

Traffic Impact Study for the Los Gamos Apartments Project

Prepared for the City of San Rafael

Submitted by **W-Trans**

June 4, 2021

This page intentionally left blank

Table of Contents

Executive Summary1
Introduction2
Transportation Setting4
Capacity Analysis
Alternative Modes
Access and Circulation
Parking
Conclusions and Recommendations
Study Participants and References
Figures
1. Study Area and Existing Lane Configurations
2. Existing Traffic Volumes
3. Future Traffic Volumes
4. Site Plan
5. Project Traffic volumes

Tables

1.	Collision Rates at the Study Intersections	5
2.	Bicycle Facility Summary	6
3.	Transit Routes	7
4.	Signalized Intersection Level of Service Criteria	8
5.	Existing Peak Hour Intersection Levels of Service	9
6.	Future Peak Hour Intersection Levels of Service	9
7.	Trip Generation Summary	.14
8.	Trip Distribution Assumptions	.14
9.	Vehicle Miles Traveled Analysis Summary	.15
10.	Existing and Existing plus Project Peak Hour Intersection Levels of Service	.16
11.	Future and Future plus Project Peak Hour Intersection Levels of Service	.16
12.	Parking Analysis	.22

Appendices

- A. Collision Rate Calculations
- B. Intersection Level of Service Calculations
- C. Internal Capture Rate Calculation
- D. VMT Worksheet
- E. Firetruck Access Exhibit

This page intentionally left blank

Executive Summary

The proposed Los Gamos Apartments Project would include construction of 192 apartments, 12 percent of which would be affordable units, together with a small supermarket on a currently vacant site at the southerly terminus of Los Gamos Drive in the City of San Rafael. The project would be expected to generate an average of 1,368 vehicle trips per day, including 76 a.m. peak hour trips and 98 trips during the p.m. peak hour. After discounting for pass-by trips to the market that would be captured from nearby businesses, the project would be expected to generate 1,275 net new daily trips, including 73 new trips during the morning peak hour and 88 new trips during the evening peak hour.

The four intersections of Lucas Valley Road with Las Gallinas Avenue, Los Gamos Drive, US 101 South, and US 101 North were evaluated under existing and future volumes, as well as with trips from the proposed project added. The study intersections are currently operating acceptably at LOS C or better overall and would be expected to continue operating at the same service levels with project traffic added. Under anticipated Future volumes all four study intersections are expected to operate acceptably at LOS D or better during both peaks. Upon adding project-generated traffic to Future volumes, the study intersections would continue operating at the same service levels.

The project would be expected to have a less than significant VMT impact but should consider implementing TDM strategies to further reduce its VMT.

Facilities providing access to the site via alternative modes, including pedestrians, bicyclists, and transit riders, are adequate and will be improved as plans to expand the bike system are realized. The project applicant should work with the property owners to the south to provide a multi-use path connecting existing sidewalks and bicycle facilities on Los Gamos Drive to Los Gamos Road. Racks or other structures to provide secure parking for at least 18 bicycles should be provided as part of the project.

Sight distances along Los Gamos Drive at the location of the proposed project driveway are adequate; however, landscaping near the proposed driveway should be maintained to retain clear sight lines. A left-turn lane is not warranted on Los Gamos Drive at the location of the project driveway.

Emergency vehicle access and circulation was evaluated and determined to be adequate for the proposed layout; however, the design of the driveway should conform to City design standards for hillside developments.

The proposed on-site parking supply of 224 spaces is expected to be adequate to meet the demand of the project assuming that parking is shared between the market and other guests of the development.

Introduction

This report presents an analysis of the potential traffic impacts that would be associated with the proposed multifamily residential development and small supermarket to be located on Los Gamos Drive in the City of San Rafael. The traffic study was completed in accordance with the criteria established by the City of San Rafael, reflects a scope of work reviewed and approved by City staff, and is consistent with standard traffic engineering techniques.

Prelude

The purpose of a traffic impact study is to provide City staff and policy makers with data they can use to make an informed decision regarding the potential traffic impacts of a proposed project, and any associated improvements that would be required to mitigate these impacts to a level of insignificance as defined by the City's General Plan or other policies. Vehicular traffic impacts are typically evaluated by determining the number of new trips that the proposed use would be expected to generate, distributing these trips to the surrounding street system based on existing travel patterns or anticipated travel patterns specific to the proposed project, then analyzing the impact the new traffic would be expected to have on critical intersections or roadway segments. Impacts relative to access for pedestrians, bicyclists, and to transit are also addressed.

Project Profile

The proposed project would include construction of 192 apartment units, 23 of which would be affordable, and 9,335 square-foot community center consisting of a 4,323 square-foot market that would be open to the public and a 3,112 square-foot community room and patio for use by project residents. The project would be located on a currently vacant site located at the southerly terminus of Los Gamos Drive in the City of San Rafael, as shown in Figure 1.

Traffic Impact Study for the Los Gamos Apartments Figure 1 – Study Area and Existing Lane Configurations

Transportation Setting

Operational Analysis

Study Area and Periods

The study area consists of the section of Los Gamos Drive fronting the project site, the project access point as well as the following intersections.

- 1. Lucas Valley Road/Las Gallinas Avenue
- 2. Lucas Valley Road/Los Gamos Drive
- 3. Lucas Valley Road/US 101 South Ramps
- 4. Lucas Valley Road/US 101 North Ramps

Operating conditions during the a.m. and p.m. peak periods were evaluated to capture the highest potential impacts for the proposed project as well as the highest volumes on the local transportation network. The morning peak hour occurs between 7:00 and 9:00 a.m. and reflects conditions during the home to work or school commute, while the p.m. peak hour occurs between 4:00 and 6:00 p.m. and typically reflects the highest level of congestion during the homeward bound commute.

Study Intersections

Lucas Valley Road/Las Gallinas Avenue is a signalized four-legged intersection with protected left-turn phasing and yield-controlled channelized right-turn lanes on all approaches. Marked pedestrian crosswalks and phasing are provided on all legs and pedestrians can take refuge on "pork chop" islands on all four corners of the intersection.

Lucas Valley Road/Los Gamos Drive is a signalized tee-intersection with protected left-turn phasing on the westbound Lucas Valley Road and right-turn overlap phasing on the northbound Los Gamos Drive approach. There are marked crosswalks across the west and south legs.

Lucas Valley Road/US 101 South Ramps is a signalized tee-intersection with protected left-turn phasing on the westbound Lucas Valley Road approach and right-turn overlap phasing on the eastbound Lucas Valley Road approach. A marked crosswalk with pedestrian phasing is provided on the south leg, which is comprised of the on- and off-ramps for US 101 South.

Lucas Valley Road/US 101 North Ramps is a signalized tee-intersection with free channelized right-turn lanes on the eastbound and northbound approaches which serve the US 101 North on- and off-ramps, respectively. There are "pork chop" islands located at the southwest and southeast corners of the intersection and marked crosswalks with pedestrian phasing are provided on the south and east legs.

The locations of the study intersections and the existing lane configurations and controls are shown in Figure 1.

Collision History

The collision history for the study area was reviewed to determine any trends or patterns that may indicate a safety issue. Collision rates were calculated based on records available from the California Highway Patrol as published in their Statewide Integrated Traffic Records System (SWITRS) reports. The most current five-year period available is May 1, 2014 through April 30, 2019.

As presented in Table 1, the calculated collision rates for the study intersections were compared to average collision rates for similar facilities statewide, as indicated in *2014 Collision Data on California State Highways*, California Department of Transportation (Caltrans). The calculated collision rates for all four study intersections were below the statewide averages, indicating that there is no apparent safety concern at these locations. The collision rate calculations are provided in Appendix A.

Table 1 – Collision Rates at the Study Intersections									
Study Intersection		Number of Collisions (2014-2019)	Calculated Collision Rate (c/mve)	Statewide Average Collision Rate (c/mve)					
1.	Lucas Valley Rd/Las Gallinas Ave	1	0.02	0.24					
2.	Lucas Valley Rd/Los Gamos Dr	2	0.06	0.19					
3.	Lucas Valley Rd/US 101 S Ramps	8	0.16	0.19					
4.	Lucas Valley Rd/US 101 N Ramps	8	0.18	0.19					

Note: c/mve = collisions per million vehicles entering

Alternative Modes

Pedestrian Facilities

Pedestrian facilities include sidewalks, crosswalks, pedestrian signal phases, curb ramps, curb extensions, and various streetscape amenities such as lighting, benches, etc. In general, a network of sidewalks, crosswalks, pedestrian signals, and curb ramps provide access for pedestrians in the vicinity of the proposed project site; however, sidewalk gaps, obstacles, and barriers can be found along Los Gamos Drive near its connection to Los Gamos Road. Existing gaps and obstacles along the connecting roadways impact convenient and continuous access for pedestrians and present safety concerns in those locations where appropriate pedestrian infrastructure would address potential conflict points. Sidewalks along the south side of Lucas Valley Road are continuous from Las Gallinas Avenue to Silveira Parkway.

Bicycle Facilities

The Highway Design Manual, Caltrans, 2017, classifies bikeways into four categories:

- **Class I Multi-Use Path** a completely separated right-of-way for the exclusive use of bicycles and pedestrians with cross flows of motorized traffic minimized.
- **Class II Bike Lane** a striped and signed lane for one-way bike travel on a street or highway.
- **Class III Bike Route** signing only for shared use with motor vehicles within the same travel lane on a street or highway.
- **Class IV Bikeway** also known as a separated bikeway, a Class IV Bikeway is for the exclusive use of bicycles and includes a separation between the bikeway and the motor vehicle traffic lane. The separation may include, but is not limited to, grade separation, flexible posts, inflexible physical barriers, or on-street parking.

In the project area, Class II bike lanes exist on Las Gallinas Avenue and Lucas Valley Road and there are existing Class III bike routes on Los Gamos Drive and Los Gamos Road. Table 2 summarizes the existing and planned bicycle facilities in the project vicinity, as contained in the *San Rafael Bicycle & Pedestrian Master Plan*, Alta Planning + Design, 2018.

Table 2 – Bicycle Facility Summary									
Status Facility	Class	Length (miles)	Begin Point	End Point					
Existing									
Las Gallinas Ave	П	1.8	Miller Creek Rd	Nova Albion Wy					
Lucas Valley Rd	П	3.4	Westgate Dr	Los Gamos Dr					
Los Gamos Dr	Ш	0.5	Lucas Valley Rd	Los Gamos Dr Limit					
Los Gamos Rd	Ш	0.4	Los Gamos Dr	Manuel T Freitas Pkwy					
Planned									
Lucas Valley Rd-Smith Ranch Rd	П	1.0	Los Gamos Dr	McInnis County Park					

Source: San Rafael Bicycle & Pedestrian Master Plan, Alta Planning + Design, 2018

Transit Facilities

Local, fixed-route bus transit service is provided by the County of Marin through its Marin Transit Service. Additional regional service is provided by Golden Gate Transit. The Lucas Valley Road and Smith Ranch Road bus pads are located along both sides of US 101, a walk of approximately one-half mile from the project site via the parking lot for 1650 Los Gamos Drive. Table 3 provides a summary of both local and regional transit services that are provided near the project site.

Table 3 – Transit Routes									
Transit Agency		Nearest Stop							
Route – Regions Served	Wee	kday	Satu	urday	Sun	day			
Served	Times	Headway	Times	Headway	Times	Headway			
Marin Transit									
35 – Canal – Novato	5:00 AM – 2:30 AM	30 min	5:00 AM – 2:30 AM	30 min	5:00 AM – 2:30 AM	30 min	Lucas Valley/ Smith Ranch BP		
49 – San Rafael – Novato	6:15 AM – 9:00 PM	30 min	7:15 AM – 11:00 PM	1 hr	7:15 AM – 11:00 PM	1 hr	Lucas Valley/ Smith Ranch BP		
Golden Gate Transit	·								
54/54C SB – Novato to San Francisco	4:45 AM – 10:00 AM	30 min					Lucas Valley Bus Pad		
54/54C NB – San Francisco to Novato	2:30 PM – 8:30 PM	30 min					Smith Ranch Bus Pad		
58 SB – Novato to San Francisco	6:00AM – 9:00 AM	30 min					Lucas Valley Bus Pad		
58 NB – San Francisco to Novato	4:00 PM – 7:00 PM	30 min					Smith Ranch Bus Pad		
70 SB – Novato to San Francisco	5:00 AM – 12:30 AM	1 hr	5:00 AM - 12:30 AM	1 hr	5:00 AM – 12:30 AM	1 hr	Lucas Valley Bus Pad		
70 NB – San Francisco to Novato	5:00 AM – 1:30 AM	1 hr	6:00 AM - 1:30 AM	1 hr	6:00 AM – 1:30 AM	1 hr	Smith Ranch Bus Pad		

Notes: SB = Southbound; NB = Northbound; BP = Bus Pad

Two bicycles can be carried on most Marin Transit and Golden Gate Transit buses. Bike rack space is on a first come, first served basis. Additional bicycles are allowed on the buses at the discretion of the driver.

Marin Access Paratransit is designed to serve the needs of individuals with disabilities within the City of San Rafael and the greater Marin County area who are unable to independently use fixed-route transit services. Trips can be reserved for travel seven days a week from 8:30 a.m. to 5:00 p.m.

Sonoma-Marin Area Rail Transit (SMART)

The project site is located approximately a mile-and-a-half north of the Marin Civic Center SMART train station. The SMART commuter rail system currently includes 45 miles of rail corridor and twelve stations from the Sonoma County Airport to Larkspur Landing. Upon completion, the passenger rail service will extend 70 miles from Cloverdale, at the north end of Sonoma County, to Larkspur where the Golden Gate Ferry connects Marin County with San Francisco. Along with commuter rail service, portions of the multi-use pathway have been constructed parallel to the rail corridor.

Intersection Level of Service Methodologies

Level of Service (LOS) is used to rank traffic operation on various types of facilities based on traffic volumes and roadway capacity using a series of letter designations ranging from A to F. Generally, Level of Service A represents free flow conditions and Level of Service F represents forced flow or breakdown conditions. A unit of measure that indicates a level of delay generally accompanies the LOS designation.

The study intersections were analyzed using methodologies published in the *Highway Capacity Manual* (HCM), Transportation Research Board, 2010. This source contains methodologies for various types of intersection control, all of which are related to a measurement of delay in average number of seconds per vehicle.

The study intersections were evaluated using the signalized methodology from the HCM. This methodology is based on factors including traffic volumes, green time for each movement, phasing, whether the signals are coordinated or not, truck traffic, and pedestrian activity. Average stopped delay per vehicle in seconds is used as the basis for evaluation in this LOS methodology. For purposes of this study, delays were calculated using signal timing obtained from the City of San Rafael.

The ranges of delay associated with the various levels of service are indicated in Table 4.

Table 4	able 4 – Signalized Intersection Level of Service Criteria							
LOS A	Delay of 0 to 10 seconds. Most vehicles arrive during the green phase, so do not stop at all.							
LOS B	Delay of 10 to 20 seconds. More vehicles stop than with LOS A, but many drivers still do not have to stop.							
LOS C	Delay of 20 to 35 seconds. The number of vehicles stopping is significant, although many still pass through without stopping.							
LOS D	Delay of 35 to 55 seconds. The influence of congestion is noticeable, and most vehicles have to stop.							
LOS E	Delay of 55 to 80 seconds. Most, if not all, vehicles must stop and drivers consider the delay excessive.							
LOS F	Delay of more than 80 seconds. Vehicles may wait through more than one cycle to clear the intersection.							
Deferrer	an Ulahuran Canasity Manual Types a station Descend 2010							

Reference: Highway Capacity Manual, Transportation Research Board, 2010

Traffic Operation Standards

City of San Rafael

The City of San Rafael's Level of Service (LOS) standard is published in the *San Rafael General Plan 2020 Final EIR*. It states that a project would have an adverse impact on an unsignalized intersection if it is operating acceptably at LOS E or better without the project and would deteriorate to LOS F operation with project traffic added or, if already operating at LOS F, would add five seconds or more to the average delay. For a signalized intersection in the study area the operational standard is LOS D.

Existing Conditions

The Existing Conditions scenario provides an evaluation of current traffic operation based on existing traffic volumes during the a.m. and p.m. peak periods. This condition does not include project-generated traffic volumes. Volume data was collected in November 2019 while local schools were in session.

Intersection Levels of Service

Under existing conditions, all four study intersections operate acceptably during both peak periods. The existing traffic volumes are shown in Figure 2. A summary of the intersection level of service calculations is contained in Table 5, and copies of the Level of Service calculations are provided in Appendix B. It is noted that the analysis was prepared prior to completion of the traffic signal at Lucas Valley Road/Los Gamos Drive and the right-turn overlap provided as part of the installation was not included in the assumptions for the signal's operation. The results of the analysis are therefore slightly conservative in that they do not include this capacity enhancement.

Ta	Table 5 – Existing Peak Hour Intersection Levels of Service									
Study Intersection		AM F	Peak	PM Peak						
	Approach	Delay	LOS	Delay	LOS					
1.	Lucas Valley Rd/Las Gallinas Ave	20.7	С	15.2	В					
2.	Lucas Valley Rd/Los Gamos Dr	25.4	С	15.2	В					
3.	Lucas Valley Rd/US 101 S Ramps	12.4	В	12.2	В					
4.	Lucas Valley Rd/US 101 N Ramps	16.1	В	13.2	В					

Notes: Delay is measured in average seconds per vehicle; LOS = Level of Service;;

Future Conditions

Future p.m. peak hour volume projections were taken from the City of San Rafael's traffic database, which is consistent with assumptions developed in the *City of San Rafael General Plan 2020*, and matches the future volumes used in the *Transportation Impact Analysis for the 1650 Los Gamos Drive Kaiser* by Fehr and Peers, February 2017. Under the anticipated Future volumes, the study intersections are expected to operate acceptably at LOS D or better during both peak periods. Future volumes are shown in Figure 3 and operating conditions are summarized in Table 6.

Ta	Table 6 – Future Peak Hour Intersection Levels of Service									
Study Intersection		AM	Peak	PM Peak						
		Delay	LOS	Delay	LOS					
1.	Lucas Valley Rd/Las Gallinas Ave	31.7	С	17.7	В					
2.	Lucas Valley Rd/Los Gamos Dr	42.2	D	46.0	D					
3.	Lucas Valley Rd/US 101 S Ramps	14.9	В	49.0	D					
4.	Lucas Valley Rd/US 101 N Ramps	48.5	D	33.4	С					

Notes: Delay is measured in average seconds per vehicle; LOS = Level of Service

Traffic Impact Study for the Los Gamos Apartments Figure 2 – Existing Traffic Volumes

sra143.ai 12/19

Traffic Impact Study for the Los Gamos Apartments Figure 3 – Future Traffic Volumes

Project Description

The proposed project includes the development of 192 apartment units, of which 20 percent, or 36 units would be affordable, as well as a 4,323 square-foot market and a 3,112 square-foot community room on a site that is currently vacant. The proposed project site plan is shown in Figure 4.

Trip Generation

The anticipated trip generation for the proposed project was estimated using standard rates published by the Institute of Transportation Engineers (ITE) in *Trip Generation Manual*, 10th Edition, 2017 for "Multi-Family Housing (Mid-Rise)" (LU #221) and "Supermarket" (LU #850), as these descriptions most closely match the proposed uses.

Internal Capture Trips

The *Trip Generation Manual* also includes data and methodologies that can be applied to determine the proportion of internal trips that may occur within a development area that includes a variety of land uses. Internal trips occur at mixed-use developments, and in the case of the proposed project would consist of residents patronizing the adjacent community market. The majority of these trips would be made by walking, and the few that would be made by automobile would only travel on-site, so would not affect the adjacent street network. Copies of the spreadsheets indicating the derivation of the internal capture rates for peak hours are provided in Appendix C.

In light of the site's location and with staff input an internal capture rate of 15 percent of the daily supermarket trips was adopted. Since the concept of internal capture is that it eliminates both ends of a trip that occurs between on-site housing and the market, the volume that was captured at the market end of the trip was then also deducted from the housing end.

Pass-by Trips

Some portion of traffic associated with the proposed supermarket would be drawn from existing traffic to and from uses located along Los Gamos Drive. These vehicle trips are not considered "new," but are instead comprised of drivers who are already traveling in the area and choose to make an interim stop. While the trips would generally be diverted to the south end of Los Gamos because it ends near the site, this type of trip is typically drawn from traffic passing by the site and is therefore referred to as "pass-by."

The percentage of these pass-by trips was developed based on information also provided in the Trip Generation Handbook, 2018 which includes pass-by data collected at numerous locations for many land uses. It is noted that only a p.m. peak hour rate is provided for this land use; it was assumed that the pass-by rate during the morning peak hour and for the day overall would be less than that for the p.m. peak hour.

Total Project Trip Generation

Based on application of these rates and after deducting the internal capture trips, the proposed project is expected to generate an average of 1,368 vehicle trips per day, including 76 a.m. peak hour trips and 98 trips during the p.m. peak hour. After deductions are made to reflect pass-by trips, the project would be expected to generate 1,270 net new trips daily, with 73 trips occurring during the a.m. peak hour and 88 trips during the p.m. peak hour. Taken individually, after discounting the internal capture trips, the proposed residences would be expected to generate an average of 975 trips daily (1,044 less the 69 internally captured trips), with 64 of these occurring during the morning peak hour and 71 during the evening peak hour.

Source: STOEV Design Group Inc, 1/21

Traffic Impact Study for the Los Gamos Apartments Figure 4 – Site Plan

1/21

Table 7 – Trip Generation Summary											
Land Use	Units	Daily		AM Peak Hour			PM Peak Hour				
		Rate	Trips	Rate	Trips	In	Out	Rate	Trips	In	Out
Multifamily Housing	192 du	5.44	1,044	0.36	69	18	51	0.44	84	52	32
Supermarket	4.323 ksf	106.78	462	3.82	17	10	7	9.24	40	20	20
Subtotal			1,506		86	28	58		124	72	52
Internal Capture		-15%*	-138	n/a	-10	-4	-б	n/a	-26	-14	-12
Subtotal (Driveway T	rips)		1,368		76	24	52		98	58	40
Primary Supermarket Ti	rips		393		12	8	4		27	13	14
Pass-By		-25%	-98	-25%	-3	-2	-1	-36%	-10	-5	-5
Net New Trips			1,270		73	22	51		88	53	35

Note: ksf = 1,000 square feet; du = dwelling unit

* Assumed 15% of supermarket daily trips would be internally captured; that value was then doubled to account for both ends of the trip.

Trip Distribution

The pattern used to allocate new project trips to the street network was determined by reviewing Census data and assuming it would apply to employment patterns for the site's residents. The distribution assumptions are shown in Table 8.

Table 8 – Trip Distribution Assumptions								
Route	Percent							
To/from US 101 south of Lucas Valley Rd	58							
To/from US 101 north of Lucas Valley Rd	36							
To/from Las Gallinas Ave north of Lucas Valley Rd	3							
To/from Las Gallinas Ave south of Lucas Valley Rd	3							
TOTAL	100							

Vehicle Miles Traveled (VMT)

Senate Bill (SB) 743 established a change in the metric to be applied under the California Environmental Quality Act (CEQA) for determining traffic impacts associated with development projects. As of July 1, 2020, rather than the delay-based criteria associated with a Level of Service analysis, the increase in Vehicle Miles Traveled (VMT) as a result of a project became the basis for determining transportation impacts. The *City of San Rafael Traffic Impact Analysis Guidelines*, Draft, March 2021, describes the City's methodology for assessing and evaluating VMT for development projects. Per these guidelines, since the project includes both residential and retail uses, VMT was evaluated separately for each use.

The City's guidelines indicate that a residential project located in a low VMT area for its land use can be screened out from further VMT analysis, as it is presumed to have a less-than-significant transportation impact. Low VMT areas for residential projects are defined as generating vehicle travel that is 15 or more percent below the existing residential VMT per capita for the nine-county Bay Area, as determined by the Transportation Authority of Marin Demand Model (TAMDM); the residential VMT per capita for the nine-county Bay Area is 13.3 miles. Applying the

City's threshold, a residential project generating a VMT of 11.3 miles per capita or less can be presumed to have a less-than-significant VMT impact. The TAMDM model includes traffic analysis zones (TAZ) covering geographic areas throughout Marin County, including 1,400 Micro Analysis Zones (MAZ) within which VMT characteristics are estimated. The Los Gamos Apartments project site is located within MAZ 5349, which has a baseline VMT per capita of 10.8 miles.

In addition to considering the project location, other elements of the project can impact the project's estimated VMT, such as density and the provision of on-site affordable housing. The publication *Quantifying Greenhouse Gas Mitigation Measures*, California Air Pollution Control Officers Association (CAPCOA), 2010, includes a methodology to determine the VMT reductions associated with increases in residential density using conventional single-family home development as a baseline. For the proposed Los Gamos Apartments project, which has a residential density of 16.48 units per acre, an 8.2 percent reduction in VMT is projected. A methodology published in *Income, Location Efficiency, and VMT: Affordable Housing as a Climate Strategy*, The California Housing Partnership, 2015, was used to determine the VMT reductions associated with provision of on-site affordable housing (this method is also currently being used by the City of San Jose). The Los Gamos Apartments project would designate 20 percent of its apartments, or 36 units, as affordable units with below-market rate rents. The corresponding reduction in the project's VMT is projected to be 2.0 percent.

Combined, the project's proposed density and provision of onsite affordable housing would reduce its per capita VMT by 10.2 percent, thereby resulting in a project-specific rate of 9.7 VMT per capita. This is below the applied VMT significance threshold of 11.3 VMT per capita. Accordingly, the residential component of the project as proposed would be expected to result in a less-than-significant VMT impact. A summary of the VMT input variables and adjustments is included in Appendix D.

Table 9 – Vehicle Miles Traveled Analysis Summary									
VMT Metric	Baseline Significance VMT Rate Threshold		Project VMT Rate	Resulting Significance					
Residential VMT per Capita (Regional Baseline)	13.3	11.3	9.7	Less than significant					

A summary of the VMT findings for the resident component is provided in Table 9.

Note: VMT Rate is measured in VMT/Capita, or the number of daily miles driven per resident

The project also includes an on-site 4,323 square foot market. Based on the City's draft TIA guidelines, local-serving retail of less than 50,000 square feet can generally be presumed to have a less-than-significant impact on VMT. This presumption is readily validated by the fact that customers of the market will include on-site residents who would not generate VMT when patronizing the market, as well as employees in the surrounding area that would otherwise need to travel a longer distance, mostly by vehicle, to visit a competing retail use. The retail component of the project would therefore be expected to result in a less-than-significant VMT impact.

While the project is expected to fall below VMT significance thresholds, several additional transportation demand management (TDM) strategies are available that could further reduce the amount of vehicle traffic and VMT generated by the project. One effective option could be provision of "unbundled" parking, which entails separating the cost associated with parking from the cost of renting an apartment, thereby providing a financial benefit through lower housing costs to those who do not own a vehicle (or own fewer vehicles). Another TDM option would be to provide an on-site car share vehicle (often offered through a vendor such as ZipCar or similar service) to be used by residents who do not own cars and those who generally rely on walking, bicycling, and transit for transportation but occasionally require use of a vehicle. A third, easily-implemented, TDM measure would be to designate an on-site manager or employee to provide transit and ridesharing information to residents, particularly those just moving in who may be unfamiliar with the area and available services.

Finding – The project would be expected to have a less-than-significant transportation impact on vehicle miles traveled.

Recommendation – The project proponents should consider implementing Transportation Demand Management techniques such as "unbundled" parking, providing an on-site car share vehicle, and providing transit and ridesharing information to help further reduce the project's VMT.

Intersection Operation

Existing plus Project Conditions

Upon the addition of project-related traffic to the Existing volumes, the study intersections are expected to continue operating acceptably during both peak hours. These results are summarized in Table 10. Project traffic volumes are shown in Figure 5.

Tal	Table 10 – Existing and Existing plus Project Peak Hour Intersection Levels of Service										
Study Intersection		Ex	cisting (Condition	IS	Existing plus Project					
	Approach		AM Peak		PM Peak		AM Peak		eak		
		Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS		
1.	Lucas Valley Rd/Las Gallinas Ave	20.7	С	15.2	В	20.7	С	15.2	В		
2.	Lucas Valley Rd/Los Gamos Dr	25.4	С	15.2	В	26.0	С	16.7	В		
3.	Lucas Valley Rd/US 101 S Ramps	12.4	В	12.2	В	12.9	В	13.0	В		
4.	Lucas Valley Rd/US 101 N Ramps	16.1	В	13.2	В	16.2	В	13.7	В		

Notes: Delay is measured in average seconds per vehicle; LOS = Level of Service

Finding – The study intersections would continue operating acceptably with project traffic added to Existing volumes.

Future plus Project Conditions

Upon the addition of project-generated traffic to the anticipated Future volumes, the study intersections are expected to continue operating acceptably at LOS D or better during both peak periods. The Future plus Project operating conditions are summarized in Table 11.

Table 11 – Future and Future plus Project Peak Hour Intersection Levels of Service											
Study Intersection		Future Conditions				Future plus Project					
		AM Peak		PM Peak		AM Peak		PM Peak			
		Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS		
1.	Lucas Valley Rd/Las Gallinas Ave	31.7	С	17.7	В	32.0	С	17.8	В		
2.	Lucas Valley Rd/Los Gamos Dr	42.2	D	46.0	D	50.4	D	53.9	D		
3.	Lucas Valley Rd/US 101 S Ramps	14.9	В	49.0	D	15.6	В	53.6	D		
4.	Lucas Valley Rd/US 101 N Ramps	48.5	D	33.4	С	49.9	D	36.5	D		

Notes: Delay is measured in average seconds per vehicle; LOS = Level of Service

Finding – The study intersections will continue operating acceptably with project traffic added to anticipated Future volumes.

Traffic Impact Study for the Los Gamos Apartments Figure 5 – Project Traffic Volumes

Alternative Modes

Pedestrian Facilities

Given that the site is located approximately one half-mile north of numerous commercial land uses, including Safeway and the Northgate Mall, it is reasonable to assume that some project residents would want to walk and/or bike to reach their destinations. The existing, continuous sidewalk on Los Gamos Road connects to the surrounding pedestrian network on Manual T Freitas Parkway, which provides access to several commercial uses; however, there are no existing pedestrian facilities connecting Los Gamos Road to Los Gamos Drive. These two roads terminate just south of 1401 Los Gamos Drive and the existing sidewalks on both Los Gamos Drive and Los Gamos Road are effectively split by the parking lot to 1401 Los Gamos Drive.

Finding – Pedestrian facilities serving the project site are discontinuous. The existing gap in the sidewalk network between Los Gamos Drive and Los Gamos Road impacts convenient access to and from the commercial uses south of the project site.

Recommendation – The project applicant should work with the property owners to the south to provide a multiuse path connecting existing sidewalks on Los Gamos Drive to Los Gamos Road. It is noted that improving connected pedestrian facilities would also be expected to contribute to a reduction in the site's VMT.

Bicycle Facilities

Existing bike lanes on Los Gamos Drive would be maintained with the planned project frontage improvements. These existing facilities, along with planned future bicycle facilities on Lucas Valley Road, provide adequate access for bicyclists.

Finding – Bicycle facilities serving the project site are generally adequate.

Recommendation – As recommended above, the project applicant should work with the neighboring property owners to the south to provide a multi-use path that would connect to existing bicycle facilities on Los Gamos Road.

Transit

Existing transit routes are adequate to accommodate project-generated transit trips. Although the existing stops are not within what is generally considered an "acceptable" walking distance of the site, they are sufficiently close that residents could walk or bicycle to the Lucas Valley Bus Pad or the Marin Civic Center SMART Station.

Finding – Transit facilities serving the project site are adequate for the anticipated demand.

Site Access

The site would be accessed via a new driveway located at the southern terminus of Los Gamos Drive, just north of the driveway and parking lot to 1401 Los Gamos Drive. Given the location of the proposed driveway, it is noted that project trips will predominantly turn right to enter the site and turn left to exit the site.

Given that the project would be constructed on the hillside on the west side of Los Gamos Drive, the project driveway would approach the roadway at a grade. To ensure that the proposed on-site streets and driveway operate acceptably, the design should conform to the City of San Rafael Fire Department standards, the City of San Rafael Municipal Code, the City of San Rafael Hillside Design Guidelines, and any other applicable standards as determined by the City. Per Chapter 14.12.030; Property Development Standards (-H), the maximum driveway grade should not exceed eighteen percent unless an exception is granted by the City. A suitable transition at the street and driveway apron should be provided to allow vehicles to safely transition from the roadway to the driveway and vice versa.

Sight Distance

Sight distances along Los Gamos Drive at the project driveway were evaluated based on sight distance criteria contained in the *Highway Design Manual* published by Caltrans. The recommended sight distance for driveway approaches is based on stopping sight distance. Based on a posted speed of 30 mph, the minimum stopping sight distance needed is 200 feet.

Based on a review of field conditions, sight distance from the location of the proposed project driveway extends 150 north towards the horizontal curve along Los Gamos Drive. Similarly, sight lines from the proposed driveway location extend 150 feet south into the parking lot of 1401 Los Gamos Drive.

Finding – Sight distances along Los Gamos Drive are adequate to accommodate all turns into and out of the site; however, existing trees and vegetation have the potential to obstruct sight lines.

Recommendation – To provide adequate sight distance from the proposed project driveway, nearby trees should be trimmed to clear vegetation below a height of seven feet. Because landscaping and signs can impede clear sight lines, any new plantings or signs should be designed to ensure that adequate sight lines will be maintained.

Access Analysis

Left-Turn Lane Warrants

Given that that the project driveway would be located at the southern terminus of Los Gamos Drive, project trips are anticipated to come from the north, resulting in a right turn into the site. A left-turn lane analysis was therefore not performed.

Finding – A left-turn lane is not warranted on Los Gamos Drive at the project driveway as there are unlikely to be many left turns into the site.

On-site Circulation

The AutoTURN application of AutoCAD was used to evaluate the adequacy of access for emergency vehicles. As designed, there would be no anticipated issues with fire truck access. It is noted that the AutoTURN analysis software

does not consider roadway grades. The analysis, therefore, only addresses the adequacy of turning movements in a horizontal plane. An exhibit showing the expected travel path is provided in Appendix E.

Finding – On-site circulation would be expected to operate acceptably.

Parking

The project was analyzed to determine whether the proposed parking supply would be sufficient for the anticipated parking demand. The project site as proposed would provide 171 covered parking spaces for the apartments, 11 spaces for the community center and market, and 42 surface parking spaces for a total of 224 on-site parking spaces.

As this is a planned development, the proposed parking supply was evaluated against the anticipated parking demand using standard rates from the ITE *Parking Generation*, 5th Edition, 2019. The land uses "Affordable Housing: Income Limits" (ITE LU 223) and "Multifamily Housing (Mid-Rise)" (ITE LU 221) and rates based on number of bedrooms were used per ITE's guidance. Given the density of the development and its relatively isolated location, the community and market are considered to be only local-serving and not generating substantial outside parking demand.

In addition, several transportation amenities will be provided to residents to reduce both vehicle ownership and use. These amenities include:

- Pre-wiring for electric bike charging with storage for residents throughout the development and for the community at Community Center.
- Pre-wiring of the development to allow Wi-Fi accessibility throughout the site.
- Implementation of redesigned bollards between Los Gamos Road and the Parking Lot of 1401 to improve both the safety and functionality for walkers and bikers.
- Pre-paid public transit clipper cards including five round-trips per week to Santa Rosa or San Francisco to facilitate the use of public transportation, included in annual rent.
- Potential shuttle service from the Neighborhood to the US 101 Corridor Lucas Valley transit stops and/or the Las Gallinas and Lucas Valley Road intersection, and to downtown San Rafael.
- Storage per unit of up to 76 square feet, wired for possible post-COVID 19 work from home optionality.
- Unbundled parking pricing to discourage excessive car ownership.
- Installation of required electric vehicle (EV) charging stations and pre-wiring of all parking spaces to be capable of EV charging.
- Seven-to-ten EV's for residents to utilize on-demand, similar to Turo.com.

The measures above were evaluated using modeling detailed in the California Air Pollution Control Officers Association's (CAPCOA) *Quantifying Greenhouse Gas Mitigation Measures*. CAPCOA is currently one of the most updated and accurate models in forecasting reductions in traffic and parking from mitigation measures and is an accepted standard in communities across California. According to the model's output, the set of transportation amenities would reduce parking demand by 15 percent.

Other available sources corroborate this finding. For example, unbundled parking as a stand-alone strategy is estimated to reduce parking demand by 10 to 15 percent based on the Metropolitan Transportation Commission (MTC)'s *Reforming Parking Policies to Support Smart Growth*, 2017.

Based on the ITE rates, the average peak parking demand for the residential component would be 226 parking spaces. A 15-percent reduction in parking demand, or 34 spaces, would result in a total parking demand of 192 spaces. The proposed parking supply of 224 spaces would exceed the anticipated demand. The estimated project parking demand is shown in Table 12.

Table 12 – Parking Analysis										
Land Use	Units	Rate	Parking Spaces							
ITE Parking Demand										
Affordable Housing	45 bedrooms	0.54 space per unit	24							
Multifamily Housing (Mid-Rise)	269 bedrooms	0.75 spaces per unit	202							
Parking Demand Subtotal			226 spaces							
Transportation Amenities (-15%)			-34 spaces							
Parking Demand Total			192 spaces							
Proposed Parking Supply										
Market Spaces			11							
Residential Spaces			171 covered, 42 uncovered							
Total Proposed			224 spaces (171covered, 53 uncovered)							

Finding – The project's total proposed parking supply exceeds anticipated parking demand based on ITE rates with reductions for transportation amenities.

Recommendation – Since the convenience market would be used primarily by the residents, and residents would likely walk to the market, the parking demand for the convenience market would be limited. It is recommended that parking for the market also be available for use by visitors to the development.

Bicycle Storage

The project site plan does not indicate the provision of on-site bicycle parking. The City's bicycle parking supply requirements are included in the City of San Rafael's Municipal Code, Chapter 14.18.090; Bicycle Parking. Based on City requirements, multi-family residential uses should provide five percent of the total required vehicle parking spaces with a minimum of one two-bike capacity rack. With a total of 353 required automobile parking spaces per the City's requirements, the project would be required to provide at least 18 short-term bicycle parking spaces.

Conclusions and Recommendations

Conclusions

- The project is expected to generate an average of 1,270 net new trips per day, including 73 trips during the a.m. peak hour and 88 trips during the p.m. peak hour.
- The project would be expected to have a less-than-significant transportation impact on vehicle miles traveled.
- Under Existing Conditions, all study intersections operate acceptably during both peak hours.
- Upon the addition of project-generated traffic to Existing volumes, all intersections are expected to continue operating acceptably.
- Under the anticipated Future volumes, all four study intersections are expected to operate acceptably at LOS D or better during both peak hours and would be expected to continue doing so upon the addition of project-generated traffic.
- Bicycle access is generally adequate and would be improved in the future with the implementation of the recommended facilities surrounding the project site indicated in the *San Rafael Bicycle and Pedestrian Master Plan, 2018 Update* and with the recommended connection to Los Gamos Road.
- Existing transit facilities near the project site are adequate.
- Sight distances along Los Gamos Drive at the project driveway are adequate for the posted speed limit.
- A left-turn lane is not warranted on Los Gamos Drive at the project driveway.
- On-site circulation is expected to operate acceptably assuming the driveway connection is designed to provide an adequate transition between the road and the driveway.
- Peak parking demand based on ITE parking demand rates with adjustments for transportation amenities
 results in a demand of 192 spaces, less than the proposed supply of 224 spaces. Since the convenience market
 will be used primarily by the residents, and they would be expected to walk to the market much of the time,
 the parking demand for the convenience market could reasonably be assumed to be shared by guests of the
 development.

Recommendations

- To maintain adequate sight lines for vehicles leaving the site, it is recommended that landscaping be trimmed such that tree canopies are at least seven feet above the ground. Low-lying vegetation should be no greater than three feet in height. Any signs or monuments planned along the project's frontage should not obstruct sight distance at the project driveway.
- The design of the driveway should conform to City design standards for hillside developments.
- The project proponents should consider implementing Transportation Demand Management techniques such as providing an on-site car share vehicle and transit and ridesharing information to help further reduce the project's VMT.
- Secure parking facilities for at least 18 bicycles should be provided on-site.

Study Participants and References

Study Participants

References

2014 Collision Data on California State Highways, California Department of Transportation, 2017 California Manual on Uniform Traffic Control Devices for Streets and Highways, California Department of Transportation, 2014 City of San Rafael Transportation Impact Analysis Guidelines, draft, Fehr & Peers, March 2021 Golden Gate Transit, http://www.goldengate.org/ Guide for the Preparation of Traffic Impact Studies, California Department of Transportation, 2002 Highway Capacity Manual, Transportation Research Board, 2010 Highway Design Manual, 6th Edition, California Department of Transportation, 2017 Hillside Design Guidelines to All Hillside Residential Development Projects, City of San Rafael, 2016 Income, Location Efficiency, and VMT: Affordable Housing as a Climate Strategy, The California Housing Partnership, 2015 Marin Transit, https://marintransit.org/ Parking Generation, 5th Edition, Institute of Transportation Engineers, 2019 Quantifying Greenhouse Gas Mitigation Measures, California Air Pollution Control Officers Association (CAPCOA), 2010 Reforming Parking Policies to Support Smart Growth – Toolbox/Handbook: Parking Best Practices & Strategies for Supporting Transit Oriented Development in the San Francisco Bay Area, Metropolitan Transportation Commission, 2007 San Rafael Bicycle & Pedestrian Master Plan, Alta Planning + Design, 2018 San Rafael, California Municipal Code, Municipal Code Corporation, 2017 San Rafael General Plan 2020, City of San Rafael, 2013 San Rafael General Plan 2020 Final Environmental Impact Report, City of San Rafael Community Development Department, 2004 Senate Bill (SB) 743, California Legislative Information, http://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=201720192SB743 Sonoma-Marin Area Rail Transit, http://www.sonomamarintrain.org/ Statewide Integrated Traffic Records System (SWITRS), California Highway Patrol, 2014-2019 Technical Advisory on Evaluating Transportation Impacts in CEQA, Governor's Office of Planning and Research, 2018

Transportation Impact Analysis for the 1650 Los Gamos Drive Kaiser by Fehr and Peers, 2017

Trip Generation Manual, 10th Edition, Institute of Transportation Engineers, 2017

Communications

Davini, Lauren "Re: Los Gamos Apartments." Message to Kevin Rangel regarding vertical curve analysis. January 3, 2020. Email.

Minshall, Josh "Re: Los Gamos Apartments." Message to Kevin Rangel regarding vertical curve analysis. January 6, 2020. Email.

SRA143

This page intentionally left blank

Appendix A

Collision Rate Calculations

This page intentionally left blank

Appendix **B**

Intersection Level of Service Calculations

This page intentionally left blank
12/09/2019

	٠	-	\mathbf{r}	∢	+	*	1	Ť	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	†	1	۲	†	1	٦	†	1	٦	†	1
Traffic Volume (vph)	20	533	282	61	286	96	123	158	149	121	316	19
Future Volume (vph)	20	533	282	61	286	96	123	158	149	121	316	19
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Width	13	15	13	13	13	16	12	12	12	13	14	12
Total Lost time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frpb, ped/bikes	1.00	1.00	0.98	1.00	1.00	0.98	1.00	1.00	0.97	1.00	1.00	0.97
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1732	1941	1518	1732	1824	1665	1676	1765	1449	1732	1882	1449
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	1732	1941	1518	1732	1824	1665	1676	1765	1449	1732	1882	1449
Peak-hour factor, PHF	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Adj. Flow (vph)	22	586	310	67	314	105	135	174	164	133	347	21
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	22	586	310	67	314	105	135	174	164	133	347	21
Confl. Peds. (#/hr)						1			8			22
Confl. Bikes (#/hr)			1						27			8
Turn Type	Prot	NA	Free	Prot	NA	Free	Prot	NA	Free	Prot	NA	Free
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases			Free			Free			Free			Free
Actuated Green, G (s)	2.0	29.7	81.0	4.4	32.1	81.0	9.0	20.5	81.0	8.4	19.9	81.0
Effective Green, g (s)	3.0	31.7	81.0	5.4	34.1	81.0	10.0	22.5	81.0	9.4	21.9	81.0
Actuated g/C Ratio	0.04	0.39	1.00	0.07	0.42	1.00	0.12	0.28	1.00	0.12	0.27	1.00
Clearance Time (s)	4.0	5.0		4.0	5.0		4.0	5.0		4.0	5.0	
Vehicle Extension (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lane Grp Cap (vph)	64	759	1518	115	767	1665	206	490	1449	200	508	1449
v/s Ratio Prot	0.01	c0.30		c0.04	0.17		c0.08	0.10		0.08	c0.18	
v/s Ratio Perm			c0.20			0.06			0.11			0.01
v/c Ratio	0.34	0.77	0.20	0.58	0.41	0.06	0.66	0.36	0.11	0.67	0.68	0.01
Uniform Delay, d1	38.0	21.5	0.0	36.7	16.4	0.0	33.9	23.4	0.0	34.3	26.4	0.0
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	1.2	4.5	0.3	4.8	0.1	0.1	5.6	0.2	0.2	6.3	3.0	0.0
Delay (s)	39.2	26.0	0.3	41.5	16.5	0.1	39.5	23.6	0.2	40.6	29.5	0.0
Level of Service	D	С	А	D	В	А	D	С	А	D	С	А
Approach Delay (s)		17.6			16.4			20.0			31.2	
Approach LOS		В			В			С			С	
Intersection Summary												
HCM 2000 Control Delay			20.7	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capac	city ratio		0.70									
Actuated Cycle Length (s)			81.0	Si	um of lost	t time (s)			12.0			
Intersection Capacity Utilizat	ion		71.3%	IC	U Level o	of Service	;		С			
Analysis Period (min)			15									
c Critical Lane Group												

	→	\rightarrow	-	-	1	1	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations		1	ሻሻ	1	ኘ	1	
Traffic Volume (veh/h)	765	79	247	360	26	118	
Future Volume (veh/h)	765	79	247	360	26	118	
Number	2	12	1	6	3	18	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)		0.98	1.00		1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Adj Sat Flow, veh/h/ln	1652	1652	1588	1652	1652	1652	
Adj Flow Rate, veh/h	805	83	260	379	27	124	
Adj No. of Lanes	1	1	2	1	1	1	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	
Percent Heavy Veh, %	2	2	2	2	2	2	
Cap, veh/h	839	698	663	1288	201	180	
Arrive On Green	0.51	0.51	0.23	0.78	0.13	0.13	
Sat Flow, veh/h	1652	1374	2934	1652	1573	1404	
Grp Volume(v), veh/h	805	83	260	379	27	124	
Grp Sat Flow(s),veh/h/ln	1652	1374	1467	1652	1573	1404	
Q Serve(q s), s	30.4	2.1	4.9	4.3	1.0	5.5	
Cycle Q Clear(q c), s	30.4	2.1	4.9	4.3	1.0	5.5	
Prop In Lane		1.00	1.00		1.00	1.00	
Lane Grp Cap(c), veh/h	839	698	663	1288	201	180	
V/C Ratio(X)	0.96	0.12	0.39	0.29	0.13	0.69	
Avail Cap(c´a), veh/h	839	698	663	1288	411	367	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	0.94	0.94	1.00	1.00	
Uniform Delay (d), s/veh	15.4	8.4	21.4	2.0	25.1	27.1	
Incr Delay (d2), s/veh	22.7	0.3	0.4	0.5	0.3	4.7	
nitial Q Delav(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%), veh/ln	18.9	0.8	2.0	2.1	0.4	2.4	
LnGrp Delay(d),s/veh	38.1	8.7	21.7	2.6	25.4	31.8	
LnGrp LOS	D	A	С	A	С	С	
Approach Vol. veh/h	888		-	639	151	-	
Approach Delay s/veh	35.4			10.4	30.6		
Approach LOS	D			B	C		
Timor	- 1	2	2		5	6	7 8
	1	2	3	4	5	6	0
Assigned Fils	177	24.0				С Б 2 7	0
Change Deried (V, De) e	17.7	30.0				10	11.5
Max Groon Sotting (Cmax)	4.U	4.U 22 0				4.0	4.0
Max O Cloar Time $(a, c, l1)$	5.0	32.U 22.1				41.0	7.5
Groon Ext Time (y_c+11), S	0.9	3Z.4				0.3	0.3
	0.0	0.0				1.4	0.3
Intersection Summary							
HCM 2010 Ctrl Delay			25.4				
HCM 2010 LOS			С				

	-	\mathbf{r}	*	-	1	1		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	•	1	۲	•	۲	1		
Traffic Volume (veh/h)	350	537	265	495	109	492		
Future Volume (veh/h)	350	537	265	495	109	492		
Number	2	12	1	6	3	18		
Initial Q (Qb), veh	0	0	2	0	0	0		
Ped-Bike Adj(A pbT)		0.98	1.00		1.00	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00		
Adj Sat Flow, veh/h/ln	1765	1631	1765	1835	1733	1733		
Adj Flow Rate, veh/h	372	421	282	527	116	76		
Adj No. of Lanes	1	1	1	1	1	1		
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94		
Percent Heavy Veh, %	2	2	2	2	2	2		
Cap, veh/h	706	668	635	1507	171	700		
Arrive On Green	0.40	0.39	0.76	1.00	0.10	0.10		
Sat Flow, veh/h	1765	1353	1681	1835	1651	1473		
Grp Volume(v), veh/h	372	421	282	527	116	76		
Grp Sat Flow(s),veh/h/ln	1765	1353	1681	1835	1651	1473		
Q Serve(q_s), s	12.8	6.2	4.9	0.0	5.4	0.0		
Cycle Q Clear(q_c), s	12.8	6.2	4.9	0.0	5.4	0.0		
Prop In Lane		1.00	1.00		1.00	1.00		
Lane Grp Cap(c), veh/h	706	668	635	1507	171	700		
V/C Ratio(X)	0.53	0.63	0.44	0.35	0.68	0.11		
Avail Cap(c_a), veh/h	706	668	635	1507	248	768		
HCM Platoon Ratio	1.00	1.00	2.00	2.00	1.00	1.00		
Upstream Filter(I)	1.00	1.00	0.75	0.75	1.00	1.00		
Uniform Delay (d), s/veh	18.2	9.9	6.8	0.0	34.6	11.6		
Incr Delay (d2), s/veh	2.8	4.5	0.4	0.5	9.6	0.1		
Initial Q Delay(d3),s/veh	0.0	0.0	0.1	0.0	0.0	0.0		
%ile BackOfQ(50%),veh/In	6.7	3.0	2.5	0.2	2.9	0.9		
LnGrp Delay(d),s/veh	21.1	14.4	7.3	0.5	44.2	11.8		
LnGrp LOS	С	В	Α	Α	D	В		
Approach Vol, veh/h	793			809	192			
Approach Delay, s/veh	17.5			2.9	31.3			
Approach LOS	В			А	С			
Timer	1	2	3	4	5	6	7 8	}
Assigned Phs	1	2				6		}
Phs Duration (G+Y+Rc), s	33.7	35.0				68.7	11.3	3
Change Period (Y+Rc), s	4.5	* 4.5				4.5	3.	
Max Green Setting (Gmax), s	26.0	* 31				60.5	11.	5
Max Q Clear Time (q c+I1), s	6.9	14.8				2.0	7.4	ļ
Green Ext Time (p_c), s	1.3	6.4				2.3	0.!	5
Intersection Summary	-					-	-	
HCM 2010 Ctrl Delay			12 /					
			12.4 R					
			D					
Notes								

TIS for the Los Gamos Apartments Project AM Existing

HCM Signalized	Intersection	Capacity Analy	'sis
4: 101 NB Ram	ps & Lucas Va	alley Rd/Smith	Ranch Rd

12/09/2019

	≯	-	\mathbf{r}	1	+	*	1	1	1	1	Ŧ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		•	1		•	1	5		1			
Traffic Volume (vph)	0	686	170	0	329	179	441	0	423	0	0	0
Future Volume (vph)	0	686	170	0	329	179	441	0	423	0	0	0
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Width	12	14	16	12	13	13	14	12	16	12	12	12
Total Lost time (s)		3.0	3.0		3.0	3.0	3.0		3.0			
Lane Util. Factor		1.00	1.00		1.00	1.00	1.00		1.00			
Frpb, ped/bikes		1.00	0.97		1.00	1.00	1.00		1.00			
Flpb, ped/bikes		1.00	1.00		1.00	1.00	1.00		1.00			
Frt		1.00	0.85		1.00	0.85	1.00		0.85			
Flt Protected		1.00	1.00		1.00	1.00	0.95		1.00			
Satd. Flow (prot)		1882	1656		1824	1550	1788		1700			
Flt Permitted		1.00	1.00		1.00	1.00	0.95		1.00			
Satd. Flow (perm)		1882	1656		1824	1550	1788		1700			
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	0	722	179	0	346	188	464	0	445	0	0	0
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	144	0	0	0
Lane Group Flow (vph)	0	722	179	0	346	188	464	0	301	0	0	0
Confl. Peds. (#/hr)			11									
Confl. Bikes (#/hr)			2									
Turn Type		NA	Free		NA	Free	Prot		Prot			
Protected Phases		6			2		4		4			
Permitted Phases			Free			Free	4		4			
Actuated Green, G (s)		48.4	80.0		48.4	80.0	24.6		24.6			
Effective Green, g (s)		49.4	80.0		49.4	80.0	24.6		24.6			
Actuated g/C Ratio		0.62	1.00		0.62	1.00	0.31		0.31			
Clearance Time (s)		4.0			4.0		3.0		3.0			
Vehicle Extension (s)		5.0			4.0		3.0		3.0			
Lane Grp Cap (vph)		1162	1656		1126	1550	549		522			
v/s Ratio Prot		c0.38			0.19		c0.26		0.18			
v/s Ratio Perm			0.11			0.12						
v/c Ratio		0.62	0.11		0.31	0.12	0.85		0.58			
Uniform Delay, d1		9.5	0.0		7.2	0.0	25.9		23.3			
Progression Factor		0.72	1.00		1.00	1.00	1.00		1.00			
Incremental Delay, d2		2.1	0.1		0.7	0.2	11.4		1.5			
Delay (s)		8.9	0.1		7.9	0.2	37.4		24.9			
Level of Service		A	А		А	А	D		С			
Approach Delay (s)		7.2			5.2			31.2			0.0	
Approach LOS		A			A			С			А	
Intersection Summary												
HCM 2000 Control Delay			16.1	Н	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capacity	ratio		0.70									
Actuated Cycle Length (s)			80.0	S	um of lost	t time (s)			6.0			
Intersection Capacity Utilization			72.4%	IC	CU Level (of Service	•		С			
Analysis Period (min)			15									
c Critical Lane Group												

12/09/2019

	≯	→	$\mathbf{\hat{z}}$	4	-	*	1	Ť	۲	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	†	1	۲	†	1	۲	•	1	۲	•	1
Traffic Volume (vph)	20	345	91	111	351	67	133	130	133	61	95	22
Future Volume (vph)	20	345	91	111	351	67	133	130	133	61	95	22
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Width	13	15	13	13	13	16	12	12	12	13	14	12
Total Lost time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.98	1.00	1.00	0.98
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1732	1941	1550	1732	1824	1700	1676	1765	1468	1732	1882	1464
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	1732	1941	1550	1732	1824	1700	1676	1765	1468	1732	1882	1464
Peak-hour factor, PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	21	356	94	114	362	69	137	134	137	63	98	23
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	21	356	94	114	362	69	137	134	137	63	98	23
Confl. Peds. (#/hr)												3
Confl. Bikes (#/hr)									4			7
Turn Type	Prot	NA	Free	Prot	NA	Free	Prot	NA	Free	Prot	NA	Free
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases			Free			Free			Free			Free
Actuated Green, G (s)	1.9	20.8	60.9	6.3	25.2	60.9	6.1	11.8	60.9	4.0	9.7	60.9
Effective Green, g (s)	2.9	22.8	60.9	7.3	27.2	60.9	7.1	13.8	60.9	5.0	11.7	60.9
Actuated g/C Ratio	0.05	0.37	1.00	0.12	0.45	1.00	0.12	0.23	1.00	0.08	0.19	1.00
Clearance Time (s)	4.0	5.0		4.0	5.0		4.0	5.0		4.0	5.0	
Vehicle Extension (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lane Grp Cap (vph)	82	726	1550	207	814	1700	195	399	1468	142	361	1464
v/s Ratio Prot	0.01	0.18		c0.07	c0.20		c0.08	c0.08		0.04	0.05	
v/s Ratio Perm			0.06			0.04			c0.09			0.02
v/c Ratio	0.26	0.49	0.06	0.55	0.44	0.04	0.70	0.34	0.09	0.44	0.27	0.02
Uniform Delay, d1	28.0	14.6	0.0	25.3	11.6	0.0	25.9	19.7	0.0	26.6	21.0	0.0
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	0.6	0.2	0.1	1.8	0.1	0.0	9.0	0.2	0.1	0.8	0.1	0.0
Delay (s)	28.6	14.8	0.1	27.1	11.8	0.0	34.9	19.9	0.1	27.4	21.1	0.0
Level of Service	С	В	А	С	В	А	С	В	А	С	С	А
Approach Delay (s)		12.5			13.5			18.3			20.6	
Approach LOS		В			В			В			С	
Intersection Summary												
HCM 2000 Control Delay			15.2	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capac	ity ratio		0.49									
Actuated Cycle Length (s)			60.9	S	um of lost	time (s)			12.0			
Intersection Capacity Utilizat	ion		53.1%	IC	CU Level o	of Service	:		А			
Analysis Period (min)			15									
c Critical Lane Group												

	→	\rightarrow	-	-	1	1	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	•	1	ሻሻ	†	٦	1	
Traffic Volume (veh/h)	459	33	180	522	52	272	
Future Volume (veh/h)	459	33	180	522	52	272	
Number	2	12	1	6	3	18	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)		1.00	1.00		1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Adj Sat Flow, veh/h/ln	1835	1835	1765	1835	1835	1835	
Adj Flow Rate, veh/h	483	35	189	549	55	286	
Adj No. of Lanes	1	1	2	1	1	1	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	
Percent Heavy Veh, %	2	2	2	2	2	2	
Cap, veh/h	856	728	497	1228	404	360	
Arrive On Green	0.47	0.47	0.15	0.67	0.23	0.23	
Sat Flow, veh/h	1835	1560	3261	1835	1748	1560	
Grp Volume(v), veh/h	483	35	189	549	55	286	
Grp Sat Flow(s), veh/h/ln	1835	1560	1630	1835	1748	1560	
Q Serve(q s), s	11.4	0.7	3.1	8.5	1.5	10.4	
Cycle Q Clear(g c), s	11.4	0.7	3.1	8.5	1.5	10.4	
Prop In Lane		1.00	1.00		1.00	1.00	
Lane Grp Cap(c), veh/h	856	728	497	1228	404	360	
V/C Ratio(X)	0.56	0.05	0.38	0.45	0.14	0.79	
Avail Cap(c_a), veh/h	856	728	497	1228	495	442	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	0.91	0.91	1.00	1.00	
Uniform Delay (d), s/veh	11.6	8.7	22.9	4.7	18.3	21.7	
Incr Delay (d2), s/veh	2.7	0.1	0.4	1.1	0.2	7.9	
Initial O Delav(d3).s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfO(50%).veh/ln	6.4	0.3	1.4	4.5	0.7	5.3	
LnGrp Delav(d).s/veh	14.3	8.9	23.3	5.8	18.5	29.6	
LnGrp LOS	В	A	С	A	В	С	
Approach Vol. veh/h	518		<u> </u>	738	341	<u> </u>	
Approach Delay s/veh	13.9			10.3	27.8		
Approach LOS	-13.7 B			B	27.0 C		
Timor	1	2	2		Ę.	6	7 8
	1	2	3	4	5	0	
Assigned Phs Dec Duration (C · V · Da)	10.1	21.0				0 10 1	0
Change Deried (V, De), S	12.1	31.0				43.1	10.9
May Groop Sotting (Cmar)	4.0	4.0				4.0	4.0
Max Green Setting (Gmax), S	5.U	27.0				30.U	10.U
(g_c+1) , s	5.1	13.4				10.5	12.4
Green Ext Time (p_C), s	0.0	1.7				2.2	0.5
Intersection Summary							
HCM 2010 Ctrl Delay			15.2				
HCM 2010 LOS			В				

	-	\mathbf{i}	-	-	1	1		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	•	1	۲.	•	ľ	1		
Traffic Volume (veh/h)	283	446	463	538	150	254		
Future Volume (veh/h)	283	446	463	538	150	254		
Number	2	12	1	6	3	18		
Initial Q (Qb), veh	0	0	0	0	0	0		
Ped-Bike Adj(A_pbT)		1.00	1.00		1.00	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00		
Adj Sat Flow, veh/h/ln	1765	1631	1765	1835	1733	1733		
Adj Flow Rate, veh/h	295	297	482	560	156	44		
Adj No. of Lanes	1	1	1	1	1	1		
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96		
Percent Heavy Veh, %	2	2	2	2	2	2		
Cap, veh/h	596	624	704	1469	206	792		
Arrive On Green	0.34	0.32	0.84	1.00	0.12	0.12		
Sat Flow, veh/h	1765	1387	1681	1835	1651	1473		
Grp Volume(v), veh/h	295	297	482	560	156	44		
Grp Sat Flow(s),veh/h/ln	1765	1387	1681	1835	1651	1473		
Q Serve(g_s), s	10.6	0.0	8.7	0.0	7.3	0.0		
Cycle Q Clear(q_c), s	10.6	0.0	8.7	0.0	7.3	0.0		
Prop In Lane		1.00	1.00		1.00	1.00		
Lane Grp Cap(c), veh/h	596	624	704	1469	206	792		
V/C Ratio(X)	0.50	0.48	0.68	0.38	0.76	0.06		
Avail Cap(c_a), veh/h	596	624	704	1469	248	829		
HCM Platoon Ratio	1.00	1.00	2.00	2.00	1.00	1.00		
Upstream Filter(I)	1.00	1.00	0.70	0.70	1.00	1.00		
Uniform Delay (d), s/veh	21.1	10.6	4.5	0.0	33.8	8.8		
Incr Delay (d2), s/veh	2.9	2.6	2.0	0.5	14.5	0.1		
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0		
%ile BackOfQ(50%),veh/In	5.6	4.2	3.9	0.2	4.2	0.5		
LnGrp Delay(d),s/veh	24.0	13.2	6.5	0.5	48.4	8.9		
LnGrp LOS	С	В	А	А	D	А		
Approach Vol, veh/h	592			1042	200			
Approach Delay, s/veh	18.6			3.3	39.7			
Approach LOS	В			А	D			
Timer	1	2	3	4	5	6	7	8
Assigned Phs	1	2	Ū		Ū	6	,	8
Physical His Physical Physica	37.0	30.0				67.0	1	3.0
Change Period $(Y+Rc)$ s	4.5	* 4 5				4.5		3.5
Max Green Setting (Gmax) s	31.0	* 26				60.5	1	1.5
Max O Clear Time (q_c+11) s	10.7	12.6				2.0		9.3
Green Ext Time (p_c), s	2.5	4.1				2.5		0.3
Intersection Summary	2.0					2.0		
			10.0					
HUM 2010 UTI Delay			12.2					
HCIVI 2010 LOS			В					
Notes								

TIS for the Los Gamos Apartments Project PM Existing

Synchro 10 Report W-Trans

HCM Signalized Inter 4: US 101 North Ram	rsectio	on Cap Lucas	oacity A Valley	Analysi [,] Rd/Si	is mith Ra	anch F	۶d				12/0)9/2019
	≯	-	7	4	+	•	•	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		†	1		1	1	٦		1			
Traffic Volume (vph)	0	318	226	0	575	427	436	0	405	0	0	0
Future Volume (vph)	0	318	226	0	575	427	436	0	405	0	0	0
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Width	12	14	16	12	13	13	14	12	16	12	12	12
Total Lost time (s)		3.0	3.0		3.0	3.0	3.0		3.0			
Lane Util. Factor		1.00	1.00		1.00	1.00	1.00		1.00			
Frpb, ped/bikes		1.00	0.98		1.00	1.00	1.00		1.00			
Flpb, ped/bikes		1.00	1.00		1.00	1.00	1.00		1.00			
Frt		1.00	0.85		1.00	0.85	1.00		0.85			
Flt Protected		1.00	1.00		1.00	1.00	0.95		1.00			
Satd. Flow (prot)		1882	1665		1824	1550	1788		1700			
Flt Permitted		1.00	1.00		1.00	1.00	0.95		1.00			
Satd. Flow (perm)		1882	1665		1824	1550	1788		1700			
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	0	338	240	0	612	454	464	0	431	0	0	0
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	288	0	0	0
Lane Group Flow (vph)	0	338	240	0	612	454	464	0	143	0	0	0
Confl. Bikes (#/hr)			1									
Turn Type		NA	Free		NA	Free	Prot		Prot			
Protected Phases		6			2		4		4			
Permitted Phases			Free			Free	4		4			
Actuated Green, G (s)		46.5	80.0		46.5	80.0	26.5		26.5			
Effective Green, g (s)		47.5	80.0		47.5	80.0	26.5		26.5			
Actuated g/C Ratio		0.59	1.00		0.59	1.00	0.33		0.33			
Clearance Time (s)		4.0			4.0		3.0		3.0			
Vehicle Extension (s)		5.0			4.0		3.0		3.0			
Lane Grp Cap (vph)		1117	1665		1083	1550	592		563			
v/s Ratio Prot		0.18			c0.34		c0.26		0.08			
v/s Ratio Perm			0.14			0.29						
v/c Ratio		0.30	0.14		0.57	0.29	0.78		0.25			
Uniform Delay, d1		8.0	0.0		9.9	0.0	24.2		19.5			
Progression Factor		1.00	1.00		1.00	1.00	1.00		1.00			
Incremental Delay, d2		0.7	0.2		2.1	0.5	6.7		0.2			
Delay (s)		8.7	0.2		12.1	0.5	30.9		19.8			
Level of Service		А	А		В	А	С		В			
Approach Delay (s)		5.2			7.1			25.5			0.0	
Approach LOS		А			А			С			А	
Intersection Summary												
HCM 2000 Control Delay			13.2	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capacity	ratio		0.64									
Actuated Cycle Length (s)			80.0	S	um of lost	time (s)			6.0			
Intersection Capacity Utilization	า		64.1%	IC	U Level o	of Service	2		С			
Analysis Period (min)			15									

c Critical Lane Group

12/17/2019

	≯	-	\mathbf{i}	4	+	•	1	Ť	۲	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	•	1	5	•	1	ሻ	•	1	ሻ	•	1
Traffic Volume (vph)	40	798	381	72	385	99	151	224	161	218	411	35
Future Volume (vph)	40	798	381	72	385	99	151	224	161	218	411	35
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Width	13	15	13	13	13	16	12	12	12	13	14	12
Total Lost time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frpb, ped/bikes	1.00	1.00	0.98	1.00	1.00	0.98	1.00	1.00	0.97	1.00	1.00	0.97
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1732	1941	1518	1732	1824	1665	1676	1765	1449	1732	1882	1449
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	1732	1941	1518	1732	1824	1665	1676	1765	1449	1732	1882	1449
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	40	798	381	72	385	99	151	224	161	218	411	35
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	40	798	381	72	385	99	151	224	161	218	411	35
Confl. Peds. (#/hr)						1			8			22
Confl. Bikes (#/hr)			1						27			8
Turn Type	Prot	NA	Free	Prot	NA	Free	Prot	NA	Free	Prot	NA	Free
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases			Free			Free			Free			Free
Actuated Green, G (s)	2.8	35.9	86.7	3.0	36.1	86.7	9.5	18.0	86.7	11.8	20.3	86.7
Effective Green, g (s)	3.8	37.9	86.7	4.0	38.1	86.7	10.5	20.0	86.7	12.8	22.3	86.7
Actuated g/C Ratio	0.04	0.44	1.00	0.05	0.44	1.00	0.12	0.23	1.00	0.15	0.26	1.00
Clearance Time (s)	4.0	5.0		4.0	5.0		4.0	5.0		4.0	5.0	
Vehicle Extension (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lane Grp Cap (vph)	/5	848	1518	/9	801	1665	202	407	1449	255	484	1449
v/s Ratio Prot	0.02	c0.41	0.05	c0.04	0.21		0.09	0.13	0.44	c0.13	c0.22	
v/s Ratio Perm	0.50		c0.25	0.04	0.40	0.06	0.75	0.55	0.11	0.05	0.05	0.02
v/c Ratio	0.53	0.94	0.25	0.91	0.48	0.06	0.75	0.55	0.11	0.85	0.85	0.02
Uniform Delay, d I	40.6	23.3	0.0	41.2	17.3	0.0	36.8	29.4	0.0	36.0	30.6	0.0
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	3.0	18.0	0.4	/0.8	0.2	0.1	12.4	0.9	0.2	22.6	12.6	0.0
Delay (S)	44.Z	41.3	0.4	III.9 E	17.4 D	U. I	49.2	30.3	0.2	58.6 E	43.2	0.0
Level of Service	D	D	A	F	B	А	D		A	E	U	A
Approach LOS		28.0			20.0			20.0			40.U	
Approach LUS		C			C			C			D	
Intersection Summary					011000							
HCM 2000 Control Delay			31.7	Н	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capa	city ratio		0.91	-	61				40.0			
Actuated Cycle Length (s)			86.7	Si	um of los	t time (s)			12.0			
Intersection Capacity Utiliza	tion		93.5%	IC	U Level	of Service			F			
Analysis Period (min)			15									
C Chillean Lane Group												

	→	\rightarrow	-	-	1	1		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	•	1	ኘኘ	†	۲	1		
Traffic Volume (veh/h)	1019	203	522	596	26	136		
Future Volume (veh/h)	1019	203	522	596	26	136		
Number	2	12	1	6	3	18		
Initial Q (Qb), veh	0	0	0	0	0	0		
Ped-Bike Adj(A_pbT)		0.98	1.00		1.00	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00		
Adj Sat Flow, veh/h/ln	1652	1652	1588	1652	1652	1652		
Adj Flow Rate, veh/h	1019	203	522	596	26	136		
Adj No. of Lanes	1	1	2	1	1	1		
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Percent Heavy Veh, %	2	2	2	2	2	2		
Cap, veh/h	991	825	601	1371	189	169		
Arrive On Green	0.60	0.60	0.20	0.83	0.12	0.12		
Sat Flow, veh/h	1652	1374	2934	1652	1573	1404		
Grp Volume(v), veh/h	1019	203	522	596	26	136		
Grp Sat Flow(s),veh/h/ln	1652	1374	1467	1652	1573	1404		
Q Serve(g_s), s	72.0	8.3	20.6	11.5	1.8	11.3		
Cycle Q Clear(g_c), s	72.0	8.3	20.6	11.5	1.8	11.3		
Prop In Lane		1.00	1.00		1.00	1.00		
Lane Grp Cap(c), veh/h	991	825	601	1371	189	169		
V/C Ratio(X)	1.03	0.25	0.87	0.43	0.14	0.81		
Avail Cap(c_a), veh/h	991	825	601	1371	223	199		
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00		
Upstream Filter(I)	1.00	1.00	0.71	0.71	1.00	1.00		
Uniform Delay (d), s/veh	24.0	11.3	46.1	2.7	47.2	51.4		
Incr Delay (d2), s/veh	36.0	0.7	9.6	0.7	0.3	18.5		
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0		
%ile BackOfQ(50%),veh/In	42.4	3.3	9.1	5.4	0.8	5.3		
LnGrp Delay(d),s/veh	60.0	12.0	55.7	3.4	47.6	69.9		
LnGrp LOS	F	В	E	A	D	E		
Approach Vol, veh/h	1222			1118	162			
Approach Delay, s/veh	52.0			27.9	66.3			
Approach LOS	D			С	E			
Timer	1	2	3	4	5	6	7 8	
Assigned Phs	1	2				6	8	
Phs Duration (G+Y+Rc), s	27.6	75.0				102.6	17.4	
Change Period (Y+Rc), s	4.0	4.0				4.0	4.0	
Max Green Setting (Gmax), s	21.0	71.0				96.0	16.0	
Max Q Clear Time (g_c+I1), s	22.6	74.0				13.5	13.3	
Green Ext Time (p_c), s	0.0	0.0				2.6	0.1	
Intersection Summary								
HCM 2010 Ctrl Delay			42.2					
HCM 2010 LOS			D					

	→	\mathbf{r}	1	-	1	1		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	•	1	5	•	5	1		
Traffic Volume (veh/h)	590	565	338	880	238	571		
Future Volume (veh/h)	590	565	338	880	238	571		
Number	2	12	1	6	3	18		
Initial Q (Qb), veh	0	0	2	0	0	0		
Ped-Bike Adi(A pbT)		0.98	1.00		1.00	1.00		
Parking Bus, Adi	1.00	1.00	1.00	1.00	1.00	1.00		
Adj Sat Flow, veh/h/ln	1765	1631	1765	1835	1733	1733		
Adj Flow Rate, veh/h	590	424	338	880	238	151		
Adj No. of Lanes	1	1	1	1	1	1		
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Percent Heavy Veh, %	2	2	2	2	2	2		
Cap, veh/h	832	857	502	1505	283	682		
Arrive On Green	0.47	0.46	0.30	0.82	0.17	0.17		
Sat Flow, veh/h	1765	1354	1681	1835	1651	1473		
Grp Volume(v), veh/h	590	424	338	880	238	151		
Grp Sat Flow(s),veh/h/ln	1765	1354	1681	1835	1651	1473		
Q Serve(q_s), s	18.6	0.0	12.4	11.8	9.8	0.0		
Cycle Q Clear(q_c), s	18.6	0.0	12.4	11.8	9.8	0.0		
Prop In Lane		1.00	1.00		1.00	1.00		
Lane Grp Cap(c), veh/h	832	857	502	1505	283	682		
V/C Ratio(X)	0.71	0.50	0.67	0.58	0.84	0.22		
Avail Cap(c_a), veh/h	832	857	497	1499	283	678		
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00		
Upstream Filter(I)	1.00	1.00	0.42	0.42	1.00	1.00		
Uniform Delay (d), s/veh	14.7	5.9	21.7	2.2	28.1	11.3		
Incr Delay (d2), s/veh	5.1	2.0	1.6	0.7	21.5	0.3		
Initial Q Delay(d3),s/veh	0.0	0.0	0.4	0.0	0.0	0.0		
%ile BackOfQ(50%),veh/In	10.2	4.3	6.2	5.8	6.1	1.8		
LnGrp Delay(d),s/veh	19.8	7.9	23.6	2.9	49.5	11.6		
LnGrp LOS	В	A	С	A	D	В		
Approach Vol, veh/h	1014			1218	389			
Approach Delay, s/veh	14.8			8.7	34.8			
Approach LOS	В			А	С			
Timor	1	2	2	1	5	6	7	8
Assigned Dbs	1	2	5	4	5	6	1	Q
Physical Pris	2/L 2	2 36 0				60.2	15	0
Change Deriod (V, De) e	24.Z	30.0 * / 5				00.Z	10	5
May Green Setting (Gmay) s	4.0 15.0	4.0 * 20				4.0 50 5	11	5
Max O Clear Time $(a, c, 11)$	1/1 /	32 20 6				12 Q	11	.5
Green Ext Time (p_c) s	Λ1	20.0				13.0	11 	0
	0.1	0.4				4.7	0	.0
Intersection Summary								
HCM 2010 Ctrl Delay			14.9					
HCM 2010 LOS			В					
Notes								

TIS for the Los Gamos Apartments Project AM Future

Synchro 10 Report W-Trans

HCM Signalized	Intersection	Capacity Analy	'sis
4: 101 NB Ram	ps & Lucas Va	alley Rd/Smith	Ranch Rd

12/17/2019

	≯	-	\mathbf{r}	-	-	•	1	†	1	1	↓ I	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		^	1		^	1	٦		1			
Traffic Volume (vph)	0	1041	170	0	436	190	782	0	452	0	0	0
Future Volume (vph)	0	1041	170	0	436	190	782	0	452	0	0	0
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Width	12	14	16	12	13	13	14	12	16	12	12	12
Total Lost time (s)		3.0	3.0		3.0	3.0	3.0		3.0			
Lane Util. Factor		1.00	1.00		1.00	1.00	1.00		1.00			
Frpb, ped/bikes		1.00	0.97		1.00	1.00	1.00		1.00			
Flpb, ped/bikes		1.00	1.00		1.00	1.00	1.00		1.00			
Frt		1.00	0.85		1.00	0.85	1.00		0.85			
Flt Protected		1.00	1.00		1.00	1.00	0.95		1.00			
Satd. Flow (prot)		1882	1656		1824	1550	1788		1700			
Flt Permitted		1.00	1.00		1.00	1.00	0.95		1.00			
Satd. Flow (perm)		1882	1656		1824	1550	1788		1700			
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	0	1041	170	0	436	190	782	0	452	0	0	0
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	44	0	0	0
Lane Group Flow (vph)	0	1041	170	0	436	190	782	0	408	0	0	0
Confl. Peds. (#/hr)			11									
Confl. Bikes (#/hr)			2									
Turn Type		NA	Free		NA	Free	Prot		Prot			
Protected Phases		6			2		4		4			
Permitted Phases			Free			Free	4		4			
Actuated Green, G (s)		52.0	100.0		52.0	100.0	41.0		41.0			
Effective Green, g (s)		53.0	100.0		53.0	100.0	41.0		41.0			
Actuated g/C Ratio		0.53	1.00		0.53	1.00	0.41		0.41			
Clearance Time (s)		4.0			4.0		3.0		3.0			
Vehicle Extension (s)		5.0			4.0		3.0		3.0			
Lane Grp Cap (vph)		997	1656		966	1550	733		697			
v/s Ratio Prot		c0.55			0.24		c0.44		0.24			
v/s Ratio Perm			0.10			0.12						
v/c Ratio		1.04	0.10		0.45	0.12	1.07		0.59			
Uniform Delay, d1		23.5	0.0		14.5	0.0	29.5		22.9			
Progression Factor		1.00	1.00		1.00	1.00	1.00		1.00			
Incremental Delay, d2		40.7	0.1		1.5	0.2	52.5		1.3			
Delay (s)		64.2	0.1		16.0	0.2	82.0		24.2			
Level of Service		E	А		В	А	F		С			
Approach Delay (s)		55.2			11.2			60.8			0.0	
Approach LOS		E			В			Ε			А	
Intersection Summary												
HCM 2000 Control Delay			48.5	H	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capacity	ratio		1.05									
Actuated Cycle Length (s)			100.0	S	um of los	t time (s)			6.0			
Intersection Capacity Utilization	l		110.2%	IC	CU Level	of Service	<u>;</u>		Н			
Analysis Period (min)			15									
c Critical Lane Group												

12/17/2019

	٦	→	$\mathbf{\hat{z}}$	4	+	•	1	1	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ľ	•	1	ľ	•	1	1	•	1	5	•	1
Traffic Volume (vph)	22	396	141	153	477	174	170	240	149	98	111	22
Future Volume (vph)	22	396	141	153	477	174	170	240	149	98	111	22
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Width	13	15	13	13	13	16	12	12	12	13	14	12
Total Lost time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.98	1.00	1.00	0.98
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1732	1941	1550	1732	1824	1700	1676	1765	1468	1732	1882	1464
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	1732	1941	1550	1732	1824	1700	1676	1765	1468	1732	1882	1464
Peak-hour factor, PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	23	408	145	158	492	179	175	247	154	101	114	23
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	23	408	145	158	492	179	175	247	154	101	114	23
Confl. Peds. (#/hr)												3
Confl. Bikes (#/hr)									4			7
Turn Type	Prot	NA	Free	Prot	NA	Free	Prot	NA	Free	Prot	NA	Free
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases			Free			Free			Free			Free
Actuated Green, G (s)	1.3	18.2	61.5	6.4	23.3	61.5	7.7	13.9	61.5	5.0	11.2	61.5
Effective Green, g (s)	2.3	20.2	61.5	7.4	25.3	61.5	8.7	15.9	61.5	6.0	13.2	61.5
Actuated g/C Ratio	0.04	0.33	1.00	0.12	0.41	1.00	0.14	0.26	1.00	0.10	0.21	1.00
Clearance Time (s)	4.0	5.0		4.0	5.0		4.0	5.0		4.0	5.0	
Vehicle Extension (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lane Grp Cap (vph)	64	637	1550	208	750	1700	237	456	1468	168	403	1464
v/s Ratio Prot	0.01	0.21		c0.09	c0.27		c0.10	c0.14		0.06	0.06	
v/s Ratio Perm			0.09			c0.11			0.10			0.02
v/c Ratio	0.36	0.64	0.09	0.76	0.66	0.11	0.74	0.54	0.10	0.60	0.28	0.02
Uniform Delay, d1	28.9	17.6	0.0	26.2	14.6	0.0	25.3	19.7	0.0	26.6	20.2	0.0
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	1.3	1.7	0.1	13.2	1.6	0.1	9.9	0.7	0.1	4.1	0.1	0.0
Delay (s)	30.1	19.2	0.1	39.4	16.2	0.1	35.2	20.4	0.1	30.7	20.3	0.0
Level of Service	С	В	А	D	В	А	D	С	А	С	С	А
Approach Delay (s)		14.8			17.1			19.5			22.8	
Approach LOS		В			В			В			С	
Intersection Summary												
HCM 2000 Control Delay			17.7	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capac	city ratio		0.69									
Actuated Cycle Length (s)			61.5	Sum of lost time (s)					12.0			
Intersection Capacity Utilization	tion		63.3%	IC	CU Level	of Service			В			
Analysis Period (min)			15									
c Critical Lane Group												

	→	\rightarrow	-	-	1	1	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	•	1	ሻሻ	†	٦	1	
Traffic Volume (veh/h)	643	66	215	798	91	606	
Future Volume (veh/h)	643	66	215	798	91	606	
Number	2	12	1	6	3	18	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)		1.00	1.00		1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Adj Sat Flow, veh/h/ln	1835	1835	1765	1835	1835	1835	
Adj Flow Rate, veh/h	677	69	226	840	96	638	
Adj No. of Lanes	1	1	2	1	1	1	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	
Percent Heavy Veh, %	2	2	2	2	2	2	
Cap, veh/h	760	646	326	1023	624	557	
Arrive On Green	0.41	0.41	0.10	0.56	0.36	0.36	
Sat Flow, veh/h	1835	1560	3261	1835	1748	1560	
Grp Volume(v), veh/h	677	69	226	840	96	638	
Grp Sat Flow(s).veh/h/ln	1835	1560	1630	1835	1748	1560	
Q Serve(q s), s	24.0	1.9	4.7	26.2	2.6	25.0	
Cycle Q Clear(g c), s	24.0	1.9	4.7	26.2	2.6	25.0	
Prop In Lane		1.00	1.00		1.00	1.00	
Lane Grp Cap(c), veh/h	760	646	326	1023	624	557	
V/C Ratio(X)	0.89	0.11	0.69	0.82	0.15	1.15	
Avail Cap(c_a), veh/h	760	646	326	1023	624	557	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	0.76	0.76	1.00	1.00	
Uniform Delay (d), s/veh	19.0	12.6	30.5	12.7	15.3	22.5	
Incr Delay (d2), s/veh	14.8	0.3	4.7	5.7	0.1	84.9	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/In	15.2	0.9	2.3	14.7	1.3	23.8	
LnGrp Delay(d),s/veh	33.8	12.9	35.2	18.4	15.4	107.4	
LnGrp LOS	С	В	D	В	В	F	
Approach Vol. veh/h	746		_	1066	734		
Approach Delay s/veh	31.9			21.9	95.4		
Approach LOS	C			C	F		
Timer	1	2	3	4	5	6	7 8
Assigned Phs	1	2	5	4	5	6	8
$\frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}$	10.0	22 O				120	28.0
Change Deried (V, De) e	10.0	10				42.0	4.0
May Groon Sotting (Gmay) s	4.0	4.0 28 0				4.0 20 0	24.0
$Max \cap Clear Time (a, c, 11)$	6.7	20.0				30.U 20.2	24.0
Groop Ext Time (y_{t+1}) , S	0.7	20.0				20.2	27.0
GIECH EXT HILE (P_C), S	0.0	0.7				2.7	0.0
Intersection Summary							
HCM 2010 Ctrl Delay			46.0				
HCM 2010 LOS			D				

	→	\rightarrow	-	+	1	1		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	•	1	٦	•	ሻ	1		
Traffic Volume (veh/h)	316	933	821	812	201	425		
Future Volume (veh/h)	316	933	821	812	201	425		
Number	2	12	1	6	3	18		
Initial Q (Qb), veh	0	0	0	0	0	0		
Ped-Bike Adj(A_pbT)		1.00	1.00		1.00	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00		
Adj Sat Flow, veh/h/ln	1765	1631	1765	1835	1733	1733		
Adj Flow Rate, veh/h	329	804	855	846	209	222		
Adj No. of Lanes	1	1	1	1	1	1		
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96		
Percent Heavy Veh, %	2	2	2	2	2	2		
Cap, veh/h	662	702	1226	2103	236	1276		
Arrive On Green	0.38	0.36	0.73	1.00	0.14	0.14		
Sat Flow, veh/h	1765	1387	1681	1835	1651	1473		
Grp Volume(v), veh/h	329	804	855	846	209	222		
Grp Sat Flow(s),veh/h/ln	1765	1387	1681	1835	1651	1473		
Q Serve(g_s), s	12.0	30.5	23.5	0.0	10.4	0.0		
Cycle Q Clear(g_c), s	12.0	30.5	23.5	0.0	10.4	0.0		
Prop In Lane		1.00	1.00		1.00	1.00		
Lane Grp Cap(c), veh/h	662	702	1226	2103	236	1276		
V/C Ratio(X)	0.50	1.15	0.70	0.40	0.89	0.17		
Avail Cap(c_a), veh/h	662	702	1226	2103	236	1276		
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00		
Upstream Filter(I)	1.00	1.00	0.09	0.09	1.00	1.00		
Uniform Delay (d), s/veh	20.2	83.3	6.3	0.0	35.3	0.9		
Incr Delay (d2), s/veh	2.7	81.9	0.2	0.1	32.1	0.1		
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0		
%ile BackOfQ(50%),veh/In	6.3	16.0	10.7	0.0	6.9	0.9		
LnGrp Delay(d),s/veh	22.8	165.1	6.4	0.1	67.4	1.0		
LnGrp LOS	С	F	A	A	E	A		
Approach Vol, veh/h	1133			1701	431			
Approach Delay, s/veh	123.8			3.3	33.2			
Approach LOS	F			A	С			
Timer	1	2	3	4	5	6	7	8
Assigned Phs	1	2				6		8
Phs Duration (G+Y+Rc), s	65.3	34.5				99.8	15	.0
Change Period (Y+Rc), s	4.5	* 4.5				4.5	3	.5
Max Green Setting (Gmax), s	31.0	* 30				65.0	11	.5
Max Q Clear Time ($a + 11$), s	25.5	32.5				2.0	12	.4
Green Ext Time (p c), s	2.5	0.0				4.7		.0
Intersection Summary	1.0	0.0						-
			40.0					
HUM 2010 UIT Delay			49.0					
HCIVI ZUTU LUS			D					
Notes								

TIS for the Los Gamos Apartments Project PM Future

HCM Signalized Inter 4: US 101 North Ran	ICM Signalized Intersection Capacity Analysis : US 101 North Ramps & Lucas Valley Rd/Smith Ranch Rd 12/17/2019													
	≯	+	*	4	Ļ	•	•	Ť	*	1	Ļ	4		
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		
Lane Configurations		1	1		†	1	٦		1					
Traffic Volume (vph)	0	397	344	0	1049	721	590	0	559	0	0	0		
Future Volume (vph)	0	397	344	0	1049	721	590	0	559	0	0	0		
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800		
Lane Width	12	14	16	12	13	13	14	12	16	12	12	12		
Total Lost time (s)		3.0	3.0		3.0	3.0	3.0		3.0					
Lane Util. Factor		1.00	1.00		1.00	1.00	1.00		1.00					
Frpb, ped/bikes		1.00	0.98		1.00	1.00	1.00		1.00					
Flpb, ped/bikes		1.00	1.00		1.00	1.00	1.00		1.00					
Frt		1.00	0.85		1.00	0.85	1.00		0.85					
Flt Protected		1.00	1.00		1.00	1.00	0.95		1.00					
Satd. Flow (prot)		1882	1665		1824	1550	1788		1700					
Flt Permitted		1.00	1.00		1.00	1.00	0.95		1.00					
Satd. Flow (perm)		1882	1665		1824	1550	1788		1700					
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94		
Adj. Flow (vph)	0	422	366	0	1116	767	628	0	595	0	0	0		
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	291	0	0	0		
Lane Group Flow (vph)	0	422	366	0	1116	767	628	0	304	0	0	0		
Confl. Bikes (#/hr)			1											
Turn Type		NA	Free		NA	Free	Prot		Prot					
Protected Phases		6			2		4		4					
Permitted Phases			Free			Free	4		4					
Actuated Green, G (s)		59.0	100.0		59.0	100.0	34.0		34.0					
Effective Green, g (s)		60.0	100.0		60.0	100.0	34.0		34.0					
Actuated g/C Ratio		0.60	1.00		0.60	1.00	0.34		0.34					
Clearance Time (s)		4.0			4.0		3.0		3.0					
Vehicle Extension (s)		5.0			4.0		3.0		3.0					
Lane Grp Cap (vph)		1129	1665		1094	1550	607		578					
v/s Ratio Prot		0.22			c0.61		c0.35		0.18					
v/s Ratio Perm			0.22			0.49								
v/c Ratio		0.37	0.22		1.02	0.49	1.03		0.53					
Uniform Delay, d1		10.3	0.0		20.0	0.0	33.0		26.5					
Progression Factor		1.00	1.00		1.00	1.00	1.00		1.00					
Incremental Delay, d2		0.9	0.3		32.4	1.1	45.7		0.9					
Delay (s)		11.3	0.3		52.4	1.1	78.7		27.4					
Level of Service		В	А		D	А	E		С					
Approach Delay (s)		6.2			31.5			53.8			0.0			
Approach LOS		А			С			D			А			
Intersection Summary														
HCM 2000 Control Delay			33.4	Н	CM 2000	Level of	Service		С					
HCM 2000 Volume to Capacity	y ratio		1.02											
Actuated Cycle Length (s)			100.0	S	um of los	t time (s)			6.0					
Intersection Capacity Utilization	n		99.4%	IC	U Level	of Service	2		F					
Analysis Period (min)			15											

c Critical Lane Group

01/13/2021	01	/13/20)21
------------	----	--------	-----

	≯	-	$\mathbf{\hat{z}}$	∢	-	*	1	Ť	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲.	•	1	5	•	1	٦	•	1	ሻ	•	1
Traffic Volume (vph)	20	533	282	63	286	98	123	158	150	122	316	19
Future Volume (vph)	20	533	282	63	286	98	123	158	150	122	316	19
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Width	13	15	13	13	13	16	12	12	12	13	14	12
Total Lost time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frpb, ped/bikes	1.00	1.00	0.98	1.00	1.00	0.98	1.00	1.00	0.97	1.00	1.00	0.97
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1732	1941	1518	1732	1824	1665	1676	1765	1449	1732	1882	1449
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	1732	1941	1518	1732	1824	1665	1676	1765	1449	1732	1882	1449
Peak-hour factor, PHF	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Adj. Flow (vph)	22	586	310	69	314	108	135	174	165	134	347	21
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	22	586	310	69	314	108	135	174	165	134	347	21
Confl. Peds. (#/hr)						1			8			22
Confl. Bikes (#/hr)			1						27			8
Turn Type	Prot	NA	Free	Prot	NA	Free	Prot	NA	Free	Prot	NA	Free
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases			Free			Free			Free			Free
Actuated Green, G (s)	2.0	29.7	81.0	4.4	32.1	81.0	9.0	20.5	81.0	8.4	19.9	81.0
Effective Green, g (s)	3.0	31.7	81.0	5.4	34.1	81.0	10.0	22.5	81.0	9.4	21.9	81.0
Actuated g/C Ratio	0.04	0.39	1.00	0.07	0.42	1.00	0.12	0.28	1.00	0.12	0.27	1.00
Clearance Time (s)	4.0	5.0		4.0	5.0		4.0	5.0		4.0	5.0	
Vehicle Extension (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lane Grp Cap (vph)	64	759	1518	115	767	1665	206	490	1449	200	508	1449
v/s Ratio Prot	0.01	c0.30		c0.04	0.17		c0.08	0.10		0.08	c0.18	
v/s Ratio Perm			c0.20			0.06			0.11			0.01
v/c Ratio	0.34	0.77	0.20	0.60	0.41	0.06	0.66	0.36	0.11	0.67	0.68	0.01
Uniform Delay, d1	38.0	21.5	0.0	36.8	16.4	0.0	33.9	23.4	0.0	34.3	26.4	0.0
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	1.2	4.5	0.3	5.5	0.1	0.1	5.6	0.2	0.2	6.7	3.0	0.0
Delay (s)	39.2	26.0	0.3	42.3	16.5	0.1	39.5	23.6	0.2	41.1	29.5	0.0
Level of Service	D	С	A	D	В	A	D	С	A	D	С	A
Approach Delay (s)		17.6			16.5			20.0			31.3	
Approach LOS		В			В			В			С	
Intersection Summary												
HCM 2000 Control Delay			20.7	H	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capac	city ratio		0.70									
Actuated Cycle Length (s)			81.0	Si	um of lost	t time (s)			12.0			
Intersection Capacity Utilization	tion		71.4%	IC	CU Level o	of Service)		С			
Analysis Period (min)			15									
c Critical Lane Group												

	→	\rightarrow	-	-	1	1	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	•	1	ካካ	•	٦	1	
Traffic Volume (veh/h)	765	81	268	360	30	165	
Future Volume (veh/h)	765	81	268	360	30	165	
Number	2	12	1	6	3	18	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A pbT)		0.98	1.00		1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Adj Sat Flow, veh/h/ln	1652	1652	1588	1652	1652	1652	
Adj Flow Rate, veh/h	805	85	282	379	32	174	
Adi No. of Lanes	1	1	2	1	1	1	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	
Percent Heavy Veh. %	2	2	2	2	2	2	
Cap. veh/h	839	698	549	1224	262	234	
Arrive On Green	0.51	0.51	0,19	0.74	0.17	0,17	
Sat Flow, veh/h	1652	1374	2934	1652	1573	1404	
Grn Volume(v), veh/h	805		282	370	32	17/	
Grn Sat Flow(s) veh/h/ln	1652	137/	1467	1652	1573	1404	
O Serve(a, s) s	30.4	21	5.6	5.0	1 1	77	
Q Serve(Q s), s	30.4	2.1	5.0	5.0	1.1	7.7	
Dron In Lano	30.4	1.00	1.00	5.0	1.1	1.0	
Lana Cra Can(a) wah/h	020	609	540	1004	1.00	1.00	
Late Grp Cap(C), veri/it	0.09	090	049	0.21	202	234	
V/C RallO(A)	0.90	0.12	0.01 E40	1004	0.12	0.74	
Avail Cap(C_a), ven/n	009	090	549	1224	411	307	
	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	0.93	0.93	1.00	1.00	
Uniform Delay (d), s/ven	15.4	0.4	23.0	2.0	23.0	25.7	
Incr Delay (d2), s/ven	22.1	0.4	0.8	0.0	0.2	4.0	
Initial Q Delay(03),s/ven	0.0	0.0	0.0	0.0	0.0	0.0	
%IIe BackOfQ(50%),ven/In	18.9	0.9	2.3	2.4	0.5	3.3	
LnGrp Delay(d),s/veh	38.1	8.8	24.5	3.4	23.2	30.4	
LINGIP LOS	D	A	C	A	C	C	
Approach Vol, veh/h	890			661	206		
Approach Delay, s/veh	35.3			12.4	29.3		
Approach LOS	D			В	С		
Timer	1	2	3	4	5	6	7 8
Assigned Phs	1	2				6	8
Phs Duration (G+Y+Rc), s	15.2	36.0				51.2	13.8
Change Period (Y+Rc), s	4.0	4.0				4.0	4.0
Max Green Setting (Gmax), s	5.0	32.0				41.0	16.0
Max Q Clear Time (g c+l1), s	7.6	32.4				7.0	9.7
Green Ext Time (p_c), s	0.0	0.0				1.4	0.4
Intersection Summary							
HCM 2010 Ctrl Delav			26.0				
HCM 2010 LOS			C.0_				
			0				

	→	\mathbf{F}	1	-	1	1		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	*	1	5	*	5	1		
Traffic Volume (veh/h)	368	566	265	508	117	492		
Future Volume (veh/h)	368	566	265	508	117	492		
Number	2	12	1	6	3	18		
Initial Q (Qb), veh	0	0	2	0	0	0		
Ped-Bike Adi(A pbT)		0.98	1.00		1.00	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00		
Adj Sat Flow, veh/h/ln	1765	1631	1765	1835	1733	1733		
Adj Flow Rate, veh/h	391	452	282	540	124	76		
Adj No. of Lanes	1	1	1	1	1	1		
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94		
Percent Heavy Veh, %	2	2	2	2	2	2		
Cap, veh/h	706	674	627	1499	179	700		
Arrive On Green	0.40	0.39	0.75	1.00	0.11	0.11		
Sat Flow, veh/h	1765	1353	1681	1835	1651	1473		
Grp Volume(v), veh/h	391	452	282	540	124	76		
Grp Sat Flow(s),veh/h/ln	1765	1353	1681	1835	1651	1473		
Q Serve(g s), s	13.7	7.2	5.1	0.0	5.8	0.0		
Cycle Q Clear(g_c), s	13.7	7.2	5.1	0.0	5.8	0.0		
Prop In Lane		1.00	1.00		1.00	1.00		
Lane Grp Cap(c), veh/h	706	674	627	1499	179	700		
V/C Ratio(X)	0.55	0.67	0.45	0.36	0.69	0.11		
Avail Cap(c_a), veh/h	706	674	627	1499	248	761		
HCM Platoon Ratio	1.00	1.00	2.00	2.00	1.00	1.00		
Upstream Filter(I)	1.00	1.00	0.74	0.74	1.00	1.00		
Uniform Delay (d), s/veh	18.5	10.0	7.1	0.0	34.4	11.6		
Incr Delay (d2), s/veh	3.1	5.2	0.5	0.5	9.9	0.1		
Initial Q Delay(d3),s/veh	0.0	0.0	0.1	0.0	0.0	0.0		
%ile BackOfQ(50%),veh/In	7.2	7.0	2.5	0.2	3.1	0.9		
LnGrp Delay(d),s/veh	21.6	15.2	7.7	0.5	44.2	11.8		
LnGrp LOS	С	В	А	А	D	В		
Approach Vol, veh/h	843			822	200			
Approach Delay, s/veh	18.2			3.0	31.9			
Approach LOS	В			А	С			
Timor	1	2	2	1	F	e	7	Q
	1	2	5	4	5	6	1	8
Assigned Pris	22.2	25.0				60.2		0
Change Deried (V, De) c	33.3 / E	55.U * / E				00.5		3.5
Max Green Sotting (Cmox)	4.0	4.0 * 21				4.0		1.5
Max O Clear Time (a, a+11) = 0	20.0	31 15 7				2.00		7.8
Green Ext Time (y_0+11) , S	1.1	66				2.0		0.5
Green Ext Time (p_C), S	1.3	0.0				2.4		0.0
Intersection Summary			10.5					
HCM 2010 Ctrl Delay			12.9					
HCM 2010 LOS			В					
Notes								

AM Existing Plus Project TIS for the Los Gamos Apartments Project

HCM Signalized	I Intersectio	on Cap	acity Analy	/sis	
4: 101 NB Ram	os & Lucas	Valley	Rd/Smith	Ranch R	d

01/13/2021

	≯	-	\mathbf{r}	1	-	•	1	1	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		•	1		•	1	5		1			
Traffic Volume (vph)	0	686	188	0	329	179	454	0	423	0	0	0
Future Volume (vph)	0	686	188	0	329	179	454	0	423	0	0	0
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Width	12	14	16	12	13	13	14	12	16	12	12	12
Total Lost time (s)		3.0	3.0		3.0	3.0	3.0		3.0			
Lane Util. Factor		1.00	1.00		1.00	1.00	1.00		1.00			
Frpb, ped/bikes		1.00	0.97		1.00	1.00	1.00		1.00			
Flpb, ped/bikes		1.00	1.00		1.00	1.00	1.00		1.00			
Frt		1.00	0.85		1.00	0.85	1.00		0.85			
Flt Protected		1.00	1.00		1.00	1.00	0.95		1.00			
Satd. Flow (prot)		1882	1656		1824	1550	1788		1700			
Flt Permitted		1.00	1.00		1.00	1.00	0.95		1.00			
Satd. Flow (perm)		1882	1656		1824	1550	1788		1700			
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	0	722	198	0	346	188	478	0	445	0	0	0
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	143	0	0	0
Lane Group Flow (vph)	0	722	198	0	346	188	478	0	302	0	0	0
Confl. Peds. (#/hr)			11									
Confl. Bikes (#/hr)			2									
Turn Type		NA	Free		NA	Free	Prot		Prot			
Protected Phases		6			2		4		4			
Permitted Phases			Free			Free	4		4			
Actuated Green, G (s)		48.0	80.0		48.0	80.0	25.0		25.0			
Effective Green, g (s)		49.0	80.0		49.0	80.0	25.0		25.0			
Actuated g/C Ratio		0.61	1.00		0.61	1.00	0.31		0.31			
Clearance Time (s)		4.0			4.0		3.0		3.0			
Vehicle Extension (s)		5.0			4.0		3.0		3.0			
Lane Grp Cap (vph)		1152	1656		1117	1550	558		531			
v/s Ratio Prot		c0.38			0.19		c0.27		0.18			
v/s Ratio Perm			0.12			0.12						
v/c Ratio		0.63	0.12		0.31	0.12	0.86		0.57			
Uniform Delay, d1		9.7	0.0		7.4	0.0	25.8		23.0			
Progression Factor		0.72	1.00		1.00	1.00	1.00		1.00			
Incremental Delay, d2		2.1	0.1		0.7	0.2	12.3		1.4			
Delay (s)		9.2	0.1		8.1	0.2	38.1		24.4			
Level of Service		А	А		А	А	D		С			
Approach Delay (s)		7.2			5.3			31.5			0.0	
Approach LOS		А			А			С			А	
Intersection Summary												
HCM 2000 Control Delay			16.2	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capacity	ratio		0.70									
Actuated Cycle Length (s)			80.0	S	um of los	t time (s)			6.0			
Intersection Capacity Utilization	۱		72.4%	IC	CU Level	of Service			С			
Analysis Period (min)			15									
c Critical Lane Group												

01/13/2021

	٦	-	$\mathbf{\hat{z}}$	4	-	•	•	Ť	۲	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	•	1	ľ	•	1	1	•	1	1	•	1
Traffic Volume (vph)	20	345	91	112	351	68	133	130	135	63	95	22
Future Volume (vph)	20	345	91	112	351	68	133	130	135	63	95	22
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Width	13	15	13	13	13	16	12	12	12	13	14	12
Total Lost time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.98	1.00	1.00	0.98
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1732	1941	1550	1732	1824	1700	1676	1765	1468	1732	1882	1464
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	1732	1941	1550	1732	1824	1700	1676	1765	1468	1732	1882	1464
Peak-hour factor, PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	21	356	94	115	362	70	137	134	139	65	98	23
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	21	356	94	115	362	70	137	134	139	65	98	23
Confl. Peds. (#/hr)												3
Confl. Bikes (#/hr)									4			7
Turn Type	Prot	NA	Free	Prot	NA	Free	Prot	NA	Free	Prot	NA	Free
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases			Free			Free			Free			Free
Actuated Green, G (s)	1.9	20.8	60.8	6.3	25.2	60.8	6.1	11.7	60.8	4.0	9.6	60.8
Effective Green, g (s)	2.9	22.8	60.8	7.3	27.2	60.8	7.1	13.7	60.8	5.0	11.6	60.8
Actuated g/C Ratio	0.05	0.38	1.00	0.12	0.45	1.00	0.12	0.23	1.00	0.08	0.19	1.00
Clearance Time (s)	4.0	5.0		4.0	5.0		4.0	5.0		4.0	5.0	
Vehicle Extension (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lane Grp Cap (vph)	82	727	1550	207	816	1700	195	397	1468	142	359	1464
v/s Ratio Prot	0.01	0.18		c0.07	c0.20		c0.08	c0.08		0.04	0.05	
v/s Ratio Perm			0.06			0.04			c0.09			0.02
v/c Ratio	0.26	0.49	0.06	0.56	0.44	0.04	0.70	0.34	0.09	0.46	0.27	0.02
Uniform Delay, d1	27.9	14.5	0.0	25.2	11.6	0.0	25.8	19.7	0.0	26.6	21.0	0.0
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	0.6	0.2	0.1	1.8	0.1	0.0	9.0	0.2	0.1	0.9	0.2	0.0
Delay (s)	28.5	14.7	0.1	27.1	11.7	0.0	34.8	19.9	0.1	27.5	21.2	0.0
Level of Service	С	В	A	С	В	A	С	В	A	C	С	A
Approach Delay (s)		12.4			13.5			18.2			20.7	
Approach LOS		В			В			В			С	
Intersection Summary												
HCM 2000 Control Delay			15.2	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capac	city ratio		0.49									
Actuated Cycle Length (s)			60.8	S	um of lost	t time (s)			12.0			
Intersection Capacity Utilizat	ion		53.2%	IC	U Level o	of Service)		Α			
Analysis Period (min)			15									
c Critical Lane Group												

	→	\rightarrow	-	-	1	1	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	•	1	ሻሻ	†	ሻ	1	
Traffic Volume (veh/h)	459	37	230	522	54	305	
Future Volume (veh/h)	459	37	230	522	54	305	
Number	2	12	1	6	3	18	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A pbT)		1.00	1.00		1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Adj Sat Flow, veh/h/ln	1835	1835	1765	1835	1835	1835	
Adj Flow Rate, veh/h	483	39	242	549	57	321	
Adj No. of Lanes	1	1	2	1	1	1	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	
Percent Heavy Veh, %	2	2	2	2	2	2	
Cap, veh/h	856	728	432	1191	438	391	
Arrive On Green	0.47	0.47	0.13	0.65	0.25	0.25	
Sat Flow, veh/h	1835	1560	3261	1835	1748	1560	
Grp Volume(v), veh/h	483	39	242	549	57	321	
Grp Sat Flow(s) veh/h/ln	1835	1560	1630	1835	1748	1560	
O Serve(a, s) s	11 4	0.8	4 2	9.0	15	11.6	
$Cvcle \cap Clear(q, c) \leq Cvcle \cap Clear(q, c) < Cvcle \cap Clear(q, c) \leq Cvcle \cap Clear(q, c) < Cvcle \cap Clear(q, c) $	11.4	0.0	4.2	9.0	1.5	11.0	
Pron In Lane	11.4	1 00	1.00	5.0	1.0	1 00	
Lane Grn Can(c) veh/h	856	728	432	1191	438	391	
V/C Ratio(X)	0.56	0.05	0.56	0.46	0.13	0.82	
Avail Can(c, a) veh/h	856	728	432	1101	495	442	
HCM Platoon Ratio	1.00	1 00	1 00	1 00	1 00	1 00	
Instream Filter(I)	1.00	1.00	0.80	0.80	1.00	1.00	
Uniform Delay (d) s/yeb	11.00	8.8	24.4	5.3	17 /	21.00	
Incr Delay (d2) s/veh	2.7	0.0	15	1 1	0.1	10.6	
Initial \cap Delay(d3) s/veh	0.0	0.1	0.0	0.0	0.1	0.0	
%ile BackOfO(50%) veh/ln	6.4	0.0	2.0	1.8	0.0	6.1	
InGrn Delay(d) s/yeh	14.3	8 Q	25.8	4.0 6.4	17.5	31.8	
InGro LOS	14.5 R	Δ	23.0	Δ	17.5 R	01.0 C	
Approach Vol voh/h	522		0	701	379	0	
Approach Delay, shop	12.0			10 /	20.6		
Approach LOS	13.9 R			12.4 R	29.0		
					-		
limer	1	2	3	4	5	6	7 8
Assigned Phs	1	2				6	8
Phs Duration (G+Y+Rc), s	10.9	31.0				41.9	18.1
Change Period (Y+Rc), s	4.0	4.0				4.0	4.0
Max Green Setting (Gmax), s	5.0	27.0				36.0	16.0
Max Q Clear Time (g_c+I1), s	6.2	13.4				11.0	13.6
Green Ext Time (p_c), s	0.0	1.7				2.2	0.4
Intersection Summary							
HCM 2010 Ctrl Delay			16.7				
HCM 2010 LOS			В				

	→	\mathbf{F}	∢	-	1	1		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	•	1	5	•	5	1		
Traffic Volume (veh/h)	296	466	463	569	169	254		
Future Volume (veh/h)	296	466	463	569	169	254		
Number	2	12	1	6	3	18		
Initial Q (Qb), veh	0	0	0	0	0	0		
Ped-Bike Adj(A pbT)		1.00	1.00		1.00	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00		
Adj Sat Flow, veh/h/ln	1765	1631	1765	1835	1733	1733		
Adj Flow Rate, veh/h	308	317	482	593	176	44		
Adj No. of Lanes	1	1	1	1	1	1		
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96		
Percent Heavy Veh, %	2	2	2	2	2	2		
Cap, veh/h	596	639	686	1449	224	792		
Arrive On Green	0.34	0.32	0.82	1.00	0.14	0.14		
Sat Flow, veh/h	1765	1387	1681	1835	1651	1473		
Grp Volume(v), veh/h	308	317	482	593	176	44		
Grp Sat Flow(s),veh/h/ln	1765	1387	1681	1835	1651	1473		
Q Serve(g_s), s	11.2	0.0	9.9	0.0	8.3	0.0		
Cycle Q Clear(g_c), s	11.2	0.0	9.9	0.0	8.3	0.0		
Prop In Lane		1.00	1.00		1.00	1.00		
Lane Grp Cap(c), veh/h	596	639	686	1449	224	792		
V/C Ratio(X)	0.52	0.50	0.70	0.41	0.79	0.06		
Avail Cap(c_a), veh/h	596	639	686	1449	248	813		
HCM Platoon Ratio	1.00	1.00	2.00	2.00	1.00	1.00		
Upstream Filter(I)	1.00	1.00	0.67	0.67	1.00	1.00		
Uniform Delay (d), s/veh	21.3	10.3	5.3	0.0	33.4	8.8		
Incr Delay (d2), s/veh	3.2	2.7	2.3	0.6	17.2	0.1		
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0		
%ile BackOfQ(50%),veh/In	5.9	4.4	4.4	0.2	4.8	0.5		
LnGrp Delay(d),s/veh	24.5	13.0	7.6	0.6	50.6	8.9		
LnGrp LOS	С	В	А	А	D	А		
Approach Vol, veh/h	625			1075	220			
Approach Delay, s/veh	18.7			3.7	42.3			
Approach LOS	В			А	D			
Timor	1	2	2	1	5	e	7	8
	1	2	3	4	5	6	T	8
Physical Contraction (C+V+Da)	36.1	20.0				66 1	10	0
Change Deriod (V+De) e	JU. I	50.0 */5				1.5	13	.9
Max Groop Sotting (Cmax)	4.0	4.0 * 06				4.0	- 3	.5
Max O Clear Time (a. a.11) a	31.0 11.0	20 12.0				2.00	10	3
Green Ext Time (p, q) s	25	13.2				2.0	10	.J 2
Internation Operations	2.3	4.2				2.1	0	.∠
			46.0					
HCM 2010 Ctrl Delay			13.0					
HCM 2010 LOS			В					
Notes								

HCM Signalized Intel 4: US 101 North Ran	rsectio nps &	on Cap Lucas	oacity / Valley	Analysi / Rd/Si	is mith R	anch F	۶d				01/1	3/2021
	≯	+	\mathbf{F}	4	+	•	•	Ť	1	1	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		•	1		•	1	5		1			
Traffic Volume (vph)	5	313	239	9	566	427	467	0	405	0	0	0
Future Volume (vph)	5	313	239	9	566	427	467	0	405	0	0	0
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Width	12	14	16	12	13	13	14	12	16	12	12	12
Total Lost time (s)		3.0	3.0		3.0	3.0	3.0		3.0			
Lane Util. Factor		1.00	1.00		1.00	1.00	1.00		1.00			
Frpb, ped/bikes		1.00	0.98		1.00	1.00	1.00		1.00			
Flpb, ped/bikes		1.00	1.00		1.00	1.00	1.00		1.00			
Frt		1.00	0.85		1.00	0.85	1.00		0.85			
Flt Protected		1.00	1.00		1.00	1.00	0.95		1.00			
Satd. Flow (prot)		1881	1665		1822	1550	1788		1700			
Flt Permitted		0.99	1.00		0.99	1.00	0.95		1.00			
Satd. Flow (perm)		1871	1665		1813	1550	1788		1700			
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	5	333	254	10	602	454	497	0	431	0	0	0
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	283	0	0	0
Lane Group Flow (vph)	0	338	254	0	612	454	497	0	148	0	0	0
Confl. Bikes (#/hr)			1									
Turn Type	Perm	NA	Free	Perm	NA	Free	Prot		Prot			
Protected Phases		6			2		4		4			
Permitted Phases	6		Free	2		Free	4		4			
Actuated Green, G (s)		45.5	80.0		45.5	80.0	27.5		27.5			
Effective Green, g (s)		46.5	80.0		46.5	80.0	27.5		27.5			
Actuated g/C Ratio		0.58	1.00		0.58	1.00	0.34		0.34			
Clearance Time (s)		4.0			4.0		3.0		3.0			
Vehicle Extension (s)		5.0			4.0		3.0		3.0			
Lane Grp Cap (vph)		1087	1665		1053	1550	614		584			
v/s Ratio Prot							c0.28		0.09			
v/s Ratio Perm		0.18	0.15		c0.34	0.29						
v/c Ratio		0.31	0.15		0.58	0.29	0.81		0.25			
Uniform Delay, d1		8.6	0.0		10.6	0.0	23.9		18.9			
Progression Factor		1.01	1.00		1.00	1.00	1.00		1.00			
Incremental Delay, d2		0.7	0.2		2.3	0.5	7.8		0.2			
Delay (s)		9.4	0.2		12.9	0.5	31.6		19.1			
Level of Service		А	А		В	А	С		В			
Approach Delay (s)		5.4			7.6			25.8			0.0	
Approach LOS		А			А			С			А	
Intersection Summary												
HCM 2000 Control Delay			13.7	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capacity	y ratio		0.67									
Actuated Cycle Length (s)	· · ·		80.0	S	um of lost	t time (s)			6.0			
Intersection Capacity Utilizatio	n		73.0%	IC	U Level o	of Service	;		D			
Analysis Period (min)			15									

c Critical Lane Group

01/13/2021	01	/13/20)21
------------	----	--------	-----

	≯	-	\mathbf{r}	•	+	•	1	Ť	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	•	1	5	•	1	ሻ	•	1	ሻ	•	1
Traffic Volume (vph)	40	798	381	74	385	101	151	224	162	219	411	35
Future Volume (vph)	40	798	381	74	385	101	151	224	162	219	411	35
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Width	13	15	13	13	13	16	12	12	12	13	14	12
Total Lost time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frpb, ped/bikes	1.00	1.00	0.98	1.00	1.00	0.98	1.00	1.00	0.97	1.00	1.00	0.97
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1732	1941	1518	1732	1824	1665	1676	1765	1449	1732	1882	1449
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	1732	1941	1518	1732	1824	1665	1676	1765	1449	1732	1882	1449
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	40	798	381	74	385	101	151	224	162	219	411	35
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	40	798	381	74	385	101	151	224	162	219	411	35
Confl. Peds. (#/hr)						1			8			22
Confl. Bikes (#/hr)			1						27			8
Turn Type	Prot	NA	Free	Prot	NA	Free	Prot	NA	Free	Prot	NA	Free
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases			Free			Free			Free			Free
Actuated Green, G (s)	2.8	35.9	86.7	3.0	36.1	86.7	9.5	18.0	86.7	11.8	20.3	86.7
Effective Green, g (s)	3.8	37.9	86.7	4.0	38.1	86.7	10.5	20.0	86.7	12.8	22.3	86.7
Actuated g/C Ratio	0.04	0.44	1.00	0.05	0.44	1.00	0.12	0.23	1.00	0.15	0.26	1.00
Clearance Time (s)	4.0	5.0		4.0	5.0		4.0	5.0		4.0	5.0	
Vehicle Extension (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lane Grp Cap (vph)	75	848	1518	79	801	1665	202	407	1449	255	484	1449
v/s Ratio Prot	0.02	c0.41		c0.04	0.21		0.09	0.13		c0.13	c0.22	
v/s Ratio Perm			c0.25			0.06			0.11			0.02
v/c Ratio	0.53	0.94	0.25	0.94	0.48	0.06	0.75	0.55	0.11	0.86	0.85	0.02
Uniform Delay, d1	40.6	23.3	0.0	41.2	17.3	0.0	36.8	29.4	0.0	36.1	30.6	0.0
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	3.6	18.0	0.4	78.5	0.2	0.1	12.4	0.9	0.2	23.0	12.6	0.0
Delay (s)	44.2	41.3	0.4	119.7	17.4	0.1	49.2	30.3	0.2	59.1	43.2	0.0
Level of Service	D	D	А	F	В	А	D	С	А	Е	D	А
Approach Delay (s)		28.6			27.8			26.5			46.1	
Approach LOS		С			С			С			D	
Intersection Summary												
HCM 2000 Control Delay			32.0	H	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capac	city ratio		0.91									
Actuated Cycle Length (s)			86.7	S	um of lost	t time (s)			12.0			
Intersection Capacity Utilizat	tion		93.7%	IC	U Level o	of Service			F			
Analysis Period (min)			15									
c Critical Lane Group												

	-	\rightarrow	-	+	1	1	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations		1	ሻሻ	†	٦	1	
Traffic Volume (veh/h)	1019	205	543	596	30	183	
Future Volume (veh/h)	1019	205	543	596	30	183	
Number	2	12	1	6	3	18	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)		0.98	1.00		1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Adj Sat Flow, veh/h/ln	1652	1652	1588	1652	1652	1652	
Adj Flow Rate, veh/h	1019	205	543	596	30	183	
Adj No. of Lanes	1	1	2	1	1	1	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Percent Heavy Veh, %	2	2	2	2	2	2	
Cap, veh/h	991	825	538	1335	223	199	
Arrive On Green	0.60	0.60	0.18	0.81	0.14	0.14	
Sat Flow, veh/h	1652	1374	2934	1652	1573	1404	
Grp Volume(v), veh/h	1019	205	543	596	30	183	
Grp Sat Flow(s),veh/h/ln	1652	1374	1467	1652	1573	1404	
Q Serve(q s), s	72.0	8.4	22.0	13.0	2.0	15.4	
Cycle Q Clear(q c), s	72.0	8.4	22.0	13.0	2.0	15.4	
Prop In Lane		1.00	1.00		1.00	1.00	
Lane Grp Cap(c), veh/h	991	825	538	1335	223	199	
V/C Ratio(X)	1.03	0.25	1.01	0.45	0.13	0.92	
Avail Cap(c a), veh/h	991	825	538	1335	223	199	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	0.70	0.70	1.00	1.00	
Uniform Delay (d), s/veh	24.0	11.3	49.0	3.4	45.1	50.8	
Incr Delay (d2), s/veh	36.0	0.7	34.7	0.8	0.3	42.0	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	42.4	3.4	11.5	6.1	0.9	8.3	
LnGrp Delay(d),s/veh	60.0	12.0	83.7	4.2	45.3	92.8	
LnGrp LOS	F	В	F	А	D	F	
Approach Vol. veh/h	1224			1139	213		
Approach Delay, s/veh	52.0			42.1	86.2		
Approach LOS	D			D	F		
Timer	1	2	3	4	5	6	7 8
Assigned Phs	1	2				6	8
Phs Duration (G+Y+Rc) s	25.0	75.0				100 0	20.0
Change Period (Y+Rc) s	4.0	4 0				4 0	4.0
Max Green Setting (Gmax)	21.0	71.0				96.0	16.0
Max Q Clear Time (q. c+l1) s	24.0	74.0				15.0	17.4
Green Ext Time (p_c), s	0.0	0.0				2.6	0.0
Intersection Summarv							
HCM 2010 Ctrl Delay			50.4				
HCM 2010 L OS			оо. т П				
			D				

	→	\rightarrow	1	-	1	1		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	•	1	٦	•	5	1		
Traffic Volume (veh/h)	608	594	338	893	246	571		
Future Volume (veh/h)	608	594	338	893	246	571		
Number	2	12	1	6	3	18		
Initial Q (Qb), veh	0	0	2	0	0	0		
Ped-Bike Adj(A pbT)		0.98	1.00		1.00	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00		
Adj Sat Flow, veh/h/ln	1765	1631	1765	1835	1733	1733		
Adj Flow Rate, veh/h	608	453	338	893	246	151		
Adj No. of Lanes	1	1	1	1	1	1		
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Percent Heavy Veh, %	2	2	2	2	2	2		
Cap, veh/h	832	857	502	1505	283	682		
Arrive On Green	0.47	0.46	0.30	0.82	0.17	0.17		
Sat Flow, veh/h	1765	1354	1681	1835	1651	1473		
Grp Volume(v), veh/h	608	453	338	893	246	151		
Grp Sat Flow(s),veh/h/ln	1765	1354	1681	1835	1651	1473		
Q Serve(g_s), s	19.4	0.0	12.4	12.1	10.2	0.0		
Cycle Q Clear(g_c), s	19.4	0.0	12.4	12.1	10.2	0.0		
Prop In Lane		1.00	1.00		1.00	1.00		
Lane Grp Cap(c), veh/h	832	857	502	1505	283	682		
V/C Ratio(X)	0.73	0.53	0.67	0.59	0.87	0.22		
Avail Cap(c_a), veh/h	832	857	497	1499	283	678		
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00		
Upstream Filter(I)	1.00	1.00	0.39	0.39	1.00	1.00		
Uniform Delay (d), s/veh	14.9	6.1	21.7	2.2	28.2	11.3		
Incr Delay (d2), s/veh	5.6	2.3	1.5	0.7	25.4	0.3		
Initial Q Delay(d3),s/veh	0.0	0.0	0.4	0.0	0.0	0.0		
%ile BackOfQ(50%),veh/In	10.6	4.8	6.2	6.1	6.6	1.8		
LnGrp Delay(d),s/veh	20.5	8.4	23.5	2.9	53.6	11.6		
LnGrp LOS	С	А	С	А	D	В		
Approach Vol, veh/h	1061			1231	397			
Approach Delay, s/veh	15.4			8.6	37.6			
Approach LOS	В			А	D			
Timer	1	2	3	4	5	6	7	8
Assigned Phs	1	2	•		Ŭ	6		8
Phs Duration (G+Y+Rc), s	24.2	36.0				60.2	1	5.0
Change Period (Y+Rc), s	4.5	* 4.5				4.5	•	3.5
Max Green Setting (Gmax) s	15.0	* 32				50.5	1	1.5
Max Q Clear Time (α c+11), s	14.4	21.4				14.1	1	2.2
Green Ext Time (p_c), s	0.1	6.2				5.1		0.0
Interportion Summer	v . 1	<i></i>				V .1		
			15.0					
HUM 2010 Utri Delay			15.6					
HUM 2010 LUS			В					
Notes								

HCM Signalized	I Intersectio	on Cap	acity Analy	/sis	
4: 101 NB Ram	os & Lucas	Valley	Rd/Smith	Ranch R	d

01/13/2021

	≯	-	\mathbf{r}	•	+	•	1	1	1	1	Ŧ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		•	1		•	1	5		1			
Traffic Volume (vph)	0	1041	188	0	436	190	795	0	452	0	0	0
Future Volume (vph)	0	1041	188	0	436	190	795	0	452	0	0	0
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Width	12	14	16	12	13	13	14	12	16	12	12	12
Total Lost time (s)		3.0	3.0		3.0	3.0	3.0		3.0			
Lane Util. Factor		1.00	1.00		1.00	1.00	1.00		1.00			
Frpb, ped/bikes		1.00	0.97		1.00	1.00	1.00		1.00			
Flpb, ped/bikes		1.00	1.00		1.00	1.00	1.00		1.00			
Frt		1.00	0.85		1.00	0.85	1.00		0.85			
Flt Protected		1.00	1.00		1.00	1.00	0.95		1.00			
Satd. Flow (prot)		1882	1656		1824	1550	1788		1700			
Flt Permitted		1.00	1.00		1.00	1.00	0.95		1.00			
Satd. Flow (perm)		1882	1656		1824	1550	1788		1700			
Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	0	1041	188	0	436	190	795	0	452	0	0	0
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	44	0	0	0
Lane Group Flow (vph)	0	1041	188	0	436	190	795	0	408	0	0	0
Confl. Peds. (#/hr)			11									
Confl. Bikes (#/hr)			2									
Turn Type		NA	Free		NA	Free	Prot		Prot			
Protected Phases		6			2		4		4			
Permitted Phases			Free			Free	4		4			
Actuated Green, G (s)		52.0	100.0		52.0	100.0	41.0		41.0			
Effective Green, g (s)		53.0	100.0		53.0	100.0	41.0		41.0			
Actuated g/C Ratio		0.53	1.00		0.53	1.00	0.41		0.41			
Clearance Time (s)		4.0			4.0		3.0		3.0			
Vehicle Extension (s)		5.0			4.0		3.0		3.0			
Lane Grp Cap (vph)		997	1656		966	1550	733		697			
v/s Ratio Prot		c0.55			0.24		c0.44		0.24			
v/s Ratio Perm			0.11			0.12						
v/c Ratio		1.04	0.11		0.45	0.12	1.08		0.59			
Uniform Delay, d1		23.5	0.0		14.5	0.0	29.5		22.9			
Progression Factor		1.00	1.00		1.00	1.00	1.00		1.00			
Incremental Delay, d2		40.7	0.1		1.5	0.2	58.5		1.3			
Delay (s)		64.2	0.1		16.0	0.2	88.0		24.2			
Level of Service		E	A		B	A	F	04.0	С			
Approach Delay (s)		54.4			11.2			64.9			0.0	
Approach LOS		D			В			E			A	
Intersection Summary												
HCM 2000 Control Delay			49.9	Н	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capacity	ratio		1.06	_								
Actuated Cycle Length (s)			100.0	S	um of los	t time (s)			6.0			
Intersection Capacity Utilization	1		111.0%	10	U Level	of Service	;		Н			
Analysis Period (min)			15									
c Critical Lane Group												

01/13/2021	01	/13/20)21
------------	----	--------	-----

	٦	-	$\mathbf{\hat{z}}$	4	+	•	1	Ť	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲.	•	1	7	•	1	ľ	•	1	٦ ۲	•	1
Traffic Volume (vph)	22	396	141	154	477	175	170	240	151	100	111	22
Future Volume (vph)	22	396	141	154	477	175	170	240	151	100	111	22
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Width	13	15	13	13	13	16	12	12	12	13	14	12
Total Lost time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.98	1.00	1.00	0.98
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1732	1941	1550	1732	1824	1700	1676	1765	1468	1732	1882	1464
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	1732	1941	1550	1732	1824	1700	1676	1765	1468	1732	1882	1464
Peak-hour factor, PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	23	408	145	159	492	180	175	247	156	103	114	23
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	23	408	145	159	492	180	175	247	156	103	114	23
Confl. Peds. (#/hr)												3
Confl. Bikes (#/hr)									4			7
Turn Type	Prot	NA	Free	Prot	NA	Free	Prot	NA	Free	Prot	NA	Free
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases			Free			Free			Free			Free
Actuated Green, G (s)	1.3	18.2	61.5	6.4	23.3	61.5	7.7	13.9	61.5	5.0	11.2	61.5
Effective Green, g (s)	2.3	20.2	61.5	7.4	25.3	61.5	8.7	15.9	61.5	6.0	13.2	61.5
Actuated g/C Ratio	0.04	0.33	1.00	0.12	0.41	1.00	0.14	0.26	1.00	0.10	0.21	1.00
Clearance Time (s)	4.0	5.0		4.0	5.0		4.0	5.0		4.0	5.0	
Vehicle Extension (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lane Grp Cap (vph)	64	637	1550	208	750	1700	237	456	1468	168	403	1464
v/s Ratio Prot	0.01	0.21		c0.09	c0.27		c0.10	c0.14		0.06	0.06	
v/s Ratio Perm			0.09			0.11			c0.11			0.02
v/c Ratio	0.36	0.64	0.09	0.76	0.66	0.11	0.74	0.54	0.11	0.61	0.28	0.02
Uniform Delay, d1	28.9	17.6	0.0	26.2	14.6	0.0	25.3	19.7	0.0	26.6	20.2	0.0
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	1.3	1.7	0.1	13.9	1.6	0.1	9.9	0.7	0.1	4.6	0.1	0.0
Delay (s)	30.1	19.2	0.1	40.1	16.2	0.1	35.2	20.4	0.1	31.2	20.3	0.0
Level of Service	С	В	А	D	В	А	D	С	А	С	С	A
Approach Delay (s)		14.8			17.3			19.4			23.1	
Approach LOS		В			В			В			С	
Intersection Summary												
HCM 2000 Control Delay			17.8	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capac	city ratio		0.69									
Actuated Cycle Length (s)			61.5	S	um of lost	t time (s)			12.0			
Intersection Capacity Utilization	tion		63.5%	IC	CU Level o	of Service	l.		В			
Analysis Period (min)			15									
c Critical Lane Group												

	→	\rightarrow	-	-	1	1	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	•	1	ሻሻ	†	۲.	1	
Traffic Volume (veh/h)	643	70	265	798	93	639	
Future Volume (veh/h)	643	70	265	798	93	639	
Number	2	12	1	6	3	18	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)		1.00	1.00		1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Adj Sat Flow, veh/h/ln	1835	1835	1765	1835	1835	1835	
Adj Flow Rate, veh/h	677	74	279	840	98	673	
Adj No. of Lanes	1	1	2	1	1	1	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	
Percent Heavy Veh, %	2	2	2	2	2	2	
Cap, veh/h	760	646	326	1023	624	557	
Arrive On Green	0.41	0.41	0.10	0.56	0.36	0.36	
Sat Flow, veh/h	1835	1560	3261	1835	1748	1560	
Grp Volume(v), veh/h	677	74	279	840	98	673	
Grp Sat Flow(s).veh/h/ln	1835	1560	1630	1835	1748	1560	
Q Serve(g s), s	24.0	2.0	5.9	26.2	2.7	25.0	
Cycle Q Clear(g c), s	24.0	2.0	5.9	26.2	2.7	25.0	
Prop In Lane	•	1.00	1.00		1.00	1.00	
Lane Grp Cap(c), veh/h	760	646	326	1023	624	557	
V/C Ratio(X)	0.89	0.11	0.86	0.82	0.16	1.21	
Avail Cap(c a), veh/h	760	646	326	1023	624	557	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	0.72	0.72	1.00	1.00	
Uniform Delay (d), s/veh	19.0	12.6	31.0	12.7	15.3	22.5	
Incr Delay (d2), s/veh	14.8	0.4	14.8	5.4	0.1	109.6	
Initial Q Delav(d3) s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	15.2	0.9	3.3	14.6	1.3	27.6	
LnGrp Delav(d),s/veh	33.8	13.0	45.8	18.1	15.4	132.1	
LnGrp LOS	C	B	D	B	B	F	
Approach Vol. veh/h	751	_	_	1119	771		
Approach Delay s/veh	31.8			25.0	117.3		
Approach LOS	C			_0.0 C	F		
Timor	1	2	2	-	5	6	7 8
	1	2	3	4	5	0	
Assigned Phs	10.0	2				6	ð
Pris Duration (G+Y+KC), S	10.0	32.0				42.0	20.U
Unange Period (Y+Rc), s	4.0	4.0				4.0	4.0
wax Green Setting (Gmax), s	6.0	28.0				38.0	24.0
iviax Q Clear Time (g_c+11), s	7.9	26.0				28.2	27.0
Green Ext Time (p_c), s	0.0	0.7				2.9	0.0
Intersection Summary							
HCM 2010 Ctrl Delay			53.9				
HCM 2010 LOS			D				

	-	\rightarrow	1	+	1	1		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	•	1	۲	•	ሻ	1		
Traffic Volume (veh/h)	329	953	821	843	220	425		
Future Volume (veh/h)	329	953	821	843	220	425		
Number	2	12	1	6	3	18		
Initial Q (Qb), veh	0	0	0	0	0	0		
Ped-Bike Adj(A_pbT)		1.00	1.00		1.00	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00		
Adj Sat Flow, veh/h/ln	1765	1631	1765	1835	1733	1733		
Adj Flow Rate, veh/h	343	825	855	878	229	222		
Adj No. of Lanes	1	1	1	1	1	1		
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96		
Percent Heavy Veh, %	2	2	2	2	2	2		
Cap, veh/h	662	702	1226	2103	236	1276		
Arrive On Green	0.38	0.36	0.73	1.00	0.14	0.14		
Sat Flow, veh/h	1765	1387	1681	1835	1651	1473		
Grp Volume(v), veh/h	343	825	855	878	229	222		
Grp Sat Flow(s),veh/h/ln	1765	1387	1681	1835	1651	1473		
Q Serve(g_s), s	12.7	30.5	23.5	0.0	11.6	0.0		
Cycle Q Clear(g_c), s	12.7	30.5	23.5	0.0	11.6	0.0		
Prop In Lane		1.00	1.00		1.00	1.00		
Lane Grp Cap(c), veh/h	662	702	1226	2103	236	1276		
V/C Ratio(X)	0.52	1.18	0.70	0.42	0.97	0.17		
Avail Cap(c_a), veh/h	662	702	1226	2103	236	1276		
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00		
Upstream Filter(I)	1.00	1.00	0.09	0.09	1.00	1.00		
Uniform Delay (d), s/veh	20.4	83.3	6.3	0.0	35.8	0.9		
Incr Delay (d2), s/veh	2.9	93.7	0.2	0.1	50.7	0.1		
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0		
%ile BackOfQ(50%),veh/In	6.6	48.9	10.7	0.0	8.6	0.9		
LnGrp Delay(d),s/veh	23.3	176.9	6.4	0.1	86.5	1.0		
LnGrp LOS	С	F	А	А	F	А		
Approach Vol, veh/h	1168			1733	451			
Approach Delay, s/veh	131.8			3.2	44.4			
Approach LOS	F			А	D			
Timer	1	2	3	4	5	6	7	8
Assigned Phs	1	2				6		8
Phs Duration (G+Y+Rc), s	65.3	34.5				99.8	15	.0
Change Period (Y+Rc), s	4.5	* 4.5				4.5	3	.5
Max Green Setting (Gmax), s	31.0	* 30				65.0	11	.5
Max Q Clear Time (g_c+l1), s	25.5	32.5				2.0	13	.6
Green Ext Time (p_c), s	2.5	0.0				5.0	0	.0
Intersection Summarv								
HCM 2010 Ctrl Delay			53.6					
HCM 2010 LOS			D					
NOTES								

Movement EBL EBT EBR WBL WBT WBL NBT NBR SBL SBT SBT Traffic Volume (vph) 0 397 357 0 1049 721 621 0 559 0 0 1 Ideal Flow (vph) 1800 180 180		<u>55 U</u>	Luous	vuncy	1.0		unon i	NG				•	
Movement EBI EBI EBI EBI WBI WBI WBI NBI NBI NBI SBI SB		۶	-	\mathbf{i}	∢	←	*	1	Ť	1	1	ţ	~
Lane Configurations Image of the second	Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Oxlume (vph) 0 397 357 0 1049 721 621 0 559 0 0 I Future Volume (vph) 0 397 357 0 1049 721 621 0 559 0 0 I Geal Flow (vph) 1800 100 1.00	Lane Configurations		•	1		•	1	۲.		1			
Future Volume (vph) 0 397 357 0 1049 721 621 0 559 0 0 1 ideal Flow (vphp) 1800 <	Traffic Volume (vph)	0	397	357	0	1049	721	621	0	559	0	0	0
Ideal Flow (vphp) 1800 1000 1000 1000 <td>Future Volume (vph)</td> <td>0</td> <td>397</td> <td>357</td> <td>0</td> <td>1049</td> <td>721</td> <td>621</td> <td>0</td> <td>559</td> <td>0</td> <td>0</td> <td>0</td>	Future Volume (vph)	0	397	357	0	1049	721	621	0	559	0	0	0
Lane Width 12 14 16 12 13 13 14 12 16 12 12 1: Total Lost time (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 1.00 Frib, ped/bikes 1.00 0.98 1.00 1.00 1.00 1.00 Fib, ped/bikes 1.00 0.85 1.00 0.85 1.00 0.85 Fit Protected 1.00 1.00 1.00 1.00 1.00 0.85 Fit Protected 1.00 1.00 1.00 1.00 0.95 1.00 Satd. Flow (pern) 1882 1665 1824 1550 1788 1700 Satd. Flow (pern) 1882 1665 1824 1550 1788 1700 Satd. Flow (pern) 1882 1665 1824 1550 1788 1700 Satd. Flow (pern) 0 422 380 0 1116 767 661 0 595 0 0 0 M RTOR Reduction (vph) 0 422 380 0 1116 767 661 0 595 0 0 M RTOR Reduction (vph) 0 422 380 0 1116 767 661 0 304 0 0 M Confl. Bikes (#hr) 1 1 Turn Type NA Free NA Free Prot Prot Protected Phases 6 2 4 4 4 Permited Phases 6 Free Free 4 4 4 Actuated Green, G (s) 59.0 100.0 59.0 100.0 34.0 34.0 Confl. Bikes (#hr) 1 0 Turn Type NA Free NA Free Prot Prot Free 4 4 4 Confl. Bikes (#hr) 1 0 Turn Type NA Free NA Free Prot Prot Free 4 4 4 Confl. Bikes (#hr) 1 0 Turn Type NA Free Free 4 4 Actuated Green, G (s) 59.0 100.0 59.0 100.0 34.0 34.0 Confl. Bikes (#hr) 1 Turn Type NA Free Free 4 4 Actuated Green, G (s) 59.0 100.0 60.0 100.0 34.0 34.0 Confl. Bikes (#hr) 1 Turn Type NA Free Free 7 Free 4 A Actuated grc Ratio 0.60 1.00 0.60 1.00 0.34 0.34.0 Confl. Bikes (#hr) 1 Turn Type 100 0 Confl. Bikes (#hr) 1 Turn Type NA Free Free A A Actuated grc Ratio 0.60 1.00 0.60 1.00 0.34 0.34.0 Confl. Bikes (#hr) 1.29 1665 1094 1550 607 578 Vis Ratio Perm 0.23 0.49 Vis Ratio Perm 0.23 0.49 V	Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Last time (s) 3.0 3.0 3.0 3.0 3.0 3.0 Lane Util, Factor 1.00 3.0	Lane Width	12	14	16	12	13	13	14	12	16	12	12	12
Lane UIL Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Frpb, ped/bikes 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 Frpb, ped/bikes 1.00 0.085 1.00 0.85 1.00 0.85 1.00 0.85 Fit Protected 1.00 1.00 1.00 1.00 1.00 0.95 1.00 Satd. Flow (port) 1882 1665 1824 1550 1788 1770 Fit Permitted 1.00 1.00 1.00 1.00 1.00 0.95 1.00 Satd. Flow (perm) 1882 1665 1824 1550 1788 1770 Fit Permitted 1.00 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0	Total Lost time (s)		3.0	3.0		3.0	3.0	3.0		3.0			
Frpb, ped/bikes 1.00 0.98 1.00 1.00 1.00 1.00 1.00 Flb, ped/bikes 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Flt 1.00 0.85 1.00 0.85 1.00 0.85 1.00 0.85 1.00 0.85 1.00 0.85 1.00 0.85 1.00 0.85 1.00 0.85 1.00 0.85 1.00 0.85 1.00 0.85 1.00 0.85 1.00 1.00 0.94 <td>Lane Util. Factor</td> <td></td> <td>1.00</td> <td>1.00</td> <td></td> <td>1.00</td> <td>1.00</td> <td>1.00</td> <td></td> <td>1.00</td> <td></td> <td></td> <td></td>	Lane Util. Factor		1.00	1.00		1.00	1.00	1.00		1.00			
Fipb, ped/bikes 1.00 1.00 1.00 1.00 1.00 1.00 Fit Protected 1.00 0.85 1.00 0.85 1.00 0.85 1.00 Satd. Flow (prot) 1882 1665 1824 1550 1788 1700 Prederided 1.00 1.00 1.00 0.94 <td< td=""><td>Frpb, ped/bikes</td><td></td><td>1.00</td><td>0.98</td><td></td><td>1.00</td><td>1.00</td><td>1.00</td><td></td><td>1.00</td><td></td><td></td><td></td></td<>	Frpb, ped/bikes		1.00	0.98		1.00	1.00	1.00		1.00			
Frt 1.00 0.85 1.00 0.85 1.00 0.85 FIP protected 1.00 1.00 1.00 1.00 0.95 1.00 FIP protected 1.00 1.00 1.00 1.00 0.95 1.00 FIP promited 1.00 1.00 1.00 1.00 0.95 1.00 Satd. Flow (pern) 1882 1665 1824 1550 1788 1700 Peak-hour factor, PHF 0.94<	Flpb, ped/bikes		1.00	1.00		1.00	1.00	1.00		1.00			
FIP Protected 1.00 1.00 1.00 1.00 0.95 1.00 Satd. Flow (prot) 1882 1665 1824 1550 1788 1700 Satd. Flow (perm) 1882 1665 1824 1550 1788 1700 Satd. Flow (perm) 1882 1665 1824 1550 1788 1700 Peak-hour factor, PHF 0.94	Frt		1.00	0.85		1.00	0.85	1.00		0.85			
Satd. Flow (prot) 1882 1665 1824 1550 1788 1700 FI Permitted 1.00 1.00 1.00 0.95 1.00 Satd. Flow (perm) 1882 1665 1824 1550 1788 1700 Peak-hour fractor, PHF 0.94	Flt Protected		1.00	1.00		1.00	1.00	0.95		1.00			
FIt Permitted 1.00 1.00 1.00 1.00 0.95 1.00 Satd. Flow (perm) 1882 1665 1824 1550 17788 1700 Peak-hour factor, PHF 0.94 <	Satd. Flow (prot)		1882	1665		1824	1550	1788		1700			
Satd. Flow (perm) 1882 1665 1824 1550 1788 1700 Peak-hour factor, PHF 0.94	Flt Permitted		1.00	1.00		1.00	1.00	0.95		1.00			
Peak-hour factor, PHF 0.94	Satd. Flow (perm)		1882	1665		1824	1550	1788		1700			
Adj. Flow (vph) 0 422 380 0 1116 767 661 0 595 0 <th< td=""><td>Peak-hour factor, PHF</td><td>0.94</td><td>0.94</td><td>0.94</td><td>0.94</td><td>0.94</td><td>0.94</td><td>0.94</td><td>0.94</td><td>0.94</td><td>0.94</td><td>0.94</td><td>0.94</td></th<>	Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
RTOR Reduction (vph) 0 0 0 0 0 0 0 291 0 0 0 Confl. Bikes (#/hr) 1	Adj. Flow (vph)	0	422	380	0	1116	767	661	0	595	0	0	0
Lane Group Flow (vph) 0 422 380 0 1116 767 661 0 304 0 0 1 Turn Type NA Free NA Free Prot Prot Prot Protected Phases 6 2 4 4 4 Permitted Phases Free Free 4 4 Actuated Green, G (s) 59.0 100.0 34.0 34.0 Actuated g/C Ratio 0.60 1.00 0.60 1.00 3.4 0.34 Clearance Time (s) 4.0 4.0 3.0 3.0 3.0 Vehicle Extension (s) 5.0 4.0 3.0 3.0 3.0 Lane Grp Cap (vph) 1129 1665 1094 1550 607 578 Vis Ratio Perm 0.23 0.49 Vic Ratio 0.37 0.18 Vis Ratio Perm 0.23 0.49 1.09 0.53 Uniform Delay, d1 10.3 0.2 0.0 3.0 2.65 Progression Factor <	RTOR Reduction (vph)	0	0	0	0	0	0	0	0	291	0	0	0
Confl. Bikes (#/hr) 1 Turn Type NA Free NA Free Prot Protected Phases 6 2 4 4 Permitted Phases Free Free 4 4 Actuated Green, G (s) 59.0 100.0 59.0 100.0 34.0 34.0 Effective Green, g (s) 60.0 100.0 60.0 100.0 34.0 34.0 Actuated Green, G (s) 50.0 1.00 0.34 0.34 0.34 Clearance Time (s) 4.0 4.0 3.0 3.0 Lane Grp Cap (vph) 1129 1665 1094 1550 607 578 v/s Ratio Prot 0.22 c0.61 c0.37 0.18 v/s Ratio Perm 0.23 0.49 v/c Ratio 0.37 0.23 1.02 0.49 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Lane Group Flow (vph)	0	422	380	0	1116	767	661	0	304	0	0	0
Turn Type NA Free NA Free Prot Protected Phases 6 2 4 4 Permitted Phases Free Free 4 4 Actuated Green, G (s) 59.0 100.0 34.0 34.0 Effective Green, g (s) 60.0 100.0 60.0 100.0 34.0 Actuated g/C Ratio 0.60 1.00 0.60 1.00 0.34 0.34 Clearance Time (s) 4.0 4.0 3.0 3.0 3.0 Lane Grp Cap (vph) 1129 1665 1094 1550 607 578 v/s Ratio Prot 0.22 c0.61 c0.37 0.18 v/s Ratio Prot v.23 0.49 v/c Ratio 0.37 0.23 1.02 0.49 1.09 0.53 Uniform Delay, d1 10.3 0.0 20.0 0.0 33.0 26.5 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00	Confl. Bikes (#/hr)			1									
Protected Phases 6 2 4 4 Permitted Phases Free Free 4 4 Actuated Green, G (s) 59.0 100.0 59.0 100.0 34.0 34.0 Effective Green, g (s) 60.0 100.0 60.0 100.0 34.0 34.0 Actuated g/C Ratio 0.60 1.00 0.60 1.00 0.34 0.34 Clearance Time (s) 4.0 4.0 3.0 3.0 3.0 Vehicle Extension (s) 5.0 4.0 3.0 3.0 3.0 Lane Grp Cap (vph) 1129 1665 1094 1550 607 578 v/s Ratio Prot 0.22 c0.61 c0.37 0.18 v/s Ratio Prot 0.23 0.49 v/c Ratio 0.49 v/c Ratio 0.49 v/c Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Turn Type		NA	Free		NA	Free	Prot		Prot			
Permitted Phases Free Free 4 4 Actuated Green, G (s) 59.0 100.0 59.0 100.0 34.0 34.0 Effective Green, g (s) 60.0 100.0 60.0 100.0 34.0 34.0 Actuated g/C Ratio 0.60 1.00 0.60 1.00 0.34 0.34 Clearance Time (s) 4.0 4.0 3.0 3.0 2.0 Lane Grp Cap (vph) 1129 1665 1094 1550 607 578 v/s Ratio Prot 0.22 c0.61 c0.37 0.18 v/s Ratio Perm 0.23 0.49 v/s Ratio Perm 0.23 0.49 v/s Ratio Perm 0.23 0.49 Intersection Summary 0.3 3.2.4 1.1 63.1 0.9	Protected Phases		6			2		4		4			
Actuated Green, G (s) 59.0 100.0 59.0 100.0 34.0 34.0 Effective Green, g (s) 60.0 100.0 60.0 100.0 34.0 34.0 Actuated g/C Ratio 0.60 1.00 0.60 1.00 0.34 0.34 Clearance Time (s) 4.0 4.0 3.0 3.0 Vehicle Extension (s) 5.0 4.0 3.0 3.0 Lane Grp Cap (vph) 1129 1665 1094 1550 607 578 v/s Ratio Prot 0.22 c0.61 c0.37 0.18 v/s Ratio Perm 0.77 0.49 v/c Ratio 0.37 0.23 1.02 0.49 1.09 0.53 Uniform Delay, d1 10.3 0.0 20.0 0.0 33.0 26.5 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.9 0.3 32.4 1.1 63.1 0.9 Dela/s (s) Delay (s) 6.1 31.5 63.5 0.0 A Approach	Permitted Phases			Free			Free	4		4			
Effective Green, g (s) 60.0 100.0 60.0 100.0 34.0 34.0 Actuated g/C Ratio 0.60 1.00 0.60 1.00 0.34 0.34 Clearance Time (s) 4.0 4.0 3.0 3.0 3.0 Vehicle Extension (s) 5.0 4.0 3.0 3.0 3.0 Lane Grp Cap (vph) 1129 1665 1094 1550 607 578 v/s Ratio Prot 0.22 c0.61 c0.37 0.18 0.49 v/c Ratio 0.49 v/c Ratio 0.49 0.49 0.49 0.49 0.53 0.49 0.49 0.53 0.49 0.53 0.49 0.0 1.01	Actuated Green, G (s)		59.0	100.0		59.0	100.0	34.0		34.0			
Actuated g/C Ratio 0.60 1.00 0.60 1.00 0.34 0.34 Clearance Time (s) 4.0 4.0 3.0 3.0 Vehicle Extension (s) 5.0 4.0 3.0 3.0 Lane Grp Cap (vph) 1129 1665 1094 1550 607 578 v/s Ratio Prot 0.22 c0.61 c0.37 0.18 v/s v/s Ratio Perm 0.23 0.49 .0 1.00 1.00 1.03 V/s Ratio 0.37 0.23 1.02 0.49 1.09 0.53 Uniform Delay, d1 10.3 0.0 20.0 0.0 33.0 26.5 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.9 0.3 32.4 1.1 63.1 0.9 Delay (s) 11.3 0.3 52.4 1.1 96.1 27.4 Level of Service B A D A F C Approach LOS A C E A 104	Effective Green, g (s)		60.0	100.0		60.0	100.0	34.0		34.0			
Clearance Time (s) 4.0 4.0 3.0 3.0 Vehicle Extension (s) 5.0 4.0 3.0 3.0 Lane Grp Cap (vph) 1129 1665 1094 1550 607 578 v/s Ratio Prot 0.22 c0.61 c0.37 0.18 v/s Ratio Perm 0.23 0.49 v/c Ratio 0.37 0.23 Uniform Delay, d1 10.3 0.0 20.0 0.0 33.0 26.5 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.9 0.3 32.4 1.1 63.1 0.9 Delay (s) 11.3 0.3 52.4 1.1 96.1 27.4 Level of Service B A D A F C Approach LOS A C E A HCM 2000 Control Delay 36.5 HCM 2000 Level of Service D HCM 2000 Volume to Capacity ratio 1.04 A	Actuated g/C Ratio		0.60	1.00		0.60	1.00	0.34		0.34			
Vehicle Extension (s) 5.0 4.0 3.0 3.0 Lane Grp Cap (vph) 1129 1665 1094 1550 607 578 v/s Ratio Prot 0.22 c0.61 c0.37 0.18 v/s Ratio Perm 0.23 0.49	Clearance Time (s)		4.0			4.0		3.0		3.0			
Lane Grp Cap (vph) 1129 1665 1094 1550 607 578 v/s Ratio Prot 0.22 c0.61 c0.37 0.18 v/s Ratio Perm 0.23 0.49	Vehicle Extension (s)		5.0			4.0		3.0		3.0			
v/s Ratio Prot 0.22 c0.61 c0.37 0.18 v/s Ratio Perm 0.23 0.49	Lane Grp Cap (vph)		1129	1665		1094	1550	607		578			
v/s Ratio Perm 0.23 0.49 v/c Ratio 0.37 0.23 1.02 0.49 1.09 0.53 Uniform Delay, d1 10.3 0.0 20.0 0.0 33.0 26.5 Progression Factor 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.9 0.3 32.4 1.1 63.1 0.9 Delay (s) 11.3 0.3 52.4 1.1 96.1 27.4 Level of Service B A D A F C Approach Delay (s) 6.1 31.5 63.5 0.0 Approach LOS A C E A Intersection Summary 4 C E A HCM 2000 Control Delay 36.5 HCM 2000 Level of Service D HCM 2000 Volume to Capacity ratio 1.04 Actuated Cycle Length (s) 100.0 Sum of lost time (s) 6.0 6.0 Intersection Capacity Utilization 101.3% ICU Level of Service G G Analysis Period (min) 15 15	v/s Ratio Prot		0.22			c0.61		c0.37		0.18			
v/c Ratio 0.37 0.23 1.02 0.49 1.09 0.53 Uniform Delay, d1 10.3 0.0 20.0 0.0 33.0 26.5 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.9 0.3 32.4 1.1 63.1 0.9 Delay (s) 11.3 0.3 52.4 1.1 96.1 27.4 Level of Service B A D A F C Approach Delay (s) 6.1 31.5 63.5 0.0 Approach LOS A C E A Intersection Summary 4 C E A HCM 2000 Control Delay 36.5 HCM 2000 Level of Service D HCM 2000 Volume to Capacity ratio 1.04 A C E Actuated Cycle Length (s) 100.0 Sum of lost time (s) 6.0 Intersection Capacity Utilization 101.3% Intersection Capacity Utilization 101.3% ICU Level of Service G Analysis Period (min) 15	v/s Ratio Perm			0.23			0.49						
Uniform Delay, d1 10.3 0.0 20.0 0.0 33.0 26.5 Progression Factor 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.9 0.3 32.4 1.1 63.1 0.9 Delay (s) 11.3 0.3 52.4 1.1 96.1 27.4 Level of Service B A D A F C Approach Delay (s) 6.1 31.5 63.5 0.0 Approach LOS A C E A Intersection Summary 36.5 HCM 2000 Level of Service D HCM 2000 Control Delay 36.5 HCM 2000 Level of Service D HCM 2000 Volume to Capacity ratio 1.04 A C E Actuated Cycle Length (s) 100.0 Sum of lost time (s) 6.0 Intersection Capacity Utilization Intersection Capacity Utilization 101.3% ICU Level of Service G A	v/c Ratio		0.37	0.23		1.02	0.49	1.09		0.53			
Progression Factor 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.9 0.3 32.4 1.1 63.1 0.9 Delay (s) 11.3 0.3 52.4 1.1 96.1 27.4 Level of Service B A D A F C Approach Delay (s) 6.1 31.5 63.5 0.0 Approach LOS A C E A Intersection Summary A C E A HCM 2000 Control Delay 36.5 HCM 2000 Level of Service D A Actuated Cycle Length (s) 100.0 Sum of lost time (s) 6.0 6.0 Intersection Capacity ratio 101.3% ICU Level of Service G G Analysis Period (min) 15 15 15 15 15	Uniform Delay, d1		10.3	0.0		20.0	0.0	33.0		26.5			
Incremental Delay, d2 0.9 0.3 32.4 1.1 63.1 0.9 Delay (s) 11.3 0.3 52.4 1.1 96.1 27.4 Level of Service B A D A F C Approach Delay (s) 6.1 31.5 63.5 0.0 Approach LOS A C E A Intersection Summary A C E A HCM 2000 Control Delay 36.5 HCM 2000 Level of Service D A Actuated Cycle Length (s) 100.0 Sum of lost time (s) 6.0 6.0 Intersection Capacity Utilization 101.3% ICU Level of Service G G	Progression Factor		1.00	1.00		1.00	1.00	1.00		1.00			
Delay (s) 11.3 0.3 52.4 1.1 96.1 27.4 Level of Service B A D A F C Approach Delay (s) 6.1 31.5 63.5 0.0 Approach LOS A C E A Intersection Summary A C E A HCM 2000 Control Delay 36.5 HCM 2000 Level of Service D A Actuated Cycle Length (s) 100.0 Sum of lost time (s) 6.0 6.0 Intersection Capacity Utilization 101.3% ICU Level of Service G G	Incremental Delay, d2		0.9	0.3		32.4	1.1	63.1		0.9			
Level of ServiceBADAFCApproach Delay (s)6.131.563.50.0Approach LOSACEAIntersection SummaryHCM 2000 Control Delay36.5HCM 2000 Level of ServiceDHCM 2000 Volume to Capacity ratio1.04	Delay (s)		11.3	0.3		52.4	1.1	96.1		27.4			
Approach Delay (s)6.131.563.50.0Approach LOSACEAIntersection SummaryHCM 2000 Control Delay36.5HCM 2000 Level of ServiceDHCM 2000 Volume to Capacity ratio1.04	Level of Service		В	А		D	А	F		С			
Approach LOSACEAIntersection SummaryHCM 2000 Control Delay36.5HCM 2000 Level of ServiceDHCM 2000 Volume to Capacity ratio1.04Actuated Cycle Length (s)100.0Sum of lost time (s)6.0Intersection Capacity Utilization101.3%ICU Level of ServiceGAnalysis Period (min)15	Approach Delay (s)		6.1			31.5			63.5			0.0	
Intersection Summary HCM 2000 Control Delay 36.5 HCM 2000 Level of Service D HCM 2000 Volume to Capacity ratio 1.04	Approach LOS		А			С			E			А	
HCM 2000 Control Delay36.5HCM 2000 Level of ServiceDHCM 2000 Volume to Capacity ratio1.041.04Actuated Cycle Length (s)100.0Sum of lost time (s)6.0Intersection Capacity Utilization101.3%ICU Level of ServiceGAnalysis Period (min)1515100.0	Intersection Summary												
HCM 2000 Volume to Capacity ratio 1.04 Actuated Cycle Length (s) 100.0 Intersection Capacity Utilization 101.3% ICU Level of Service G Analysis Period (min) 15	HCM 2000 Control Delay			36.5	Н	CM 2000	Level of	Service		D			
Actuated Cycle Length (s) 100.0 Sum of lost time (s) 6.0 Intersection Capacity Utilization 101.3% ICU Level of Service G Analysis Period (min) 15	HCM 2000 Volume to Capacity	ratio		1.04		2 2000				-			
Intersection Capacity Utilization 101.3% ICU Level of Service G Analysis Period (min) 15	Actuated Cycle Length (s)			100.0	S	um of los	t time (s)			60			
Analysis Period (min) 15	Intersection Capacity Utilization			101.3%	IC	U Level	of Service	• •		G			
· · · · · · · · · · · · · · · · · · ·	Analysis Period (min)			15						-			

HCM Signalized Intersection Capacity Analysis 4: US 101 North Ramps & Lucas Valley Rd/Smith Ranch Rd

01/13/2021

c Critical Lane Group

Appendix C

Internal Capture Rate Calculation

This page intentionally left blank

	NCHRP 684 Internal Trip Capture Estimation Tool											
Project Name:	TIS for the Los Gamos Apartments Project		Organization:	W-Trans								
Project Location:	City of San Rafael		Performed By:	KR								
Scenario Description:	AM Existing		Date:	5/13/2020								
Analysis Year:	2020		Checked By:									
Analysis Period:	AM Street Peak Hour		Date:									

Table 1-A: Base Vehicle-Trip Generation Estimates (Single-Use Site Estimate)										
	Developm	ent Data (<i>For In</i>	formation Only)		Estimated Vehicle-Trips ³					
Land Ose	ITE LUCs ¹	Quantity	Units	7	Total	Entering	Exiting			
Office					0					
Retail					17	10	7			
Restaurant					0					
Cinema/Entertainment					0					
Residential					69	18	51			
Hotel					0					
All Other Land Uses ²					0					
					86	28	58			

	Table 2-A: Mode Split and Vehicle Occupancy Estimates											
Land Llag		Entering Tri	ps		Exiting Trips							
Land Use	Veh. Occ. ⁴	% Transit	% Non-Motorized		Veh. Occ. ⁴	% Transit	% Non-Motorized					
Office												
Retail	1.16	5%	5%		1.16	5%	5%					
Restaurant												
Cinema/Entertainment												
Residential	1.13	5%	5%		1.13	5%	5%					
Hotel												
All Other Land Uses ²												

Table 3-A: Average Land Use Interchange Distances (Feet Walking Distance)											
Origin (From)	Destination (To)										
	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel					
Office											
Retail											
Restaurant											
Cinema/Entertainment											
Residential											
Hotel											

Table 4-A: Internal Person-Trip Origin-Destination Matrix*									
Origin (From)	Destination (To)								
	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel			
Office		0	0	0	0	0			
Retail	0		0	0	0	0			
Restaurant	0	0		0	0	0			
Cinema/Entertainment	0	0	0		0	0			
Residential	0	1	0	0		0			
Hotel	0	0	0	0	0				

Table 5-A	: Computatio	ons Summary		Table 6-A: Internal	Trip Capture Percentag	jes by Land Use
	Total	Entering	Exiting	Land Use	Entering Trips	Exiting Trips
All Person-Trips	98	32	66	Office	N/A	N/A
Internal Capture Percentage	2%	3%	2%	Retail	8%	0%
				Restaurant	N/A	N/A
External Vehicle-Trips ⁵	76	24	52	Cinema/Entertainment	N/A	N/A
External Transit-Trips ⁶	5	2	3	Residential	0%	2%
External Non-Motorized Trips ⁶	5	2	3	Hotel	N/A	N/A

¹ Land Use Codes (LUCs) from <i>Trip Generation Manual</i> , published by the Institute of Transportation Engineers.
² Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator.
³ Enter trips assuming no transit or non-motorized trips (as assumed in ITE <i>Trip Generation Manual</i>).
⁴ Enter vehicle occupancy assumed in Table 1-A vehicle trips. If vehicle occupancy changes for proposed mixed-use project, manual adjustments must be made to Tables 5-A, 9-A (O and D). Enter transit, non-motorized percentages that will result with proposed mixed-use project complete.
⁵ Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-A.
⁶ Person-Trips
Indicates computation that has been rounded to the nearest whole number.
Estimation Tool Developed by the Texas A&M Transportation Institute - Version 2013.1

NCHRP 684 Internal Trip Capture Estimation Tool							
Project Name:	TIS for the Los Gamos Apartments Project		Organization:	W-Trans			
Project Location:	City of San Rafael		Performed By:	KR			
Scenario Description:	PM Existing		Date:	5/13/2020			
Analysis Year:	2020		Checked By:				
Analysis Period:	PM Street Peak Hour		Date:				

	Table 1	-P: Base Vehicle	e-Trip Generation	Estima	tes (Single-Use \$	Site Estimate)	
Land Llas	Developme	ent Data (<i>For Inf</i> o	ormation Only)			Estimated Vehicle-Trips ³	
Land Use	ITE LUCs ¹	Quantity	Units		Total	Entering	Exiting
Office					0		
Retail					40	20	20
Restaurant					0		
Cinema/Entertainment					0		
Residential					84	52	32
Hotel					0		
All Other Land Uses ²					0		
					124	72	52

	Table 2-P: Mode Split and Vehicle Occupancy Estimates							
		Entering Tri	ps		Exiting Trips			
Land Ose	Veh. Occ.4	% Transit	% Non-Motorized	, [Veh. Occ.4	% Transit	% Non-Motorized	
Office				, [
Retail	1.16	5%	5%	, [1.16	5%	5%	
Restaurant				, [
Cinema/Entertainment				, [
Residential	1.13	5%	5%	, [1.13	5%	5%	
Hotel				, [
All Other Land Uses ²								

	Table 3-P: Average Land Use Interchange Distances (Feet Walking Distance)									
Origin (From)		Destination (To)								
	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel				
Office										
Retail					400					
Restaurant										
Cinema/Entertainment										
Residential		400								
Hotel										

	Table 4-P: Internal Person-Trip Origin-Destination Matrix*								
Origin (From)	Destination (To)								
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel			
Office		0	0	0	0	0			
Retail	0		0	0	6	0			
Restaurant	0	0		0	0	0			
Cinema/Entertainment	0	0	0		0	0			
Residential	0	2	0	0		0			
Hotel	0	0	0	0	0				

Table 5-P: Computations Summary				Table 6-P: Internal Trip Capture Percentages by Land Use		
	Total	Entering	Exiting	Land Use	Entering Trips	Exiting Trips
All Person-Trips	141	82	59	Office	N/A	N/A
Internal Capture Percentage	11%	10%	14%	Retail	9%	26%
				Restaurant	N/A	N/A
External Vehicle-Trips ⁵	98	58	40	Cinema/Entertainment	N/A	N/A
External Transit-Trips ⁶	7	4	3	Residential	10%	6%
External Non-Motorized Trips ⁶	7	4	3	Hotel	N/A	N/A

¹Land Use Codes (LUCs) from *Trip Generation Manual*, published by the Institute of Transportation Engineers.

²Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator.

³Enter trips assuming no transit or non-motorized trips (as assumed in ITE *Trip Generation Manual*).

⁴Enter vehicle occupancy assumed in Table 1-P vehicle trips. If vehicle occupancy changes for proposed mixed-use project, manual adjustments must be ⁵Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-P.

⁶Person-Trips

*Indicates computation that has been rounded to the nearest whole number.

Estimation Tool Developed by the Texas A&M Transportation Institute - Version 2013.1
Appendix D

VMT Worksheet

This page intentionally left blank

Los Gamos Apartments Project VMT Assessment

W-Trans 5/29/2020

Baseline VMT		
10.8	Project Base VMT/Capita from TAM Model (MAZ	5349)
180	Project Units	2.48 Occupancy/Unit
4821	. Base Unadjusted Residential VMT (mi)	446 Residents ("capita")
Applied Significance Threshold		
13.3	VMT/Capita Bay Area Average	
11.3	Threshold = 15% below Average	
Project-	Specific VMT Adjustments	
10.8	Project Base VMT/Capita from TAM Model (MAZ	5349)
N/A	Project Reduction Required to meet Significance	Threshold
A. Density		
180	Project Units	
10.92	Project Acres	
16.48	Project Density	
8.2%	VMT Reduction (compared to ITE Single Family)	source: CAPCOA
-0.88	Adjustment to TAM VMT/Capita	
<u>B. Integ</u>	rate Affordable Housing	
20% of u	nits below market rate (50-80% MFI)	sources: San Jose VMT Evaluation Tool Methodology,
2.0%	VMT Reduction	The California Housing Partnership
-0.22	Adjustment to TAM VMT/Capita	
Combined Project-Specific Adjustments		
10.2%	Combined VMT Reduction	
-1.10	Adjustment to TAM VMT/Capita	
VMT Sig	gnificance	
10.8	Average VMT/Capita in MAZ	4821 Unadjusted Residential VMT (mi)

4330 Adjusted Project Residential VMT (mi)

-491 VMT Reduction (mi)

- 9.7 Project VMT/Capita with Adjustments
- 11.3 Significance Threshold
- YES Threshold met

Appendix E

Firetruck Access Exhibit

This page intentionally left blank

Los Gamos Apartments TIS

January 2020

Firetruck Access

SRA143