	15	N11:14
	12	N	Global	No	50	50	N12:49

I:6

3
2
$1746-\mathrm{IA} 16$


```
LAD 2 - --- Total Rungs in File = 55
```



```
LAD 2 - --- Total Rungs in File = 55
```


LAD 2 - --- Total Rungs in File $=55$

Traffic Gate North West End Oncoming Lower (Remote Side) N7:0

Traffic Gate North West End Oncoming Raise (Remote Side) N7:0
LAD 2 - --- Total Rungs in File $=55$

LAD 2 - --- Total Rungs in File $=55$

North East Drive Run Reverse O:10

7
1746-OA16

$\underset{\text { Timer On Delay }}{ }$	
Timer	T4:1
Time Base	1.0
Preset	$5<$
Accum	$0<$


```
LAD 2 - --- Total Rungs in File = 55
```


>=95\% Open Status
Bit

LAD 2 - --- Total Rungs in File $=55$

0044	E-Stop	Span Controller Raise Switch	South East Drive Enable		Thruster Brake Release	Spare?
	I:6	I:6	O:10	B3:1	I:8	I:7
	$\begin{gathered} \neq \\ 0 \\ \text { 1746-IA16 } \end{gathered}$	$\begin{gathered} \mid \\ 12 \\ \text { 1746-IA16 } \end{gathered}$	$\begin{gathered} \mid \\ 8 \\ 1746-\mathrm{OA} 16 \end{gathered}$	${ }_{9}{ }_{9}$	$\begin{gathered} \mid \\ 15 \\ \text { 1746-IA16 } \end{gathered}$	$\underset{\substack{10 \\ \text { 1746-IA16 }}}{\vdash_{10}}$

$>=75 \%$ Open Status Bit		
B3:0	$\begin{aligned} & \text { Multiply } \\ & \text { Source A } \end{aligned}$	
		N7:10
9		$0<$
	Source B	1
		$1<$
	Dest	N7:12
		0<

Nearly Seated Status
Bit
B3:0
7

-MUL

MUL	
Multiply	
Source A	N7:14
	$-231<$
Source B	-1.0
	$-1.0<$
Dest	N7:11
	$0<$

Rotary Cam Fully
Seated
I:8

Fully Seated Status
Bit

Fully Seated Status Bit

B3:0

Fully Seated Status

Bit

-MUL

Multiply	
Source A	N7:15
	$92<$
Source B	-1
	$-1<$
Dest	$\mathrm{N} 7: 12$
	$0<$

$0<$

Fully Seated Status
Bit

N7:12
$0<$

Alignment Light
Off/On Switch
I:7
1
8
1746-IA16

0053

0054

Alignment Lighting Control On Command 0:9

1746-OA16

Alignment Light On (Remote Side)

8
Lubrication Pump North On Command 0:9

(2)

MUL	
Multiply	
Source A	F8:3
	$0.0<$
Source B	0.0585937
	$0.0585937<$
Dest	F8:5
	$0.0<$

End Lock Engaged
(Remote Side)
B3:1
B3:1

OSR

NEQ	
Not Equal	
Source A	F8:10
	$869172.0<$
Source B	0.0
	$0.0<$

CPT	
$\left.\begin{array}{lr}\text { Compute } \\ \text { Dest } & \mathrm{N} 7: 23 \\ & 0< \\ \text { Expression } & (\mathrm{F} 8: 7 \mid \mathrm{F} 8: 10) * 1000.0\end{array}\right]$	

Bridge Position Panel Meter

SCP	
Scale w/Parameters	
Input	$\mathrm{N} 7: 24$
	$0<$
Input Min.	0
	$0<$
Input Max.	900
	$900<$
Scaled Min.	6270
	$6270<$
Scaled Max.	31208
	$31208<$
Output	$0: 4.0$
	$6270<$

0032

MUL	
Multiply	
Source A	N9:4
	$650<$
Source B	27.7661
	$27.7661<$
Dest	$\mathrm{N} 7: 16$
	$18048<$

-MUL

MUL	
Multiply	
Source A	N9:4
	$650<$
Source B	-27.7661
	$-27.7661<$
Dest	N7:17
	$-18048<$

0054

$>=25 \%$ Open Status

Bit

SUB	
Subtract	
Source A	F8:12
	$651879.0<$
Source B	F8:9
	$25600.0<$
Dest	F8:17
	$626279.0<$

Read/Write Message		(EN)
Type Pe	Peer-To-Peer	
Read/Write	Write	(DN)
Target Device	500 CPU	
Local/Remote	Local	(ER)-
Control Block	N10:0	
Control Block Length	14	
Setup Screen	<e	

LAD 4 - --- Total Rungs in File = 13

| | | | | | | | | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Offset | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |

Offset
$\begin{array}{lllllll}15 & 14 & 13 & 12 & 11 & 10 & 9\end{array}$

0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	0	0	1	1	0	0	1	1	0	1
0	0	0	0	1	1	0	0	1	1	0	0	1	1	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
1	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	1	1	0	1	0	0	0	1	0	0

Main

```
First Pass S:1/15 = No
```

Index Register $S: 24=0$
Free Running Clock S:4 = 1111-1000-0110-0001
Index Across Data Files $S: 2 / 3=$ No
CIF Addressing Mode $S: 2 / 8=0$
Online Edits S:33/11 - S:33/12 = No online edits exist
Proc
OS Catalog Number $S: 57=302$
OS Series $\mathrm{S}: 58=\mathrm{B}$
OS FRS S:59 = 14
Processor Catalog Number $S: 60=532$
Processor Series S:61 = D
Processor FRN S:62=4

Scan Times

```
Maximum (x10 ms) S:22 = 3
```

Average $(x 10 \mathrm{~ms}) \mathrm{S}: 23=1$
Current (x10 ms) $\mathrm{S}: 3$ (low byte) $=1$
Watchdog (x10 ms) S:3 (high byte) $=160$
Last 1 ms Scan Time $\mathrm{S}: 35=9$
Scan Toggle Bit $S: 33 / 9=0$
Time Base Selection $S: 33 / 13=0$
Math
Math Overflow Selected $S: 2 / 14=0$
Math Overflow selected
Overflow Trap $S: 5 / 0=0$
Carry $S: 0 / 0=0$
Overflow $S: 0 / 1=0$
Zero Bit $S: 0 / 2=0$
Sign Bit $S: 0 / 3=0$
IO
I/O Interrupt Executing $S: 32=0$
I/O Slot Enables: S:11 _S:12

0	10	20
11111111	11111111	11111111

I/O Slot Interrupt Enables: S:27 _S:28
$\begin{array}{lcc}0 & 10 & 20 \\ 11111111 & 11111111 & 11111111\end{array}$
I/O Slot Interrupt Pending: S:25 _S:26

0	10	20	30
00000000	00000000	00000000	00000000

Chan 0

Processor Mode S:1/0- S:1/4 = Remote Run
Channel Mode $S: 33 / 3=1$
Comms Active S:33/4=0
Incoming Cmd Pending $S: 33 / 0=0$
Msg Reply Pending $S: 33 / 1=0$
Interrrupt Latency Control $S: 33 / 8=0$
Event Interrupt 10 uS Time Stamp $S: 44=0$

Math Register (lo word) $\mathrm{S}: 13=-462$
Math Register (high word) $\mathrm{S}: 14-\mathrm{S}: 13=-1$ Math Register (32 Bit) $S: 14-S: 13=-462$
30
11111111
30
11111111
00000000
DTR Control Bit $S: 33 / 14=0$
DTR Force Bit $S: 33 / 15=0$
Outgoing Msg Cmd Pending $\mathrm{S}: 33 / 2=0$
Comms Servicing Sel S:33/5 = 0
Msg Servicing Sel S:33/6=0
Modem Lost $S: 5 / 14=1$

Ch 0 Nodes

DF1 Half-Duplex Master Channel 0 Active Node Table (S:67-S:82):

Node	0	16
0	$0000-0000-0000-0000$	$0000-0000-0000-0000$
32	$0000-0000-0000-0000$	$0000-0000-0000-0000$
64	$0000-0000-0000-0000$	$0000-0000-0000-0000$
96	$0000-0000-0000-0000$	$0000-0000-0000-0000$
128	$0000-0000-0000-0000$	$0000-0000-0000-0000$
160	$0000-0000-0000-0000$	$0000-0000-0000-0000$
192	$0000-0000-0000-0000$	$0000-0000-0000-0000$
224	$0000-0000-0000-0000$	$0000-0000-0000-0000$

Chan 1

Processor Mode $S: 1 / 0-\mathrm{S}: 1 / 4=$ Remote Run Node Address S:15 (low byte) = 1 Baud Rate S:15 (high byte) = 19200 Comms Active S:1/7 = 1
Incoming Cmd Pending $S: 2 / 5=0$
Msg Reply Pending $S: 2 / 6=0$
Active Nodes: S:9 _S:10

0	10	20	30
11000000	00000000	00000000	00000000

Debug

Suspend Code $S: 7=0$
Suspend File S:8 = 0

```
Compiled For Single Step S:2/4 = Yes
```

Fault/Powerdown
Fault/Powerdown (Rung \#) $S: 20=54$
(File \#) S:21 = 2
Errors
Fault Override At Power Up $S: 1 / 8=0$
Startup Protection Fault $S: 1 / 9=0$

```
Major Error Halt S:1/13=0
```

Overflow Trap S:5/0=0
Control Register Error $S: 5 / 2=0$
Major Error Executing User
Fault Rtn. $S: 5 / 3=0$
M0/M1 Referenced On Disabled
Slot $S: 5 / 4=0$
Battery Low $S: 5 / 11=0$
Fault/Powerdown (Rung \#) $S: 20=54$
(File \#) $S: 21=2$
STI
Setpoint (x10ms) $S: 30=0$
File Number $S: 31=0$
10 uS Time Stamp $S: 43=0$
Pending Bit $S: 2 / 0=0$
Enable Bit $S: 2 / 1=1$
DII
Preset $S: 50=0$
Accumulator $S: 52=0$
Pending Bit $S: 2 / 11=0$
Enable Bit $S: 2 / 12=1$
Executing Bit $S: 2 / 13=0$
Reconfiguration Bit $S: 33 / 10=0$
Overflow Bit $S: 5 / 12=0$
Lost $S: 36 / 8=0$
10 uS Time Stamp $S: 45=0$

Outgoing Msg Cmd Pending $S: 2 / 7=0$
Comms Servicing Sel $\mathrm{S}: 2 / 15=1$
Msg Servicing Sel S:33/7 = 0

30
00000000

Test Single Step Breakpoint
Rung \# $S: 18=0$
File \# S:19 = 0
Test Single Step
Rung \# $S: 16=0$
File \# S:17 = 2

ASCII String Manipulation error $S: 5 / 15=0$
Fault Routine S:29 = 0
Major Error $S: 6=0 h$
Error Description:

```
Resolution Select Bit \(S: 2 / 10=0\)
Executing Bit \(S: 2 / 2=0\)
Overflow Bit \(S: 5 / 10=0\)
Lost \(S: 36 / 9=0\)
Interrrupt Latency Control \(5: 33 / 8=0\)
File Number S:46=0
Slot Number \(S: 47=0\)
Bit Mask \(\mathrm{S}: 48=0 \mathrm{~h}\)
Compare Value \(\mathrm{S}: 49=0 \mathrm{~h}\)
Return Mask \(\mathrm{S}: 51=0 \mathrm{~h}\)
Last Scan Time ( x 1 ms ) \(\mathrm{S}: 55=0\)
Max Observed Scan Time (x1 ms) S:56=0
Interrrupt Latency Control \(S: 33 / 8=0\)
```


Protection

Deny Future Access S:1/14 = No

Mem Module

Memory Module Loaded On Boot S:5/8 = 0
Password Mismatch S:5/9 = 0
Load Memory Module On Memory Error S:1/10 = 0
Load Memory Module Always S:1/11 = 0
Load Memory Module and RUN S:1/12 = 0
Program Compare S:2/9=0
Data File Overwrite Protection Lost S:36/10 $=0$

Forces

Forces Enabled S:1/5 = No
Forces Installed S:1/6 = No


```
B3:0
B3:1
B3:2
0
```

Offset	EN	TT	DN		BASE	PRE	ACC	(Symbol)	Description
T4:0	1	1	0	1.0	sec	50	0		
T4:1	0	0	0	1.0	sec	5	0		
T4:2	0	0	0	1.0	sec	5	0		
T4:3	0	0	0	. 01	sec	50	0		
T4:4	0	0	0	. 01	sec	100	0		
T4:5	0	0	0	. 01	sec	200	0		
T4: 6	0	0	0	. 01	sec	10000	0		
T4:7	0	0	0	. 01	sec	200	0		
T4:8	1	0	1	. 01	sec	50	50		
T4:9	0	0	0	. 01	sec	100	100		
T4:10	1	0	1	. 01	sec	50	50		
T4:11	1	1	0	. 01	sec	150	52		
T4:12	1	0	1	. 01	sec	50	50		
T4:13	1	1	0	. 01	sec	50	42		
T4:14	0	0	0	. 01	sec	200	0		
T4:15	0	0	0	. 01	sec	200	0		
T $4: 16$	0	0	0	. 01	sec	100	100		

Offset	CU CD	DN	OV UN UA	PRE	ACC	(Symbol)	Description			
C5:0	0	0	0	0	0	0	50	3		
C5:1	0	0	0	0	0	0	50	0		

```
Offset EN EU DN EM ER UL IN FD LEN POS (Symbol) Description
R6:0 0
```

PLC_2605

```
Data File N7 (dec) -- INTEGER
```

Offset	0	1	2	3	4	5	6	7	8	9
N $7: 0$		-480	43	0	0	2650	0	16520	-16520	1037
N $7: 10$	0	0	0	231	-231	92	18048	-18048	1044	-23146
N7:20	462	-462	0	0	0	0	0	0	0	0
N $7: 30$	0	333	0							

Offset	0	1	2	3	4
				0	0
$F 8: 0$	-2	0	0	-1	-1
$F 8: 5$	069172	825713.4	651879	217293	43458.6
F8:15	191693	242893	626279	677479	0

Offset	0	1	2	3	4	5	6	7	8	9
N9:0	14000	17500	3000	-2000	650	150	60	300	25	45
N9:10	700	0	0	740	740					4

Offset	0	1	2	3	4	5	6	7	8	9
N10:0	-31744	9	1	7	137	0	0	164	10	146
N10:10	0	2	256	0	-16384	9	2	7	137	1
N10:20	0	228	10	146	1	4	2304	0	0	0
N10:30	0	0	0	0	0	0	0	0	0	0
N10:40	0	0	0	0	0	0	0	0	0	0
N10 $: 50$	-30708	16384	0	0	0	0	0	0	0	4
N10:60	0	0	0	0	0	0	0			

PLC_2605

Offset	0	1	2	3	4	5	6	7	8	9
N11:0	20	20	2	0	0	0	0	0	0	0
N11: 10	0	0	0	0	0					

PLC_2605

Data File N12 (dec)

Offset	0	1	2	3	4	5	6	7	8	9
		1	769	8	0	0	0	0	0	0
N12:0	170	25	0	25	0	0	0	0	0	0
N12:10	770	0	0	0	0	0	0	0	0	0
N12:20	128	-32767	-32767	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
N12: 40	0	0							0	0

Address (Symbol) $=$ Value [Description]

Fully Seated Status Bit
Nearly Seated Status Bit
$>=25 \%$ Open Status Bit
$>=75 \%$ Open Status Bit
$>=95 \%$ Open Status Bit
>=100\% Open Status Bit
Span Speed Control Command
Drive Motor West Current
Drive Motor East Current
E-Stop
Control Power
Warning Signal Switch
East End Oncoming Raise Switch
East End Oncoming Lower Switch
West End Oncoming Raise Switch
West End Oncoming Lower Switch
West End Offgoing Raise Switch
West End Offgoing Lower Switch
End Locks Engage Switch
End Locks Retract Switch
Dead Man Switch
Span Controller Raise Switch
Span Controller Lower Switch
East End Offgoing Raise Switch
East End Offgoing Lower Switch
Traffic Signal Bypass Switch
All Gates Down Bypass Switch
All Gates Up Bypass Switch
End Locks Retract Bypass Switch
End Locks Engage Bypass Switch
Span Fully Seated Bypass Switch
Allow High Speeds Bypass Switch
Lamp Test Switch
Alignment Light Off/On Switch
Lubrication Pumps On/Off Switch
Spare?
Traffic Gate North East Oncoming Raised
Traffic Gate North East Oncoming Lowered
Traffic Gate South East Offgoing Raised
Traffic Gate South East Offgoing Lowered
Traffic Signal - Stop East End Feedback
Drive Motor North East Running
Drive Motor North East Fail
Drive Motor North East Remote
Drive Motor North East Fault Reset
Drive Motor South East Running
Drive Motor South East Fail
Drive Motor South East Remote
Drive Motor South East Fault Reset
Rotary Cam Fully Seated
Rotary Cam Nearly Seated
Rotary Cam >= 25\% Open
Rotary Cam >= 75\% Open
Rotary Cam >= 95\% Open
Rotary Cam >= 100\% Open
Proximity Switch Bridge Fully Seated
Thruster Brake Release
Traffic Gate North West End Oncoming Raise (Remote Side)
Traffic Gate North West End Oncoming Lower (Remote Side)
Traffic Gate South West End Offgoing Raise (Remote Side)
Traffic Gate South West End Offgoing Lower (Remote Side)
West Side Traffic Signal Red On (Remote Side)
End Lock Engage (Remote Side)
End Lock Retract (Remote Side)
Alignment Light On (Remote Side)
Traffic Signal Status (Remote Side)
Traffic Gate Status Northwest Raised (Remote Side)
Traffic Gate Status North West Lowered (Remote Side)
Traffic Gate Status South West Raised (Remote Side)
Traffic Gate Status South West Lowered (Remote Side)
End Lock Engaged (Remote Side)
End Lock Retracted (Remote Side)
Bridge Position Panel Meter
North-East Motor Current Panel Meter
South-East Motor Current Panel Meter
West Drive Motor Speed Reference
East Drive Motor Speed Reference
North-East Motor RPM
South-East Motor RPM
Traffic Gate North East Oncoming Raise
Traffic Gate North East Oncoming Lower
Traffic Gate South East Offgoing Raise
Traffic Gate South East Offgoing Lower
Traffic Signal Stop Command

Address	Symbol Scope	Description	Sym Group	Dev. Code	ABV
$0: 9 / 5$		Alignment Lighting Control On Command			
$0: 9 / 6$		Lubrication Pump North On Command			
$0: 9 / 7$		Lubrication Pump South On Command			
$0: 10 / 2$		Parking Brake North East Release Command			
$0: 10 / 3$		Spare?			
$0: 10 / 4$		Siren On Command			
$0: 10 / 5$		North East Drive Run Enable			
$0: 10 / 6$		North East Drive Run Forward			
$0: 10 / 7$		North East Drive Run Reverse			
$0: 10 / 8$		South East Drive Enable			
$0: 10 / 9$		South East Drive Normal			
$0: 10 / 13$		Warning Bell/Light and Flasher			
$0: 10 / 14$		Navigation Light - Green Control Command			
$0: 10 / 15$		Navigation Light - Red Control Command			
$0: 11 / 0$		Revolution Counter Error Light			
$0: 11 / 1$		East End Gate Oncoming Lowered Light			
$0: 11 / 2$		East End Gate Offgoing Lowered Light			
$0: 11 / 3$		West End Gate Oncoming Lowered Light			
$0: 11 / 4$		West End Gate Offgoing Lowered Light			
$0: 11 / 5$		Fully Seated Light			
$0: 11 / 6$		Not Seated Light			
$0: 11 / 7$		End Locks Engaged Light			
$0: 11 / 8$		End Locks Retracted Light			
$0: 11 / 9$		Open >= 25\% Light			
$0: 11 / 10$		Open >=75\% Light			
$0: 11 / 11$		Open 100\% Light			
$0: 11 / 12$		Radio Comm Fail Light			
S: 0		Arithmetic Flags			
S:0/0		Processor Arithmetic Carry Flag			
S:0/1		Processor Arithmetic Underflow/ Overflow Flag			
S:0/2		Processor Arithmetic Zero Flag			
S:0/3		Processor Arithmetic Sign Flag			
$S: 1$		Processor Mode Status/ Control			
$S: 1 / 0$		Processor Mode Bit 0			
S:1/1		Processor Mode Bit 1			
S: $1 / 2$		Processor Mode Bit 2			
S:1/3		Processor Mode Bit 3			
S:1/4		Processor Mode Bit 4			
S:1/5		Forces Enabled			
S: $1 / 6$		Forces Present			
S:1/7		Comms Active			
S:1/8		Fault Override at Powerup			
S:1/9		Startup Protection Fault			
S:1/10		Load Memory Module on Memory Error			
S:1/11		Load Memory Module Always			
S: $1 / 12$		Load Memory Module and RUN			
S: $1 / 113$		Major Error Halted			
S:1/14		Access Denied			
S:1/15		First Pass			
S:2/0		STI Pending			
S:2/1		STI Enabled			
S:2/2		STI Executing			
S:2/3		Index Addressing File Range			
S:2/4		Saved with Debug Single Step			
S:2/5		DH-485 Incoming Command Pending			
S:2/6		DH-485 Message Reply Pending			
S:2/7		DH-485 Outgoing Message Command Pending			
S:2/15		Comms Servicing Selection			
S:3		Current Scan Time/ Watchdog Scan Time			
S: 4		Time Base			
S:5/0		Overflow Trap			
S:5/2		Control Register Error			
S:5/3		Major Err Detected Executing UserFault Routine			
S:5/4		M0-M1 Referenced on Disabled Slot			
S:5/8		Memory Module Boot			
S:5/9		Memory Module Password Mismatch			
S:5/10		STI Overflow			
S:5/11		Battery Low			
S: 6		Major Error Fault Code			
S: 7		Suspend Code			
S: 8		Suspend File			
S: 9		Active Nodes			
S:10		Active Nodes			
S:11		I/O Slot Enables			
S:12		I/O Slot Enables			
S:13		Math Register			
S:14		Math Register			
S:15		Node Address/ Baud Rate			
S:16		Debug Single Step Rung			
S:17		Debug Single Step File			
S:18		Debug Single Step Breakpoint Rung			
S:19		Debug Single Step Breakpoint File			
S:20		Debug Fault/ Powerdown Rung			
S:21		Debug Fault/ Powerdown File			

Address	Symbol Scope	Description	Sym Group	Dev. Code	ABV
S:22		Maximum Observed Scan Time			
S:23		Average Scan Time			
S:24		Index Register			
S:25		I/O Interrupt Pending			
S:26		I/O Interrupt Pending			
S:27		I/O Interrupt Enabled			
S:28		I/O Interrupt Enabled			
S:29		User Fault Routine File Number			
S:30		STI Setpoint			
S:31		STI File Number			
S:32		I/O Interrupt Executing			
S:33		Extended Proc Status Control Word			
S:33/0		Incoming Command Pending			
S:33/1		Message Reply Pending			
S:33/2		Outgoing Message Command Pending			
S:33/3		Selection Status User/DF1			
S:33/4		Communicat Active			
S:33/5		Communicat Servicing Selection			
S:33/6		Message Servicing Selection Channel 0			
S:33/7		Message Servicing Selection Channel 1			
S:33/8		Interrupt Latency Control Flag			
S:33/9		Scan Toggle Flag			
S:33/10		Discrete Input Interrupt Reconfigur Flag			
S:33/11		Online Edit Status			
S:33/12		Online Edit Status			
S:33/13		Scan Time Timebase Selection			
S:33/14		DTR Control Bit			
S:33/15		DTR Force Bit			
S:34		Pass-thru Disabled			
S:34/0		Pass-Thru Disabled Flag			
S:34/1		DH+ Active Node Table Enable Flag			
S:34/2		Floating Point Math Flag Disable, Fl			
S:35		Last 1 ms Scan Time			
S:36		Extended Minor Error Bits			
S:36/8		DII Lost			
S:36/9		STI Lost			
S:36/10		Memory Module Data File Overwrite Protection			
S:37		Clock Calendar Year			
S:38		Clock Calendar Month			
S:39		Clock Calendar Day			
S:40		Clock Calendar Hours			
S: 41		Clock Calendar Minutes			
S:42		Clock Calendar Seconds			
S:43		STI Interrupt Time			
S: 44		I/O Event Interrupt Time			
S:45		DII Interrupt Time			
S:46		Discrete Input Interrupt- File Number			
S:47		Discrete Input Interrupt- Slot Number			
S:48		Discrete Input Interrupt- Bit Mask			
S:49		Discrete Input Interrupt- Compare Value			
S:50		Processor Catalog Number			
S:51		Discrete Input Interrupt- Return Number			
S:52		Discrete Input Interrupt- Accumulat			
S:53		Reserved/ Clock Calendar Day of the Week			
S:55		Last DII Scan Time			
S:56		Maximum Observed DII Scan Time			
S:57		Operating System Catalog Number			
S:58		Operating System Series			
S:59		Operating System FRN			
S:61		Processor Series			
S: 62		Processor Revision			
S:63		User Program Type			
S: 64		User Program Functional Index			
S:65		User RAM Size			
S:66		Flash EEPROM Size			
S: 67		Channel 0 Active Nodes			
S:68		Channel 0 Active Nodes			
S:69		Channel 0 Active Nodes			
S: 70		Channel 0 Active Nodes			
S:71		Channel 0 Active Nodes			
S: 72		Channel 0 Active Nodes			
S: 73		Channel 0 Active Nodes			
S: 74		Channel 0 Active Nodes			
S: 75		Channel 0 Active Nodes			
S: 76		Channel 0 Active Nodes			
S: 77		Channel 0 Active Nodes			
S: 78		Channel 0 Active Nodes			
S: 79		Channel 0 Active Nodes			
S: 80		Channel 0 Active Nodes			
S: 81		Channel 0 Active Nodes			
S:82		Channel O Active Nodes			
S:83		DH+ Active Nodes			
S: 84		DH+ Active Nodes			
S: 85		DH+ Active Nodes			

Group_Name Description

RSLogix 500 Project Report


```
Processor Type: Bul.1761 MicroLogix 1000 DH-485/HDSlave
Processor Name: RTU
Total Memory Used: 246 Instruction Words Used - 410 Data Table Words Used
Total Memory Left: 695 Instruction Words Left
Program Files: 17
Data Files: 8
Program ID: 8931
```

```
DF1 Baud: 19200
DF1 Node : 9 (decimal)
DH485 Baud: 19200
DH485 Node : 1 (decimal)
Primary Protocol: DF1
DF1: DF1 Full Duplex
```

Name	Number	Type	Rungs	Debug	Bytes
[SYSTEM]	0	SYS	0	No	0
	1	SYS	0	No	0
MAIN_PROG	2	LADDER	14	No	278
USER_FAULT	3	LADDER	1	No	3
HSC_INT	4	LADDER	1	No	3
STI_INT	5	LADDER	1	No	3
	6	LADDER	1	No	3
	7	LADDER	1	No	3
	8	LADDER	1	No	3
	9	LADDER	1	No	3
	10	LADDER	1	No	3
	11	LADDER	1	No	3
	12	LADDER	1	No	3
	13	LADDER	1	No	3
	14	LADDER	1	No	3
	15	LADDER	1	No	3
	16	LADDER	1	Yes	3

PETALMA DRAWBRIDGE REMOTE SIDE.RSS

Data File List

Name	Number	Type	Scope	Debug	Words	Elements	Last
OUTPUT	0	O	Global	No	3	1	O:0
INPUT	1	I	Global	No	6	2	I:1
STATUS	2	S	Global	No	0	33	S:32
BINARY	3	B	Global	No	32	32	B3:31
TIMER	4	T	Global	No	120	40	T4:39
COUNTER	5	C	Global	No	96	32	C5:31
CONTROL	6	R	Global	No	48	16	R6:15
INTEGER	7	N	Global	No	105	105	N7:104

PETALMA DRAWBRIDGE REMOTE SIDE.RSS
LAD 2 - MAIN_PROG --- Total Rungs in File = 14

0011		
0012		MOV Move Source $\mathrm{I}: 0.0$ $75<$ Dest $\mathrm{N} 7: 1$ $75<$
0013		(END)

PETALMA DRAWBRIDGE REMOTE SIDE.RSS
LAD 3 - USER_FAULT -- Total Rungs in File $=1$

PETALMA DRAWBRIDGE REMOTE SIDE.RSS
LAD 4 - HSC_INT --- Total Rungs in File = 1

0000

PETALMA DRAWBRIDGE REMOTE SIDE.RSS
LAD 5 - STI_INT --- Total Rungs in File = 1

0000

PETALMA DRAWBRIDGE REMOTE SIDE.RSS

PETALMA DRAWBRIDGE REMOTE SIDE.RSS
LAD 7 - --- Total Rungs in File $=1$

0000

PETALMA DRAWBRIDGE REMOTE SIDE.RSS

PETALMA DRAWBRIDGE REMOTE SIDE.RSS

0000 | | |
| :--- | :--- | :--- | :--- |
| | |
| | |

PETALMA DRAWBRIDGE REMOTE SIDE.RSS

0000

PETALMA DRAWBRIDGE REMOTE SIDE.RSS
LAD 11 - --- Total Rungs in File $=1$

PETALMA DRAWBRIDGE REMOTE SIDE.RSS
LAD 12 - --- Total Rungs in File $=1$

0000

PETALMA DRAWBRIDGE REMOTE SIDE.RSS

0000

```
Offset lllllllllllllllllllllllll
O:0.0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 Bul.1761 MicroLogix 1000 DH-485/HDSlave
```

```
Offset 15 14 14 13 12 111 10 9
I:0.0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 Bul.1761 MicroLogix 1000 DH-485/HDSlave
```



```
    MicroLogix 1000 DH-485/HDSlave
```


Main

First Pass S:1/15 = No
Index Register $\mathrm{S}: 24=0$
Free Running Clock S:4 = 1111-1110-0100-0001

Scan Times

```
Maximum (x10 ms) S:22 = 1
Math
Overflow S:0/1 = 0
Zero Bit S:0/2 = 0
Sign Bit S:0/3 = 0
```

Current (x10 ms) $\mathrm{S}: 3$ (low byte) $=0$
Watchdog (x10 ms) S:3 (high byte) $=50$

```
Math Overflow Selected S:2/14 = 0
Overflow Trap S:5/0 = 0
Overflow Trap S:5/0 = 0
Carry S:0/0 = 0
```

Carry S:0/0 = 0

```
Debug
Suspend Code S:7 = 0
Errors
Extend I/O Configuration S:0/8 = \(0 \quad\) Major Error S:6 = 0h
Fault Override At Power Up S:1/8 = 0
Startup Protection Fault S:1/9 = 0
Error Description:
Major Error Halt \(\mathrm{S}: 1 / 13=0\)
Overflow Trap S:5/0 = 0
Control Register Error S:5/2 = 0
Major Error Executing User Fault Rtn. S:5/3 = 0
Retentive Data Lost S:5/8 = 0
Input Filter Selection Modified S:5/13 = 0
```

STI

```
Pending Bit \(\mathrm{S}: 2 / 0=0\)
Enable Bit \(S: 2 / 1=1\)
Executing Bit \(S: 2 / 2=0\)
Overflow Bit S:5/10 = 0
Setpoint (x10ms) \(S: 30=0\)

\section*{Protection}

RUN Aways S:1/12 = No Deny Future Access S:1/14 = No
Offset \begin{tabular}{llllllllllllllllll}
15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 & (Symbol) Description
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline B3: 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline B3: 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline B3: 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline B3: 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline B3 : 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline B3: 5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline B3: 6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline B3: 7 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline B3: 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline B3: 9 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline B3: 10 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline B3: 11 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline B3: 12 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline B3: 13 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline B3: 14 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline B3: 15 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline B3: 16 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline B3: 17 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline B3: 18 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline B3: 19 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline B3: 20 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline B3: 21 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline B3: 22 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline B3: 23 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline B3: 24 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline B3: 25 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline B3: 26 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline B3: 27 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline B3: 28 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & O \\
\hline B3: 29 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline B3: 30 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline : & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
\hline
\end{tabular}

B3: 31
B
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Offset & EN & TT & DN & & BASE & PRE & ACC & (Symbol) & Description \\
\hline T4:0 & 1 & 0 & 1 & 1.0 & sec & 15 & 15 & & \\
\hline T4:1 & 0 & 0 & 0 & . 01 & sec & 0 & 0 & & \\
\hline T4:2 & 0 & 0 & 0 & . 01 & sec & 0 & 0 & & \\
\hline T4:3 & 0 & 0 & 0 & . 01 & sec & 0 & 0 & & \\
\hline T4: 4 & 0 & 0 & 0 & . 01 & sec & 0 & 0 & & \\
\hline T4:5 & 0 & 0 & 0 & . 01 & sec & 0 & 0 & & \\
\hline T4: 6 & 0 & 0 & 0 & . 01 & sec & 0 & 0 & & \\
\hline T4:7 & 0 & 0 & 0 & . 01 & sec & 0 & 0 & & \\
\hline T4:8 & 0 & 0 & 0 & . 01 & sec & 0 & 0 & & \\
\hline T4:9 & 0 & 0 & 0 & . 01 & sec & 0 & 0 & & \\
\hline T 4:10 & 0 & 0 & 0 & . 01 & sec & 0 & 0 & & \\
\hline T4:11 & 0 & 0 & 0 & . 01 & sec & 0 & 0 & & \\
\hline T4:12 & 0 & 0 & 0 & . 01 & sec & 0 & 0 & & \\
\hline T \(4: 13\) & 0 & 0 & 0 & . 01 & sec & 0 & 0 & & \\
\hline T4:14 & 0 & 0 & 0 & . 01 & sec & 0 & 0 & & \\
\hline T \(4: 15\) & 0 & 0 & 0 & . 01 & sec & 0 & 0 & & \\
\hline T \(4: 16\) & 0 & 0 & 0 & . 01 & sec & 0 & 0 & & \\
\hline T \(4: 17\) & 0 & 0 & 0 & . 01 & sec & 0 & 0 & & \\
\hline T4:18 & 0 & 0 & 0 & . 01 & sec & 0 & 0 & & \\
\hline T4:19 & 0 & 0 & 0 & . 01 & sec & 0 & 0 & & \\
\hline T4:20 & 0 & 0 & 0 & . 01 & sec & 0 & 0 & & \\
\hline T \(4: 21\) & 0 & 0 & 0 & . 01 & sec & 0 & 0 & & \\
\hline T4:22 & 0 & 0 & 0 & . 01 & sec & 0 & 0 & & \\
\hline T \(4: 23\) & 0 & 0 & 0 & . 01 & sec & 0 & 0 & & \\
\hline T 4:24 & 0 & 0 & 0 & . 01 & sec & 0 & 0 & & \\
\hline T \(4: 25\) & 0 & 0 & 0 & . 01 & sec & 0 & 0 & & \\
\hline T \(4: 26\) & 0 & 0 & 0 & . 01 & sec & 0 & 0 & & \\
\hline T4:27 & 0 & 0 & 0 & . 01 & sec & 0 & 0 & & \\
\hline T4:28 & 0 & 0 & 0 & . 01 & sec & 0 & 0 & & \\
\hline T 4:29 & 0 & 0 & 0 & . 01 & sec & 0 & 0 & & \\
\hline T 4:30 & 0 & 0 & 0 & . 01 & sec & 0 & 0 & & \\
\hline T4:31 & 0 & 0 & 0 & . 01 & sec & 0 & 0 & & \\
\hline T4:32 & 0 & 0 & 0 & . 01 & sec & 0 & 0 & & \\
\hline T 4:33 & 0 & 0 & 0 & . 01 & sec & 0 & 0 & & \\
\hline T 4:34 & 0 & 0 & 0 & . 01 & sec & 0 & 0 & & \\
\hline T4:35 & 0 & 0 & 0 & . 01 & sec & 0 & 0 & & \\
\hline T \(4: 36\) & 0 & 0 & 0 & . 01 & sec & 0 & 0 & & \\
\hline T4:37 & 0 & 0 & 0 & . 01 & sec & 0 & 0 & & \\
\hline T4:38 & 0 & 0 & 0 & . 01 & sec & 0 & 0 & & \\
\hline T 4:39 & 0 & 0 & 0 & . 01 & sec & 0 & 0 & & \\
\hline
\end{tabular}
\begin{tabular}{llllllllll} 
& & & & & & & & \\
Offset & CU & CD & DN & OV & UN & UA & PRE & ACC & (Symbol) \\
& & & & & & & Description \\
C5:0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
C5:1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
C5:2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
C5:3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
C5:4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
C5:5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
C5:6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
C5:7 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
C5:8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
C5:9 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
C5:10 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
C5:11 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
C5:12 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
C5:13 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
C5:14 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
C5:15 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
C5:16 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
C5:17 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
C5:18 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
C5:19 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
C5:20 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
C5:21 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
C5:22 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
C5:23 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
C5:24 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
C5:25 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
C5:26 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
C5:27 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
C5:28 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
C5:29 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
C5:30 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
C5:31 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Offset & EN & EU & DN & EM & ER & UL & IN & FD & LEN & POS & (Symbol) & Description \\
\hline R6: 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & \\
\hline R6:1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & \\
\hline R6:2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & \\
\hline R6:3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & \\
\hline R6: 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & \\
\hline R6: 5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & \\
\hline R6: 6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & \\
\hline R6: 7 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & \\
\hline R6: 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & \\
\hline R6: 9 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & \\
\hline R6:10 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & \\
\hline R6:11 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & \\
\hline R6:12 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & \\
\hline R6:13 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & \\
\hline R6:14 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & \\
\hline R6: 15 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & \\
\hline
\end{tabular}

PETALMA DRAWBRIDGE REMOTE SIDE.RSS
Data File N7 (dec) -- INTEGER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Offset & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline N7:0 & 32288 & 75 & -32768 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline N7:10 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline N7:20 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline N7:30 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline N7:40 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline N7:50 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline N7: 60 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline N7:70 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline N7:80 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline N7:90 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline N7:100 & 0 & 0 & 0 & 0 & 0 & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Address & Symbol Scope & Description & Sym Group & Dev. Code & ABV & BLW \\
\hline S:0 & & Arithmetic Flags & & & & \\
\hline S:0/0 & & Processor Arithmetic Carry Flag & & & & \\
\hline S:0/1 & & Processor Arithmetic Underflow/ Overflow Flag & & & & \\
\hline S:0/2 & & Processor Arithmetic Zero Flag & & & & \\
\hline S:0/3 & & Processor Arithmetic Sign Flag & & & & \\
\hline S:1 & & Processor Mode Status/ Control & & & & \\
\hline S: \(1 / 0\) & & Processor Mode Bit 0 & & & & \\
\hline S:1/1 & & Processor Mode Bit 1 & & & & \\
\hline S: \(1 / 2\) & & Processor Mode Bit 2 & & & & \\
\hline S:1/3 & & Processor Mode Bit 3 & & & & \\
\hline S:1/4 & & Processor Mode Bit 4 & & & & \\
\hline S: \(1 / 5\) & & Forces Enabled & & & & \\
\hline S:1/6 & & Forces Present & & & & \\
\hline S: \(1 / 7\) & & Comms Active & & & & \\
\hline S: \(1 / 8\) & & Fault Override at Powerup & & & & \\
\hline S:1/9 & & Startup Protection Fault & & & & \\
\hline S:1/10 & & Load Memory Module on Memory Error & & & & \\
\hline S: \(1 / 11\) & & Load Memory Module Always & & & & \\
\hline S: \(1 / 12\) & & Load Memory Module and RUN & & & & \\
\hline S:1/13 & & Major Error Halted & & & & \\
\hline S: \(1 / 14\) & & Access Denied & & & & \\
\hline S: \(1 / 15\) & & First Pass & & & & \\
\hline S:2/0 & & STI Pending & & & & \\
\hline S:2/1 & & STI Enabled & & & & \\
\hline S:2/2 & & STI Executing & & & & \\
\hline S:2/3 & & Index Addressing File Range & & & & \\
\hline S:2/4 & & Saved with Debug Single Step & & & & \\
\hline S:2/5 & & DH-485 Incoming Command Pending & & & & \\
\hline S:2/6 & & DH-485 Message Reply Pending & & & & \\
\hline S:2/7 & & DH-485 Outgoing Message Command Pending & & & & \\
\hline S:2/15 & & Comms Servicing Selection & & & & \\
\hline S:3 & & Current Scan Time/ Watchdog Scan Time & & & & \\
\hline S: 4 & & Time Base & & & & \\
\hline S:5/0 & & Overflow Trap & & & & \\
\hline S:5/2 & & Control Register Error & & & & \\
\hline S:5/3 & & Major Err Detected Executing UserFault Routine & & & & \\
\hline S:5/4 & & M0-M1 Referenced on Disabled Slot & & & & \\
\hline S:5/8 & & Memory Module Boot & & & & \\
\hline S:5/9 & & Memory Module Password Mismatch & & & & \\
\hline S:5/10 & & STI Overflow & & & & \\
\hline S:5/11 & & Battery Low & & & & \\
\hline S: 6 & & Major Error Fault Code & & & & \\
\hline S: 7 & & Suspend Code & & & & \\
\hline S: 8 & & Suspend File & & & & \\
\hline S: 9 & & Active Nodes & & & & \\
\hline S:10 & & Active Nodes & & & & \\
\hline S:11 & & I/O Slot Enables & & & & \\
\hline S:12 & & I/O Slot Enables & & & & \\
\hline S:13 & & Math Register & & & & \\
\hline S:14 & & Math Register & & & & \\
\hline S:15 & & Node Address/ Baud Rate & & & & \\
\hline S:16 & & Debug Single Step Rung & & & & \\
\hline S:17 & & Debug Single Step File & & & & \\
\hline S:18 & & Debug Single Step Breakpoint Rung & & & & \\
\hline S:19 & & Debug Single Step Breakpoint File & & & & \\
\hline S:20 & & Debug Fault/ Powerdown Rung & & & & \\
\hline S:21 & & Debug Fault/ Powerdown File & & & & \\
\hline S:22 & & Maximum Observed Scan Time & & & & \\
\hline S:23 & & Average Scan Time & & & & \\
\hline S:24 & & Index Register & & & & \\
\hline S:25 & & I/O Interrupt Pending & & & & \\
\hline S:26 & & I/O Interrupt Pending & & & & \\
\hline S:27 & & I/O Interrupt Enabled & & & & \\
\hline S:28 & & I/O Interrupt Enabled & & & & \\
\hline S:29 & & User Fault Routine File Number & & & & \\
\hline S:30 & & STI Setpoint & & & & \\
\hline S:31 & & STI File Number & & & & \\
\hline S:32 & & I/O Interrupt Executing & & & & \\
\hline S:33 & & Extended Proc Status Control Word & & & & \\
\hline S:33/0 & & Incoming Command Pending & & & & \\
\hline S:33/1 & & Message Reply Pending & & & & \\
\hline S:33/2 & & Outgoing Message Command Pending & & & & \\
\hline S:33/3 & & Selection Status User/DF1 & & & & \\
\hline S:33/4 & & Communicat Active & & & & \\
\hline S:33/5 & & Communicat Servicing Selection & & & & \\
\hline S:33/6 & & Message Servicing Selection Channel 0 & & & & \\
\hline S: \(33 / 7\) & & Message Servicing Selection Channel 1 & & & & \\
\hline S:33/8 & & Interrupt Latency Control Flag & & & & \\
\hline S:33/9 & & Scan Toggle Flag & & & & \\
\hline S:33/10 & & Discrete Input Interrupt Reconfigur Flag & & & & \\
\hline S:33/11 & & Online Edit Status & & & & \\
\hline S:33/12 & & Online Edit Status & & & & \\
\hline \[
\begin{aligned}
& S: 33 / 13 \\
& S: 33 / 14
\end{aligned}
\] & & Scan Time Timebase Selection DTR Control Bit & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Address & Symbol & Scope & Description & Sym Group & Dev. Code & ABV & BLW \\
\hline S:33/15 & & & DTR Force Bit & & & & \\
\hline S:34 & & & Pass-thru Disabled & & & & \\
\hline S:34/0 & & & Pass-Thru Disabled Flag & & & & \\
\hline S:34/1 & & & DH+ Active Node Table Enable Flag & & & & \\
\hline S:34/2 & & & Floating Point Math Flag Disable, Fl & & & & \\
\hline S:35 & & & Last 1 ms Scan Time & & & & \\
\hline S:36 & & & Extended Minor Error Bits & & & & \\
\hline S:36/8 & & & DII Lost & & & & \\
\hline S:36/9 & & & STI Lost & & & & \\
\hline S:36/10 & & & Memory Module Data File Overwrite Protection & & & & \\
\hline S:37 & & & Clock Calendar Year & & & & \\
\hline S:38 & & & Clock Calendar Month & & & & \\
\hline S:39 & & & Clock Calendar Day & & & & \\
\hline S:40 & & & Clock Calendar Hours & & & & \\
\hline S:41 & & & Clock Calendar Minutes & & & & \\
\hline S: 42 & & & Clock Calendar Seconds & & & & \\
\hline S:43 & & & STI Interrupt Time & & & & \\
\hline S: 44 & & & I/O Event Interrupt Time & & & & \\
\hline S:45 & & & DII Interrupt Time & & & & \\
\hline S:46 & & & Discrete Input Interrupt- File Number & & & & \\
\hline S:47 & & & Discrete Input Interrupt- Slot Number & & & & \\
\hline S:48 & & & Discrete Input Interrupt- Bit Mask & & & & \\
\hline S:49 & & & Discrete Input Interrupt- Compare Value & & & & \\
\hline S: 50 & & & Processor Catalog Number & & & & \\
\hline S:51 & & & Discrete Input Interrupt- Return Number & & & & \\
\hline S: 52 & & & Discrete Input Interrupt- Accumulat & & & & \\
\hline S:53 & & & Reserved/ Clock Calendar Day of the Week & & & & \\
\hline S: 55 & & & Last DII Scan Time & & & & \\
\hline S:56 & & & Maximum Observed DII Scan Time & & & & \\
\hline S:57 & & & Operating System Catalog Number & & & & \\
\hline S:58 & & & Operating System Series & & & & \\
\hline S:59 & & & Operating System FRN & & & & \\
\hline S:61 & & & Processor Series & & & & \\
\hline S:62 & & & Processor Revision & & & & \\
\hline S:63 & & & User Program Type & & & & \\
\hline S: 64 & & & User Program Functional Index & & & & \\
\hline S: 65 & & & User RAM Size & & & & \\
\hline S:66 & & & Flash EEPROM Size & & & & \\
\hline S: 67 & & & Channel 0 Active Nodes & & & & \\
\hline S:68 & & & Channel 0 Active Nodes & & & & \\
\hline S:69 & & & Channel 0 Active Nodes & & & & \\
\hline S: 70 & & & Channel 0 Active Nodes & & & & \\
\hline S: 71 & & & Channel 0 Active Nodes & & & & \\
\hline S: 72 & & & Channel 0 Active Nodes & & & & \\
\hline S: 73 & & & Channel 0 Active Nodes & & & & \\
\hline S: 74 & & & Channel 0 Active Nodes & & & & \\
\hline S: 75 & & & Channel 0 Active Nodes & & & & \\
\hline S: 76 & & & Channel 0 Active Nodes & & & & \\
\hline S:77 & & & Channel 0 Active Nodes & & & & \\
\hline S: 78 & & & Channel 0 Active Nodes & & & & \\
\hline S: 79 & & & Channel 0 Active Nodes & & & & \\
\hline S: 80 & & & Channel 0 Active Nodes & & & & \\
\hline S:81 & & & Channel 0 Active Nodes & & & & \\
\hline S: 82 & & & Channel 0 Active Nodes & & & & \\
\hline S: 83 & & & DH+ Active Nodes & & & & \\
\hline S: 84 & & & DH+ Active Nodes & & & & \\
\hline S: 85 & & & DH+ Active Nodes & & & & \\
\hline S: 86 & & & DH+ Active Nodes & & & & \\
\hline
\end{tabular}

\section*{AECOM}

\author{
D STREET LEAF BRIDGE PETALUMA, CA.
}

Electrical Report

\section*{Table of Contents}
1 Electrical ..... 3
1.1 Summary .....  .3
1.2 Scope of Inspection .....  .3
1.3 Electrical Descriptions and Findings .....  .4
1.3.1 Electric Service and Power Distribution ..... 4
1.3.2 Service Entrance Switchboard ..... 4
1.3.3 MCC-1 ..... 5
1.3.4 MCC-2 ..... 5
1.3.5 Main Drive Systems ..... 5
1.3.6 Main Drive Motors ..... 5
1.3.7 Brake Thruster Motors ..... 6
1.3.8 Span Locks .....  .6
1.3.9 Bridge Control Systems.. .....  7
1.3.10 Control Consoles................ .....  8
1.3.11 Traffic Signals and Signs ..... 8
1.3.12 Traffic Warning Gates .....  8
1.3.13 Conduit, Cables, Disconnects and Wiring .....  .9
1.3.14 Limit Switches and Instrumentation .....  9
1.3.15 Lighting and Receptacles ..... 10
1.3.16 Navigational Lighting ..... 10
1.3.17 Lubrication Pumps ..... 10
1.3.18 Pedestrian Lighting ..... 10
1.3.19 Operational Tests ..... 10
1.4 Analysis and Recommendations ..... 10
1.5 Estimated Cost Repairs ..... 13
1.5.1 Items Requiring Immediate Attention ..... 13
1.5.2 Important Or Timely Repairs ..... 14
1.5.3 Long Term Items ..... 14
Appendix A - Data Tables ..... 16
Appendix B - Electrical Inspection Photographs and Deficiencies ..... 29
Appendix C - Electrical Chart Recording Graphs and Insulation Resistance Tables ..... 46
North West Main Service Entrance ..... 46
North East Bridge Span Motor ..... 47
North West Bridge Span Motor ..... 48
North East Brake Thruster Motor ..... 49
North West Brake Thruster Motor ..... 50
Insulation Resistance Results ..... 51
Statement of Limitations ..... 53

\section*{1 Electrical}

\subsection*{1.1 Summary}

AECOM performed an in-depth electrical inspection of the D St. Bridge on June 19 and 20, 2018. The bridge electrical hardware and control systems were found to be in generally fair operating condition with the exceptions detailed in this report.

Deficiencies observed during the electrical inspection include, but are not limited to; deteriorating exterior flexible liquid tight conduits, improperly supported conduits, and moderate to heavy corrosion on main electrical equipment enclosures, motors as well as electrical disconnects. The north east pit thruster brake insulation values were found to be below the recommended values in IEEE 43-2013 (Recommended Practice for Testing Insulation Resistance of Rotating Machinery). In all other motors the insulation resistance results tested were within the acceptable threshold indicated in IEEE 43-2013. The bridge power and control system are functional. Additional deficiencies and findings are listed in this report.

This report includes an overall description of the bridge, electrical inspection findings, analyses of the findings and recommended repairs including associated costs. The report Appendices includes Electrical Data Tables, Photographs of Deficiencies, Chart Recording Graphs, and insulation resistance Tables.

\subsection*{1.2 Scope of Inspection}

AECOM performed the electrical inspection of the single leaf bascule bridge at the city of Petaluma, CA. The bridge electrical system was inspected by team leader, Senior Electrical Engineer, Carlos Turcios PE on June 2018 to evaluate the condition of the existing electrical power and control systems of the bridge. An in-depth inspection of the complete electrical system was performed that included visual and auditory inspection of all electrical components, including the main span motors, motor machinery brakes, programmable logic control (PLC) based control systems, traffic control devices, power distribution equipment, conduit/wiring, navigation aids, and control house lighting systems. The bridge position indicators at the control console were observed during operation.

Span motor electrical currents were recorded over multiple operating cycles. Chart recording of motor current for span locks were also documented. Insulation testing was performed on several motor feeders. Navigation lighting was inspected for minimal compliance with water requirements. The electrical inspection was performed in accordance with the requirements of the AASHTO Movable Bridge Inspection, Evaluation and Maintenance Manual.

The insulation resistance (megger) testing of the individual conductors within the droop cables was not performed. In addition, bypass testing of the control system was not performed during the inspection.

Equipment and motor nameplate data and condition assessment notes are included in Appendix A. Photographs of deficiencies noted are included under Appendix B. All chart recording graphs and insulation testing data are presented in Appendix C.

\subsection*{1.3 Electrical Descriptions and Findings}

\subsection*{1.3.1 Electric Service and Power Distribution}

Local electrical utility point of connection consists of two independent electrical services. The north side of the bridge is served by an exterior 600A service with a 400A fuse holder section with a 225A fuse located on a NEMA-3R, 65 K Amps interrupting capacity (AIC) service entrance rated switchboard enclosure. The south side of the bridge is served by an exterior 100A service with a 100A main located in a 400A NEMA-3R service entrance rated switchboard. Each electrical service is a 3 -phase, 4 -wire rated at \(240 / 120 \mathrm{~V}\) connection.

The D St. Bascule Bridge is equipped with a control house located on the North-West end of the bridge that houses the 600A split bus motor control center (MCC-1) and power distribution equipment. MCC-1 receives power from the 600A exterior service entrance rated switch board. One bus of the MCC-1 powers a lighting panel (LP1), a \(3 / 4\)-HP sump pump and a monitoring circuit for a voltmeter located on the control console. The other bus at the same MCC-1 powers two bridge span \(25-\mathrm{HP}\) motors through vector drives, two 2-HP parking brake thrusters, two 2HP traffic gates, and two \(0.5-\mathrm{HP}\) lubrication pumps. The lubrication pumps are out of service and have been abandoned in place.

Lighting panel LP1 inside the control house distributes power to light and receptacles inside the control house, control console, north navigation and street lights, warning signals, motor heaters, alignment and fender lights, water heater, wall heater and north pits light and receptacles.

On the South Westof the bridge is located a 400A 42K AIC switchboard (MCC-2) with a 100A Main Breaker that powers a lighting panel (LP2), a 2-HP end lock motor and two 2-HP traffic gates.

Lighting panel LP2 distributes power to lights and receptacles in the end lock machinery pit, south warning signals and bells, south alignment and fender lights, south street lights and 120 V devices in side MCC-2 such as heaters, PLC and wireless equipment.

\subsection*{1.3.2 Service Entrance Switchboard}

The existing 600A switchboard houses a 400A (200A fused) disconnect which was installed about 18 years ago. It shows signs of metal skin deterioration due to corrosion on portions of the exterior, interior, below the ceiling, and handles of the enclosure. Rust corrosion on the metal skin of the enclosure may indicate internal electrical parts with possible moisture and condensation of water. Circuit breakers and other tripping devices damaged by water condensation may not trip when an electrical overload occurs creating an unsafe condition for personnel. The enclosure was not identified with an Arc Flash Label which is required by NFPA-

70E (Standard for Electrical Safety in the Workplace) and identifies the hazard potential when the switchboard is energized.

At the span opening, the amperage on the incoming lines ramped up to 74 Amps. While closing, after ramping up to full speed, the motor drew 22.5 amps of current. Refer to appendix C for additional information. Refer to Photos E-1, E-2, E-3 and E-4 for pictures of Service Entrance Switchboard findings.

\subsection*{1.3.3 MCC-1}

The existing MCC-1 located in the control house electrical room is a 600A MCC manufactured by Cutler-Hammer Freedom Series 2100 and installed about 18-years ago. It is in good condition over all. Recently one of the 40-HP motor vector controllers manufactured by Baldor was serviced/replaced including its associated breaking resistor. The enclosure was not identified with an Arc Flash Label.

\subsection*{1.3.4 MCC-2}

The existing MCC-2 is a 400A service entrance rated MCC located on the South West side of the bridge which was installed about 18 -years ago. It shows minor signs of metal skin deterioration below the ceiling of the enclosure. The interior of the enclosure includes heat strips that remove moisture and water condensation and are powered from the interior lighting panel LP2. It was noticeable that the wireless antenna mounting hardware attached on the side of MCC-2 was very corroded and in need of replacement. The enclosure was not identified with an Arc Flash Label. Refer to photos E-5, and E-6.

\subsection*{1.3.5 Main Drive Systems}

There are two main drive control systems located inside MCC-1. Each motor span drive is a vector drive manufactured by BALDOR Catalog No ZD18H240-MO. Nameplate and torque settings are listed in the Appendix A. According to the manufacturer's website (BALDOR which is owned by ABB), the drive has been discontinued. The main drive for the North West span motor was replaced within the last 2 years. Both drives were found to be in good condition.

\subsection*{1.3.6 Main Drive Motors}

Each movable span is operated by one Baldor Electric Vector Drive motor model M0091433151. Nameplate and torque settings are listed in the Appendix A. The motors were installed about 18-years ago. Motors were visually inspected and show signs of corrosion on the body and metal plate support. Refer to Photos E-7 and E-8.

Operation of main span drive motors was observed during several bridge openings. Both motors operated successfully. During span operation, the motor currents were monitored and recorded.

At the span opening, the output of the North-West Main Drive Motor ramped up to 125 Amps for one second and then down to an average of 50 Amps . These amperage values are within the manufacturer's operating conditions. The total operating time from fully closed to fully open was
approximately 60 seconds. Similarly, the operating time from fully open to fully close was about 60 seconds. While closing, after ramping up to full speed, the motor drew 120.4 amps of current.

At the span opening, the output of the North-East Main Drive Motor ramped up to 85.4 Amps for one second and then down to an average of 50 Amps .. These amperage values are within the manufacturer's operating conditions. The total operating time from fully closed to fully open was approximately 60 seconds. Similarly, the operating time from fully open to fully close was about 60 seconds. While closing, after ramping up to full speed, the motor drew 83.3 amps of current.

\subsection*{1.3.7 Brake Thruster Motors}

There are two Electro Thrust- release shoe type brakes located in each pit. One in the NorthWest machinery pit and one in the North-East machinery pit. Each motor is equipped with a 2HP motor. Motors are equipped with a disconnect switch located in-sight of the motor. Full nameplate settings are located in Appendix A. The brakes and thruster motors, hand release mechanisms, and limit switches were visually inspected during operation and were found to be in fair operating condition. Each brake is only equipped with a single limit switch.

It was noted during the insulation resistance test that the insulation on the North-West Electro Thrust motor, which prevents interconnection between the motor windings to earth, was 0.1 Mega Ohms. This value is well below the 100 Mega Ohm which is the minimum accepted value per IEEE 43-2013. Low insulation resistance value of the insulation indicates the high possibility of insulation failure which can cause personnel injury due to dangerous voltages, fires, high-fault currents and explosions.

At the span operation, output of the North-West brake Thruster Motor ramped up to 1.95 Amps holding a steady value of 0.9 Amps throughout the bridge operation. This amperage value is within the manufacturer's operating conditions.
At span operation, output of the North-East brake thruster Motor ramped up to 2.096 Amps holding a steady value of 0.941 Amps throughout the bridge operation. This amperage value is within the manufacturer's operating conditions.

Refer to the Insulation Resistance Testing tables in Appendix C. Refer to the data tables in Appendix B for additional details.

It appears that the Thruster Brake Motors and machinery brake are original, and for the most part, obsolete and reaching the end of its useful mechanical life.

\subsection*{1.3.8 Span Locks}

There is one span lock located inside the End Lock machinery pit. The span lock is powered by a 2 HP Baldor industrial motor. Although the end lock machinery pit is underneath and covered, it is open to the environment through the lock-bridge window. The pit shows heavy collection of dust and the motor frame exhibits body corrosion (Refer to Photo E-9). Span locks are equipped
with a rotary cam limit switch for position indication. The cam limit switch shows signs of heavy corrosion on the limit switch enclosure hinge. Refer to pictures E-10 and E-11. The cam limit switch interior of the enclosure is in good condition. The base of the span lock gear and shaft coupling shows sign of extreme corrosion. Refer to pictures E-12 and E-13.

The span lock assemblies were visually inspected and observed during operation and appear to be operating properly. The motor insulation resistance test results were within the acceptable threshold indicated in IEEE 43-2013. Refer to the Insulation Resistance Testing tables in Appendix C. The overall condition of the span lock motors and electrical equipment is fair. Several components including the electric motor, conduit, limit switch junction box, and wiring exhibits moderate to severe deterioration due to corrosion. Overall, the condition of the span lock system is fair.

\subsection*{1.3.9 Bridge Control Systems}

Current control system designs for movable bridges employ a redundant set of PLCs (Programmable Logic Controllers) per control location to minimize PLC point of failure and to be able to switch from one PLC to another in the event one PLC fails to operate.

The D Street Bridge control system is equipped with a single PLC Allen-Bradley SLC 5/03 in the north house main control console and a single PLC Allen-Bradley Micrologix 1000 in the south housed inside the exterior NENA-3R enclosure of MCC-2 to perform all the bridge control logic. According to the manufacturer the SLC 5/03 has reached the end of its lifecycle and is now planned to be obsolete with limited support and limited or no replacement parts. The Mircrologix 1000 has been diseontinued with limited support and no replacement parts.

The operational sequence of the PLC system is interlocked so that operation of the bridge warning gates, span locks, and lift span can only occur in the proper sequence. Several control interlock tests were performed with no issues. It was noted that the bypasses are hardwired to the PLC inputs. In the event that the either PLC in the north or south fails to operate, the bridge will need to be put out of service for an extended period of time until the failed PLC is repaired or replaced.

The local indication for alarms and PLC input and output status is located on the face of the control console via an Allen Bradley PanelView local interface terminal. This local interface is obsolete and has reached the end of its lifecycle with no support from the manufacturer.

Communication between the PLC in the control console in the control room and the PLC in the south of the bridge inside MCC-2 is performed via a ZLinx wireless radio modem at each end. Bridge controls are performed through the wireless communications. The bridge control operator indicated that every time the bridge is exercised, a wireless malfunction indication at the local panel view operator interface needs to be reset.

Although the control system hardware is becoming vintage the bridge control system operated as intended.

Due to the lack of redundancy on the PLC inside the main control console and the PLC inside the MCC-2 on the south side of the bridge were found to be in severe condition in need for an upgrade.

\subsection*{1.3.10 Control Consoles}

The bridge is controlled from a main console in the operator room located in the control house. The main console houses all the control and communication hardware at the control house. The face of the main console consists of selector switches, pushbuttons, indicator lights for bridge status and a local PanelView operator for PLC alarm and other bridge end devices status. The control console is equipped with a lockable steel bar that prevents unauthorized operation of the emergency bypass switches.

Attached to the side of the console is a Motorolla enclosure housing a remote terminal unit (RTU) that communicates with the weather system mounted on top of the control house. Weather signals from the RTU are hard wired to the PLC in the main control console. The RTU and weather system have been abandoned and unpowered.

Although the PLC components and the local interface terminal are outdated, they have reached the end of the manufacturer lifecycle and with limited or no support or spare parts, the components on the main control console are in satisfactory operating condition and provided correct bridge status during operations. Overall the control console was in fair condition. Refer to Photos E-14, E-15 and E-16.

\subsection*{1.3.11 Traffic Signals and Signs}

There are two traffic signals on the each side of the bridge facing oncoming traffic. The bridge traffic signals are controlled from the main control console. All traffic signals were in good operating condition at the time of inspection.

\subsection*{1.3.12 Traffic Warning Gates}

There are a total of four electro-mechanically operated traffic gates for the D Street Bridge. There are two gates for each approach that close one lane of traffic each. Each traffic gate has a separate gate arm to warn pedestrian traffic. A rotary cam operated limit switch within the gate housing controls the gate arm travel. A warning gong is mounted at the top of each traffic gate enclosure and all gates are equipped with an auxiliary pedestrian gate arm to block the sidewalk. There are three (3) red warning lights located along the top of each gate arm which are designed to alternately flash on and off when the bridge operator lowers the traffic gates. All warning gates are in satisfactory operating condition.
1.3.13 Conduit, Cables, Disconnects and Wiring

The bridge conduit system is a combination of Galvanized Rigid Steel (RGS) and Liquid Tight Flexible Metal (LFMC) used to transition from the fixed span to the movable span. The conduits are supported with conduit clamps throughout the bridge structure. There are multiple deficiencies with the conduit system specifically within the LFMC conduit:
- The LFMC conduits installed on the exterior of the bridge are beginning to fail due to improper support, exposure to the environment, UV rays and age. At locations where the conduits are broken, conductors are shown exposed creating a cavity for rain water accumulation inside the conduit.
- CCTV conductors are run with no conduits and no support.
- The North West span motor disconnect housing is damaged (bent due to external pressure) and rust is accumulating at the conduit bushing inside the enclosure.
- The North West thruster brakes disconnect was found with water intrusion in the interior of the enclosure with extreme metal corrosion in the back plate of the enclosure. This needs to be remediated immediately, as water accumulation inside the disconnect enclosure may create a low resistance fault that tripping devices such as circuit breakers can't react to putting personnel at risk of an electric shock.

Overall the GRS conduits are in good condition. The LFMC conduits are in poor condition in need for complete replacement. Junction boxes are in good condition. Conduits supports are in poor condition, CCTV conductors need conduit and conduit support, disconnects are in good to poor condition where indicated. Refer to Photos E-17 through E-29.

\subsection*{1.3.14 Limit Switches and Lnstrumentation}

The bridge is equipped with lever-arm limit switches and rotary cam limit switches for the brakes, span locks, traffic gates and bridge positons. The limit switch equipment appears to be operating satisfactory.

SPAN FULLY SEATED LIMIT SWITCHES: The fully seated limit switches are located on the underside of the lift span, one on each corner. The fully closed limit switches appear to be in fair condition with minor surface corrosion.

BRAKE LIMIT SWITCHES: The brake limit switches appear to be in fair condition with minor surface corrosion.

SPAN ROTARY LIMIT SWITCH: Span rotary limit switches are located in the north west machinery pit and end lock machinery pit. The span rotary limit switch enclosure exhibit surface corrosion at one hinge. The end lock rotary switch exhibits a high degree of corrosion in one of its hinges.

WARNING GATE LIMIT SWITCHES: Two warning gate enclosures (one on the north side of the bridge and one on the south side of the bridge) are equipped with a rotary cam limit switch
each. Two warning gate enclosures (one on the north side of the bridge and one on the south side of the bridge) are equipped with limit switches. All the components are in fair condition.

\subsection*{1.3.15 Lighting and Receptacles}

Light and receptacles at the control house and machinery pits are fair condition.

\subsection*{1.3.16 Navigational Lighting}

One navigational light on the north east of the bridge appeared to be broken at the green lantern body. The navigation light on the south section below the bridge appeared to have damaged light bulbs. At the time of the inspection, with the exception noted, all navigation lights appear to be operating as intended.

\subsection*{1.3.17 Lubrication Pumps}

Two lubrication pumps were found to be out of service. The power sources at MCC-1 in the control house electrical room where in the off position. The user indicated that these pumps were not used to exercise or maintain the bridge. Refer to Photo E-30.

\subsection*{1.3.18 Pedestrian Lighting}

Two pedestrian pole lights were found not operational. Refer to Photos E-31 and E-32.

\subsection*{1.3.19 Operational Tests}

Several span operational tests and chart recordings were performed during the inspection. The bridge operated well during each operation. Operational tests were performed from the control console located in the control house. Electrical testing that included chart recording of the main drive motors and span lock motors were performed. Electrical testing at the electrical service through the incoming feed of MCC-1 during bridge operations was also performed. AECOM performed the insulation resistance (megger) testing of selected motors. All chart recordings and insulation testing results are located in Appendix C.
The operational tests indicate that the power and controls systems are in satisfactory condition. Bride positioning was observed at the control console over the course of several test lifts. The bridge control system appeared to be operating satisfactory while raising and lowering the span. The operational sequence of the PLC system was interlocked so that operation of the bridge warning gates, span locks, and lift span could only occur in the proper sequence. Several control interlock tests were performed with no issues. During the opening sequence, the span accelerated to full speed until it reached the nearly open position and then continued in creep speed until the bridge reached the fully open position. The opening sequence took about 60 seconds. During the closing sequence, span accelerated to full speed until it reached the nearly closed position and then continued in creep speed until the bridge reached the fully closed position. The closing sequence took about 60 seconds. Drive system operated as intended.

\subsection*{1.4 Analysis and Recommendations}

The bridge was rehabilitated in the year 2000. Typical life cycle for control equipment such as PLCs is between 10 to 15 years. The life cycle of power distribution hardware and equipment
varies depending on climate conditions, operating temperature, mechanical installation, and usage frequency, among other factors.

Overall, the bridge electrical power is in fair condition. The control system hardware, although functional, is in severe condition due to the lack of redundancy. The conduits and conductors that distribute power to lock starters, brake starters, motor control cabinet, control console, and braking resistors are in fair condition. None of the electrical enclosures were identified with an Arc Flash Label. OSHA (Occupational Safety and Health Administration) requires employees to perform a PPE (Personnel Protection Equipment) hazard assessment to determine necessary PPE.

It is suggested that an Arc Flash analysis is done on the distribution system and Arc Flash Labels be posted on MCCs and disconnects.

Although not required by the user, the bridge is not equipped with connections to backup power source in the event of a utility failure.

The Service Entrance Switchboard, MCC-1 and MCC-2 were found in fair condition.
Disconnects located in the north west pit associated with the span motor and thruster motors need to be replaced due to water intrusion, corrosion and enclosure damage.

All exterior Liquid Tight Flexible Metal (LFMC) conduits are in need of replacement. The flex conduit is damaged due to UV rays and weather. Flex conduit termination at clearance lights and other areas is broken and water intrusion into the conduit is expected at every rain event.

Although the main span motors show small corrosion, wear and tear due to age, they performed well during the testing. Their resistance held wellabove 100 Mega Ohms. However, two motors are needed to lift the bridge. If one motor or motor drive fails to operate, the bridge will need to be put out of service until the failed motor or motor drive is repaired or replaced. No redundancy on the motors creates a point of failure. Unfortunately upsizing the motors to be able to lift the bridge with only one motor is not practical or economical due to constrains in the machinery as it is installed and lack of space requirements for machinery and motors upgrade. It is recommended that one motor and one vector drive sized and configured in kind with the existing equipment be purchased and put on a secured place uninstalled within the control building to minimize downtime of the bridge upon motor or vector drive failure and replacement.

One out of two thruster motors (the thrust motor at the north west pit) failed the insulation test with a reading below 100 Mega Ohms. It is highly recommended that this motor be replaced with a motor in kind to prevent potential injuries associated with electrical faults between the motor cage (enclosure) and its windings.

The motor and machine brakes, span lock motors and rotary cam limit switches appear to be the in fair condition. The rotary cam limit switch at the end lock machinery pit is in need of replacement due to corrosion in one of its hinges.

Recommendations are shown below:

\subsection*{1.4.1 ITEMS REQUIRING IMMEDIATE ATTENTION}
1. Replace the north west pit drive machinery thruster brake 2-HP motor.
2. Replace north west span motor 100A disconnect.
3. Replace north west thrust motor 30A disconnect.
4. Replace rusted steel pipe holder for the antenna pole.
5. Replace the PLC at the control house main console and the PLC at the MCC-2 with redundant PLCs at each location.
6. Replace wireless communication system.
7. Replace the main console at the control house to accommodate additional space for redundant PLCs and new operator interface. There is space at the MCC-2 to replace the existing PLC with redundant PLCs.
8. Replace all exterior mounted Liquid Tight Flexible Metal (LFMC) including conduit supports.
9. Provide galvanize conduit or flex conduit as required for CCTV cameras.
10. Repair signal from CCTV camera \#4 (west river view).
11. Replace all navigational lights bulbs with LED equivalent.
12. Replace light bulb at two pedestrian light poles.

\subsection*{1.4.2 SHORT TERM OR TIMELY REPAIRS}

1. Replace service entrance switchboard.
2. Replace MCC-2.
3. Clean/remove (wire brush) excess corrosion and prime paint each Span Motor Base Plate (total of 2).
4. Replace end lock rotary limit switch enclosure.
5. Clean (remove debris), remove (wire brush) rusted areas of Span Bridge Motors and Prime Paint motorenclosure.
6. Clean (remove debris), remove (wire brush) rusted areas from brake shoes components.
7. Replace missing, broken and corroded conduit supports.
8. Clean and painted span lock motors.
9. Purchase a spare Span Motor and Controller

\subsection*{1.4.3 LONG TERM ITEMS}
1. Provide an Power Fault and Arc Flash Analysis for the entire electrical distribution and provide Arc Flash Labels at Service Entrance Switchboard, MCC-1, MCC-2 and power disconnects in the Pits.
2. Remove Weather System roof mounted hardware.
3. Replace limit switches.
4. Replace navigation lighting fixtures with LED equivalent.
5. Replace span lock system.
6. Replace CCTV.
1.5 Estimated Cost Repairs

\subsection*{1.5.1 Items Requiring Immediate Attention}
\begin{tabular}{|c|l|c|c|c|c|}
\hline Item & \multicolumn{1}{|c|}{ Description } & Unit & Qty. & \begin{tabular}{c} 
Unit \\
Cost
\end{tabular} & \begin{tabular}{c} 
Total \\
Cost
\end{tabular} \\
\hline 1. & Replace NW pit 2-HP motor & LS & 1 & 7,000 & 7,000 \\
\hline 2. & Replace NW pit span motor 100A disconnect & LS & 1 & \(\$ 1,000\) & \(\$ 1,000\) \\
\hline 3. & Replace NW pit thrust motor 30A disconnect & LS & 1 & \(\$ 500\) & \(\$ 500\) \\
\hline 4. & \begin{tabular}{l} 
Replace rusted steel pipe holder for the antenna \\
pole at MCC-2
\end{tabular} & LS & 1 & Maint. & Maint. \\
\hline 5. & \begin{tabular}{l} 
Replace the PLC at the control house main \\
console and the PLC at the MCC-2 with \\
redundant PLCs at each location.
\end{tabular} & LS & 2 & \(\$ 15,000\) & \(\$ 30,000\) \\
\hline 6. & Replace wireless communication system & LS & 2 & \(\$ 1,200\) & \(\$ 2,400\) \\
\hline 7. & \begin{tabular}{l} 
Replace the main console at the control house to \\
accommodate additional space for redundant \\
PLCs and new operator interface
\end{tabular} & LS & 1 & \(\$ 40,000\) & \(\$ 40,000\) \\
\hline 8. & \begin{tabular}{l} 
Replace all exterior mounted Liquid Tight \\
Flexible Metal (LFMC) including conduit \\
supports
\end{tabular} & LF & 60 & \(\$ 30\) & \(\$ 1,800\) \\
\hline 9. & \begin{tabular}{l} 
Provide galvanize condunt or flex conduit as \\
required for CCTV cameras
\end{tabular} & LS & 120 & \(\$ 30\) & \(\$ 3,750\) \\
\hline 10. & Repair signal from CCTV camera \#4 & LS & 1 & Maint. & Maint. \\
\hline 11. & \begin{tabular}{l} 
Replace all navigational lights bulbs with LED \\
equivalent
\end{tabular} & LS & 1 & Maint. & Maint. \\
\hline 12. & Replace light bulb at two pedestrian light poles & LS & 1 & Maint. & Maint. \\
\hline
\end{tabular}

\subsection*{1.5.2 Important Or Timely Repairs}
\begin{tabular}{|c|l|c|c|c|c|}
\hline Item & \multicolumn{1}{|c|}{ Description } & Unit & Qty. & \begin{tabular}{c} 
Unit \\
Cost
\end{tabular} & \begin{tabular}{c} 
Total \\
Cost
\end{tabular} \\
\hline 1. & Replace service entrance switchboard & LS & 1 & \(\$ 60,000\) & \(\$ 60,000\) \\
\hline 2. & Replace MCC-2 & LS & 1 & \(\$ 50,000\) & \(\$ 50,000\) \\
\hline 3. & \begin{tabular}{l} 
Clean/remove (wire brush) excess corrosion and \\
prime paint each Span Motor Base Plate (total of \\
2).
\end{tabular} & EA & 2 & Maint. & Maint. \\
\hline 4. & Replace end lock rotary limit switch enclosure & EA & 1 & \(\$ 500\) & \(\$ 500\) \\
\hline 5. & \begin{tabular}{l} 
Clean (remove debris), remove (wire brush) \\
rusted areas of Span Bridge Motors and Prime \\
Paint motor enclosure.
\end{tabular} & LS & 1 & \(\$ 200\) & \(\$ 200\) \\
\hline 6. & \begin{tabular}{l} 
Clean (remove debris), remove (wire brush) \\
rusted areas from brake shoes components
\end{tabular} & LS & 1 & Maint. & Maint. \\
\hline 7. & \begin{tabular}{l} 
Replace missing, broken and corroded conduit \\
supports
\end{tabular} & LS & 1 & Maint. & Maint. \\
\hline 8. & Clean and painted span lock motors & LS & 1 & \(\$ 200\) & \(\$ 200\) \\
\hline 9. & Spare Span motor and motor controller & EA & 1 & \(\$ 20,000\) & \(\$ 20,000\) \\
\hline
\end{tabular}

\subsection*{1.5.3 Long Term Item}
\begin{tabular}{|c|l|c|c|c|c|}
\hline Item & \multicolumn{1}{|c|}{ Description } & Unit & Qty. & \begin{tabular}{c} 
Unit \\
Cost
\end{tabular} & \begin{tabular}{c} 
Total \\
Cost
\end{tabular} \\
\hline 1. & \begin{tabular}{l} 
Provide a Power Fault and Arc Flash Analysis \\
for the entire electrical distribution and provide \\
Arc Flash Labels at Service Entrance \\
Switchboard, MCC-1, MCC-2 and power \\
disconnects in the Pits
\end{tabular} & LS & 1 & \(\$ 5,000\) & \(\$ 5,000\) \\
\hline 2. & \begin{tabular}{l} 
Remove Weather System roof mounted \\
hardware
\end{tabular} & LS & 1 & \(\$ 3,000\) & \(\$ 3,000\) \\
\hline 3. & Replace limit switches & LS & 1 & \(\$ 24,000\) & \(\$ 24,000\) \\
\hline
\end{tabular}
\begin{tabular}{|c|l|c|c|c|c|}
\hline 4. & \begin{tabular}{l} 
Replace navigation lighting fixtures with LED \\
equivalent
\end{tabular} & EA & 8 & \(\$ 1,000\) & \(\$ 8,000\) \\
\hline 5. & Replace span lock system & LS & 1 & \(\$ 25,000\) & \(\$ 25,000\) \\
\hline 6. & Replace CCTV & LS & 1 & 20,000 & \(\$ 20,000\) \\
\hline
\end{tabular}

\section*{Appendix A - Data Tables}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{DEFECTS} & \multicolumn{4}{|c|}{CONDITION STATUS} \\
\hline & 1 & 2 & 3 & 4 \\
\hline & GOOD & FAIR & POOR & SEVERE \\
\hline Electrical & \begin{tabular}{l}
- New or like new condition \\
- No discernable problems \\
- Fully functional \\
- Megger readings above 10 \\
Megaohms
\end{tabular} & \begin{tabular}{l}
- Minor corrosion or paint deterioration \\
- Some deterioration in electrical components and their performance - Megger readings between 1 and 10 Megaohms
\end{tabular} & - Megger readings between 100 K and 1 Meg-ohms & - Megger readings less than 100 K \\
\hline Operation & - All operational modes operate without problem - All interlocks are working & \begin{tabular}{l}
- Bridge operates without use of any bypasses. \\
- One mode of operation may not function properly, such as under generator or automatic mode.
\end{tabular} & Equipment is non-functional, but it has a redundant or backup system. & \begin{tabular}{l}
- Equipment that has no redundant system is nonfunctional. \\
- Example 1 - \\
Traffic gate. \\
- Example 2 - If 1 of 4 rear locks on a side is nonfunctional it would be poor, but if all 4 were failed, it is severe
\end{tabular} \\
\hline Notes: & & & & \\
\hline
\end{tabular}
1. Items rated as poor (3) or severe (4) requires a comment and reference to photo (if applicable). Note the photograph number with the comments.
2. Enter rating in shaded boxes.

\section*{NORTH WEST BRIDGE MOTOR DATA}
\begin{tabular}{|l|l|}
\hline EQUIPMENT IDENTIFICATION: & \multicolumn{1}{c|}{ Baldor Vector Drive } \\
Vector Drive - Information shown for \\
North West Drive. Typical for North East \\
Drive. & \\
\hline LOCATION: Main Control House & \(\underline{\underline{20-40} \mathrm{HP} \underline{3} \mathrm{PH}}\) \\
Electrical Room & \begin{tabular}{l}
\(\underline{230} \mathrm{VOLTS}\) \\
Cat No. \(\underline{\mathrm{ZD} 10 \mathrm{H} 240 \mathrm{MO}}\) \\
SERIAL \(\underline{\mathrm{H} 0507220009}\)
\end{tabular} \\
MCC-1 & \\
\hline
\end{tabular}


\section*{NORTH WEST BRIDGE MOTOR DATA}



NORTH EAST BRIDGE MOTOR DATA
\begin{tabular}{|c|c|}
\hline MOTOR IDENTIFICATION: Induction Motor B & General Electric Induction Motor \\
\hline LOCATION: North East Machinery Pit & \begin{tabular}{ll} 
25HP 3 PH & \\
\(\underline{230}\) VOLTS & \\
\(\underline{60}\) CYCLES & FRAME 324TC \\
Cat No. M00 91433151 & 69 AMPS PER TERMINAL \\
SERIAL & \(\underline{1180 ~ R P M ~ A T ~ F U L L ~ L O A D ~}\) \\
M12S054W887Z1 &
\end{tabular} \\
\hline
\end{tabular}


\section*{SPAN LOCK MOTOR DATA}
\begin{tabular}{|c|c|c|}
\hline MOTOR IDENTIFICATION: Induction Motor A & \multicolumn{2}{|r|}{Baldor Industrial Motor} \\
\hline LOCATION: End Lock Machinery Pit & \begin{tabular}{l}
2-HP 3 PH \\
230 VOLTS \\
60 CYCLES \\
CAT No. BM3614T \\
SPEC 36A21-197-D
\end{tabular} & \begin{tabular}{l}
FRAME 184T \\
6.6 AMPS PER TERMINAL \\
\(\underline{1140}\) RPM AT FULL LOAD
\end{tabular} \\
\hline NUMERICAL RATING: 2 & & \\
\hline
\end{tabular}


\section*{NORTH WEST THRUSTER BRAKE DATA}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
EQUIPMENT IDENTIFICATION: Ne \\
Motor Brake
\end{tabular} & & \\
\hline \begin{tabular}{l} 
LOCATION: North West Machinery \\
Pit
\end{tabular} & \begin{tabular}{l} 
GEMCO Thruster Brake \\
NUMERICAL RATING: 4 \\
NOTE: THE MOTOR FAILED THE INSULATION TEST
\end{tabular} & \begin{tabular}{l} 
HP \(2 \ldots\) \\
VOLTAGE \(\underline{230 \mathrm{~V}}\) PH \(\_3\)
\end{tabular} \\
\hline
\end{tabular}




\section*{LIMIT SWITCHES AND INSTRUMENTATION}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
TRANSMITTER IDENTIFICATION: \\
NE Motor Drive Rotary Cam Limit Switch
\end{tabular}} & GEMCO Rotating Cam Limit Switch \\
\hline \multicolumn{2}{|l|}{LOCATION: NE Machinery Pit} & \\
\hline \multicolumn{2}{|l|}{NUMERICAL RATING: 2} & \\
\hline ITEM & CONDITION & \multirow[t]{7}{*}{} \\
\hline ENCLOSURE & Fair & \\
\hline CONDUIT ENTRY & Fair & \\
\hline MOUNTING BOLTS & Fair & \\
\hline CABLES / CONNECTIONS & Fair & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \\
\hline & & \\
\hline
\end{tabular}

\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ TRAFFIC GATES } \\
\hline IDENTIFICATION: Traffic Gate & \\
\hline LOCATION: NORTH GATES & \\
Typical for NW and NE gates & Note: NW Gate replaced within the last three (3) \\
& years \\
NUMERICAL RATING: 2 & \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ ITEM } & CONDITION \\
\hline HOUSING & Fair \\
\hline MOUNTING BOLTS & Fair \\
\hline ROADWAY ARM & Poor \\
\hline SIDEWALK ARM & Fair \\
\hline ARM LIGHTS & Fair \\
\hline FLEXIBLE CABLE & Fair & Fair \\
\hline GONG & Fair \\
\hline DOOR HARWARE & Fair \\
\hline OPERATION & Fair \\
\hline INTERNAL & Fair \\
\hline GATE LIMIT SWITCH & Fair \\
\hline DOOR LIMIT SWITCH & Fair \\
\hline HAND CRANK LIMIT & Fair \\
SWITCH & Fair \\
\hline CONTROLS & Fair \\
\hline CONDUIT ENTRIES & Fair \\
\hline WIRING & Fair \\
\hline MOTOR & \\
\hline BRAKE & \\
\hline & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ TRAFFIC GATES } \\
\hline IDENTIFICATION: Traffic Gate & \\
\hline LOCATION: SOUTH GATES & \\
Typical for SW and SE gates & Note: SE Gate replaced within the last three (3) \\
& years \\
NUMERICAL RATING: 2 & \\
\hline
\end{tabular}

\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ POWER DISTRIBUTION SYSTEM } \\
\hline IDENTIFICATION: Electrical 1 & \\
Service Metering & \\
\hline LOCATION: North Exterior & Main Disconnect Switch: 600VOLT GEAR, 240V, \\
Switchboard & 400A FUSED AT 200A \\
NUMERICAL RATING: 2 & Meter: 3 Phase, 4W, Wye, 240V DETLA \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{POWER DISTRIBUTION SYSTEM} \\
\hline \multicolumn{3}{|l|}{IDENTIFICATION: Electrical 2 Service Metering} \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{|l|l|}
\hline LOCATION: South Weston the side of & Main Disconnect Switch: 600V, GEAR 240V, \\
MCC-2 \\
NUMERICAL RATING: 1
\end{tabular}\(\quad\)\begin{tabular}{l} 
100A \\
Meter: 3 Phase, 4W, Wye, 240V DETLA
\end{tabular}} \\
\hline ITEM & CONDITION & \multirow[t]{7}{*}{} \\
\hline HOUSING & Fair & \\
\hline WIRING & Fair & \\
\hline BREAKER & Fair & \\
\hline DISCONNECT SWITCHES & N/A & \\
\hline CONDUITS & Fair & \\
\hline & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ POWER DISTRIBUTION SYSTEM } \\
\hline IDENTIFICATION: MCC-1 & \\
\hline LOCATION: Control House Electrical Room & \begin{tabular}{l} 
Double BUSED AT 400A EACH \\
NUMERICAL RATING: 1
\end{tabular} \\
\begin{tabular}{l} 
Main Disconnect Switch: 600V, 250A AT BUS 2 (NO DISCONNECT AT \\
BUS 1) \\
MUST DISCONNECT SERVICE ENTRANCE SWITCHBOARD TO \\
REMOVE POWER FROM BUS 1.
\end{tabular} \\
\hline
\end{tabular}


\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ ITEM } & CONDITION \\
\hline HOUSING & Poor \\
\hline WIRING & Good \\
\hline BREAKER & Good \\
\hline DISCONNECT SWITCHES & Good \\
\hline CONDUITS & Good \\
\hline & & \\
\hline
\end{tabular}


\section*{Appendix B-Electrical Inspection Photographs and Deficiencies}


Photo E- 1
Exterior Service Entrance Switchboard


Photo E- 2
Exterior Service Entrance Switchboard Interior of Enclosure


Photo E- 3
Exterior Service Entrance Switchboard Enclosure Ceiling


Photo E-4
Exterior Service Entrance Switchboard Skin Door.


Photo E- 5
MCC-2


Photo E- 6
Wireless Antenna Pole Support Fastener at MCC-2.


Photo E- 7


Photo E- 9


Petaluma D Street Single Leaf Bridge
AECOM


Page 35


Photo E- 14


Photo E- 15

Photo E- 17


Photo E- 19


Photo E- 20


Photo E- 21


Photo E-22


Photo E- 23


Photo E- 25


Photo E- 27


Photo E-28


Photo E- 29


Photo E- 30


Photo E- 31


\section*{Appendix C - Electrical Chart Recording Graphs and} Insulation Resistance Tables

\author{
North West Main Service Entrance
}


Note: Current transformers located before the mains at MCC-1 for the North West utility service. It was not possible to monitor the mains of the South West service due to logistics in service connection and lack of Arc Flash Label indicating the appropriate PPE required to open a live compartment to install the power logger.

\section*{North East Bridge Span Motor}


Note: Current transformers connected at motor disconnect (on the secondary of the main drive).

\section*{North West Bridge Span Motor}


Note: Current transformers connected at motor disconnect (on the secondary of the main drive).

North East Brake Thruster Motor


Note: Current transformers connected at motor disconnect.


Note: Current transformers connected at motor disconnect.

Insulation Resistance Results



\section*{Statement of Limitations}

This report has been prepared in accordance with the customary standards of care and diligence practiced by firms that conduct services of a similar nature. The report is based on data, site conditions and other information that is generally applicable as of the date that the structure was inspected, and the conclusions and recommendations herein are therefore applicable only to that timeframe. AECOM makes no representation as to the condition of the bridge after the date the structure was inspected.

Background information, drawings, load ratings, and other data used in preparation of this report have been provided to AECOM by the Municipality of Petaluma and / or third parties. AECOM has relied on this information as furnished and has not confirmed the accuracy of this information. AECOM does not assume responsibility for inaccuracies in information obtained from Municipality of Petaluma or third parties. This document and the information contained in this report have been prepared solely for the use of the Municipality of Petaluma in accordance with applicable state and federal law. No third party shall have the right to rely on this report without the written consent of AECOM and the third party's agreement to be bound to the same conditions and limitations as the Municipality of Petaluma.

This report is a statement of professional opinion only. AECOM does not warrant or guarantee the condition or performance of the bridge. AECOM does not assume liability for bridge conditions not present at the time the bridge was observed by AECOM, or not readily visible through reasonable inspectionefforts. For purposes of this report, AECOM assumes the bridge design is correct and the bridge has been constructed as designed. AECOM has not analyzed the adequacy of bridge design or whether the bridge has been constructed as designed. AECOM assumes no responsibility for failure to detect hidden, covered, inaccessible, or internal structural or material defects, corrosion, or damages in component members, reinforcing, anchorages and parts of equipment, structures, or mechanisms being inspected.```

