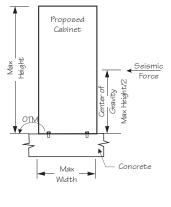
6160 Anchorage Calculations

T-Mobile 856199 1 CASA GRANDE ROAD PETALUMA, CA 94954

Anchorage Calculations

Calculation Wind Loads	1
Seismic Calculations	2-4
Anchor Bolt Calculations	5-9

October 21, 2021


CONSULTING ENGINEERING SERVICES

AMMTEC CONSULTANTS

Calculation of Design Wind Loads				CBC 2019/ASCE 7-16	
		Height of Struc	ture =	1.0 ft	
	Height of Crest above Su	e		1.0 ft	Exposure: C
	-	ttenuation facto		1.25 (Table 2 - 5) [40]	Risk Category: II
	Height Above the Gro			1.0 ft	3s Wind Gust (mph): 91
Velocity Pressure (q _z)	U				Tower Type: Other
Where:	$q_z = 0.00256 k_z k_z^2$	*k _D *V ² *I		(\$ 2.6.11.6) [2-24]	
	$k_z = 2.01(z)$	$(z/z_{\alpha})^{(2/\alpha)}$		(\$2.6.5.2)[2-9]	
		Zg=	900	(T 2 - 4) [2-41]	
		α=	9.5	(T 2 - 4) [2-41]	
	k _z =2.01(z/z	$(2_g)^{(2/\alpha)} =$	0.85	$k_{z(min)} = 0.85 (T 2 - 4) [2-41]$	
	$k_{zt} = (1$	$+ (k_e * k_t)/k_h)^2$	2	(S 2.6.6.2.2) [2-10]	
		k _e =	1.0	(T 2 - 6) [2-42]	
		k _t =	0.43	Topo Factor - (T 2 - 5) [2-42]	
Note: As k _h incre	eases k _{zt} goes to 1	k _h =	3.49	2.718^(1.25*1/1)	(S 2.6.6.4) [14]
	$k_{zt} =$	1			
	k _D =	0.95		(Table 2 - 2) [2-41]	
	V=	70.5 mph		V_{ASD} - 0.775 _{VULT}	
	I=	1.0			
		$q_z =$		0.00256*0.85*1.3*0.95*70.525^2*1	= 12.97 psf
			$G_h =$	× / / · · ·	
	Load Combination	Factor for W	ind =	1.20 (S 2.3.1) [8]	

15.57 psf for Design Purposes

Overstrength Factor Ωo 2.5Loads for AnchorageResisting Force (0.9 - 0.2SDS) x D804 lbsSeismic Force x Ωo 1755 lbs4603 ft-lbs

OTM including Overstrength Factor

Weight of Equipment =	320.00 lbs	
Total Max Weight =		1217.60 lbs
Max height =	63.00 in	
Maximum Width =	25.60 in	
Maximum Depth =	33.50 in	
Projected Wind Area = 63" x 25.6"/144 =		11.20 ft^2
Wind Force on Equipment =		174.34 lbs
Seismic Force on Equipment (See Seismic) =	:	701.34 lbs

lbs

701lbs > 174lbs Seismic Controls

$OTM = 701 \times \Omega_0 (63/2) =$	55230 in-lbs
RM = 0.9(1217.6)(33.5/2) =	18355 in-lbs
Excess OTM =	3073 ft-lbs

Required Anchorage/Side = M/d = 91.7

Use Min 5/8" diameter Simpson Strong Bolt SS with a min 3-1/4"Effective embedment depth at each bolt location Equipment Min Required Bolts = 4 Minimum Slab thickness = 8" By Observation 1217.6/4 = 304lbs Uplift Ok

AMMTEC CONSULTANTS

 $F_p =$

701.3 lbs

				07040	Droulds	d 0	4	
					s–Provide	u Outp	ul	
856199 Seismic Design Requirements - Ed	uuivalent Lateral Ec	orce Procedure	Petaluma, C S_s =	A 1.5	S _{MS} =	1.8	S _{DS} =	1.2
550177 Seisinie Design Requirements - Er	fulvalent Eateral I C	nee 1 locedule	S ₁ =	0.6	S _{MS} =	N/A	S _{DS} =	N/A
IBC/CBC Section 1613 Earthquake Load	ds				- 101		- 51	
Risk Category II						able 1 5 1 [4]		
Risk Category II Importance Factor =	1.0					able 1.5-1 [4] able 1.5-2 [4]		
<u>Importance Factor</u> =	1.0				AGCE /-101	abie 1.5-2 [4]		
Site Classification								
Soil Site Class =	D				ASCE 7-16 T	able 20.3-1 [2	204]	
Site Coefficients								
$S_S = =$	1.5	Mapped Spectral Accelerati			ATC Hazards			
$S_1 = =$ $F_a = =$	0.6	Mapped Sectral Acceleratio Site Coefficient	ns: 1 sec Per	lod	ATC Hazards	•		
1 [·] a — —	1.2	She Coemeient			ATC Hazards	кероп		
$F_{v} = =$	N/A	Site Coefficient			ATC Hazards	s Report		
S _{MS} =	1.8	Max Spectral Accelerations	: Short Perio	ds	ATC Hazards	s Report		
S _{M1} =	N/A	Max Spectral Accelerations	: 1sec Period		ATC Hazards	s Report		
Design Spectral Response Acceleration F	Parameters							
	4.000					_		
$S_{DS} =$	1.200	5% Damped Spectral Accel	eration: Shor	t Period	ATC Hazards	s Report		
$S_{D1} =$	N/A	5% Damped Spectral Accel	eration: 1 sec	Period	ATC Hazards	s Report		
SDC =	N/A	Seismic Design Category			ATC Hazards	s Report		
Equivalent Lateral Force Procedure								
$a_p =$	1.000	Component Amplifaction Factor	actor (Table	13.5-1)	ASCE 7-16 E	Eqn. 13.3-1 [1:	23]	
$I_p =$	1.000	Component Importance Fac				Eqn. 13.3-1 [1:	-	
W _p =	1217.600 lbs	Component Operating Weig	· ·	<i>,</i>	ASCE 7-16 E		-	
$R_p =$	2.5	Component Response Mod	Factor (Table	e 13.5-1)	ASCE 7-16 E	Eqn. 13.3-1 [1	23]	
z =	1.000	Height in Structure			ASCE 7-16 E		23]	
h =	1.000	Height of Roof			ASCE 7-16 E	Eqn. 13.3-1 [1	23]	
$F_p = (0.4a_p S_{DS} W_p)(1+2z/h$	(R_p/I_p)	Seismic Design Force			ASCE 7-16 E	Eqn. 13.3-1 [1	23]	
	$1.6S_{DS}I_{p}W_{p}$	Maximum Seismic Design I	Force		ASCE 7-16 E	Eqn. 13.3-2 [1	23]	
	$0.3_{\rm DS}I_{\rm p}W_{\rm p}$	Minimum Seismic Design F	orce		ASCE 7-16 E	Eqn. 13.3-3 [1	23]	
$(0.4a_pS_{DS}W_p) =$	584.448	c						
(1+2z/h) =	3.000							
$(\mathbf{I} + 2\mathbf{J} \mathbf{H}) = \mathbf{I}$	2.500							
× 4 by	2.000							

#VALUE!

0

Search Information

Address:	Petaluma, CA, USA
Coordinates:	38.232417, -122.6366524
Elevation:	15 ft
Timestamp:	2021-10-21T22:56:26.105Z
Hazard Type:	Seismic
Reference Document:	ASCE7-16
Risk Category:	II
Site Class:	D-default

Basic Parameters

Name	Value	Description
S _S	1.5	MCE _R ground motion (period=0.2s)
S ₁	0.6	MCE _R ground motion (period=1.0s)
S _{MS}	1.8	Site-modified spectral acceleration value
S _{M1}	* null	Site-modified spectral acceleration value
S _{DS}	1.2	Numeric seismic design value at 0.2s SA
S _{D1}	* null	Numeric seismic design value at 1.0s SA

* See Section 11.4.8

Additional Information

Name	Value	Description
SDC	* null	Seismic design category
Fa	1.2	Site amplification factor at 0.2s
Fv	* null	Site amplification factor at 1.0s
CR _S	0.915	Coefficient of risk (0.2s)
CR ₁	0.905	Coefficient of risk (1.0s)
PGA	0.6	MCE _G peak ground acceleration
F _{PGA}	1.2	Site amplification factor at PGA
PGA _M	0.72	Site modified peak ground acceleration

10/21/21, 3:56 PM	l	ATC Hazards by Location
TL	12	Long-period transition period (s)
SsRT	1.767	Probabilistic risk-targeted ground motion (0.2s)
SsUH	1.931	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	1.5	Factored deterministic acceleration value (0.2s)
S1RT	0.682	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.753	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	0.6	Factored deterministic acceleration value (1.0s)
PGAd	0.6	Factored deterministic acceleration value (PGA)

* See Section 11.4.8

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

SIMPSON

Strong-1

Anchor Designer™ Software Version 2.9.7376.0

Company:	Ammtec Consultants	Date:	10/21/2021
Engineer:	Alan E. Money P.E.	Page:	1/5
Project:	856199		
Address:	2447 W 12th St ste #1		
Phone:	(480) 927-9696		
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

2. Input Data & Anchor Parameters

General Design method:ACI 318-14 Units: Imperial units

Anchor Information:

Anchor type: Torque controlled expansion anchor Material: Stainless Steel Diameter (inch): 0.625 Nominal Embedment depth (inch): 3.875 Effective Embedment depth, h_{ef} (inch): 3.250 Code report: ICC-ES ESR-3037 Anchor category: 1 Anchor ductility: Yes h_{min} (inch): 6.18 cac (inch): 7.93 Cmin (inch): 5.50 Smin (inch): 6.25

Recommended Anchor

Anchor Name: Strong-Bolt® 2 Stainless Steel - 5/8"Ø SS Strong-Bolt 2, hnom:3.875" (98mm) Code Report: ICC-ES ESR-3037

Project description: 6160 Cabinet Location: 1 CASA GRANDE ROAD PETALUMA, CA 949 Fastening description:

Base Material

Concrete: All-lightweight Concrete thickness, h (inch): 8.00 State: Cracked Compressive strength, f'c (psi): 2500 $\Psi_{c,V}$: 1.0 Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No Ignore concrete breakout in tension: No Ignore concrete breakout in shear: Yes Ignore 6do requirement: Not applicable Build-up grout pad: No

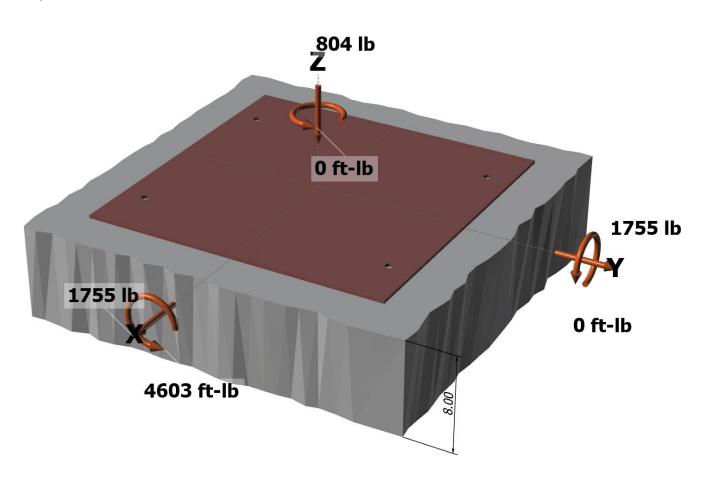
Base Plate

Length x Width x Thickness (inch): 25.59 x 25.59 x 0.25

SIMPSON

Strong-Tie

Anchor Designer™ Software Version 2.9.7376.0

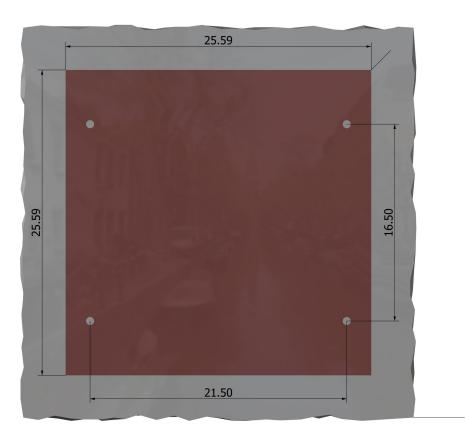

Company:	Ammtec Consultants	Date:	10/21/2021
Engineer:	Alan E. Money P.E.	Page:	2/5
Project:	856199		
Address:	2447 W 12th St ste #1		
Phone:	(480) 927-9696		
E-mail:			

Load and Geometry Load factor source: ACI 318 Section 5.3 Load combination: not set Seismic design: Yes Anchors subjected to sustained tension: Not applicable Ductility section for tension: 17.2.3.4.3 (d) is satisfied Ductility section for shear: 17.2.3.5.2 not applicable Ω_0 factor: not set Apply entire shear load at front row: Yes Anchors only resisting wind and/or seismic loads: Yes

Strength level loads:

N_{ua} [lb]: -804 V_{uax} [lb]: 1755 Vuay [lb]: 1755 M_{ux} [ft-lb]: 4603 M_{uy} [ft-lb]: 0 Muz [ft-lb]: 0

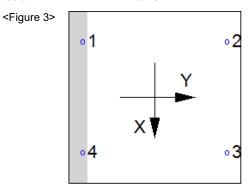
<Figure 1>


Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com

Anchor Designer™ Software Version 2.9.7376.0

Company:	Ammtec Consultants	Date:	10/21/2021
Engineer:	Alan E. Money P.E.	Page:	3/5
Project:	856199	•	
Address:	2447 W 12th St ste #1		
Phone:	(480) 927-9696		
E-mail:			

<Figure 2>


Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com

PSON	Anchor Designer™ Software	Company:	Ammtec Consultants Date: 1				
		Engineer:	Alan E. Money P.E.	Page:	4/5		
		Project:	856199	•	•		
- 8 •	Version 2.9.7376.0	Address:	2447 W 12th St ste #1				
ß		Phone:	(480) 927-9696				
		E-mail:					

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	0.0	438.8	438.8	620.5
2	1010.1	438.8	438.8	620.5
3	1010.1	438.8	438.8	620.5
4	0.0	438.8	438.8	620.5
Sum	2020.2	1755.0	1755.0	2481.9

Maximum concrete compression strain (‰): 0.02 Maximum concrete compression stress (psi): 80 Resultant tension force (lb): 2020 Resultant compression force (lb): 2824 Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
17930	0.75	13448

5. Concrete Breakout Strength of Anchor in Tension (Sec. 17.4.2)

<i>k</i> _c	1	f' _c (psi)	h _{ef} (in)	N _b (lb)	`				
nc	Λa	rc (psi)	Thet (III))				
17.0	0.60	2500	3.250	2988					
		Ico) Ψec,N Ψed,N Ψc,		17.3.1 & Eq.	17.4.2.1b)				
				17.3.1 & Eq. <i>Ψ_{ed,N}</i>	17.4.2.1b) <i>Ψ_{c.N}</i>	$\Psi_{cp.N}$	N _b (lb)	φ	0.75 <i>øN_{cbg}</i> (Ib

6. Pullout Strength of Anchor in Tension (Sec. 17.4.3)

0.75 <i>¢Npn</i> =	= 0.75 <i>φΨ</i> c, _P λaN	$I_p(f_c^r/2,500)^n$ (Sec.	17.3.1, Eq. 17.	4.3.1 & Cod	le Report)	
$\Psi_{c,P}$	λa	N_{p} (lb)	f' _c (psi)	n	φ	C

_	$\Psi_{c,P}$	λa	N _ρ (lb)	f′ _c (psi)	n	ϕ	0.75 <i>¢N_{pn}</i> (lb)
	1.0	0.60	4639	2500	0.40	0.65	1357

SIMPSONAnchor Designer™Strong-TieSoftwareVersion 2.9.7376.0

Company:	Ammtec Consultants	Date:	10/21/2021
Engineer:	Alan E. Money P.E.	Page:	5/5
Project:	856199		
Address:	2447 W 12th St ste #1		
Phone:	(480) 927-9696		
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. 17.5.1)

V _{sa} (lb)	$\phi_{ ext{grout}}$	ϕ	$\phi_{grout}\phi V_{sa}$ (lb)
7892	1.0	0.65	5130

10. Concrete Pryout Strength of Anchor in Shear (Sec. 17.5.3)

K _{cp}	A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	Ψc,N	$\Psi_{cp,N}$	N _b (lb)	ϕ	ϕV_{cpg} (lb)	
2.0	380.25	95.06	1.000	1.000	1.000	1.000	2988	0.70	16733	_

11. Results

Interaction of Tensile and Shear Forces (Sec. 17.6.)

Tension	Factored Loa	ad, N _{ua} (Ib)	Design Strength, øNn	lb) R	atio	Status
Steel	1010		13448	0.	.08	Pass
Concrete breakout	2020		2913	0.	.69	Pass
Pullout	1010		1357	0.	.74	Pass (Governs)
Shear	Factored Loa	ad, V _{ua} (Ib)	Design Strength, øVո (lb) R	atio	Status
Steel	620		5130	0.	.12	Pass
Pryout	2482		16733	0.	.15	Pass (Governs)
Interaction check	Nua/ØNn	Vua∕øVn	Combined	Ratio	Permissible	Status
Sec. 17.61	0.74	0.00	74.4%		1.0	Pass

5/8"Ø SS Strong-Bolt 2, hnom:3.875" (98mm) meets the selected design criteria.

12. Warnings

- Minimum spacing and edge distance requirement of 6da per ACI 318 Sections 17.7.1 and 17.7.2 for torqued cast-in-place anchor is waived per designer option.

- Concrete breakout strength in shear has not been evaluated against applied shear load(s) per designer option. Refer to ACI 318 Section 17.3.2.1 for conditions where calculations of the concrete breakout strength may not be required.

- Per designer input, ductility requirements for tension have been determined to be satisfied - designer to verify.

- Per designer input, the shear component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.2.3.5.2 for shear need not be satisfied – designer to verify.

- Designer must exercise own judgement to determine if this design is suitable.

- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com