APPENDIX A

PERMITS

San Francisco Bay Regional Water Quality Control Board

CLEAN WATER ACT SECTION 401 WATER QUALITY CERTIFICATION AND ORDER for:

First and F Street Bridge Replacement Project, Sonoma County

Sent via electronic mail: No hard copy to follow

Effective Date: May 10, 2021

Place ID 872888 WDID\# 2 CW442594

Applicant: City of Petaluma Public Works Department
Attn.: Ken Eichstaedt
P.O. Box 61
Petaluma, CA 94953
Phone: (707) 776-3672
Email: keichstaedt@cityofpetaluma.org
Applicant's Agent: Questa Engineering
Jeff Peters
1220 Brickyard Cove Road, Suite 206
Point Richmond, CA 94801
Phone: (510) 236-6114 Ext. 206
Email: jpeters@questaec.com
Water Board Staff: Nicole Fairley
1515 Clay Street, Suite 1400
Oakland, CA 94612
Phone: (510) 622-2424
Email: nicole.fairley@waterboards.ca.gov

Table of Contents

ORDER 3
I. Project 3
II. Impacts to Waters of the State 4
III. Mitigation 4
IV. California EcoAtlas 4
V. California Environmental Quality Act (CEQA) 4
VI. Conditions 5
General Conditions 5
Mitigation 6
Monitoring and Reporting 6
Administrative 7
General Compliance 8
Standard Conditions 9
Fees 9

Order

This Clean Water Act (CWA) section 401 Water Quality Certification and Order (Order) is issued at the request of the City of Petaluma Public Works Department (Permittee) for the First and F Street Bridge Replacement Project (Project). We received the application for certification (Application) on March 15, 2021.

The Permittee has also applied to the U.S. Army Corps of Engineers (Corps), Regulatory Branch for coverage under Nationwide Permit 3 (Maintenance), pursuant to CWA Section 404 (33 USC 1344).

I. Project

The Project is located on Thompson Creek, a tributary to the Petaluma River, at the intersection of First and F streets in Petaluma (38.232941, -122.633691). The Project purpose is to replace a failing wooden bridge structure with a bottomless arch culvert. The existing wooden bridge structure is made up of degraded timber piles, broken support beams, and decking, all of which is either pressure-treated or creosote-treated wood, and has reach the end of its design life. The bridge is approximately 20 feet wide and 30 feet long, spanning a tidal portion of Thompson Creek, approximately 225 feet upstream from the confluence with the Petaluma River. On the upstream end, the bridge ties into an existing concrete oval storm drain culvert pipe that discharges stream flow below the bridge.

To avoid catastrophic failure of the bridge and roadway, the old bridge structure will be demolished and replaced with a new 24 -foot-wide, 30 -foot-long, pre-cast bottomless concrete arch culvert. Demolition of the existing bridge will take place from the roadway with existing bridge piers and lagging left in place help isolate and stabilize the trenching area from the main channel. To isolate the construction work area from tidal water, a temporary sheet pile coffer dam will be installed across the channel at the downstream side of the existing bridge for up to three weeks. Behind the wood lagging and within the existing roadway fill on each side of the channel, a trench will be excavated and 8 steel displacement piles, also called torque down piles, will be installed in a row approximately two feet landward from the previous bridge's piers and wood lagging supports. Concrete will be poured to fortify the hollow steel piles and concrete grade beams will be installed in the trenches to cap and tie together the drilled piles. This will be the structural foundation for the pre-cast concrete arch culvert, which will rest on top of the grade beams. The trenching and concrete work will take place outside of waters of the State within the existing road prism and concrete pouring will be contained and prevented from entering the tidal channel in accordance with the BMPs included in the application. Groundwater seepage into the trench will be dewatered and discharged to a nearby sanitary sewer drain in accordance with the dewatering plan included in the Application. The wood lagging isolation structure will remain in place until freshly poured concrete has set and a water safe sealant shall be used to ensure complete curing after the form boards are removed. Then the treated timber piles and wood lagging from the previous bridge structure will be removed in full, if possible, or cut at or below the mudline. A pre-cast concrete headwall and wingwalls will be installed at the downstream end of the bridge behind the existing timber headwall and wingwalls, which will then be demolished and removed from the channel.

II. Impacts to Waters of the State

If effective best management practices (BMPs) are not implemented during construction, waters of the state may be impacted by increased erosion and sedimentation, and/or discharging debris and other waste materials. The project will temporarily disturb approximately 0.013 acres (40 linear feet) of tidal channel.

III. Mitigation

During construction, the Permittee will avoid and minimize impacts to waters of the State by implementing appropriate and effectives BMPs as described in the Application. These include, but are not limited to, dewatering the channel during construction to ensure no construction related discharges to waters of the State, tidal marsh vegetation disturbed during construction will be salvaged and replaced to promote efficient revegetation, and all treated wood material associated with the bridge will be removed and disposed of off-site.

The Project will result in a net benefit to water quality and aquatic habitat through the removal of copper-arsenic-treated wood wingwalls and 22 creosote-treated timber piles and the installation of a wider arch culvert. All of this will result in the restoration of approximately 148 square feet (32 linear feet) of tidal channel through the removal of the wooden bridge structure and eliminate the treated wood as a source of pollutants.

IV. California EcoAtlas

Regional, state, and national studies have determined that tracking of mitigation and restoration projects must be improved to better assess the performance of these projects, following monitoring periods that last several years. To effectively carry out the State's Wetlands Conservation Policy of no net loss to wetlands, the State needs to closely track both losses and successes of mitigation and restoration projects affecting wetlands and other waters of the State. The Water Board must also track project performance in Bay Area creeks subject to routine repair and maintenance activities, such as recurring instabilities. Therefore, we adopted the digital interactive mapping tool called EcoAtlas. ${ }^{1}$ EcoAtlas is a web-based tool that integrates maps, project plans, site conditions, restoration efforts, and other elements on a project-by-project basis based on data inputs. Accordingly, we require the Permittee to upload their Project information to EcoAtlas with the Project Tracker tool at https://ptrack.ecoatlas.org. The California Wetlands Monitoring Workgroup developed EcoAtlas and maintains detailed instructions for Project Tracker on its website at https://ptrack.ecoatlas.org/instructions.

V. California Environmental Quality Act (CEQA)

The City of Petaluma determined that the project is categorically exempt from review under CEQA pursuant to CEQA Guidelines Section 15302, Replacement or Reconstruction. The City of Petaluma filed a Notice of Exemption with the State Clearinghouse on January 29, 2021. The Water Board concurs with this determination.

[^0]
VI. Conditions

The Water Board independently reviewed the Project record to analyze impacts to water quality and the environment and designated beneficial uses within the Project's watershed. In accordance with this Order, the Permittee may proceed with the Project under the following terms and conditions:

General Conditions

1. The Project shall be constructed in conformance with the Project description provided in the Application. The Permittee shall fully comply with engineering plans, specifications, and technical reports submitted in the Application or required as part of this Order. Any changes to information provided in the Application must be submitted to the Water Board and receive Executive Officer approval before the changes may be implemented.

Rationale: This condition is necessary to ensure compliance with the permit and applicable conditions and to ensure that the proposed work and final restoration work has been conducted in accordance with the permit and all applicable conditions. (California Water Code (CWC) Section 13264).
2. Disturbance or removal of vegetation shall be minimized. The site shall be stabilized through incorporation of appropriate BMPs, including the successful reestablishment of native vegetation to enhance wildlife habitat values, and to prevent and control erosion.

Rationale: This condition is necessary to ensure minimization of impacts to waters of the State and to ensure successful restoration of all temporary impacts authorized (State Board Resolution No. 68-16; 40 CFR Part 131.12 (a)(1); CWC sections 13264 and 13369; Water Quality Control Plan for the San Francisco Bay Basin (Basin Plan) Chs. 3 and 4).
3. No equipment shall be operated in stream channels or other waters where there is flowing or standing water. Fueling, cleaning, or maintenance of vehicles or equipment during construction shall not take place within any areas where an accidental discharge to waters of the State may occur.

Rationale: This condition is necessary to minimize adverse impacts to water quality from construction activities to the maximum extent practicable (State Board Resolution No. 68-16; 40 CFR Part 131.12 (a)(1); CWC section 13369; Basin Plan Section 2.1.14).
4. No unauthorized construction related materials or wastes shall be allowed to enter into or be placed where they may be washed by rainfall or runoff into waters of the State. When construction is completed, any excess material shall be removed from the work area and any areas adjacent to the work area where such material may be discharged to waters of the State.

Rationale: This condition is necessary to ensure that contaminated material is not placed within waters of the State (Basin Plan Sections 3.3.12, 3.3.19, and 4.19).

Mitigation

5. To mitigate for 0.013 acres of temporary impacts to tidal channel, the Permittee shall restore all areas of temporary impacts to waters of the State and all upland areas temporarily impacted that could result in a discharge to waters of the State in accordance with the Application.
6. If restoration of temporary impacts to waters of the State is not completed within one year of the impacts, additional compensatory mitigation shall be required to offset temporal loss of waters of the State.

Rationale: Conditions 5 and 6 are necessary to ensure avoidance and minimization of impacts to waters of the State, as well as ensure successful compensatory mitigation and replacement of the functions of the aquatic environment that would be lost as a result from the construction of the proposed project (Title 23, California Code of Regulations (23 CCR) section 3013, section 3861(d), Dredge of Fill Procedures section IV. A.2(d) \& B.4).

Monitoring and Reporting

7. The Permittee shall input Project information to EcoAtlas within 14 days from the date of this Order, consistent with Certification Section IV. The Project information shall be added to the Project Tracker tool in EcoAtlas online at https://ptrack.ecoatlas.org. Instructions for adding information to EcoAtlas are available at https://ptrack.ecoatlas.org/instructions, or by contacting the San Francisco Estuary Institute by email at ptrackadmin@sfei.org, or the Water Board case manager listed on the cover page of this Order. The Executive Officer may grant an extension to the 14-day deadline if the Permittee submits a request in writing to the Water Board case manager listed on the cover page of this Order. The extension request may be submitted via electronic mail.

Rationale: This condition is necessary to ensure compliance with the permit and applicable conditions (CWC section 13267).
8. The Permittee shall submit a Commencement of Construction Report at least seven days prior to start of initial ground disturbance activities.

Rationale: This condition is necessary to assist in scheduling compliance inspections to ensure compliance with the permit and applicable conditions (CWC section 13267).
9. No later than 30 days after completing Project construction activities, the Permittee shall submit, acceptable to the Executive Officer, a Notice of Project Construction Completion. The Notice shall include the date Project construction activities (defined as construction of both the Project and any compensatory mitigation) were completed and reference Place ID 872888. The Notice shall be sent via email to RB2-401Reports@waterboards.ca.gov, or by mail to the attention of 401 Certifications Reports (see address on the letterhead).
10. To verify that temporarily impacted areas are restored and that the Project is preforming as intended, vegetation and geomorphic monitoring shall be conducted. Percent cover of tidal marsh vegetation on the banks was estimated and pre-construction photographs were provided in the Application. The temporarily disturbed bank vegetation shall be salvaged and replaced post-construction, then photo monitored annually until percent cover is restored to preconstruction conditions.

Geomorphic monitoring shall be conducted annually for 5 years and shall consist of visual inspections and photographs of any signs of significant erosion or sedimentation threatening Project stability and/or aquatic habitat. Photographs shall be taken at the culvert outlet and at least two photographs, looking upstream and downstream, every 25 feet for 100 feet downstream. The performance criterion shall be no significant erosion or sedimentation threatening Project stability and/or aquatic habitat.
11. The Permittee shall submit annual monitoring reports, acceptable to the Executive Officer, by January 31 following each monitoring year with the first monitoring year commencing the calendar year after completing the Project. Each annual report shall summarize each year's monitoring results, including the need for, and implementation of, any remedial actions to help meet the performance criteria. The annual reports shall compare data to previous monitoring years and describe progress towards meeting final performance criteria.
12. The final monitoring report shall document if the site meets the final performance criteria. If the final criteria are not met, the Permittee shall, in consultation with the Water Board and appropriate agencies, identify remedial measures to be undertaken, including extension of the monitoring and reporting period until the criteria are met. The Permittee shall implement all remedial measures identified upon receiving written acceptance by the Executive Officer. Success of the mitigation program shall be determined by, and acceptable to, the Water Board Executive Officer.
13. Annual monitoring reports shall reference Place ID 872888 and shall be submitted via email to RB2-401Reports@waterboards.ca.gov, or by mail to the attention of 401 Certifications Reports (see the address on the letterhead).
14. Within 30 days of successfully establishing the Project's compensatory mitigation, the Permittee shall submit, acceptable to the Executive Officer, a Notice of Mitigation Monitoring Completion notifying the Water Board that mitigation has been completed. The Notice shall be submitted via email to RB2-401Reports@waterboards.ca.gov, or by mail to the attention of 401 Certifications Reports. This notification shall include the date compensatory mitigation was completed, the Project Name, and Place ID 872888.

Rationale: Conditions 9-14 are necessary to ensure compliance with the permit and applicable conditions and to ensure that the proposed work and restoration work has been conducted in accordance with the permit and all applicable conditions (23 CCR section 3013; CWC section 13267).

Administrative

15. The Permittee shall grant Water Board staff or an authorized representative, upon presentation of credentials and other documents as may be required by law, permission to: (1) enter upon the Project site or compensatory mitigation site(s) where a regulated facility or activity is located or conducted, or where records are kept; (2) have access to and copy any records that are kept and are relevant to the Project or the requirements of this Order; (3) inspect any facilities, equipment, practices, or operations regulated or required under this Order; and (4) sample or monitor for the purposes of assuring Order compliance.

Rationale: This condition is necessary to assist in scheduling compliance inspections and to ensure compliance with the permit and applicable conditions (CWC section 13267).
16. A copy of this Order shall be provided to any consultants, contractors, and subcontractors working on the Project. Copies of this Order shall remain at the Project site for the duration of this Order. The Permittee shall be responsible for work conducted by its consultants, contractors, and any subcontractors.

Rationale: This condition is necessary to ensure compliance with the permit and applicable conditions (CWC sections 13170 and 13245).
17. The Permittee shall provide a signed and dated notification to the Water Board of any change in ownership or interest in ownership of the Project area at least 10 days prior to the transfer of ownership. The purchaser shall also submit a written request to the Water Board to be named as the permittee in an amended order. Until such time as this Order has been modified to name the purchaser as the permittee, the Permittee shall continue to be responsible for all requirements set forth in this Order.

Rationale: This condition is necessary to ensure compliance with the permit and applicable conditions (CWC section 13264).
18. The Permittee may transfer responsibility for long-term management of compensatory mitigation after final performance criteria are met. The Permittee shall submit documentation to the Water Board if responsibility for long-term management of compensatory mitigation is legally transferred at least 30 days prior to the transfer of long-term management responsibility.

Rationale: This condition is necessary to ensure compliance with the permit and applicable conditions (CWC section 13264).
19. The Permittee shall submit documentation to the Water Board if maintenance responsibility for post-construction BMPs is legally transferred at least 10 days prior to the transfer of BMP maintenance responsibility. The Permittee shall provide the transferee with a copy of a longterm BMP maintenance plan that complies with manufacturer or designer specifications.

Rationale: This condition is necessary to ensure compliance with the permit and applicable conditions (CWC section 13264).

General Compliance

20. The Permittee shall notify the Water Board of any event causing a violation of compliance with water quality standards as soon as practicable (ideally within 24 hours). Notification may be via telephone, email, delivered written notice, or other verifiable means.

Rationale: This condition is necessary to minimize adverse impacts to water quality (CWC sections 13385 and 13267).
21. Failure to implement the Project as proposed is a violation of this Order. Violation of this Order is a violation of state law and is subject to administrative civil liability pursuant to California Water Code (CWC) sections 13350, 13385, or 13399.2. Failure to meet any condition of this Order shall constitute a violation of the Porter-Cologne Water Quality Control Act and the Clean Water Act and may subject you to civil liability imposed by the Water Board to a maximum of $\$ 5,000$ per day of violation or $\$ 10$ for each gallon of waste discharged in violation of this Order.
22. In response to a suspected violation of any condition of this Order, the Water Board may require the Permittee to furnish, under penalty of perjury, any technical or monitoring reports the Water Board deems appropriate, provided that the burden, including costs, of the reports shall bear a reasonable relationship to the need for the reports and the benefits to be obtained from the reports.

Rationale: This condition is necessary to minimize adverse impacts to water quality (CWC sections 13267 and 13383).
23. Should new information come to our attention that indicates a water quality problem with this Project, the Water Board may issue Waste Discharge Requirements pursuant to 23 CCR section 3857.
24. This Order shall continue to have full force and effect regardless of the expiration or revocation of any federal license or permit issued for the Project.

Rationale: This condition is necessary to ensure compliance with the permit and applicable conditions (CWC sections 13170 and 13245).

Standard Conditions

25. This Order is subject to modification or revocation upon administrative or judicial review, including review and amendment pursuant to CWC section 13330 and 23 CCR 3867.
26. This Order is not intended and shall not be construed to apply to any activity involving a hydroelectric facility and requiring a FERC license or an amendment to a FERC license unless the pertinent certification application was filed pursuant to 23 CCR Subsection 3855(b) and that application specifically identified that a FERC license or amendment to a FERC license for a hydroelectric facility was being sought.

Rationale: Conditions 25 and 26 are standard conditions that "shall be included as conditions of all water quality certification actions." (23 CCR Section 3860(a)).

Fees

27. This Order is conditioned upon total payment of the full fees, including annual fees, required in State regulations (23 CCR sections 2200(a)(3) and 3833(b)(3)) and owed by the Permittee. The Application fee for this Project, \$2,060, was paid in full on March 9, 2021, and was calculated as Category E - Low Impact Discharges with the dredge and fill fee calculator.

Rationale: This is a standard condition that "shall be included as conditions of all water quality certification actions." (23 CCR Section 3860(a)).
28. In accordance with 23 CCR section 2200, the Permittee shall pay an annual fee to the Water Board each fiscal year (July 1 - June 30) until Project construction activities are completed and an acceptable Notice of Project Construction Completion is received by the Water Board. If monitoring is required, the Permittee shall pay an annual fee to the Water Board until monitoring activities are completed and an acceptable Notice of Mitigation Monitoring Completion is received by the Water Board. Annual fees will be automatically invoiced to the Permittee. The Permittee must notify the Water Board at Project and/or mitigation completion with a final report in order to request to terminate annual invoicing. Notification should be sent to
the staff listed at the bottom of this Order and to RB2-401Reports@waterboards.ca.gov. Water Board staff will verify conditions of the Certification have been met and may request a site visit at that time to confirm the Project's status and compliance with this Certification.

Rationale: This condition is a requirement of 23 CCR sections 3833(b)(3) and 2200(a)(3).
I, Michael Montgomery, Executive Officer, do hereby issue this Order certifying that any discharge from the proposed Project will comply with the applicable provisions of sections 301 (Effluent Limitations), 302 (Water Quality Related Effluent Limitations), 303 (Water Quality Standards and Implementation Plans), 306 (National Standards of Performance), and 307 (Toxic and Pretreatment Effluent Standards) of the Clean Water Act, and with other applicable requirements of State law. This discharge is also regulated under State Water Resources Control Board Order No. 2003-0017DWQ, "General Waste Discharge Requirements for Dredge and Fill Discharges That Have Received State Water Quality Certification," which requires compliance with all conditions of this Order.

If you have any questions concerning this Order, please contact Nicole Fairley of my staff at (510) 622-2424 or nicole.fairley@waterboards.ca.gov.

Cc: SWRCB, DWQ, Stateboard401@waterboards.ca.gov
Water Board, Victor Aelion, victor.aelion@waterboards.ca.gov
U.S. EPA, Region IX, Jennifer Siu, siu.jennifer@epa.gov
U.S. Army Corps, SF Regulatory, Kendra Spicher, kendra.a.spicher@usace.army.mil

CDFW, James Hansen, james.hansen@wildlife.ca.gov
Questa Engineering
Tom Hawbaker, thawbaker@questaec.com
Margaret Henderson, mhenderson@questaec.com

DEPARTMENT OF THE ARMY
SAN FRANCISCO DISTRICT, U.S. ARMY CORPS OF ENGINEERS
450 GOLDEN GATE AVENUE
SAN FRANCISCO, CALIFORNIA 94102

June 11, 2021
Regulatory Division
Subject: First and F Street Bridge Replacement File Number 2020-00442

Ken Eichstaedt, Senior Traffic Engineer
City of Petaluma Public Works Department
P.O. Box 61 Petaluma, Ca 94953

KEichstaedt@cityofpetaluma.org
Dear Mr. Eichstaedt:
This correspondence is in reference to your submittal of November 9, 2020 concerning Department of the Army (DA) authorization to replace the First and F Street Bridge, which is a wooden bridge built over a small tidal cut tributary to the Petaluma River located at the intersection of First and F Street in downtown Petaluma. The overall project site is approximately 0.06 acres and is located in the City of Petaluma, Sonoma County, California; Latitude 38.23302°, Longitude -122.63367°.

Work within U.S. Army Corps of Engineers' (Corps) jurisdiction will include the old bridge structure being replaced with a new pre-cast bottomless concrete arch culvert. The arch culvert would rest on concrete grade beams that cap and tie together a series of drilled displacement piles, located in a row behind the preserved wood lagging bridge walls. The plan would be for all work requiring construction equipment and new bridge replacement material to be completed and installed above high tide line and from behind the wood lagging wall. This construction method is sometimes called "top down" construction, as most of the work is from street grade. There is the possibility that depending on the condition of the bridge walls, that temporary sheet piling, or a temporary sheet pile cofferdam might be required during construction. Work will require placement of 182 cubic yards of temporary and permanent fill within 0.013 acre(s) of Thompson Creek. All work shall be completed in accordance with the plans and drawings titled "USACE File \#2020-00442, First and F Street Bridge Replacement" provided as enclosure 1.

Section 404 of the Clean Water Act (CWA) generally regulates the discharge of dredged or fill material below the plane of ordinary high water in non-tidal waters of the United States, below the high tide line in tidal waters of the United States, and within the lateral extent of wetlands adjacent to these waters. Section 10 of the Rivers and Harbors Act (RHA) generally regulates construction of structures and work, including excavation, dredging, and discharges of dredged or fill material occurring below the plane of mean high water in tidal waters of the United States; in former diked baylands currently below mean high water; outside the limits of mean high water but affecting the navigable capacity of tidal waters; or below the plane of ordinary high water in non-tidal waters designated as navigable waters of the United States. Navigable waters of the United States generally include all waters subject to the ebb and flow of
the tide; and/or all waters presently used, or have been used in the past, or may be susceptible for future use to transport interstate or foreign commerce.

Based on a review of the information in your submittal, the project qualifies for authorization under Department of the Army Nationwide Permits (NWPs) 3 for Maintenance and 33 for Temporary Construction, Access, and Dewatering (82 Fed. Reg. 1860, January 6, 2017), pursuant to Section 404 of the CWA of 1972, as amended (33 U.S.C. § 1344 et seq.), and Section 10 of the RHA of 1899 , as amended (33 U.S.C. § 403 et seq.). The project must be in compliance with the terms of the NWP cited on our website (www.spn.usace.army.mil/Portals/68/docs/regulatory/NWP/NWP17 03.pdf) andwww.spn.usace.army.mil/Portals/68/docs/regulatory/NWP/NWP17_33.pdf) , the general conditions of the Nationwide Permit Program (www.spn.usace.army.mil/Portals/68/docs/regulatory/NWP/NWP17_GC.pdf), and the San Francisco District regional conditions (www.spn.usace.army.mil/Portals/68/docs/regulatory/NWP/NWP17_RC.pdf). You must also be in compliance with any special conditions specified in this letter for the NWP authorization to remain valid. Non-compliance with any term or condition could result in the revocation of the NWP authorization for your project, thereby requiring you to obtain an Individual Permit from the Corps. This NWP authorization does not obviate the need to obtain other State or local approvals required by law.

This verification will remain valid until March 18, 2022, unless the NWP authorization is modified, suspended, or revoked. Activities which have commenced (i.e., are under construction) or are under contract to commence in reliance upon a NWP will remain authorized provided the activity is completed within 12 months of the date of a NWP's expiration, modification, or revocation, unless discretionary authority has been exercised on a case-by-case basis to modify, suspend, or revoke the authorization in accordance with 33 C.F.R. § 330.4(e) and 33 C.F.R. § $330.5(\mathrm{c})$ or (d). This verification will remain valid if, during the time period between now and March 18, 2022, the activity complies with any subsequent modification of the NWP authorization. The Chief of Engineers will periodically review NWPs and their conditions and will decide to modify, reissue, or revoke the permits. If a NWP is not modified or reissued within five years of its effective date, it automatically expires and becomes null and void. It is incumbent upon you to remain informed of any changes to the NWPs. Changes to the NWPs would be announced by Public Notice posted on our website (www.spn.usace.army.mil/Missions/Regulatory/Public-Notices.aspx). Upon completion of the project and all associated mitigation requirements, you shall sign and return the Certification of Compliance, enclosure 2, verifying that you have complied with the terms and conditions of the permit.

You shall comply with all terms and conditions set forth by the "WQC for the First and F Street Bridge Replacement Project," issued by the San Francisco Bay Regional Water Quality

Control Board on May 11, 2021 (enclosure 3). You shall consider such conditions to be an integral part of the NWP authorization for your project.

General Condition 18 stipulates that project authorization under a NWP does not allow for the incidental take of any federally-listed species in the absence of a biological opinion with incidental take provisions. As the principal federal lead agency for this project, the Corps initiated consultation with the National Marine Fisheries Service (NMFS) to address project related impacts to listed species, pursuant to Section 7(a) of the Endangered Species Act of 1973, as amended, 16 U.S.C. § 1531 et seq. By letter of April 7, 2021, cited in enclosure 4, NMFS concurred with the determination that the project was not likely to adversely affect CCC Steelhead or North American Green Sturgeon and designated critical habitat for these species.

General Condition 20 stipulates that any project affecting a historic property may not commence construction until the provisions of 33 C.F.R. § 325, Appendix C, have been satisfied. As the Federal lead agency for this project, the Corps initiated consultation with the State Historic Preservation Officer (SHPO) to address project related impacts to the First and F Street Bridge, and was determined to not be eligible for the National Register of Historic Places in a letter dated April 22, 2021. The letter is included as enclosure 5.

In order to ensure compliance with this NWP authorization, the following special conditions shall be implemented:

1. Incidents where any individuals of fish listed by NOAA Fisheries under the Endangered Species Act appear to be injured or killed as a result of discharges of dredged or fill material into waters of the United States or structures or work in navigable waters of the United States authorized by this NWP shall be reported to NOAA Fisheries, Office of Protected Resources, at (301) 713-1401 and the Regulatory Office of the San Francisco District of the U.S. Army Corps of Engineers at (415) 503-6795. The finder should leave the plant or animal alone, make note of any circumstances likely causing the death or injury, note the location and number of individuals involved, and, if possible, take photographs. Adult animals should not be disturbed unless circumstances arise where they are obviously injured or killed by discharge exposure or some unnatural cause. The finder may be asked to carry out instructions provided by NOAA Fisheries, Office of Protected Resources, to collect specimens or take other measures to ensure that evidence intrinsic to the specimen is preserved.
2. The NMFS concurred with the determination that the project was not likely to adversely affect CCC Steelhead or North American Green Sturgeon and designated critical habitat for this species. This concurrence was premised, in part, on project work restrictions and the description of the proposed action outlined in enclosure 4.

These work restrictions are incorporated as special conditions to the NWP authorization for your project to ensure unauthorized incidental take of species and loss of critical habitat does not occur.

You may refer any questions on this matter to Kendra Spicher of my Regulatory staff by email at kendra.a.spicher@usace.army.mil. All correspondence should be addressed to the Regulatory Division, North Branch, referencing the file number at the head of this letter.

The San Francisco District is committed to improving service to our customers. My Regulatory staff seeks to achieve the goals of the Regulatory Program in an efficient and cooperative manner while preserving and protecting our nation's aquatic resources. If you would like to provide comments on our Regulatory Program, please complete the Customer Service Survey Form available on our website: http://www.spn.usace.army.mil/Missions/ Regulatory.aspx

Sincerely,

William Connor
Acting North Branch Chief, Regulatory
Division

Enclosures:

Jeffery Peters, JPeters@questaec.com
cc ($\mathrm{w} / \mathrm{encl}$):
CA RWQCB, Nicole Fairley, nicole.fairley@waterboards.ca.gov

Enclosure 2

Permittee: Ken Eichstaedt, Senior Traffic Engineer
City of Petaluma Public Works Department
File Number: 2020-00442

Certification of Compliance
 for
 Nationwide Permit

"I hereby certify that the work authorized by the above referenced File Number and all required mitigation have been completed in accordance with the terms and conditions of this Nationwide Permit authorization."

Return to:
Kendra Spicher
U.S. Army, Corps of Engineers

San Francisco District
Regulatory Division, CESPN-R-N
450 Golden Gate Ave., $4^{\text {th }}$ Floor
San Francisco, CA 94102-3404

California Department of Fish and Wildlife
Bay Delta Region
2825 Cordelia Road, Suite 100
FAIRFIELD, CA 94534
Streambed Alteration Agreement
EPIMS-SON-18195-R3
Thompson Creek
City of Petaluma
First and F Street Bridge Replacement

This Streambed Alteration Agreement (Agreement) is entered into between the California Department of Fish and Wildlife (CDFW) and the City of Petaluma (Permittee) as represented by Kenneth Eichstaedt.

RECITALS

WHEREAS, pursuant to Fish and Game Code section 1602, Permittee notified CDFW on April 12, 2021 that Permittee intends to complete the project described herein.

WHEREAS, pursuant to Fish and Game Code section 1603, CDFW has determined that the project could substantially adversely affect existing fish or wildlife resources and has included measures in the Agreement necessary to protect those resources.

WHEREAS, Permittee has reviewed the Agreement and accepts its terms and conditions, including the measures to protect fish and wildlife resources.

NOW THEREFORE, Permittee agrees to complete the project in accordance with the Agreement.

PROJECT LOCATION

The project is located at Thompson Creek, in the City of Petaluma, County of Sonoma, State of California; Latitude 38.232937°, Longitude -122.633704°. It is located at the intersection of First Street and F Street.

PROJECT DESCRIPTION

The project is limited to the demolition and removal of the existing wooden bridge built over a small tidal cut where Thompson Creek enters the Petaluma River, and replacement with an arch culvert. The existing bridge has approximate dimensions of 20 -feet in width spanning the tidal cut, with the bridge deck extending upstream along First Street approximately 30 feet, where it ties into a concrete storm drainpipe culvert. The existing bridge will be replaced with a pre-cast bottomless concrete arch culvert of the same dimensions as the existing bridge. The immediate work area will be
dewatered with sheet piles, a cofferdam and a bypass pipe conveying any flow from the upstream storm drain culvert. The majority of work will be performed within the existing bridge footprint, except for temporary impacts to the downstream channel and banks during installation of the coffer dam and sheet piles, as well as permanent impacts from the installation of new concrete wing walls. The project will involve drilling 12-14 steel piers into the native substrate underneath the existing road to support the grade beams, which the new pre-cast concrete arch culvert will be placed on. Each pier will be approximately 36 inches wide and at least 22 feet deep in order to reach bedrock. Piers will be installed by drilling a hole and inserting steel piles in a manner that does not utilize drilling muds or fluids and will not displace groundwater. The project also involves the removal of all 22 existing 10-inch creosote wood piers in the channel that support the existing bridge.

The installation and removal of sheet piles for dewatering will temporarily impact approximately 480 square feet of stream habitat. The installation of new concrete wing walls will permanently impact approximately 144 square feet of stream habitat. Removal of the existing creosote piles from underneath the existing bridge after it is demolished will restore approximately 250 square feet of channel habitat and improve water quality in an immediate tributary to the Petaluma River. No trees will be removed as part of this project.

PROJECT IMPACTS

Existing fish or wildlife resources the project could substantially adversely affect include:

- Steelhead trout, Central California Coast Distinct Population Segment (Oncorhynchus mykiss irideus), Federal Threatened
- Sonoma spineflower (Choizanthe valida), State Endangered and Federal Endangered
- Pitkin Marsh Lily (Lilium pardalinum ssp. pitkinense), State Endangered and Federal Endangered
- Sacramento splittail (Pgonichthys macrolepidotus), California Species of Special Concern (SSC)
- Townsend's big-eared bat (Corynorhinus townsendii), SSC
- San Pablo song sparrow (Melospiza melodia samuelis), SSC
- Waterfowl
- Nesting birds

The adverse effects the project could have on the fish or wildlife resources identified above include:

- disruption to the species listed above
- disruption of aquatic and riparian habitat
- loss of riparian and/or emergent marsh habitat
- colonization by exotic plant species
- loss of aquatic and terrestrial wildlife species
- temporary impediment to migration of aquatic and terrestrial species
- disruption to nesting birds and other wildlife
- change in contour of bed, channel, or bank
- change in gradient of bed, channel, or bank
- short term release of contaminates
- change in flow depth, width, or velocity
- change in composition of channel materials
- accelerated channel scour
- loss of bank stability during construction
- increase of bank erosion during construction
- soil compaction or other disturbance to soil layer
- increased turbidity

MEASURES TO PROTECT FISH AND WILDLIFE RESOURCES

1. Administrative Measures

Permittee shall meet each administrative requirement described below.
1.1 Documentation at Project Site. Permittee shall make the Agreement, any extensions and amendments to the Agreement, and all related notification materials and California Environmental Quality Act (CEQA) documents, readily available at the project site at all times and shall be presented to CDFW personnel, or personnel from another state, federal, or local agency upon request.
1.2 Providing Agreement to Persons at Project Site. Permittee shall provide copies of the Agreement and any extensions and amendments to the Agreement to all persons who will be working on the project at the project site on behalf of Permittee, including but not limited to contractors, subcontractors, inspectors, and monitors.
1.3 Notification of Conflicting Provisions. Permittee shall notify CDFW if Permittee determines or learns that a provision in the Agreement might conflict with a provision imposed on the project by another local, state, or federal agency. In that event, CDFW shall contact Permittee to resolve any conflict.
1.4 Project Site Entry. Permittee agrees that CDFW personnel may enter the project site at any time to verify compliance with the Agreement.
1.5 Notify CDFW Prior to Work. The Permittee shall notify CDFW by email at least five working days prior to commencement of covered activities. See contact information below.
1.6 No Trespass. To the extent that any provisions of this Agreement provide for activities that require the Permittee to traverse another owner's property, such provisions are agreed to with the understanding that the Permittee possesses the legal right to so traverse. In the absence of such right, any such provision is void.
1.7 Unauthorized Take. The Permittee is required to comply with all applicable State and Federal laws, including the California Endangered Species Act (CESA) and Federal Endangered Species Act. This Agreement does not authorize the take of any State or Federal endangered or threatened species. Liability for any take or incidental take of such listed species remains the responsibility of the Permittee for the duration of the project. Any unauthorized take of such listed species may result in prosecution and nullification of the Agreement.
1.8 Fish Passage. The project shall be in compliance with Fish and Game Code section 5901 and shall not install or maintain any device or contrivance that prevents, impedes, or tends to prevent or impede, the passing of fish up and down stream.
1.9 Designated Representative. Before initiating ground-disturbing project activities, Permittee shall designate a representative (Designated Representative) responsible for communications with CDFW and overseeing compliance with this Agreement. The Permittee shall notify CDFW in writing 5 days prior to commencement of project activities of the Designated Representative's name, business address, and contact information. Permittee shall notify CDFW in writing if a substitute Designated Representative is selected or identified at any time during the term of this Agreement.

2. Avoidance and Minimization Measures

To avoid or minimize adverse impacts to fish and wildlife resources identified above, Permittee shall implement each measure listed below.
2.1 Work Period. All work shall begin on or after June 15 and all work shall be completed by October 15. Revegetation work is not limited to this work window but must be completed within the same season as project activities. If more time is needed to complete Project activities, the work period may be modified in writing on a week-by-week basis by a CDFW representative. Requests for a work period extension shall: 1) describe the extent of work already completed; 2) detail the activities that remain to be completed; 3) detail the time required to complete each of the remaining activities; 4) provide photographs of both the current work completed and the proposed site for continued work; and 5) include an assessment of additional biological impacts as a result of the work extension.
2.2 Conduct Work During Daylight Hours. Work is restricted to daylight hours (one hour after sunrise to sunset).
2.3 Work According to Documents. Except as they are contradicted by measures required by this Agreement, all work shall be conducted in conformance with the project description above and the avoidance, minimization, and mitigation measures provided in the notification package.
2.4 Work according to plans. All work shall be completed according to the plans, and all associated appendices and attachments, submitted to CDFW entitled First and F Street Bridge Replacement Project, prepared by Questa Engineering Corp, dated March 2021 (Exhibit A) and First and F Street Bridge Replacement Project, prepared by ZFA Structural Engineers, dated August 2020 (Exhibit B). If the Permittee finds it necessary to update project plans prior to construction, the updated plans will be submitted to CDFW at least 30 days prior to beginning project activities to determine if an Amendment to this Agreement is required. Project activities shall not proceed until CDFW has accepted the updated plans in writing. At the discretion of CDFW, minor plan modifications may require an amendment to this Agreement. At the discretion of the CDFW, if substantial changes are made to the original plans this Agreement becomes void and the Permittee shall submit a new notification.
2.5 Best Management Practices. All Best Management Practices (BMPs) and other conditions as submitted in the Notification shall be implemented as part of this project, unless otherwise conditioned herein.
2.6 No Equipment in Stream. No equipment shall be operated within the live stream.
2.7 No Work in Stream. No work shall occur, except dewatering activities, in the portion of the stream bed where surface water is present or anticipated during the term of this Agreement.

Weather Restrictions

2.8 Work Period in Dry Weather Only. Project work shall be restricted to dry weather as allowed during the work period specified in Measure 2.1. Construction shall be timed with awareness of precipitation forecasts and potential increases in stream flow. Construction activities shall cease when the National Weather Service (NWS) 72-hour weather forecast indicates a 30 percent chance or higher of precipitation. All necessary erosion control measures shall be implemented prior to the onset of precipitation. Construction equipment and materials shall be removed if inundation is likely. Construction activities halted due to precipitation may resume when precipitation ceases and the NWS 72-hour weather forecast indicates less than a 30 percent chance of precipitation. No work shall occur during a dry-out period of 24 hours after the above referenced wet weather. Weather forecasts shall be documented upon request by CDFW.

Wildlife Protection and Prevention

2.9 CDFW Approved Qualified Biologist On-site. A Qualified Biologist shall be on site daily to monitor compliance with all conditions of this Agreement unless otherwise approved in writing by CDFW. The Qualified Biologist shall have the authority to halt project activities, through communication with the Project Manager or their onsite designee, in order to comply with the terms of this Agreement and otherwise
avoid impacts to species and or habitats. If the on-site Qualified Biologist has requested a work stop due to failure to implement any of the conditions CDFW shall be contacted within 24 hours.
2.10 Biologist Approval. No later than 30 days prior to project activities covered by this Agreement, the Permittee shall submit to CDFW, for review and approval, the qualifications for the biologist(s) that shall oversee the implementation of the conditions in this Agreement and conduct surveys or monitoring work. Project activities covered by this Agreement may not commence unless CDFW has approved the proposed biologist(s) in writing. At minimum the CDFW approved biologist(s) shall have a minimum of five years of academic training and professional experience in biological sciences and related resource management activities with a minimum of two years conducting surveys for each species that may be present within the project area.
2.11 Training Session for Personnel. Permittee shall ensure that a CDFW-approved Qualified Biologist conducts an education program for all persons employed on the project prior to performing covered activities. Instruction shall consist of a presentation by the designated qualified biologist that includes a discussion of the biology and general behavior of any sensitive species that may be in the area, how they may be encountered within the work area, and procedures to follow when they are encountered. The status of CESA and ESA listed species including legal protection, penalties for violations and project-specific protective management measures provided in this Agreement shall be discussed. Interpretation shall be provided for non-English speaking workers, and the same instruction shall be provided for any new workers prior to on-site project activity. Copies of the Agreement for this project shall be maintained at the worksite with the project supervisor. Permittee or designated biologist shall prepare and distribute walletsized cards or a factsheet handout containing this information for workers to carry on-site. Upon completion of the program, employees shall sign an affidavit stating they attended the program and understand all protection measures. These forms shall be filed at the Permittee's office and be available to CDFW upon request.
2.12 Pre-Project Special-Status Plant Surveys. A Qualified Biologist shall conduct botanical surveys during the appropriate blooming period for all special-status plants that have the potential to occur in or near the Project site including the access route prior to the start of construction. Surveys shall be conducted following CDFW's 2018 Protocol for Surveying and Evaluating Impacts to Special Status Native Plant Populations and Sensitive Natural Communities (https://wildlife.ca.gov/Conservation/Survey-Protocols\#377281280-plants). More than one year of surveys may be required to establish that plants are absent. Surveys shall be submitted to CDFW for written approval prior to the start of construction. If Pitkin Marsh lily, Sonoma spineflower, or other special status plants are observed, the Project shall: 1) avoid all direct and indirect impacts to the special status plants, and 2) prepare and implement an avoidance plan that is approved in writing by CDFW prior to project start. If avoidance of Pitkin Marsh lily
or Sonoma spineflower is not possible, Project activities shall not commence until the Permittee has consulted with CDFW and obtained a CESA Incidental Take Permit. Authorization from the U.S. Fish and Wildlife Service (USFWS) may also be required for impacts to plant species listed under the Federal Endangered Species Act.
2.13 Bat Habitat Assessment. A Qualified Biologist shall perform a habitat assessment of all structures proposed for removal at least 120 days prior to starting work. If any of the structures contain suitable bat roosting habitat, then bat roost surveys shall be conducted pursuant to Measure 2.14.
2.14 Bat Roost Survey and Exclusion Plan. Any roost habitat, including bridges and other structures, shall be surveyed for bats by a Qualified Bat Biologist at least 90 days prior to the beginning of Project-related activities. If roosting bats are detected in bridges or structures, an associated bat exclusion plan shall be submitted to CDFW for written approval and implemented. The plan shall recognize that both the maternity and winter roosting seasons are vulnerable times for bats and require exclusion outside of these times, generally between March 1 and April 15 or September 1 and October 15 when temperatures are sufficiently warm. Survey and exclusion plan implementation results shall be submitted to CDFW for written acceptance prior to Project construction activities.
2.15 Bat Habitat Removal. Removal of bridges or structures shall not start until the CDFW-approved Qualified Bat Biologist confirms that bats have left the site pursuant to the bat exclusion plan. Bat habitat shall be removed during seasonal periods of bat activity from approximately March 1 through April 15 and September 1 through October 15. If any injured or killed bats are observed while removing habitat, all removal activities shall cease immediately, and Permittee shall contact CDFW within 24 hours. In this event, habitat removal activities shall not resume until CDFW has provided written permission.
2.16 Nesting Bird Surveys. If construction, grading, vegetation removal, or other projectrelated improvements are scheduled during the nesting season of protected raptors and migratory birds February 1 to August 31, a focused survey for active nests of such birds shall be conducted by a qualified biologist within 7 days prior to the beginning of project-related activities. The results of the survey shall be sent to James Hansen, Environmental Scientist by email (James.Hansen@Wildlife.ca.gov) prior to the start of project activities, and uploaded to EPIMS. Refer to Notification Number EPIMS-SON-18195-R3 when submitting the survey to CDFW. If an active nest is found, Permittee shall consult with CDFW and (USFWS regarding appropriate action to comply with Fish and Game Code and the Migratory Bird Treaty Act of 1918. If a lapse in project-related work of 7 days or longer occurs, another focused survey and if required, consultation with CDFW and USFWS, shall be required before project work is reinitiated.
2.17 Breeding Bird Nest Take Prohibition. Permittee shall avoid active nests occurring near the project site. Permittee is responsible to comply with Fish and Game Code, section 3503 et seq. and the Migratory Bird Treaty Act of 1918.
2.18 Active Nest Buffers. Active bird nest sites shall be designated as "Ecologically Sensitive Areas" (ESA) and protected (while occupied) during project work by demarking a "No Work Zone" buffer around each nest site.

- Buffer distances for bird nests shall be site specific and an appropriate distance, as determined by a qualified biologist. The buffer distances shall be specified to protect the bird's normal behavior thereby preventing nesting failure or abandonment. The buffer distance recommendation shall be developed after field investigations that evaluate the bird(s) apparent distress in the presence of people or equipment at various distances. Abnormal nesting behaviors which may cause reproductive harm include, but are not limited to, defensive flights/vocalizations directed towards project personnel, standing up from a brooding position, and flying away from the nest. The qualified biologist shall have authority to order the cessation of all nearby project activities if the nesting birds exhibit abnormal behavior which may cause reproductive failure (nest abandonment and loss of eggs and/or young) until an appropriate buffer is established.
- The qualified biologist shall monitor the behavior of the birds (adults and young, when present) at the nest site to ensure that they are not disturbed by project work. Nest monitoring shall continue during project work until the young have fully fledged (have completely left the nest site and are no longer being fed by the parents), as determined by the qualified biologist.
2.19 Nesting Habitat Removal or Modification. No habitat removal or modification shall occur within the ESA-fenced nest zone until the young have fully fledged and will no longer be adversely affected by the project. Any trees or shrubs that are removed shall be "downed" in such a manner as to minimize disturbance to stable soil conditions.
2.20 Trenching. At the end of each workday all trenches and holes greater than one foot deep shall be covered to prevent wildlife from entering. When trenches cannot be fully covered, an escape ramp shall be placed at each end of any constructed open trench to allow any wildlife that may have become entrapped in the trench to climb out overnight. The ramp may be constructed of either dirt fill or wood planking or other suitable material that is placed at an angle no greater than 30 degrees.
2.21 Pipes, Hoses, and Similar Structures. All pipes, hoses, or similar structures less than 12 inches in diameter shall be closed or covered to prevent animal entry. All construction pipes or similar structures greater than 2 inches in diameter stored at the project site overnight shall be inspected thoroughly for wildlife before the pipe or similar structure is buried, capped, used, or moved.
2.22 Special Status Species Encountered During Work. If Permittee encounters special status species during project activities, work shall be suspended, CDFW notified, and avoidance and minimization measures shall be developed in agreement with CDFW prior to re-initiating the activity.
2.23 Daily Inspections. At the beginning of each workday, a Biological Monitor shall inspect the project area unless otherwise approved in writing by CDFW. If special status species are encountered during project activities, all work shall cease and CDFW shall immediately be notified. Work shall not proceed without written approval from CDFW.
2.24 Refueling of Equipment. Refueling of construction equipment and vehicles may not occur within 175 feet of any water body, or anywhere that spilled fuel could drain to a water body. Tarps or similar material shall be placed underneath the construction equipment and vehicles, when refueling, to capture incidental spillage of fuels. Equipment and vehicles operating in the project area shall be checked and maintained daily to prevent leaks of fuels, lubricants, or other liquids.

Culvert Design and Construction

2.25 Culvert Design. The culvert shall be:

- Adequately sized to carry the 100 -year storm flow for the tributary;
- Properly aligned within the channel and otherwise engineered, installed, and maintained, to resist washout and erosion of the stream bed, stream banks and/or fill; and
- Passable to fish as required under Fish and Game Code section 5901.
2.26 Culverts Shall be Kept Open. Permanent culverts shall be maintained and kept open year round. The Permittee is responsible for such maintenance as long as the culvert remains in the stream. Substantial changes to the bed, channel or bank necessary for maintenance may require separate notification under Fish and Game Code section 1602, subdivision (a).
2.27 Concrete - Primary Containment. The Permittee shall install the necessary containment structures to control the placement of wet concrete and to prevent it from entering into the channel outside of those structures. No concrete shall be poured within the high flow line if the 15 day weather forecast indicates any chance of rain greater than 20 percent.
2.28 Cement Based Products. All cement based products (concrete, mortar, etc.) poured or applied wet onsite shall be excluded from the wetted channel or areas where they may come into contact with water for a period of 15 days after
application. During that time the product shall be kept moist and runoff from the product shall not be allowed to enter the stream. Commercial sealants may be applied to the product surface or mixture where difficulty in excluding flow for a long period may occur. If sealant is used, water shall be excluded from the site until the sealant is cured.
2.29 Concrete - Designated Monitor. At all times when the Permittee is pouring or working with wet concrete there shall be a designated monitor to inspect the containment structures and ensure that no concrete or other debris enters into the channel outside of those structures

Dewatering

2.30 Divert Water Around Work Areas. Work shall be performed in isolation from the creek. All dewatering activities shall be completed according to the dewatering plans on Sheet C-6 of Exhibit A.
2.31 Fish Relocation Plan. Permittee shall submit a fish relocation plan to CDFW for review and written approval at least 15 days prior to commencement of project activities.
2.32 Cofferdam Work Period. Cofferdams shall be constructed after June $15^{\text {th }}$.
2.33 Dewater Work Site. Once water has been diverted around the work area, the site shall be dewatered to provide an adequately dry work area. Any muddy or otherwise contaminated water shall be pumped to a settling tank, dewatering filter bag, upland area, or other CDFW-approved location prior to re-entering the creek.
2.34 Maintain Aquatic Life. When any dam or other artificial obstruction is being constructed, maintained, or placed in operation, Permittee shall allow sufficient water at all times to pass downstream to maintain aquatic life below the dam pursuant to Fish and Game Code section 5937.
2.35 Screen According to Existing Standards. The inlets of the dewatering pump structure shall be fitted with fish screens meeting the "fry-size" criteria of CDFW and the National Marine Fisheries Service before water is pumped from within the coffer dams (see screening criteria at: https://www.noaa.gov/sites/default/files/atoms/files/07354626823.pdf).
2.36 Stranded Aquatic Life. The Permittee shall check daily for stranded aquatic life as the water level in the dewatering area drops. All reasonable efforts shall be made to capture and move all stranded native aquatic life observed in the dewatered areas. This condition does not allow for the take or disturbance of any State or federally listed species.
2.37 Clean Obstruction Only. Any temporary dam or other artificial obstruction constructed by Permittee shall only be built from materials that will cause little or no siltation, such as clean gravels.
2.38 Maintain Water Quality. Permittee shall divert flow in a manner that prevents turbidity, siltation, or pollution and provides flows to downstream reaches. Flows to downstream reaches shall be provided during all times that the natural flow would have supported aquatic life. Said flows shall be sufficient quality and quantity, and of appropriate temperature to support fish and other aquatic life both above and below the diversion.
2.39 Restore Normal Flows. Permittee shall restore normal flows to the effected stream immediately upon completion of work at that location.
2.40 Groundwater Encountered. Nuisance groundwater encountered during excavation within the streambed shall be discharged at a location where it will infiltrate into the soil, resulting in no overland flow. Turbid water shall not be allowed to flow downstream.

Vegetation Protection, Prevention, and Restoration

2.41 Restoration Plan. At least 30 days prior to the commencement of project actives, Permittee shall submit to CDFW for review and approval a restoration plan for the restoration of all bank areas disturbed during construction of culvert and from dewatering activities.
2.42 Enhancement Plan. At least 30 days prior to commencement of project activities, the Permittee shall submit to CDFW for review and approval an enhancement plan to enhance 200 square feet of riparian habitat on-site or near the site to off-set permanent impacts.
2.43 Habitat Protection. Disturbance or removal of vegetation shall not exceed the minimum necessary to complete the project. Vegetation outside the construction corridor shall not be removed or damaged without prior consultation and approval of a CDFW representative.
2.44 Vegetation Marked for Protection. Prior to project activities, the Permittee shall clearly mark all vegetation within the project area that shall be avoided during project activities.
2.45 Tree Removal. No trees shall be removed as part of this project. If the removal of more trees is required, the Permittee must receive approval from CDFW in writing before construction activities begin.
2.46 Vegetation Success. To ensure a successful revegetation effort, all plants shall be monitored and maintained as necessary for five years. All planting shall have a minimum of 85% survival at the end of five years.
2.47 Irrigation. When supplemental watering is used to establish and maintain plant growth in order to meet success criteria, irrigation shall be done in the most water efficient manner possible, such as using hand watering, drip/microirrigation or through the use of a time release system.
2.48 Revegetation Remediation. If revegetation survival and/or cover requirements do not meet established goals, Permittee is responsible for replacement planting, additional watering, weeding, invasive exotic eradication, or any other practice, to achieve these requirements. Replacement plants shall be monitored with the same survival and growth requirements for five years after planting.
2.49 Native Plant Materials Required. Revegetation shall include only local plant materials native to the project area, unless otherwise approved by CDFW in writing.
2.50 Prohibited Plant Species. Permittee shall not plant, seed or otherwise introduce invasive exotic plant species. Prohibited exotic plant species include those identified in the California Exotic Pest Plant Council's database, which is accessible at: www.cal-ipc.org/paf/.
2.51 Phytophthora. Permittee shall implement measures to avoid using plant stock that may be infected with the plant pathogen Phytophthora sp. Measures to avoid contamination with Phytophthora sp. may include, but are not limited to, avoiding collection of propagules from 1) known or likely infected areas; 2) during wet conditions; 3) when soil is muddy; or 4) from within 0.5 meters of the soil surface. Measures may also include implementing heat or chemical treatments to collected seeds prior to installation.
2.52 Treat Exposed Areas. All exposed/disturbed areas and access points within the riparian zone left barren of vegetation as a result of the construction activities shall be restored by seeding with a blend of native erosion control grass seed. Seeded areas shall be mulched. Landscape fabric shall not be used. Revegetation shall be completed as soon as possible after construction activities in those areas cease. Seeding placed after October 15 must be covered with broadcast straw, jute netting, coconut fiber blanket or similar erosion control blanket.
2.53 Control Invasive Species. Permittee is responsible for monitoring and if needed, eradication of invasive exotic species that may occur within the project area for a minimum of two years following construction. All revegetation efforts shall include local plant materials native to the project area.

Erosion and Sediment Control

2.54 Erosion Control. At no time shall silt-laden runoff be allowed to enter a river, stream, or lake or directed to where it may enter a river, stream, or lake. Erosion control measures shall be utilized throughout all phases of operation where sediment runoff from exposed slopes threatens to enter a river, stream, or lake. Erosion control measures, such as, silt fences, straw hay bales, gravel or rock lined ditches, water check bars, and broadcasted straw shall be used wherever sediment has the potential to leave the work site and enter the river, stream, or lake.
2.55 Monofilament. Permittee shall not use erosion control materials containing plastic monofilament netting (erosion control matting) or similar material containing netting within the project area due to documented evidence of amphibians and reptiles becoming entangled or trapped in such material. Acceptable substitutes include coconut coir matting or similar.
2.56 Erosion Control Monitoring. Permittee shall monitor erosion control measures during and after each storm event and repair and/or replace ineffective measures immediately.
2.57 Excavation. No spoil from the excavation shall be placed on the stream side. Excavated spoil shall be removed to an area where the sediment will not deliver to a watercourse.
2.58 Groundwater Encountered. Nuisance groundwater encountered during excavation within the streambed or floodplain shall be discharged at a location where it will infiltrate into the soil, resulting in no overland flow. Turbid water shall not be allowed to flow downstream.

Material Handling, Debris, and Waste

2.59 Stockpiled Materials. Building materials and/or construction equipment shall not be stockpiled or stored where they may be washed into the water or cover aquatic or riparian vegetation. Stockpiles shall be covered when measurable rain is forecasted.
2.60 No Dumping. Permittee and all contractors, subcontractors, and employees shall not dump any litter or construction debris within the stream, or where it may pass into the stream.
2.61 Pick Up Debris. Permittee shall pick up all debris and waste daily.
2.62 Wash water. Water containing mud, silt, or other pollutants from equipment washing or other activities, shall not be allowed to enter a lake or flowing stream or placed in locations that may be subjected to high storm flows.
2.63 Disposal and Removal of Materials. All removed spoils and construction debris shall be moved outside the work area prior to inundation by water. Spoil sites shall not be located within the stream channel or areas that may be subjected to stream flows, where spoil may be washed back into a stream, or where it may impact streambed habitat, aquatic or riparian vegetation. All removed material shall be disposed of according to State and local laws and ordinances.

Toxic and Hazardous Material

2.64 Toxic Materials. Any hazardous or toxic materials that could be deleterious to aquatic life that could be washed into the stream or its tributaries shall be contained in water tight containers or removed from the project site.
2.65 Hazardous Materials. Debris, soil, silt, bark, slash, sawdust, rubbish, creosotetreated wood, raw cement/concrete or washings thereof, asphalt, paint or other coating material, oil or other petroleum products, or any other substances which could be hazardous to aquatic life, wildlife, or riparian habitat resulting from the project related activities shall be prevented from contaminating the soil and/or entering the Waters of the State.

Spills and Emergencies

2.66 Spill Kits. Prior to entering the work site, all field personnel shall know the location of spill kits and trained in their appropriate use.
2.67 Spill of Material Deleterious to Fish and Wildlife. In the event of a hazardous materials spill into a stream (e.g., concrete or bentonite), Permittee shall immediately notify the California Office of Emergency Services State Warning Center by calling 1-800-852-7550 and immediately provide written notification to CDFW by email at AskBDR@wildlife.ca.gov. Permittee shall take all reasonable measures to document the extent of the impacts and affected areas including photographic documentation of affected areas, injured fish and wildlife. If dead fish or wildlife are found in the affected area, Permittee shall collect carcasses and immediately deliver them to CDFW. Permittee shall meet with CDFW within ten days of the reported spill in order to develop a resolution including: site clean-up, site remediation and compensatory mitigation for the harm caused to fish, wildlife and the habitats on which they depend as a result of the spill. The Permittee shall be responsible for all spill clean-up, site remediation and compensatory mitigation costs. Spill of materials to waters of the state that are deleterious to fish and wildlife are in violation of Fish and Game Code section 5650 et. seq. and are subject to civil penalties for each person responsible. CDFW reserves the right to refer the matter to the District Attorney's Office if a resolution cannot be agreed upon and achieved within a specified timeframe, generally six months from the date of the incident.
2.68 Spill Containment. All activities performed in or near a river, stream, or lake shall have absorbent materials designated for spill containment and cleanup activities on-site for use in an accidental spill. The Permittee shall immediately notify the California Emergency Management Agency at 1-800-852-7550 and immediately initiate the cleanup activities. CDFW shall be notified by the Permittee and consulted regarding clean-up procedures

3. Reporting Measures

Permittee shall meet each reporting requirement described below.
3.1 Notification Prior to Work. As per Measure 1.5, at least 5 days prior to the start of Project activities, Permittee shall notify CDFW that work will commence.
3.2 Notification of Designated Representative. As per Measure 1.9, at least 5 days prior to the start of Project activities, Permittee shall submit to CDFW the name, business address, and contact information of the Designated Representative.
3.3 Biologist Approval. As per Measure 2.10, no later than 30 days prior to project activities covered by this Agreement, the Permittee shall submit to CDFW, for review and approval, the qualifications for the biologist(s) that shall oversee the implementation of the conditions in this Agreement and conduct surveys or monitoring work.
3.4 Fish Relocation Plan. As per Measure 2.31, Permittee shall submit a fish relocation plan to CDFW for review and approval at least 15 days prior to commencement of project activities.
3.5 Special-Status Plant Survey Results. Survey results for special-status plants shall be submitted to CDFW prior to the start of work.
3.6 Roosting Bat Survey Reports. Survey results for roosting bats shall be submitted to CDFW prior to the start of work.
3.7 Nesting Bird Survey Reports. Survey results for nesting birds shall be submitted to CDFW prior to the start of work.
3.8 Restoration Plan. At least 30 days prior to the commencement of project actives, Permittee shall submit to CDFW for review and approval a restoration plan for the restoration of bank areas disturbed during construction of culvert and from dewatering activities.
3.9 Enhancement Plan. At least 30 days prior to commencement of project activities, the Permittee shall submit to CDFW for review and approval an enhancement plan to enhance 200 square feet of riparian habitat on-site to off-set permanent impacts
3.10 Re-vegetation Annual Report. The Permittee shall submit an annual status report on the monitoring of planting to CDFW by January 31st of each year for five (5) years. This report shall include the survival, percent cover, and height of both tree and shrub species. The number by species of plants replaced, an overview of the revegetation effort, and the method used to assess these parameters shall also be included. Photos from designated photo stations shall be included.
3.11 Photographic Documentation of Work. Prior to commencement of work a minimum of four (4) vantage points that offer representative views of the project site and work areas shall be identified. The Permittee shall photograph the project area from each of the vantage points, noting the direction and magnification of each photo. Upon completion of work, the Permittee shall photograph post-project conditions from the vantage points using the same direction and magnification as pre-project photos. A reference key shall be submitted with the photos describing the location of the photo, the direction of the view, and whether the photo is pre- or post-construction. All photos shall be submitted within 30 days of project conclusion.
3.12 Notification to the California Natural Diversity Database. If any listed, rare, or special status species are detected during project surveys or on or around the project site during project activities, the Permittee shall submit CNDDB Field Survey Forms to CDFW in the manner described at the CNDDB website (https://www.wildlife.ca.gov/Data/CNDDB/Submitting-Data) within five working days of the sightings. Copies of such submittals shall also be submitted to the CDFW regional office as specified below.

CONTACT INFORMATION

Any communication that Permittee or CDFW submits to the other shall be submitted through EPIMS as instructed by CDFW.

To Permittee:
Kenneth Eichstaedt
City of Petaluma
EPIMS-SON-18195-R3
First and F Street Bridge Replacement
keichstaedt@cityofpetaluma.org
To CDFW:
Department of Fish and Wildlife
Bay Delta Region
EPIMS-SON-18195-R3
First and F Street Bridge Replacement
EPIMS.R3@wildlife.ca.gov

LIABILITY

Permittee shall be solely liable for any violations of the Agreement, whether committed by Permittee or any person acting on behalf of Permittee, including its officers, employees, representatives, agents or contractors and subcontractors, to complete the project or any activity related to it that the Agreement authorizes.

This Agreement does not constitute CDFW's endorsement of, or require Permittee to proceed with the project. The decision to proceed with the project is Permittee's alone.

SUSPENSION AND REVOCATION

CDFW may suspend or revoke in its entirety the Agreement if it determines that Permittee or any person acting on behalf of Permittee, including its officers, employees, representatives, agents, or contractors and subcontractors, is not in compliance with the Agreement.

Before CDFW suspends or revokes the Agreement, it shall provide Permittee written notice by certified or registered mail that it intends to suspend or revoke. The notice shall state the reason(s) for the proposed suspension or revocation, provide Permittee an opportunity to correct any deficiency before CDFW suspends or revokes the Agreement, and include instructions to Permittee, if necessary, including but not limited to a directive to immediately cease the specific activity or activities that caused CDFW to issue the notice.

ENFORCEMENT

Nothing in the Agreement precludes CDFW from pursuing an enforcement action against Permittee instead of, or in addition to, suspending or revoking the Agreement.

Nothing in the Agreement limits or otherwise affects CDFW's enforcement authority or that of its enforcement personnel.

OTHER LEGAL OBLIGATIONS

This Agreement does not relieve Permittee or any person acting on behalf of Permittee, including its officers, employees, representatives, agents, or contractors and subcontractors, from complying with, or obtaining any other permits or authorizations that might be required under, other federal, state, or local laws or regulations before beginning the project or an activity related to it. For example, if the project causes take of a species listed as threatened or endangered under the Endangered Species Act (ESA), such take will be unlawful under the ESA absent a permit or other form of authorization from the U.S. Fish and Wildlife Service or National Marine Fisheries Service.

This Agreement does not relieve Permittee or any person acting on behalf of Permittee, including its officers, employees, representatives, agents, or contractors and
subcontractors, from complying with other applicable statutes in the Fish and Game Code including, but not limited to, Fish and Game Code sections 2050 et seq. (threatened and endangered species), section 3503 (bird nests and eggs), section 3503.5 (birds of prey), section 5650 (water pollution), section 5652 (refuse disposal into water), section 5901 (fish passage), section 5937 (sufficient water for fish), and section 5948 (obstruction of stream).

Nothing in the Agreement authorizes Permittee or any person acting on behalf of Permittee, including its officers, employees, representatives, agents, or contractors and subcontractors, to trespass.

AMENDMENT

CDFW may amend the Agreement at any time during its term if CDFW determines the amendment is necessary to protect an existing fish or wildlife resource.

Permittee may amend the Agreement at any time during its term, provided the amendment is mutually agreed to in writing by CDFW and Permittee. To request an amendment, Permittee shall log into EPIMS and submit to CDFW a completed CDFW "Amendment \& Extension" form. Permittee shall include with the completed form, payment of the corresponding amendment fee identified in CDFW's current fee schedule (see Cal. Code Regs., tit. 14, § 699.5).

TRANSFER AND ASSIGNMENT

This Agreement may not be transferred or assigned to another entity, and any purported transfer or assignment of the Agreement to another entity shall not be valid or effective, unless the transfer or assignment is requested by Permittee in writing, as specified below, and thereafter CDFW approves the transfer or assignment in writing.

The transfer or assignment of the Agreement to another entity shall constitute a minor amendment, and therefore to request a transfer or assignment, Permittee shall log into EPIMS and submit to CDFW a completed CDFW "Amendment \& Extension" form. Permittee shall include with the completed form, payment of the minor amendment fee identified in CDFW's current fee schedule (see Cal. Code Regs., tit. 14, § 699.5).

EXTENSIONS

In accordance with Fish and Game Code section 1605, subdivision (b), Permittee may request one extension of the Agreement, provided the request is made prior to the expiration of the Agreement's term. To request an extension, Permittee shall log into EPIMS and submit to CDFW a completed CDFW "Amendment \& Extension' form. Permittee shall include with the completed form, payment of the extension fee identified in CDFW's current fee schedule (see Cal. Code Regs., tit. 14, § 699.5). CDFW shall process the extension request in accordance with Fish and Game Code section 1605, subdivisions (b) through (e).

If Permittee fails to submit a request to extend the Agreement prior to its expiration, Permittee must submit a new notification and notification fee before beginning or continuing the project the Agreement covers (Fish \& G. Code § 1605, subd. (f)).

EFFECTIVE DATE

The Agreement becomes effective on the date of CDFW's signature, which shall be: 1) after Permittee's signature; 2) after CDFW complies with all applicable requirements under the California Environmental Quality Act (CEQA); and 3) after payment of the applicable Fish and Game Code section 711.4 filing fee listed at https://www.wildlife.ca.gov/Conservation/CEQA/Fees.

TERM

This Agreement shall expire on December 31, 2025, unless it is terminated or extended before then. All provisions in the Agreement shall remain in force throughout its term. Permittee shall remain responsible for implementing any provisions specified herein to protect fish and wildlife resources after the Agreement expires or is terminated, as Fish and Game Code section 1605, subdivision (a)(2) requires.

EXHIBITS

The documents listed below are included as exhibits to the Agreement and incorporated herein by reference.
A. First and F Street Bridge, prepared by Questa Engineering Corp, dated March 2021
B. First and F Street Bridge Replacement Project, prepared by ZFA Structural Engineers, dated August 2020

Abstract

AUTHORITY If the person signing the Agreement (signatory) is doing so as a representative of Permittee, the signatory hereby acknowledges that he or she is doing so on Permittee's behalf and represents and warrants that he or she has the authority to legally bind Permittee to the provisions herein.

AUTHORIZATION

This Agreement authorizes only the project described herein. If Permittee begins or completes a project different from the project the Agreement authorizes, Permittee may be subject to civil or criminal prosecution for failing to notify CDFW in accordance with Fish and Game Code section 1602.

CONCURRENCE

Through the electronic signature by the permittee or permittee's representative as evidenced by the attached concurrence from CDFW's Environmental Permit Information Management System (EPIMS), the permittee accepts and agrees to comply with all provisions contained herein.

The EPIMS concurrence page containing electronic signatures must be attached to this agreement to be valid.

APPENDIX B

GEOTECHNICAL REPORT

on St Suite 4

City of Petaluma
Attention: Ken Eichstaedt, PE, TE
P.O. Box 61

Petaluma, CA 94953
KEichstaedt@cityofpetaluma.org

Geotechnical Study Report
Project Number: 2553.10.PW. 1
First Street Wooden Deck
First Street
Petaluma, California

INTRODUCTION

This report presents the results of our geotechnical study for the replacement of the wooden deck located at First and F Streets in Petaluma, California. The deck extends the outlet of an underground culvert that runs under F street. From the deck area, water flows in a channel to the Petaluma River. We understand that the wooden deck will be replaced with a concrete box culvert. The site location is shown below.

SCOPE

The purpose of our study, as outlined in our Professional Service Agreement dated October 10, 2019, was to generate geotechnical information for the design and construction of the project. Our scope of services included reviewing selected published geologic data pertinent to the site; evaluating the subsurface conditions with borings; analyzing the field data; and presenting this report with the following geotechnical information:

1. A brief description of soil and groundwater conditions observed during our study;
2. A discussion of seismic hazards that may affect the proposed improvements, including seismic design criteria per guidelines in the 2019 California Building Code;
3. Specific conclusions and recommendations concerning:
a. Primary geotechnical engineering concerns and mitigating measures, as applicable;
b. Alternative foundation types, design criteria, and settlement behavior for new foundation elements;
c. Lateral forces for wall design, if required;
d. Geotechnical engineering drainage improvements; and
e. Supplemental geotechnical engineering services.

STUDY

Site Exploration

On May 10, 2013, we performed a geotechnical reconnaissance of the site and explored the subsurface conditions by drilling two borings to depths ranging from $261 / 2$ to $361 / 2$ feet. The borings were drilled with a truck-mounted drill rig using 8 -inch diameter, hollow stem augers at the approximate locations shown below. The boring locations were determined approximately by pacing their distance from features shown on the image below and should be considered accurate only to the degree implied by the method used. Our personnel located and logged the boring and obtained samples of the materials encountered for visual examination, classification, and laboratory testing.

Relatively undisturbed samples were obtained from the borings at selected intervals by driving a 2.43 -inch inside diameter, split spoon sampler, containing 6 -inch long brass liners, using a 140-pound hammer dropping approximately 30 inches. The sampler was driven 12 to 18 inches. The blows required to drive each 6 -inch increment were recorded and the blows required to drive the last 12 inches, or portion thereof, were converted to equivalent Standard Penetration Test (SPT) blow counts for correlation with empirical data. Disturbed samples were also obtained at selected depths by driving a 1.375-inch inside diameter (2-inch outside diameter) SPT sampler, without liners or rings, using a 140-pound hammer dropping approximately 30 inches. The sampler was driven 12 to 18 inches, the blows to drive each 6 -inch increment were recorded, and the blows required to drive the final 12 inches, or portion thereof, are provided on the boring logs.

RGH

The logs of the borings showing the materials encountered, groundwater conditions, converted blow counts and sample depths are presented on Plates 1 and 2 . The soil is described in accordance with the Unified Soil Classification System, outlined on Plate 3. The boring logs show our interpretation of the subsurface soil and groundwater conditions on the date and at the locations indicated. Subsurface conditions may vary at other locations and times. Our interpretation is based on visual inspection of soil samples, laboratory test results, and interpretation of drilling and sampling resistance. The location of the soil boundaries should be considered approximate. The transition between soil types may be gradual.

Laboratory Testing

The samples obtained from the borings were transported to our office and re-examined to verify soil classifications, evaluate characteristics, and assign tests pertinent to our analysis. Selected samples were laboratory tested to determine their consolidation characteristics. The test results are presented below:

Pre-Consolidation Pressure $\left(\mathrm{P}_{\mathrm{c}}\right)$ - 1100 pounds per square foot (psf)
Compression Index $\left(\mathrm{C}_{\mathrm{c}}\right)-0.97$
Recompression Index $\left(C_{R}\right)-0.18$

SITE CONDITIONS

General

Sonoma County is located within the California Coast Range geomorphic province. This province is a geologically complex and seismically active region characterized by sub-parallel northwest-trending faults, mountain ranges and valleys. The oldest bedrock units are the Jurassic-Cretaceous Franciscan Complex and Great Valley sequence sediments originally deposited in a marine environment. Subsequently, younger rocks such as the Tertiary-age Sonoma Volcanics group, the Plio-Pleistocene-age Clear Lake Volcanics and sedimentary rocks such as the Guinda, Domengine, Petaluma, Wilson Grove, Cache, Huichica and Glen Ellen formations were deposited throughout the province. Extensive folding and thrust faulting during late Cretaceous through early Tertiary geologic time created complex geologic conditions that underlie the highly varied topography of today. In valleys, the bedrock is covered by thick alluvial soil.

Surface

The project site extends over essentially level roadway terrain. The exposed surface is generally asphalt or what appears to be grout set cobbles. The wooden deck is exposed at the surface. Railroad tracks extend down the road. Natural drainage consists of sheet flow over the ground surface that concentrates in manmade drainages such as roadside gutters, and natural drainages such as the Petaluma River.

Subsurface

Our borings indicate that the portion of the site we studied is blanketed by asphalt and aggregate base that extend to about 18 inches. These materials are underlain by very soft to medium stiff clay and silt soil that extends to depth of $171 / 2$ to 20 feet below the ground surface. The silt soil is referred to locally as Bay Mud. Bay Mud and the clay soils encountered are compressible under fill and new foundation loads. The clay soil is underlain by medium dense sand that extends to depths of about $211 / 2$ to $221 / 2$ feet. The sand is underlain by stiff clay to the maximum depth explored ($361 / 2$ feet in boring B-2). A summary of the subsurface conditions found in our borings is provided on Plates 1 and 2. Based on Table 20.3-1 of American Society of Civil Engineers (ASCE) Standard 7-16, titled "Minimum Design Loads and Associated Criteria for Buildings and Other Structures" (2017), we have determined a Site Class of E should be used for the site.

Corrosion Potential

Mapping by the Natural Resources Conservation Service (www.websoilsurvey.sc.egov.usda.gov) indicates that the corrosion potential of the near surface soil is low for uncoated steel and low for concrete. Performing corrosivity tests to verify these values was not part of our requested and/or proposed scope of work. Should the need arise, we would be pleased to provide a proposal to evaluate these characteristics.

Groundwater

Groundwater was observed at a depth of 8 feet below the ground surface in our borings. Fluctuation in the groundwater level typically occurs because of a variation in rainfall intensity, duration and other factors such as flooding and stream flow depth.

DISCUSSION AND CONCLUSIONS

Seismic Hazards

Faulting and Seismicity

We did not observe landforms within the area that would indicate the presence of active faults and the site is not within a current Alquist-Priolo Earthquake Fault Zone (Bryant and Hart, 2007). Therefore, we believe the risk of fault rupture at the site is low. However, the site is within an area affected by strong seismic activity and future seismic shaking should be anticipated at the site. It will be necessary to design and construct the proposed improvements in strict adherence with current standards for earthquake-resistant construction.

Liquefaction

Liquefaction is a rapid loss of shear strength experienced in saturated, predominantly granular soil below the groundwater level during strong earthquake ground shaking due to an increase in pore water pressure. The occurrence of this phenomenon is dependent on many complex factors including the intensity and duration of ground shaking, particle size distribution and density of the soil.

Granular soil was encountered at the site below the groundwater table. Therefore, we performed an analysis of the blow count data from our borings using the methods of Seed and Idriss (1982), Seed and others (1985), Youd and Idriss (2001), Idriss and Boulanger (2004) and Idriss and Boulanger (2008). These procedures normalize the blow counts to account for overburden pressure, rod length, hammer energy, and fines (percent of silt and clay) content. Once the blow counts are normalized and adjusted to a clean sand blow count, the cyclic resistance ratio (CRR) for each blow count is then determined using the same procedures referenced above. The CRR is compared to the cyclic stress ratio (CSR) induced by the earthquake. Calculating the CSR requires a peak ground acceleration and design earthquake magnitude.

Peak ground acceleration (PGA) was determined using the methods in the 2019 California Building Code (CBC) and the site-specific ground motion methods in Chapter 21 of ASCE Standard 7-16 (2017). Using the site's latitude and longitude of $38.2329^{\circ} \mathrm{N}$ and $-122.6337^{\circ} \mathrm{W}$, respectively, and a site soil Class of E , the PGA for the site is 0.55 g . Using this information, the CSR for a $\mathrm{M}_{\mathrm{M}} 7.5$ earthquake at the site ranges from 0.52 to 0.79. The Rogers Creek fault is most likely controlling the ground motions at the site. According to Petersen (1996), the Rogers Creek fault is capable of a $M_{M} 7.0$ earthquake. Therefore, the CRR values at the site must be scaled to account for the difference between $M_{M} 7.0$ and $M_{M} 7.5$. When the scaling factor for magnitude and confining stress corrections presented in Idriss and Boulanger (2004) are applied, the CRR values at the site do not exceed the CSR values. Therefore, we judge that there is potential for liquefaction at the site.

There are three potential consequences of liquefaction: bearing capacity failure, lateral spreading toward a free face (e.g. riverbank) and settlement. Bearing capacity failure is sudden and extreme settlement of foundations that typically occurs when the liquefied layer is relatively close (typically within two times the footing width, depending on the loads) to the bottom of the foundation. The upper portion of the liquefiable layer is about $171 / 2$ to 20 feet below the ground surface. Given the potential depth of the culvert, we judge that there is the potential for bearing capacity of the culvert.

Lateral spreading can occur where continuous layers of liquefiable soil extend to a free face, such as a channel or a riverbank. The potentially liquefiable layers are located at depths ranging from $17 \frac{1}{2}$ to 20 feet. The layer is below the adjacent free face. Therefore, we judge the potential for liquefaction-induced lateral spreading at the site is low.

The third potential consequence of liquefaction is settlement due to densification of the liquefied soil. Potential settlements based on the blow count data and cyclic stress ratio were calculated using the methods of Ishihara and Yoshimine (1992). For the layers encountered between approximately $17 \frac{1}{2}$ and 20 feet below the surface, we calculated total settlement ranging from about $3 / 4$ inch to $11 / 4$ inches. Differential settlement could range up to $1 / 2$ inch across the culvert.

Geotechnical Issues

General

Based on our study, we judge the proposed culvert can be built as planned, provided the recommendations presented in this report are incorporated into its design and construction. The primary geotechnical concerns during design and construction of the project are:

1. The presence of compressible soil to depths of approximately $17 \frac{1}{2}$ to 20 feet;
2. The presence of potentially liquefiable soil below the compressible soil;
3. The detrimental effects of uncontrolled surface runoff and groundwater seepage on longterm satisfactory performance; and
4. The strong ground shaking predicted to impact the site during the life of the project.

Compressible Soil

Our borings encountered soils that are susceptible to settlement under new loading such as that from the proposed culvert. Based on the size of the culvert, the culvert will be bearing directly on the compressible soil. Settlement calculations indicate that the culvert may settle on the order of 4 to 6 inches. This settlement will be seen at the surface within the roadway. This amount of settlement is unacceptable in a roadway. Therefore, the culvert needs to be supported on a deep foundation system that gains support below the compressible soil.

Liquefiable Soil

As discussed previously, there are liquefiable soils below the compressible soil. The potential consequences of liquefaction are bearing capacity failure and settlement. Settlement was calculated to range between $3 / 4$ to $11 / 4$ inches. Based on these potential consequences, the culvert needs to be supported on a deep foundation system that gains support below the liquefiable soil.

Foundation - Satisfactory support for the culvert can be obtained from a deep foundation system gaining support below the compressible and liquefiable soils. Deep foundation systems typically include driven piles,
drilled piers, torque-down piles, and auger-cast piles. On-Site Soil Quality

All culvert backfill materials must be select, as subsequently described in "Recommendations." We anticipate that, with the exception of organic matter and of rocks or lumps larger than 6 inches in diameter, the excavated material will be suitable for re-use as general fill but will not be suitable for use as select fill for culvert backfill.

Select Culvert Backfill

The select culvert backfill can consist of approved import materials with a low expansion potential. The geotechnical engineer must approve the use of import soil as select fill during grading.

Settlement

Provided the culvert is supported on a deep foundation system that gains support below the compressible soil and liquefiable soil, we estimate that post-construction differential settlements across the culvert should be about $1 / 2$ inch.

RECOMMENDATIONS

Seismic Design

Seismic design parameters presented below are based on Section 1613 titled "Earthquake Loads" of the 2019 California Building Code (CBC). Based on Table 20.3-1 of American Society of Civil Engineers (ASCE) Standard 7-16, titled "Minimum Design Loads and Associated Criteria for Buildings and Other Structures" (2017), we have determined a Site Class of E should be used for the site. Using a site latitude and longitude of $38.2329^{\circ} \mathrm{N}$ and $122.6337^{\circ} \mathrm{W}$, respectively, the Site Class of E , and the site-specific ground motion procedures of Chapter 21 of ASCE 7-16, we recommend that the following seismic design criteria be used for applicable structures at the site.

$\mathbf{2 0 1 9}$ CBC Seismic Criteria	
Spectral Response Parameter	Acceleration (g)
$\mathrm{S}_{\mathrm{S}}(0.2$ second period)	1.500
$\mathrm{~S}_{1}(1$ second period)	0.600
$\mathrm{~S}_{\mathrm{MS}}(0.2$ second period $)$	1.671
$\mathrm{~S}_{\mathrm{M} 1}(1$ second period $)$	1.956
$\mathrm{~S}_{\mathrm{DS}}$ (0.2 second period)	1.114
$\mathrm{~S}_{\mathrm{D} 1}(1$ second period $)$	1.304

Foundation Support

Because of the great depth to supporting soil, the culvert should be supported on a deep foundation system. Deep foundation systems that could be used for this project include driven piles, drilled piers, torque-down piles, and auger cast piles. Vibrations created by pile driving could have an adverse impact on the adjacent buildings, which include a condominium complex and older buildings along the waterfront. In addition, drilled pier foundations will create soil cuttings and groundwater that will need to be disposed of. The cost of disposing of these materials could be prohibitive depending on whether contaminants are present within them. Based on the above information, we understand that the City of Petaluma wants to focus on torquedown piles or auger cast piles as a foundation system for the culvert. Recommendations for these options are presented below.

Torque-Down Piles

Torque-down piles (also referred to as screw piles) are advanced into the ground by a sacrificial screw-head that is attached to the end of a tubex pile. This type of pile system is designed for skin friction with no end bearing. The piles should gain support in the clay soil below a depth of 22 feet. The diameter of the pile should be set by the design. Piles should be spaced no closer than 3 pile diameters, center to center.

Skin Friction - The portion of the piles extending below a depth of 22 feet from the ground surface may be designed using an allowable skin friction of 350 pounds per square foot (psf) for dead load plus long-term live loads. This value can be increased by $1 / 3$ for total loads, including downward vertical wind or seismic forces. A skin friction value of 230 psf should be used to resist uplift forces.

Lateral Forces - Lateral loads on piles will be resisted by passive pressure on the soil. An equivalent fluid pressure of 100 pounds per cubic foot (pcf) acting on two pile diameters. Confinement for passive pressure may be assumed from the base of the culvert. Passive resistance can be increased to 350 pcf below a depth of 22 feet.

Auger Cast Piles

Drilled, auger-cast or continuous flight auger (CFA) reinforced concrete piles can be used for foundation support. The piles should be a minimum of 12 inches in diameter, spaced no closer than 3 pier diameters, center to center, and gain support in the clay soil below a depth of 22 feet. Larger piers may be needed to resist the lateral forces imposed by earthquakes per the California Building Code.

Skin Friction - The portion of the piles extending below a depth of 22 feet from the ground surface may be designed using an allowable skin friction of 375 pounds per square foot (psf) for dead load plus long-term live loads. This value can be increased by $1 / 3$ for total loads, including downward vertical wind or seismic forces. A skin friction value of 250 psf should be used to resist uplift forces.

Lateral Forces - Lateral loads on piles will be resisted by passive pressure on the soil. An equivalent fluid pressure of 100 pounds per cubic foot (pcf) acting on two pile diameters. Confinement for passive pressure may be assumed from the base of the culvert. Passive resistance can be increased to 350 pcf below a depth of 22 feet.

Culvert and Wing Walls

Culvert walls and wing walls must be designed to resist lateral earth pressures plus additional lateral pressures that may be caused by surcharge loads applied at the ground surface behind the walls. Walls free to rotate (yielding greater than 0.1 percent of the wall height at the top of the backfill) should be designed for active lateral earth pressures. If walls are restrained by rigid elements to prevent rotation, they should be designed for "at rest" lateral earth pressures. In the absence of backdrains, the walls should be designed to resist full hydrostatic pressure.

Retaining walls should be designed to resist the following earth equivalent fluid pressures (triangular distribution):

EARTH EQUIVALENT FLUID PRESSURES	
Loading Condition	Pressure (pcf)
Active - Level Backfill	42
At Rest - Level Backfill	63
Active Full Hydrostatic	84
At Rest Full Hydrostatic	94

* If required

These pressures do not consider additional loads resulting from adjacent foundations or other loads. If these additional surcharge loadings are anticipated, we can assist in evaluating their effects. Where wall backfill is subject to vehicular traffic, the walls should be designed to resist an additional surcharge pressure equivalent to two feet of additional backfill.

Walls will yield slightly during backfilling. Therefore, walls should be backfilled prior to building on, or adjacent to, the walls. Backfill against the walls should be compacted to at least 90 and not more than 95 percent relative compaction. Over-compaction or the use of large compaction equipment should be avoided because increased compactive effort can result in lateral pressures higher than those recommended above.

Walls should be backdrained as shown on Plate 4. The backdrains should consist of 4-inch diameter, rigid perforated pipe embedded in Class 2 permeable material. The pipe should be PVC Schedule 40 or ABS with SDR 35 or better, and the pipe should be sloped to drain to outlets by gravity. The top of the pipe should be at least 8 inches below lowest adjacent grade. The Class 2 permeable material should extend to within $11 / 2$ feet of the surface. The upper $11 / 2$ feet should be backfilled with compacted soil to exclude surface water. Retaining walls designed to resist full hydrostatic pressure do not need to be backdrained. Expansive soil should not be used for wall backfill. Where expansive soil is present in the excavation made to install the retaining wall, the excavation should be sloped back 1:1 from the back of the footing or grade beam. The ground surface behind walls should be sloped to drain. Where migration of moisture through walls would be detrimental, walls should be waterproofed.

Utility Trenches

The shoring and safety of culvert and trench excavations is solely the responsibility of the contractor. Attention is drawn to the State of California Safety Orders dealing with "Excavations and Trenches."

Unless otherwise specified by the City of Petaluma, utility trench backfill should consist of aggregate baserock. The baserock should comply with the minimum requirements in Caltrans Standard Specifications, Section 26 for Class 2 Aggregate Base. Trench backfill should be moisture-conditioned as necessary, and placed in horizontal layers not exceeding 8 inches in thickness, before compaction. Each layer should be compacted to at least 90 percent relative compaction as determined by ASTM Test Method D-1557. The top 6 inches of trench backfill below vehicle pavement subgrades should be moisture-conditioned as necessary and compacted to at least 95 percent relative compaction. Jetting or ponding of trench backfill to aid in achieving the recommended degree of compaction should not be attempted.

Maintenance

Periodic land maintenance will be required. Surface and subsurface drainage facilities should be checked frequently and cleaned and maintained as necessary or at least annually. Sloughing and erosion that occurs must be repaired promptly before it can enlarge.

Supplemental Services

Pre-Bid Meeting

It has been our experience that contractors bidding on the project often contact us to discuss the geotechnical aspects. Informal contacts between RGH Consultants (RGH) and an individual contractor could result in incomplete or misinterpreted information being provided to the contractor. Therefore, we recommend a pre-bid meeting be held to answer any questions about the report prior to submittal of bids. If this is not possible, questions or clarifications regarding this report should be directed to the project owner or their designated representative. After consultation with RGH, the project owner or their representative should provide clarifications or additional information to all contractors bidding the job.

Plan and Specifications Review

Coordination between the design team and the geotechnical engineer is recommended to assure that the design is compatible with the soil, geologic and groundwater conditions encountered during our study. RGH recommends that we be retained to review the project plans and specifications to determine if they are consistent with our recommendations. In the event we are not retained to perform this recommended review, we will assume no responsibility for misinterpretation of our recommendations.

Construction Observation and Testing

Prior to construction, a meeting should be held at the site that includes, but is not limited to, the owner or owner's representative, the general contractor, the grading contractor, the foundation contractor, the underground contractor, any specialty contractors, the project civil engineer, other members of the project design team and RGH. This meeting should serve as a time to discuss and answer questions regarding the
recommendations presented herein and to establish the coordination procedure between the contractors and RGH.

In addition, we should be retained to monitor all soil related work during construction, including:

- Site stripping, over-excavation, grading, and compaction of near surface soil;
- Placement of all engineered fill and trench backfill with verification field and laboratory testing;
- Observation of all foundation excavations; and
- Observation of foundation and subdrain installations.

If, during construction, we observe subsurface conditions different from those encountered during the explorations, we should be allowed to amend our recommendations accordingly. If different conditions are observed by others, or appear to be present beneath excavations, RGH should be advised at once so that these conditions may be evaluated and our recommendations reviewed and updated, if warranted. The validity of recommendations made in this report is contingent upon our being notified and retained to review the changed conditions.

If more than 18 months have elapsed between the submission of this report and the start of work at the site, or if conditions have changed because of natural causes or construction operations at, or adjacent to, the site, the recommendations made in this report may no longer be valid or appropriate. In such case, we recommend that we be retained to review this report and verify the applicability of the conclusions and recommendations or modify the same considering the time lapsed or changed conditions. The validity of recommendations made in this report is contingent upon such review.

These supplemental services are performed on an as-requested basis and are in addition to this geotechnical study. We cannot accept responsibility for items that we are not notified to observe or for changed conditions we are not allowed to review.

LIMITATIONS

This report has been prepared by RGH for the exclusive use of the City of Petaluma and their consultants as an aid in the design and construction of the proposed improvements described in this report.

The validity of the recommendations contained in this report depends upon an adequate testing and monitoring program during the construction phase. Unless the construction monitoring and testing program is provided by our firm, we will not be held responsible for compliance with design recommendations presented in this report and other addendum submitted as part of this report.

Our services consist of professional opinions and conclusions developed in accordance with generally accepted geotechnical engineering principles and practices. We provide no warranty, either expressed or implied. Our conclusions and recommendations are based on the information provided to us regarding the proposed construction, the results of our field exploration, laboratory testing program, and professional judgment. Verification of our conclusions and recommendations is subject to our review of the project plans and specifications, and our observation of construction.

The boring logs represent the subsurface conditions at the locations and on the date indicated. It is not
warranted that they are representative of such conditions elsewhere or at other times. Site conditions and cultural features described in the text of this report are those existing at the time of our field exploration and may not necessarily be the same or comparable at other times.

The scope of our services did not include an environmental assessment or a study of the presence or absence of toxic mold and/or hazardous, toxic or corrosive materials in the soil, surface water, groundwater or air (on, below or around this site), nor did it include an evaluation or study for the presence or absence of wetlands. These studies should be conducted under separate cover, scope and fee and should be provided by a qualified expert in those fields.

We trust this provides the information you require at this time. If you have questions, please contact the undersigned.

Very truly yours, RGH Consultants

christianb@zfa.com

EGC:TAW:Ifc:nvd

Electronically submitted
s:\project files \2501-2750\2553\2553.10.pw. 1 first street wooden deck\gs letter report.doc

Attachments: References

Plate 1 - Log of Boring B-1
Plate 2 - Log of Boring B-2
Plate 3 - Soil Classification and Key to Test Data
Plate 4 - Culvert and Wing Wall Backdrain Illustration

					MATERIAL DESCRIPTION	$\begin{aligned} & \overline{0} \\ & \frac{0}{0} \\ & \frac{2}{0} \\ & \stackrel{0}{0} \\ & 0 \\ & \text { त } \end{aligned}$			$\stackrel{\text { ®- }}{\text { ¢ }}$	¢			
1	2	3	4	5	6	7	8	9	10	11	12	13	14

COLUMN DESCRIPTIONS

1 Elevation (feet): Elevation (MSL, feet).
2 Depth (feet): Depth in feet below the ground surface.
9 \% <\#200 Sieve: \% <\#200 Sieve
3 Sample Type: Type of soil sample collected at the depth interval
shown.
$10 \mathrm{PI}, \%$: Plasticity Index, expressed as a water content.
LL, \%: Liquid Limit, expressed as a water content
12 Expansion Index (El): Expansion Index (EI)
4 Sampling Resistance, blows/ft: Number of blows to advance driven 13 UC, ksf: Unconfined compressive strength, in kips per square foot. sampler one foot (or distance shown) beyond seating interval

14 REMARKS AND OTHER TESTS: Comments and observations using the hammer identified on the boring log regarding drilling or sampling made by driller or field personnel.
5 Graphic Log: Graphic depiction of the subsurface material encountered.
6 MATERIAL DESCRIPTION: Description of material encountered. May include consistency, moisture, color, and other descriptive text.
7 Dry Density (pcf): Dry density, in pcf.
8 Water Content (\%): Water content, percent.

FIELD AND LABORATORY TEST ABBREVIATIONS

CHEM: Chemical tests to assess corrosivity
COMP: Compaction test
CONS: One-dimensional consolidation test
LL: Liquid Limit, percent

MATERIAL GRAPHIC SYMBOLS

Asphaltic Concrete (AC)

Boulders

Fat CLAY, CLAY w/SAND, SANDY CLAY (CH)

TYPICAL SAMPLER GRAPHIC SYMBOLS

\triangle Bulk Sample
2.5-inch-ID Modified California w/ brass liners

2-inch-OD unlined split spoon (SPT)

OTHER GRAPHIC SYMBOLS

$$
\begin{aligned}
\stackrel{\nabla}{=} & \text { Water level (at time of drilling, ATD) } \\
= & \text { Water level (after waiting) } \\
& \text { Minor change in material properties within a } \\
\nabla & \text { stratum } \\
- & - \text { Inferred/gradational contact between strata } \\
-?- & \text { Queried contact between strata }
\end{aligned}
$$

GENERAL NOTES

1: Soil classifications are based on the Unified Soil Classification System. Descriptions and stratum lines are interpretive, and actual lithologic changes may be gradual. Field descriptions may have been modified to reflect results of lab tests.
2: Descriptions on these logs apply only at the specific boring locations and at the time the borings were advanced. They are not warranted to be representative of subsurface conditions at other locations or times.

Notes:

1. Drain rock should meet the requirements for Class 2 Permeable Material, Section 68, State of California "Caltrans" Standard Specification, latest edition. Drain rock should be placed to approximately threequarters the height of the retaining wall.
2. Pipe should conform to the requirements of Section 68 of State of California "Caltrans" Standards, perforations placed down, sloped at 1% for gravity flow to outlet or sump with automatic pump. The pipe invert should be located at least 8 inches below the lowest adjacent finished surface.
3. During construction the contractor should use appropriate methods such as temporary bracing and/or light compaction equipment to avoid overstressing the walls. Non-expansive soils to be used as backfill.
4. Slope excavation back at a 1:1 gradient from the back of footing where expansive materials are exposed.

> Not to Scale

CULVERT \& WING WALL BACKDRAIN

 ILLUSTRATION First Street Wooden Deck
APPENDIX A - REFERENCES

American Society of Civil Engineers, 2017, Minimum Design Loads and Associated Criteria for Buildings and Other Structures, ASCE Standard ASCE/SEI 7-16.

Bryant, W.A., and Hart, E.W., Interim Revision 2007, Fault-Rupture Zones in California; California Geological Survey, Special Publication 42, p. 21 with Appendices A through F.

California Building Code, 2019, California Building Standard Commission.
Idriss, I.M. and Boulanger, R.W., 2004, Semi-Empirical Procedures for Evaluating Liquefaction Potential During Earthquakes, Proceedings of the $11^{\text {th }}$ ICSDEE and $3^{\text {rd }}$ ICEGE, pp. 32-56.

Idriss, I.M. and Boulanger, R.W., 2008, Soil Liquefaction During Earthquakes.
Idriss, I.M. and Boulanger, R.W., 2014, CPT and SPT Based Liquefaction Triggering Procedures.
Ishihara, K., and Yoshimine, M., 1992, Evaluation of settlements in sand deposits following liquefaction during earthquakes, Soils and Foundations 32(1), 173-88.

Petersen, et al., 1996, Probabilistic Seismic Hazard Assessment for the State of California, California Department of Conservation, Division of Mines and Geology, Open File Report 96-08.

Seed, H.B. and Idriss, I.M., 1982, Ground Motion and Soil Liquefaction During Earthquakes: Earthquake Engineering Research Institute, Berkeley, California.

Seed, H.B., Tokimatsu, K., Harder, L.F., and Chung, R.M., 1985, Influence of SPT Procedures in Soil Liquefaction Resistance Evaluations: Journal of Geotechnical Engineering Division, American Society of Civil Engineers, v. III, no. 12, December, p. 1425-1445.

Youd, T.L., and Idriss, I.M., and 19 others, 2001, Liquefaction Resistance of Soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils: ASCE Geotechnical and Geoenvironmental Journal, v. 127, no. 10, p. 817-833.

APPENDIX C STRUCTURAL CALCULATIONS

ZFA STRUCTURAL ENGINEERS

First and F Street Bridge Replacement Structural Calculations

Petaluma, California
ZFA Project Number: 13415

Permit Submittal

June 17, 2021

Prepared For:
City of Petaluma Public Works \& Utilities Department
Petaluma, California

Prepared By:
Matthew Ramos, PE, Engineer
Christian S. Botto, SE, Associate Kevin Zucco, SE, Principal-in-Charge Santa Rosa, California

TABLE OF CONTENTS

Description Page
Main Foundation Loading 8
Grade Beam 21
Piers 27
Retaining Wall 76
Guardrail 115

DESIGN CRITERIA

Material (unless noted otherwise)
Concrete: f'c $=5000$ psi @ 28 days (Foundation)
$\mathrm{f}^{\prime} \mathrm{c}=5000 \mathrm{psi} @ 28$ days (Beams and Columns) $\mathrm{f}^{\prime} \mathrm{c}=5000$ psi @ 28 days (Walls)
Reinf. Steel: fy $=60$ ksi, ASTM A615, Grade 60

ASTM A992 or A572 Grade 50
ASTM A36 or A572 Grade 50 ASTM A53, Grade B

STRUCTURAL NARRATIVE

AASHTO LRFD Load combinations are used to determine strength demands on the piers and pier caps. CBC/ASCE7 ASD load combinations are used for soil failure modes. CBC/ASCE7 is used to design the misc. site walls

Since the structure is below grade wind, seismic, temperature, and dynamic vehicle loading does not apply per AASHTO 12.6.1. Strength design will be governed by LRFD combos Strength 1.

Trolley Loading is the same as that used for a trestle rehabilitation on the same trolley line approximately 0.25 miles north of this site and is based on the "Petaluma Trestle Rehabilitation Structural Calculations" report dated March 2013. Trolley loading is treated as a vehicle live load similar to a design truck.

From Geo Report

Torque-Down Piles

Torque-down piles (also referred to as screw piles) are advanced into the ground by a sacrificial screw-head that is attached to the end of a tubex pile. This type of pile system is designed for skin friction with no end bearing. The piles should gain support in the clay soil below a depth of 22 feet. The diameter of the pile should be set by the design. Piles should be spaced no closer than 3 pile diameters, center to center.

Skin Friction - The portion of the piles extending below a depth of 22 feet from the ground surface may be designed using an allowable skin friction of 350 pounds per square foot (psf) for dead load plus long-term live loads. This value can be increased by $1 / 3$ for total loads, including downward vertical wind or seismic forces. A skin friction value of 230 psf should be used to resist uplift forces.

Lateral Forces - Lateral loads on piles will be resisted by passive pressure on the soil. An equivalent fluid pressure of 100 pounds per cubic foot (pcf) acting on two pile diameters. Confinement for passive pressure may be assumed from the base of the culvert. Passive resistance can be increased to 350 pcf below a depth of 22 feet.

From AASHTO 12.6.1

12.6-GENERAL DESIGN FEATURES

12.6.1-Loading

Buried structures shall be designed for force effects resulting from horizontal and vertical earth pressure, pavement load, live load, and vehicular dynamic load allowance. Earth surcharge, live load surcharge, downdrag loads, and external hydrostatic pressure shall be evaluated where construction or site conditions warrant. Water buoyancy loads shall be evaluated for buried structures with inverts below the water table to control flotation, as indicated in Article 3.7.2. Earthquake loads should be considered only where buried structures cross active faults.

For vertical earth pressure, the maximum load factor from Table 3.4.1-2 shall apply.

Wheel loads shall be distributed through earth fills according to the provisions of Article 3.6.1.2.6.

C12.6.1

Buried structures benefit from both earth shelter and support that reduce or eliminate from concern many of the loads and load combinations of Article 3.4. Wind, temperature, vehicle braking, and centrifugal forces typically have little effect due to earth protection. Structure dead load, pedestrian live load, and ice loads are insignificant in comparison with force effects due to earth fill loading. External hydrostatic pressure, if present, can add significantly to the total thrust in a buried pipe.

Vehicular collision forces are applicable to appurtenances such as headwalls and railings only. Water, other than buoyancy and vessel collision loads, can act only in the noncritical longitudinal direction of the culvert.

From Petaluma Trestle Rehabilitation Structural Calculations

Live Loads (Trestle Deck):

Uniform Load:	100 psf
Trolley Load:	Total Load $=94,000 \mathrm{lbs}, 4$ axles @ $23,500 \mathrm{lbs}$

Corrosion Resistance

Per Geo report soils are LOW corrosion potential for steel and concrete

Corrosion Potential

Mapping by the Natural Resources Conservation Service (www.websoilsurvey.sc.egov.usda.gov) indicates that the corrosion potential of the near surface soil is low for uncoated steel and low for concrete. Performing corrosivity tests to verify these values was not part of our requested and/or proposed scope of work. Should the need arise, we would be pleased to provide a proposal to evaluate these characteristics.

Per correspondence with Civil engineer river water and tidal water may be brackish

Requirements for concrete:
Exposure S1-C2 per ACl318-14 T19.3.1.1
w/cm reduced and f'c increased for all concrete per ACI318 T19.3.2.1

Requirements for steel:
Steel above the high water line is not exposed to brackish water or spray therefore paint or galvanization will be sufficient

For steel cased piers (torque-down piers) consider sacrificial steel Steel corrosion rates are based on:

Washington DOT Design Memo "Corrosion of Steel Foundations and Buried Structures" dated Jan 6, 2020
CALTRANS Corrosion Guideline v3.0 dated March 2018

Location	Marine or Non- Marine: Corrosive	Non-Marine: Non- Corrosive
Soil embedded zone (undisturbed soil)	0.001	0.0005
Soil embedded zone (fill or disturbed soils)	0.0015	0.00075
Immersed zone	0.003	0.0015
Tidal zone	0.004	-
Splash zone	0.006	-
Atmospheric	0.002	
Table 1: Section Loss (inch per year)		

Design Life $=\quad 75$ years
Corrosion Rate $=\quad 0.001$ in/year
Section reduction $=0.075$ in

CALCULATION PER ACI 318-14 section 25.4.2.3 and 25.5.2.1:
$\mathrm{I}_{\mathrm{d}}=\mathrm{d}_{\mathrm{b}}(3) \mathrm{f}_{\mathrm{y}} \psi_{\mathrm{t}} \psi_{\mathrm{e}} \psi_{\mathrm{s}} /\left[40 \lambda\left(\mathrm{f}_{\mathrm{c}}\right)^{0.5}\left(\left(\mathrm{c}_{\mathrm{b}}+\mathrm{K}_{\mathrm{tr}}\right) / \mathrm{d}_{\mathrm{b}}\right)\right]$
$\mathrm{K}_{\mathrm{tr}}=0$
Conc.Wt. Factor $\lambda=1.0 \quad$ Location factor, $\psi_{t}=1.3 \quad$ Coating factor, $\psi_{e}=1.0 \quad \psi_{t} \psi_{e}=1.3$

Minimum Splices for			$\mathrm{f}_{\mathrm{c}}^{\prime}=5000$		psi					
Bar	fy_{y} (ksi)	d_{b} (in)	$\begin{aligned} & \stackrel{0}{0} \\ & 0 \\ & \dot{c} \\ & \dot{\Sigma} \\ & \hline \end{aligned}$					I_{d}		
\#3	60	0.375	1.0	0.8	1.188	2.375	2.50	12.0	12.9	13
\#4	60	0.500	1.0	0.8	1.250	2.500	2.50	13.2	17.2	18
\#5	60	0.625	1.0	0.8	1.313	2.625	2.10	19.7	25.6	26
\#5	60	0.625	1.5	0.8	1.813	3.625	2.50	16.5	21.5	22
\#6	60	0.750	1.5	0.8	1.875	3.750	2.50	19.9	25.8	26
\#7	60	0.875	1.5	1.0	1.938	3.875	2.21	32.7	42.5	43
\#8	60	1.000	1.5	1.0	2.000	4.000	2.00	41.4	53.8	54
\#9	60	1.128	1.5	1.0	2.064	4.128	1.83	51.0	66.3	67
\#10	60	1.270	1.5	1.0	2.135	4.270	1.68	62.5	81.3	82
\#11	60	1.410	1.5	1.0	2.205	4.410	1.56	74.6	97.0	97

CALCULATION PER ACI 318-14 section 25.4.3:
$I_{d h}=$ MAX of $d_{b}{ }^{*}\left[f y \Psi_{e} \Psi_{c} \Psi_{r} /\left(50 \lambda\left(f_{c}^{\prime}\right)^{0.5}\right)\right]$ or $8 d_{b}$ or 6 in
[section 25.4.3.1]
Conc.Wt. Factor $\lambda=1.0 \quad$ Epoxy factor, $\psi_{\mathrm{e}}=1.0$
FactorHooks with side cover (normal to plane of hook) > 2.5 ", and for 90 d hook with cover on bar extension beyond hook >2 "

90d hooks that are either enclosed within ties or stirrups perpendicular to the bar beind developed, spaced < 3db along Idh; orenclosed within ties or stirrups parallel to the bar being developed, spaced < 3db along the length of the tail extension of the hook plus bend180 d hooks that are enclosed within ties or stirrups perpendicular to the bar being developed, < 3db along Idh
$0.7=\psi_{\mathrm{c}}$
1
$=\psi_{r}$
$1=\psi_{\mathrm{r}}$

$90^{\circ} \mathrm{Hook}$	180° Hook

Minimum Splices for			$\mathrm{f}^{\prime}=5000 \mathrm{psi}$				
Bar	$\mathrm{f}_{\mathrm{y}}(\mathrm{ksi})$	d_{b} (in)		흘	흠	I_{dh}	
\#3	60	0.375	1.125	4.500	5.63	4.5	6
\#4	60	0.500	1.500	6.000	7.50	5.9	6
\#5	60	0.625	1.875	7.500	9.38	7.4	8
\#6	60	0.750	2.250	9.000	11.25	8.9	9
\#7	60	0.875	2.625	10.500	13.13	10.4	11
\#8	60	1.000	3.000	12.000	15.00	11.9	12
\#9	60	1.128	3.384	13.536	16.92	13.4	14
\#10	60	1.270	3.810	15.240	19.05	15.1	16
\#11	60	1.410	4.230	16.920	21.15	16.7	17

Main Foundation Loading

Loading

Loading is enveloped for min and max expected

| Span | $=24.83 \mathrm{ft}$ |
| ---: | ---: | ---: |
| $\omega_{\text {vert }}$ | $=$ vertical line load per side $(+$ is down) |
| $\omega_{\text {horiz }}$ | $=$ horizontal line load per side (thrust) |
| $\omega_{\text {horiz }}$ | $=\quad 72 \% \omega_{\text {vert }} \quad$ (see arch thrust) |

Dead Loads

Asphalt Cover (DW)
Unit Weight $=\quad 140$ pcf

	Min	
t	$=$	4
q	$=$	47
$\omega_{\text {vert }}$	$=$	93 in
$\omega_{\text {horiz }}$	$=$	0.58
	0.41	$\mathbf{1 . 1 6 \mathrm { klf }}$
	0.83 klf	

Aggregate Base (EV)
Unit Weight = 120 pcf

	Max	
A	$=$	27.3
$\omega_{\text {vert }}$	$=$	$27.3 \mathrm{ft}^{2}$
$\mathrm{~h}_{\text {crest }}$	$=$	1.64
q	1.64 klf	
	$=$	12
	24 in	
$\omega_{\text {vert }}$	$=$	120
$\sum \omega_{\text {vert }}$	$=$	1.49
$\omega_{\text {horiz }}$	$=$	3.13
	2.98 psf	
	2.24	4.62 klf
		3.31 klf

Grade Beam (GB) (DC)
$\begin{array}{rr}\text { Unit Weight }= & 150 \mathrm{pc} \\ \text { width }= & 36 \mathrm{in} \\ \text { depth }= & 30 \mathrm{in}\end{array}$

	Max	
$\omega_{\text {vert }}$	$=$	1.13
$\omega_{\text {horiz }}$	$=$	0

(concentric with piers)

Concrete Arch (Contech B-Series 24'span 6'-10" Rise) (DC)

Unit Weight =

\quad Min	Max	
$\mathrm{A}=$	29.2	$29.2 \mathrm{ft}^{2}$
$\omega_{\text {vert }}$	$=$	2.19
$\omega_{\text {horiz }}$	$=$	1.57
		1.57 klf

150 pcf
section area $\mathrm{A} / 2$ * unit weight

A/2*unit weight
fill above crest

Live Loads (LL)

Per AASHTO 3.6.1.2 HL-93 Load = (HS20 Truck OR Design Tandem) + Lane Load
Per City of Petaluma Trolley Load $=200$ plf per track $+23.5 \mathrm{k} /$ axle $\times(4)$ axles @ 5'-0"oc
m = Multiple Presence Factor per AASHTO T3.6.1.1.2-1
To account for the probability of simultaneous occupancy
Does not apply to Lane Load or other distributed loads
1.0 for two lanes

IM = Dynamic Load Allowance per AASHTO 3.6.2
Need not be applied to buried structures/foundations
1.0

See Arch Thrust for distributions
HL-93 (Lane Load)

ω lane	$=$	640 plf
Span $/ 2$ * lane	$=$	7947 lbs
Lane Width	$=$	10 ft
$\omega_{\text {vert }}$	$=$	0.79 klf
$\omega_{\text {horiz }}$	$=$	0.57 klf

AASHTO 3.6.1.2.4

HL-93 (HS-20)
Min truck length is $28^{\prime}-0$ " (14 ' between axles)

$\mathrm{P}_{\text {vert }}$	$=$	46.6 k
$\mathrm{P}_{\text {horiz }}$		23.3 k
Lane Width	$=$	8.5 ft
$\omega_{\text {vert }}$		5.48 klf
$\omega_{\text {horiz }}$		2.74 klf

See Arch Thrust
6' gauge + spread each side

HL-93 (Design Tandem)
Min tandem length is $4^{\prime}-0$ " (between axles)

$\mathrm{P}_{\text {vert }}=$	45.6 k	See Arch Thrust
$\mathrm{P}_{\text {horiz }}=$	27.9 k	
Lane Width		8.5 ft

Trolley Load
Trolley length is $15^{\prime}-0^{\prime \prime}$ (5^{\prime} between axles)

$\mathrm{P}_{\text {vert }}=$	64.7 k	See Arch Thrust
$\mathrm{P}_{\text {horiz }}=$	43.2 k	
Width	$=$	8.5 ft
$\omega_{\text {vert }}=$	7.61 klf	
$\omega_{\text {horiz }}$	spread over ties	

Trolley Rail

ω lane $=$	400 plf	200plf per rail
Span $/ 2^{*} \omega=$	4967 lbs	
Lane Width $=$	8.5 ft	spread over ties
$\omega_{\text {vert }}=$	0.58 klf	
$\omega_{\text {horiz }}$		0.42 klf

Provided by Contech
$\omega_{\text {vert }}=$
6.1 klf
$\omega_{\text {horiz }}=$
2.7 klf

Envelope

Min (HL93)		Max (Trolley)
$\omega_{\text {vert }}=$	6.28	8.20 klf
$\omega_{\text {horiz }}=$	3.85	5.50 klf

Lateral Soil Loads (EH)
Apply soil lateral loads to exterior faces of bridge and grade beam, similar to retaining wall
Equivalent fluid pressures are per geo report
Structure is rigid and thrust keeps structure from moving away from soil, therefore use passive case

Max Conditions

Fluid Pressure =	63 pcf Max	free draining
$\mathrm{h}_{\text {fill }}=$	2.0 ft	
$\mathrm{h}(\mathrm{str}+\mathrm{fill})=$	8.83 ft	
$\sigma 1=$	557 psf	
$\omega_{\text {hori }, 1}=$	2.46 klf	$1 / 2 h^{2} \mathrm{q}$ (Top of GB)
$\mathrm{h}(\mathrm{GB}+\mathrm{str}+$ fill $)=$	11.33 ft	
$\sigma 2=$	714 psf	
$\omega_{\text {hori, } 2}=$	1.59 klf	$\mathrm{h}_{\mathrm{GB}}(\sigma 1+\sigma 2) / 2$ (On GB)
$\sigma_{\text {vehicle }}=$	126 psf	square distribution, wet condition max
$\omega_{\text {horiz,1, venhichle }}=$	1.113 klf	$\sigma \mathrm{h}$ (str+fill)
$\omega_{\text {hori, } 2 \text {,vehichle }}=$	0.315 klf	$\sigma h_{G B}$
$\Sigma \omega 1=$	3.57 klf	soil + vehicle
$\Sigma \omega 2=$	1.90 klf	

Soil Load Summary
At Top of Grade Beam
$\omega_{\text {horiz }}=$
At Bot of Grade Beam
$\omega_{\text {horiz }}=$

Max
$2.46 \quad 3.57$ klf
$4.05 \quad 5.47$ klf

Load Summary
At top of GB

From Contech
DC 10.8 4.5
LL (HL93)
4.3

LL (Trolley)
6.1
2.7

At bot of GB
loads are those applied to GB, to be summed with above

Vert		Horiz		
Min		Max	Min	Max
DC	1.13	1.13	0	0
EH	0	0	-1.90	-1.59

Load Combinations

Per AASHTO T3.4.1-1

Strength 1
Used for grade beam design

	Yp/factor	
Load Type Min	Max	
DC	0.9	1.25
DW	0.65	1.5
EV	0.9	1.3
EH	0.9	1.5
LL (HL93)	0	1.75
LL (Trolley)	0	1.75

At Top of GB ω

Service 1
Used for Pier deflection control

	ν_{p} / f factor	
Load Type Min	$1^{\text {Max }}$	
DC	1	1
DW	1	1
EV	1	1
EH	1	1
LL (HL93)		1

At Top of GB ω

At bot of GB
loads are those applied to GB, to be summed with above

Vert	Moriz			
	Max		Max	
DC	1.13	1.13	0.00	0.00 klf
EH	0.00	0.00	-1.90	-1.59
Σ	1.13	1.13	-1.90	-1.59
Senvelope	$\mathbf{2 0 . 1 2}$		$\mathbf{8 . 4 1}$	

Arch Thrust

Shape of precast concrete arch results in horizontal thrust at each leg
Model arch shape in RISA to determine relationship between vertical loading and thrust
Arch is a constant material and thickness, same section may be used for all elements

Uniform Loads
All dead loads from arch self weight and material fill will be treated as uniform The AASHTO Lane Load is uniform, the 200plf rail load is uniform

Moving Loads

HS20, Design Tandum, and Trolley loads will be applied as moving loads
The max reactions will be used

Vert $=$	46.6 k
Thrust	$=$
	23.3 k

Vert $=\quad 45.6 \mathrm{k}$ Thrust $=\quad 27.9 \mathrm{k}$

Vert =
64.7 k Thrust $=\quad 43.2 \mathrm{k}$

Vert $=$	12.3 k	
Thrust $=$	8.8 k	
$\mathrm{T} / \mathrm{V}=$		72%

(20) Envelope Joint Reactions					\square 口	x
$1 \square$	Joint		X [k]	LC	Y [k]	LC
1	N1	max	8.775	1-9	12.325	1-1
2		min	8.775	1-1	12.325	1-1
3	N6	max	-8.775	1-1	12.325	1-1
4		min	-8.775	1-9	12.325	1-1
5	N7	max	43.16	1-21	64.698	1-16
6		min	0	1-1	0	1-41
7	N12	max	0	1-1	62.033	1-25
8		min	-43.16	1-21	0	1-1
9	N13	max	27.9	1-15	45.632	1-5
10		min	0	1-1	0	1-30
11	N18	max	0	1-1	44.152	1-25
12		min	-27.9	1-15	0	1-1
13	N19	max	23.271	1-34	46.36	1-29
14		min	0	1-1	. 913	1-53
15	N24	max	0	1-1	44.503	1-39
16		min	-23.271	1-34	0	1-1
17	Totals:	max	0	1-1	208.649	1-16
18		min	0	1-1	56.649	1-41

\qquad

(Global) Model Settings

Display Sections for Member Calcs	5
Max Internal Sections for Member Calcs	97
Include Shear Deformation?	Yes
Increase Nailing Capacity for Wind?	Yes
Merge Tolerance (in)	0.12
P-Delta Analysis Tolerance	0.50%
Include P-Delta for Walls?	Yes
Automatically Iterate Stiffness for Walls?	Yes
Max Iterations for Wall Stiffness	3
Gravity Acceleration (ft/sec^2)	32.2
Wall Mesh Size (in)	12
Eigensolution Convergence Tol. (1.E-)	4
Dynamic Solver	Accelerated Solver
Hot Rolled Steel Code	
Adjust Stiffness?	AISC 15th (360-16): ASD
Cold Formed Steel Code	Yes(Iterative)
Wood Code	AISI S100-16: ASD
Wood Temperature	$<$ 100F
Concrete Code	ACI 318-14
Masonry Code	TMS 402-16: ASD
Aluminum Code	AA ADM1-15: ASD - Building
Number of Shear Regions	4
Region Spacing Increment (in)	4
Concrete Stress Block	Rectangular
Use Cracked Sections?	Yes
Bad Framing Warnings?	No
Unused Force Warnings?	Yes
Min 1 Bar Diam. Spacing?	No
Concrete Rebar Set	REBAR_SET_ASTMA615
Min \% Steel for Column	1
Max \% Steel for Column	8

Member Distributed Loads (BLC 1 : Test Loads)

	Member Label	Direction	Start Magnitude[k...	End Magnitude[k/..	.Start Location[tt,\%]	End Location[ft,\%]	Inactive
1	M2	Y	-1	-1	0	0	Active
2	M3	Y	-1	-1	0	0	Active
3	M4	Y	-1	-1	0	0	Active

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Joint	Point	Distributed
1	Test Loads	None					3

Moving Loads

	Tag	Pattern	Increme..	.Both ...	1st Joint	2nd Joint	3rd Joint	4th Joint	5th Joint	6th Joint	7th Joint	8th Joint	9th Joint	10th Joint
1	M1	PET_TROLL...	1		N8	N9	N10	N11						
2	M2	DESIGN_TA...	1		N14	N15	N16	N17						

\qquad

Moving Loads (Continued)

	Tag	Pattern	Increme	.Both	1st Jo	2nd Joi	3rd Join	4th Joint	5th Joint	6th Joint	7th Joint	8th Joint	9th Join	10th Joint
3	M3	H20_1	1		N20	N21	N22	N23						

Moving Load Patterns

Pattern Label	Load (k)	Direction	Distance (ft)
PET_TROLLEY	-23.5	Y	0
	-23.5	Y	5
	-23.5	Y	5
DESIGN_TANDEM	-23.5	Y	5
	-25	Y	
	-25	Y	0
H20_1	-8	Y	4
	-32	Y	0
	-32	Y	14

Load Combinations

Description Sol..PD..SR..BLC Fact...BLC Fact...BLC Fact...BLC Fact...BLC Fact...BLC Fact...BLC Fact...BLC Fact...BLC Fact...BLC Fact...
1 Test Loads Yes Y $1 \quad 1$ M1 1 M2 11 M3 1

Envelope Node Reactions

Node Label			X [k]	LC	Y [k]	LC	Moment [$\mathrm{k}-\mathrm{ft}$]	LC
1	N1	max	8.775	1-24	12.325	1-24	0	1-1
2		min	8.775	1-53	12.325	1-39	0	1-53
3	N6	max	-8.775	1-1	12.325	1-5	0	1-1
4		min	-8.775	1-25	12.325	1-29	0	1-53
5	N7	max	43.16	1-21	64.698	1-16	0	1-1
6		min	0	1-1	0	1-53	0	1-53
7	N12	max	0	1-1	62.033	1-25	0	1-1
8		min	-43.16	1-21	0	1-1	0	1-53
9	N13	max	27.9	1-15	45.632	1-5	0	1-1
10		min	0	1-1	0	1-53	0	1-53
11	N18	max	0	1-1	44.152	1-25	0	1-1
12		\min	-27.9	1-15	0	1-1	0	1-53
13	N19	max	23.271	1-34	46.36	1-29	0	1-1
14		min	0	1-1	0.913	1-53	0	1-53
15	N24	max	0	1-1	44.503	1-39	0	1-1
16		min	-23.271	1-34	0	1-1	0	1-53
17	Totals:	max	0	1-10	208.649	1-21		
18		\min	0	1-29	56.649	1-53		

Envelope Only Solution

		SK - 2
		Jan 25, 2021 at 9:54 AM
		B-Series_6-10.r2d

Contech Loading

Attached reactions were provided by Contech for their B-Series arch
Reactions are at top of grade beam
Dead Load (DC)

$$
\begin{aligned}
\omega_{\text {vert }} & & 10.8 \mathrm{klf} \\
\omega_{\text {horiz }} & = & 4.5 \mathrm{klf}
\end{aligned}
$$

HL-93 Load (LL)

$\omega_{\text {vert }}$	$=$		
$\omega_{\text {horiz }}$	$=$	\quad	4.3 klf
:---	:---		
2.0 klf			

Trolley Load (LL)

$\omega_{\text {vert }}$	$=$		
$\omega_{\text {horiz }}$	$=$	\quad	6.1 klf
:---	:---		
2.7 klf			

Load Combinations

Strength 1
Loading is provided as a lump sum
Load factors are a weighted avg based on load take off

	$\gamma_{p} / f a c t o r$	
Load Type Min	Max	
DC	0.86	1.32
LL	0	1.75
$\omega_{\text {vert }}=$	9.33	24.88
$\omega_{\text {horiz }}=$	3.89	10.64

Service 1

	$\nu_{p} /$ factor	
Load Type	Max	
DC		1
LL		1

	$\omega_{\text {vert }}$	$\omega_{\text {horiz }}$
Dead Load (DC)	10.80	4.50 klf
HL-93 Load (LL)	4.30	2.00
Trolley Load (LL)	6.10	2.70

BRIDGE SYSTEMS				
BRIDGE REACTIONS				
$\begin{aligned} & \text { JOB \#: } \\ & \text { NAME: 1st \& F Street } \\ & \text { DATE: 09-Oct-20 } \\ & \text { BY: DM } \end{aligned}$				
LOADS:				
Cover at structure center: Shape ID: Bridge span: Bridge rise: Design live load:	$\begin{aligned} & \hline 2^{\prime}-0 " \\ & \text { B-Series } \\ & 244^{\prime}-0 " \\ & \text { 6'-0" } \\ & \text { Trolley } \end{aligned}$	Vertical load, per leg, R_{v} (DL Arch Only) Horizontal load, per leg, R_{h} (DL Arch Only) Vertical load, per leg, R_{v} (DL Only) Horizontal load, per leg, R_{h} (DL Only) Vertical load, per leg, $R_{v}(D L+L L)$ Horizontal load, per leg, $\mathrm{R}_{\mathrm{h}}(\mathrm{DL}+\mathrm{LL})$	$2.4 \mathrm{k} / \mathrm{f}$ $1.3 \mathrm{k} / \mathrm{f}$ $10.8 \mathrm{k} / \mathrm{f}$ $4.5 \mathrm{k} / \mathrm{f}$ $16.9 \mathrm{k} / \mathrm{f}$ $7.2 \mathrm{k} / \mathrm{f}$	$6.1 \mathrm{k} / \mathrm{f}$ $2.7 \mathrm{k} / \mathrm{f}$
$R h-$ R			Rh	
Notes: 1) Axle load positions are varied to produce critical reactions shown here. 2) Reactions are unfactored loads. 3) Impact is not included. 4) Units are kips/ft. 5) Soil Weight $=120$ pcf, Concrete Weight $=150$ pcf, Asphalt Weight $=140$ pcf. 6) Reactions are based on deep foundations.				

Grade Beam

Keyway

Precase arch legs are set in a grouted key way

Friction resist the majority of leg sliding
Max horizontal load $(\mathrm{H})=\quad 14.91$ klf
Corresponding vertical load $(\mathrm{V})=\quad 24.82$ klf

$$
\begin{aligned}
\mathrm{H} / \mathrm{V}= & 0.60 \\
\text { Friction Factor }= & 0.6(\text { Per ACl318 22.9.4.2 })
\end{aligned}
$$

Concervatively check keyway for full horizontal load Vc per ACl318 22.5.5.1

$$
\begin{array}{rlrl}
\mathrm{H}= & & 14.91 \mathrm{klf} \\
\mathrm{f}^{\prime} \mathrm{c}= & & 5000 \mathrm{psi} \\
\lambda & = & 1 \\
\mathrm{~d}= & & 14 \\
\phi= & 0.75 \\
\phi \mathrm{~V}_{\mathrm{c}}= & & 17.82 \mathrm{klf} \\
\mathrm{DCR} & = & 0.84
\end{array}
$$

Check keyway for horizontal load reversal

$$
\begin{array}{rlrl}
\mathrm{H}= & 1.66 \mathrm{klf} \\
\mathrm{f}^{\prime} \mathrm{c}= & & 5000 \mathrm{psi} \\
\lambda & = & 1 \\
\mathrm{~d}= & & 6 \\
\phi= & 0.75 \\
\phi \mathrm{~V}_{\mathrm{c}} & & 7.64 \mathrm{klf} \\
\mathrm{DCR} & = & 0.22
\end{array}
$$

Grade Beam

Requierments per CBC 1810.3.12 and ACI 318
1810.3.12 Grade beams. For structures assigned to Seismic Design Category D, E or F, grade beams shall comply with the provisions in Section 21.12.3 of ACI 318 for grade beams, except where they are designed to resist the seismic load effects including overstrength factor in accordance with Section 12.4.3 or 12.14.3.2 of ASCE 7.

21.12.3 - Grade beams and slabs-on-ground

21.12.3.1 - Grade beams designed to act as horizontal ties between pile caps or footings shall have continuous longitudinal reinforcement that shall be developed within or beyond the supported column or anchored within the pile cap or footing at all discontinuities.
21.12.3.2 - Grade beams designed to act as horizontal ties between pile caps or footings shall be proportioned such that the smallest cross-sectional dimension shall be equal to or greater than the clear spacing between connected columns divided by 20 , but need not be greater than 18 in . Closed ties shall be provided at a spacing not to exceed the lesser of one-half the smallest orthogonal cross-sectional dimension and 12 in .
1810.3.13 Seismic ties. For structures assigned to Seismic Design Category C, D, E or F, individual deep foundations shall be interconnected by ties. Unless it can be demonstrated that equivalent restraint is provided by reinforced concrete beams within slabs on grade or reinforced concrete slabs on grade or confinement by competent rock, hard cohesive soils or very dense granular soils, ties shall be capable of carrying, in tension or compression, a force equal to the lesser of the product of the larger pile cap or column design gravity load times the seismic coefficient, $S_{D S}$, divided by 10 , and 25 percent of the smaller pile or column design gravity load.

Continuous longitudinal reinforcing

Spacing $=$	6 ft
Min dim $=$	3.6 in

Spacing =	6 ft
Gravity load $=$	24.88 klf
Gravity load $=$	149.2843 k
SDS =	1.114
factor $=$	0.25
Axial Load $=$	37.3 k

Typical section between piers

Fixed-Fixed

Span $=\quad 6 \mathrm{ft}$
Vertical load $=\quad 24.88$ klf Hz load $=\quad 14.91 \mathrm{klf}$ Axial $=\quad 37.3$ k
fy $=\quad 60 \mathrm{ksi}$
$\phi=\quad 0.9$ Axial/ фfy $=\quad 0.691 \mathrm{in}^{2}$
$\mathrm{n}=\quad 2$
$\mathrm{Ab}=\quad 0.44$
As $=\quad 0.88$
DCR $=0.79$
(self weight added seperately)

See Enercalc for analysis

Provide (2) addl \#6 or better for tension

Ok for compression by inspection

Design for Torsion

bw = $d=$	$36 \text { in }$ $30 \text { in }$	
Torque $=$	224 k -in/ft	Hz load*d/2
Clear Span $=$	3.33 ft	face of support to face of support
$\mathrm{T}_{\mathrm{U}}=$	373 k-in	*clear span/2
$\mathrm{A}_{\text {cp }}=$	1080 in ${ }^{\text {< }}$	
$\mathrm{p}_{\text {cp }}=$	132 in	
$\lambda=$	1	
$\mathrm{f}^{\prime} \mathrm{C}=$	5000 psi	
$\mathrm{T}_{\text {th }}=$	625 k-in	
$\phi=$	0.75	
$\phi \mathrm{t}_{\text {th }}=$	469 k -in	$\mathrm{T}_{\mathrm{cr}} / 4$
DCR =	0.80	Design for torsion is NOT required

ZFA STRUCTURAL ENGINEERS

Engineer:
Date:

DSA? NO

Beam: Grade Beam Vertical

Properties	
$\mathrm{f}_{\mathrm{c}}=$	5000 psi
$\mathrm{f}_{\mathrm{y}}=$	60 ksi
$\mathrm{f}_{\mathrm{yt}}=$	60 ksi

| I Dimensions | |
| ---: | ---: | ---: |
| Width $=$ | 36.0 in |
| Depth $=$ | 30.0 in |
| Cover $=$ | 3.0 in |
| $\mathrm{d}=$ | 26.0 in |
| $\mathrm{A}=$ | $7.5 \mathrm{ft}^{\star}$ |
| $\mathrm{q}=$ | 150 pcf |
| $\omega_{\mathrm{sw}}=$ | 1.125 klf |
| $\omega=$ | 24.88 klf |
| $\Sigma \omega=$ | 26.01 klf |

Flexural Reinf.
4.0 \#6 bars
$A_{s}=1.76 \mathrm{in}^{2} \quad \mathrm{NG}$
$\mathrm{A}_{\mathrm{s}, \min \mathrm{T} \& \mathrm{~S}}=1.94 \mathrm{in}^{2}$
$\mathrm{A}_{\mathrm{s}, \text { min Flexure }}=3.31 \mathrm{in}^{2}$
$A_{s, \text { min }}=\quad 3.31 \mathrm{in}^{2}$
$\mathrm{a}=0.69 \mathrm{in}$
$\beta_{1}=0.80$
$\mathrm{c}=0.86 \mathrm{in}$
$\varepsilon_{\mathrm{s}}=0.087$
Clear Spacing $=\quad 8.6$ in oc
$\phi_{\mathrm{b}}=0.90$
$M_{\text {ult }}=159.3 \mathrm{k}-\mathrm{ft}$
$\phi_{b} M_{n}=203.2 \mathrm{k}-\mathrm{ft}$
DCR $=0.78$ OK

Continuous Span

$$
\begin{aligned}
& \mathrm{L}=\quad 6 \mathrm{ft} \\
& \mathrm{M}=\quad 78.02 \mathrm{k}-\mathrm{ft} \quad \mathrm{wL}^{2} / 12 \\
& \mathrm{~V}=\quad 78.02 \mathrm{k} \quad \mathrm{wL} / 2
\end{aligned}
$$

Cantilever Span

\[

\]

DSA? NO

Engineer:
Date:

Beam: Grade Beam Horizontal

Properties	
$\mathrm{f}_{\mathrm{c}}=$	5000 psi
$\mathrm{f}_{\mathrm{y}}=$	60 ksi
$\mathrm{f}_{\mathrm{yt}}=$	60 ksi

I Dimensions

$$
\begin{array}{rlrl}
\text { Width } & = & 30.0 \mathrm{in} \\
\text { Depth } & = & & 36.0 \mathrm{in} \\
\text { Cover } & = & & 3.0 \mathrm{in} \\
\mathrm{~d} & = & 32.0 \mathrm{in} \\
\mathrm{~A} & = & & 7.5 \mathrm{ft}^{ट} \\
\mathrm{q} & = & & \mathrm{pcf} \\
\omega_{\mathrm{sw}} & = & & 0.000 \mathrm{klf} \\
\omega & = & 14.91 \mathrm{klf} \\
\Sigma \omega & = & 14.91 \mathrm{klf}
\end{array}
$$

Flexural Reinf.

2.0 \#6 bars
$\mathrm{A}_{\mathrm{s}}=0.88 \mathrm{in}^{2} \quad \mathrm{NG}$
$\mathrm{A}_{\mathrm{s}, \min T \& S}=1.94 \mathrm{in}^{2}$
$\mathrm{A}_{\mathrm{s}, \text { min Flexure }}=1.94 \mathrm{in}^{2}$
$A_{s, \min }=\quad 1.94 \mathrm{in}^{2}$
$\mathrm{a}=0.41 \mathrm{in}$
$\beta_{1}=0.80$
$\mathrm{c}=0.52 \mathrm{in}$
$\varepsilon_{\mathrm{s}}=0.182$
Clear Spacing $=\quad 21.3$ in oc
$\phi_{\mathrm{b}}=0.90$
$M_{\text {ult }}=91.3 \mathrm{k}-\mathrm{ft}$
$\phi_{b} M_{n}=125.9 \mathrm{k}-\mathrm{ft}$
DCR = 0.73 OK

Continuous Span

$$
\quad \mathrm{wL} / 2 \mathrm{~L}
$$

Cantilever Span

$$
{ }^{2} / 2 \mathrm{wL}
$$

$\operatorname{Mmax}=\quad 91.34 \mathrm{k}-\mathrm{ft}$
Vmax $=89.48 \mathrm{k}$

ZFA STRUCTURAL ENGINEERS

Job \#
Pier Demands (Max)

PIER DEMANDS:

See loading sheet for factored loads See loading sheet for factored loads
Loads are distributed by the grade beam

Verical $\begin{array}{ll}\text { Length }=32 & \mathrm{ft} \\ \text { Spacing }=6 & \mathrm{ft}\end{array}$
Number of Piers $=6 \quad \mathrm{~L} / \mathrm{s}$

$\omega \mathrm{d}=11.93$	klf	included GB self weight
$\max \omega \mathrm{d}^{*} \mathrm{~L}=382$	k	
$\omega_{\text {troley }}=8.20$	klf	
trib $=8.50$	ft	assume 1 lane filled with trolley
$\omega_{\text {HL } 23}=6.28$	klf	
trib $=8.50$	ft	assume 1 lane filled with traffic
$\mathrm{PL}=123$	k	
$\Sigma \mathrm{P}=505$	k	D\&L
$\Sigma \mathrm{P} / \mathrm{n}=84.1$	k	

$\frac{\text { Lateral }}{\text { Thrust is partially resisted by soil pressure on the face of the structure and grade beam }}$ Number of Piers $=6$

13415_ASCE 7-16 Calc Spreadsheet - Pier Demands (Max)

ZFA STRUCTURAL ENGINEERS

Job \#
Pier Demands (Min)

PIER DEMANDS:

See loading sheet for factored loads Loads are distributed by the grade beam

Vertical

$\begin{aligned} \text { Length } & =32 \\ \text { Spacing } & =5 \end{aligned}$	ft	
Number of Piers $=6$		L/s
$\omega \mathrm{d}=7.02$	klf	included GB self weight
$\max \omega \mathrm{d}^{*} \mathrm{~L}=225$	k	
$\omega_{\text {troley }}=0.00$	klf	
trib $=8.50$	ft	assume 1 lane filled with trolley
$\omega_{\text {HLO3 }}=0.00$	klf	
trib $=8.50$	ft	assume 1 lane filled with traffic
$\mathrm{PL}=0$	k	
$\Sigma \mathrm{P}=225$	k	D\&L
$\Sigma \mathrm{P} / \mathrm{n}=37.5$	k	

Lateral

Thrust is partially resisted by soil pressure on the face of the structure and grade beam Number of Piers $=6$

$\begin{aligned} \omega d & =0.65 \\ v_{\text {dLL,Thrust }} & =21 \end{aligned}$	$\begin{aligned} & \text { klf } \\ & \mathrm{k} \end{aligned}$	Thrust - earth pressure at top of GB
$\omega_{\text {trolley }}=0.00$	klf	
trib $=8.50$	ft	
$\omega_{\text {HL.93 }}=0.00$	klf	
trib $=8.50$	ft	
$\Sigma \mathrm{V}_{\mathrm{LL}, \text { Thust }}=0$	k	
$\Sigma \mathrm{V}_{\text {top of GB }}=21$	k	at top of GB, D\&L
Reaction at top of pier		
$\omega \mathrm{d}=-1.90$	klf	earth pressure on GB
$\mathrm{V}_{\text {Soil on GB }}=-61$	k	
$\Sigma \mathrm{V}=-40$	k	D\&L
$\Sigma \mathrm{V} / \mathrm{n}=-6.7$	k	
Moment due to thrust at top of GB		
$\mathrm{h}_{\text {GB }}=2.5$	ft	
$\mathrm{M}=52$	k-ft	V at top of BB^{*} h
Moment due to lateral pressure on GB		
$\mathrm{M}=-76$	k-ft	V soil at GB*h/2
Moment due to vertical load eccentricity		
$\mathrm{e}=4$	in	
$\mathrm{M}=-75$	k-ft	£Pvert *e
$\Sigma \mathrm{M}=-99$		
$\Sigma \mathrm{M} / \mathrm{n}=-17$	k-ft	
-198,126	in-lb	

13415_ASCE 7-16 Calc Spreadsheet - Pier Demands (Min)

Battered Pier

$$
\begin{array}{rcl}
\text { Batter }= & 4: 1 & \\
\alpha= & 14.0 & \\
\text { V:H } \\
\text { Batter angle }
\end{array}
$$

	Vert (k)	Horiz (k)	M (k-ft)	Axial	Shear	
Moment						
Max	84.1	28.8	54.5	88.6	7.5	54.5
Min	37.5	-6.7	-16.5	34.7	-15.6	-16.5

BRIDGE PILES

BRIDGE PILES

Bending Moment, in-kips

$$
\begin{array}{|l}
- \text { Section 1, Thrust }=35.10 \mathrm{kips} \\
\text { - Section 1, Thrust }=37.80 \mathrm{kips} \\
\text { - Section 1, Thrust }=84.10 \mathrm{kips} \\
\text { - Section 1, Thrust }=88.57 \mathrm{kips}
\end{array}
$$

Mobilized El, kip-in ${ }^{2}$

Mobilized Soil Reaction, p, lbs/inch

BRIDGE PILES


```
                    LPile for Windows, Version 2019-11.005
    Analysis of Individual Piles and Drilled Shafts
Subjected to Lateral Loading Using the p-y Method
    © 1985-2019 by Ensoft, Inc.
                        All Rights Reserved
```

This copy of LPile is being used by:
mattr
ZFA
Serial Number of Security Device: 500126485
This copy of LPile is licensed for exclusive use by:
ZFA Structural Engineering, Sant
Use of this program by any entity other than ZFA Structural Engineering, Sant is a violation of the software license agreement.

Files Used for Analysis

Path to file locations:
$\backslash \backslash Z f a . c o m \backslash s r \backslash P r o j e c t s \backslash 2010-2015 \backslash 2013 \backslash 13415$ Evaluation of First and F Street bridge in Petaluma\Calculations \}

Name of input data file:
2020-10-22-LPile_AT BRIDGE_20in-shed80-batter.lp11d

Name of output report file:
2020-10-22-LPile_AT BRIDGE_20in-shed80-batter.lp11o

Name of plot output file:
2020-10-22-LPile_AT BRIDGE_20in-shed80-batter.lp11p

Name of runtime message file:
2020-10-22-LPile_AT BRIDGE_20in-shed80-batter.lp11r

Project Name: 1st and F Bridge

Job Number: 13415

Client:

Engineer: MJR

Description:

Computational Options:

- Conventional Analysis

Engineering Units Used for Data Input and Computations:

- US Customary System Units (pounds, feet, inches)

Analysis Control Options:

- Maximum number of iterations allowed = 500
- Deflection tolerance for convergence $=1.0000 \mathrm{E}-05$ in
- Maximum allowable deflection $=\quad 50.0000$ in
- Number of pile increments $=100$

Loading Type and Number of Cycles of Loading:

- Static loading specified

BRIDGE PILES

- Use of p-y modification factors for p-y curves not selected
- Analysis uses layering correction (Method of Georgiadis)
- No distributed lateral loads are entered
- Loading by lateral soil movements acting on pile not selected
- Input of shear resistance at the pile tip not selected
- Input of moment resistance at the pile tip not selected
- Input of side resistance moment along pile not selected
- Computation of pile-head foundation stiffness matrix not selected
- Push-over analysis of pile not selected
- Buckling analysis of pile not selected

Output Options:

- Output files use decimal points to denote decimal symbols.
- Values of pile-head deflection, bending moment, shear force, and soil reaction are printed for full length of pile.
- Printing Increment (nodal spacing of output points) = 1
- No p-y curves to be computed and reported for user-specified depths
- Print using wide report formats

Pile Structural Properties and Geometry

Number of pile sections defined	$=$	1
Total length of pile	$=$	60.000 ft
Depth of ground surface below top of pile	$=$	0.0000 ft

Pile diameters used for $p-y$ curve computations are defined using 2 points.
p-y curves are computed using pile diameter values interpolated with depth over the length of the pile. A summary of values of pile diameter vs. depth follows.

	Depth Below	Pile	
Point	Pile Head	Diameter	
No.	feet	inches	
1	0.000	$19.8500 \leftarrow$	20" - corrosion
2	60.000	19.8500	

Input Structural Properties for Pile Sections:

Pile Section No. 1:

Section 1 is a drilled shaft with permanent casing
Length of section $=60.000000 \mathrm{ft}$

BRIDGE PILES

$\begin{array}{llr}\text { Casing outside diameter } & = & 19.850000 \text { in } \\ \text { Shear capacity of section } & = & 0.0000 \mathrm{lbs}\end{array}$

Ground Slope Angle	=	0.000 degrees
	=	0.000 radians
Pile Batter Angle	=	-14.000 degrees
	=	-0.244 radians

Soil and Rock Layering Information

The soil profile is modelled using 3 layers
soil properties as provided by Geo
Layer 1 is soft clay, p-y criteria by Matlock, 1970

Distance from top of pile to top of layer	$=$	0.0000 ft
Distance from top of pile to bottom of layer	$=$	8.000000 ft
Effective unit weight at top of layer	$=$	43.000000 pcf
Effective unit weight at bottom of layer	$=$	43.000000 pcf
Undrained cohesion at top of layer	$=300.000000 \mathrm{psf}$	
Undrained cohesion at bottom of layer	$=300.000000 \mathrm{psf}$	
Epsilon-50 at top of layer	$=$	0.0000
Epsilon-50 at bottom of layer	$=$	0.0000

NOTE: Default values for Epsilon-50 will be computed for this layer.

Layer 2 is liquefiable sand, by Rollins et al., 2004

Distance from top of pile to top of layer	$=$	8.000000 ft
Distance from top of pile to bottom of layer	$=$	11.000000 ft
Effective unit weight at top of layer	$=$	60.000000 pcf
Effective unit weight at bottom of layer	$=$	60.000000 pcf

Layer 3 is stiff clay with water-induced erosion
Distance from top of pile to top of layer $=11.000000 \mathrm{ft}$
Distance from top of pile to bottom of layer $=100.000000 \mathrm{ft}$
Effective unit weight at top of layer $=60.000000 \mathrm{pcf}$

BRIDGE PILES

Effective unit weight at bottom of layer	$=$	60.000000 pcf
Undrained cohesion at top of layer	$=$	$1500 \cdot \mathrm{psf}$
Undrained cohesion at bottom of layer	$=$	$1500 . \mathrm{psf}$
Epsilon-50 at top of layer	$=$	0.0000
Epsilon-50 at bottom of layer	$=$	0.0000
Subgrade k at top of layer	$=0.0000 \mathrm{pci}$	
Subgrade k at bottom of layer	$=$	0.0000 pci

NOTE: Default values for Epsilon-50 will be computed for this layer.

NOTE: Default values for subgrade k will be computed for this layer.
(Depth of the lowest soil layer extends 40.000 ft below the pile tip)

Static Loading Type

Static loading criteria were used when computing $p-y$ curves for all analyses.

BRIDGE PILES

Pile-head Loading and Pile-head Fixity Conditions

Number of loads specified = 4

Load	Load	Condition	Condition	Axial Thrust
Compute	Top y	Run Analysis		
No.	Type	1	2	Force, lbs

vs. Pile Length

BRIDGE BATTERED
PIER (MAX)

Yes

V = shear force applied normal to pile axis
BRIDGE
BATTERED

M = bending moment applied to pile head
y = lateral deflection normal to pile axis
S = pile slope relative to original pile batter angle
R = rotational stiffness applied to pile head
Values of top y vs. pile lengths can be computed only for load types with specified shear loading (Load Types 1, 2, and 3).
Thrust force is assumed to be acting axially for all pile batter angles.

Computations of Nominal Moment Capacity and Nonlinear Bending Stiffness

Axial thrust force values were determined from pile-head loading conditions
Number of Pile Sections Analyzed = 1

Pile Section No. 1:

Dimensions and Properties of Drilled Shaft (Bored Pile) with Permanent Casing:

Length of Section
Outer Diameter of Casing
Concrete Cover Thickness Inside Casing Casing Wall Thickness
$=60.000000 \mathrm{ft}$
$=19.850000 \mathrm{in}$
$=1.500000$ in
$=0.800000$ in

BRIDGE PILES

Moment of Inertia of Steel Casing	=	2176. in^4
Yield Stress of Casing	=	35000. psi
Elastic Modulus of Casing	=	29000000. psi
Number of Reinforcing Bars	=	6 bars
Area of Single Reinforcing Bar	=	$0.440000 \mathrm{sq}$. in.
Edge-to-Edge Bar Spacing	=	6.500000 in
Maximum Concrete Aggregate Size	=	0.750000 in
Ratio of Bar Spacing to Aggregate Size	=	8.67
Offset of Center of Rebar Cage from Center of Pile	=	0.0000 in
Yield Stress of Reinforcing Bars	=	60000. psi
Modulus of Elasticity of Reinforcing Bars	=	29000000. psi
Gross Area of Pile	=	309.464548 sq. in.
Area of Concrete	=	258.946676 sq. in.
Cross-sectional Area of Steel Casing	=	47.877872 sq. in.
Area of All Steel (Casing and Bars)	=	50.517872 sq. in.
Area Ratio of All Steel to Gross Area of Pile	=	16.32 percent

Axial Structural Capacities:

Nom. Axial Structural Capacity $=0.85$ Fc Ac + Fy As $=2494.440$ kips
Tensile Load for Cracking of Concrete
-263.625 kips
Nominal Axial Tensile Capacity

| $=$ | 2494.440 kips |
| :--- | ---: | :--- |
| $=$ | -263.625 kips |
| $=$ | -1834.126 kips |

Reinforcing Bar Dimensions and Positions Used in Computations:

Bar Number	Bar Diam. inches	Bar Area sq. in.	X inches	$\begin{gathered} \text { Y } \\ \text { inches } \end{gathered}$
1	0.750000	0.440000	7.250000	0.00000
2	0.750000	0.440000	3.625000	6.278684
3	0.750000	0.440000	-3.625000	6.278684
4	0.750000	0.440000	-7.250000	0.00000
5	0.750000	0.440000	-3.625000	-6.278684
6	0.750000	0.440000	3.625000	-6.278684

NOTE: The positions of the above rebars were computed by LPile

Minimum spacing between any two bars not equal to zero $=6.500$ inches between bars 5 and 6.

Ratio of bar spacing to maximum aggregate size $=8.67$

Concrete Properties:

BRIDGE PILES

Modulus of Elasticity of Concrete	$=$	3122019. psi
Modulus of Rupture of Concrete	$=-410.791918 \mathrm{psi}$	
Compression Strain at Peak Stress	$=0.001634$	
Tensile Strain at Fracture of Concrete	$=-0.0001160$	
Maximum Coarse Aggregate Size	$=0.750000$ in	

Number of Axial Thrust Force Values Determined from Pile-head Loadings = 4

Number	Axial Thrust Force kips
1	35.105
2	37.800
3	84.100
4	88.569

Definitions of Run Messages and Notes:

C = concrete in section has cracked in tension.
$Y=$ stress in reinforcing steel has reached yield stress.
T = ACI 318 criteria for tension-controlled section met, tensile strain in reinforcement exceeds 0.005 while simultaneously compressive strain in concrete more than 0.003. See ACI 318, Section 10.3.4.
$Z=$ depth of tensile zone in concrete section is less than 10 percent of section depth.

Bending Stiffness (EI) = Computed Bending Moment / Curvature.
Position of neutral axis is measured from edge of compression side of pile.
Compressive stresses and strains are positive in sign.
Tensile stresses and strains are negative in sign.

Axial Thrust Force $=\quad 35.105$ kips

Bending	Bending	Bending	Depth to	Max Comp	Max Tens
Max Conc	Max Steel	Max Casing Run			
Curvature	Moment	Stiffness	N Axis	Strain	Strain
Stress	Stress	Stress Msg			in/in
rad/in.	in-kip	kip-in2	in	in	
ksi	ksi	ksi			

0.00000125	105.8590633	84687251.	21.5720284	0.00002697	0.00000215
0.0977760	0.6632582	0.7783882			
0.00000250	211.7077750	84683110.	15.7530194	0.00003938	-0.00001024
0.1420175	0.9046383	1.1348983			
0.00000375	317.4802126	84661390.	13.8142910	0.00005180	-0.00002263

BRIDGE PILES

0.1859319	1.1461207	1.4915107			
0.00000500	423.1437392	84628748.	12.8451510	0.00006423	-0.00003502
0.2295101	1.3876357	1.8481557			
0.00000625	528.6926788	84590829.	12.2637451	0.00007665	-0.00004741
0.2727501	1.6291647	2.2048147			
0.00000750	634.1255603	84550075.	11.8761767	0.00008907	-0.00005980
0.3156508	1.8707016	2.5614816			
0.00000875	739.4418708	84507642.	11.5993617	0.0001015	-0.00007219
0.3582121	2.1122434	2.9181534			
0.00001000	844.6413922	84464139.	11.3917627	0.0001139	-0.00008458
0.4004337	2.3537887	3.2748287			
0.00001125	949.7240197	84419913.	11.2303052	0.0001263	-0.00009697
0.4423154	2.5953368	3.6315068			
0.00001250	949.7240197	75977922.	10.4431703	0.0001305	-0.0001176
0.4561155	2.5983711	3.7496711 C			
0.00001375	1037.	75413859.	10.3146113	0.0001418	-0.0001311
0.4937287	2.8069453	4.0733753 C			
0.00001500	1128.	75201066.	10.2074832	0.0001531	-0.0001446
0.5310620	3.0155215	4.3970815 C			
0.00001625	1219.	75017551.	10.1165373	0.0001644	-0.0001582
0.5680991	3.2239567	4.7206467 C			
0.00001750	1310.	74858139.	10.0387806	0.0001757	-0.0001717
0.6048676	3.4324918	5.0443118 C			
0.00001875	1401.	74717361.	9.9712386	0.0001870	-0.0001852
0.6413467	3.6409439	5.3678939 C			
0.00002000	1492.	74592175.	9.9122313	0.0001982	-0.0001988
0.6775518	-3.8642609	-5.7063409 C			
0.00002125	1583.	74479974.	9.8603293	0.0002095	-0.0002123
0.7134880	-4.1377617	-6.0949717 C			
0.00002250	1674.	74378480.	9.8142752	0.0002208	-0.0002258
0.7491498	-4.4112098	-6.4835498 C			
0.00002375	1764.	74285807.	9.7730167	0.0002321	-0.0002393
0.7845273	-4.6846937	-6.8721637 C			
0.00002500	1855.	74200916.	9.7360240	0.0002434	-0.0002528
0.8196357	-4.9580763	-7.2606763 C			
0.00002625	1946.	74122695.	9.7026879	0.0002547	-0.0002664
0.8544745	-5.2313572	-7.6490872 C			
0.00002750	2036.	74050232.	9.6725100	0.0002660	-0.0002799
0.8890435	-5.5045363	-8.0373963 C			
0.00002875	2127.	73982773.	9.6450786	0.0002773	-0.0002934
0.9233425	-5.7776135	-8.4256035 C			
0.00003000	2218.	73919638.	9.6200019	0.0002886	-0.0003069
0.9573668	-6.0506307	-8.8137507 C			
0.00003125	2308.	73860237.	9.5969342	0.0002999	-0.0003204
0.9911104	-6.3236455	-9.2018955 C			
0.00003250	2399.	73804256.	9.5757502	0.0003112	-0.0003339
1.0245835	-6.5965572	-9.5899372 C			
0.00003375	2489.	73751312.	9.5562408	0.0003225	-0.0003474
1.0577859	-6.8693658	-9.9778758 C			
0.00003500	2580.	73701080.	9.5382267	0.0003338	-0.0003609

BRIDGE PILES

1.0907174	-7.1420711	-10.3657111 C			
0.00003625	2670.	73653276.	9.5215534	0.0003452	-0.0003744
1.1233776	-7.4146728	-10.7534428 C			
0.00003750	2760.	73607657.	9.5060870	0.0003565	-0.0003879
1.1557664	-7.6871709	-11.1410709 C			
0.00003875	2851.	73564009.	9.4917109	0.0003678	-0.0004014
1.1878834	-7.9595651	-11.5285951 C			
0.00004000	2941.	73522146.	9.4783230	0.0003791	-0.0004149
1.2197285	-8.2318552	-11.9160152 C			
0.00004125	3031.	73481905.	9.4658337	0.0003905	-0.0004283
1.2513014	-8.5040411	-12.3033311 C			
0.00004250	3121.	73443141.	9.4541637	0.0004018	-0.0004418
1.2826018	-8.7761225	-12.6905425 C			
0.00004375	3212.	73405726.	9.4432430	0.0004131	-0.0004553
1.3136294	-9.0480994	-13.0776494 C			
0.00004500	3302.	73369546.	9.4330094	0.0004245	-0.0004688
1.3443841	-9.3199714	-13.4646514 C			
0.00004625	3392.	73334476.	9.4233690	0.0004358	-0.0004822
1.3748608	-9.5917897	-13.8515997 C			
0.00004750	3482.	73300432.	9.4142839	0.0004472	-0.0004957
1.4050604	-9.8635420	-14.2384820 C			
0.00004875	3572.	73267353.	9.4057397	0.0004585	-0.0005092
1.4349866	-10.1351882	-14.6252582 C			
0.00005125	3752.	73203802.	9.3901161	0.0004812	-0.0005361
1.4940171	-10.6781621	-15.3984921 C			
0.00005375	3931.	73143317.	9.3762193	0.0005040	-0.0005630
1.5519504	-11.2207096	-16.1712996 C			
0.00005625	4111.	73085479.	9.3638201	0.0005267	-0.0005898
1.6087843	-11.7628294	-16.9436794 C			
0.00005875	4291.	73029943.	9.3527281	0.0005495	-0.0006167
1.6645167	-12.3045197	-17.7156297 C			
0.00006125	4470.	72976419.	9.3427842	0.0005722	-0.0006436
1.7191455	-12.8457792	-18.4871492 C			
0.00006375	4649.	72924662.	9.3338542	0.0005950	-0.0006704
1.7726686	-13.3866061	-19.2582361 C			
0.00006625	4828.	72874466.	9.3258241	0.0006178	-0.0006972
1.8250839	-13.9269989	-20.0288889 C			
0.00006875	5007.	72825651.	9.3185965	0.0006407	-0.0007240
1.8763891	-14.4669560	-20.7991060 C			
0.00007125	5185.	72778067.	9.3120878	0.0006635	-0.0007508
1.9265821	-15.0064757	-21.5688857 C			
0.00007375	5364.	72731581.	9.3062256	0.0006863	-0.0007776
1.9756607	-15.5455565	-22.3382265 C			
0.00007625	5542.	72686078.	9.3009471	0.0007092	-0.0008044
2.0236228	-16.0841967	-23.1071267 C			
0.00007875	5721.	72641459.	9.2961974	0.0007321	-0.0008311
2.0704662	-16.6223946	-23.8755846 C			
0.00008125	5899.	72597635.	9.2919283	0.0007550	-0.0008578
2.1161885	-17.1601486	-24.6435986 C			
0.00008375	6076.	72554529.	9.2880976	0.0007779	-0.0008846

BRIDGE PILES

2.1607877	-17.6974571	-25.4111671 C			
0.00008625	6254.	72512073.	9.2846677	0.0008008	-0.0009113
2.2042614	-18.2343183	-26.1782883 C			
0.00008875	6432.	72470205.	9.2816055	0.0008237	-0.0009379
2.2466075	-18.7707306	-26.9449606 C			
0.00009125	6609.	72428873.	9.2788814	0.0008467	-0.0009646
2.2878236	-19.3066923	-27.7111823 C			
0.00009375	6786.	72388026.	9.2764690	0.0008697	-0.0009913
2.3279075	-19.8422016	-28.4769516 C			
0.00009625	6963.	72347623.	9.2743446	0.0008927	-0.0010179
2.3668568	-20.3772567	-29.2422667 C			
0.00009875	7140.	72307623.	9.2724869	0.0009157	-0.0010445
2.4046693	-20.9118561	-30.0071261 C			
0.0001013	7317.	72267992.	9.2708767	0.0009387	-0.0010711
2.4413427	-21.4459979	-30.7715279 C			
0.0001038	7494.	72228697.	9.2694969	0.0009617	-0.0010977
2.4768746	-21.9796803	-31.5354703 C			
0.0001063	7670.	72189710.	9.2683316	0.0009848	-0.0011243
2.5112628	-22.5129017	-32.2989517 C			
0.0001088	7846.	72151005.	9.2673667	0.0010078	-0.0011509
2.5445047	-23.0456601	-33.0619701 C			
0.0001113	8023.	72112558.	9.2665892	0.0010309	-0.0011774
2.5765981	-23.5779538	-33.8245238 C			
0.0001138	8198.	72074346.	9.2659873	0.0010540	-0.0012039
2.6075405	-24.1097810	-34.5866110 C			
0.0001163	8372.	72019731.	9.2646675	0.0010770	-0.0012305
2.6371986	-24.6441159	-35.0000000 CY			
0.0001188	8539.	71909886.	9.2605123	0.0010997	-0.0012575
2.6652705	-25.1884080	-35.0000000 CY			
0.0001213	8696.	71722527.	9.2522088	0.0011218	-0.0012850
2.6915958	-25.7478852	-35.0000000 CY			
0.0001238	8841.	71445248.	9.2389354	0.0011433	-0.0013131
2.7161017	-26.3264045	-35.0000000 CY			
0.0001263	8976.	71095046.	9.2214633	0.0011642	-0.0013419
2.7389474	-26.9222207	-35.0000000 CY			
0.0001288	9102.	70696196.	9.2010704	0.0011846	-0.0013710
2.7603541	-27.5314767	-35.0000000 CY			
0.0001313	9222.	70262533.	9.1785640	0.0012047	-0.0014006
2.7804684	-28.1517326	-35.0000000 CY			
0.0001338	9336.	69798939.	9.1547201	0.0012244	-0.0014305
2.7994245	-28.7804406	35.0000000 CY			
0.0001363	9443.	69302888.	9.1306637	0.0012441	-0.0014605
2.8173906	-29.4134459	35.0000000 CY			
0.0001388	9542.	68770315.	9.1075916	0.0012637	-0.0014905
2.8345279	-30.0459786	35.0000000 CY			
0.0001413	9635.	68213207.	9.0851544	0.0012833	-0.0015205
2.8507999	-30.6792572	35.0000000 CY			
0.0001438	9722.	67630430.	9.0640676	0.0013030	-0.0015505
2.8662935	-31.3101567	35.0000000 CY			
0.0001463	9801.	67018470.	9.0453162	0.0013229	-0.0015802

BRIDGE PILES

2.8811106	-31.9342108
0.0001488	9877.
2.8950644	-32.5579868
0.0001588	10132.
2.9425790	-35.0299028
0.0001688	10338.
2.9759697	-37.4936456
0.0001788	10512.
2.9950692	-39.9522532
0.0001888	10660.
2.9993728	-42.4080115
0.0001988	10789.
2.9993258	-44.8653110
0.0002088	10902.
2.9987651	-47.3181745
0.0002188	11002.
2.9999561	-49.7690857
0.0002288	11092.
2.9990839	-52.2146017
0.0002388	11173.
2.9998566	-54.6572952
0.0002488	11247.
2.9995425	-57.0937708
0.0002588	11314.
2.9982512	-59.5246968
0.0002688	11375.
2.9985493	-60.0000000
0.0002788	11423.
2.9984037	-60.0000000
0.0002888	11461.
2.9977856	-60.0000000
0.0002988	11495.
2.9991790	-60.0000000
0.0003088	11526.
2.9999062	-60.0000000
0.0003188	11554.
2.9992329	-60.0000000
0.0003288	11580.
2.9975086	-60.0000000
0.0003388	11604.
2.9999748	-60.0000000
0.0003488	11626.
2.9988705	-60.0000000
0.0003588	11647.
2.9981934	-60.0000000
0.0003688	11666.
2.9993396	-60.0000000
0.0003788	11684.
0.9970875	-60.0000000
10.003888	11701.

35.0000000 CY			
66397716.	9.0272597	0.0013428	-0.0016099
35.0000000 CY			
63821264.	8.9657570	0.0014233	-0.0017279
35.0000000 CY			
61264494.	8.9132133	0.0015041	-0.0018456
35.0000000 CY			
58808779.	8.8675395	0.0015851	-0.0019631
35.0000000 CY			
56477585.	8.8272257	0.0016661	-0.0020805
35.0000000 CY			
54282667.	8.7907011	0.0017472	-0.0021980
35.0000000 CY			
52223710.	8.7584090	0.0018283	-0.0023154
35.0000000 CY			
50295441.	8.7293768	0.0019096	-0.0024326
35.0000000 CY			
48490690.	8.7036963	0.0019910	-0.0025497
35.0000000 CY			
46798736.	8.6805747	0.0020725	-0.0026667
35.0000000 CY			
45213738.	8.6601741	0.0021542	-0.0027835
35.0000000 CY			
43727368.	8.6420900	0.0022361	-0.0029000
35.0000000 CY			
42324593.	8.6244432	0.0023178	-0.0030169
35.0000000 CY			
40980464.	8.6033682	0.0023982	-0.0031350
35.0000000 CY			
39692583.	8.5803929	0.0024776	-0.0032541
35.0000000 CY			
38477260.	8.5579579	0.0025567	-0.0033735
35.0000000 CY			
37330085.	8.5365416	0.0026357	-0.0034930
35.0000000 CY			
36246713.	8.5166883	0.0027147	-0.0036125
35.0000000 CY			
35223689.	8.4980532	0.0027937	-0.0037320
35.0000000 CY			
34254595.	8.4805994	0.0028728	-0.0038514
35.0000000 CY			
33335692.	8.4639030	0.0029518	-0.0039709
35.0000000 CY			
32465348.	8.4484665	0.0030309	-0.0040903
35.0000000 CY			
31635932.	8.4335143	0.0031099	-0.0042098
35.0000000 CY			
30849342.	8.4192966	0.0031888	-0.0043294
35.0000000 CY			
30098395.	8.4053635	0.0032676	-0.0044491

BRIDGE PILES

2.9992939	-60.0000000
0.0003988	11717.
2.9976290	-60.0000000
0.0004088	11731.
2.9987247	60.0000000
0.0004188	11745.
2.9998237	60.0000000
0.0004288	11757.
2.9972803	60.0000000
0.0004388	11768.
2.9997128	60.0000000
0.0004488	11777.
2.9962754	60.0000000
0.0004588	11785.
2.9983227	60.0000000

35.0000000 CY			
29383910.	8.3930750	0.0033467	-0.0045684
35.0000000 CY			
28700847.	8.3803228	0.0034255	-0.0046882
35.0000000 CY			
28048517.	8.3693117	0.0035046	-0.0048075
35.0000000 CY			
27422114.	8.3600802	0.0035844	-0.0049263
35.0000000 CY			
26821494.	8.3515334	0.0036642	-0.0050450
35.0000000 CY			
26245013.	8.3449506	0.0037448	-0.0051629
35.0000000 CY			
25689494.	8.3399433	0.0038259	-0.0052802
35.0000000 CY			

Axial Thrust Force $=\quad 37.800$ kips

BRIDGE PILES

0.5356771	3.0557068	4.4372668 C			
0.00001625	1221	75166519.	10.2023268	0.0001658	-0.0001568
0.5727071	3.2643850	4.7610750 C			
0.00001750	1312.	74996042.	10.1184864	0.0001771	-0.0001703
0.6094431	3.4729425	5.0847625 C			
0.00001875	1403.	74846318.	10.0460088	0.0001884	-0.0001838
0.6459103	3.6816002	5.4085502			
0.00002000	1494.	74712949.	9.9824984	0.0001996	-0.0001974
0.6820912	3.8902041	5.7322841 C			
0.00002125	1585.	74593291.	9.9265004	0.0002109	-0.0002109
0.7179946	4.0988331	6.0560431 C			
0.00002250	1676.	74485280.	9.8768789	0.0002222	-0.0002244
0.7536289	-4.3703608	-6.4427008 C			
0.00002375	1767.	74387074.	9.8326274	0.0002335	-0.0002379
0.7889937	-4.6436369	-6.8311069 C			
0.00002500	1857.	74296882.	9.7927288	0.0002448	-0.0002514
0.8240724	-4.9169653	-7.2195653 C			
0.00002625	1948.	74213802.	9.7567235	0.0002561	-0.0002649
0.8588781	-5.1902226	-7.6079526 C			
0.00002750	2039.	74136922.	9.7241191	0.0002674	-0.0002785
0.8934140	-5.4633780	-7.9962380 C			
0.00002875	2129.	74065430.	9.6944723	0.0002787	-0.0002920
0.9276798	-5.7364315	-8.3844215			
0.00003000	2220.	73998651.	9.6674135	0.0002900	-0.0003055
0.9616754	-6.0093827	-8.7725027			
0.00003125	2311.	73936018.	9.6426323	0.0003013	-0.0003190
0.9954003	-6.2822315	-9.1604815			
0.00003250	2401.	73876995.	9.6198164	0.0003126	-0.0003325
1.0288497	-6.5550249	-9.5484049 C			
0.00003375	2491.	73821130.	9.5986997	0.0003240	-0.0003460
1.0620186	-6.8278091	-9.9363191 C			
0.00003500	2582.	73768185.	9.5791933	0.0003353	-0.0003595
1.0949164	-7.1004900	-10.3241300 C			
0.00003625	2672.	73717854.	9.5611306	0.0003466	-0.0003730
1.1275430	-7.3730673	-10.7118373 C			
0.00003750	2763.	73669877.	9.5443675	0.0003579	-0.0003865
1.1598981	-7.6455409	-11.0994409 C			
0.00003875	2853.	73624022.	9.5287784	0.0003692	-0.0003999
1.1919814	-7.9179105	-11.4869405 C			
0.00004000	2943.	73580090.	9.5142533	0.0003806	-0.0004134
1.2237927	-8.1901761	-11.8743361 C			
0.00004125	3033.	73537905.	9.5006958	0.0003919	-0.0004269
1.2553317	-8.4623373	-12.2616273 C			
0.00004250	3124.	73497311.	9.4880205	0.0004032	-0.0004404
1.2865982	-8.7343940	-12.6488140 C			
0.00004375	3214.	73458170.	9.4761520	0.0004146	-0.0004539
1.3175919	-9.0063461	-13.0358961 C			
0.00004500	3304.	73420361.	9.4650232	0.0004259	-0.0004673
1.3483126	-9.2781933	-13.4228733 C			
0.00004625	3394.	73383773.	9.4545743	0.0004373	-0.0004808

BRIDGE PILES

1.3787601	-9.5499355	-13.8097455 C			
0.00004750	3484.	73348309.	9.4447518	0.0004486	-0.0004942
1.4089339	-9.8215725	-14.1965125 C			
0.00004875	3574.	73313882.	9.4355075	0.0004600	-0.0005077
1.4388340	-10.0931040	-14.5831740 C			
0.00005125	3754.	73247782.	9.4185121	0.0004827	-0.0005346
1.4978019	-10.6359585	-15.3562885 C			
0.00005375	3934.	73184956.	9.4033274	0.0005054	-0.0005615
1.5556661	-11.1784549	-16.1290449 C			
0.00005625	4113.	73124984.	9.3897548	0.0005282	-0.0005884
1.6124308	-11.7205233	-16.9013733 C			
0.00005875	4293.	73067495.	9.3775895	0.0005509	-0.0006153
1.6680937	-12. 2621621	-17.6732721 C			
0.00006125	4472.	73012176.	9.3666600	0.0005737	-0.0006421
1.7226528	-12.8033698	-18.4447398 C			
0.00006375	4651.	72958764.	9.3568218	0.0005965	-0.0006689
1.7761060	-13.3441447	-19.2157747 C			
0.00006625	4830.	72907037.	9.3479522	0.0006193	-0.0006958
1.8284511	-13.8844853	-19.9863753 C			
0.00006875	5009.	72856802.	9.3399462	0.0006421	-0.0007226
1.8796860	-14.4243900	-20.7565400 C			
0.00007125	5188.	72807896.	9.3327139	0.0006650	-0.0007494
1.9298085	-14.9638570	-21.5262670 C			
0.00007375	5366.	72760177.	9.3261773	0.0006878	-0.0007761
1.9788163	-15.5028849	-22.2955549 C			
0.00007625	5544.	72713521.	9.3202686	0.0007107	-0.0008029
2.0267075	-16.0414720	-23.0644020 C			
0.00007875	5723.	72667821.	9.3149288	0.0007336	-0.0008296
2.0734796	-16.5796166	-23.8328066 C			
0.00008125	5901.	72622983.	9.3101061	0.0007564	-0.0008564
2.1191305	-17.1173171	-24.6007671 C			
0.00008375	6078.	72578922.	9.3057549	0.0007794	-0.0008831
2.1636580	-17.6545718	-25.3682818 C			
0.00008625	6256.	72535565.	9.3018349	0.0008023	-0.0009098
2.2070599	-18.1913790	-26.1353490 C			
0.00008875	6434.	72492848.	9.2983102	0.0008252	-0.0009365
2.2493338	-18.7277370	-26.9019670 C			
0.00009125	6611.	72450711.	9.2951490	0.0008482	-0.0009631
2.2904776	-19.2636442	-27.6681342 C			
0.00009375	6788.	72409102.	9.2923229	0.0008712	-0.0009898
2.3304889	-19.7990987	-28.4338487 C			
0.00009625	6965.	72367975.	9.2898064	0.0008941	-0.0010164
2.3693654	-20.3340989	-29.1991089 C			
0.00009875	7142.	72327288.	9.2875765	0.0009171	-0.0010430
2.4071049	-20.8686431	-29.9639131 C			
0.0001013	7319.	72287003.	9.2856127	0.0009402	-0.0010696
2.4437051	-21.4027294	-30.7282594 C			
0.0001038	7496.	72247086.	9.2838963	0.0009632	-0.0010962
2.4791635	-21.9363562	-31.4921462 C			
0.0001063	7672.	72207505.	9.2824104	0.0009863	-0.0011228

BRIDGE PILES

2.5134779	-22.4695215	-32.2555715 C			
0.0001088	7848.	72168232.	9.2811396	0.0010093	-0.0011494
2.5466458	-23.0022238	-33.0185338 C			
0.0001113	8024.	72129241.	9.2800701	0.0010324	-0.0011759
2.5786650	-23.5344610	-33.7810310 C			
0.0001138	8200.	72090510.	9.2791891	0.0010555	-0.0012024
2.6095330	-24.0662315	-34.5430615 C			
0.0001163	8374.	72037480.	9.2777126	0.0010785	-0.0012290
2.6391331	-24.6001374	-35.0000000 CY			
0.0001188	8542.	71930850.	9.2735011	0.0011012	-0.0012560
2.6671602	-25.1436776	-35.0000000 CY			
0.0001213	8699.	71747719.	9.2652103	0.0011234	-0.0012834
2.6934495	-25.7021686	-35.0000000 CY			
0.0001238	8845.	71475496.	9.2520097	0.0011449	-0.0013115
2.7179269	-26.2794837	-35.0000000 CY			
0.0001263	8980.	71129254.	9.2346269	0.0011659	-0.0013402
2.7407450	-26.8740254	-35.0000000 CY			
0.0001288	9107.	70733247.	9.2142376	0.0011863	-0.0013694
2.7621107	-27.4823136	-35.0000000 CY			
0.0001313	9227.	70301843.	9.1916780	0.0012064	-0.0013989
2.7821753	-28.1018172	-35.0000000 CY			
0.0001338	9341.	69838596.	9.1678991	0.0012262	-0.0014287
2.8010951	-28.7293224	35.0000000 CY			
0.0001363	9448.	69344215.	9.1437724	0.0012458	-0.0014587
2.8190055	-29.3616504	35.0000000 CY			
0.0001388	9547.	68810376.	9.1208724	0.0012655	-0.0014887
2.8361136	-29.9925397	35.0000000 CY			
0.0001413	9640.	68251109.	9.0986944	0.0012852	-0.0015186
2.8523623	-30.6237940	35.0000000 CY			
0.0001438	9728.	67669596.	9.0775342	0.0013049	-0.0015485
2.8677903	-31.2540180	35.0000000 CY			
0.0001463	9807.	67054688.	9.0591310	0.0013249	-0.0015782
2.8825833	-31.8756185	35.0000000 CY			
0.0001488	9882.	66431806.	9.0414088	0.0013449	-0.0016078
2.8965052	-32.4969510	35.0000000 CY			
0.0001588	10137.	63852322.	8.9800956	0.0014256	-0.0017256
2.9437298	-34.9638914	35.0000000 CY			
0.0001688	10343.	61293451.	8.9276403	0.0015065	-0.0018431
2.9767633	-37.4230434	35.0000000 CY			
0.0001788	10517.	58835379.	8.8819918	0.0015877	-0.0019605
2.9954464	-39.8773362	35.0000000 CY			
0.0001888	10665.	56503495.	8.8416049	0.0016689	-0.0020778
2.9995087	-42.3293033	35.0000000 CY			
0.0001988	10793.	54306827.	8.8053167	0.0017501	-0.0021951
2.9994763	-44.7810705	35.0000000 CY			
0.0002088	10907.	52247262.	8.7729791	0.0018314	-0.0023123
2.9989813	-47.2299708	35.0000000 CY			
0.0002188	11007.	50317489.	8.7437739	0.0019127	-0.0024295
2.9999892	-49.6777543	35.0000000 CY			
0.0002288	11097.	48512210.	8.7181412	0.0019943	-0.0025464

BRIDGE PILES

2.9992837	-52.1187782	35.0000000 CY			
0.0002388	11178.	46818978.	8.6949225	0.0020759	-0.0026633
2.9999304	-54.5579549	35.0000000 CY			
0.0002488	11252.	45232788.	8.6744649	0.0021578	-0.0027799
2.9988041	-56.9906810	35.0000000 CY			
0.0002588	11319.	43745366.	8.6563479	0.0022398	-0.0028964
2.9985630	-59.4177091	35.0000000 CY			
0.0002688	11380.	42342836.	8.6390891	0.0023218	-0.0030129
2.9988498	-60.0000000	35.0000000 CY			
0.0002788	11428.	40998889.	8.6183316	0.0024024	-0.0031308
2.9987375	-60.0000000	35.0000000 CY			
0.0002888	11467.	39711703.	8.5953397	0.0024819	-0.0032498
2.9981953	-60.0000000	35.0000000 CY			
0.0002988	11500.	38495269.	8.5728832	0.0025611	-0.0033690
2.9982529	-60.0000000	35.0000000 CY			
0.0003088	11531.	37347699.	8.5511934	0.0026402	-0.0034885
2.9999761	-60.0000000	35.0000000 CY			
0.0003188	11559.	36263697.	8.5314879	0.0027194	-0.0036078
2.9994849	-60.0000000	35.0000000 CY			
0.0003288	11585.	35240584.	8.5127412	0.0027986	-0.0037271
2.9979935	-60.0000000	35.0000000 CY			
0.0003388	11609.	34270385.	8.4952203	0.0028778	-0.0038464
2.9999537	-60.0000000	35.0000000 CY			
0.0003488	11631.	33351443.	8.4784458	0.0029569	-0.0039658
2.9992031	-60.0000000	35.0000000 CY			
0.0003588	11652.	32480079.	8.4629876	0.0030361	-0.0040851
2.9971114	-60.0000000	35.0000000 CY			
0.0003688	11671.	31650704.	8.4480488	0.0031152	-0.0042045
2.9995994	-60.0000000	35.0000000 CY			
0.0003788	11690.	30863902.	8.4339691	0.0031944	-0.0043238
2.9965243	-60.0000000	35.0000000 CY			
0.0003888	11706.	30112372.	8.4202170	0.0032734	-0.0044433
2.9995818	-60.0000000	35.0000000 CY			
0.0003988	11722.	29397422.	8.4076481	0.0033525	-0.0045626
2.9964219	-60.0000000	35.0000000 CY			
0.0004088	11737.	28714284.	8.3949692	0.0034314	-0.0046822
2.9991377	60.0000000	35.0000000 CY			
0.0004188	11751.	28061154.	8.3840417	0.0035108	-0.0048014
2.9985425	60.0000000	35.0000000 CY			
0.0004288	11762.	27434335.	8.3751169	0.0035908	-0.0049199
2.9979465	60.0000000	35.0000000 CY			
0.0004388	11773.	26833366.	8.3663012	0.0036707	-0.0050385
2.9998985	60.0000000	35.0000000 CY			
0.0004488	11782.	26255642.	8.3601296	0.0037516	-0.0051561
2.9953470	60.0000000	35.0000000 CY			
0.0004588	11790.	25700182.	8.3552769	0.0038330	-0.0052732
2.9988780	60.0000000	35.0000000 CY			

BRIDGE PILES

| Bending | Bending
 Max Steel
 Max Conc | Bending
 Max Casing
 Curvature | Monent | Depth to | Max Comp |
| :---: | :---: | :---: | :---: | :---: | :---: |\quad Max Tens

0.00000125	105.5518341	84441467.	37.8922085	0.00004737	0.00002255
0.1710062	1.2548647	1.3699947			
0.00000250	211.1015288	84440612.	23.9133242	0.00005978	0.00001016
0.2146858	1.4962604	1.7265204			
0.00000375	316.6505104	84440136.	19.2557986	0.00007221	-0.00000223
0.2580532	1.7378847	2.0832747			
0.00000500	422.1900174	84438003.	16.9285291	0.00008464	-0.00001461
0.3011064	1.9797255	2.4402455			
0.00000625	527.6734534	84427753.	15.5329620	0.00009708	-0.00002698
0.3438361	2.2217103	2.7973603			
0.00000750	633.0680106	84409068.	14.6029672	0.0001095	-0.00003935
0.3862346	2.4637785	3.1545585			
0.00000875	738.3596881	84383964.	13.9388875	0.0001220	-0.00005172
0.4282981	2.7058980	3.5118080			
0.00001000	843.5420896	84354209.	13.4409447	0.0001344	-0.00006409
0.4700243	2.9480515	3.8690915			
0.00001125	948.6120482	84321071.	13.0537291	0.0001469	-0.00007646
0.5114119	3.1902288	4.2263988			
0.00001250	1054.	84285428.	12.7440056	0.0001593	-0.00008882
0.5524603	3.4324239	4.5837239			
0.00001375	1158.	84247891.	12.4906298	0.0001717	-0.0001012
0.5931689	3.6746327	4.9410627			
0.00001500	1169.	77963206.	11.8484262	0.0001777	-0.0001200
0.6123964	3.7293317	5.1108917 C			
0.00001625	1261.	77588996.	11.6397642	0.0001891	-0.0001334
0.6492656	3.9417774	5.4384674 C			
0.00001750	1352.	77259984.	11.4599274	0.0002005	-0.0001468
0.6857924	4.1537238	5.7655438 C			
0.00001875	1443.	76968695.	11.3033850	0.0002119	-0.0001602
0.7219922	4.3652985	6.0922485 C			
0.00002000	1534.	76709312.	11.1659986	0.0002233	-0.0001737
0.7578804	4.5766337	6.4187137 C			
0.00002125	1625.	76476479.	11.0444263	0.0002347	-0.0001871
0.7934604	4.7877546	6.7449646 C			
0.00002250	1716.	76265774.	10.9359815	0.0002461	-0.0002006
0.8287291	4.9986271	7.0709671 C			
0.00002375	1807.	76075012.	10.8389343	0.0002574	-0.0002140
0.8637123	5.2094874	7.3969574 C			
0.00002500	1898.	75900272.	10.7512826	0.0002688	-0.0002275
0.8983876	5.4201236	7.7227236 C			
0.00002625	1988.	75740293.	10.6719862	0.0002801	-0.0002409

BRIDGE PILES

0.9327798	5.6307654	8.0484954 C			
0.00002750	2079.	75593069.	10.5998919	0.0002915	-0.0002544
0.9668877	5.8414019	8.3742619 C			
0.00002875	2169.	75456348.	10.5338638	0.0003028	-0.0002678
1.0006944	6.0518693	8.6998593 C			
0.00003000	2260.	75329753.	10.4734557	0.0003142	-0.0002813
1.0342282	6.2624390	9.0255590 C			
0.00003125	2350.	75212006.	10.4179709	0.0003256	-0.0002948
1.0674867	6.4730909	9.3513409 C			
0.00003250	2441.	75101287.	10.3665309	0.0003369	-0.0003082
1.1004402	6.6835324	9.6769124 C			
0.00003375	2531.	74997640.	10.3190065	0.0003483	-0.0003217
1.1331207	6.8940767	10.0025867 C			
0.00003500	2622.	74900308.	10.2749781	0.0003596	-0.0003351
1.1655278	7.1047241	10.3283641 C			
0.00003625	2712.	74808633.	10.2340843	0.0003710	-0.0003486
1.1976612	7.3154747	10.6542447 C			
0.00003750	2802.	74721664.	10.1958335	0.0003823	-0.0003620
1.2295019	7.5261347	10.9800347 C			
0.00003875	2892.	74639166.	10.1600721	0.0003937	-0.0003755
1.2610612	7.7368189	11.3058489 C			
0.00004000	2982.	74560868.	10.1266353	0.0004051	-0.0003889
1.2923467	7.9476070	11.6317670 C			
0.00004125	3073.	74486388.	10.0953119	0.0004164	-0.0004024
1.3233579	8.1584992	11.9577892 C			
0.00004250	3163.	74415385.	10.0659157	0.0004278	-0.0004158
1.3540948	8.3694956	12.2839156 C			
0.00004375	3253.	74347563.	10.0382816	0.0004392	-0.0004293
1.3845571	8.5805964	12.6101464 C			
0.00004500	3343.	74282516.	10.0121849	0.0004505	-0.0004427
1.4147350	8.7917002	12.9363802 C			
0.00004625	3433.	74220004.	9.9874911	0.0004619	-0.0004561
1.4446275	9.0027935	13.2626035 C			
0.00004750	3523.	74159971.	9.9641733	0.0004733	-0.0004696
1.4742450	9.2139920	13.5889320 C			
0.00004875	3612.	74102227.	9.9421259	0.0004847	-0.0004830
1.5035871	9.4252960	13.9153660 C			
0.00005125	3792.	73992928.	9.9014709	0.0005075	-0.0005099
1.5614446	-9.9181610	-14.6384910 C			
0.00005375	3972.	73890915.	9.8648696	0.0005302	-0.0005367
1.6181979	-10.4590259	-15.4096159 C			
0.00005625	4151.	73795207.	9.8317826	0.0005530	-0.0005635
1.6738449	-10.9994653	-16.1803153 C			
0.00005875	4330.	73704786.	9.8016043	0.0005758	-0.0005903
1.7283612	-11.5397469	-16.9508569 C			
0.00006125	4509.	73619151.	9.7740952	0.0005987	-0.0006171
1.7817629	-12.0796629	-17.7210329 C			
0.00006375	4688.	73537779.	9.7489772	0.0006215	-0.0006439
1.8340532	-12.6191473	-18.4907773 C			
0.00006625	4867.	73460178.	9.7259804	0.0006443	-0.0006707

BRIDGE PILES

1.8852299	-13.1581984	-19.2600884 C			
0.00006875	5045.	73385930.	9.7048742	0.0006672	-0.0006975
1.9352910	-13.6968147	-20.0289647 C			
0.00007125	5224.	73314676.	9.6854604	0.0006901	-0.0007242
1.9842342	-14.2349945	-20.7974045 C			
0.00007375	5402.	73246104.	9.6675676	0.0007130	-0.0007510
2.0320574	-14.7727362	-21.5654062 C			
0.00007625	5580.	73179943.	9.6510469	0.0007359	-0.0007777
2.0787583	-15.3100383	-22.3329683 C			
0.00007875	5758.	73115958.	9.6357684	0.0007588	-0.0008044
2.1243349	-15.8468991	-23.1000891 C			
0.00008125	5936.	73053908.	9.6215789	0.0007818	-0.0008311
2.1687786	-16.3834091	-23.8668591 C			
0.00008375	6113.	72993603.	9.6083651	0.0008047	-0.0008577
2.2120851	-16.9196071	-24.6333171 C			
0.00008625	6291.	72934929.	9.5960966	0.0008277	-0.0008844
2.2542615	-17.4553565	-25.3993265 C			
0.00008875	6468.	72877743.	9.5846943	0.0008506	-0.0009110
2.2953054	-17.9906556	-26.1648856 C			
0.00009125	6645.	72821917.	9.5740876	0.0008736	-0.0009377
2.3352146	-18.5255026	-26.9299926 C			
0.00009375	6822.	72767336.	9.5642135	0.0008966	-0.0009643
2.3739868	-19.0598959	-27.6946459 C			
0.00009625	6999.	72713897.	9.5550155	0.0009197	-0.0009909
2.4116196	-19.5938338	-28.4588438 C			
0.00009875	7175.	72661510.	9.5464429	0.0009427	-0.0010175
2.4481108	-20.1273143	-29.2225843 C			
0.0001013	7352.	72610089.	9.5384499	0.0009658	-0.0010440
2.4834580	-20.6603360	-29.9858660 C			
0.0001038	7528.	72559561.	9.5309953	0.0009888	-0.0010706
2.5176589	-21.1928968	-30.7486868 C			
0.0001063	7704.	72509856.	9.5240415	0.0010119	-0.0010971
2.5507111	-21.7249952	-31.5110452 C			
0.0001088	7880.	72460913.	9.5175548	0.0010350	-0.0011237
2.5826123	-22.2566292	-32.2729392 C			
0.0001113	8056.	72412676.	9.5115040	0.0010582	-0.0011502
2.6133600	-22.7877971	-33.0343671 C			
0.0001138	8232.	72365093.	9.5058611	0.0010813	-0.0011766
2.6429519	-23.3184971	-33.7953271 C			
0.0001163	8407.	72318117.	9.5006002	0.0011044	-0.0012031
2.6713855	-23.8487273	-34.5558173 C			
0.0001188	8581.	72256981.	9.4949156	0.0011275	-0.0012297
2.6985503	-24.3811796	-35.0000000 CY			
0.0001213	8748.	72144751.	9.4867849	0.0011503	-0.0012565
2.7241815	-24.9230580	-35.0000000 CY			
0.0001238	8905.	71959868.	9.4749333	0.0011725	-0.0012839
2.7481410	-25.4794682	-35.0000000 CY			
0.0001263	9051.	71690496.	9.4585709	0.0011941	-0.0013119
2.7703737	-26.0541110	-35.0000000 CY			
0.0001288	9186.	71349548.	9.4383015	0.0012152	-0.0013405

BRIDGE PILES

2.7910127	-26.6457141	-35.0000000 CY			
0.0001313	9312.	70945024.	9.4164027	0.0012359	-0.0013694
2.8103889	-27.2464622	35.0000000 CY			
0.0001338	9428.	70487647.	9.3940630	0.0012565	-0.0013985
2.8286749	-27.8520893	35.0000000 CY			
0.0001363	9536.	69986837.	9.3719118	0.0012769	-0.0014276
2.8459623	-28.4602153	35.0000000 CY			
0.0001388	9635.	69437989.	9.3514150	0.0012975	-0.0014567
2.8624240	-29.0648939	35.0000000 CY			
0.0001413	9725.	68851758.	9.3325700	0.0013182	-0.0014856
2.8780526	-29.6657795	35.0000000 CY			
0.0001438	9810.	68243696.	9.3146299	0.0013390	-0.0015145
2.8927640	-30.2656268	35.0000000 CY			
0.0001463	9888.	67611516.	9.2984397	0.0013599	-0.0015432
2.9066379	-30.8606508	35.0000000 CY			
0.0001488	9961.	66965584.	9.2827875	0.0013808	-0.0015719
2.9195505	-31.4557032	35.0000000 CY			
0.0001588	10215.	64343740.	9.2257953	0.0014646	-0.0016866
2.9616401	-33.8327510	35.0000000 CY			
0.0001688	10421.	61755953.	9.1755080	0.0015484	-0.0018013
2.9883174	-36.2100404	35.0000000 CY			
0.0001788	10594.	59269472.	9.1307002	0.0016321	-0.0019161
2.9995861	-38.5880932	35.0000000 CY			
0.0001888	10743.	56915426.	9.0903108	0.0017158	-0.0020309
2.9998531	-40.9679492	35.0000000 CY			
0.0001988	10871.	54697305.	9.0545556	0.0017996	-0.0021456
2.9998513	-43.3445202	35.0000000 CY			
0.0002088	10984.	52618790.	9.0220946	0.0018834	-0.0022603
2.9995709	-45.7218879	35.0000000 CY			
0.0002188	11084.	50669533.	8.9923094	0.0019671	-0.0023751
2.9985771	-48.1011069	35.0000000 CY			
0.0002288	11173.	48844423.	8.9661989	0.0020510	-0.0024897
2.9997826	-50.4732253	35.0000000 CY			
0.0002388	11254.	47136428.	8.9428895	0.0021351	-0.0026041
2.9991813	-52.8410935	35.0000000 CY			
0.0002488	11327.	45534998.	8.9216436	0.0022193	-0.0027184
2.9988837	-55.2075952	35.0000000 CY			
0.0002588	11393.	44032571.	8.9029883	0.0023036	-0.0028325
2.9993899	-57.5669810	35.0000000 CY			
0.0002688	11455.	42622587.	8.8863856	0.0023882	-0.0029465
2.9995996	-59.9211896	35.0000000 CY			
0.0002788	11509.	41288415.	8.8697195	0.0024724	-0.0030608
2.9996040	-60.0000000	35.0000000 CY			
0.0002888	11553.	40010420.	8.8496369	0.0025553	-0.0031764
2.9993549	-60.0000000	35.0000000 CY			
0.0002988	11587.	38786181.	8.8277649	0.0026373	-0.0032929
2.9986968	-60.0000000	35.0000000 CY			
0.0003088	11618.	37630088.	8.8058396	0.0027188	-0.0034099
2.9973570	-60.0000000	35.0000000 CY			
0.0003188	11647.	36538515.	8.7857408	0.0028005	-0.0035267

BRIDGE PILES

2.9999852	-60.0000000	35.0000000				
0.0003288	11673.	35506536.		8.7663946	0.0028820	-0.0036437
2.9993462	-60.0000000	35.0000000				
0.0003388	11697.	34528655.		8.7482424	0.0029635	-0.0037607
2.9973501	-60.0000000	35.0000000	CY			
0.0003488	11719.	33603816.		8.7310451	0.0030450	-0.0038777
2.9999323	-60.0000000	35.0000000	CY			
0.0003588	11740.	32723731.		8.7149965	0.0031265	-0.0039947
2.9983673	-60.0000000	35.0000000	CY			
0.0003688	11759.	31889404.		8.6995567	0.0032080	-0.0041117
2.9998608	-60.0000000	35.0000000	CY			
0.0003788	11777.	31094861.		8.6849895	0.0032894	-0.0042287
2.9985663	-60.0000000	35.0000000	CY			
0.0003888	11794.	30337908.		8.6718298	0.0033712	-0.0043455
2.9997174	60.0000000	35.0000000	CY			
0.0003988	11809.	29615811.		8.6588393	0.0034527	-0.0044625
2.9981180	60.0000000	35.0000000	CY			
0.0004088	11822.	28923321.		8.6492568	0.0035354	-0.0045783
2.9999731	60.0000000	35.0000000	CY			
0.0004188	11834.	28259366.		8.6402036	0.0036181	-0.0046941
2.9969649	60.0000000	35.0000000	CY			
0.0004288	11843.	27622813.		8.6334371	0.0037016	-0.0048091
2.9996716	60.0000000	35.0000000	CY			
0.0004388	11852.	27012060.		8.6275626	0.0037853	-0.0049238
2.9962542	60.0000000	35.0000000				
0.0004488	11858.	26424462.		8.6234877	0.0038698	-0.0050379
2.9986048	60.0000000	35.0000000	CY			

Axial Thrust Force $=\quad 88.569$ kips

Bending	Bending	Bending		Depth to	Max Comp	Max Tens
Max Conc	Max Steel	Max Casing	Run			
Curvature	Moment	Stiffness		N Axis	Strain	Strain
Stress	Stress	Stress	Msg			
rad/in.	in-kip	kip-in2		in	in/in	in/in

0.00000125	105.5237337	84418987.	39.3849202	0.00004923	0.00002442
0.1776575	1.3089756	1.4241056			
0.00000250	211.0452325	84418093.	24.6596822	0.00006165	0.00001202
0.2212855	1.5503713	1.7806313			
0.00000375	316.5660179	84417605.	19.7533730	0.00007408	-3.62351E-07
0.2646013	1.7919959	2.1373859			
0.00000500	422.0813796	84416276.	17.3017533	0.00008651	-0.00001274
0.3076036	2.0338430	2.4943630			
0.00000625	527.5507457	84408119.	15.8316691	0.00009895	-0.00002511
0.3502844	2.2758510	2.8515010			
0.00000750	632.9368273	84391577.	14.8520499	0.0001114	-0.00003748

BRIDGE PILES

0.3926353	2.5179540	3.2087340			
0.00000875	738.2230777	84368352.	14.1525547	0.0001238	-0.00004985
0.4346520	2.7601161	3.5660261			
0.00001000	843.4017636	84340176.	13.6280679	0.0001363	-0.00006222
0.4763320	3.0023172	3.9233572			
0.00001125	948.4690326	84308358.	13.2202180	0.0001487	-0.00007459
0.5176737	3.2445458	4.2807158			
0.00001250	1053.	84273823.	12.8939940	0.0001612	-0.00008695
0.5586763	3.4867948	4.6380948			
0.00001375	1158.	84237224.	12.6271229	0.0001736	-0.00009931
0.5993393	3.7290594	4.9954894			
0.00001500	1173.	78194430.	11.9941830	0.0001799	-0.0001178
0.6195550	3.7927359	5.1742959 C			
0.00001625	1264.	77806329.	11.7752352	0.0001913	-0.0001312
0.6564176	4.0056181	5.5023081 C			
0.00001750	1356.	77465162.	11.5865988	0.0002028	-0.0001446
0.6929380	4.2180096	5.8298296 C			
0.00001875	1447.	77162834.	11.4223889	0.0002142	-0.0001580
0.7291282	4.4300068	6.1569568 C			
0.00002000	1538.	76892295.	11.2779982	0.0002256	-0.0001714
0.7649875	4.6415940	6.4836740 C			
0.00002125	1629.	76649748.	11.1502835	0.0002369	-0.0001849
0.8005405	4.8529889	6.8101989 C			
0.00002250	1720.	76430898.	11.0365467	0.0002483	-0.0001983
0.8357937	5.0642457	7.1365857 C			
0.00002375	1810.	76231393.	10.9343825	0.0002597	-0.0002117
0.8707326	5.2752273	7.4626973 C			
0.00002500	1901.	76049857.	10.8424564	0.0002711	-0.0002252
0.9053889	5.4862245	7.7888245 C			
0.00002625	1992.	75882804.	10.7590212	0.0002824	-0.0002386
0.9397398	5.6970208	8.1147508 C			
0.00002750	2083.	75729046.	10.6831504	0.0002938	-0.0002521
0.9738049	5.9078005	8.4406605 C			
0.00002875	2173.	75587213.	10.6139606	0.0003052	-0.0002655
1.0075932	6.1186500	8.7666400 C			
0.00003000	2264.	75454743.	10.5502574	0.0003165	-0.0002790
1.0410726	6.3292564	9.0923764 C			
0.00003125	2354.	75331651.	10.4917636	0.0003279	-0.0002924
1.0742787	6.5399655	9.4182155 C			
0.00003250	2445.	75216851.	10.4378785	0.0003392	-0.0003059
1.1072113	6.7507774	9.7441574 C			
0.00003375	2535.	75108833.	10.3878608	0.0003506	-0.0003193
1.1398478	6.9614678	10.0699778 C			
0.00003500	2625.	75007165.	10.3414107	0.0003619	-0.0003328
1.1721999	7.1721532	10.3957932 C			
0.00003625	2716.	74911455.	10.2982624	0.0003733	-0.0003463
1.2042784	7.3829419	10.7217119 C			
0.00003750	2806.	74821105.	10.2580858	0.0003847	-0.0003597
1.2360829	7.5938340	11.0477340 C			
0.00003875	2896.	74735563.	10.2205790	0.0003960	-0.0003731

BRIDGE PILES

1.2676116	7.8048136	11.3738436 C			
0.00004000	2986.	74653932.	10.1852851	0.0004074	-0.0003866
1.2988415	8.0156408	11.6998008 C			
0.00004125	3076.	74576320.	10.1522172	0.0004188	-0.0004000
1.3297972	8.2265721	12.0258621 C			
0.00004250	3166.	74502370.	10.1211792	0.0004302	-0.0004135
1.3604784	8.4376078	12.3520278 C			
0.00004375	3256.	74431767.	10.0919971	0.0004415	-0.0004269
1.3908849	8.6487480	12.6782980 C			
0.00004500	3346.	74364231.	10.0645164	0.0004529	-0.0004403
1.4210164	8.8599928	13.0046728 C			
0.00004625	3436.	74299512.	10.0385994	0.0004643	-0.0004538
1.4508726	9.0713426	13.3311526 C			
0.00004750	3526.	74237272.	10.0140568	0.0004757	-0.0004672
1.4804452	9.2827066	13.6576466 C			
0.00004875	3616.	74177279.	9.9907590	0.0004870	-0.0004806
1.5097310	9.4940510	13.9841210 C			
0.00005125	3796.	74063810.	9.9477862	0.0005098	-0.0005075
1.5674755	9.9170570	14.6373870 C			
0.00005375	3975.	73958012.	9.9090830	0.0005326	-0.0005343
1.6241155	-10.3901082	-15.3406982 C			
0.00005625	4155.	73858855.	9.8740812	0.0005554	-0.0005611
1.6796489	-10.9304658	-16.1113158 C			
0.00005875	4334.	73765483.	9.8423090	0.0005782	-0.0005880
1.7340734	-11.4703962	-16.8815062 C			
0.00006125	4513.	73677073.	9.8132903	0.0006011	-0.0006147
1.7873754	-12.0100426	-17.6514126 C			
0.00006375	4692.	73593011.	9.7866809	0.0006239	-0.0006415
1.8395504	-12.5494426	-18.4210726 C			
0.00006625	4870.	73512922.	9.7623054	0.0006468	-0.0006683
1.8906116	-13.0884089	-19.1902989 C			
0.00006875	5049.	73436366.	9.7399210	0.0006696	-0.0006951
1.9405567	-13.6269401	-19.9590901 C			
0.00007125	5227.	73362963.	9.7193189	0.0006925	-0.0007218
1.9893836	-14.1650344	-20.7274444 C			
0.00007375	5405.	73292387.	9.7003184	0.0007154	-0.0007485
2.0370901	-14.7026903	-21.4953603 C			
0.00007625	5583.	73224353.	9.6827630	0.0007383	-0.0007753
2.0836740	-15.2399061	-22.2628361 C			
0.00007875	5761.	73158611.	9.6665155	0.0007612	-0.0008019
2.1291331	-15.7766803	-23.0298703 C			
0.00008125	5939.	73094945.	9.6514560	0.0007842	-0.0008286
2.1734652	-16.3130112	-23.7964612 C			
0.00008375	6117.	73033161.	9.6374788	0.0008071	-0.0008553
2.2166681	-16.8488972	-24.5626072 C			
0.00008625	6294.	72973075.	9.6244712	0.0008301	-0.0008820
2.2587364	-17.3843845	-25.3283545 C			
0.00008875	6471.	72914501.	9.6123044	0.0008531	-0.0009086
2.2996607	-17.9195940	-26.0938240 C			
0.00009125	6648.	72857362.	9.6009753	0.0008761	-0.0009352

BRIDGE PILES

2.3394500	-18.4543510	-26.8588410 C			
0.00009375	6825.	72801537.	9.5904174	0.0008991	-0.0009618
2.3781018	-18.9886539	-27.6234039 C			
0.00009625	7002.	72746918.	9.5805713	0.0009221	-0.0009884
2.4156139	-19.5225009	-28.3875109 C			
0.00009875	7178.	72693408.	9.5713836	0.0009452	-0.0010150
2.4519840	-20.0558903	-29.1511603 C			
0.0001013	7355.	72640920.	9.5628060	0.0009682	-0.0010416
2.4872097	-20.5888203	-29.9143503 C			
0.0001038	7531.	72589374.	9.5547951	0.0009913	-0.0010681
2.5212886	-21.1212892	-30.6770792 C			
0.0001063	7707.	72538699.	9.5473113	0.0010144	-0.0010947
2.5542186	-21.6532951	-31.4393451 C			
0.0001088	7883.	72488829.	9.5403191	0.0010375	-0.0011212
2.5859970	-22.1848363	-32.2011463 C			
0.0001113	8059.	72439706.	9.5337857	0.0010606	-0.0011477
2.6166216	-22.7159109	-32.9624809 C			
0.0001138	8235.	72391274.	9.5276814	0.0010838	-0.0011742
2.6460900	-23.2465172	-33.7233472 C			
0.0001163	8410.	72343486.	9.5219792	0.0011069	-0.0012006
2.6743997	-23.7766533	-34.4837433 C			
0.0001188	8584.	72284936.	9.5160505	0.0011300	-0.0012272
2.7014653	-24.3083963	-35.0000000 CY			
0.0001213	8752.	72177930.	9.5078374	0.0011528	-0.0012540
2.7270170	-24.8490320	-35.0000000 CY			
0.0001238	8910.	71999913.	9.4960147	0.0011751	-0.0012813
2.7509098	-25.4038120	-35.0000000 CY			
0.0001263	9057.	71738750.	9.4797783	0.0011968	-0.0013092
2.7730864	-25.9764652	-35.0000000 CY			
0.0001288	9193.	71404069.	9.4595454	0.0012179	-0.0013378
2.7936558	-26.5663950	-35.0000000 CY			
0.0001313	9319.	71001603.	9.4379048	0.0012387	-0.0013666
2.8129859	-27.1646195	35.0000000 CY			
0.0001338	9435.	70543377.	9.4159565	0.0012594	-0.0013956
2.8312356	-27.7671698	35.0000000 CY			
0.0001363	9543.	70039756.	9.3942441	0.0012800	-0.0014246
2.8484843	-28.3719745	35.0000000 CY			
0.0001388	9642.	69493849.	9.3736513	0.0013006	-0.0014536
2.8648400	-28.9754207	35.0000000 CY			
0.0001413	9733.	68903143.	9.3553730	0.0013214	-0.0014824
2.8804261	-29.5723728	35.0000000 CY			
0.0001438	9817.	68291836.	9.3378998	0.0013423	-0.0015111
2.8950743	-30.1686200	35.0000000 CY			
0.0001463	9895.	67661001.	9.3215341	0.0013633	-0.0015398
2.9088135	-30.7627055	35.0000000 CY			
0.0001488	9968.	67010664.	9.3060573	0.0013843	-0.0015684
2.9216190	-31.3553233	35.0000000 CY			
0.0001588	10221.	64387013.	9.2493303	0.0014683	-0.0016829
2.9631762	-33.7244015	35.0000000 CY			
0.0001688	10428.	61798024.	9.1995037	0.0015524	-0.0017973

BRIDGE PILES

2.9892271	-36.0926113
0.0001788	10601.
2.9997507	-38.4635381
0.0001888	10750.
2.9999469	-40.8358631
0.0001988	10878.
2.9999490	-43.2063539
0.0002088	10991.
2.9997611	-45.5780711
0.0002188	11091.
2.9989711	-47.9466851
0.0002288	11180.
2.9999209	-50.3131840
0.0002388	11260.
2.9984000	-52.6750732
0.0002488	11333.
2.9992691	-55.033214
0.0002588	11400.
2.9996696	-57.3885865
0.0002688	11461.
2.9998246	-59.7361281
0.0002788	11516.
2.9998347	-60.0000000
0.0002888	11560.
2.9996766	-60.000000
0.0002988	11595.
2.9991941	-60.000000
0.0003088	11626.
2.9981238	-60.000000
0.0003188	11655.
2.9991152	-60.000000
0.0003288	11680.
2.9997115	-60.0000000
0.0003388	11705.
2.9981782	-60.0000000
0.0003488	11727.
2.9998227	-60.000000
0.0003588	11748.
2.9990292	-60.000000
0.0003688	11167.
2.9980027	-60.000000
0.0003788	11185.
2.9992089	-60.0000000
0.0003888	11802.
2.9977508	60.0000000
0.0003988	11817.
2.9989007	60.0000000
0.0004088	11830.
0.9989309	60.0000000
.0004188	11841.

35.0000000 CY			
59308212.	9.1547282	0.0016364	-0.0019118
35.0000000 CY			
56951354.	9.1144416	0.0017204	-0.0020263
35.0000000 CY			
54732506.	9.0785272	0.0018044	-0.0021408
35.0000000 CY			
52651647.	9.0458512	0.0018883	-0.0022554
35.0000000 CY			
50700364.	9.0166518	0.0019724	-0.0023698
35.0000000 CY			
48873302.	8.9903242	0.0020565	-0.0024842
35.0000000 CY			
47163488.	8.9668679	0.0021408	-0.0025983
35.0000000 CY			
45561655.	8.9458161	0.0022253	-0.0027124
35.0000000 CY			
44058962.	8.9267624	0.0023098	-0.0028264
35.0000000 CY			
42647428.	8.9101304	0.0023946	-0.0029401
35.0000000 CY			
41312794.	8.8935457	0.0024791	-0.0030541
35.0000000 CY			
40035222.	8.8738558	0.0025623	-0.0031694
35.0000000 CY			
38812308.	8.8521089	0.0026446	-0.0032856
35.0000000 CY			
37655410.	8.8308140	0.0027265	-0.0034022
35.0000000 CY			
36563803.	8.8105033	0.0028083	-0.0035188
35.0000000 CY			
35529993.	8.7910217	0.0028900	-0.0036356
35.0000000 CY			
34552127.	8.7727275	0.0029718	-0.0037524
35.0000000 CY			
33626268.	8.7557367	0.0030536	-0.0038691
35.0000000 CY			
32745647.	8.7393098	0.0031352	-0.0039860
35.0000000 CY			
31911373.	8.7238147	0.0032169	-0.0041028
35.0000000 CY			
31115426.	8.7092355	0.0032986	-0.0042196
35.0000000 CY			
30358310.	8.6961850	0.0033806	-0.0043360
35.0000000 CY			
29634844.	8.6830290	0.0034624	-0.0044528
35.0000000 CY			
28941263.	8.6738156	0.0035454	-0.0045683
35.0000000 CY			
28276195.	8.6650961	0.0036285	-0.0046837

BRIDGE PILES

2.9980605	60.0000000	35.0000000 CY			
0.0004288	11850.	27639119.	8.6579228	0.0037121	-0.0047986
2.9999511	60.0000000	35.0000000 CY			
0.0004388	11858.	27027125.	8.6534376	0.0037967	-0.0049125
2.9962564	60.0000000	35.0000000 CY			
0.0004488	11865.	26439070.	8.6490712	0.0038813	-0.0050264
2.9993660	60.0000000	35.0000000 CY			

Summary of Results for Nominal Moment Capacity for Section 1

Moment values interpolated at maximum compressive strain $=0.003$ or maximum developed moment if pile fails at smaller strains.

Load No.	Axial Thrust kips	Nominal Mom. Cap. in-kip	Max. Comp. Strain
1	35.105	11638.696	0.00300000
2	37.800	11642.702	0.00300000
3	84.100	11706.781	0.00300000
4	88.569	11712.344	0.00300000

Note that the values of moment capacity in the table above are not factored by a strength reduction factor (phi-factor).

In ACI 318, the value of the strength reduction factor depends on whether the transverse reinforcing steel bars are tied hoops (0.65) or spirals (0.75).

The above values should be multiplied by the appropriate strength reduction factor to compute ultimate moment capacity according to ACI 318, or the value required by the design standard being followed.

The following table presents factored moment capacities and corresponding bending stiffnesses computed for common resistance factor values used for reinforced concrete sections.

Axial	Resist.	Nominal	Nominal	Ult. (Fac)	Ult. (Fac)	Bend.
Stiff.						
Load Ult Mom	Factor	Ax. Thrust	Moment Cap	Ax. Thrust	Moment Cap	at
No.		kips	in-kips	kips	in-kips	
kip-in^2						
1	0.65	35.104686	11639.	22.818046	7565.	
72212914						
2	0.65	37.800000	11643.	24.570000	7568.	

BRIDGE PILES

3	0.65	84.100000	11707.	54.665000	7609.
72536601.					
4	0.65	88.569221	11712.	57.569994	7613.
72565811.					
1	0.75	35.104686	11639.	26.328515	8729.
71660058.					
2	0.75	37.800000	11643.	28.350000	8732.
71686773.					
3	0.75	84.100000	11707.	63.075000	8780.
72106555.					
4	0.75	88.569221	11712.	66.426916	8784.
72141202.					
1	0.90	35.104686	11639.	31.594218	10475.
59335346.					
2	0.90	37.800000	11643.	34.020000	10478.
59379136.					
3	0.90	84.100000	11707.	75.690000	10536.
60107130 .					
4	0.90	88.569221	11712.	79.712299	10541.
60175455.					

Layering Correction Equivalent Depths of Soil \& Rock Layers

LayerNo.	Top of	Equivalent				
	Layer	Top Depth	Same Layer	Layer is	F0	F1
	Below	Below	Type As	Rock or	Integral	Integral
	Pile Head	Grnd Surf	Layer	is Below	for Layer	for Layer
	ft	$f t$	Above	Rock Layer	lbs	lbs
1	0.00	0.00	N.A.	No	0.00	18986.
2	8.0000	8.0000	No	No	18986.	9156.
3	11.0000	29.3955	No	No	28142.	N.A.

Notes: The F0 integral of Layer $n+1$ equals the sum of the F 0 and F 1 integrals for Layer n. Layering correction equivalent depths are computed only for soil types with both shallow-depth and deep-depth expressions for peak lateral load transfer. These soil types are soft and stiff clays, non-liquefied sands, and cemented c-phi soil.

BRIDGE PILES

\qquad

Analysis was not performed.

Lateral Loading Analysis for Load Case Number 2

Analysis was not performed.

Computed Values of Pile Loading and Deflection for Lateral Loading for Load Case Number 3

Pile-head conditions are Shear and Moment (Loading Type 1)							
Shear force at pile head					$=\quad 7598.9 \mathrm{lbs}$		
Applied moment at pile head					654000.0 in-lbs		
Axial thrust load on pile head					88569.2 lbs		
Depth	Deflect.	Bending	Shear	Slope	Total	Bending	Soil
Res. Soil Spr. Distrib.							
X	y	Moment	Force	S	Stress	Stiffness	p
```Es*h feet```	Lat. inches	in-lbs	lbs	radians	psi*	lb-in^2	
lb/inch	lb/inch	/inch					
0.00	0.3152	654000.	7599.	-0.00284	0.00	$8.44 \mathrm{E}+10$	
-33.8747	386.9345	0.00					
0.6000	0.2949	709627.	7347 .	-0.00278	0.00	$8.44 \mathrm{E}+10$	
-35.9983	878.8425	0.00					
1.2000	0.2751	763350.	7081.	-0.00272	0.00	$8.44 \mathrm{E}+10$	
-37.9730	993.8105	0.00					
1.8000	0.2558	815062.	6801.	-0.00265	0.00	$8.43 \mathrm{E}+10$	
-39.7936	1120.	0.00					
2.4000	0.2369	864667.	6509.	-0.00258	0.00	$8.43 \mathrm{E}+10$	
-41.4548	1260.	0.00					
3.0000	0.2186	912076.	6205.	-0.00250	0.00	$8.43 \mathrm{E}+10$	
-42.9512	1415.	0.00					
3.6000	0.2009	957209.	5891.	-0.00242	0.00	$8.43 \mathrm{E}+10$	
-44.2766	1587.	0.00					
4.2000	0.1837	999995.	5568.	-0.00234	0.00	$8.43 \mathrm{E}+10$	
-45.4249	1780.	0.00					
4.8000	0.1672	1040371.	5237.	-0.00225	0.00	$8.43 \mathrm{E}+10$	

## BRIDGE PILES

-46.3891	1998.	0.00				
5.4000	0.1513	1078285.	4900.	-0.00216	0.00	$8.43 \mathrm{E}+10$
-47.1619	2245.	0.00				
6.0000	0.1360	1113696.	4559.	-0.00207	0.00	$8.43 \mathrm{E}+10$
-47.7348	2527.	0.00				
6.6000	0.1215	1146572.	4214.	-0.00197	0.00	$8.42 \mathrm{E}+10$
-48.0988	2851.	0.00				
7.2000	0.1076	1176892.	3867.	-0.00187	0.00	7.82E+10
-48.2433	3228.	0.00				
7.8000	0.09453	1204641.	3520.	-0.00176	0.00	$7.81 \mathrm{E}+10$
-48.1657	3669.	0.00				
8.4000	0.08226	1229823.	3346.	-0.00165	0.00	$7.79 \mathrm{E}+10$
-0.07193	6.2955	0.00				
9.0000	0.07081	1254929.	3346.	-0.00153	0.00	7.78E+10
-0.07282	7.4047	0.00				
9.6000	0.06019	1279957.	3345.	-0.00142	0.00	7.77E+10
-0.07191	8.6016	0.00				
10.2000	0.05043	1304906.	3345.	-0.00130	0.00	7.76E+10
-0.06911	9.8683	0.00				
10.8000	0.04153	1329773.	3344.	-0.00117	0.00	$7.76 \mathrm{E}+10$
-0.06449	11.1793	0.00				
11.4000	0.03353	1354559.	1333.	-0.00105	0.00	7.75E+10
-558.6547	119962.	0.00				
12.0000	0.02643	1350304.	-2464.	-9.23E-04	0.00	7.75E+10
-496.0177	135111.	0.00				
12.6000	0.02024	1320255.	-5812.	-7.99E-04	0.00	7.76E+10
-434.0286	154408.	0.00				
13.2000	0.01493	1267629.	-8717.	-6.79E-04	0.00	$7.78 \mathrm{E}+10$
-372.7445	179795.	0.00				
13.8000	0.01046	1195604.	-11182.	-5.65E-04	0.00	7.81E+10
-312.0234	214785.	0.00				
14.4000	0.00679	1107334.	-13210.	-4.63E-04	0.00	$8.43 \mathrm{E}+10$
-251.3289	266657.	0.00				
15.0000	0.00379	1005974.	-14791.	-3.73E-04	0.00	$8.43 \mathrm{E}+10$
-187.9241	356633.	0.00				
15.6000	0.00142	894818.	-15882.	-2.91E-04	0.00	$8.43 \mathrm{E}+10$
-114.9937	582853.	0.00				
16.2000	-4.03E-04	777651.	-16159.	-2.20E-04	0.00	$8.44 \mathrm{E}+10$
37.9908	679052.	0.00				
16.8000	-0.00175	662412.	-15563.	-1.59E-04	0.00	$8.44 \mathrm{E}+10$
127.5594	525338.	0.00				
17.4000	-0.00269	553749.	-14534.	-1.07E-04	0.00	$8.44 \mathrm{E}+10$
158.1361	423773.	0.00				
18.0000	-0.00329	453254.	-13335.	$-6.38 \mathrm{E}-05$	0.00	$8.44 \mathrm{E}+10$
174.8627	383242.	0.00				
18.6000	-0.00361	361800.	-12047.	-2.90E-05	0.00	$8.44 \mathrm{E}+10$
183.1830	365837.	0.00				
19.2000	-0.00370	279822.	-10719.	-1.66E-06	0.00	$8.44 \mathrm{E}+10$
185.6530	360972.	0.00				
19.8000	-0.00363	207452.	-9389.	$1.91 \mathrm{E}-05$	0.00	$8.44 \mathrm{E}+10$

## BRIDGE PILES

183.7896	364632.	0.00				
20.4000	-0.00343	144600.	-8084.	$3.41 \mathrm{E}-05$	0.00	$8.44 \mathrm{E}+10$
178.6181	375190.	0.00				
21.0000	-0.00314	90999.	-6826.	4.42E-05	0.00	$8.44 \mathrm{E}+10$
170.8910	392156.	0.00				
21.6000	-0.00279	46252.	-5630.	5.00E-05	0.00	$8.44 \mathrm{E}+10$
161.1921	415753.	0.00				
22.2000	-0.00242	9858.	-4510.	5.24E-05	0.00	$8.44 \mathrm{E}+10$
149.9923	446797.	0.00				
22.8000	-0.00204	-18760.	-3474.	5.20E-05	0.00	$8.44 \mathrm{E}+10$
137.6812	486750.	0.00				
23.4000	-0.00167	-40240.	-2530.	4.95E-05	0.00	$8.44 \mathrm{E}+10$
124.5863	537911.	0.00				
24.0000	-0.00132	-55259.	-1682.	4.55E-05	0.00	$8.44 \mathrm{E}+10$
110.9837	603841.	0.00				
24.6000	-0.00101	-64522.	-933.1051	4.04E-05	0.00	$8.44 \mathrm{E}+10$
97.1024	690165.	0.00				
25.2000	-7.42E-04	-68747.	-284.3003	3.47E-05	0.00	$8.44 \mathrm{E}+10$
83.1212	806255.	0.00				
25.8000	-5.14E-04	-68660.	263.8918	$2.88 \mathrm{E}-05$	0.00	$8.44 \mathrm{E}+10$
69.1544	969094.	0.00				
26.4000	-3.27E-04	-64984.	694.0304	$2.31 \mathrm{E}-05$	0.00	$8.44 \mathrm{E}+10$
50.3286	1106603.	0.00				
27.0000	-1.81E-04	-58695.	977.6536	$1.78 \mathrm{E}-05$	0.00	$8.44 \mathrm{E}+10$
28.4557	1131753.	0.00				
27.6000	-7.06E-05	-50929.	1121.	$1.32 \mathrm{E}-05$	0.00	$8.44 \mathrm{E}+10$
11.3513	1156903.	0.00				
28.2000	8.47E-06	-42570.	1157.	9.17E-06	0.00	$8.44 \mathrm{E}+10$
-1.3897	1182053.	0.00				
28.8000	6.14E-05	-34282.	1115.	5.89E-06	0.00	$8.44 \mathrm{E}+10$
-10.3004	1207203.	0.00				
29.4000	$9.34 \mathrm{E}-05$	-26526.	1020.	3.30E-06	0.00	$8.44 \mathrm{E}+10$
-15.9778	1232353.	0.00				
30.0000	$1.09 \mathrm{E}-04$	-19596.	894.0942	$1.33 \mathrm{E}-06$	0.00	$8.44 \mathrm{E}+10$
-19.0334	1257503.	0.00				
30.6000	$1.13 \mathrm{E}-04$	-13652.	753.3787	-8.30E-08	0.00	$8.44 \mathrm{E}+10$
-20.0543	1282653.	0.00				
31.2000	$1.08 \mathrm{E}-04$	-8748.	610.7043	-1.04E-06	0.00	$8.44 \mathrm{E}+10$
-19.5775	1307803.	0.00				
31.8000	9.76E-05	-4857.	475.1633	-1.62E-06	0.00	$8.44 \mathrm{E}+10$
-18.0728	1332953.	0.00				
32.4000	8.45E-05	-1903.	352.7371	-1.91E-06	0.00	$8.44 \mathrm{E}+10$
-15.9345	1358104.	0.00				
33.0000	7.02E-05	224.8131	246.8455	-1.98E-06	0.00	$8.44 \mathrm{E}+10$
-13.4798	1383254.	0.00				
33.6000	5.60E-05	1654.	158.8902	-1.90E-06	0.00	$8.44 \mathrm{E}+10$
-10.9522	1408404.	0.00				
34.2000	4.28E-05	2515.	88.7624	-1.72E-06	0.00	$8.44 \mathrm{E}+10$
-8.5278	1433554.	0.00				
34.8000	3.12E-05	2934.	35.2949	-1.49E-06	0.00	$8.44 \mathrm{E}+10$

## BRIDGE PILES

$\begin{array}{ll}-6.3243 & 1458704 . \\ 35.4000 & 2.14 \mathrm{E}-05 \\ -4.4111 & 1483854 . \\ 36.0000 & 1.34 \mathrm{E}-05 \\ -2.8187 & 1509004 . \\ 36.6000 & 7.27 \mathrm{E}-06 \\ -1.5485 & 1534154 . \\ 37.2000 & 2.68 \mathrm{E}-06 \\ -0.5815 & 1559304 . \\ 37.8000 & -5.23 \mathrm{E}-07\end{array}$
0.11501584454.
$38.4000-2.60 \mathrm{E}-06$
0.58071609604.
$39.0000-3.78 \mathrm{E}-06$
0.85801634754.
$39.6000-4.29 \mathrm{E}-06$
0.98831659904.
40.2000-4.31E-06
1.00971685054.
$40.8000-4.02 \mathrm{E}-06$
0.95551710204.
$41.4000-3.54 \mathrm{E}-06$
0.85381735355.
42.0000-2.97E-06
0.72661760505.
$42.6000-2.38 \mathrm{E}-06$
0.59101785655.
$43.2000-1.82 \mathrm{E}-06$
0.45901810805.
$43.8000-1.33 E-06$
0.33851835955.
$44.4000-9.06 \mathrm{E}-07$
$0.2342 \quad 1861105$.
$45.0000-5.65 \mathrm{E}-07$
0.14811886255.
$45.6000-3.03 E-07$
0.080311911405. $46.2000-1.10 \mathrm{E}-07$
0.029521936555.
$46.8000 \quad 2.30 \mathrm{E}-08$
-0.00627 1961705.
47.4000 1.07E-07
-0.02947 1986855 .
48.0000 1.53E-07
-0.04262 2012005 .
48.6000 1.70E-07
-0.04813 2037155.
49.2000 1.68E-07
-0.04818 2062305.
$49.8000 \quad 1.54 \mathrm{E}-07$
0.00 3025. -3.3526-1.23E-06 $0.00 \quad 8.44 \mathrm{E}+10$
0.00 2888. -29.3798 -9.82E-07 $0.00 \quad 8.44 \mathrm{E}+10$
0.00 2604. -45.1018-7.48E-07
0.00
2239. -52.7699 -5.41E-07
0.00

1844
0.00

1456
0.00

1097
0.00
782.250
0.00
519.0174
0.00
308.0971-25.8510 5.36E-08
0.00
146.6953
0.00
29.5455
0.00
-49.9369
0.00
-98.7785
0.00
-123.8210
$-2.253$
6.38E-08
0.00
$-131.3077 \quad-0.1914 \quad 5.29 \mathrm{E}-08$
0.00
$-126.6440 \quad 1.1852 \quad 4.19 \mathrm{E}-08$
0.00
-114.2936
2.0077 3.16E-08
0.00
-97.7738
0.00
-79.7185
0.00
-61.9837
0.00
-45.7731
0.00
-31.7691
0.00
$-20.2586$
0.00
-11. 2447
$1.7719 \quad 1.09 \mathrm{E}-09$
$1.7719 \quad 1.09 \mathrm{E}-09$
$1.4252-1.13 \mathrm{E}-09$
$2.4031 \quad 2.26 \mathrm{E}-08$
$2.4868 \quad 1.50 \mathrm{E}-08$
2.3581 8.99E-09
$2.09864 .40 \mathrm{E}-09$
$1.0911-2.47 \mathrm{E}-09$

0.00	$8.44 \mathrm{E}+10$
0.00	$8.44 \mathrm{E}+10$
0.00	8.40
0.00	$8.44 \mathrm{E}+10$
0.00	$8.44 \mathrm{E}+10$
0.00	$8.44 \mathrm{E}+10$
0.00	8
0.00	8

BRIDGE PILES

-0.04461	2087455.	0.00				
50.4000	1.33E-07	-4.5429	0.7904	-3.14E-09	0.00	$8.44 \mathrm{E}+10$
-0.03892	2112605.	0.00				
51.0000	1.09E-07	0.1417	0.5343	-3.33E-09	0.00	$8.44 \mathrm{E}+10$
-0.03225	2137756.	0.00				
51.6000	8.47E-08	3.1546	0.3266	-3.19E-09	0.00	$8.44 \mathrm{E}+10$
-0.02543	2162906.	0.00				
52.2000	6.27E-08	4.8489	0.1665	-2.85E-09	0.00	$8.44 \mathrm{E}+10$
-0.01904	2188056.	0.00				
52.8000	4.36E-08	5.5561	0.04971	-2.41E-09	0.00	$8.44 \mathrm{E}+10$
-0.01341	2213206.	0.00				
53.4000	2.80E-08	5.5678	-0.02990	-1.93E-09	0.00	$8.44 \mathrm{E}+10$
-0.00871	2238356.	0.00				
54.0000	1.58E-08	5.1279	-0.07913	-1.48E-09	0.00	$8.44 \mathrm{E}+10$
-0.00497	2263506.	0.00				
54.6000	6.75E-09	4.4302	-0.1047	-1.07E-09	0.00	$8.44 \mathrm{E}+10$
-0.00215	2288656.	0.00				
55.2000	4.22E-10	3.6211	-0.1129	-7.25E-10	0.00	$8.44 \mathrm{E}+10$
-1.36E-04	2313806.	0.00				
55.8000	-3.68E-09	2.8047	-0.1091	-4.51E-10	0.00	$8.44 \mathrm{E}+10$
0.00120	2338956.	0.00				
56.4000	-6.07E-09	2.0502	-0.09765	-2.44E-10	0.00	$8.44 \mathrm{E}+10$
0.00199	2364106.	0.00				
57.0000	-7.19E-09	1.3989	-0.08188	-9.66E-11	0.00	$8.44 \mathrm{E}+10$
0.00239	2389256.	0.00				
57.6000	-7.46E-09	0.8713	-0.06428	0.00	0.00	$8.44 \mathrm{E}+10$
0.00250	2414406.	0.00				
58.2000	-7.19E-09	0.4733	-0.04650	5.76E-11	0.00	$8.44 \mathrm{E}+10$
0.00244	2439556.	0.00				
58.8000	-6.63E-09	0.2015	-0.02956	8.63E-11	0.00	$8.44 \mathrm{E}+10$
0.00227	2464706.	0.00				
59.4000	-5.95E-09	0.04746	-0.01399	$9.69 \mathrm{E}-11$	0.00	$8.44 \mathrm{E}+10$
0.00206	2489856.	0.00				
60.0000	-5.23E-09	0.00	0.00	9.90E-11	0.00	$8.44 \mathrm{E}+10$
0.00183	1257503.	0.00				

* This analysis computed pile response using nonlinear moment-curvature relationships. Values of total stress due to combined axial and bending stresses are computed only for elastic sections only and do not equal the actual stresses in concrete and steel. Stresses in concrete and steel may be interpolated from the output for nonlinear bending properties relative to the magnitude of bending moment developed in the pile.

Output Summary for Load Case No. 3:
Pile-head deflection $=0.31516691$ inches
Computed slope at pile head $=-0.00284004$ radians
Maximum bending moment $=$ 1354559. inch-lbs
Maximum shear force $=\quad-16159$. lbs

## BRIDGE PILES

Depth of maximum bending moment $=$ Depth of maximum shear force = Number of iterations = Number of zero deflection points =
11.40000000 feet below pile head 16.20000000 feet below pile head 17

Pile-head conditions are Shear and Moment (Loading Type 1)

Shear force at pile head Applied moment at pile head Axial thrust load on pile head

Depth Deflect. Bending Res. Soil Spr. Distrib.
$X \quad y \quad$ Moment Es*h Lat. Load
feet inches in-lbs lbs radians psi* lb-in^2 lb/inch lb/inch lb/inch

0.00	-0.4152	-192441.	-15452.	0.00333	0.00	$8.47 \mathrm{E}+10$
61.8052	535.8199	0.00				
0.6000	-0.3913	-302930.	-14992.	0.00331	0.00	$8.47 \mathrm{E}+10$
65.8355	1211.	0.00				
1.2000	-0.3676	-409999.	-14504.	0.00328	0.00	$8.46 \mathrm{E}+10$
69.6092	1363.	0.00				
1.8000	-0.3441	-513451.	-13991.	0.00324	0.00	$8.46 \mathrm{E}+10$
73.1153	1530.	0.00				
2.4000	- -0.3210	-613101.	-13453.	0.00319	0.00	$8.46 \mathrm{E}+10$
76.3422	1712.	0.00				
3.0000	-0.2982	-708781.	-12892.	0.00313	0.00	$8.45 \mathrm{E}+10$
79.2779	1914.	0.00				
3.6000	-0.2759	-800335.	-12312.	0.00307	0.00	$8.45 \mathrm{E}+10$
81.9096	2138.	0.00				
4.2000	-0.2540	-887626.	-11714.	0.00300	0.00	$8.44 \mathrm{E}+10$
84.2237	2387.	0.00				
4.8000	-0.2327	-970532.	-11100.	0.00291	0.00	$7.58 \mathrm{E}+10$
86.2057	2667.	0.00				
5.4000	-0.2121	-1048946.	-10474.	0.00282	0.00	$7.54 \mathrm{E}+10$
87.8489	2983.	0.00				
6.0000	-0.1921	-1122780.	-9837.	0.00271	0.00	7.52E+10
89.1403	3340.	0.00				
6.6000	-0.1730	-1191967.	-9192.	0.00260	0.00	$7.51 \mathrm{E}+10$
90.0660	3749.	0.00				

BRIDGE PILES

7.2000	-0.1547	-1256455.	-8541.	0.00249	0.00	$7.49 \mathrm{E}+10$
90.6110	4218.	0.00				
7.8000	-0.1372	-1316215.	-7888.	0.00236	0.00	$7.48 \mathrm{E}+10$
90.7593	4763.	0.00				
8.4000	-0.1206	-1371239.	-7561.	0.00223	0.00	$7.48 \mathrm{E}+10$
0.1489	8.8845	0.00				
9.0000	-0.1051	-1426221.	-7560.	0.00210	0.00	$7.47 \mathrm{E}+10$
0.1513	10.3671	0.00				
9.6000	-0.09045	-1481161.	-7559.	0.00196	0.00	$7.46 \mathrm{E}+10$
0.1503	11.9645	0.00				
10.2000	-0.07687	-1536057.	-7558.	0.00181	0.00	$7.45 \mathrm{E}+10$
0.1458	13.6577	0.00				
10.8000	-0.06436	-1590907.	-7557.	0.00166	0.00	$7.45 \mathrm{E}+10$
0.1378	15.4191	0.00				
11.4000	-0.05296	-1645712.	-5029.	0.00150	0.00	$7.44 \mathrm{E}+10$
702.1195	95453.	0.00				
12.0000	-0.04271	-1664079.	-231.1464	0.00134	0.00	$7.44 \mathrm{E}+10$
630.4940	106297.	0.00				
12.6000	-0.03361	-1649720.	4052.	0.00118	0.00	$7.44 \mathrm{E}+10$
559.3456	119819.	0.00				
13.2000	-0.02567	-1606324.	7826.	0.00103	0.00	$7.45 \mathrm{E}+10$
488.7851	137117.	0.00				
13.8000	-0.01884	-1537551.	11093.	$8.74 \mathrm{E}-04$	0.00	$7.45 \mathrm{E}+10$
418.7657	160047.	0.00				
14.4000	-0.01308	-1447031.	13857.	7.30E-04	0.00	$7.47 \mathrm{E}+10$
348.9589	192067.	0.00				
15.0000	-0.00833	-1338386.	16115.	$5.96 \mathrm{E}-04$	0.00	$7.48 \mathrm{E}+10$
278.4474	240715.	0.00				
15.6000	-0.00450	-1215273.	17855.	4.73E-04	0.00	$7.50 \mathrm{E}+10$
204.7581	327376.	0.00				
16.2000	-0.00152	-1081516.	19020.	$3.63 \mathrm{E}-04$	0.00	$7.53 \mathrm{E}+10$
118.8902	564039.	0.00				
16.8000	7.23E-04	-941570.	19193.	$2.71 \mathrm{E}-04$	0.00	$8.44 \mathrm{E}+10$
-70.7591	704202.	0.00				
17.4000	0.00239	-805272.	18402.	$1.97 \mathrm{E}-04$	0.00	$8.45 \mathrm{E}+10$
-149.0159	449595.	0.00				
18.0000	0.00356	-676682.	17211.	$1.34 \mathrm{E}-04$	0.00	$8.45 \mathrm{E}+10$
-181.8946	368375.	0.00				
18.6000	0.00431	-557506.	15835.	8.10E-05	0.00	$8.46 \mathrm{E}+10$
-200. 2571	334615.	0.00				
19.2000	0.00472	-448699.	14359.	$3.81 \mathrm{E}-05$	0.00	$8.46 \mathrm{E}+10$
-209.6174	319682.	0.00				
19.8000	0.00486	-350750.	12839.	4.14E-06	0.00	$8.46 \mathrm{E}+10$
-212.6437	315139.	0.00				
20.4000	0.00478	-263816.	11314.	-2.20E-05	0.00	$8.47 \mathrm{E}+10$
-210.9401	317689.	0.00				
21.0000	0.00454	-187812.	9815.	-4.12E-05	0.00	$8.47 \mathrm{E}+10$
-205.5982	325947.	0.00				
21.6000	0.00419	-122462.	8364.	-5.44E-05	0.00	$8.47 \mathrm{E}+10$
-197.4216	339450.	0.00				

BRIDGE PILES

22.2000	0.00376	-67344.	6980.	-6.25E-05	0.00	$8.47 \mathrm{E}+10$
-187.0351	358304.	0.00				
22.8000	0.00329	-21920.	5677.	-6.62E-05	0.00	$8.47 \mathrm{E}+10$
-174.9433	383073.	0.00				
23.4000	0.00280	14435.	4465.	-6.66E-05	0.00	$8.47 \mathrm{E}+10$
-161.5650	414798.	0.00				
24.0000	0.00233	42414.	3354.	-6.42E-05	0.00	$8.47 \mathrm{E}+10$
-147.2531	455118.	0.00				
24.6000	0.00188	62759.	2347.	-5.97E-05	0.00	$8.47 \mathrm{E}+10$
-132.3077	506534.	0.00				
25.2000	0.00147	76243.	1450.	-5.38E-05	0.00	$8.47 \mathrm{E}+10$
-116.9815	572905.	0.00				
25.8000	0.00111	83662.	663.2670	$-4.70 \mathrm{E}-05$	0.00	$8.47 \mathrm{E}+10$
-101.4810	660425.	0.00				
26.4000	7.94E-04	85818.	-11.5125	-3.98E-05	0.00	$8.47 \mathrm{E}+10$
-85.9578	779710.	0.00				
27.0000	- 5.34E-04	83516.	-574.7035	-3.26E-05	0.00	$8.47 \mathrm{E}+10$
-70.4842	950914.	0.00				
27.6000	3.25E-04	77559.	-1016.	-2.57E-05	0.00	$8.47 \mathrm{E}+10$
-52.1789	1156903.	0.00				
28.2000	1 1.63E-04	68895.	-1301.	-1.95E-05	0.00	$8.47 \mathrm{E}+10$
-26.8041	1182053.	0.00				
28.8000	4.40E-05	58840.	-1424.	$-1.41 \mathrm{E}-05$	0.00	$8.47 \mathrm{E}+10$
-7.3723	1207203.	0.00				
29.4000	- -3.93E-05	48401.	-1426.	-9.51E-06	0.00	$8.47 \mathrm{E}+10$
6.7281	1232353.	0.00				
30.0000	-9.30E-05	38310.	-1343.	-5.82E-06	0.00	$8.47 \mathrm{E}+10$
16.2357	1257503.	0.00				
30.6000	-1.23E-04	29060.	-1206.	-2.96E-06	0.00	$8.47 \mathrm{E}+10$
21.9403	1282653.	0.00				
31.2000	-1.36E-04	20947.	-1038.	-8.33E-07	0.00	$8.47 \mathrm{E}+10$
24.6247	1307803.	0.00				
31.8000	-1.35E-04	14110.	-859.5187	6.57E-07	0.00	$8.47 \mathrm{E}+10$
25.0220	1332953.	0.00				
32.4000	-1.26E-04	8570.	-683.8056	$1.62 \mathrm{E}-06$	0.00	$8.47 \mathrm{E}+10$
23.7872	1358104.	0.00				
33.0000	- $1.12 \mathrm{E}-04$	4263.	-520.8390	2.17E-06	0.00	$8.47 \mathrm{E}+10$
21.4813	1383254.	0.00				
33.6000	- -9.49E-05	1069.	-376.6716	2.39E-06	0.00	$8.47 \mathrm{E}+10$
18.5652	1408404.	0.00				
34.2000	-7.73E-05	-1163.	-254.3944	2.39E-06	0.00	$8.47 \mathrm{E}+10$
15.4007	1433554.	0.00				
34.8000	-6.05E-05	-2596.	-154.8240	2.23E-06	0.00	$8.47 \mathrm{E}+10$
12.2577	1458704.	0.00				
35.4000	-4.52E-05	-3393.	-77.1277	1.97E-06	0.00	$8.47 \mathrm{E}+10$
9.32461	1483854.	0.00				
36.0000	- -3.21E-05	-3707.	-19.3666	1.67E-06	0.00	$8.47 \mathrm{E}+10$
6.72021	1509004.	0.00				
36.6000	-2.12E-05	-3673.	21.0521	1.36E-06	0.00	$8.47 \mathrm{E}+10$
4.50721	1534154.	0.00				

BRIDGE PILES

37.2000	- -1.25E-05	-3405.	47.0163	$1.06 \mathrm{E}-06$	0.00	$8.47 \mathrm{E}+10$
$2.7050 \quad 1$	1559304.	0.00				
37.8000	- -5.91E-06	-2997.	61.4379	7.86E-07	0.00	$8.47 \mathrm{E}+10$
$1.3010 \quad 1$	1584454.	0.00				
38.4000	-1.17E-06	-2521.	67.0611	$5.52 \mathrm{E}-07$	0.00	$8.47 \mathrm{E}+10$
$0.2610 \quad 1$	1609604.	0.00				
39.0000	2.03E-06	-2031.	66.3386	3.58E-07	0.00	$8.47 \mathrm{E}+10$
-0.4617	1634754.	0.00				
39.6000	3.99E-06	-1566.	61.3638	$2.05 \mathrm{E}-07$	0.00	$8.47 \mathrm{E}+10$
-0.9202	1659904.	0.00				
40.2000	4.99E-06	-1148.	53.8461	$9.00 \mathrm{E}-08$	0.00	$8.47 \mathrm{E}+10$
-1.1680	1685054.	0.00				
40.8000	5.29E-06	-790.2411	45.1195	7.65E-09	0.00	$8.47 \mathrm{E}+10$
-1.2560	1710204.	0.00				
41.4000	5.10E-06	-497.9300	36.1717	-4.71E-08	0.00	$8.47 \mathrm{E}+10$
-1.2295	1735355.	0.00				
42.0000	- 4.61E-06	-269.3441	27.6881	-7.97E-08	0.00	8.47E+10
-1.1271	1760505.	0.00				
42.6000	3.95E-06	-99.1813	20.1011	$-9.54 \mathrm{E}-08$	0.00	$8.47 \mathrm{E}+10$
-0.9804	1785655.	0.00				
43.2000	- 3.24E-06	20.1596	13.6418	-9.87E-08	0.00	$8.47 \mathrm{E}+10$
-0.8138	1810805.	0.00				
43.8000	2.53E-06	97.3104	8.3884	$-9.38 \mathrm{E}-08$	0.00	$8.47 \mathrm{E}+10$
-0.6454	1835955.	0.00				
44.4000	- 1.89E-06	141.0001	4.3099	-8.36E-08	0.00	$8.47 \mathrm{E}+10$
-0.4875	1861105.	0.00				
45.0000	1.33E-06	159.4157	1.3035	-7.09E-08	0.00	$8.47 \mathrm{E}+10$
-0.3476	1886255.	0.00				
45.6000	8.66E-07	159.8060	-0.7753	-5.73E-08	0.00	$8.47 \mathrm{E}+10$
-0.2298	1911405.	0.00				
46.2000	- 5.02E-07	148.2798	-2.0888	-4.42E-08	0.00	$8.47 \mathrm{E}+10$
-0.1351	1936555.	0.00				
46.8000	2.29E-07	129.7493	-2.8000	$-3.24 \mathrm{E}-08$	0.00	$8.47 \mathrm{E}+10$
-0.06249	1961705.	0.00				
47.4000	3.60E-08	107.9764	-3.0608	-2.23E-08	0.00	$8.47 \mathrm{E}+10$
-0.00994	1986855.	0.00				
48.0000	- -9.12E-08	85.6857	-3.0048	-1.40E-08	0.00	$8.47 \mathrm{E}+10$
0.02549	2012005.	0.00				
48.6000	-1.66E-07	64.7143	-2.7440	-7.64E-09	0.00	$8.47 \mathrm{E}+10$
0.04696	2037155.	0.00				
49.2000	-2.01E-07	46.1761	-2.3675	-2.92E-09	0.00	$8.47 \mathrm{E}+10$
0.05762	2062305.	0.00				
49.8000	- $2.08 \mathrm{E}-07$	30.6238	-1.9429	$3.43 \mathrm{E}-10$	0.00	$8.47 \mathrm{E}+10$
0.06032	2087455.	0.00				
50.4000	$0-1.96 \mathrm{E}-07$	18.1978	-1.5185	$2.42 \mathrm{E}-09$	0.00	$8.47 \mathrm{E}+10$
0.05757	2112605.	0.00				
51.0000	$0-1.73 \mathrm{E}-07$	8.7560	-1.1261	3.56E-09	0.00	$8.47 \mathrm{E}+10$
0.05143	2137756.	0.00				
51.6000	-1.45E-07	1.9804	-0.7842	$4.02 \mathrm{E}-09$	0.00	$8.47 \mathrm{E}+10$
0.04353	2162906.	0.00				

BRIDGE PILES

52.2000	-1.15E-07	-2.5389	-0.5014	$4.00 \mathrm{E}-09$	0.00	$8.47 \mathrm{E}+10$
0.03505	2188056.	0.00				
52.8000	-8.73E-08	-5.2412	-0.2785	3.67E-09	0.00	8.47E+10
0.02685	2213206.	0.00				
53.4000	-6.25E-08	-6.5516	-0.1119	3.16E-09	0.00	$8.47 \mathrm{E}+10$
0.01944	2238356.	0.00				
54.0000	-4.18E-08	-6.8540	0.00538	$2.59 \mathrm{E}-09$	0.00	$8.47 \mathrm{E}+10$
0.01313	2263506.	0.00				
54.6000	-2.52E-08	-6.4755	0.08145	2.03E-09	0.00	$8.47 \mathrm{E}+10$
0.00800	2288656.	0.00				
55.2000	-1.26E-08	-5.6821	0.1248	$1.51 \mathrm{E}-09$	0.00	$8.47 \mathrm{E}+10$
0.00403	2313806.	0.00				
55.8000	-3.41E-09	-4.6793	0.1433	$1.07 \mathrm{E}-09$	0.00	$8.47 \mathrm{E}+10$
0.00111	2338956.	0.00				
56.4000	2.87E-09	-3.6191	0.1439	7.18E-10	0.00	$8.47 \mathrm{E}+10$
-9.42E-04	2364106.	0.00				
57.0000	6.93E-09	-2.6075	0.1322	4.54E-10	0.00	$8.47 \mathrm{E}+10$
-0.00230	2389256.	0.00				
57.6000	9.40E-09	-1.7151	0.1126	2.70E-10	0.00	$8.47 \mathrm{E}+10$
-0.00315	2414406.	0.00				
58.2000	1.08E-08	-0.9861	0.08806	$1.55 \mathrm{E}-10$	0.00	$8.47 \mathrm{E}+10$
-0.00367	2439556.	0.00				
58.8000	1.16E-08	-0.4471	0.06054	$9.41 \mathrm{E}-11$	0.00	$8.47 \mathrm{E}+10$
-0.00398	2464706.	0.00				
59.4000	1.22E-08	-0.1144	0.03105	7.02E-11	0.00	$8.47 \mathrm{E}+10$
-0.00421	2489856.	0.00				
60.0000	1.26E-08	0.00	0.00	6.53E-11	0.00	$8.47 \mathrm{E}+10$
-0.00442	1257503.	0.00				

* This analysis computed pile response using nonlinear moment-curvature relationships. Values of total stress due to combined axial and bending stresses are computed only for elastic sections only and do not equal the actual stresses in concrete and steel. Stresses in concrete and steel may be interpolated from the output for nonlinear bending properties relative to the magnitude of bending moment developed in the pile.


## Output Summary for Load Case No. 4:

## Pile-head deflection

Computed slope at pile head Maximum bending moment Maximum shear force
Depth of maximum bending moment Depth of maximum shear force = Number of iterations =
Number of zero deflection points =
-0.41524910 inches
0.00332863 radians
-1664079. inch-lbs
19193. lbs
12.00000000 feet below pile head
16.80000000 feet below pile head

16

## BRIDGE PILES

Definitions of Pile-head Loading Conditions:

Load Type 1: Load 1 = Shear, V, lbs, and Load 2 = Moment, M, in-lbs
Load Type 2: Load $1=$ Shear, $V$, lbs, and Load $2=$ Slope, S, radians
Load Type 3: Load $1=$ Shear, $V$, lbs, and Load $2=$ Rot. Stiffness, R, in-lbs/rad.
Load Type 4: Load $1=$ Top Deflection, y, inches, and Load $2=$ Moment, M, in-lbs
Load Type 5: Load $1=$ Top Deflection, y, inches, and Load $2=$ Slope, $S$, radians

Load Load	Load		Axial	Pile-head	Pile-head	Max
Shear Max Moment						
Case Type Pile-head	Type	Pile-head	Loading	Deflection	Rotation	in
Pile in Pile						
No. $\begin{gathered}1 \\ \text { in-lbs }\end{gathered}$	2	Load 2	lbs	inches	radians	lbs
$3 \mathrm{~V}, \mathrm{lb} 7599$.	M, in-lb	654000.	88569.	0.3152	-0.00284	
-16159. 1354559.						
4 V , lb -15452.	M, in-lb	-192441.	35105.	-0.4152	0.00333	
19193. -1664079.						

```
Maximum pile-head deflection = -0.4152490982 inches
Maximum pile-head rotation = 0.0033286331 radians = 0.190717 deg.
```

The analysis ended normally.

## PIER DEMANDS:

Batter Angle $=14$	deg	(see batter)
Axial Demand $=88.6$	k	(see pier demands and batter)

## PIER CAPACITY:

L = depth/cos(batter)


Geotechnical investigation is based on borings from the top of the street Street elevation is $\sim 9.5$ ', top of pier elevation is $\sim-1.5$ ' , so 11 ' below street therefore top 3 ' of piers are in very soft soils with no skin friction (14-11) and next 8 ' of piers are in soft soil (22-14)
below that is competent soil

## Per Geo Report

Skin Friction - The portion of the piles extending below a depth of 22 feet from the ground surface may be designed using an allowable skin friction of 350 pounds per square foot (psf) for dead load plus long-term live loads. This value can be increased by $1 / 2$ for total loads, including downward vertical wind or seismic forces. A skin friction value of 230 psf should be used to resist uplift forces.

Per Email from Geo (dated 9/8/2020)
As discussed, I reviewed the subsurface conditions observed in our borings for the project. Based on the conditions, I can give you some nominal skin friction above 22 feet for the dead load plus live load condition, but this friction cannot be used to resist seismic loading due to liquefaction. There will be some uplift resistance in the materials above the
liquefiable soil as this soil will help hold the piles down. I am hoping that this information will help you reduce the pile depths.

Skin Friction from 14 to 22 feet - 200 psf, no increase for downward vertical seismic loads as you cannot count on these materials during an earthquak

Uplift during seismic event from 14 to 22 feet - 130 psf
Let me know if you have questions or need additional information. If these recommendations are useful, I will prepare a supplemental recommendations letter.

Thanks,

Eric G. Chase
President
Principal Geotechnical Engineer

## Pier Strength

Steel Casing

$\mathrm{OD}=$	20 in
t $=$	1 in
Section Loss $=$	0.075 in
OD' $=$	19.85 in
$\mathrm{t}^{\prime}=$	0.925 in
$\mathrm{ID}=$	18 in
A $=$	$55.00 \mathrm{in}^{2}$
1 =	2468 in ${ }^{4}$
E =	29000 ksi
$\mathrm{y}=$	9.93 in
$\mathrm{S}=$	$249 \mathrm{in}^{3}$
Z =	$332 \mathrm{in}^{3}$
$\begin{array}{r} \text { Fy }= \\ \phi= \end{array}$	$\begin{aligned} & 35 \mathrm{ksi} \\ & 0.9 \end{aligned}$
$\varphi \mathrm{Mn}=\mathrm{Sfy} \varphi=$	7833 k-in
	653 k -ft

Concrete Fill

$D=$	18 in
A $=$	$254 \mathrm{in}^{2}$
$\lg =$	5153 in ${ }^{4}$
$\mathrm{y}=$	9.00 in
S =	573 in 3
$\mathrm{fc}^{\prime}=$	3000 psi
$\gamma=$	150 pcf
$\mathrm{E}=$	3321 ksi
$\mathrm{fr}=$	411 psi
$\mathrm{Mcr}=$	$20 \mathrm{k}-\mathrm{ft}$
Cracked factor $=$	0.35
$\mathrm{I}_{\mathrm{CR}}=$	$1804 \mathrm{in}^{4}$
$E l_{\text {CR }}=$	E+06 k-in

fr* $\lg / \mathrm{y}$
Cracked factor $=\quad 0.35$
$I_{C R}=\quad 1804 \mathrm{in}^{4}$
$E I_{C R}=5.99 E+06 k-\mathrm{in}^{2}$

Load Share Based on Stiffness

$$
\begin{array}{rc}
\Sigma \mathrm{IE}= & 7.76 \mathrm{E}+07 \mathrm{k}-\mathrm{in}^{2} \\
\% \text { Steel Pipe }= & 92 \% \\
\% \text { Conc Core }= & 8 \% \\
& \text { Casing essentialy provides all the flexural strength }
\end{array}
$$

Capacity Check (see pier design sheet for demands)
ASD to LRFD ratio $=1.60$

$\mathrm{M}_{\text {max }}=$	140 k -ft	Lpile output
$\mathrm{M}_{\mathrm{u}}=$	224.0 k-ft	
$\phi \mathrm{M}_{\mathrm{n}}=$	652.7 k-ft	(steel casing only, see above)
DCR =	0.34	
$\mathrm{V}_{\text {max }}=$	19.2 k	Lpile output
$\mathrm{V}_{\mathrm{u}}=$	30.7 k	
$\phi \mathrm{V}_{\mathrm{n}}=$	167.9 k	(concrete only, see shear friction)
DCR =	0.18	

## SHEAR FRICTION PER ACI 318 § 22.9

## Location : Pier

Surface: Concrete placed monolithically

$$
\begin{array}{rlrl}
\mu= & 1.40 & \\
\mu \lambda= & 1.40 & \mathrm{~V}_{\mathrm{n}} \operatorname{Max}(\S 22.9 .4 .4) \\
\mathrm{A}_{\mathrm{c}}= & 254 \mathrm{in}^{2} & 0.2 \mathrm{f}_{\mathrm{c}} \mathrm{~A}_{\mathrm{c}}=254.5 \mathrm{k} \\
\text { Bar Size }: & \# 7 & 1600 \mathrm{Ac}=407.15 \mathrm{k} \\
\text { No. of Bars }= & 6 & \left(480+0.08 \mathrm{f}^{\prime} \mathrm{c}\right) \mathrm{Ac}=223.933 \mathrm{k} \\
\text { Bar Angle, } \alpha= & 90 & \mathrm{deg} &
\end{array}
$$

$V_{n}=A_{v} f_{y}(\mu \sin \alpha+\cos \alpha)=302.4 k \quad(E q$ 22.9.4.2)

$$
\begin{aligned}
\phi \mathrm{V}_{\mathrm{n}} & =167.9 \mathrm{k} \\
\mathrm{~V}_{\mathrm{u}} & =52.16 \mathrm{k} \\
\mathrm{D} / \mathrm{C} & =0.31 \mathrm{OK}
\end{aligned}
$$

## Retaining Wall

## Retaining Wall Loading

Wing walls and infill walls are supported on grade beams and piers
Grade beams are integral with the grade beams supporting the main arch

Use Active pressure

$$
\gamma_{\text {soil }}=\quad 42 \mathrm{pcf}
$$

Vehichle Surcharge

$\mathrm{h}=$	2 ft
$\mathrm{q}=$	84 psf

Wall dimensions

$$
\begin{array}{rlr}
\mathrm{h}_{\max } & = & 9.5 \mathrm{ft} \\
\mathrm{~h}_{\mathrm{GB}} & = & 2.5 \mathrm{ft}
\end{array}
$$



Check Wall for bending and shear at base

$$
\begin{aligned}
& \sigma_{\text {active }}=\quad 399 \mathrm{psf} \\
& \mathrm{~V}=\quad 1895 \text { plf } \\
& \text { at } \mathrm{d}=\quad 3.17 \mathrm{ft} \quad \text { abv base, triangular } \\
& \sigma_{\text {vehicle }}=\quad 84 \mathrm{psf} \\
& \mathrm{~V}=\quad 798 \mathrm{plf} \\
& \text { at } \mathrm{d}=\quad 4.75 \mathrm{ft} \quad \text { abv base, rectangular } \\
& \Sigma \mathrm{V}=\quad 2.69 \mathrm{k} / \mathrm{ft} \\
& \Sigma \mathrm{M}=\quad 9.79 \mathrm{k}-\mathrm{ft} / \mathrm{ft} \\
& \mathrm{~V}_{\mathrm{U}}=\quad 3.77 \mathrm{k} / \mathrm{ft} \quad 1.4 \mathrm{D} \\
& M_{U}=\quad 13.71 \mathrm{k}-\mathrm{ft} / \mathrm{ft} \quad 1.4 \mathrm{D} \\
& \text { See following pages for wall strength }
\end{aligned}
$$

Check grade beam to span to pier Vertical

$$
\begin{array}{rlrl}
\text { Wall } \mathrm{t} & = & 12 \mathrm{in} & \\
\text { Wall } \mathrm{h}= & & 9.5 \mathrm{ft} & \\
\mathrm{~GB} \mathrm{~b}= & & 30 \mathrm{in} & \\
\mathrm{DB} \mathrm{~d}= & & 30 \mathrm{in} & \\
\mathrm{~A}= & & 15.8 \mathrm{ft}^{2} / \mathrm{ft} & \\
\text { Unit Weight }= & & 150 \mathrm{pcf} & \\
\omega= & 2.3625 \mathrm{klf} & \text { (self weight) } \\
\omega_{u}= & & 3.3075 \mathrm{klf} & 1.4 \mathrm{D}
\end{array}
$$

Horizontal

$\Sigma \mathrm{h}=$	12 ft	
$\sigma_{\text {active }}=$	504 psf	
$V=$	3024 plf	
at $\mathrm{d}=$	4.00 ft	abv base, triangular
$\sigma_{\text {vehicle }}=$	84 psf	
$V=$	1008 plf	
at $\mathrm{d}=$	6 ft	abv base, rectangular
$\Sigma \mathrm{V}=$	$4.03 \mathrm{k} / \mathrm{ft}$	
$\Sigma \mathrm{M}=$	$18.14 \mathrm{k}-\mathrm{ft} / \mathrm{ft}$	
$\omega_{u}=$	5.64 k/ft	1.4D
See following pages for GB strength		
$M_{U}=$	25.40 k-ft/ft	1.4D Torque

Design for Torsion

bw =	30 in
$\mathrm{d}=$	30 in
Torque =	305 k-in/f
span =	3.0 ft
$\mathrm{T}_{U}=$	914 k-in
$\mathrm{A}_{\text {cp }}=$	$900 \mathrm{in}^{\text {² }}$
$\mathrm{p}_{\mathrm{cp}}=$	120 in
$\lambda=$	1
$\mathrm{f}^{\prime} \mathrm{c}=$	5000 psi
$\mathrm{T}_{\text {th }}=$	477 k-in
$\phi=$	0.75
$\phi T_{\text {th }}=$	358 k-in
DCR =	55

$\mathrm{T}_{\mathrm{cr}} / 4$
DCR $=\quad 2.55$
Design for torsion is required See following pages
$\mathrm{T}_{\mathrm{u}}=\quad 76 \mathrm{k}-\mathrm{ft}$
$\mathrm{V}_{\mathrm{u}}=\quad 19.6 \mathrm{k} \quad$ SSRS vert+hz

Each longitudinal bar in the GB is used to resist only one type of loading Transverse reinforcing needed for torsion is added to that used for shear


Cheack pier for vertical and horizontal loading with overturning moment

L =	5.25 ft	Trib to pier	
$\mathrm{P}_{\cup}=$	12.4 k	vert load * length	ASD (1.0D)
$\mathrm{V}_{\mathrm{u}}=$	21.2 k	hz load * length	
$\mathrm{M}_{\mathrm{u}}=$	95.3 k-ft	torque * length	
$\mathrm{M} / \mathrm{V}=$	4.5 ft		

Infill Wall Loading
Wing walls and infill walls are supported on grade beams and piers Grade beams are integral with the grade beams supporting the main arch Infill walls are better than wing walls by observation because they are supported at the top by the precast arch

Use Active pressure

$$
\gamma_{\text {soil }}=
$$

42 pcf
Vehichle Surcharge

$\mathrm{h}=$	2 ft
$\mathrm{q}=$	84 psf

Wall dimensions

$$
\mathrm{h}_{\text {over }}=\quad 2 \mathrm{ft}
$$



$$
\mathrm{h}_{\max }=\quad 7 \mathrm{ft} \quad \text { wall abv BG }
$$

Check Wall for bending at midspan

$$
\begin{array}{rlrl}
\sigma_{\text {active }} & = & 378 \mathrm{psf} & \text { concervatively apply full ht } \\
\sigma_{\text {vehichle }} & = & 84 \mathrm{psf} & \\
\omega & = & 462 \mathrm{plf} \\
\omega \mathrm{~L}^{2} / 8 & & 2.83 \mathrm{k}-\mathrm{ft} & \\
\mathrm{M}_{\mathrm{U}} & = & 3.96 \mathrm{k}-\mathrm{ft} / \mathrm{ft} & 1.4 \mathrm{D}
\end{array}
$$

DSA? NO
Beam: Retaining Wall at base


Shear Reinf.
1 Legs
\#4 @ 12 "oc

DSA? NO
Beam: Wall Grade beam vertical

Properties		Flexural Reinf.			Shear Reinf.
$\mathrm{f}_{\mathrm{c}}^{\prime}=$	5000 psi	2.0	\#6 bars		2 Legs
$\mathrm{f}_{\mathrm{y}}=$	60 ksi	$\mathrm{A}_{\text {s }}=$	$0.88 \mathrm{in}^{2}$	NG	\#5 @ 24 "oc
$\mathrm{fyt}=$	60 ksi	$\mathrm{A}_{\mathrm{S}, \text { min } \mathrm{T} \& \mathrm{~S}}=$	$1.62 \mathrm{in}^{2}$		
		$\mathrm{A}_{\mathrm{s}, \text { min Flexure }}=$	$1.62 \mathrm{in}^{2}$		$\phi_{v}=0.75$
Beam Dimensions		$\mathrm{A}_{\mathrm{s}, \text { min }}=$	$1.62 \mathrm{in}^{2}$		$\mathrm{V}_{\text {ult }}=19.8 \mathrm{k}$
Width =	30.0 in	$\mathrm{a}=$	0.41 in		$\mathrm{V}_{\mathrm{c}}=110.3 \mathrm{k}$
Depth =	30.0 in	$\beta_{1}=$	0.80		$\mathrm{V}_{\mathrm{s}, \max }=441.2 \mathrm{k}$
Cover $=$	3.0 in	$\mathrm{c}=$	0.52 in		$\mathrm{V}_{\mathrm{s}}=40.3 \mathrm{k}$
$d=$	26.0 in	$\varepsilon_{\text {s }}=$	0.148		$\mathrm{V}_{\mathrm{s}, \text { gov }}=40.3 \mathrm{k}$
		Clear Spacing $=$	21.3 in oc		$\phi_{v} \mathrm{~V}_{\mathrm{n}}=113.0 \mathrm{k}$
$\omega=$	3.31 klf				DCR $=0.18$ OK
		$\phi_{\mathrm{b}}=$	0.90		
		$\mathrm{M}_{\mathrm{ult}}=$	41.3 k -ft		
		$\phi_{b} \mathrm{M}_{\mathrm{n}}=$	102.1 k -ft		
		DCR =	0.40 OK		

Continuous Span

$\mathrm{L}=$	6 ft	
M	$=$	$9.92 \mathrm{k}-\mathrm{ft}$
V	$=$	$\mathrm{wL}^{2} / 12$
	9.92 k	$\mathrm{wL} / 2$

Cantilever Span

\[

\]

DSA? NO
Beam: Wall Grade beam horizontal

Properties		Flexural Reinf.		
$\mathrm{f}_{\mathrm{c}}^{\prime}=$	5000 psi	2.0	\#6 bars	
$\mathrm{f}_{\mathrm{y}}=$	60 ksi	$\mathrm{A}_{\text {s }}=$	$0.88 \mathrm{in}^{2}$	NG
$\mathrm{fyt}=$	60 ksi	$A_{S, \text { min } T \& S}=$	$1.62 \mathrm{in}^{2}$	
		$\mathrm{A}_{\mathrm{s}, \text { min Flexure }}=$	$1.62 \mathrm{in}^{2}$	
Beam Dimensions		$\mathrm{A}_{\mathrm{s}, \text { min }}=$	$1.62 \mathrm{in}^{2}$	
Width =	30.0 in	$\mathrm{a}=$	0.41 in	
Depth =	30.0 in	$\beta_{1}=$	0.80	
Cover =	3.0 in	$\mathrm{c}=$	0.52 in	
$d=$	26.0 in	$\varepsilon_{\mathrm{s}}=$	0.148	
		Clear Spacing =	21.3 in oc	
$\omega=$	5.64 klf			
		$\phi_{\mathrm{b}}=$	0.90	
		$\mathrm{M}_{\text {ult }}=$	70.6 k-ft	
		$\phi_{b} \mathrm{M}_{\mathrm{n}}=$	102.1 k-ft	
		DCR =	0.69 OK	

Continuous Span

\[

\]

Cantilever Span

$$
\begin{array}{rcr}
\mathrm{L}= & 5 \mathrm{ft} & \\
\mathrm{M}= & 70.56 \mathrm{k}-\mathrm{ft} & \mathrm{wL}^{2} / 2
\end{array}
$$

$$
V=33.87 \mathrm{k} \quad \mathrm{wL}
$$

$$
\text { Mmax }=\quad 70.56 \mathrm{k}-\mathrm{ft}
$$

$$
\mathrm{Vmax}=\quad 33.87 \mathrm{k}
$$

DSA? NO
Beam: Infill Wall

Properties

$\mathrm{f}_{\mathrm{c}}^{\prime}=$	5000 psi
$\mathrm{f}_{\mathrm{y}}=$	60 ksi
$\mathrm{f}_{\mathrm{yt}}=$	60 ksi

Beam Dimensions
Width $=\quad 12.0$ in
Depth $=8.0$ in
Cover $=\quad 3.0$ in
$\mathrm{d}=\quad 4.2$ in
$\mathrm{s}_{\mathrm{bar}}=\quad 12.0$ in

Flexural Reinf.
1.0 \#5 bars
$\mathrm{A}_{\mathrm{s}}=0.31 \mathrm{in}^{2} \quad \mathrm{OK}$
$\mathrm{A}_{\mathrm{s}, \min \mathrm{T} \& \mathrm{~S}}=0.17 \mathrm{in}^{2}$
$\mathrm{A}_{\mathrm{s}, \text { min Flexure }}=0.17 \mathrm{in}^{2}$
$\mathrm{A}_{\mathrm{s}, \text { min }}=0.17 \mathrm{in}^{2}$
$\mathrm{a}=0.36$ in
$\beta_{1}=0.80$
$\mathrm{c}=0.46 \mathrm{in}$
$\varepsilon_{\mathrm{s}}=0.025$
Clear Spacing = \#DIV/0! in oc
$\phi_{\mathrm{b}}=0.90$
$\mathrm{M}_{\mathrm{ult}}=\quad 4.0 \mathrm{k}-\mathrm{ft}$
$\phi_{b} \mathrm{M}_{\mathrm{n}}=\quad 5.6 \mathrm{k}-\mathrm{ft}$
DCR = 0.71 OK

Shear Reinf.
2 Legs
\#5 @ 24 "oc
$\phi_{v}=0.75$
$\mathrm{V}_{\mathrm{ult}}=33.9 \mathrm{k}$
$V_{c}=110.3 \mathrm{k}$
$\mathrm{V}_{\mathrm{s}, \max }=441.2 \mathrm{k}$
$V_{\mathrm{s}}=40.3 \mathrm{k}$
$V_{\mathrm{s}, \text { gov }}=40.3 \mathrm{k}$
$\phi_{\mathrm{v}} \mathrm{V}_{\mathrm{n}}=113.0 \mathrm{k}$
DCR $=0.30$ OK

Shear Reinf.
1 Legs

## ZFA STRUCTURAL ENGINEERS

Job \# 16000
Beam Torsion

Engineer:
Date

## Design for Torsion in Concrete Beams

Demand Loads

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{u}}=76.2 \mathrm{k}-\mathrm{ft} \\
& \mathrm{~V}_{\mathrm{u}}=19.6 \mathrm{k}
\end{aligned}
$$

Beam Geometry

$$
\begin{array}{rlrl}
\mathrm{b} & = & 30 & \mathrm{in} \\
\mathrm{~h} & = & 30 & \mathrm{in} \\
\text { Cover Top } & =3 & \text { in } \\
\text { Cover Bottom } & = & 3 & \text { in } \\
\text { Cover Side } 1 & = & 3 & \text { in } \\
\text { Cover Side } 2 & =3 & \text { in } \\
\mathrm{d}_{\max } & = & 27 & \text { in }
\end{array}
$$

Material Properties

$$
\begin{array}{rcc}
\mathrm{f}_{\mathrm{c}}= & 5 & \mathrm{ksi} \\
\mathrm{f}_{\mathrm{y}} & =60 & \mathrm{ksi} \\
\mathrm{f}_{\mathrm{yt}}= & 60 & \mathrm{ksi}
\end{array}
$$

Threshold Torsion

$$
\begin{align*}
& \phi=0.75 \\
& \lambda=1.0 \\
& \mathrm{~A}_{\mathrm{cp}}=900 \mathrm{in}^{2} \\
& \mathrm{p}_{\mathrm{cp}}=120 \mathrm{in} \\
& \phi \lambda \sqrt{\boldsymbol{f}_{c}^{\prime}}\left(\frac{A_{c p}^{2}}{p_{c p}}\right)=29.8 \mathrm{kip}-\mathrm{ft} \quad< \\
&
\end{align*}
$$

[^1]
## ZFA STRUCTURAL ENGINEERS

## Design of Stirrups to Resist Torsion

Design of additional longitudinal reinforcement

$$
\begin{aligned}
\mathrm{p}_{\mathrm{h}} & =91 \quad \mathrm{in} \\
A_{\ell}=\frac{A_{t}}{s} p_{h}\left(\frac{f_{y t}}{f_{y}}\right) \cot ^{2} \theta_{l} & =1.18 \quad \mathrm{in}^{2}
\end{aligned}
$$

Provide: (4) \#6

$$
A_{l, \text { provided }}=1.76 \mathrm{in}^{2} \quad O K
$$

Verify torsional moment strength

$$
\mathrm{V}_{\mathrm{c}}=114.6 \mathrm{kips}
$$

$$
\left.\sqrt{\left(\frac{V_{u}}{b_{w} d^{d}}\right.}\right)^{2}+\left(\frac{T_{u} p_{h}}{1.7 A_{o h}^{2}}\right)^{2}=28.6<\phi\left(\frac{v_{c}}{b_{w} d}+8 \sqrt{f_{c}^{\prime}}\right) \quad=530 \quad \text { OK }
$$

$$
\begin{aligned}
& \text { Stirrup size = \#5 @ 24" oc } \\
& \mathrm{d}=0.63 \mathrm{in} \\
& \mathrm{~A}_{\mathrm{t}}=0.31 \mathrm{in}^{2} \\
& \mathrm{~A}_{\mathrm{oh}}=518 \mathrm{in}^{2} \\
& \mathrm{~A}_{\mathrm{o}}=0.85 \mathrm{~A}_{\mathrm{oh}}=440 \mathrm{in}^{2} \\
& \theta=45{ }^{\circ} \\
& A_{\text {oh }}=\text { shaded area } \\
& \text { Fig. RIL.5.3.6(b)-Definition of } \mathbf{A}_{\mathbf{o h}} \text {. } \\
& T_{n}=\frac{2 A_{o} A_{t} f_{y t}}{s} \cot \theta=682 \quad \text { kip-in } \\
& \phi T_{n}=511 \text { kip-in } \\
& \text { DCR }= \\
& \text { 0.15 OK }
\end{aligned}
$$

## SHEAR FRICTION PER ACI 318 § 22.9

$$
\mathrm{f}_{\mathrm{c}}=5000 \mathrm{psi} \quad \mathrm{f}_{\mathrm{y}}=60 \mathrm{ksi} \quad \lambda=1.00 \quad \phi=0.75
$$

## Location : Base of retaining wall

Surface : Concrete placed against hardened concrete with surface intentionally roughened

$$
\begin{align*}
& \mu=1.00 \\
& \mu \lambda=1.00 \\
& A_{c}=144 \mathrm{in}^{2} \\
& 0.2 \frac{V_{n} \operatorname{Max}(\S 22.9 .4 .4)}{f_{c}^{\prime} A_{c}=144.0 \mathrm{k}} \\
& 1600 \mathrm{Ac}=230.4 \mathrm{k} \\
& \text { No. of Bars }=1.2 \\
& \left(480+0.08 \mathrm{f}^{\prime} \mathrm{c}\right) \mathrm{Ac}=126.72 \mathrm{k} \\
& \text { Bar Angle, } \alpha=90 \mathrm{deg} \\
& A_{v}=0.528 \mathrm{in}^{2} \\
& V_{n}=A_{v} f_{y}(\mu \sin \alpha+\cos \alpha)=31.68 k  \tag{Eq22.9.4.2}\\
& \phi V_{n}=23.76 \mathrm{k} \\
& \mathrm{~V}_{\mathrm{u}}=3.77 \mathrm{k} \\
& D / C=0.16 \text { OK }
\end{align*}
$$

## Battered Pier



$$
\begin{array}{rrr}
\text { Batter }= & 4: 1 \\
\alpha= & 14.0
\end{array}
$$

V:H
Batter angle
DO NOT PRINT

Vert (k)	Horiz (k)	M (k-ft)	Axial	Shear		Moment	
12.4	21.2	95.3	17.2	17.5	95.3		


0.244979 rad
$24.53409 \quad 24.53409$

## RETAINING WALL PILES



Layer 3, 11 to $100 \mathrm{ft}=$ Stiff Clay with Free Water

## RETAINING WALL PILES







## RETAINING WALL PILES



```
 LPile for Windows, Version 2019-11.005
 Analysis of Individual Piles and Drilled Shafts
 Subjected to Lateral Loading Using the p-y Method
 © 1985-2019 by Ensoft, Inc.
 All Rights Reserved
```

This copy of LPile is being used by:
mattr
ZFA

Serial Number of Security Device: 500126485
This copy of LPile is licensed for exclusive use by:
ZFA Structural Engineering, Sant
Use of this program by any entity other than ZFA Structural Engineering, Sant is a violation of the software license agreement.

Files Used for Analysis

Path to file locations:
$\backslash \backslash Z f a . c o m \backslash s r \backslash P r o j e c t s \backslash 2010-2015 \backslash 2013 \backslash 13415$ Evaluation of First and $F$ Street bridge in Petaluma\Calculations

Name of input data file:
2020-10-22-LPile_AT RET WALL_20in-shed80-batter.lp11d

Name of output report file:
2020-10-22-LPile_AT RET WALL_20in-shed80-batter.lp11o

Name of plot output file:
2020-10-22-LPile_AT RET WALL_20in-shed80-batter.lp11p

Name of runtime message file:
2020-10-22-LPile_AT RET WALL_20in-shed80-batter.lp11r

# Project Name: 1st and F Bridge 

Job Number: 13415

Client:

Engineer: MJR

Description:

## Computational Options:

- Conventional Analysis

Engineering Units Used for Data Input and Computations:

- US Customary System Units (pounds, feet, inches)

Analysis Control Options:

- Maximum number of iterations allowed = 500
- Deflection tolerance for convergence $=1.0000 \mathrm{E}-05$ in
- Maximum allowable deflection $=\quad 50.0000$ in
- Number of pile increments $=100$

Loading Type and Number of Cycles of Loading:

- Static loading specified


## RETAINING WALL PILES

- Use of p-y modification factors for p-y curves not selected
- Analysis uses layering correction (Method of Georgiadis)
- No distributed lateral loads are entered
- Loading by lateral soil movements acting on pile not selected
- Input of shear resistance at the pile tip not selected
- Input of moment resistance at the pile tip not selected
- Input of side resistance moment along pile not selected
- Computation of pile-head foundation stiffness matrix not selected
- Push-over analysis of pile not selected
- Buckling analysis of pile not selected


## Output Options:

- Output files use decimal points to denote decimal symbols.
- Values of pile-head deflection, bending moment, shear force, and soil reaction are printed for full length of pile.
- Printing Increment (nodal spacing of output points) = 1
- No p-y curves to be computed and reported for user-specified depths
- Print using wide report formats

Pile Structural Properties and Geometry

Number of pile sections defined	$=$	1
Total length of pile	$=$	30.000 ft
Depth of ground surface below top of pile	$=$	0.0000 ft

Pile diameters used for $p-y$ curve computations are defined using 2 points.
p-y curves are computed using pile diameter values interpolated with depth over the length of the pile. A summary of values of pile diameter vs. depth follows.

	Depth Below	Pile	
Point	Pile Head	Diameter	
No.	feet	inches	
1	0.000	$19.8500 \leftarrow$	20" - corrosion
2	30.000	19.8500	

## Input Structural Properties for Pile Sections:

Pile Section No. 1:

Section 1 is a drilled shaft with permanent casing
Length of section $=30.000000 \mathrm{ft}$

## RETAINING WALL PILES

Casing outside diameter	$=$	19.850000 in
Shear capacity of section	$=$	0.0000 lbs


Ground Slope Angle	=	0.000 degrees
	=	0.000 radians
Pile Batter Angle	=	-14.000 degrees
		-0.244 radians

Soil and Rock Layering Information

The soil profile is modelled using 3 layers
Layer 1 is soft clay, p-y criteria by Matlock, 1970

Distance from top of pile to top of layer	$=$	0.0000 ft
Distance from top of pile to bottom of layer	$=$	8.000000 ft
Effective unit weight at top of layer	$=$	43.000000 pcf
Effective unit weight at bottom of layer	$=$	43.000000 pcf
Undrained cohesion at top of layer	$=300.000000 \mathrm{psf}$	
Undrained cohesion at bottom of layer	$=300.000000 \mathrm{psf}$	
Epsilon-50 at top of layer	$=$	0.0000
Epsilon-50 at bottom of layer	$=$	0.0000

NOTE: Default values for Epsilon-50 will be computed for this layer.

Layer 2 is liquefiable sand, by Rollins et al., 2004

Distance from top of pile to top of layer	$=$	8.000000 ft
Distance from top of pile to bottom of layer	$=$	11.000000 ft
Effective unit weight at top of layer	$=$	60.000000 pcf
Effective unit weight at bottom of layer	$=$	60.000000 pcf

Layer 3 is stiff clay with water-induced erosion
Distance from top of pile to top of layer $=11.000000 \mathrm{ft}$
Distance from top of pile to bottom of layer $=100.000000 \mathrm{ft}$ Effective unit weight at top of layer $=60.000000 \mathrm{pcf}$

## RETAINING WALL PILES

Effective unit weight at bottom of layer	$=$	60.000000 pcf
Undrained cohesion at top of layer	$=$	$1500 \cdot \mathrm{psf}$
Undrained cohesion at bottom of layer	$=$	$1500 . \mathrm{psf}$
Epsilon-50 at top of layer	$=$	0.0000
Epsilon-50 at bottom of layer	$=$	0.0000
Subgrade k at top of layer	$=$	0.0000 pci
Subgrade k at bottom of layer	$=$	0.0000 pci

NOTE: Default values for Epsilon-50 will be computed for this layer.

NOTE: Default values for subgrade $k$ will be computed for this layer.
(Depth of the lowest soil layer extends 70.000 ft below the pile tip)

Summary of Input Soil Properties					
Layer	Soil Type	Layer	Effective	Undrained	E50
Layer kpy	Name	Depth	Unit Wt.	Cohesion	or
Num. pci	(p-y Curve Type)	$f t$	$p \mathrm{f}$	psf	krm
1	Soft	0.00	43.0000	300.0000	default
	Clay	8.0000	43.0000	300.0000	default
2	Liquefied	8.0000	60.0000	--	--
	Sand	11.0000	60.0000	--	--
3	Stiff Clay	11.0000	60.0000	1500.	default
	with Free Water	100.0000	60.0000	1500.	default
default					

Static Loading Type

Static loading criteria were used when computing $p-y$ curves for all analyses.

## RETAINING WALL PILES

## Pile-head Loading and Pile-head Fixity Conditions

Number of loads specified $=2$


V = shear force applied normal to pile axis
M = bending moment applied to pile head
y $=$ lateral deflection normal to pile axis
$S=$ pile slope relative to original pile batter angle
R = rotational stiffness applied to pile head
Values of top $y$ vs. pile lengths can be computed only for load types with specified shear loading (Load Types 1, 2, and 3).
Thrust force is assumed to be acting axially for all pile batter angles.

Axial thrust force values were determined from pile-head loading conditions
Number of Pile Sections Analyzed = 1

Pile Section No. 1:

Dimensions and Properties of Drilled Shaft (Bored Pile) with Permanent Casing:

## Length of Section

Outer Diameter of Casing
Concrete Cover Thickness Inside Casing
Casing Wall Thickness
Moment of Inertia of Steel Casing
Yield Stress of Casing
Elastic Modulus of Casing
Number of Reinforcing Bars
$=30.000000 \mathrm{ft}$
$=19.850000 \mathrm{in}$
$=1.500000$ in
$=0.800000$ in
$=$ 2176. in^4
$=$ 35000. psi
$=$ 29000000. psi
$=6$ bars

## RETAINING WALL PILES

Area of Single Reinforcing Bar	=	0.440000	sq. in.
Edge-to-Edge Bar Spacing	=	6.500000	in
Maximum Concrete Aggregate Size	=	0.750000	in
Ratio of Bar Spacing to Aggregate Size	=	8.67	
Offset of Center of Rebar Cage from Center of Pile	=	0.0000	in
Yield Stress of Reinforcing Bars	=	60000. p	psi
Modulus of Elasticity of Reinforcing Bars	=	29000000.	psi
Gross Area of Pile	=	309.464548	sq. in.
Area of Concrete	=	258.946676	sq. in.
Cross-sectional Area of Steel Casing	=	47.877872	sq. in.
Area of All Steel (Casing and Bars)	=	50.517872	sq. in.
Area Ratio of All Steel to Gross Area of Pile	=	16.32	percent

Axial Structural Capacities:

Nom. Axial Structural Capacity $=0.85$ Fc Ac + Fy As	$=2494.440$ kips
Tensile Load for Cracking of Concrete	$=-263.625 \mathrm{kips}$
Nominal Axial Tensile Capacity	$=-1834.126 \mathrm{kips}$

Reinforcing Bar Dimensions and Positions Used in Computations:

Bar   Number	Bar Diam. inches	Bar Area sq. in.	$x$   inches	$\begin{gathered} \text { Y } \\ \text { inches } \end{gathered}$
1	0.750000	0.440000	7.250000	0.00000
2	0.750000	0.440000	3.625000	6.278684
3	0.750000	0.440000	-3.625000	6.278684
4	0.750000	0.440000	-7.250000	0.00000
5	0.750000	0.440000	-3.625000	-6.278684
6	0.750000	0.440000	3.625000	-6.278684

NOTE: The positions of the above rebars were computed by LPile

Minimum spacing between any two bars not equal to zero $=6.500$ inches between bars 5 and 6.

Ratio of bar spacing to maximum aggregate size = 8.67

Concrete Properties:

Compressive Strength of Concrete	$=$	3000. psi
Modulus of Elasticity of Concrete	$=$	3122019. psi
Modulus of Rupture of Concrete	$=-410.791918$ psi	
Compression Strain at Peak Stress	$=0.001634$	
Tensile Strain at Fracture of Concrete	$=-0.0001160$	

## RETAINING WALL PILES

Maximum Coarse Aggregate Size $=0.750000$ in

Number of Axial Thrust Force Values Determined from Pile-head Loadings = 2

Number	Axial Thrust Force
kips	
----	12.400
1	17.160

## Definitions of Run Messages and Notes:

$C=$ concrete in section has cracked in tension.
$Y=$ stress in reinforcing steel has reached yield stress.
T = ACI 318 criteria for tension-controlled section met, tensile strain in reinforcement exceeds 0.005 while simultaneously compressive strain in concrete more than 0.003. See ACI 318, Section 10.3.4.
$Z=$ depth of tensile zone in concrete section is less than 10 percent of section depth.

Bending Stiffness (EI) = Computed Bending Moment / Curvature.
Position of neutral axis is measured from edge of compression side of pile.
Compressive stresses and strains are positive in sign.
Tensile stresses and strains are negative in sign.

Axial Thrust Force $=\quad 12.400$ kips

| Bending | Bending <br> Max Conc | Bending <br> Max Steel <br> Max Casing | Run | Depth to | Max Comp |
| :--- | :---: | :---: | :---: | :---: | :---: | Max Tens


0.00000125	105.9918113	84793449.	14.0360054	0.00001755	-0.00000727
0.0636453	0.3900774	0.5052074			
0.00000250	211.8934002	84757360.	11.9827731	0.00002996	-0.00001967
0.1081271	0.6312954	0.8615554			
0.00000375	317.6788530	84714361.	11.2984192	0.00004237	-0.00003207
0.1522702	0.8725197	1.2179097			
0.00000500	423.3474056	84669481.	10.9562552	0.00005478	-0.00004447
0.1960740	1.1137458	1.5742658			
0.00000625	528.8989612	84623834.	10.7509622	0.00006719	-0.00005687
0.2395384	1.3549729	1.9306229			
0.00000750	634.3334960	84577799.	10.6141035	0.00007961	-0.00006927

RETAINING WALL PILES

0.2826633	1.5962007	2.2869807			
0.00000875	739.6510020	84531543.	10.5163495	0.00009202	-0.00008167
0.3254489	1.8374290	2.6433390			
0.00001000	844.8514754	84485148.	10.4430358	0.0001044	-0.00009407
0.3678949	2.0786579	2.9996979			
0.00001125	949.9349155	84438659.	10.3860156	0.0001168	-0.0001065
0.4100016	2.3198873	3.3560573			
0.00001250	949.9349155	75994793.	9.5016146	0.0001188	-0.0001294
0.4161526	-2.5640116	-3.7153116 C			
0.00001375	1016.	73906300.	9.4558859	0.0001300	-0.0001429
0.4539326	-2.8386470	-4.1050770 C			
0.00001500	1107.	73819833.	9.4179331	0.0001413	-0.0001565
0.4914421	-3.1132153	-4.4947753 C			
0.00001625	1198.	73744292.	9.3858716	0.0001525	-0.0001700
0.5286760	-3.3877589	-4.8844489 C			
0.00001750	1289.	73677455.	9.3585894	0.0001638	-0.0001836
0.5656431	-3.6622015	-5.2740215 C			
0.00001875	1380.	73617579.	9.3351308	0.0001750	-0.0001972
0.6023431	-3.9365429	-5.6634929 C			
0.00002000	1471.	73563356.	9.3147793	0.0001863	-0.0002107
0.6387757	-4.2107830	-6.0528630 C			
0.00002125	1562.	73513785.	9.2969868	0.0001976	-0.0002243
0.6749407	-4.4849215	-6.4421315 C			
0.00002250	1653.	73468088.	9.2813271	0.0002088	-0.0002378
0.7108379	-4.7589584	-6.8312984 C			
0.00002375	1744.	73425652.	9.2674637	0.0002201	-0.0002513
0.7464670	-5.0328934	-7.2203634 C			
0.00002500	1835.	73385986.	9.2551274	0.0002314	-0.0002649
0.7818277	-5.3067264	-7.6093264 C			
0.00002625	1925.	73348690.	9.2441002	0.0002427	-0.0002784
0.8169199	-5.5804571	-7.9981871 C			
0.00002750	2016.	73313441.	9.2342040	0.0002539	-0.0002919
0.8517432	-5.8540854	-8.3869454 C			
0.00002875	2107.	73279956.	9.2252560	0.0002652	-0.0003055
0.8862944	-6.1276406	-8.7756306 C			
0.00003000	2197.	73248016.	9.2171467	0.0002765	-0.0003190
0.9205739	-6.4011149	-9.1642349 C			
0.00003125	2288.	73217444.	9.2098005	0.0002878	-0.0003325
0.9545841	-6.6744855	-9.5527355 C			
0.00003250	2379.	73188080.	9.2031296	0.0002991	-0.0003460
0.9883246	-6.9477523	-9.9411323 C			
0.00003375	2469.	73159787.	9.1970590	0.0003104	-0.0003595
1.0217952	-7.2209151	-10.3294251 C			
0.00003500	2560.	73132451.	9.1915247	0.0003217	-0.0003730
1.0549956	-7.4939737	-10.7176137 C			
0.00003625	2650.	73105969.	9.1864713	0.0003330	-0.0003866
1.0879256	-7.7669280	-11.1056980 C			
0.00003750	2741.	73080256.	9.1818510	0.0003443	-0.0004001
1.1205850	-8.0397778	-11.4936778 C			
0.00003875	2831.	73055235.	9.1776219	0.0003556	-0.0004136

RETAINING WALL PILES

1.1529734	-8.3125228	-11.8815528 C			
0.00004000	2921.	73030840.	9.1737476	0.0003669	-0.0004271
1.1850906	-8.5851629	-12.2693229 C			
0.00004125	3012.	73007012.	9.1701959	0.0003783	-0.0004405
1.2169364	-8.8576979	-12.6569879 C			
0.00004250	3102.	72983701.	9.1669386	0.0003896	-0.0004540
1.2485106	-9.1301276	-13.0445476 C			
0.00004375	3192.	72960860.	9.1639506	0.0004009	-0.0004675
1.2798128	-9.4024518	-13.4320018 C			
0.00004500	3282.	72938449.	9.1612096	0.0004123	-0.0004810
1.3108428	-9.6746704	-13.8193504 C			
0.00004625	3372.	72916432.	9.1586956	0.0004236	-0.0004945
1.3416003	-9.9467830	-14.2065930 C			
0.00004750	3463.	72894776.	9.1563910	0.0004349	-0.0005079
1.3720851	-10.2187896	-14.5937296 C			
0.00004875	3553.	72873453.	9.1542797	0.0004463	-0.0005214
1.4022970	-10.4906900	-14.9807600 C			
0.00005125	3733.	72831703.	9.1505811	0.0004690	-0.0005483
1.4619008	-11.0341712	-15.7545012 C			
0.00005375	3913.	72791000.	9.1475007	0.0004917	-0.0005753
1.5204095	-11.5772251	-16.5278151 C			
0.00005625	4092.	72751197.	9.1449570	0.0005144	-0.0006022
1.5778212	-12.1198501	-17.3007001 C			
0.00005875	4272.	72712171.	9.1428825	0.0005371	-0.0006290
1.6341336	-12.6620446	-18.0731546 C			
0.00006125	4451.	72673818.	9.1412205	0.0005599	-0.0006559
1.6893447	-13.2038070	-18.8451770 C			
0.00006375	4631.	72636051.	9.1399235	0.0005827	-0.0006828
1.7434523	-13.7451359	-19.6167659 C			
0.00006625	4810.	72598797.	9.1389508	0.0006055	-0.0007096
1.7964543	-14.2860295	-20.3879195 C			
0.00006875	4989.	72561993.	9.1382681	0.0006283	-0.0007364
1.8483486	-14.8264862	-21.1586362 C			
0.00007125	5167.	72525583.	9.1378454	0.0006511	-0.0007632
1.8991329	-15.3665044	-21.9289144 C			
0.00007375	5346.	72489522.	9.1376572	0.0006739	-0.0007900
1.9488051	-15.9060826	-22.6987526 C			
0.00007625	5525.	72453769.	9.1376811	0.0006967	-0.0008168
1.9973630	-16.4452189	-23.4681489 C			
0.00007875	5703.	72418287.	9.1378977	0.0007196	-0.0008436
2.0448044	-16.9839118	-24.2371018 C			
0.00008125	5881.	72383045.	9.1382898	0.0007425	-0.0008703
2.0911271	-17.5221597	-25.0056097 C			
0.00008375	6059.	72348015.	9.1388425	0.0007654	-0.0008971
2.1363288	-18.0599608	-25.7736708 C			
0.00008625	6237.	72313174.	9.1395424	0.0007883	-0.0009238
2.1804074	-18.5973134	-26.5412834 C			
0.00008875	6415.	72278499.	9.1403778	0.0008112	-0.0009505
2.2233605	-19.1342158	-27.3084458 C			
0.00009125	6592.	72243971.	9.1413382	0.0008341	-0.0009772

RETAINING WALL PILES

2.2651859	-19.6706663	-28.0751563 C			
0.00009375	6770.	72209572.	9.1424143	0.0008571	-0.0010038
2.3058813	-20.2066633	-28.8414133 C			
0.00009625	6947.	72175287.	9.1435975	0.0008801	-0.0010305
2.3454444	-20.7422048	-29.6072148 C			
0.00009875	7124.	72141102.	9.1448805	0.0009031	-0.0010571
2.3838729	-21.2772893	-30.3725593 C			
0.0001013	7301.	72107004.	9.1462563	0.0009261	-0.0010838
2.4211645	-21.8119149	-31.1374449 C			
0.0001038	7478.	72072982.	9.1477190	0.0009491	-0.0011104
2.4573169	-22.3460799	-31.9018699 C			
0.0001063	7654.	72039024.	9.1492629	0.0009721	-0.0011370
2.4923277	-22.8797824	-32.6658324 C			
0.0001088	7831.	72005122.	9.1508831	0.0009952	-0.0011635
2.5261945	-23.4130207	-33.4293307 C			
0.0001113	8007.	71971267.	9.1525748	0.0010182	-0.0011901
2.5589150	-23.9457930	-34.1923630 C			
0.0001138	8183.	71937451.	9.1543341	0.0010413	-0.0012166
2.5904868	-24.4780974	-34.9549274 C			
0.0001163	8354.	71864748.	9.1540748	0.0010642	-0.0012434
2.6205914	-25.0169523	-35.0000000 CY			
0.0001188	8516.	71717361.	9.1497814	0.0010865	-0.0012707
2.6489436	-25.5697353	-35.0000000 CY			
0.0001213	8667.	71482645.	9.1406281	0.0011083	-0.0012985
2.6754574	-26.1402308	-35.0000000 CY			
0.0001238	8806.	71161827.	9.1265552	0.0011294	-0.0013270
2.7001708	-26.7297087	-35.0000000 CY			
0.0001263	8936.	70781604.	9.1089828	0.0011500	-0.0013561
2.7233346	-27.3340400	-35.0000000 CY			
0.0001288	9059.	70360908.	9.0889353	0.0011702	-0.0013855
2.7451322	-27.9501636	-35.0000000 CY			
0.0001313	9176.	69910177.	9.0669716	0.0011900	-0.0014153
2.7656747	-28.5764810	-35.0000000 CY			
0.0001338	9287.	69436724.	9.0434858	0.0012096	-0.0014454
2.7850462	-29.2118907	-35.0000000 CY			
0.0001363	9393.	68938761.	9.0192943	0.0012289	-0.0014757
2.8033812	-29.8534939	35.0000000 CY			
0.0001388	9493.	68419691.	8.9947712	0.0012480	-0.0015062
2.8207491	-30.4999400	35.0000000 CY			
0.0001413	9586.	67866625.	8.9718970	0.0012673	-0.0015365
2.8374085	-31.1431860	35.0000000 CY			
0.0001438	9674.	67295334.	8.9497955	0.0012865	-0.0015669
2.8532528	-31.7865287	35.0000000 CY			
0.0001463	9756.	66705649.	8.9287083	0.0013058	-0.0015972
2.8683141	-32.4287740	35.0000000 CY			
0.0001488	9830.	66085623.	8.9099975	0.0013254	-0.0016273
2.8827403	-33.0638261	35.0000000 CY			
0.0001588	10088.	63544392.	8.8454245	0.0014042	-0.0017470
2.9324617	-35.5838841	35.0000000 CY			
0.0001688	10295.	61010300.	8.7919166	0.0014836	-0.001866

RETAINING WALL PILES

2.9687700	-38.0872412	35.0000000 CY			
0.0001788	10469.	58566736.	8.7455254	0.0015633	-0.0019849
2.9912867	-40.5847446	35.0000000 CY			
0.0001888	10617.	56250835.	8.7045767	0.0016430	-0.0021037
2.9999027	-43.0793609	35.0000000 CY			
0.0001988	10746.	54068210.	8.6687533	0.0017229	-0.0022223
2.9999033	-45.5681879	35.0000000 CY			
0.0002088	10860.	52022456.	8.6365192	0.0018029	-0.0023408
2.9996693	-48.0560643	35.0000000 CY			
0.0002188	10960.	50104121.	8.6073676	0.0018829	-0.0024593
2.9987802	-50.5430812	35.0000000 CY			
0.0002288	11050.	48307812.	8.5817221	0.0019631	-0.0025776
2.9998630	-53.0237484	35.0000000 CY			
0.0002388	11132.	46626577.	8.5590168	0.0020435	-0.0026957
2.9985302	-55.4989321	35.0000000 CY			
0.0002488	11206.	45050834.	8.5386731	0.0021240	-0.0028137
2.9991173	-57.9702493	35.0000000 CY			
0.0002588	11274.	43571255.	8.5204581	0.0022047	-0.0029315
2.9995703	-60.0000000	35.0000000 CY			
0.0002688	11332.	42166266.	8.5019533	0.0022849	-0.0030498
2.9997301	-60.0000000	35.0000000 CY			
0.0002788	11377.	40814849.	8.4794015	0.0023636	-0.0031696
2.9996787	-60.0000000	35.0000000 CY			
0.0002888	11414.	39530350.	8.4553459	0.0024415	-0.0032902
2.9993964	-60.0000000	35.0000000 CY			
0.0002988	11448.	38318473.	8.4333922	0.0025195	-0.0034107
2.9987562	-60.0000000	35.0000000 CY			
0.0003088	11478.	37176927.	8.4120739	0.0025972	-0.0035315
2.9974566	-60.0000000	35.0000000 CY			
0.0003188	11507.	36099136.	8.3925620	0.0026751	-0.0036521
2.9999934	-60.0000000	35.0000000 CY			
0.0003288	11533.	35079877.	8.3738273	0.0027529	-0.0037728
2.9994228	-60.0000000	35.0000000 CY			
0.0003388	11556.	34114323.	8.3562932	0.0028307	-0.0038935
2.9975336	-60.0000000	35.0000000 CY			
0.0003488	11579.	33201044.	8.3398088	0.0029085	-0.0040142
2.9999629	-60.0000000	35.0000000 CY			
0.0003588	11599.	32331869.	8.3242790	0.0029863	-0.0041349
2.9985547	-60.0000000	35.0000000 CY			
0.0003688	11619.	31508147.	8.3094489	0.0030641	-0.0042556
2.9993329	-60.0000000	35.0000000 CY			
0.0003788	11636.	30723267.	8.2955119	0.0031419	-0.0043763
2.9987860	-60.0000000	35.0000000 CY			
0.0003888	11653.	29976685.	8.2826577	0.0032199	-0.0044968
2.9990853	-60.0000000	35.0000000 CY			
0.0003988	11669.	29264773.	8.2695803	0.0032975	-0.0046177
2.9983912	-60.0000000	35.0000000 CY			
0.0004088	11685.	28586000.	8.2583566	0.0033756	-0.0047381
2.9999935	-60.0000000	35.0000000 CY			
0.0004188	11698.	27935958.	8.2469888	0.0034534	-0.0048588

RETAINING WALL PILES

2.9971472	60.0000000	35.0000000 CY			
0.0004288	11711.	27315223.	8.2367313	0.0035315	-0.0049792
2.9996765	60.0000000	35.0000000 CY			
0.0004388	11723.	26719568.	8.2272295	0.0036097	-0.0050995
2.9965579	60.0000000	35.0000000 CY			
0.0004488	11733.	26146303.	8.2197107	0.0036886	-0.0052191
2.9983535	60.0000000	35.0000000 CY			
0.0004588	11742.	25596676.	8.2134229	0.0037679	-0.0053383
2.9999647	60.0000000	35.0000000 CY			
0.0004688	11750.	25067007.	8.2082107	0.0038476	-0.0054571
2.9951609	60.0000000	35.0000000 CY			

Axial Thrust Force $=17.160$ kips

Bending	Bending	Bending		Depth to	Max Comp	Max Tens
Max Conc	Max Steel	Max Casing	Run			
Curvature	Moment	Stiffness		$N$ Axis	Strain	Strain
Stress rad/in. ksi	Stress in-kip ksi	Stress   kip-in2   ksi	Msg	in	in/in	in/in


0.00000125	105.9685537	84774843.	15.6148456	0.00001952	-0.00000529
0.0708124	0.4473103	0.5624403			
0.00000250	211.8672200	84746888.	12.7729220	0.00003193	-0.00001769
0.1152462	0.6885812	0.9188412			
0.00000375	317.6520559	84707215.	11.8257568	0.00004435	-0.00003009
0.1593424	0.9298676	1.2752576			
0.00000500	423.3203496	84664070.	11.3522047	0.00005676	-0.00004249
0.2030995	1.1711584	1.6316784			
0.00000625	528.8717504	84619480.	11.0680851	0.00006918	-0.00005489
0.2465172	1.4124514	1.9881014			
0.00000750	634.3061719	84574156.	10.8786783	0.00008159	-0.00006728
0.2895954	1.6537457	2.3445257			
0.00000875	739.6235843	84528410.	10.7433917	0.00009400	-0.00007968
0.3323341	1.8950410	2.7009510			
0.00001000	844.8239736	84482397.	10.6419296	0.0001064	-0.00009208
0.3747332	2.1363371	3.0573771			
0.00001125	949.9073360	84436208.	10.5630171	0.0001188	-0.0001045
0.4167928	2.3776340	3.4138040			
0.00001250	949.9073360	75992587.	9.7012786	0.0001213	-0.0001269
0.4246531	-2.4916334	-3.6429334 C			
0.00001375	1021.	74226271.	9.6378811	0.0001325	-0.0001404
0.4623930	-2.7660764	-4.0325064 C			
0.00001500	1112.	74112401.	9.5849982	0.0001438	-0.0001540
0.4998518	-3.0405420	-4.4221020 C			
0.00001625	1203.	74013728.	9.5404039	0.0001550	-0.0001675
0.5370403	-3.3149355	-4.8116255 C			
0.00001750	1294.	73927059.	9.5023784	0.0001663	-0.0001811

RETAINING WALL PILES

0.5739615	-3.5892286	-5.2010486 C			
0.00001875	1385.	73849991.	9.4696080	0.0001776	-0.0001946
0.6106154	-3.8634209	-5.5903709 C			
0.00002000	1476.	73780721.	9.4411079	0.0001888	-0.0002082
0.6470015	-4.1375123	-5.9795923 C			
0.00002125	1567.	73717800.	9.4160356	0.0002001	-0.0002217
0.6831136	-4.4115577	-6.3687677 C			
0.00002250	1657.	73660175.	9.3938275	0.0002114	-0.0002353
0.7189521	-4.6855519	-6.7578919 C			
0.00002375	1748.	73607065.	9.3741052	0.0002226	-0.0002488
0.7545224	-4.9594441	-7.1469141 C			
0.00002500	1839.	73557791.	9.3564959	0.0002339	-0.0002623
0.7898243	-5.2332341	-7.5358341 C			
0.00002625	1930.	73511803.	9.3406982	0.0002452	-0.0002759
0.8248576	-5.5069219	-7.9246519 C			
0.00002750	2020.	73468649.	9.3264651	0.0002565	-0.0002894
0.8596219	-5.7805072	-8.3133672 C			
0.00002875	2111.	73427960.	9.3135928	0.0002678	-0.0003029
0.8941171	-6.0539898	-8.7019798 C			
0.00003000	2202.	73389425.	9.3019115	0.0002791	-0.0003164
0.9283428	-6.3273695	-9.0904895 C			
0.00003125	2292.	73352783.	9.2912783	0.0002904	-0.0003300
0.9622989	-6.6006462	-9.4788962 C			
0.00003250	2383.	73317814.	9.2815726	0.0003017	-0.0003435
0.9959851	-6.8738197	-9.8671997 C			
0.00003375	2473.	73284331.	9.2726915	0.0003130	-0.0003570
1.0294012	-7.1468897	-10.2553997 C			
0.00003500	2564.	73252173.	9.2645468	0.0003243	-0.0003705
1.0625468	-7.4198562	-10.6434962 C			
0.00003625	2654.	73221201.	9.2570625	0.0003356	-0.0003840
1.0954218	-7.6927190	-11.0314890 C			
0.00003750	2745.	73191295.	9.2501728	0.0003469	-0.0003975
1.1280259	-7.9654777	-11.4193777 C			
0.00003875	2835.	73162351.	9.2438202	0.0003582	-0.0004110
1.1603588	-8.2381324	-11.8071624 C			
0.00004000	2925.	73134277.	9.2379546	0.0003695	-0.0004245
1.1924203	-8.5106827	-12.1948427 C			
0.00004125	3016.	73106991.	9.2325318	0.0003808	-0.0004380
1.2242102	-8.7831285	-12.5824185 C			
0.00004250	3106.	73080419.	9.2274934	0.0003922	-0.0004515
1.2557258	-9.0554936	-12.9699136 C			
0.00004375	3196.	73054497.	9.2228106	0.0004035	-0.0004649
1.2869675	-9.3277731	-13.3573231 C			
0.00004500	3286.	73029176.	9.2184691	0.0004148	-0.0004784
1.3179368	-9.5999466	-13.7446266 C			
0.00004625	3376.	73004406.	9.2144412	0.0004262	-0.0004919
1.3486337	-9.8720142	-14.1318242 C			
0.00004750	3467.	72980142.	9.2107024	0.0004375	-0.0005054
1.3790577	-10.1439756	-14.5189156 C			
0.00004875	3557.	72956344.	9.2072305	0.0004489	-0.0005188

RETAINING WALL PILES

1.4092086	-10.4158307	-14.9059007 C			
0.00005125	3737.	72910003.	9.2010101	0.0004716	-0.0005458
1.4686903	-10.9592211	-15.6795511 C			
0.00005375	3917.	72865135.	9.1956427	0.0004943	-0.0005727
1.5270766	-11.5021837	-16.4527737 C			
0.00005625	4096.	72821536.	9.1910155	0.0005170	-0.0005996
1.5843655	-12.0447171	-17.2255671 C			
0.00005875	4276.	72779034.	9.1870350	0.0005397	-0.0006264
1.6405547	-12.5868196	-17.9979296 C			
0.00006125	4455.	72737487.	9.1836229	0.0005625	-0.0006533
1.6956423	-13.1284897	-18.7698597 C			
0.00006375	4634.	72696776.	9.1807132	0.0005853	-0.0006802
1.7496260	-13.6697258	-19.5413558 C			
0.00006625	4814.	72656799.	9.1782498	0.0006081	-0.0007070
1.8025037	-14.2105262	-20.3124162 C			
0.00006875	4992.	72617467.	9.1761849	0.0006309	-0.0007338
1.8542732	-14.7508894	-21.0830394			
0.00007125	5171.	72578706.	9.1744773	0.0006537	-0.0007606
1.9049324	-15.2908137	-21.8532237 C			
0.00007375	5350.	72540452.	9.1730915	0.0006765	-0.0007874
1.9544792	-15.8302975	-22.6229675 C			
0.00007625	5528.	72502647.	9.1719964	0.0006994	-0.0008142
2.0029112	-16.3693391	-23.3922691 C			
0.00007875	5707.	72465242.	9.1711653	0.0007222	-0.0008410
2.0502264	-16.9079369	-24.1611269 C			
0.00008125	5885.	72428195.	9.1705743	0.0007451	-0.0008677
2.0964224	-17.4460892	-24.9295392 C			
0.00008375	6063.	72391467.	9.1702028	0.0007680	-0.0008944
2.1414971	-17.9837943	-25.6975043 C			
0.00008625	6241.	72355024.	9.1700323	0.0007909	-0.0009211
2.1854482	-18.5210505	-26.4650205 C			
0.00008875	6418.	72318836.	9.1700464	0.0008138	-0.0009478
2.2282734	-19.0578562	-27.2320862 C			
0.00009125	6596.	72282877.	9.1702307	0.0008368	-0.0009745
2.2699706	-19.5942095	-27.9986995 C			
0.00009375	6773.	72247122.	9.1705721	0.0008597	-0.0010012
2.3105373	-20.1301089	-28.7648589 C			
0.00009625	6950.	72211551.	9.1710592	0.0008827	-0.0010278
2.3499713	-20.6655524	-29.5305624 C			
0.00009875	7127.	72176143.	9.1716813	0.0009057	-0.0010545
2.3882703	-21.2005384	-30.2958084 C			
0.0001013	7304.	72140881.	9.1724291	0.0009287	-0.0010811
2.4254320	-21.7350651	-31.0605951 C			
0.0001038	7481.	72105750.	9.1732941	0.0009517	-0.0011077
2.4614541	-22.2691308	-31.8249208 C			
0.0001063	7658.	72070736.	9.1742686	0.0009748	-0.0011343
2.4963341	-22.8027336	-32.5887836 C			
0.0001088	7834.	72035824.	9.1753457	0.0009978	-0.0011609
2.5300697	-23.3358717	-33.3521817 C			
0.0001113	8010.	72001003.	9.1765189	0.0010209	-0.0011874

RETAINING WALL PILES

2.5626586	-23.8685433	-34.1151133 C			
0.0001138	8186.	71966263.	9.1777826	0.0010440	-0.0012140
2.5940984	-24.4007466	-34.8775766 C			
0.0001163	8358.	71901054.	9.1775004	0.0010669	-0.0012407
2.6241401	-24.9379786	-35.0000000 CY			
0.0001188	8522.	71763400.	9.1733366	0.0010893	-0.0012679
2.6524493	-25.4886169	-35.0000000 CY			
0.0001213	8674.	71537825.	9.1643094	0.0011112	-0.0012956
2.6789170	-26.0569614	-35.0000000 CY			
0.0001238	8814.	71223967.	9.1502625	0.0011323	-0.0013241
2.7035677	-26.6446291	-35.0000000 CY			
0.0001263	8945.	70848720.	9.1326221	0.0011530	-0.0013531
2.7266535	-27.2474904	-35.0000000 CY			
0.0001288	9068.	70432047.	9.1124698	0.0011732	-0.0013825
2.7483657	-27.8622910	-35.0000000 CY			
0.0001313	9185.	69984697.	9.0903809	0.0011931	-0.0014122
2.7688181	-28.4873797	-35.0000000 CY			
0.0001338	9298.	69514150.	9.0667575	0.0012127	-0.0014423
2.7880955	-29.1216255	-35.0000000 CY			
0.0001363	9403.	69016261.	9.0427669	0.0012321	-0.0014725
2.8063769	-29.7607481	35.0000000 CY			
0.0001388	9504.	68495155.	9.0186219	0.0012513	-0.0015029
2.8237079	-30.4039709	35.0000000 CY			
0.0001413	9597.	67943959.	8.9956295	0.0012706	-0.0015332
2.8402621	-31.0459757	35.0000000 CY			
0.0001438	9684.	67368381.	8.9739872	0.0012900	-0.0015634
2.8560641	-31.6856796	35.0000000 CY			
0.0001463	9766.	66775783.	8.9526953	0.0013093	-0.0015937
2.8709998	-32.3270390	35.0000000 CY			
0.0001488	9840.	66152153.	8.9344415	0.0013290	-0.0016237
2.8853658	-32.9583810	35.0000000 CY			
0.0001588	10097.	63604829.	8.8703293	0.0014082	-0.0017430
2.9346229	-35.4692281	35.0000000 CY			
0.0001688	10305.	61067454.	8.8174370	0.0014879	-0.0018617
2.9703630	-37.9623509	35.0000000 CY			
0.0001788	10478.	58619016.	8.7711296	0.0015678	-0.0019803
2.9921691	-40.4520183	35.0000000 CY			
0.0001888	10626.	56299126.	8.7303192	0.0016478	-0.0020988
2.9999778	-42.9384534	35.0000000 CY			
0.0001988	10755.	54115082.	8.6943150	0.0017280	-0.0022172
2.9999802	-45.4208568	35.0000000 CY			
0.0002088	10869.	52066138.	8.6617212	0.0018081	-0.0023356
2.9998411	-47.9034980	35.0000000 CY			
0.0002188	10969.	50145274.	8.6333230	0.0018885	-0.0024536
2.9991645	-50.3784271	35.0000000 CY			
0.0002288	11059.	48346461.	8.6074453	0.0019690	-0.0025717
2.9999701	-52.8531066	35.0000000 CY			
0.0002388	11141.	46662908.	8.5845816	0.0020496	-0.0026896
2.9986841	-55.3219274	35.0000000 CY			
0.0002488	11215.	45085537.	8.5642371	0.0021304	-0.0028073

RETAINING WALL PILES

2.9994725	-57.7858370	35.0000000 CY			
0.0002588	11283.	43605617.	8.5459017	0.0022113	-0.0029249
2.9998109	-60.0000000	35.0000000 CY			
0.0002688	11341.	42200621.	8.5274004	0.0022917	-0.0030429
2.9999158	-60.0000000	35.0000000 CY			
0.0002788	11387.	40850332.	8.5053511	0.0023709	-0.0031623
2.9998948	-60.0000000	35.0000000 CY			
0.0002888	11424.	39564534.	8.4814384	0.0024490	-0.0032827
2.9997251	-60.0000000	35.0000000 CY			
0.0002988	11458.	38352338.	8.4592354	0.0025272	-0.0034030
2.9992666	-60.0000000	35.0000000 CY			
0.0003088	11488.	37209690.	8.4386002	0.0026054	-0.0035233
2.9982571	-60.0000000	35.0000000 CY			
0.0003188	11517.	36131682.	8.4189090	0.0026835	-0.0036437
2.9987573	-60.0000000	35.0000000 CY			
0.0003288	11543.	35110289.	8.4000359	0.0027615	-0.0037642
2.9997783	-60.0000000	35.0000000 CY			
0.0003388	11566.	34144588.	8.3823379	0.0028395	-0.0038847
2.9983752	-60.0000000	35.0000000 CY			
0.0003488	11589.	33229775.	8.3659642	0.0029176	-0.0040051
2.9992991	-60.0000000	35.0000000 CY			
0.0003588	11609.	32360164.	8.3501372	0.0029956	-0.0041256
2.9992058	-60.0000000	35.0000000 CY			
0.0003688	11629.	31536347.	8.3352475	0.0030736	-0.0042461
2.9973568	-60.0000000	35.0000000 CY			
0.0003788	11647.	30749838.	8.3212981	0.0031517	-0.0043665
2.9994004	-60.0000000	35.0000000 CY			
0.0003888	11664.	30003222.	8.3084339	0.0032299	-0.0044868
2.9970039	-60.0000000	35.0000000 CY			
0.0003988	11680.	29290295.	8.2950082	0.0033076	-0.0046076
2.9991381	-60.0000000	35.0000000 CY			
0.0004088	11694.	28610389.	8.2837858	0.0033860	-0.0047277
2.9983391	-60.0000000	35.0000000 CY			
0.0004188	11708.	27960052.	8.2724812	0.0034641	-0.0048481
2.9982282	60.0000000	35.0000000 CY			
0.0004288	11721.	27338641.	8.2617747	0.0035422	-0.0049685
2.9999564	60.0000000	35.0000000 CY			
0.0004388	11733.	26741604.	8.2537651	0.0036213	-0.0050878
2.9961027	60.0000000	35.0000000 CY			
0.0004488	11743.	26167767.	8.2460257	0.0037004	-0.0052073
2.9992128	60.0000000	35.0000000 CY			
0.0004588	11752.	25616593.	8.2400798	0.0037801	-0.0053261
2.9986241	60.0000000	35.0000000 CY			
0.0004688	11760.	25086995.	8.2352605	0.0038603	-0.0054444
2.9968506	60.0000000	35.0000000 CY			

## RETAINING WALL PILES

Moment values interpolated at maximum compressive strain $=0.003$ or maximum developed moment if pile fails at smaller strains.

Load No.	Axial Thrust kips	Nominal Mom. Cap. in-kip	Max. Comp. Strain
1	12.400	11602.497	0.00300000
2	17.160	11610.324	0.00300000

Note that the values of moment capacity in the table above are not factored by a strength reduction factor (phi-factor).

In ACI 318, the value of the strength reduction factor depends on whether the transverse reinforcing steel bars are tied hoops (0.65) or spirals (0.75).

The above values should be multiplied by the appropriate strength reduction factor to compute ultimate moment capacity according to ACI 318, or the value required by the design standard being followed.

The following table presents factored moment capacities and corresponding bending stiffnesses computed for common resistance factor values used for reinforced concrete sections.


## RETAINING WALL PILES

Layering Correction Equivalent Depths of Soil \& Rock Layers


Notes: The F0 integral of Layer $n+1$ equals the sum of the F0 and $F 1$ integrals for Layer $n$. Layering correction equivalent depths are computed only for soil types with both shallow-depth and deep-depth expressions for peak lateral load transfer. These soil types are soft and stiff clays, non-liquefied sands, and cemented c-phi soil.

## Lateral Loading Analysis for Load Case Number 1

Analysis was not performed.

Computed Values of Pile Loading and Deflection for Lateral Loading for Load Case Number 2

## Pile-head conditions are Shear and Moment (Loading Type 1)

Shear force at pile head
Applied moment at pile head Axial thrust load on pile head

Depth Deflect. Bending Res. Soil Spr. Distrib.
$X$ y Moment Force $S$ Stress Stiffness p

Es*h Lat. Load
feet inches in-lbs lbs radians psi* lb-in^2
lb/inch lb/inch lb/inch
--------------------------------------------
$0.00 \quad 0.8875$ 1143072. 17570. $-0.00728 \quad 0.00 \quad 7.41 \mathrm{E}+10$

RETAINING WALL PILES

-47.8354	97.0181	0.00				
0.3000	0.8614	1206464.	17395.	-0.00722	0.00	$7.41 \mathrm{E}+10$
-49.4095	206.4947	0.00				
0.6000	0.8355	1269211.	17215.	-0.00716	0.00	7.39E+10
-50.9365	219.4732	0.00				
0.9000	0.8098	1331295.	17029.	-0.00710	0.00	7.39E+10
-52.4154	233.0045	0.00				
1.2000	0.7844	1392695.	16837.	-0.00703	0.00	$7.38 \mathrm{E}+10$
-53.8456	247.1243	0.00				
1.5000	0.7592	1453393.	16641.	-0.00696	0.00	$7.38 \mathrm{E}+10$
-55.2263	261.8710	0.00				
1.8000	0.7343	1513372.	16440.	-0.00689	0.00	$7.38 \mathrm{E}+10$
-56.5565	277.2864	0.00				
2.1000	0.7096	1572612.	16234.	-0.00681	0.00	7.37E+10
-57.8355	293.4155	0.00				
2.4000	0.6852	1631099.	16024.	-0.00674	0.00	7.37E+10
-59.0623	310.3075	0.00				
2.7000	0.6611	1688814.	15809.	-0.00666	0.00	7.36E+10
-60.2362	328.0156	0.00				
3.0000	0.6373	1745745.	15590.	-0.00657	0.00	7.36E+10
-61.3563	346.5980	0.00				
3.3000	0.6138	1801874.	15367.	-0.00648	0.00	7.36E+10
-62.4216	366.1180	0.00				
3.6000	0.5906	1857190.	15141.	-0.00639	0.00	7.35E+10
-63.4312	386.6449	0.00				
3.9000	0.5677	1911677.	14911.	-0.00630	0.00	7.35E+10
-64.3841	408.2547	0.00				
4.2000	0.5452	1965325.	14677.	-0.00621	0.00	7.35E+10
-65.2795	431.0303	0.00				
4.5000	0.5230	2018120.	14441.	-0.00611	0.00	7.35E+10
-66.1162	455.0634	0.00				
4.8000	0.5012	2070053.	14201.	-0.00601	0.00	7.34E+10
-66.8934	480.4545	0.00				
5.1000	0.4798	2121112.	13959.	-0.00591	0.00	7.34E+10
-67.6099	507.3148	0.00				
5.4000	0.4587	2171289.	13715.	-0.00580	0.00	$7.34 \mathrm{E}+10$
-68.2647	535.7671	0.00				
5.7000	0.4380	2220574.	13468.	-0.00569	0.00	7.34E+10
-68.8566	565.9478	0.00				
6.0000	0.4177	2268960.	13219.	-0.00558	0.00	7.34E+10
-69.3845	598.0082	0.00				
6.3000	0.3978	2316441.	12968.	-0.00547	0.00	7.33E+10
-69.8474	632.1168	0.00				
6.6000	0.3783	2363008.	12716.	-0.00536	0.00	7.33E+10
-70.2438	668.4620	0.00				
6.9000	0.3592	2408659.	12463.	-0.00524	0.00	7.33E+10
-70.5726	707.2546	0.00				
7.2000	0.3406	2453387.	12208.	-0.00512	0.00	$7.33 \mathrm{E}+10$
-70.8325	748.7315	0.00				
7.5000	0.3224	2497190.	11953.	-0.00500	0.00	7.33E+10

RETAINING WALL PILES

-71.0221	793.1594	0.00				
7.8000	0.3046	2540065.	11697.	-0.00487	0.00	7.33E+10
-71.1401	840.8397	0.00				
8.1000	0.2873	2582010.	11441.	-0.00475	0.00	$7.32 \mathrm{E}+10$
-71.1849	892.1141	0.00				
8.4000	0.2704	2623025.	11311.	-0.00462	0.00	7.32E+10
-0.6895	9.1797	0.00				
8.7000	0.2540	2664023.	11309.	-0.00449	0.00	7.32E+10
-0.6905	9.7872	0.00				
9.0000	0.2381	2705004.	11306.	-0.00436	0.00	7.32E+10
-0.6887	10.4157	0.00				
9.3000	0.2226	2745968.	11304.	-0.00423	0.00	7.32E+10
-0.6841	11.0639	0.00				
9.6000	0.2076	2786915.	11301.	-0.00409	0.00	7.32E+10
-0.6766	11.7305	0.00				
9.9000	0.1932	2827844.	11299.	-0.00395	0.00	7.32E+10
-0.6661	12.4138	0.00				
10.2000	0.1792	2868756.	11297.	-0.00381	0.00	7.32E+10
-0.6526	13.1118	0.00				
10.5000	0.1657	2909651.	11294.	-0.00367	0.00	7.31E+10
-0.6363	13.8222	0.00				
10.8000	0.1528	2950529.	11292.	-0.00352	0.00	7.31E+10
-0.6171	14.5424	0.00				
11.1000	0.1403	2991390.	11290.	-0.00338	0.00	$7.31 \mathrm{E}+10$
-0.5953	15.2695	0.00				
11.4000	0.1284	3032234.	9425.	-0.00323	0.00	7.31E+10
-1035.	29020.	0.00				
11.7000	0.1171	3059650.	5755.	-0.00308	0.00	7.31E+10
-1004.	30857.	0.00				
12.0000	0.1063	3074049.	2203.	-0.00293	0.00	7.31E+10
-969.7100	32849.	0.00				
12.3000	0.09600	3075871.	-1223.	-0.00278	0.00	7.31E+10
-933.4835	35004.	0.00				
12.6000	0.08628	3065587.	-4513.	-0.00263	0.00	7.31E+10
-894.2661	37314.	0.00				
12.9000	0.07710	3043703.	-7647.	-0.00248	0.00	7.31E+10
-847.1253	39556.	0.00				
13.2000	0.06845	3010831.	-10609.	-0.00233	0.00	7.31E+10
-798.2363	41979.	0.00				
13.5000	0.06035	2967605.	-13395.	-0.00218	0.00	7.31E+10
-749.4724	44711.	0.00				
13.8000	0.05276	2914657.	-16005.	-0.00203	0.00	7.31E+10
-700.8084	47816.	0.00				
14.1000	0.04570	2852617.	-18441.	-0.00189	0.00	7.32E+10
-652.1987	51380.	0.00				
14.4000	0.03914	2782116.	-20701.	-0.00175	0.00	7.32E+10
-603.5707	55519.	0.00				
14.7000	0.03307	2703784.	-22786.	-0.00162	0.00	7.32E+10
-554.8135	60399.	0.00				
15.0000	0.02748	2618254.	-24695.	-0.00149	0.00	$7.32 \mathrm{E}+10$

RETAINING WALL PILES

-505.7607	66257.	0.00				
15.3000	0.02235	2526162.	-26427.	-0.00136	0.00	7.33E+10
-456.1607	73463.	0.00				
15.6000	0.01767	2428149.	-27978.	-0.00124	0.00	7.33E+10
-405.6235	82617.	0.00				
15.9000	0.01343	2324873.	-29345.	-0.00112	0.00	7.33E+10
-353.5171	94797.	0.00				
16.2000	0.00959	2217008.	-30519.	-0.00101	0.00	$7.34 \mathrm{E}+10$
-298.7342	112185.	0.00				
16.5000	0.00614	2105264.	-31487.	-9.06E-04	0.00	$7.34 \mathrm{E}+10$
-239.0697	140194.	0.00				
16.8000	0.00306	1990416.	-32221.	-8.06E-04	0.00	7.35E+10
-168.8934	198488.	0.00				
17.1000	3.39E-04	1873373.	-32586.	-7.11E-04	0.00	7.35E+10
-33.7009	358388.	0.00				
17.4000	-0.00206	1755887.	-32397.	-6.22E-04	0.00	7.36E+10
138.2960	242148.	0.00				
17.7000	-0.00414	1640189.	-31795.	-5.39E-04	0.00	7.37E+10
196.3081	170644.	0.00				
18.0000	-0.00594	1527030.	-31019.	-4.62E-04	0.00	7.37E+10
235.0794	142514.	0.00				
18.3000	-0.00747	1416912.	-30121.	-3.90E-04	0.00	$7.38 \mathrm{E}+10$
263.6092	127096.	0.00				
18.6000	-0.00875	1310207.	-29133.	-3.24E-04	0.00	7.39E+10
285.3105	117432.	0.00				
18.9000	-0.00980	1207196.	-28076.	-2.62E-04	0.00	$7.40 \mathrm{E}+10$
301.9536	110961.	0.00				
19.2000	-0.01064	1108094.	-26966.	-2.06E-04	0.00	$7.41 \mathrm{E}+10$
314.6145	106497.	0.00				
19.5000	-0.01128	1013066.	-25816.	-1.55E-04	0.00	$7.44 \mathrm{E}+10$
324.0139	103409.	0.00				
19.8000	-0.01175	922235.	-24638.	-1.10E-04	0.00	$8.44 \mathrm{E}+10$
330.6738	101327.	0.00				
20.1000	-0.01208	835686.	-23439.	-7.30E-05	0.00	$8.45 \mathrm{E}+10$
335.2431	99946.	0.00				
20.4000	-0.01227	753480 .	-22228.	-3.91E-05	0.00	$8.45 \mathrm{E}+10$
337.9904	99135.	0.00				
20.7000	-0.01236	675653.	-21009.	-8.71E-06	0.00	$8.46 \mathrm{E}+10$
339.1338	98801.	0.00				
21.0000	-0.01234	602219.	-19788.	$1.85 \mathrm{E}-05$	0.00	$8.46 \mathrm{E}+10$
338.8539	98883.	0.00				
21.3000	-0.01222	533175.	-18571.	4.26E-05	0.00	$8.46 \mathrm{E}+10$
337.3031	99338.	0.00				
21.6000	-0.01203	468501.	-17362.	$6.40 \mathrm{E}-05$	0.00	$8.46 \mathrm{E}+10$
334.6113	100137.	0.00				
21.9000	-0.01176	408162.	-16164.	8.26E-05	0.00	$8.47 \mathrm{E}+10$
330.8902	101264.	0.00				
22.2000	-0.01143	352110.	-14981.	$9.88 \mathrm{E}-05$	0.00	$8.47 \mathrm{E}+10$
326.2367	102709.	0.00				
22.5000	-0.01105	300286.	-13817.	$1.13 \mathrm{E}-04$	0.00	$8.47 \mathrm{E}+10$

RETAINING WALL PILES

320.7350	104471.	0.00				
22.8000	-0.01062	252618.	-12673.	$1.24 \mathrm{E}-04$	0.00	8.47E+10
314.4580	106556.	0.00				
23.1000	-0.01016	209024.	-11554.	$1.34 \mathrm{E}-04$	0.00	$8.47 \mathrm{E}+10$
307.4688	108979.	0.00				
23.4000	-0.00966	169414.	-10461.	$1.42 \mathrm{E}-04$	0.00	$8.48 \mathrm{E}+10$
299.8212	111759.	0.00				
23.7000	-0.00913	133690.	-9396.	$1.49 \mathrm{E}-04$	0.00	$8.48 \mathrm{E}+10$
291.5602	114926.	0.00				
24.0000	-0.00859	101744.	-8362.	$1.54 \mathrm{E}-04$	0.00	$8.48 \mathrm{E}+10$
282.7218	118519.	0.00				
24.3000	-0.00803	73462.	-7361.	1.57E-04	0.00	$8.48 \mathrm{E}+10$
273.3334	122591.	0.00				
24.6000	-0.00745	48722.	-6395.	1.60E-04	0.00	$8.48 \mathrm{E}+10$
263.4124	127209.	0.00				
24.9000	-0.00687	27396.	-5466.	$1.62 \mathrm{E}-04$	0.00	$8.48 \mathrm{E}+10$
252.9658	132463.	0.00				
25.2000	-0.00629	9348.	-4575.	1.62E-04	0.00	$8.48 \mathrm{E}+10$
241.9883	138473.	0.00				
25.5000	-0.00571	-5564.	-3725.	1.62E-04	0.00	$8.48 \mathrm{E}+10$
230.4597	145401.	0.00				
25.8000	-0.00512	-17489.	-2917.	1.62E-04	0.00	$8.48 \mathrm{E}+10$
218.3412	153472.	0.00				
26.1000	-0.00454	-26584.	-2154.	$1.61 \mathrm{E}-04$	0.00	$8.48 \mathrm{E}+10$
205.5699	163009.	0.00				
26.4000	-0.00396	-33015.	-1438.	1.60E-04	0.00	$8.48 \mathrm{E}+10$
192.0493	174487.	0.00				
26.7000	-0.00339	-36957.	-772.5099	1.58E-04	0.00	$8.48 \mathrm{E}+10$
177.6340	188651.	0.00				
27.0000	-0.00282	-38597.	-160.9838	1.57E-04	0.00	$8.48 \mathrm{E}+10$
162.1028	206731.	0.00				
27.3000	-0.00226	-38135.	391.9917	1.55E-04	0.00	$8.48 \mathrm{E}+10$
145.1058	230955.	0.00				
27.6000	-0.00171	-35793.	880.0704	1.53E-04	0.00	$8.48 \mathrm{E}+10$
126.0490	265889.	0.00				
27.9000	-0.00116	-31818.	1294.	1.52E-04	0.00	$8.48 \mathrm{E}+10$
103.7880	322957.	0.00				
28.2000	-6.12E-04	-26497.	1617.	1.51E-04	0.00	$8.48 \mathrm{E}+10$
75.5036	444089.	0.00				
28.5000	-7.13E-05	-20198.	1774.	1.50E-04	0.00	$8.48 \mathrm{E}+10$
11.8245	597314.	0.00				
28.8000	4.66E-04	-13745.	1676.	$1.49 \mathrm{E}-04$	0.00	$8.48 \mathrm{E}+10$
-65.8586	508289.	0.00				
29.1000	0.00100	-8146.	1384.	$1.49 \mathrm{E}-04$	0.00	$8.48 \mathrm{E}+10$
-96.5531	346875.	0.00				
29.4000	0.00154	-3798.	995.0758	$1.48 \mathrm{E}-04$	0.00	$8.48 \mathrm{E}+10$
-119.5661	280154.	0.00				
29.7000	0.00207	-999.5377	530.0250	$1.48 \mathrm{E}-04$	0.00	$8.48 \mathrm{E}+10$
-138.7955	241358.	0.00				
30.0000	0.00260	0.00	0.00	$1.48 \mathrm{E}-04$	0.00	$8.48 \mathrm{E}+10$

## RETAINING WALL PILES

-155.6628 107607. 0.00

* This analysis computed pile response using nonlinear moment-curvature relationships. Values of total stress due to combined axial and bending stresses are computed only for elastic sections only and do not equal the actual stresses in concrete and steel. Stresses in concrete and steel may be interpolated from the output for nonlinear bending properties relative to the magnitude of bending moment developed in the pile.

Output Summary for Load Case No. 2:

Pile-head deflection	0.88750258 inches	
Computed slope at pile head	$=$	-0.00727876 radians
Maximum bending moment	$=$	3075871 inch-lbs
Maximum shear force	-32586 l lbs	
Depth of maximum bending moment	$=$	12.30000000 feet below pile head
Depth of maximum shear force	$=$	17.10000000 feet below pile head
Number of iterations	$=$	17
Number of zero deflection points	$=$	2

Definitions of Pile-head Loading Conditions:

Load Type 1: Load $1=$ Shear, V, lbs, and Load $2=$ Moment, M, in-lbs
Load Type 2: Load $1=$ Shear, V, lbs, and Load $2=$ Slope, S, radians
Load Type 3: Load $1=$ Shear, $V$, lbs, and Load $2=$ Rot. Stiffness, R, in-lbs/rad.
Load Type 4: Load $1=$ Top Deflection, y, inches, and Load $2=$ Moment, M, in-lbs
Load Type 5: Load $1=$ Top Deflection, $y$, inches, and Load $2=$ Slope, $S$, radians


Maximum pile-head deflection $=0.8875025757$ inches
Maximum pile-head rotation $=-0.0072787639$ radians $=-0.417042$ deg.

## RETAINING WALL PILES

The analysis ended normally.

## ZFA STRUCTURAL ENGINEERS

## PIER DEMANDS:

Batter Angle = 14
Axial Demand $=17.2$

deg	(see batter)
k	(see pier demands and batter)

## PIER CAPACITY:

> L = depth/cos(batter)

Depth (ft)	Length (ft)	Skin
0	0.0	0
3	3.1	200
11	11.3	350

$$
\text { Skin Friction }(p s f)=273 \quad=f_{s} \quad \text { (weighted avg) }
$$

$$
\text { Pier Diameter }(\text { in })=20.00 \quad=\mathrm{D}
$$

$$
\text { Pier Length }(\mathrm{ft})=30.00 \quad=\mathrm{H}_{\mathrm{t}}
$$

$$
\text { Neglect top }(\mathrm{ft})=0.00 \quad=\mathrm{H}_{\mathrm{n}} \quad \text { for skin friction }
$$

Pier capacity $(\mathbf{k})=43$
DCR $=\quad 0.40$

Capacity Check (see pier design sheet for demands)
ASD to LRFD ratio = 1.60

$\mathrm{M}_{\text {max }}=$	256 k-ft	Lpile
$\mathrm{M}_{\mathrm{u}}=$	409.6 k-ft	
$\phi \mathrm{M}_{\mathrm{n}}=$	652.7 k-ft	(steel casing only, see above)
DCR =	0.63	
$\mathrm{V}_{\text {max }}=$	32.6 k	Lpile
$\mathrm{V}_{\mathrm{u}}=$	52.2 k	
$\phi \mathrm{V}_{\mathrm{n}}=$	167.9 k	(concrete only, see shear friction)
DCR =	0.31	

## Guardrail

Guardrail is per AASHTO Bridge Design Specifications 7th Edition chapter 13. The roadway is a local collector with limited truck traffic and reduced speeds, therefore, AASHTO load level TL-2 per 13.7.2 is most applicable. Guardrail assemblies (including anchorage) require full scale testing therefore a rail based on Caltrans standard steel rail ST-30 which has been tested and used throughout the state will be used here.

As indicated by the city, this roadway is accessible to pedestrians and cyclists, increase the barrier height to 42" per AASHTO 13.8 (pedestrian rails), AASHTO 13.9 (bicycle rails) and CBC. Pedestrian and cyclist loads do not govern over vehicle loads by observation.

- TL-2-Test Level Two-taken to be generally acceptable for work zones and most local and collector roads with favorable site conditions as well as where a small number of heavy vehicles is expected and posted speeds are reduced;


Proposed Guardrail


## DESCRIPTION: Guardrail

## CODE REFERENCES

Calculations per AISC 360-10, IBC 2012, CBC 2013, ASCE 7-10
Load Combination Set : ASCE 7-16

## Material Properties

Analysis Method: Load Resistance Factor Design	Fy: Steel Yield :	46.0 ksi
Beam Bracing:	Completely Unbraced	E: Modulus :
Bending Axis:	Major Axis Bending	



## Applied Loads

Service loads entered. Load Factors will be applied for calculations.
Beam self weight calculated and added to loading
Uniform Load : L = 0.050 kft , Tributary Width $=1.0 \mathrm{ft}$, (rail load)
Point Load : L=0.20 k @ 5.0 ft , (rail load)



[^0]:    ${ }^{1}$ Source: California Wetlands Monitoring Workgroup (CWMW), 2019. EcoAtlas. Accessed May 14, 2019. https://www.ecoatlas.org. The California Wetland Monitoring Workgroup (CWMW) provides technical oversight on the development of content and functionality of EcoAtlas. As a member of CWMW, San Francisco Estuary Institute provides day-to-day support and management of EcoAtlas, and can be contacted by email at ptrackadmin@sfei.org.

[^1]:    Provide additional reinforcement to resist torsion.

