Date Prepared: May 28, 2021 Ref. No.: P21AT008

Initial Design	1
PCC Revision	

STRUCTURAL CALCULATIONS

for

SAINT VINCENT DE PAUL HS (NOKIA MBO) (P21AT008)

849 KEOKUK ST. PETALUMA, CA 94952

Prepared for:

AT&T MOBILITY

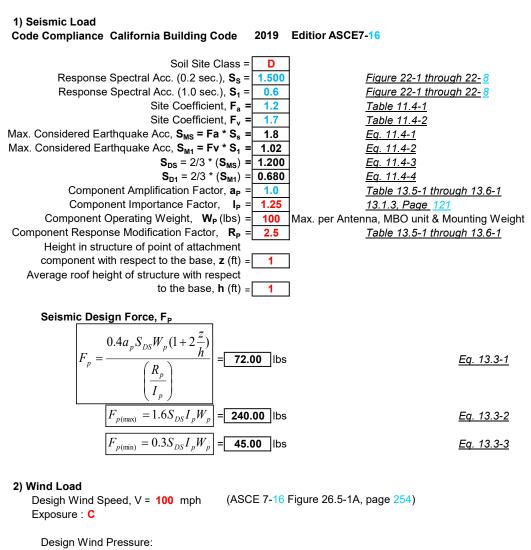
2255 6TH STREET OROVILLE, CA 95965

Prepared by:

4635 WEST LAS POSITAS BLVD, SUITE 403, PLEASANTON, CA 94588
Tel: (949) 622-0333
Fax: (949) 622-0331

SAINT VINCENT DE PAUL HS (NOKIA MBO)

849 Keokuk St, Petaluma, CA 94952, USA


Latitude, Longitude: 38.24356100000001, -122.6507041

Goo	Valle Petaluma Christian Church	ry School erry / Park Ternes Business Machine Repair Map data ©2021
Date		5/18/2021, 3:04:57 PM
-	Code Reference Document	ASCE7-16
Risk Cat		III D. Default (See Section 11.4.2)
Site Clas	55	D - Default (See Section 11.4.3)
Туре	Value	Description
SS	1.5	MCE _R ground motion. (for 0.2 second period)
S ₁	0.6	MCE _R ground motion. (for 1.0s period)
S _{MS}	1.8	Site-modified spectral acceleration value
S _{M1}	null -See Section 11.4.8	Site-modified spectral acceleration value
S _{DS}	1.2	Numeric seismic design value at 0.2 second SA
S _{D1}	null -See Section 11.4.8	Numeric seismic design value at 1.0 second SA
Type SDC F _a	Value null -See Section 11.4.8 1.2	Description Seismic design category Site amplification factor at 0.2 second
Fv	null -See Section 11.4.8	Site amplification factor at 1.0 second
PGA	0.596	MCE _G peak ground acceleration
F _{PGA}	1.2	Site amplification factor at PGA
PGA _M	0.715	Site modified peak ground acceleration
TL	12	Long-period transition period in seconds
SsRT	1.742	Probabilistic risk-targeted ground motion. (0.2 second)
SsUH	1.898	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration
SsD	1.5	Factored deterministic acceleration value. (0.2 second)
S1RT	0.671	Probabilistic risk-targeted ground motion. (1.0 second)
S1UH	0.739	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration.
S1D	0.6	Factored deterministic acceleration value. (1.0 second)
PGAd	0.596	Factored deterministic acceleration value. (Peak Ground Acceleration)
C _{RS}	0.918	Mapped value of the risk coefficient at short periods

DESIGN BY : EC REVIEW BY : AT DATE : 05/28/21

LATERAL ANALYSIS

$$q_z = 0.00256K_zK_{zt}K_dK_eV^2$$
 = 19.6 psf (ASCE7-16 Eq. 26.10-1, Page 268)
Velocity Pressure Exposure Coefficients, Kz = 0.90 (ASCE7-16 Table 26.10-1, Page 268)

Topographic Factor, Kzt = 1.00 (ASCE7-16 Section 26.8.2, Page 268) Wind Directionality Factor, Kd = 0.85 (ASCE7-16 Table 26.6-1, Page 266) Ground Elevation Factor, Ke = 1.00 (ASCE7-16 Table 26.9-1, Page 268) $\overline{F = q_z GC_f A_s} = 92 \text{ lbs} (ASCE7-16 \text{ Eq. } 29.3-1, \text{ Page } 322)$ Gust Effect Factor, G = 0.85 (ASCE7-16 Section 26.11.1, Page 269) Force Coefficient, Cf = 1.20 (ASCE7-16 Figure 29.3-1, Page 323) Gross Area, As= 5 $\text{ft}^2 = 1.00$ ft x 5 ft Max. per post

3) Design Lateral Load

Since, F_P < F_W <u>Wind Govern Design</u>

LAG SCREW FOR ANTENNA MOUNTING ANAL	YSIS Ref. detail: $1/A5$ $W_P = 100$ lbs
Design Of Antenna Mounting:	
Antenna and Mounting Weight: = 100 lbs	s Max.
Lateral Anlysis:	Fw
1 Seismic load: $F_p = 7$	
2 Wind load: $F_w = 9$	11.9 lbs
Wind Govern E	
$V = W_p = 100$ lbs $H = 1.08$	B ft. Min.
T x H = Fw × L	C ← ▼ _ · · · · · · · · · · · · · · · · · ·
1.1 x T = 92 x 5.	66
T = 481.6 lbs	5
Total Applied Shear Load:	V = 100.0 lbs
Total Applied Tension Load	T = 481.6 lbs
Total Number Of Bolt Resisting Shear	Ns = 4
Total Number Of Bolt Resisting Tension	N _T = 2
Applied Tension Load:	$Ps = T / N_T = 240.8$ lbs
Applied Shear Load:	Vs = V / Ns = 25 lbs
Check 5/8"ø Bolts Capacity	
Allowable Tension : Ta	' = 6900 lbs (AISC Steel Construction Manual 15th ed.Table 7-1,7-2)
Allowable Shear : Va	a' = 4140 lbs (AISC Steel Construction Manual 15th ed.Table 7-1,7-2)
Interaction Check : Ps / Ta' + Vs /	Va' = 0.04 < 1.0 [O.K.]

Use 5/8 in. Diameter Bolt

DELTA GROUPS ENGINEERING, INC. 2362 MCGAW AVENUE, IRVINE, CA 92614 TEL 949.622.0333 FAX 949.622.0331

U-BOLT FOR ANTENNA MOUNTING ANALYSIS Ref. detail: 1/A5 **Design Of Antenna Mounting:** $W_{P} = 100 \text{ lbs}$ Antenna and Mounting Weight: = 100 lbs Max. Lateral Anlysis: Fw 1 Seismic load: $F_{p} = 72.0$ lbs ⇇ 80 2 Wind load: F_w = 91.9 lbs S. п Wind Govern Design _ $V = W_p = 100$ lbs **H** = 1.08 ft. Min. т H $T \times H = Fw \times L$ C+ $1.1 \times T = 92 \times 5.7$ **T =** 481.6 lbs **Total Applied Shear Load: V** = 100.0 lbs 1/2" A307 U-bolt, typ. **T** = 481.6 lbs **Total Applied Tension Load** Total Number Of Bolt Resisting Shear **Ns** = 2 Total Number Of Bolt Resisting Tension $N_{T} = 1$ Applied Shear Load: Vs = V / Ns = 50 lbs Applied Tension Load: $Ps = T / N_T = 481.6$ lbs Check A316 U-Bolt Capacity Design Torque T= Bolt Diameter d = 0.5 in 90 lbs-ft Friction Factor $\mu = 0.2$ Fy = 30000 psi Allowable Shear Load : Clamping Force P = T/µd = 1080 lbs-in / 0.2 / 0.5 in = 10800 lbs Friction Shear Capacity Vt = $P \times \mu$ = 10800 lbs x 0.2 = 2160 lbs > Vs = 50 lbs Allowable Tension Load Pt = A x 2 x Fy = 0.196 in^2 x 2 x 30000 psi = 11781 lbs > Ps = 481.6 lbs (Vs/Vt) + (Ps/Pt) = 0.064 < 1 ΟΚ

Project Title: Engineer: Project ID: Project Descr:

Steel Beam		File: WF beam check. Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8	
Lic. # : KW-06001779		DELTA GROUPS ENGINEE	
DESCRIPTION:	(E) WF beam		
CODE REFE	RENCES		
Calculations per A	AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16		
Load Combination	n Set : ASCE 7-16		
Material Prope	erties		
	Allowable Strength Design Beam is Fully Braced against lateral-torsional buckling	Fy : Steel Yield : 36.0 ksi E: Modulus : 29,000.0 ksi	
Bending Axis :	Major Axis Bending		
	D(Q.1)		
	D(0.30) L(0.6	60)	
\$	★	*	, K
	VV8x18		
	Span = 12.0) ft	
 			
Applied Loads	6	Service loads entered. Load Factors will be applied for calculati	ons.

Applied Loads

Beam self weight NOT internally calculated and added Loads on all spans...

Uniform Load on ALL spans : D = 0.020, L = 0.040 ksf, Tributary Width = 15.0 ft

Load(s) for Span Number 1 Point Load : D = 0.10 k @ 6.0 ft

DESIGN SUMMARY			Design OK
Maximum Bending Stress Ratio =	0.540 : 1 Max	ximum Shear Stress Ratio =	0.202:1
Section used for this span	W8x18	Section used for this span	W8x18
Ma : Applied	16.500 k-ft	Va : Applied	5.450 k
Mn / Omega : Allowable	30.539 k-ft	Vn/Omega : Allowable	26.960 k
Load Combination	+D+L	Load Combination	+D+L
Location of maximum on span	6.000ft	Location of maximum on span	0.000 ft
Span # where maximum occurs	Span # 1	Span # where maximum occurs	Span # 1
Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection	0.157 in Ratio = 0.000 in Ratio = 0.238 in Ratio = 0.000 in Ratio =	919>=360 0 <360 604 >=180 0 <180	

Maximum Forces & Stresses for Load Combinations

Load Combination		Max Stress Ratios			Summary of Moment Values								Summary of Shear Values		
Segment Length	Span #	М	V	Mmax +	Mmax -	Ma Max	Mnx	Mnx/Omega	Cb	Rm	Va Max	Vnx	Vnx/Omega		
D Only															
Dsgn. L = 12.00 ft	1	0.187	0.069	5.70		5.70	51.00	30.54	1.00	1.00	1.85	40.44	26.96		
+D+L															
Dsgn. L = 12.00 ft	1	0.540	0.202	16.50		16.50	51.00	30.54	1.00	1.00	5.45	40.44	26.96		
+D+0.750L															
Dsgn. L = 12.00 ft	1	0.452	0.169	13.80		13.80	51.00	30.54	1.00	1.00	4.55	40.44	26.96		
+0.60D															
Dsgn. L = 12.00 ft	1	0.112	0.041	3.42		3.42	51.00	30.54	1.00	1.00	1.11	40.44	26.96		
Overall Maximu	m Defle	ctions													
Load Combination		Span	Max. "-" Defl	Location	in Span	Load Com	bination			Мах	<. "+" Defl	Location	n in Span		
+D+L		1	0.2385		6.034						0.0000		0.000		
Vertical Reaction	ons				Support	notation : Far	left is #1			Values i	n KIPS				
Load Combination		Support 1	Support 2												
Overall MAXimum		5.450	5.450												
Overall MINimum		1.110	1.110												
D Only		1.850	1.850												

Project Title: Engineer: Project ID: Project Descr:

Steel Beam				File: WF beam check.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24
Lic. # : KW-06001779				DELTA GROUPS ENGINEERING
DESCRIPTION: (E) WF	beam			
Vertical Reactions			Support notation : Far left is #1	Values in KIPS
Load Combination	Support 1	Support 2		
+D+L	5.450	5.450		
+D+0.750L	4.550	4.550		
+0.60D	1.110	1.110		
L Only	3.600	3.600		

Project Title: Engineer: Project ID: Project Descr:

File: WF beam check.ec6 **Steel Beam** Software copyright ENERCALC, INC. 1983-2020, Build:12.20.8.24 DELTA GROUPS ENGINEERING Lic. # : KW-06001779 DESCRIPTION: (N) 3X3X1/4 **CODE REFERENCES** Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16 Load Combination Set : ASCE 7-16 **Material Properties** Fy : Steel Yield : E: Modulus : Analysis Method : Allowable Strength Design 50.0 ksi Beam Bracing : Beam is Fully Braced against lateral-torsional buckling 29,000.0 ksi Bending Axis : Major Axis Bending Vertical Leg Down D(0.1) L3x3x1/4 Span = 3.50 ft **Applied Loads** Service loads entered. Load Factors will be applied for calculations. Beam self weight NOT internally calculated and added Load(s) for Span Number 1

Point Load : D = 0.10 k @ 1.750 ft

DESIGN SUMMARY			Design OK
Maximum Bending Stress Ratio =	0.041:1 Ma	ximum Shear Stress Ratio =	0.004 : 1
Section used for this span	L3x3x1/4	Section used for this span	L3x3x1/4
Ma : Applied	0.088 k-ft	Va : Applied	0.050 k
Mn / Omega : Allowable	2.127 k-ft	Vn/Omega : Allowable	13.473 k
Load Combination Location of maximum on span Span # where maximum occurs	D Only 1.750ft Span # 1	Load Combination Location of maximum on span Span # where maximum occurs	D Only 1.760 ft Span # 1
Maximum Deflection Max Downward Transient Deflection	0.000 in Ratio =	<mark>0</mark> <360	
Max Upward Transient Deflection	0.000 in Ratio =	0 <360	
Max Downward Total Deflection	0.004 in Ratio =	9665 >=180	
Max Upward Total Deflection	0.000 in Ratio =	<mark>0</mark> <180	

Maximum Forces & Stresses for Load Combinations

Load Combination		Max Stres	ss Ratios		Summary of Moment Values								Summary of Shear Values		
Segment Length	Span #	М	V	Mmax +	Mmax -	Ma Max	Mnx	Mnx/Omega	Cb	Rm	Va Max	Vnx	Vnx/Omega		
D Only															
Dsgn. L = 3.50 ft	1	0.041	0.004	0.09		0.09	3.55	2.13	1.00	1.00	0.05	22.50	13.47		
+0.60D															
Dsgn. L = 3.50 ft	1	0.025	0.002	0.05		0.05	3.55	2.13	1.00	1.00	0.03	22.50	13.47		
Overall Maximu	m Deflec	tions													
Load Combination		Span	Max. "-" Defl	Location	n in Span	Load Comb	pination			Мах	. "+" Defl	fl Location in Span			
D Only		1	0.0043	3 1.750							0.0000		0.000		
Vertical Reaction	ns				Support	notation : Far I	eft is #1			Values i	n KIPS				
Load Combination		Support 1	Support 2												
Overall MAXimum		0.050	0.050												
Overall MINimum		0.030	0.030												
D Only		0.050	0.050												
+0.60D		0.030	0.030												