GEOTECHNICAL ENGINEERING REPORT

PREPARED BY:

THE RILEY GROUP, INC.
17522 BOTHELL WAY NORTHEAST
BOTHELL, WASHINGTON 98011

PREPARED FOR:

WINDWARD REAL ESTATE
805 KIRKLAND AVENUE, SUITE 200
KIRKLAND, WASHINGTON 98033

RGI PROJECT NO. 2019-088

McCORMICK WOODS PARCEL A
McCORMICK WOODS DRIVE SW & ST. ANDREWS DRIVE SW
PORT ORCHARD, WASHINGTON

MAY 29, 2019
May 29, 2019

Mr. James Tosti
Windward Real Estate
805 Kirkland Avenue, Suite 200
Kirkland, Washington 98033

Subject: Geotechnical Engineering Report
McCormick Woods Parcel A
McCormick Woods Drive SW & St. Andrews Drive SW
Port Orchard, Washington
RGI Project No. 2019-088

Dear Mr. Tosti:

As requested, The Riley Group, Inc. (RGI) has performed a Geotechnical Engineering Report (GER) for the McCormick Woods Parcel A project located at McCormick Woods Drive SW & St. Andrews Drive SW, Port Orchard, Washington. Our services were completed in accordance with our proposal PRP2019-124 dated April 10, 2019 and authorized by you on April 16, 2019. The information in this GER is based on our understanding of the proposed construction, and the soil and groundwater conditions encountered in the test pits completed by RGI at the site on April 30, 2019.

RGI recommends that you submit the project plans and specifications to RGI for a general review so that we may confirm that the recommendations in this GER are interpreted and implemented properly in the construction documents. RGI also recommends that a representative of our firm be present on site during portions of the project construction to confirm that the soil and groundwater conditions are consistent with those that form the basis for the engineering recommendations in this GER.

If you have any questions or require additional information, please contact us.

Respectfully submitted,

THE RILEY GROUP, INC.

ERIC L. WOODS
Eric L. Woods, LG
Project Geologist

Kristina M. Weller, PE
Principal Geotechnical Engineer

Corporate Office
17522 Bothell Way Northeast
Bothell, Washington 98011
Phone 425.415.0551 • Fax 425.415.0311
www.riley-group.com
Table of Contents

1.0 INTRODUCTION ... 1
2.0 PROJECT DESCRIPTION ... 1
3.0 FIELD EXPLORATION AND LABORATORY TESTING ... 1
 3.1 FIELD EXPLORATION .. 1
 3.2 LABORATORY TESTING ... 2
4.0 SITE CONDITIONS ... 2
 4.1 SURFACE ... 2
 4.2 GEOLOGY .. 2
 4.3 SOILS ... 3
 4.4 GROUNDWATER ... 3
 4.5 SEISMIC CONSIDERATIONS .. 3
 4.6 GEOLOGIC HAZARD AREAS ... 4
5.0 DISCUSSION AND RECOMMENDATIONS ... 4
 5.1 GEOTECHNICAL CONSIDERATIONS .. 4
 5.2 EARTHWORK ... 5
 5.2.1 Erosion and Sediment Control .. 5
 5.2.2 Stripping ... 6
 5.2.3 Excavations ... 6
 5.2.4 Site Preparation ... 7
 5.2.5 Structural Fill ... 7
 5.2.6 Cut and Fill Slopes ... 9
 5.2.7 Wet Weather Construction Considerations ... 9
 5.3 FOUNDATIONS ... 10
 5.4 RETAINING WALLS .. 11
 5.5 SLAB-ON-GRADE CONSTRUCTION ... 11
 5.6 DRAINAGE .. 12
 5.6.1 Surface ... 12
 5.6.2 Subsurface ... 12
 5.6.3 Infiltration ... 12
 5.7 UTILITIES ... 12
 5.8 PAVEMENTS .. 13
6.0 ADDITIONAL SERVICES .. 13
7.0 LIMITATIONS ... 14

List of Figures and Appendices

Figure 1 ... Site Vicinity Map
Figure 2 .. Geotechnical Exploration Plan
Figure 3 .. Retaining Wall Drainage Detail
Figure 4 .. Typical Footing Drain Detail
Appendix A ... Field Exploration and Laboratory Testing
Executive Summary

This Executive Summary should be used in conjunction with the entire Geotechnical Engineering Report (GER) for design and/or construction purposes. It should be recognized that specific details were not included or fully developed in this section, and the GER must be read in its entirety for a comprehensive understanding of the items contained herein. Section 7.0 should be read for an understanding of limitations.

RGI’s geotechnical scope of work included the advancement of eight test pits to approximate depths of 6 to 13.5 feet below existing site grades.

Based on the information obtained from our subsurface exploration, the site is suitable for development of the proposed project. The following geotechnical considerations were identified:

Soil Conditions: The soils encountered during field exploration include loose to medium dense silty sand with varying amounts of gravel over medium dense to dense sand with varying amounts of silt and gravel and dense glacial till.

Groundwater: Groundwater seepage was encountered at one test pit location at a depth of five feet during our subsurface exploration.

Foundations: Foundations for the proposed building may be supported on conventional spread footings bearing on medium dense to dense native soil or structural fill.

Slab-on-grade: Slab-on-grade floors and slabs for the proposed building can be supported on medium dense to dense native soil or structural fill.

Pavements: The following pavement sections are recommended:

- **For heavy truck traffic areas:** 3 inches of Hot Mix Asphalt (HMA) over 6 inches of crushed rock base (CRB)
- **For general parking areas:** 2 inches of HMA over 4 inches of CRB
- **For concrete pavement areas:** 5 inches of concrete over 4 inches of CRB
1.0 Introduction

This Geotechnical Engineering Report (GER) presents the results of the geotechnical engineering services provided for the McCormick Woods Parcel A in Port Orchard, Washington. The purpose of this evaluation is to assess subsurface conditions and provide geotechnical recommendations for the construction of a 55 lot residential development with an access roadway, associated utilities, and stormwater ponds. Our scope of services included field explorations, laboratory testing, engineering analyses, and preparation of this GER.

The recommendations in the following sections of this GER are based upon our current understanding of the proposed site development as outlined below. If actual features vary or changes are made, RGI should review them in order to modify our recommendations as required. In addition, RGI requests to review the site grading plan, final design drawings and specifications when available to verify that our project understanding is correct and that our recommendations have been properly interpreted and incorporated into the project design and construction.

2.0 Project description

The project site is located on the northeast corner of McCormick Woods Drive SW & St. Andrews Drive SW in Port Orchard, Washington. The approximate location of the site is shown on Figure 1.

The site is currently occupied by a vehicle storage lot in the east-central portion of the property. The remainder of the property is forested.

RGI understands the site is to be developed with a 55 lot residential development. An access road will wind through the site with entrance/exit areas on McCormick Woods Drive SW and St. Andrews Drive SW. A stormwater pond will be located in the northern portion of the site.

At the time of preparing this GER, building plans were not available for our review. Based on our experience with similar construction, RGI anticipates that the proposed residences will be supported on perimeter walls with bearing loads of two to six kips per linear foot, and a series of columns with a maximum load up to 30 kips. Slab-on-grade floor loading of 250 pounds per square foot (psf) are expected.

3.0 Field Exploration and Laboratory Testing

3.1 FIELD EXPLORATION

On April 30, 2019, RGI observed the excavation of eight test pits. The approximate exploration locations are shown on Figure 2.
Field logs of each exploration were prepared by the geologist that continuously observed the excavation. These logs included visual classifications of the materials encountered during excavation as well as our interpretation of the subsurface conditions between samples. The test pit logs included in Appendix A represent an interpretation of the field logs and include modifications based on laboratory observation and analysis of the samples.

3.2 LABORATORY TESTING

During the field exploration, a representative portion of each recovered sample was sealed in containers and transported to our laboratory for further visual and laboratory examination. Selected samples retrieved from the test pits were tested for moisture content and grain size analysis to aid in soil classification and provide input for the recommendations provided in this GER. The results and descriptions of the laboratory tests are enclosed in Appendix A.

4.0 Site Conditions

4.1 SURFACE

The subject site is an irregular-shaped parcel of land approximately 19.98 acres in size. The site is bound to the north by SW Old Clifton Road, to the east by a commercial and residential development, to the south by St. Andrews Drive SW, and to the west by McCormick Woods Drive SW.

The site is occupied by a vehicle storage lot in the east-central portion of the site, with an access road extending north from St. Andrews Drive SW to the lot along the eastern property line. The remainder of the property is undeveloped.

The site topography is comprised of an upper southeastern and lower northwestern bench area separated by a northwest-facing slope. The upper and lower bench areas slope generally northwest at gradients of less than 10 percent. The slope area extends through the site from the southwest corner to the northeast corner, descending northwest at gradients of about 20 to 25 percent, with localized areas up to 33 percent. The site is vegetated with medium- to large-diameter trees with a fern and mixed brush undergrowth.

4.2 GEOLOGY

Review of the Geologic Map of Surficial Deposits in the Seattle 30’ x 60’ Quadrangle, Washington, by James C. Yount, etc. (1993) indicates that the soil in the project vicinity is mapped as Vashon Till (Qvt), which is a nonsorted, nonstratified mixture of clay, silt, sand, and gravel deposited by the Vashon ice sheet. These descriptions are generally similar to the findings in our field explorations.
4.3 SOILS

The soils encountered during field exploration include loose to medium dense silty sand with varying amounts of gravel over medium dense to dense sand with varying amounts of silt and gravel and dense glacial till.

More detailed descriptions of the subsurface conditions encountered are presented in the test pits logs included in Appendix A. Sieve analysis was performed on eight selected soil samples. Grain size distribution curves are included in Appendix A.

4.4 GROUNDWATER

Groundwater seepage was encountered at one test pit location at a depth of five feet during our subsurface exploration.

It should be recognized that fluctuations of the groundwater table will occur due to seasonal variations in the amount of rainfall, runoff, and other factors not evident at the time the explorations were performed. In addition, perched water can develop within seams and layers contained in fill soils or higher permeability soils overlying less permeable soils following periods of heavy or prolonged precipitation. Therefore, groundwater levels during construction or at other times in the future may be higher or lower than the levels indicated on the logs. Groundwater level fluctuations should be considered when developing the design and construction plans for the project.

4.5 SEISMIC CONSIDERATIONS

Based on the 2015 International Building Code (IBC), RGI recommends the follow seismic parameters for design.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Soil Class<sup>1</sup></td>
<td>D<sup>2</sup></td>
</tr>
<tr>
<td>Site Latitude</td>
<td>47.5032° N</td>
</tr>
<tr>
<td>Site Longitude</td>
<td>122.6903° W</td>
</tr>
<tr>
<td>Short Period Spectral Response Acceleration, S<sub>S</sub> (g)</td>
<td>1.631</td>
</tr>
<tr>
<td>1-Second Period Spectral Response Acceleration, S<sub>1</sub> (g)</td>
<td>0.567</td>
</tr>
<tr>
<td>Adjusted Short Period Spectral Response Acceleration, S<sub>MS</sub> (g)</td>
<td>1.631</td>
</tr>
<tr>
<td>Adjusted 1-Second Period Spectral Response Acceleration, S<sub>M1</sub> (g)</td>
<td>0.983</td>
</tr>
</tbody>
</table>

1. Note: In general accordance with Chapter 20 of ASCE 7-10. The Site Class is based on the average characteristics of the upper 100 feet of the subsurface profile.

2. Note: The 2015 IBC and ASCE 7-10 require a site soil profile determination extending to a depth of 100 feet for seismic site classification. The current scope of our services does not include the required 100 foot soil profile determination. Test pits extended to...
a maximum depth of 13.5 feet, and this seismic site class definition considers that similar soil continues below the maximum depth of the subsurface exploration. Additional exploration to deeper depths would be required to confirm the conditions below the current depth of exploration.

Liquefaction is a phenomenon where there is a reduction or complete loss of soil strength due to an increase in water pressure induced by vibrations from a seismic event. Liquefaction mainly affects geologically recent deposits of fine-grained sands that are below the groundwater table. Soils of this nature derive their strength from intergranular friction. The generated water pressure or pore pressure essentially separates the soil grains and eliminates this intergranular friction, thus reducing or eliminating the soil’s strength.

RGI reviewed the results of the field and laboratory testing and assessed the potential for liquefaction of the site’s soil during an earthquake. Since the site is underlain by glacially consolidated deposits and does not have an established shallow groundwater table, RGI considers that the possibility of liquefaction during an earthquake is minimal.

4.6 GEOLOGIC HAZARD AREAS

Regulated geologically hazardous areas include erosion, landslide, earthquake, or other geological hazards. Based on review of Section 20.162.076 of the Port Orchard Municipal Code (POMC), sites are to be observed to determine if geologically hazardous areas are present on the site and if they are, they shall be categorized as being Geologically Hazardous Areas or Areas of Geologic Concern.

Reconnaissance of the site slopes showed stable conditions with no signs of past movement. Springs were not observed at the site. One area in the southwestern portion of the site contains slopes greater than 30 percent, and appear to be the result of a cut for McCormick Woods Parcel A Drive SW, that was cut at about a 3H:1V slope into glacially consolidated soils. The slope is about 10 feet in height and is vegetated with grass.

Based on site observations and review of the POMC, the site does not contain Geologically Hazardous Areas or Areas of Geologic Concern.

5.0 Discussion and Recommendations

5.1 GEOTECHNICAL CONSIDERATIONS

Based on our study, the site is suitable for the proposed construction from a geotechnical standpoint. Foundations for the proposed residences can be supported on conventional spread footings bearing on medium dense to dense native soil or structural fill. Slab-on-grade floors and pavements can be similarly supported.
Detailed recommendations regarding the above issues and other geotechnical design considerations are provided in the following sections. These recommendations should be incorporated into the final design drawings and construction specifications.

5.2 **EARTHWORK**

Site earthwork will include stripping the site, excavating the infiltration pond, installing utilities, grading the lots, and excavating residence foundations.

5.2.1 **EROSION AND SEDIMENT CONTROL**

Potential sources or causes of erosion and sedimentation depend on construction methods, slope length and gradient, amount of soil exposed and/or disturbed, soil type, construction sequencing and weather. The impacts on erosion-prone areas can be reduced by implementing an erosion and sedimentation control plan. The plan should be designed in accordance with applicable city and/or county standards.

RGI recommends the following erosion control Best Management Practices (BMPs):

- Scheduling site preparation and grading for the drier summer and early fall months and undertaking activities that expose soil during periods of little or no rainfall
- Retaining existing vegetation whenever feasible
- Establishing a quarry spall construction entrance
- Installing siltation control fencing or anchored straw or coir wattles on the downhill side of work areas
- Covering soil stockpiles with anchored plastic sheeting
- Revegetating or mulching exposed soils with a minimum 3-inch thickness of straw if surfaces will be left undisturbed for more than one day during wet weather or one week in dry weather
- Directing runoff away from exposed soils and slopes
- Minimizing the length and steepness of slopes with exposed soils and cover excavation surfaces with anchored plastic sheeting (Graded and disturbed slopes should be tracked in place with the equipment running perpendicular to the slope contours so that the track marks provide a texture to help resist erosion and channeling. Some sloughing and raveling of slopes with exposed or disturbed soil should be expected.)
- Decreasing runoff velocities with check dams, straw bales or coir wattles
- Confining sediment to the project site
- Inspecting and maintaining erosion and sediment control measures frequently (The contractor should be aware that inspection and maintenance of erosion control BMPs is critical toward their satisfactory performance. Repair and/or replacement of dysfunctional erosion control elements should be anticipated.)
Permanent erosion protection should be provided by reestablishing vegetation using hydroseeding and/or landscape planting. Until the permanent erosion protection is established, site monitoring should be performed by qualified personnel to evaluate the effectiveness of the erosion control measures. Provisions for modifications to the erosion control system based on monitoring observations should be included in the erosion and sedimentation control plan.

5.2.2 STRIPPING

Stripping efforts should include removal of pavements, vegetation, organic materials, and deleterious debris from areas slated for building, pavement, and utility construction. The test pits encountered 6 to 8 inches of topsoil and rootmass. Deeper areas of stripping may be required in forested or heavily vegetated areas of the site.

5.2.3 EXCAVATIONS

All temporary cut slopes associated with the site and utility excavations should be adequately inclined to prevent sloughing and collapse. The site soils consist of loose to medium dense silty sand with varying amounts of gravel over medium dense to dense sand with varying amounts of silt and gravel and dense glacial till.

Accordingly, for excavations more than 4 feet but less than 20 feet in depth, the temporary side slopes should be laid back with a minimum slope inclination of 1H:1V (Horizontal:Vertical). If there is insufficient room to complete the excavations in this manner, or excavations greater than 20 feet in depth are planned, using temporary shoring to support the excavations should be considered. For open cuts at the site, RGI recommends:

- No traffic, construction equipment, stockpiles or building supplies are allowed at the top of cut slopes within a distance of at least five feet from the top of the cut
- Exposed soil along the slope is protected from surface erosion using waterproof tarps and/or plastic sheeting
- Construction activities are scheduled so that the length of time the temporary cut is left open is minimized
- Surface water is diverted away from the excavation
- The general condition of slopes should be observed periodically by a geotechnical engineer to confirm adequate stability and erosion control measures

In all cases, however, appropriate inclinations will depend on the actual soil and groundwater conditions encountered during earthwork. Ultimately, the site contractor must be responsible for maintaining safe excavation slopes that comply with applicable OSHA or WISHA guidelines.
5.2.4 SITE PREPARATION

After stripping, grubbing, and prior to placement of structural fill, RGI recommends proofrolling building and pavement subgrades and areas to receive structural fill. These areas should moisture conditioned and compacted to a firm and unyielding condition in order to achieve a minimum compaction level of 95 percent of the modified proctor maximum dry density as determined by the American Society of Testing and Materials D1557-09 Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (ASTM D1557).

Proofrolling and adequate subgrade compaction can only be achieved when the soils are within approximately ± 2 percent moisture content of the optimum moisture content. Soils which appear firm after stripping and grubbing may be proofrolled with a heavy compactor, loaded double-axle dump truck, or other heavy equipment under the observation of an RGI representative. This observer will assess the subgrade conditions prior to filling. The need for or advisability of proofrolling due to soil moisture conditions should be determined at the time of construction. In wet areas it may be necessary to hand probe the exposed subgrades in lieu of proofrolling with mechanical equipment.

If fill is placed in areas of the site where existing slopes are steeper than 5:1 (Horizontal:Vertical), the area should be benched to reduce the potential for slippage between existing slopes and fills. Benches should be wide enough to accommodate compaction and earth moving equipment, and to allow placement of horizontal lifts of fill.

Subgrade soils that become disturbed due to elevated moisture conditions should be overexcavated to reveal firm, non-yielding, non-organic soils and backfilled with compacted structural fill. In order to maximize utilization of site soils as structural fill, RGI recommends that the earthwork portion of this project be completed during extended periods of warm and dry weather if possible. If earthwork is completed during the wet season (typically November through May) it will be necessary to take extra precautionary measures to protect subgrade soils. Wet season earthwork will require additional mitigative measures beyond that which would be expected during the drier summer and fall months.

5.2.5 STRUCTURAL FILL

Once stripping, clearing and other preparing operations are complete, cuts and fills can be made to establish desired lot and roadway subgrades. Prior to placing fill, RGI recommends proof-rolling as described above.

RGI recommends fill below the foundation and floor slab, behind retaining walls, and below pavement and hardscape surfaces be placed in accordance with the following recommendations for structural fill. The structural fill should be placed after completion of site preparation procedures as described above.
The suitability of excavated site soils and import soils for compacted structural fill use will depend on the gradation and moisture content of the soil when it is placed. As the amount of fines (that portion passing the U.S. No. 200 sieve) increases, soil becomes increasingly sensitive to small changes in moisture content and adequate compaction becomes more difficult or impossible to achieve. Soils containing more than about 5 percent fines cannot be consistently compacted to a dense, non-yielding condition when the moisture content is more than 2 percent above or below optimum. Optimum moisture content is that moisture that results in the greatest compacted dry density with a specified compactive effort.

Non-organic site soils are only considered suitable for structural fill provided that their moisture content is within about two percent of the optimum moisture level as determined by ASTM D1557. Excavated site soils may not be suitable for re-use as structural fill depending on the moisture content and weather conditions at the time of construction. If soils are stockpiled for future reuse and wet weather is anticipated, the stockpile should be protected with plastic sheeting that is securely anchored. Even during dry weather, moisture conditioning (such as, windrowing and drying) of site soils to be reused as structural fill may be required. Even during the summer, delays in grading can occur due to excessively high moisture conditions of the soils or due to precipitation. If wet weather occurs, the upper wetted portion of the site soils may need to be scarified and allowed to dry prior to further earthwork, or may need to be wasted from the site.

Some of the site soils are moisture sensitive and may require moisture conditioning prior to use as structural fill. If the on-site soils are or become unusable, it may become necessary to import clean, granular soils to complete site work that meet the grading requirements listed in Table 2 to be used as structural fill.

Table 2 Structural Fill Gradation

<table>
<thead>
<tr>
<th>U.S. Sieve Size</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 inches</td>
<td>100</td>
</tr>
<tr>
<td>No. 4 sieve</td>
<td>22 to 100</td>
</tr>
<tr>
<td>No. 200 sieve</td>
<td>0 to 5*</td>
</tr>
</tbody>
</table>

*Based on minus 3/4 inch fraction.

Prior to use, an RGI representative should observe and test all materials imported to the site for use as structural fill. Structural fill materials should be placed in uniform loose layers not exceeding 12 inches and compacted as specified in Table 3. The soil’s maximum density and optimum moisture should be determined by ASTM D1557.
Table 3 Structural Fill Compaction ASTM D1557

<table>
<thead>
<tr>
<th>Location</th>
<th>Material Type</th>
<th>Minimum Compaction Percentage</th>
<th>Moisture Content Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foundations</td>
<td>On-site granular or approved imported fill soils:</td>
<td>95</td>
<td>+2 -2</td>
</tr>
<tr>
<td>Retaining Wall Backfill</td>
<td>On-site granular or approved imported fill soils:</td>
<td>92</td>
<td>+2 -2</td>
</tr>
<tr>
<td>Slab-on-grade</td>
<td>On-site granular or approved imported fill soils:</td>
<td>95</td>
<td>+2 -2</td>
</tr>
<tr>
<td>General Fill (non-structural areas)</td>
<td>On-site soils or approved imported fill soils:</td>
<td>90</td>
<td>+3 -2</td>
</tr>
<tr>
<td>Pavement – Subgrade and Base Course</td>
<td>On-site granular or approved imported fill soils:</td>
<td>95</td>
<td>+2 -2</td>
</tr>
</tbody>
</table>

Placement and compaction of structural fill should be observed by RGI. A representative number of in-place density tests should be performed as the fill is being placed to confirm that the recommended level of compaction is achieved.

5.2.6 CUT AND FILL SLOPES

All permanent cut and fill slopes (except interior slopes of detention pond) should be graded with a finished inclination no greater than 2H:1V. The interior slopes of the detention or infiltration pond must be graded with a slope gradient no steeper than 3H:1V. Upon completion of construction, the slope face should be trackwalked, compacted and vegetated, or provided with other physical means to guard against erosion. All fill placed for slope construction should meet the structural fill requirements as described in Section 5.2.5.

Final grades at the top of the slopes must promote surface drainage away from the slope crest. Water must not be allowed to flow in an uncontrolled fashion over the slope face. If it is necessary to direct surface runoff towards the slope, it should be controlled at the top of the slope, piped in a closed conduit installed on the slope face, and taken to an appropriate point of discharge beyond the toe of the slope.

5.2.7 WET WEATHER CONSTRUCTION CONSIDERATIONS

RGI recommends that preparation for site grading and construction include procedures intended to drain ponded water, control surface water runoff, and to collect shallow subsurface seepage zones in excavations where encountered. It will not be possible to successfully compact the subgrade or utilize on-site soils as structural fill if accumulated water is not drained prior to grading or if drainage is not controlled during construction. Attempting to grade the site without adequate drainage control measures will reduce the
amount of on-site soil effectively available for use, increase the amount of select import fill materials required, and ultimately increase the cost of the earthwork phases of the project. Free water should not be allowed to pond on the subgrade soils. RGI anticipates that the use of berms and shallow drainage ditches, with sumps and pumps in utility trenches, will be required for surface water control during wet weather and/or wet site conditions.

5.3 FOUNDATIONS

Following site preparation and grading, the proposed residence foundations can be supported on conventional spread footings bearing on medium dense native soil or structural fill. Loose, organic, or other unsuitable soils may be encountered in the proposed building footprint. If unsuitable soils are encountered, they should be overexcavated and backfilled with structural fill. If loose soils granular soils are encountered, the soil should be moisture conditioned and compacted to the requirements of structural fill.

Perimeter foundations exposed to weather should be at a minimum depth of 18 inches below final exterior grades. Interior foundations can be constructed at any convenient depth below the floor slab. Finished grade is defined as the lowest adjacent grade within 5 feet of the foundation for perimeter (or exterior) footings and finished floor level for interior footings.

Table 4 Foundation Design

<table>
<thead>
<tr>
<th>Design Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allowable Bearing Capacity</td>
<td>2,000 psf(^1)</td>
</tr>
<tr>
<td>Friction Coefficient</td>
<td>0.30</td>
</tr>
<tr>
<td>Passive pressure (equivalent fluid pressure)</td>
<td>250 pcf(^2)</td>
</tr>
<tr>
<td>Minimum foundation dimensions</td>
<td>Columns: 24 inches</td>
</tr>
<tr>
<td></td>
<td>Walls: 16 inches</td>
</tr>
</tbody>
</table>

1. psf = pounds per square foot
2. pcf = pounds per cubic foot

The allowable foundation bearing pressures apply to dead loads plus design live load conditions. For short-term loads, such as wind and seismic, a 1/3 increase in this allowable capacity may be used. At perimeter locations, RGI recommends not including the upper 12 inches of soil in the computation of passive pressures because they can be affected by weather or disturbed by future grading activity. The passive pressure value assumes the foundation will be constructed neat against competent soil or backfilled with
structural fill as described in Section 5.2.5. The recommended base friction and passive resistance value includes a safety factor of about 1.5.

With spread footing foundations designed in accordance with the recommendations in this section, maximum total and differential post-construction settlements of 1 inch and 1/2 inch, respectively, should be expected.

5.4 RETAINING WALLS

If retaining walls are needed for the residences or for walls in the detention or infiltration pond, RGI recommends cast-in-place concrete walls be used. For grade chances outside of building areas, modular block walls or MSE walls may also be used. The magnitude of earth pressure development on retaining walls will partly depend on the quality of the wall backfill. RGI recommends placing and compacting wall backfill as structural fill. Wall drainage will be needed behind the wall face. A typical retaining wall drainage detail is shown in Figure 3.

With wall backfill placed and compacted as recommended, and drainage properly installed, RGI recommends using the values in the following table for design.

<table>
<thead>
<tr>
<th>Design Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allowable Bearing Capacity</td>
<td>2,000 psf</td>
</tr>
<tr>
<td>Active Earth Pressure (unrestrained walls)</td>
<td>35 pcf</td>
</tr>
<tr>
<td>At-rest Earth Pressure (restrained walls)</td>
<td>50 pcf</td>
</tr>
</tbody>
</table>

For seismic design, an additional uniform load of 7 times the wall height (H) for unrestrained walls and 14H in psf for restrained walls should be applied to the wall surface. Friction at the base of foundations and passive earth pressure will provide resistance to these lateral loads. Values for these parameters are provided in Section 5.3.

5.5 SLAB-ON-GRADE CONSTRUCTION

Once site preparation has been completed as described in Section 5.2, suitable support for slab-on-grade construction should be provided. RGI recommends that the concrete slab be placed on top of medium dense native soil or structural fill. Immediately below the floor slab, RGI recommends placing a four-inch thick capillary break layer of clean, free-draining sand or gravel that has less than five percent passing the U.S. No. 200 sieve. This material will reduce the potential for upward capillary movement of water through the underlying soil and subsequent wetting of the floor slab.
Where moisture by vapor transmission is undesirable, an 8- to 10-millimeter thick plastic membrane should be placed on a 4-inch thick layer of clean gravel. For the anticipated floor slab loading, we estimate post-construction floor settlements of 1/4- to 1/2-inch.

5.6 DRAINAGE

5.6.1 SURFACE

Final exterior grades should promote free and positive drainage away from the building area. Water must not be allowed to pond or collect adjacent to foundations or within the immediate building area. For non-pavement locations, RGI recommends providing a minimum drainage gradient of 3 percent for a minimum distance of 10 feet from the building perimeter. In paved locations, a minimum gradient of 1 percent should be provided unless provisions are included for collection and disposal of surface water adjacent to the structure.

5.6.2 SUBSURFACE

RGI recommends installing perimeter foundation drains. A typical footing drain detail is shown on Figure 4. The foundation drains and roof downspouts should be tightlined separately to an approved discharge facility. Subsurface drains must be laid with a gradient sufficient to promote positive flow to a controlled point of approved discharge.

5.6.3 INFILTRATION

Infiltration is feasible at the site, and an evaluation of the infiltration in the pond area is underway and will be provided under separate cover.

5.6.4 DISPERSION

Based on the preliminary site plan, dispersion may be used in Tract B for the roof downspouts for the upslope lots. Based on our site observations, dispersion should be feasible on the slopes in this area.

5.6.5 UTILITIES

Utility pipes should be bedded and backfilled in accordance with American Public Works Association (APWA) specifications. For site utilities located within the right-of-ways, bedding and backfill should be completed in accordance with City of Port Orchard specifications. At a minimum, trench backfill should be placed and compacted as structural fill, as described in Section 5.2.5. Where utilities occur below unimproved areas, the degree of compaction can be reduced to a minimum of 90 percent of the soil’s maximum density as determined by the referenced ASTM D1557. As noted, soils excavated on site should be suitable for use as backfill material. If on-site soils are or
become unusable, imported structural fill meeting the gradation provided in Table 2 should be used for trench backfill.

5.7 Pavements

Pavement subgrades should be prepared as described in Section 5.2 and as discussed below. Regardless of the relative compaction achieved, the subgrade must be firm and relatively unyielding before paving. The subgrade should be proof-rolled with heavy construction equipment to verify this condition.

5.7.1 Flexible Pavements

With the pavement subgrade prepared as described above, RGI recommends the following pavement sections for parking and drive areas paved with flexible asphalt concrete surfacing.

- **For drive areas**: 3 inches of Hot Mix Asphalt (HMA) over 6 inches of crushed rock base (CRB)
- **For general parking areas**: 2 inches of HMA over 4 inches of CRB

5.7.2 Concrete Pavements

With the pavement subgrade prepared as described above, RGI recommends the following pavement sections for parking and drive areas paved with concrete surfacing.

- **For concrete pavement areas**: 5 inches of concrete over 4 inches of CRB

The paving materials used should conform to the WSDOT specifications for HMA, concrete paving, CRB surfacing (9-03.9(3) Crushed Surfacing), and gravel base (9-03.10 Aggregate for Gravel Base).

Long-term pavement performance will depend on surface drainage. A poorly-drained pavement section will be subject to premature failure as a result of surface water infiltrating into the subgrade soils and reducing their supporting capability.

For optimum pavement performance, surface drainage gradients of no less than 2 percent are recommended. Also, some degree of longitudinal and transverse cracking of the pavement surface should be expected over time. Regular maintenance should be planned to seal cracks when they occur.

6.0 Additional Services

RGI is available to provide further geotechnical consultation throughout the design phase of the project. RGI should review the final design and specifications in order to verify that earthwork and foundation recommendations have been properly interpreted and incorporated into project design and construction.
RGI is also available to provide geotechnical engineering and construction monitoring services during construction. The integrity of the earthwork and construction depends on proper site preparation and procedures. In addition, engineering decisions may arise in the field in the event that variations in subsurface conditions become apparent. Construction monitoring services are not part of this scope of work.

7.0 Limitations

This GER is the property of RGI, Windward Real Estate, and its designated agents. Within the limits of the scope and budget, this GER was prepared in accordance with generally accepted geotechnical engineering practices in the area at the time this GER was issued. This GER is intended for specific application to the McCormick Woods Parcel A project in Port Orchard, Washington, and for the exclusive use of Windward Real Estate and its authorized representatives. No other warranty, expressed or implied, is made. Site safety, excavation support, and dewatering requirements are the responsibility of others.

The scope of services for this project does not include either specifically or by implication any environmental or biological (for example, mold, fungi, bacteria) assessment of the site or identification or prevention of pollutants, hazardous materials or conditions. If the owner is concerned about the potential for such contamination or pollution, we can provide a proposal for these services.

The analyses and recommendations presented in this GER are based upon data obtained from the explorations performed on site. Variations in soil conditions can occur, the nature and extent of which may not become evident until construction. If variations appear evident, RGI should be requested to reevaluate the recommendations in this GER prior to proceeding with construction.

It is the client’s responsibility to see that all parties to the project, including the designers, contractors, subcontractors, are made aware of this GER in its entirety. The use of information contained in this GER for bidding purposes should be done at the contractor’s option and risk.
Geotechnical Exploration Plan

Figure 2

Approximate Scale: 1"=200'

= Test pit by RGI, 04/30/19
= Site boundary

Corporate Office
17522 Bothell Way Northeast
Bothell, Washington 98011
Phone: 425.415.0551
Fax: 425.415.0311

RGI Project Number: 2019-088
Geotechnical Exploration Plan
Address: McCormick Woods Dr. Southwest & St. Edwards Dr., Port Orchard, Washington 98367

Date Drawn: 05/2019
Retaining Wall Drainage Detail

Figure 3

Not to Scale

12" Minimum Wide Free-Draining Gravel

Filter Fabric Material

12" min.

12" Over the Pipe

Excavated Slope (See Report for Appropriate Inclinations)

Compacted Structural Backfill (Native or Import)

12" Over the Pipe

3" Below the Pipe

4" Diameter PVC Perforated Pipe

12" Minimum Wide Free-Draining Gravel
Building Slab

Compacted Structural Backfill

Filter Fabric

4" Perforated Pipe

3/4" Washed Rock or Pea Gravel

Not to Scale

McCormick Woods Parcel A

Figure 4

RGI Project Number: 2019-088

Typical Footing Drain Detail

Date Drawn: 05/2019

Address: McCormick Woods Dr. Southwest & St. Edwards Dr., Port Orchard, Washington 98367
APPENDIX A
FIELD EXPLORATION AND LABORATORY TESTING

On April 30, 2019, RGI performed field explorations using a tracked excavator. We explored subsurface soil conditions at the site by observing the excavation of eight test pits to a maximum depth of 13.5 feet below existing grade. The test pit locations are shown on Figure 2. The test pit locations were approximately determined by measurements from existing property lines and paved roads.

A geologist from our office conducted the field exploration and classified the soil conditions encountered, maintained a log of each test exploration, obtained representative soil samples, and observed pertinent site features. All soil samples were visually classified in accordance with the Unified Soil Classification System (USCS).

Representative soil samples obtained from the explorations were placed in closed containers and taken to our laboratory for further examination and testing. As a part of the laboratory testing program, the soil samples were classified in our in house laboratory based on visual observation, texture, plasticity, and the limited laboratory testing described below.

Moisture Content Determinations

Moisture content determinations were performed in accordance with ASTM D2216-10 Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass (ASTM D2216) on representative samples obtained from the exploration in order to aid in identification and correlation of soil types. The moisture content of typical sample was measured and is reported on the test pit logs.

Grain Size Analysis

A grain size analysis indicates the range in diameter of soil particles included in a particular sample. Grain size analyses was determined using D6913-04(2009) Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis (ASTM D6913) on eight of the samples.
Project Name: McCormick Woods
Project Number: 2019-088
Client: Windward

<table>
<thead>
<tr>
<th>Date(s) Excavated</th>
<th>Logged By</th>
<th>Surface Conditions</th>
<th>Total Depth of Excavation</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/30/2019</td>
<td>ELW</td>
<td>Mixed Brush/Ferns</td>
<td>7 feet bgs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Excavation Method</th>
<th>Bucket Size</th>
<th>Excavator Type</th>
<th>Excavating Contractor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Pit</td>
<td>4'</td>
<td>Tracked Excavator</td>
<td>Client</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Groundwater Level</th>
<th>Sampling Method(s)</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seepage at 5'</td>
<td>Grab</td>
<td>McCormick Woods Drive SW and St. Andrews Drive SW</td>
</tr>
</tbody>
</table>

Test Pit Backfill: Cuttings

Surface Conditions: Mixed Brush/Ferns

Total Depth of Excavation: 7 feet bgs

Approximate Surface Elevation: 411

<table>
<thead>
<tr>
<th>Test Pit No.: TP-1</th>
<th>Graphic Log</th>
</tr>
</thead>
</table>

MATERIAL DESCRIPTION

- **SM** 8" topsoil
 - Reddish brown silty SAND with some gravel, loose, moist
 - Becomes medium dense
 - 19% moisture, 19% fines

- **SM** Gray silty SAND with trace gravel, dense, moist, (Glacial Till), moderately cemented
 - Becomes wet
 - Contains sand lens with light groundwater seepage
 - 17% moisture
 - 11% moisture

- Test pit terminated at 7'

REMARKS AND OTHER TESTS

The Riley Group, Inc.
17522 Bothell Way NE, Bothell, WA 98011
Date(s) Excavated: 4/30/2019 Logged By: ELW Surface Conditions: Ferns/Moss
Excavation Method: Test Pit Bucket Size: 4’ Total Depth of Excavation: 10.5 feet bgs
Excavator Type: Tracked Excavator Excavating Contractor: Client Approximate Surface Elevation: 387
Groundwater Level: Not encountered Sampling Method(s): Grab Compaction Method: Bucket tamp
Test Pit Backfill: Cuttings Location: McCormick Woods Drive SW and St. Andrews Drive SW

MATERIAL DESCRIPTION

- **SM** 6” topsoil
 - Reddish brown silty SAND with some gravel, loose, moist
 - Becomes medium dense
 - 10% moisture

- **SP** 5” topsoil
 - Gray SAND with some gravel, medium dense, moist
 - Increasing in gravel
 - 4% moisture

- **SM** 5” topsoil
 - Tan mottled silty SAND with some gravel, medium dense, moist to wet
 - Test pit terminated at 10.5’
 - 3% moisture

 REMARKS AND OTHER TESTS

- **USCS Symbol**
 - Tpsl
 - SM
 - SP

- **Sample Number**

- **Elevation (feet)**
 - 387
 - 382
 - 377
 - 372

- **Depth (feet)**
 - 0
 - 5
 - 10
 - 15
Project Name: McCormick Woods
Project Number: 2019-088
Client: Windward

Date(s) Excavated: 4/30/2019
Logged By: ELW
Surface Conditions: Ferns/Mixed Brush

Excavation Method: Test Pit
Bucket Size: 4'
Total Depth of Excavation: 10 feet bgs

Excavator Type: Tracked Excavator
Excavating Contractor: Client
Approximate Surface Elevation: 386

Groundwater Level: Not encountered
Sampling Method(s): Grab
Compaction Method: Bucket tamp

Test Pit No.: TP-3
Test Pit Backfill: Cuttings
Location: McCormick Woods Drive SW and St. Andrews Drive SW

Surface Elevation: 386

<table>
<thead>
<tr>
<th>Elevation (feet)</th>
<th>Depth (feet)</th>
<th>Sample Number</th>
<th>USC Symbol</th>
<th>Graphic Log</th>
<th>MATERIAL DESCRIPTION</th>
<th>REMARKS AND OTHER TESTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>376</td>
<td>0</td>
<td></td>
<td>Tpsl SM</td>
<td></td>
<td>6” topsoil</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Reddish brown silty SAND, loose, moist</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Becomes medium dense</td>
<td>11% moisture</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>Gray SAND with some silt, medium dense, moist</td>
<td>18% moisture</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td>Test pit terminated at 10’</td>
<td>10% moisture</td>
</tr>
</tbody>
</table>

The Riley Group, Inc.
17522 Bothell Way NE, Bothell, WA 98011
Project Name: McCormick Woods
Project Number: 2019-088
Client: Windward

Date(s) Excavated: 4/30/2019
Logged By: ELW
Surface Conditions: Ferns/Mixed Brush

Excavation Method: Test Pit
Bucket Size: 4'
Approximate Surface Elevation: 379
Total Depth of Excavation: 12.5 feet bgs

Excavator Type: Tracked Excavator
Excavating Contractor: Client
Groundwater Level: Not encountered
Sampling Method(s): Grab
Compaction Method: Bucket tamp

Test Pit No.: TP-4
Test Pit Backfill: Cuttings
Location: McCormick Woods Drive SW and St. Andrews Drive SW

<table>
<thead>
<tr>
<th>Elevation (feet)</th>
<th>Depth (feet)</th>
<th>Sample Number</th>
<th>USC Symbol</th>
<th>Graphic Log</th>
<th>MATERIAL DESCRIPTION</th>
<th>REMARKS AND OTHER TESTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>379</td>
<td>0</td>
<td></td>
<td>Tpsl</td>
<td></td>
<td>6" topsoil</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SM</td>
<td></td>
<td>Reddish brown silty SAND, loose, moist</td>
<td>11% moisture</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Becomes medium dense</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SM</td>
<td></td>
<td>Tan silty SAND with trace gravel, medium dense, moist, lightly cemented</td>
<td>7% moisture</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SP-SM</td>
<td></td>
<td>Gray SAND with some silt and gravel, medium dense to dense, moist</td>
<td>7% moisture, 9% fines</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Becomes dense, well cemented</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SW-SM</td>
<td></td>
<td>Gray SAND with some silt and trace gravel, medium dense to dense, moist</td>
<td>8% moisture, 12% fines</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6% moisture</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7% moisture</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Test pit terminated at 12.5'</td>
<td></td>
</tr>
</tbody>
</table>
Project Name: McCormick Woods
Project Number: 2019-088
Client: Windward

<table>
<thead>
<tr>
<th>Date(s) Excavated:</th>
<th>Logged By</th>
<th>Excavation Method:</th>
<th>Excavator Type:</th>
<th>Excavator Contractor:</th>
<th>Test Pit Backfill:</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/30/2019</td>
<td>ELW</td>
<td>Test Pit</td>
<td>Tracked Excavator</td>
<td>Client</td>
<td>Cuttings</td>
</tr>
</tbody>
</table>

Groundwater Level: Not encountered
Sampling Method(s): Grab
Surface Conditions: Ferns/Mixed Brush/Moss

Total Depth of Excavation: 13.5 feet bgs
Approximate Surface Elevation: 376

Graphic Log

<table>
<thead>
<tr>
<th>Elevation (feet)</th>
<th>Depth (feet)</th>
<th>Sample Number</th>
<th>Sample Type</th>
<th>USC Symbol</th>
<th>Graphic Log</th>
<th>MATERIAL DESCRIPTION</th>
<th>REMARKS AND OTHER TESTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>376</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6” topsoil</td>
<td></td>
</tr>
<tr>
<td>371</td>
<td>5</td>
<td></td>
<td></td>
<td>SM</td>
<td></td>
<td>Reddish brown silty SAND with trace gravel, loose, moist</td>
<td>10% moisture</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Becomes medium dense</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SM</td>
<td></td>
<td>Gray silty SAND with some gravel, dense, moist (Glacial Till)</td>
<td>8% moisture, 23% fines</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Moderately cemented</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SP-SM</td>
<td></td>
<td>Gray SAND with some silt and trace gravel, dense, moist</td>
<td>7% moisture, 8% fines</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Contains silty SAND interbeds</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SP-SM</td>
<td></td>
<td>Gray SAND with some silt and gravel, dense, moist</td>
<td>7% moisture, 7% fines</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>366</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Test pit terminated at 13.5'</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>361</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The Riley Group, Inc.
17522 Bothell Way NE, Bothell, WA 98011
Date(s) Excavated: 4/30/2019
Logged By: ELW
Surface Conditions: Ferns/Moss

Test Pit No.: TP-6
Sheet 1 of 1

Reported on behalf of:

The Riley Group, Inc.
17522 Bothell Way NE, Bothell, WA 98011
Project Name: McCormick Woods
Project Number: 2019-088
Client: Windward

Date(s) Excavated: 4/30/2019
Logged By: ELW

Excavation Method: Test Pit
Bucket Size: 4'

Excavator Type: Tracked Excavator
Excavating Contractor: Client

Groundwater Level: Not encountered
Sampling Method(s): Grab

Test Pit Backfill: Cuttings
Location: McCormick Woods Drive SW and St. Andrews Drive SW

Surface Conditions: Mixed Brush/Ferns/Moss
Total Depth of Excavation: 10 feet bgs
Approximate Surface Elevation: 408
Compaction Method: Bucket tamp

USCS Symbol
Tpsl
SM
SP-SM
SM

REMARKS AND OTHER TESTS
6% moisture
9% moisture

MATERIAL DESCRIPTION
6" topsoil
Reddish brown silty SAND with some gravel, loose, moist
Becomes medium dense

Gray gravelly SAND with some silt, medium dense, moist

Gray silty SAND with some gravel, very dense, moist (Glacial Till)
Test pit terminated at 10'

Sample Number
0
5
10
15

Elevation (feet)
408
403
398
393
Project Name: McCormick Woods
Project Number: 2019-088
Client: Windward

Test Pit No.: TP-8
Sheet 1 of 1

<table>
<thead>
<tr>
<th>Date(s) Excavated: 4/30/2019</th>
<th>Logged By: ELW</th>
<th>Surface Conditions: Ferns/Mixed Brush</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excavation Method: Test Pit</td>
<td>Bucket Size: 4’</td>
<td>Total Depth of Excavation: 6 feet bgs</td>
</tr>
<tr>
<td>Excavator Type: Tracked Excavator</td>
<td>Excavating Contractor: Client</td>
<td>Approximate Surface Elevation: 413</td>
</tr>
<tr>
<td>Groundwater Level: Not encountered</td>
<td>Sampling Method(s): Grab</td>
<td>Compaction Method: Bucket tamp</td>
</tr>
<tr>
<td>Test Pit Backfill: Cuttings</td>
<td>Location: McCormick Woods Drive SW and St. Andrews Drive SW</td>
<td></td>
</tr>
</tbody>
</table>

Graphic Log:

- **USCS Symbol:** Tpsl
- **Material Description:**
 - 6” topsoil
 - Reddish brown silty SAND with some gravel, loose, moist
 - Becomes medium dense
 - Gray SAND with some silt and gravel, dense, moist
 - Very dense, well cemented
 - Test pit terminated at 6’

Remarks and Other Tests:
- 13% moisture
- 8% moisture, 7% fines

The Riley Group, Inc.
17522 Bothell Way NE, Bothell, WA 98011
COLUMNS DESCRIPTIONS

1. Elevation (feet): Elevation (MSL, feet).
2. Depth (feet): Depth in feet below the ground surface.
3. Sample Type: Type of soil sample collected at the depth interval shown.
4. Sample Number: Sample identification number.
5. USCS Symbol: USCS symbol of the subsurface material encountered.
6. Graphic Log: Graphic depiction of the subsurface material encountered.
7. MATERIAL DESCRIPTION: Description of material encountered. May include consistency, moisture, color, and other descriptive text.
8. REMARKS AND OTHER TESTS: Comments and observations regarding drilling or sampling made by driller or field personnel.

FIELD AND LABORATORY TEST ABBREVIATIONS

CHEM: Chemical tests to assess corrosivity
COMP: Compaction test
CONS: One-dimensional consolidation test
LL: Liquid Limit, percent
PI: Plasticity Index, percent
SA: Sieve analysis (percent passing No. 200 Sieve)
UC: Unconfined compressive strength test, Qu, in ksf
WA: Wash sieve (percent passing No. 200 Sieve)

MATERIAL GRAPHIC SYMBOLS

- Silty SAND (SM)
- Poorly graded SAND (SP)
- Poorly graded SAND with Silt (SP-SM)
- Well graded SAND with Silt (SW-SM)
- Topsoil

TYPICAL SAMPLER GRAPHIC SYMBOLS

Auger sampler
Bulk Sample
3-inch-OD California w/ brass rings
CME Sampler
Grab Sample
2.5-inch-OD Modified California w/ brass liners
Pitcher Sample
2-inch-OD unlined split spoon (SPT)
Shelby Tube (Thin-walled, fixed head)

OTHER GRAPHIC SYMBOLS

Water level (at time of drilling, ATD)
Water level (after waiting)
Minor change in material properties within a stratum
Inferred/gradational contact between strata
Queried contact between strata

GENERAL NOTES

1: Soil classifications are based on the Unified Soil Classification System. Descriptions and stratum lines are interpretive, and actual lithologic changes may be gradual. Field descriptions may have been modified to reflect results of lab tests.
2: Descriptions on these logs apply only at the specific boring locations and at the time the borings were advanced. They are not warranted to be representative of subsurface conditions at other locations or times.
GRAIN SIZE ANALYSIS

ASTM D421, D422, D1140, D2487, D6913

<table>
<thead>
<tr>
<th>PROJECT TITLE</th>
<th>McCormick Woods</th>
<th>SAMPLE ID/TYPE</th>
<th>TP-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROJECT NO.</td>
<td>2019-088</td>
<td>SAMPLE DEPTH</td>
<td>2 Feet</td>
</tr>
<tr>
<td>TECH/TEST DATE</td>
<td>LW 5/1/2019</td>
<td>DATE RECEIVED</td>
<td>4/30/2019</td>
</tr>
</tbody>
</table>

WATER CONTENT (Delivered Moisture)

<table>
<thead>
<tr>
<th>Description</th>
<th>Weight (gm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wt Wet Soil & Tare (gm) (w1)</td>
<td>372.8</td>
</tr>
<tr>
<td>Wt Dry Soil & Tare (gm) (w2)</td>
<td>334.7</td>
</tr>
<tr>
<td>Weight of Tare (gm) (w3)</td>
<td>132.9</td>
</tr>
<tr>
<td>Weight of Water (gm) (w4=w1-w2)</td>
<td>38.1</td>
</tr>
<tr>
<td>Weight of Dry Soil (gm) (w5=w2-w3)</td>
<td>201.8</td>
</tr>
<tr>
<td>Moisture Content (%) (w4/w5)*100</td>
<td>19</td>
</tr>
</tbody>
</table>

SIEVE ANALYSIS

% COBBLES	0.0
% C GRAVEL	0.0
% F GRAVEL	15.3
% C SAND	13.0
% M SAND	16.5
% F SAND	36.7
% FINES	18.6
% TOTAL	100.0

<table>
<thead>
<tr>
<th>D10 (mm)</th>
<th>D30 (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>Cu</td>
</tr>
<tr>
<td>#4</td>
<td>#10</td>
</tr>
<tr>
<td>#20</td>
<td>#40</td>
</tr>
<tr>
<td>#60</td>
<td>#100</td>
</tr>
<tr>
<td>#200</td>
<td>PAN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cu</th>
<th>12"</th>
<th>3"</th>
<th>2"</th>
<th>1.75"</th>
<th>.375"</th>
<th>#4</th>
<th>#10</th>
<th>#20</th>
<th>#40</th>
<th>#60</th>
<th>#100</th>
<th>#200</th>
</tr>
</thead>
<tbody>
<tr>
<td>163.7</td>
<td>30.80</td>
<td>15.26</td>
<td>84.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>190.0</td>
<td>57.10</td>
<td>28.30</td>
<td>71.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>223.2</td>
<td>90.30</td>
<td>44.75</td>
<td>55.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>276.3</td>
<td>143.40</td>
<td>71.06</td>
<td>28.94</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>297.2</td>
<td>164.30</td>
<td>81.42</td>
<td>18.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>334.7</td>
<td>201.80</td>
<td>100.00</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DESCRIPTION

Silty SAND with some gravel

USCS SM

Prepared For: Windward

Reviewed By: KW
Grain Size Analysis

ASTM D421, D422, D1140, D2487, D6913

Sample Details
- **Project Title**: McCormick Woods
- **Sample ID/Type**: TP-4
- **Project No.**: 2019-088
- **Sample Depth**: 4 Feet
- **Tech/Test Date**: LW 5/1/2019
- **Date Received**: 4/30/2019

Water Content (Delivered Moisture)
- Wt Wet Soil & Tare (gm) (w1) = 763.9
- Wt Dry Soil & Tare (gm) (w2) = 721.6
- Weight of Tare (gm) (w3) = 133.3
- Weight of Water (gm) (w4 = w1 - w2) = 42.3
- Weight of Dry Soil (gm) (w5 = w2 - w3) = 588.3

Cumulative Sieve Analysis

<table>
<thead>
<tr>
<th>Grain Size (mm)</th>
<th>% COBBLES</th>
<th>% C GRAVEL</th>
<th>% F GRAVEL</th>
<th>% C SAND</th>
<th>% M SAND</th>
<th>% F SAND</th>
<th>% FINES</th>
<th>% TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0"</td>
<td>133.3</td>
<td>0.00</td>
<td>0.00</td>
<td>100.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.0"</td>
<td>133.3</td>
<td>0.00</td>
<td>0.00</td>
<td>100.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0"</td>
<td>133.3</td>
<td>0.00</td>
<td>0.00</td>
<td>100.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0"</td>
<td>133.3</td>
<td>0.00</td>
<td>0.00</td>
<td>100.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.75"</td>
<td>164.1</td>
<td>30.80</td>
<td>5.24</td>
<td>94.76</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.50"</td>
<td>239.2</td>
<td>105.90</td>
<td>18.00</td>
<td>82.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.375"</td>
<td>449.9</td>
<td>316.60</td>
<td>53.82</td>
<td>46.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#4</td>
<td>638.7</td>
<td>505.40</td>
<td>85.91</td>
<td>14.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#10</td>
<td>668.9</td>
<td>535.60</td>
<td>91.04</td>
<td>8.96</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D10 (mm)</td>
<td>0.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D30 (mm)</td>
<td>0.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D60 (mm)</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>16.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cc</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description

Poorly graded SAND with some silt and gravel

USCS

SP-SM

Prepared For: Windward

Reviewed By: KW
Grain Size Analysis

ASTM D421, D422, D1140, D2487, D6913

Project Details
- **Project Title**: McCormick Woods
- **Sample ID/Type**: TP-4
- **Project No.**: 2019-088
- **Sample Depth**: 6 Feet
- **Date Received**: 4/30/2019
- **Tech/Test Date**: LW 5/1/2019

Water Content
- **Total Weight Of Sample Used For Sieve Corrected For Hygroscopic Moisture**
 - Wt Wet Soil & Tare (gm) (w1): 534.7
 - Weight Of Sample (gm): 500.1
 - Tare Weight (gm): 133.3
 - Total Dry Weight (gm): 366.8

Sieve Analysis

<table>
<thead>
<tr>
<th>% Cobbles</th>
<th>% C Gravel</th>
<th>% F Gravel</th>
<th>% C Sand</th>
<th>% M Sand</th>
<th>% F Sand</th>
<th>% Finies</th>
<th>% Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>17.1</td>
<td>14.5</td>
<td>26.1</td>
<td>31.8</td>
<td>10.5</td>
<td>100.0</td>
</tr>
</tbody>
</table>

- **D10 (mm)**: 0.07
- **D30 (mm)**: 0.24
- **D60 (mm)**: 1.3
- **Cu**: 18.6
- **Cc**: 0.6

Description
- Poorly graded SAND with some silt and gravel

USCS
- **SP-SM**

Prepared For: Windward Reviewed By: KW

Grain size in millimeters

- **%**: 100 90 80 70 60 50 40 30 20 10 0
- **Grain size in millimeters**: 12" 3" 2" 1" .75" .375" #4 #10 #20 #40 #60 #100 #200

DESCRIPTION: Poorly graded SAND with some silt and gravel

USCS: SP-SM
Grain Size Analysis

ASTM D421, D422, D1140, D2487, D6913

Project Title: McCormick Woods
Sample ID/Type: TP-4
Project No.: 2019-088
Sample Depth: 8 Feet
Tech/Test Date: LW 5/1/2019
Date Received: 4/30/2019

Water Content (Delivered Moisture)

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wt Wet Soil & Tare (gm)</td>
</tr>
<tr>
<td>Wt Dry Soil & Tare (gm)</td>
</tr>
<tr>
<td>Weight of Tare (gm)</td>
</tr>
<tr>
<td>Weight of Water (gm)</td>
</tr>
<tr>
<td>Weight of Dry Soil (gm)</td>
</tr>
<tr>
<td>Moisture Content (%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wt Ret (Wt-Tare)</th>
<th>(%Retained)</th>
<th>(100-%ret)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0'</td>
<td>133.8</td>
<td>0.00</td>
</tr>
<tr>
<td>3.0'</td>
<td>133.8</td>
<td>0.00</td>
</tr>
<tr>
<td>2.5'</td>
<td>133.8</td>
<td>0.00</td>
</tr>
<tr>
<td>1.5'</td>
<td>133.8</td>
<td>0.00</td>
</tr>
<tr>
<td>0.75'</td>
<td>133.8</td>
<td>0.00</td>
</tr>
<tr>
<td>0.50'</td>
<td>133.8</td>
<td>0.00</td>
</tr>
<tr>
<td>0.375'</td>
<td>158.9</td>
<td>25.10</td>
</tr>
<tr>
<td>#4</td>
<td>179.4</td>
<td>45.60</td>
</tr>
<tr>
<td>#10</td>
<td>195.2</td>
<td>61.40</td>
</tr>
<tr>
<td>#20</td>
<td>273.1</td>
<td>139.30</td>
</tr>
<tr>
<td>#40</td>
<td>273.1</td>
<td>139.30</td>
</tr>
<tr>
<td>#60</td>
<td>456.1</td>
<td>322.30</td>
</tr>
<tr>
<td>#100</td>
<td>475.2</td>
<td>341.40</td>
</tr>
<tr>
<td>#200</td>
<td>521.5</td>
<td>387.70</td>
</tr>
</tbody>
</table>

Description

Well graded SAND with some silt and trace gravel

USCS

SW-SM

Prepared For: Windward
Reviewed By: KW
GRAIN SIZE ANALYSIS

ASTM D421, D422, D1140, D2487, D6913

<table>
<thead>
<tr>
<th>Water Content (Delivered Moisture)</th>
<th>Total Weight Of Sample Used For Sieve Corrected For Hygroscopic Moisture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wt Wet Soil & Tare (gm)</td>
<td>Weight Of Sample (gm)</td>
</tr>
<tr>
<td>Wt Dry Soil & Tare (gm)</td>
<td>Tare Weight (gm)</td>
</tr>
<tr>
<td>Weight of Tare (gm)</td>
<td>Total Dry Weight (gm)</td>
</tr>
<tr>
<td>Weight of Water (gm)</td>
<td></td>
</tr>
<tr>
<td>Weight of Dry Soil (gm)</td>
<td></td>
</tr>
<tr>
<td>Moisture Content (%)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>% COBBLES</th>
<th>% C GRAVEL</th>
<th>% F GRAVEL</th>
<th>% C SAND</th>
<th>% M SAND</th>
<th>% F SAND</th>
<th>% FINES</th>
<th>% TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>9.1</td>
<td>9.3</td>
<td>3.5</td>
<td>12.0</td>
<td>42.7</td>
<td>23.3</td>
<td>100.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D10 (mm)</th>
<th>D30 (mm)</th>
<th>D60 (mm)</th>
<th>Cu</th>
<th>Cc</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grain size in millimeters</th>
</tr>
</thead>
<tbody>
<tr>
<td>12'</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>% PASS</th>
<th>Cumulative</th>
</tr>
</thead>
<tbody>
<tr>
<td>+Tare</td>
<td>(Wt-Tare)</td>
</tr>
<tr>
<td>(wt ret/w6)*100</td>
<td>(100-%ret)</td>
</tr>
</tbody>
</table>

- 12.0" = 123.7 0.00 0.00 100.00 cobble
- 3.0" = 123.7 0.00 0.00 100.00 coarse gravel
- 0.75" = 159.7 36.00 9.10 90.90 fine gravel

DESCRIPTION

Silty SAND with some gravel

USCS

SM

Prepared For: Windward
Reviewed By: KW
Grain Size Analysis

ASTM D421, D422, D1140, D2487, D6913

Project Details

- **Project Title:** McCormick Woods
- **Sample ID/Type:** TP-5
- **Project No.:** 2019-088
- **Sample Depth:** 7 Feet
- **Sample Received Date:** 4/30/2019
- **Tech/Test Date:** LW 5/1/2019

Water Content

- **Wt Wet Soil & Tare (gm):** 685.2
- **Weight Of Sample (gm):** 647.3
- **Weight Of Water (gm):** 37.9
- **Weight of Dry Soil (gm):** 522.1
- **Tare Weight (gm):** 125.2
- **Total Dry Weight (gm):** 522.1

Sieve Analysis

<table>
<thead>
<tr>
<th>Sieve Size (mm)</th>
<th>% Retained</th>
<th>% Pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.50</td>
<td>91.90</td>
<td>8.10</td>
</tr>
<tr>
<td>0.375</td>
<td>87.32</td>
<td>12.68</td>
</tr>
<tr>
<td>0.200</td>
<td>78.10</td>
<td>21.90</td>
</tr>
<tr>
<td>0.100</td>
<td>78.10</td>
<td>21.90</td>
</tr>
<tr>
<td>0.75</td>
<td>69.10</td>
<td>30.90</td>
</tr>
<tr>
<td>1.0</td>
<td>60.50</td>
<td>39.50</td>
</tr>
<tr>
<td>1.5</td>
<td>41.90</td>
<td>58.10</td>
</tr>
<tr>
<td>2.0</td>
<td>34.70</td>
<td>65.30</td>
</tr>
<tr>
<td>2.5</td>
<td>31.40</td>
<td>68.60</td>
</tr>
<tr>
<td>3.0</td>
<td>29.10</td>
<td>70.90</td>
</tr>
<tr>
<td>4.0</td>
<td>19.40</td>
<td>80.60</td>
</tr>
</tbody>
</table>

Size Analysis

- **D10 (mm):** 0.1
- **D30 (mm):** 0.23
- **D60 (mm):** 0.55
- **Cu:** 5.5
- **Cc:** 1.0

Grain Description

- Poorly graded SAND with some silt and trace gravel

USCS

- SP-SM

Prepared For: Windward

Reviewed By: KW

Grain size in millimeters

<table>
<thead>
<tr>
<th>Grain size in millimeters</th>
<th>% PASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>0.00</td>
</tr>
<tr>
<td>0.01</td>
<td>110</td>
</tr>
<tr>
<td>0.1</td>
<td>100</td>
</tr>
<tr>
<td>1.0</td>
<td>100</td>
</tr>
</tbody>
</table>

Prepared For:

Reviewed By:

Windward

KW
Grain Size Analysis

ASTM D421, D422, D1140, D2487, D6913

Project Details
- **Project Title:** McCormick Woods
- **Sample ID/Type:** TP-5
- **Sample Depth:** 9 Feet
- **Project No.:** 2019-088
- **Sample Date:** 5/1/2019
- **Date Received:** 4/30/2019

Water Content (Delivered Moisture)

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wt Wet Soil & Tare (gm)</td>
<td>697.0</td>
</tr>
<tr>
<td>Wt Dry Soil & Tare (gm)</td>
<td>659.3</td>
</tr>
<tr>
<td>Weight of Tare (gm)</td>
<td>132.3</td>
</tr>
<tr>
<td>Weight of Water (gm)</td>
<td>37.7</td>
</tr>
<tr>
<td>Weight of Dry Soil (gm)</td>
<td>527.0</td>
</tr>
</tbody>
</table>

Sieve Analysis

<table>
<thead>
<tr>
<th>Fraction (mm)</th>
<th>Wt Ret (Wt-Tare)</th>
<th>% Retained</th>
<th>% Pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>+Tare</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.0"</td>
<td>132.3</td>
<td>0.00</td>
<td>100.00</td>
</tr>
<tr>
<td>3.0"</td>
<td>132.3</td>
<td>0.00</td>
<td>100.00</td>
</tr>
<tr>
<td>1.0"</td>
<td>132.3</td>
<td>0.00</td>
<td>100.00</td>
</tr>
<tr>
<td>0.75"</td>
<td>216.2</td>
<td>83.90</td>
<td>84.08</td>
</tr>
<tr>
<td>0.50"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.375"</td>
<td>250.3</td>
<td>118.00</td>
<td>77.61</td>
</tr>
<tr>
<td>#4</td>
<td>285.7</td>
<td>153.40</td>
<td>70.89</td>
</tr>
<tr>
<td>#10</td>
<td>319.3</td>
<td>187.00</td>
<td>64.52</td>
</tr>
<tr>
<td>#20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#40</td>
<td>443.2</td>
<td>310.90</td>
<td>41.01</td>
</tr>
<tr>
<td>#60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#100</td>
<td>605.1</td>
<td>472.80</td>
<td>10.28</td>
</tr>
<tr>
<td>#200</td>
<td>621.6</td>
<td>489.30</td>
<td>7.15</td>
</tr>
<tr>
<td>PAN</td>
<td>659.3</td>
<td>527.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Description

Poorly graded SAND with some silt and gravel

USCS: SP-SM
GRAIN SIZE ANALYSIS

ASTM D421, D422, D1140, D2487, D6913

<table>
<thead>
<tr>
<th>PROJECT TITLE</th>
<th>McCormick Woods</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROJECT NO.</td>
<td>2019-088</td>
</tr>
<tr>
<td>SAMPLE ID/TYPE</td>
<td>TP-8</td>
</tr>
<tr>
<td>SAMPLE DEPTH</td>
<td>4.5 Feet</td>
</tr>
<tr>
<td>DATE RECEIVED</td>
<td>4/30/2019</td>
</tr>
<tr>
<td>TECH/TEST DATE</td>
<td>LW 5/1/2019</td>
</tr>
</tbody>
</table>

WATER CONTENT (Delivered Moisture)

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wt Wet Soil & Tare (gm)</td>
<td>434.4</td>
</tr>
<tr>
<td>Wt Dry Soil & Tare (gm)</td>
<td>403.7</td>
</tr>
<tr>
<td>Weight of Tare (gm)</td>
<td>15.8</td>
</tr>
<tr>
<td>Weight of Water (gm)</td>
<td>30.7</td>
</tr>
<tr>
<td>Weight of Dry Soil (gm)</td>
<td>387.9</td>
</tr>
<tr>
<td>Weight of Dry Soil with Tare</td>
<td>387.9</td>
</tr>
</tbody>
</table>

SIEVE ANALYSIS

<table>
<thead>
<tr>
<th>Grain Size (mm)</th>
<th>% COBBLES</th>
<th>% C GRAVEL</th>
<th>% F GRAVEL</th>
<th>% C SAND</th>
<th>% M SAND</th>
<th>% F SAND</th>
<th>% FINES</th>
<th>% TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0"</td>
<td>0.0</td>
<td>8.6</td>
<td>17.4</td>
<td>13.5</td>
<td>22.8</td>
<td>30.6</td>
<td>7.0</td>
<td>100.0</td>
</tr>
<tr>
<td>3.0"</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1.5"</td>
<td>15.8</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1.0"</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.75"</td>
<td>49.3</td>
<td>33.50</td>
<td>8.64</td>
<td>91.36</td>
<td>100.0</td>
<td>100.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.50"</td>
<td>15.8</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.375"</td>
<td>86.2</td>
<td>70.40</td>
<td>18.15</td>
<td>81.85</td>
<td>100.0</td>
<td>100.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

D10 (mm)	0.1
D30 (mm)	0.3
D60 (mm)	2
Cu	20.0
Cc	0.5

Grain Size in millimeters

- **P**: Poorly graded sand
- **S**: Sand
- **I**: Silt
- **N**: Clay

DESCRIPTION: Poorly graded SAND with some silt and gravel

USCS: SP-SM

Prepared For: Windward

Reviewed By: KW