*Appendix I-1 Drainage Study* 



This page intentionally left blank.



# PRELIMINARY DRAINAGE STUDY

As part of the: WARNER AVENUE FROM MAIN STREET TO GRAND AVENUE WIDENING PROJECT Located in: THE CITY OF SANTA ANA, CALIFORNIA

Prepared For: The City of Santa Ana P.O. Box 1988 Santa Ana, CA 92702 (714) 647-5690

Prepared By: IBI Group 18401 Von Karman Avenue, Suite 110 Irvine, CA 92612 (949) 833-5588

APRIL 8, 2013



# DOCUMENT CONTROL

| Client:           | THE PLANNING CENTER                                                |
|-------------------|--------------------------------------------------------------------|
| Project Name:     | WARNER AVENUE FROM MAIN STREET TO GRAND AVENUE WIDENING<br>PROJECT |
| Report Title:     | Preliminary DRAINAGE STUDY                                         |
| IBI Reference:    | 25683                                                              |
| Version:          | Rev 4 APRIL 8, 2013                                                |
| Digital Master:   | J:\25683_EnviroWarner\10.0 Reports\Drainage\ WarnerAve_Hydro.doc   |
| Originator:       | COREY J. MELLOR CPM                                                |
| Reviewer:         | BILL DELO AICP                                                     |
| Authorization:    | [Name]                                                             |
| Circulation List: |                                                                    |
| History:          |                                                                    |
|                   |                                                                    |

# **TABLE OF CONTENTS**

| 1. | PROJECT BACKGROUND                     | 1 |
|----|----------------------------------------|---|
| 2. | HYDROLOGY                              | 2 |
| 3. | HYDRAULICS                             | 3 |
| 4. | PRELIMINARY CONSTRUCTION COST ESTIMATE | 4 |
| 5. | SUMMARY AND CONCLUSIONS                | 6 |

#### APPENDICES

- Hydrology/Site Maps Existing Conditions Α.
- Hydrology/Site Maps Proposed Condition Β.
- C. Current Land Use Plan
- D. Soils Map
- Ε. USGS Quad Map
- F. FEMA Flood Map
- Street Cross-Section Details G.
- Η. Existing Off-Site Hydrology
- Ι.
- Existing Hydrology (Boyle Engineering 1993) Proposed Hydrology Rational Method (AES Output) J.
- K. Hydraulics- Proposed Conditions (AES Output)
- References L.

# 1. PROJECT BACKGROUND

The project area is located in the City of Santa Ana in Orange County, CA. The study area consists of approximately 1 mile of proposed street widening along Warner Avenue between Main Street and Grand Avenue. The existing road right of way varies in width from 70' to 120'. Proposed improvements will widen the street to a 110' right of way from Main Street to Standard Avenue. Between Standard Avenue and Grand Avenue, the right of way width will vary from 106' to 110'.

The properties lining the project corridor include a mixture of residential, commercial, and industrial, with longitudinal grades along the street typically running between 0.2% to 0.5% draining towards the south and west. Storm drain piping conveys runoff to the existing Orange County Flood Control District (OCFCD) Facility F01 (See Appendix A for Drainage Maps of Existing Conditions along Warner Avenue). Soils on the site are Group C, being silty-loamy soils with fine texture and slow infiltration rates (see Appendix D for Soils Map). Based on the FEMA Flood Maps (See Appendix F), this area is not located in any recorded flood plain.

Data on existing drainage conditions have been gathered from a previous drainage study performed by Boyle Engineering in 1993 (See Appendix I). Using this data to make assumptions for offsite flows to Warner Avenue, effects of the proposed onsite improvements were studied using Orange County Flood control Districts' recommended software Advanced Engineering Software's (AES) hydrology-hydraulic modeling program. Improvements to this project area will have a negligible impact to the amount of impervious areas of the adjacent drainage basins (the 136.8 acres of onsite drainage per Boyle's 1993 study), and will increase the street's volume capacity to carry storm runoff. The proposed street widening also offers an opportunity to evaluate the existing storm drain system and upgrade the system to provide adequate capacity.

The existing storm drain infrastructure beginning at the east end of the project consists of a 7x6 concrete box that runs from Grand Avenue to the railroad tracks and then continues north paralleling the tracks. To the west a new line begins at Standard Avenue with a 27" RCP which continues to Rouselle Street where a large diameter pipe connects to the Warner Avenue system. Here the pipe size changes to 60" and continues west to Main Street.



## 2. HYDROLOGY

The method for evaluating the site hydrology follows the format set forth in the Orange County Local Drainage Manual (January 1996). For tributary areas of less than 640 acres, the 10-year storm is used to evaluate storm drains at continuous grade below the top of curb. In sump conditions, the 25-year storm would be used for determining the capacity of catch basins and connecting storm drains. As no sump conditions exist along Warner Avenue between Main Street and Grand Avenue, there was no need to perform the analysis for the 25-year storm event.

Design criteria, as described in the Local Drainage Manual, requires that one 12-foot travel lane in an arterial street remains clear in each direction for traffic ability, using the 10-year storm for streets at continuous grade. As this stretch of Warner Avenue is at continuous grade, only the 10-year storm event was used. In order to calculate street flow capacity, three typical cross-sections were used (see Appendix G for Cross-Section Details of the 106- and 110- foot Right of Way Street Widths). A 132 foot cross section analysis, applicable only at the intersections of Warner and Grand and Warner and Main, will follow in a subsequent phase of the street widening.

Additionally, during the 100-year storm event, 1 foot of freeboard is required between the recorded flood elevation and the lowest finished floor elevation of adjacent building structures.

AES was used for hydrologic modeling, following the Orange County standard for the Rational Method. While Land Use Maps (See Appendix C) were available for the City of Santa Ana, Boyle's study offered a more detailed breakdown of the specific development types within each sub-area. Comparing the impervious values from these two sources, it was determined that Boyle's 1993 report resulted in more conservative calculations; therefore, the acreages and development types were modeled after Boyle's report. Street improvements for the proposed condition were modeled along with the existing pipes, to determine which pipes had deficient capacity. Based on the program output (See Appendix J), recommendations for increased pipe sizes were made. These largely reflect the suggestions made by Boyle in 1993 with some minor adjustments due to updated rainfall intensities embedded within the 2008 version AES Software. (See Appendix I for Boyle's Hydrology Report and Recommendation; Summary of Recommendations are also included on the Existing Conditions Drainage Maps in Appendix A).

This hydrology analysis follows the drainage calculations completed by Boyle, using rainfall intensity graph data built into the 2008 AES' Rational Method program for Orange County. As this study is a conceptual-level exercise and focuses only on the runoff from drainage sub-areas that flow directly into Warner Avenue within the project limits, all existing offsite data is taken directly from Boyle's study. Apart from Boyle's report, no additional information was provided to re-calculate upstream runoff to the site. These offsite areas were modeled in the AES program as user-defined flows; using variables pulled from Boyle's report (see Appendix H for tables summarizing the sub-basin areas contributing to these flows). In cases where only the total runoff flow was provided, minus sufficient data available to input the required parameters for user-defined flow, an effective area was calculated that corresponds to the given flow.

For the purposes of this model, the upstream drainage area was assumed to be an "Initial Area" or starting point for the model. Due to insufficient topographic information, IBI was unable to determine a precise value for elevations at the high-end of the drainage basin. Therefore, the USGS quad map (see Appendix E) was used to determine the approximate slope and length of overland flow route to determine the initial Time of Concentration.

Antecedent Moisture Condition (AMC) II was used for this model as recommended in the Orange County Hydrology Manual for the 10- year design.

## 3. HYDRAULICS

This preliminary drainage study follows the requirements of the Orange County Local Drainage Manual (January 1996). Per Orange County requirements, the Hydraulic Grade Line (HGL) within catch basins must be at least 0.5 feet below the street gutter. As this study is conceptual and some lateral/catch basin invert elevation information was not available, inlet hydraulics were not considered; therefore, the design criteria for Hydraulic Grade Line (HGL) of the conveyance is assumed to be at least two feet below the street gutter grade. Additional constraints, per the Local Drainage Manual, dictate that depth of water at the curb (feet) x velocity (fps) cannot exceed 6 fps for storms up to a 25-year frequency. Based on the HGL calculations completed, both of these criteria have been exceeded.

AES (v. 2008) was used for hydraulic modeling of mainlines, and the Pipeflow component of the Hydrosoft Package was used to determine the HGL.

Since no previous hydraulic calculations were provided with the drainage study done by Boyle, the hydraulics were modeled for the existing pipe systems flows from the revised hydrology completed as part of this study to depict the current systems' deficient capacity. Output data for both models are included in Appendix K and the table below.

| Dine Reach  | Capacity     | Existing Capacity | Recommended  | Upgrade        |
|-------------|--------------|-------------------|--------------|----------------|
| Pipe Reach  | Needed (cfs) | (cfs)             | Upgrade      | Capacity (cfs) |
| 4705 - 4706 | 355.41       | 591.70            | No Upgrade   |                |
| 4706 - 4707 | 396.89       | 295.20            | 11'x6.5' RCB | 481.00         |
| 3826 - 3834 | 128.72       | 13.90             | 66" Pipe     | 164.35         |
| 3834 - 3845 | 145.85       | 13.90             | 66" Pipe     | 160.89         |
| 3845 - 3805 | 189.36       | 13.90             | 72" Pipe     | 227.91         |
| 3805 - 3733 | 1110.73      | 116.70            | 11' x 8' RCB | 1141.97        |
| 3733 - 3739 | 1123.07      | 169.50            | 11' x 8' RCB | 1208.03        |
| 3739 - 3745 | 1150.36      | 169.50            | 11' x 9' RCB | 1327.15        |
| 3745 - 3746 | 1167.79      | 169.50            | 13' x 9' RCB | 1310.51        |
| 3746 - 3746 | 1167.79      | 169.50            | 13' x 9' RCB | 1310.51        |

No survey information was available to indicate invert elevations and slopes, therefore all storm drain data came from as-builts and existing reports. Flow line elevations were not provided for the laterals at catch basins and the mainline; therefore, assumptions were made in order to calculate inlet hydraulics at catch basins and laterals in order to finally calculate RCB sizes. Additional assumptions were made to determine junction losses where these laterals connected to the main line. AES software does not model Reinforced Concrete Boxes, so these were modeled using an alternative, but approved software method. Detailed invert and as-built information at intersections with more than one catch basin was limited. Therefore, IBI was unable to determine which portion of a drainage sub-basin was discharged into a specific inlet.

# 4. PRELIMINARY CONSTRUCTION COST ESTIMATE

Planning level cost estimates for drainage modifications were prepared to address both the recommendations within this report regarding the necessary upsizing of existing facilities to accommodate projected design year flows as well as those physically required to accommodate the proposed widening.

Table 4.1 provides a breakdown of the estimated costs for the recommended upgrades to the existing storm drain facilities along Warner within the project limits needed to accommodate projected design year flows. The estimate in Table 4.1 does not include any upstream or downstream improvements outside the project limits that may also be needed but are not part of this study. These items and costs are subject to change pending more detailed studies and analysis during future project phases.

Table 4.2 provides a breakdown of the estimated costs for all modifications and relocations to existing storm drain laterals and catch basins needed to accommodate the proposed widening as shown in the Preliminary Engineering Plans completed as part of this current phase of study. These items and costs are subject to change also as the project is in its preliminary stage. These improvements will not meet the current storm drain deficiency in this area and continued ponding/flooding will occur in most areas if this is the only modification made to the system.

\* Cost Estimates are based on the 2008 Contract Cost Data book published by the California Department of Transportation.

## Table 4.1

| Quantity                                                           | Unit                     | Item                                | Unit Cost                                  | Amount                                                  |  |
|--------------------------------------------------------------------|--------------------------|-------------------------------------|--------------------------------------------|---------------------------------------------------------|--|
| 11675                                                              | CY                       | Excavation & Backfill               | \$10.00                                    | \$116,750.00                                            |  |
| 485                                                                | LF                       | Install 13' x 9' R.C. Box Culvert   | \$745.00                                   | \$361,325.00                                            |  |
| 372                                                                | LF                       | Install 11' x 9' R.C. Box Culvert   | \$625.00                                   | \$232,500.00                                            |  |
| 510                                                                | LF                       | Install 11' x 8' R.C. Box Culvert   | \$595.00                                   | \$303,450.00                                            |  |
| 158                                                                | LF                       | Install 11' x 6.5' R.C. Box Culvert | \$550.00                                   | \$86,900.00                                             |  |
| 1150                                                               | LF                       | Install 72" R.C.P.                  | \$200.00                                   | \$230,000.00                                            |  |
| 1000                                                               | LF                       | Install 66" R.C.P.                  | \$175.00                                   | \$175,000.00                                            |  |
| 3550                                                               | LF                       | Removal of Existing Pipe            | \$25.00                                    | \$88,750.00                                             |  |
| 1                                                                  | 1 EA Remove Junction Box |                                     | \$1,245.00                                 | \$1,245.00                                              |  |
|                                                                    |                          |                                     | Sub-Total:<br>**15% Cont:<br><b>Total:</b> | \$1,595,920.00<br>\$239,388.00<br><b>\$1,835,308.00</b> |  |
| **(15% Contingency Covers any Junction and Catch Basin amenities.) |                          |                                     |                                            |                                                         |  |

## Storm Drain System Upgrade Costs

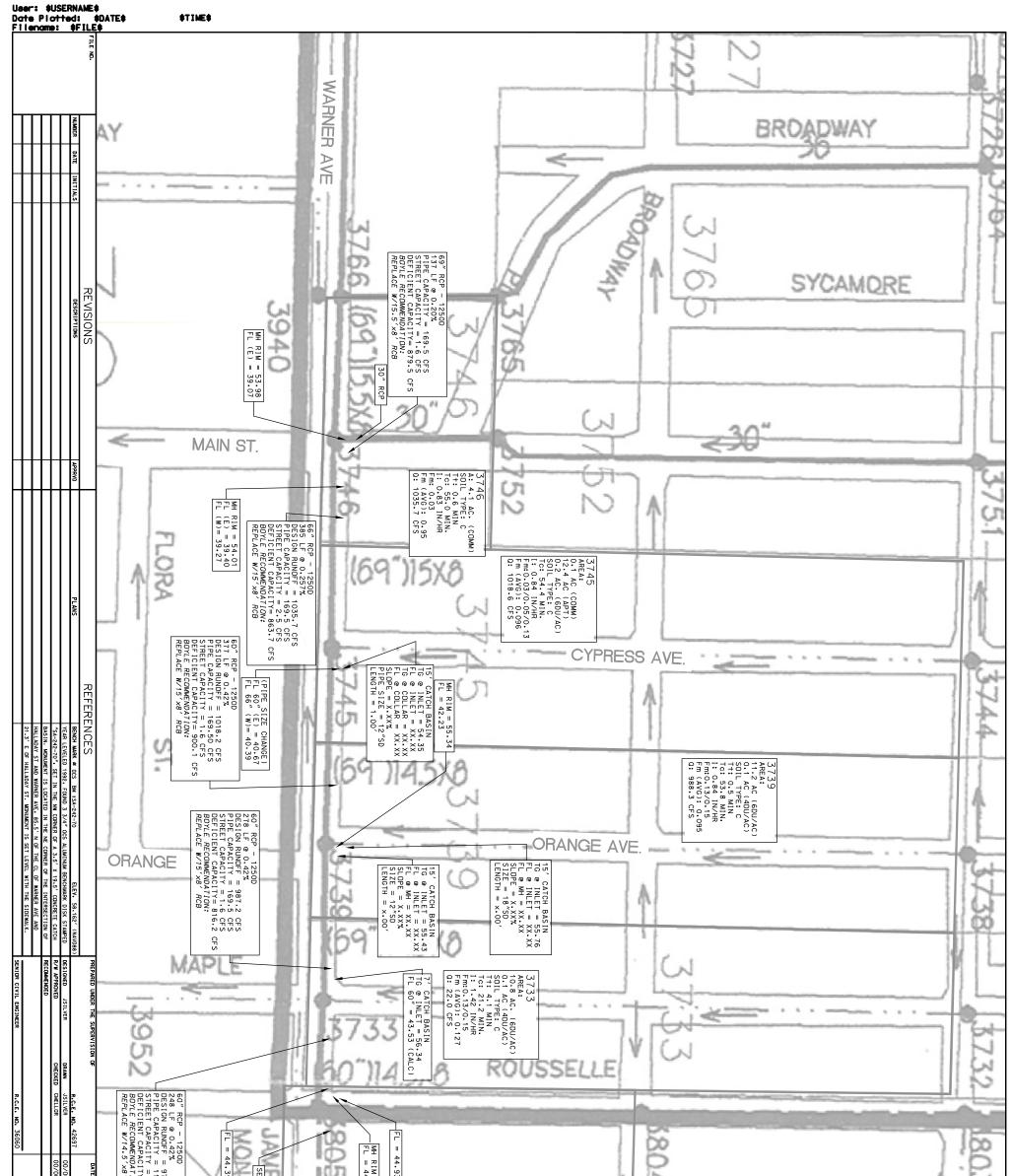
## Table 4.2

# Storm Drain Costs- Widening Only

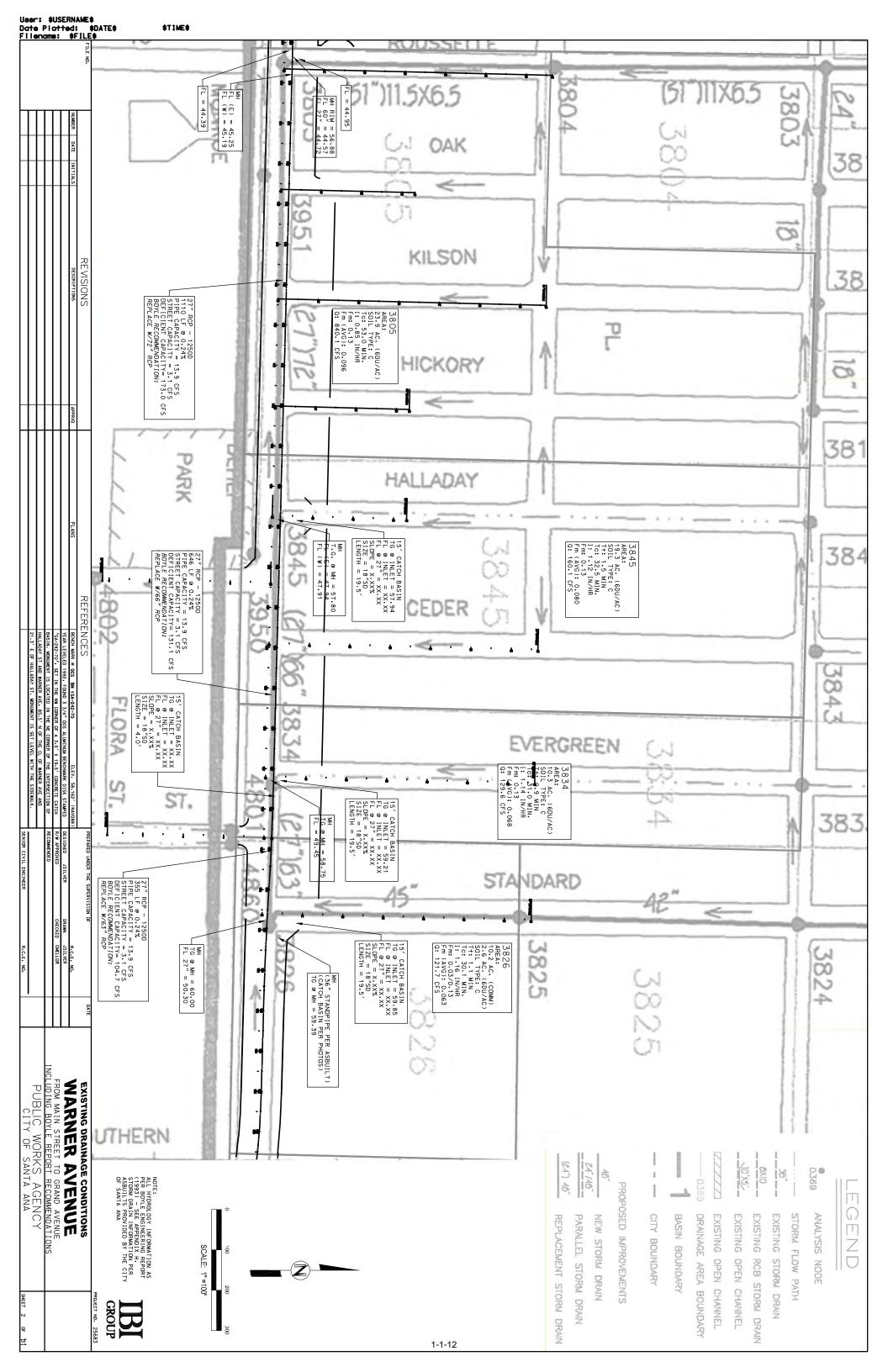
| Quantity | Unit | Item                     | Unit Cost   | Amount       |
|----------|------|--------------------------|-------------|--------------|
| 378      | LF   | Install 18" R.C.P.       | \$200.00    | \$75,600.00  |
| 56       | LF   | Install 30" R.C.P        | \$150.00    | \$8,400.00   |
| 37       | LF   | Install 60" R.C.P        | \$200.00    | \$7,400.00   |
| 1        | EA   | Install 7' Catch Basin   | \$5,500.00  | \$5,500.00   |
| 5        | EA   | Install 14' Catch Basin  | \$8,000.00  | \$40,000.00  |
| 2        | EA   | Install 21' Catch Basin  | \$10,000.00 | \$20,000.00  |
| 8        | EA   | Remove Catch Basin       | \$1,000.00  | \$8,000.00   |
| 378      | LF   | Remove Existing RCP Pipe | \$25.00     | \$9,450.00   |
|          |      |                          | *Total      | \$174,350.00 |
|          |      |                          |             |              |
|          |      |                          |             |              |

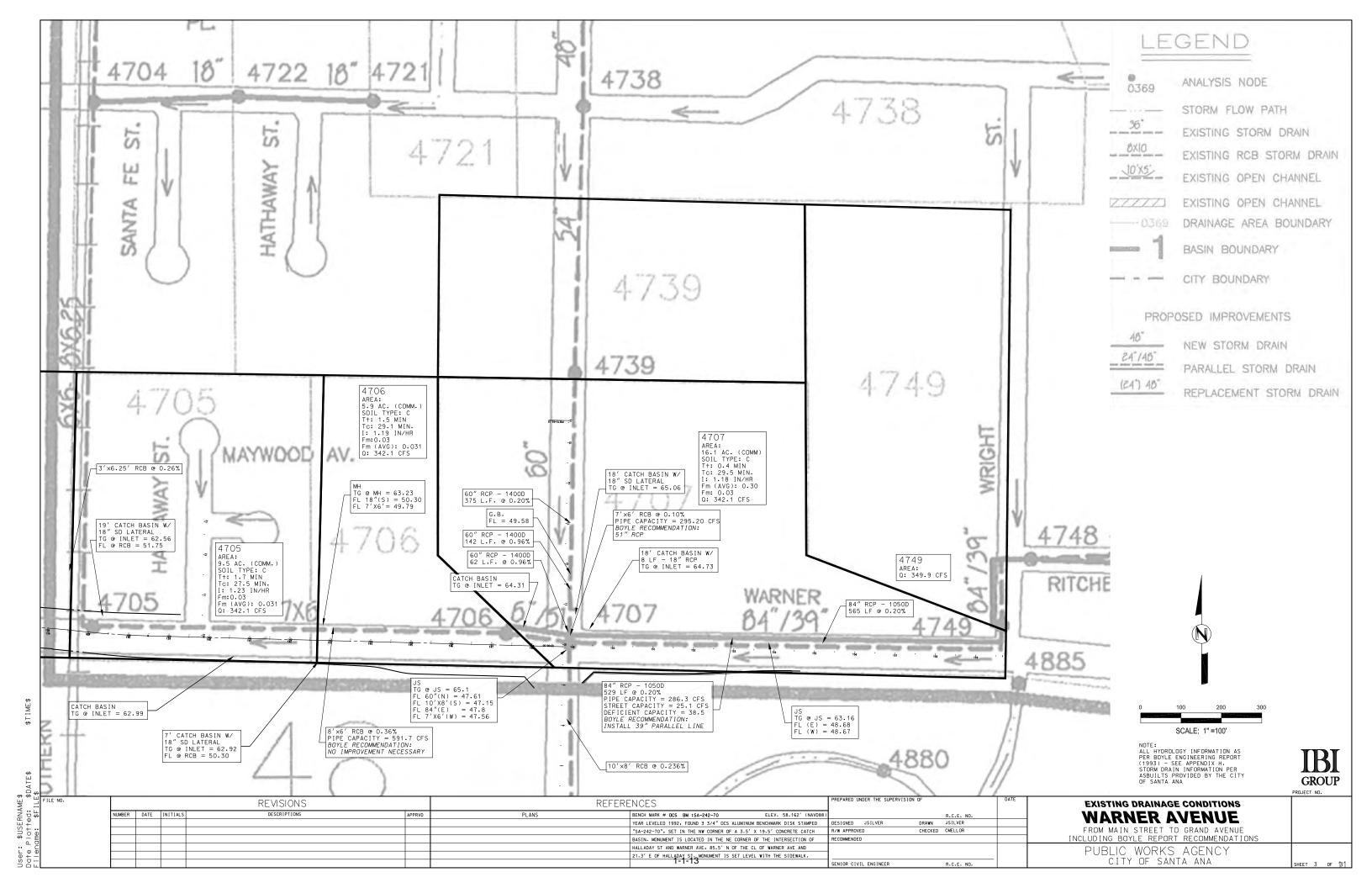
5.

# SUMMARY AND CONCLUSIONS


The results from Boyle's drainage study demonstrate that, at the time of the report in 1993, most piping along Warner Avenue lacked sufficient capacity to handle the runoff based on the rainfall intensity graphs of 1993. Asbuilts provided by the City of Santa Ana show that, in a few cases, the existing pipes are even smaller than what was assumed in study, resulting in greater deficiencies in their capacity. Boyle made recommendations for replacement of the undersized pipes and/or provided a second option with the addition of a parallel line. Based upon review of the as-built plans for the latest major roadway improvement project through the study limits completed in 2001, the majority of these suggestions were not implemented. As a result, the existing condition is one in which there is insufficient drainage capacity to accommodate the design rainfall. Actual storm events over the last several years have generated significant flooding in the study area, justifying the conclusions of this study and the Boyle report.

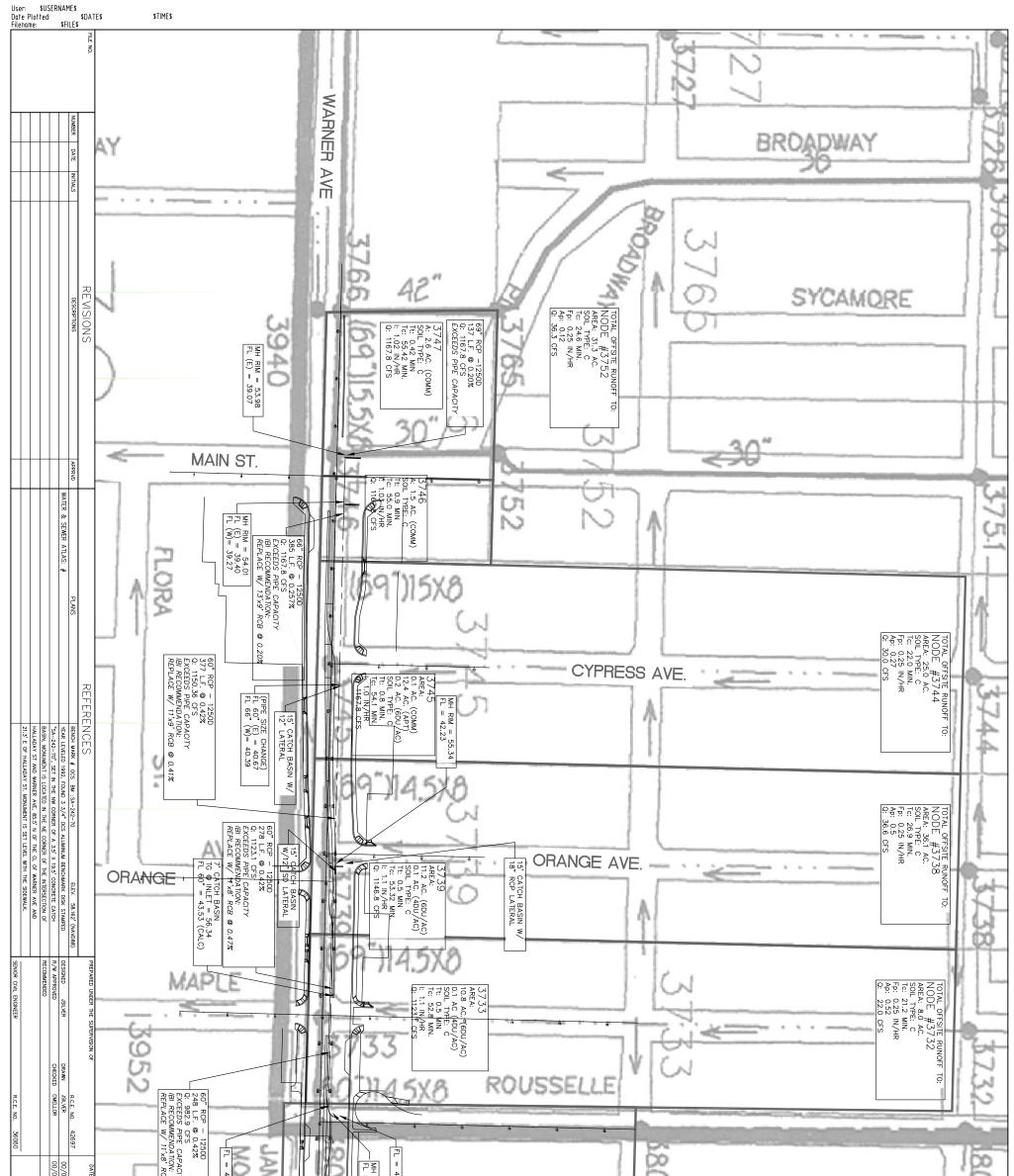
Additionally, based on the Hydraulic analysis, the existing condition is one in which most pipes are currently flowing under pressure conditions.


By widening Warner Avenue, the capacity of the street to carry additional runoff increases; however, this difference in most areas is negligible and not sufficient to make up for the lack of adequate storm drain conveyance. Therefore, it is imperative that the existing storm drain system be upgraded to provide the necessary additional capacity for storm runoff as part of this widening project. Recommended upgrades to the pipe system are shown in Appendix B. Hydraulic calculations show that, with these suggested improvements, the HGL will meet the City's requirement. Recommended upgrades to the system will be extensive in order to meet flow capacity and mitigate the current flood conditions currently taking place.

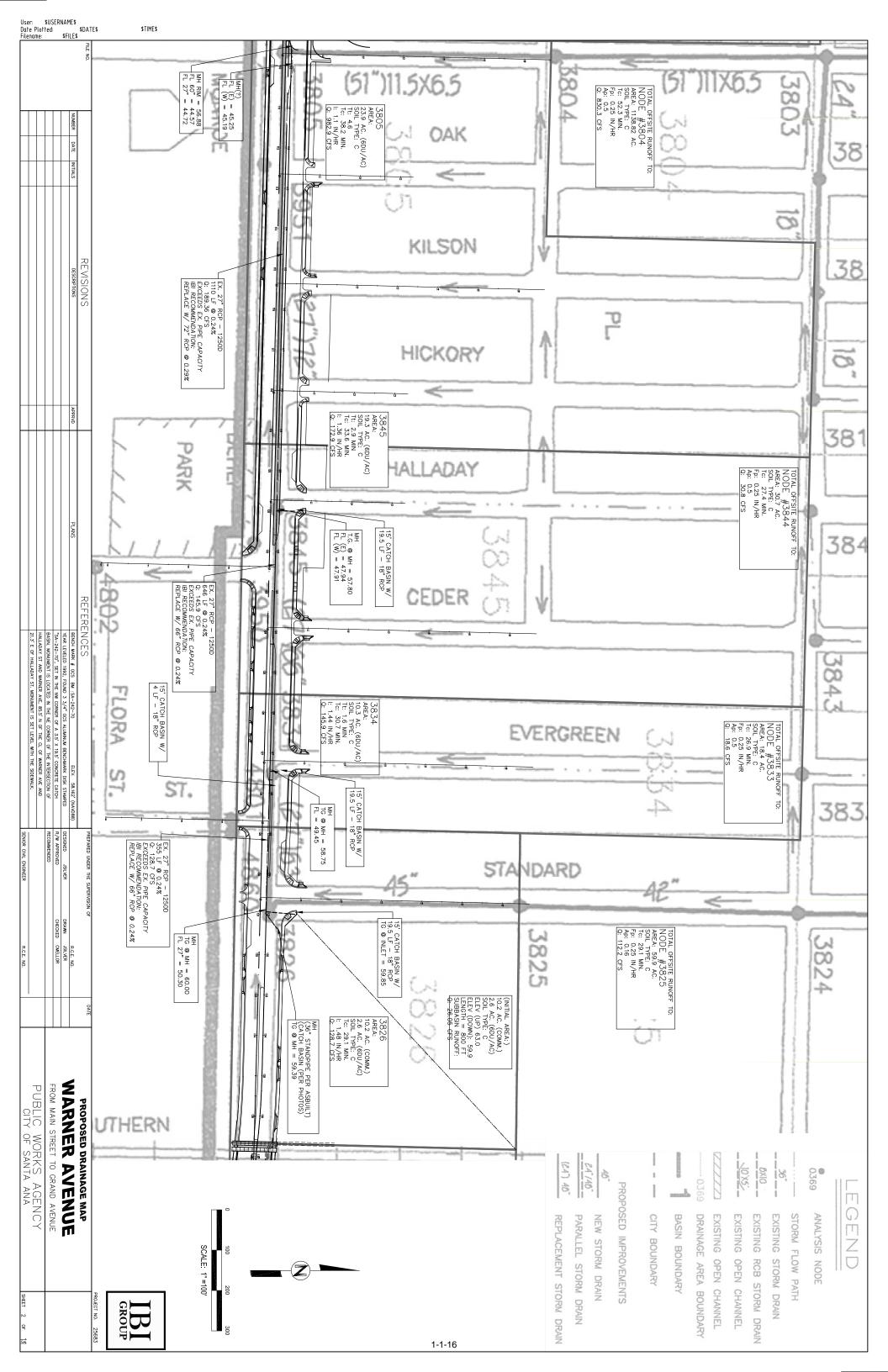

The basic drainage pattern for the area begins in the northeast and flows towards the southwest. The purpose of this preliminary study was to assess the impacts to the existing storm drain system associated with the proposed widening along Warner Avenue between Main Street and Grand Avenue. As such, this drainage report was not intended to determine whether or not there is a need to upsize additional upstream or downstream pipes outside of the project limits. The upstream and downstream areas will need to be completed in order to adequately size the needed drainage system.

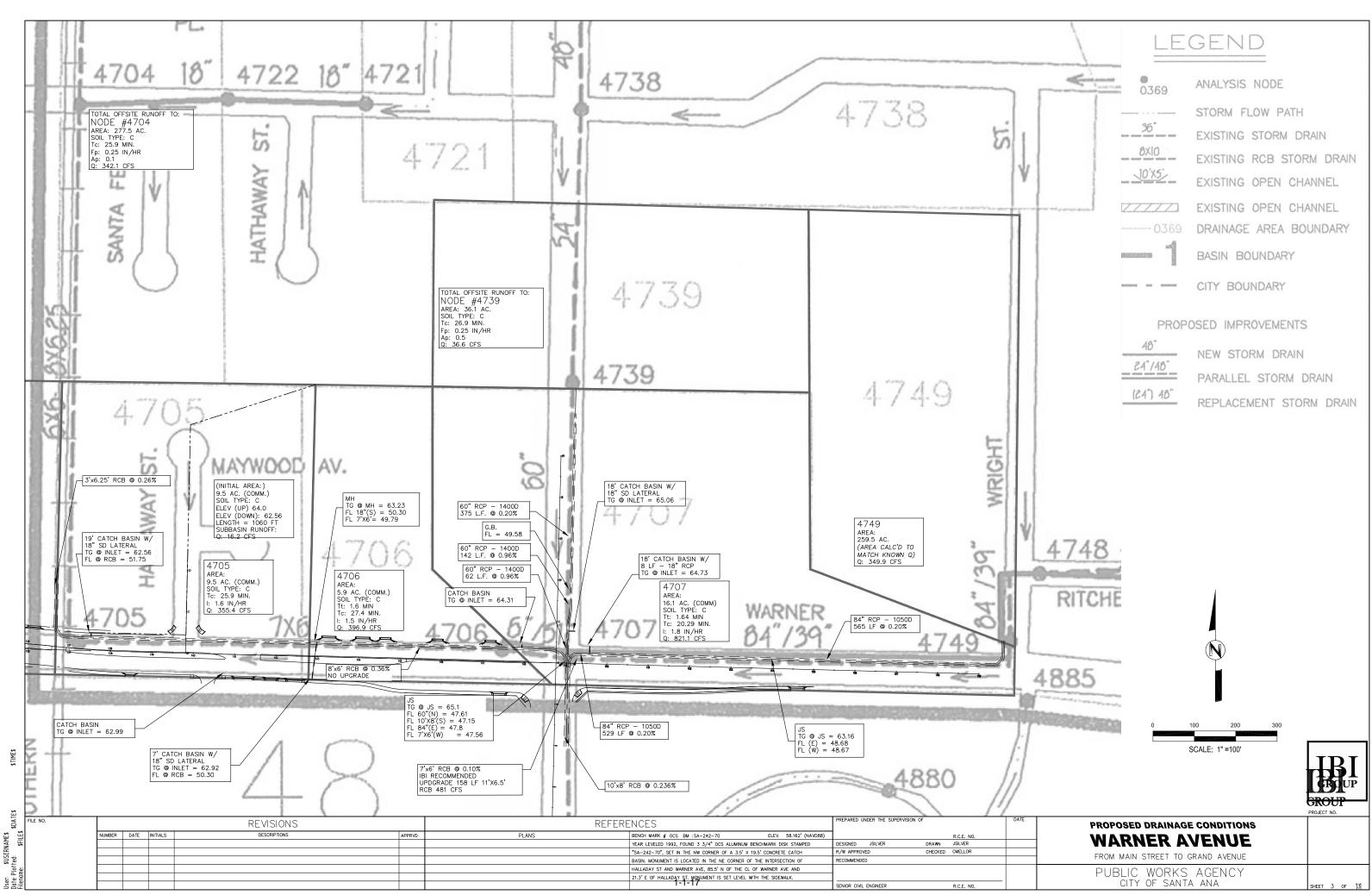
# APPENDIX A: HYDROLOGY/SITE MAPS – EXISTING CONDITIONS




| INCL F                                                                                                                                                   | 978.9 CFS<br>116.7 CFS<br>116.6 CFS<br>1179 860.6 CFS<br>1179 860.6 CFS<br>477DN:<br>46 / RCB                                                                                       | 93<br>93<br>44.57<br>8EE SHEET 2 | OAK    | 4                                                                                                                 |                                                                                                              | 1.23              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------|
| WARNER AVENUE         FROM MAIN STREET TO GRAND AVENUE         LUDING BOYLE REPORT RECOMMENDATIONS         PUBLIC WORKS AGENCY         CITY OF SANTA ANA | NOTE:<br>ALL HYDROLOGY INFORMATION AS<br>PER BOYLE ENGINEERING REPORT<br>11933 - SEE APPENDIX H.<br>SEE APPENDIX H.<br>SAULL'S PROVIDED BY THE CITY<br>OF SANTA ANA<br>OF SANTA ANA |                                  | 1-1-11 | PROPOSED IMPROVEMENTS<br>40° NEW STORM DRAIN<br>24'/40° PARALLEL STORM DRAIN<br>(24') 40° REPLACEMENT STORM DRAIN | ZZZZZ     EXISTING OPEN CHANNEL       0369     DRAINAGE AREA BOUNDARY       BASIN BOUNDARY     CITY BOUNDARY | <br>ANALYSIS NODE |







# APPENDIX B: HYDROLOGY/SITE MAPS – PROPOSED CONDITIONS

Note: Appendix B Exhibits show an in progress version of the improvements proposed which reflects the current calculations of this report. Progression of improvements have not impacted this analysis.



|                                                                                                                                                | - 44.93<br>L = 44.57<br>L = 44.57<br>- 44.39<br>- 44.39<br>- 44.39<br>- 44.39<br>- 44.39<br>- 44.39<br>- 44.39<br> | OAK    | 04                                                                                                     |                                                                                                              | 103          |
|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------|
| PROPOSED DRAINAGE CONDITIONS<br>WARNER AVENUE<br>FROM MAIN STREET TO GRAND AVENUE<br>PUBLIC WORKS AGENCY<br>CITY OF SANTA ANA<br>SHEET 1 OF 13 | O<br>SCALE: 1"=100<br>BBE                                                                                          | 1-1-15 | PROPOSED IMPROVEMENTS<br><u>46</u><br><u>24'/46</u><br>(24') 46<br>(24') 46<br>REPLACEMENT STORM DRAIN | EXISTING OPEN CHANNEL         0369       DRAINAGE AREA BOUNDARY         BASIN BOUNDARY         CITY BOUNDARY | NODE<br>NODE |





# APPENDIX C: CURRENT LAND USE PLAN

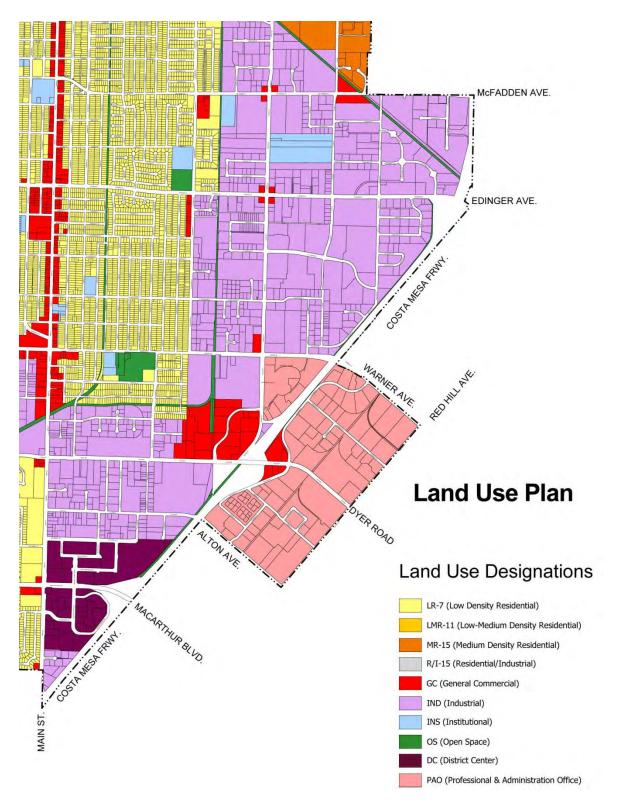



Figure 1: City of Santa Ana Plan, 2008

APPENDIX D: SOILS MAP

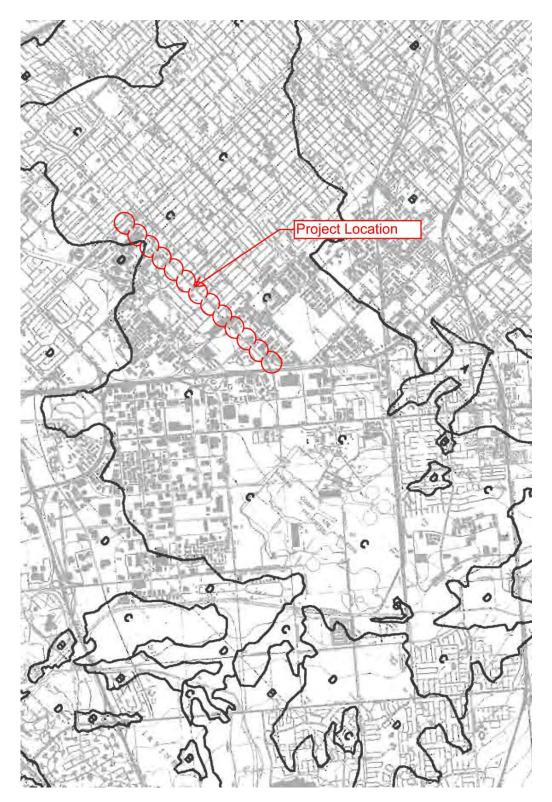



Figure 2: Hydrologic Classification of Soils (Orange County Hydrology Manual) - Plate B

APPENDIX E: USGS QUAD MAP

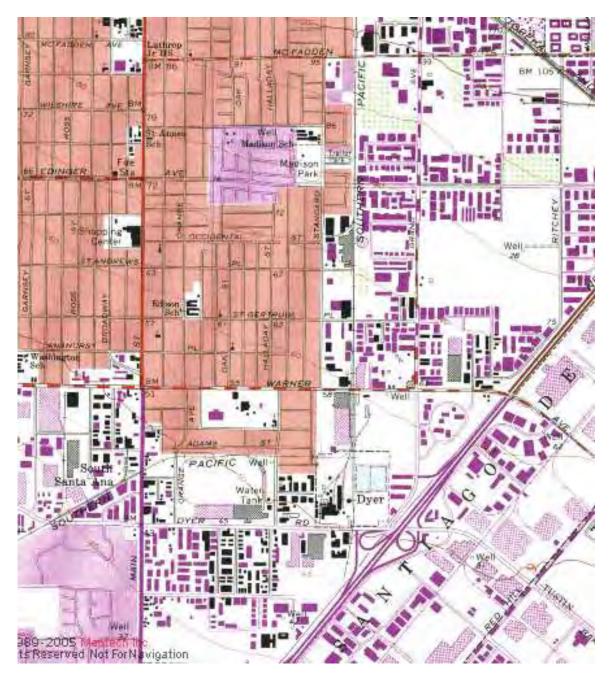
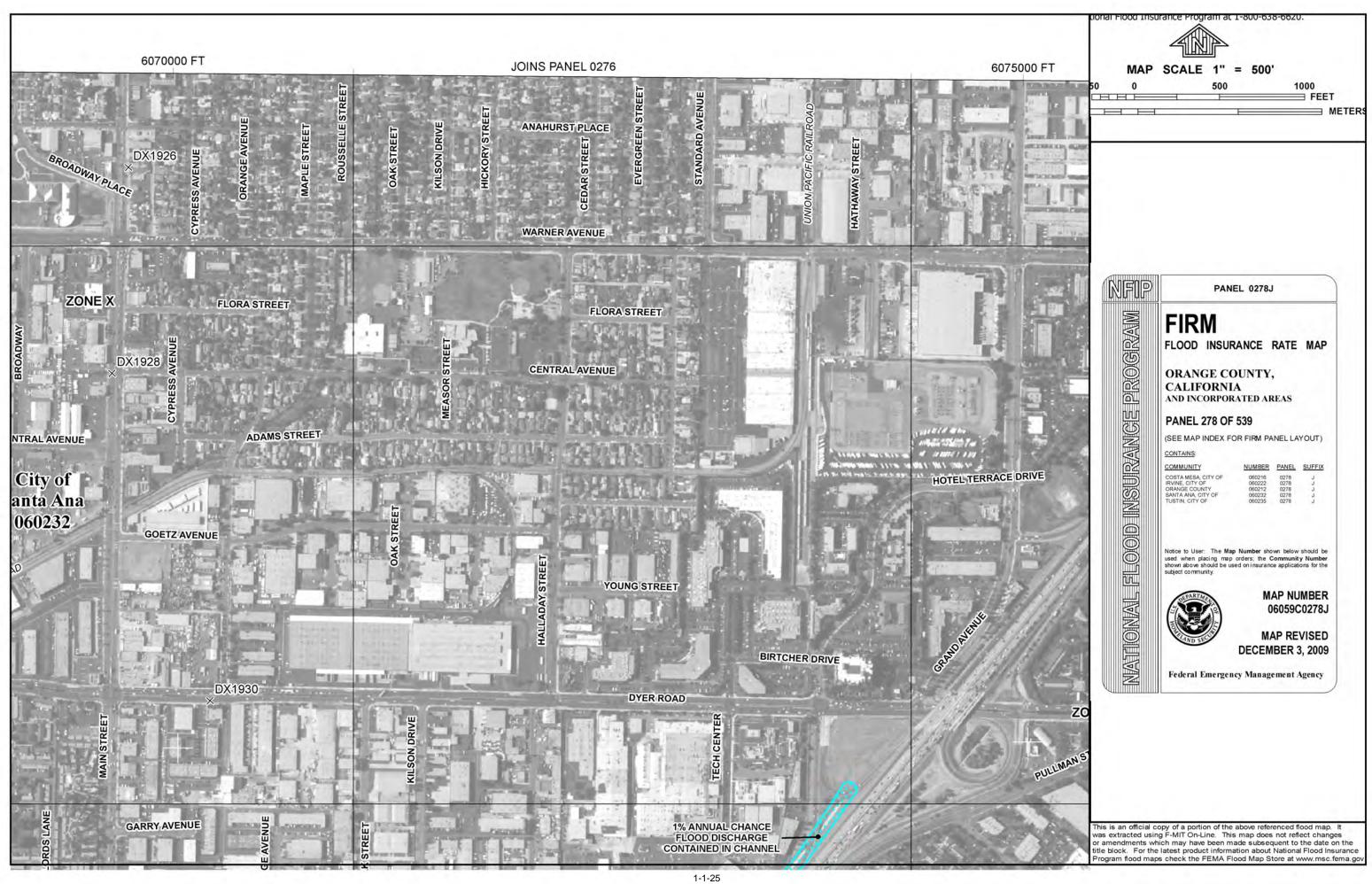
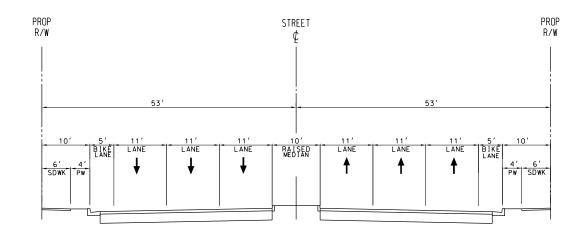
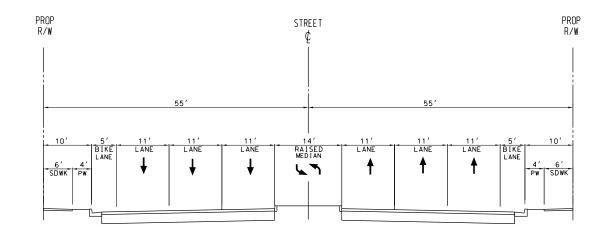




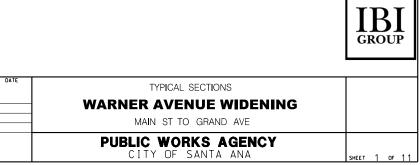

Figure 3: USGS Topo (from TerraServer)


# APPENDIX F: FEMA FLOOD MAP



# APPENDIX G: STREET CROSS SECTION DETAILS




TYPICAL SECTION (106' ROW) FROM STANDARD AVENUE TO HATHAWAY STREET



TYPICAL SECTION (110' ROW) FROM MAIN STREET TO STANDARD AVENUE FROM HATHAWAY STREET TO GRAND AVENUE

| REVISIONS |      |          | REVISIONS    |        | REFERENCES |              | PREPARED UNDER THE SUPERVIS | ION OF                |            |   |
|-----------|------|----------|--------------|--------|------------|--------------|-----------------------------|-----------------------|------------|---|
| NUMBER    | DATE | INITIALS | DESCRIPTIONS | APPRVD | PLANS      | BENCH MARK # | ELEV.                       |                       | R.C.E. NO. |   |
|           |      |          |              |        |            |              |                             | DESIGNED              | DRAWN      |   |
|           |      |          |              |        |            |              |                             | R/W APPROVED          | CHECKED    |   |
|           |      |          |              |        |            |              |                             | RECOMMENDED           |            |   |
|           |      |          |              |        |            |              |                             |                       |            |   |
|           |      |          |              |        |            | 1 1 07       |                             |                       |            |   |
|           |      |          |              |        |            | 1-1-27       |                             | SENIOR CIVIL ENGINEER | R.C.E. NO. | - |

User Date Filen FILE NO.



# APPENDIX H: EXISTING OFF-SITE HYDROLOGY

## MAIN STREET TO STANDARD AVE:

#### Criteria for modeling "User Specified Hydrology Data at a Node" for AES:

#### Total Off-Site Flow to 3825-3826:

| Areas Contributing to Flow at Node (Per 1993 Drainage Study by Boyle Engineering): |                   |                         |  |  |
|------------------------------------------------------------------------------------|-------------------|-------------------------|--|--|
| Node                                                                               | Area (Acres)      | Pervious Area Fraction* |  |  |
| 3821                                                                               | 8.8 (Commercial)  | 0.1                     |  |  |
|                                                                                    | 0.2 (6 DU/Ac)     | 0.5                     |  |  |
| 3822                                                                               | 10.7 (Commercial) | 0.1                     |  |  |
|                                                                                    | 0.3 (6 DU/Ac)     | 0.5                     |  |  |
| 3823                                                                               | 7.5 (Commercial)  | 0.1                     |  |  |
|                                                                                    | 2.0 (6 DU/Ac)     | 0.5                     |  |  |
| 3824                                                                               | 14.1 (Commercial) | 0.1                     |  |  |
|                                                                                    | 3.9 (6 DU/Ac)     | 0.5                     |  |  |
| 3825                                                                               | 9.8 (Commercial)  | 0.1                     |  |  |
|                                                                                    | 2.6 (6 DU/Ac)     | 0.5                     |  |  |

\*From OC Hydrology Manual figure C-4: "Actual Impervious Cover for Developed Areas"

Input parameters into AES Program: *Time of Concentration: 29.1 min. Total Area: 59.9 Ac Effective Area: 59.9 Ac (assume it is the same as "Total Area") Total Runoff: 12.2 cfs*  Fp = 0.25 *in/hr* (From OC Hydrology Manual table C.2: "Maximum Effective Pervious Area Loss Rates") *Pervious Area Fraction Ap: 0.16* 

### Total Off-Site Flow to 3833-3834:

| ervious Area Fraction* |
|------------------------|
|                        |
| 5                      |
| 5                      |
| 5                      |
| 5                      |

\*From OC Hydrology Manual figure C-4: "Actual Impervious Cover for Developed Areas"

Input parameters into AES Program: *Time of Concentration: 26.9 min. Total Area: 18.4 Ac Effective Area: 18.4 Ac (assume it is the same as "Total Area") Total Runoff: 18.6 cfs Fp* = 0.25 *in/hr* (From OC Hydrology Manual table C.2: "Maximum Effective Pervious Area Loss Rates") *Pervious Area Fraction Ap: 0.5* 

### Total Off-Site Flow to 3844-3845:

| Areas Contributing to Flow at Node (Per 1993 Drainage Study by Boyle Engineering): |                |                         |  |  |
|------------------------------------------------------------------------------------|----------------|-------------------------|--|--|
| Node                                                                               | Area (Acres)   | Pervious Area Fraction* |  |  |
| 3841                                                                               | 5.4 (6 DU/Ac)  | 0.5                     |  |  |
| 3842                                                                               | 10.8 (6 DU/Ac) | 0.5                     |  |  |
| 3843                                                                               | 7.8 (6 DU/Ac)  | 0.5                     |  |  |
| 3844                                                                               | 6.7 (6 DU/Ac)  | 0.5                     |  |  |

\*From OC Hydrology Manual figure C-4: "Actual Impervious Cover for Developed Areas"

Input parameters into AES Program: *Time of Concentration: 27.4 min. Total Area: 30.7 Ac Effective Area: 30.7 Ac (assume it is the same as "Total Area") Total Runoff: 30.8 cfs Fp* = 0.25 *in/hr* (From OC Hydrology Manual table C.2: "Maximum Effective Pervious Area Loss Rates") *Pervious Area Fraction Ap: 0.5* 

### Total Off-Site Flow to 3804-3805:

| Areas Contributing to Flow at Node (Per 1993 Drainage Study by Boyle Engineering): |                |                         |  |  |
|------------------------------------------------------------------------------------|----------------|-------------------------|--|--|
| Node                                                                               | Area (Acres)   | Pervious Area Fraction* |  |  |
| 3504 (From Memory Bank)                                                            | 1061.12        |                         |  |  |
| 3811                                                                               | 5.9 (6 DU/Ac)  | 0.5                     |  |  |
| 3812                                                                               | 4.4 (6 DU/Ac)  | 0.5                     |  |  |
| 3813                                                                               | 5.7 (6 DU/Ac)  | 0.5                     |  |  |
| 3801                                                                               | 19.3 (6 DU/Ac) | 0.5                     |  |  |
| 3816                                                                               | 6.4 (6 DU/Ac)  | 0.5                     |  |  |
| 3817                                                                               | 5.8 (6 DU/Ac)  | 0.5                     |  |  |
| 3818                                                                               | 6.8 (6 DU/Ac)  | 0.5                     |  |  |
| 3802                                                                               | 12.1 (6 DU/Ac) | 0.5                     |  |  |
| 3803                                                                               | 4.1 (6 DU/Ac)  | 0.5                     |  |  |
| 3804                                                                               | 7.2 (6 DU/Ac)  | 0.5                     |  |  |

\*From OC Hydrology Manual figure C-4: "Actual Impervious Cover for Developed Areas"

Input parameters into AES Program: *Time of Concentration: 52.3 min. Total Area: 1138.82 Ac Effective Area: 1138.82 Ac (assume it is the same as "Total Area") Total Runoff: 830.3 cfs*  Fp = 0.25 *in/hr* (From OC Hydrology Manual table C.2: "Maximum Effective Pervious Area Loss Rates") *Pervious Area Fraction Ap: 0.5* 

### Total Off-Site Flow to 3732-3733:

| Areas Contributing to Flow at Node (Per 1993 Drainage Study by Boyle Engineering): |               |                         |
|------------------------------------------------------------------------------------|---------------|-------------------------|
| Node                                                                               | Area (Acres)  | Pervious Area Fraction* |
| 3731                                                                               | 3.1 (6 DU/Ac) | 0.5                     |
| 3732                                                                               | 3.5 (6 DU/AC) | 0.5                     |
|                                                                                    | 1.4 (4 DU/Ac) | 0.6                     |

\*From OC Hydrology Manual figure C-4: "Actual Impervious Cover for Developed Areas"

Input parameters into AES Program: *Time of Concentration: 21.2 min. Total Area: 8.0 Ac Effective Area: 8.0 Ac (assume it is the same as "Total Area") Total Runoff: 22.0 cfs Fp* = 0.25 *in/hr* (From OC Hydrology Manual table C.2: "Maximum Effective Pervious Area Loss Rates") *Pervious Area Fraction Ap: 0.52* 

### Total Off-Site Flow to 3738-3739:

| Areas Contributing to Flow at Node (Per 1993 Drainage Study by Boyle Engineering): |                |                         |  |
|------------------------------------------------------------------------------------|----------------|-------------------------|--|
| Node                                                                               | Area (Acres)   | Pervious Area Fraction* |  |
| 3735                                                                               | 7.3 (6 DU/Ac)  | 0.5                     |  |
| 3736                                                                               | 9.8 (6 DU/Ac)  | 0.5                     |  |
| 3737                                                                               | 10.6 (6 DU/Ac) | 0.5                     |  |
| 3738                                                                               | 7.0 (6 DU/Ac)  | 0.5                     |  |
|                                                                                    | 1.4 (4 DU/Ac)  | 0.6                     |  |

\*From OC Hydrology Manual figure C-4: "Actual Impervious Cover for Developed Areas"

Input parameters into AES Program: *Time of Concentration: 26.9 min. Total Area: 36.1 Ac Effective Area: 36.1 Ac (assume it is the same as "Total Area") Total Runoff: 36.6 cfs*  Fp = 0.25 *in/hr* (From OC Hydrology Manual table C.2: "Maximum Effective Pervious Area Loss Rates") *Pervious Area Fraction Ap: 0.5* 

### Total Off-Site Flow to 3744-3745:

| Areas Contributing to Flow at Node (Per 1993 Drainage Study by Boyle Engineering): |                  |                         |  |
|------------------------------------------------------------------------------------|------------------|-------------------------|--|
| Node                                                                               | Area (Acres)     | Pervious Area Fraction* |  |
| 3741                                                                               | 0.1 (Commercial) | 0.1                     |  |
|                                                                                    | 1.9 (Apartment)  | 0.2                     |  |
|                                                                                    | 2.1 (6 DU/Ac)    | 0.5                     |  |
| 3742                                                                               | 1.4 (Commercial) | 0.1                     |  |
|                                                                                    | 1.3 (Apartment)  | 0.2                     |  |
|                                                                                    | 2.9 (6 DU/Ac)    | 0.5                     |  |
| 3743                                                                               | 0.7 (Commercial) | 0.1                     |  |
|                                                                                    | 3.7 (Apartment)  | 0.2                     |  |
|                                                                                    | 1.6 (6 DU/Ac)    | 0.5                     |  |
| 3744                                                                               | 9.2 (Apartment)  | 0.2                     |  |
|                                                                                    | 0.1 (6 DU/Ac)    | 0.5                     |  |

\*From OC Hydrology Manual figure C-4: "Actual Impervious Cover for Developed Areas"

Input parameters into AES Program: *Time of Concentration: 22.0 min. Total Area: 25.0 Ac Effective Area: 25.0 Ac (assume it is the same as "Total Area") Total Runoff: 30.0 fs Fp* = 0.25 *in/hr* (From OC Hydrology Manual table C.2: "Maximum Effective Pervious Area Loss Rates") *Pervious Area Fraction Ap: 0.27* 

## Total Off-Site Flow to 3752-3747:

| Areas Contributing to Flow at Node (Per 1993 Drainage Study by Boyle Engineering): |                  |                         |  |
|------------------------------------------------------------------------------------|------------------|-------------------------|--|
| Node                                                                               | Area (Acres)     | Pervious Area Fraction* |  |
| 3748                                                                               | 3.7 (Commercial) | 0.1                     |  |
|                                                                                    | 0.4 (Apartment)  | 0.2                     |  |
| 3749                                                                               | 5.2 (Commercial) | 0.1                     |  |
|                                                                                    | 0.2 (Apartment)  | 0.2                     |  |
| 3750                                                                               | 5.3 (Commercial) | 0.1                     |  |
|                                                                                    | 0.2 (Apartment)  | 0.2                     |  |
| 3751                                                                               | 8.1 (Commercial) | 0.1                     |  |
|                                                                                    | 0.2 (Apartment)  | 0.2                     |  |
| 3752                                                                               | 6.7 (Commercial) | 0.1                     |  |
|                                                                                    | 1.3 (4DU/Ac)     | 0.6                     |  |

\*From OC Hydrology Manual figure C-4: "Actual Impervious Cover for Developed Areas"

Input parameters into AES Program:

Time of Concentration: 24.6 min.

Total Area: 31.3 Ac

Effective Area: 31.3 Ac (assume it is the same as "Total Area")

Total Runoff: 36.3 cfs

*Fp* = 0.25 *in/hr* (From OC Hydrology Manual table C.2: "Maximum Effective Pervious Area Loss Rates") *Pervious Area Fraction Ap: 0.12* 

<u>Note:</u> As two parallel storm drain lines were placed in Main Street subsequent to the Boyle study in 1993, the original sub-basin area (#3746) has been split into two separate drainage basins (shown on the Drainage Map as #3746 and #37460). It is assumed that the flow to the east of Main will reach the catch basin in the 30" line, while flow to the west of Main Street will be carried in the 1'x3' RCB.

## STANDARD AVE TO GRAND AVENUE:

#### Total Off-Site Flow to 4704-4705:

| Areas Contributing to Flow at Node (Per 1993 Drainage Study by Boyle Engineering): |                   |                         |  |
|------------------------------------------------------------------------------------|-------------------|-------------------------|--|
| Node                                                                               | Area (Acres)      | Pervious Area Fraction* |  |
| 4602 (From Memory Bank)                                                            | 231.63            |                         |  |
| 4711                                                                               | 5.2 (Commercial)  | 0.1                     |  |
| 4701                                                                               | 6.8 (Commercial)  | 0.1                     |  |
| 4716                                                                               | 7.9 (Commercial)  | 0.1                     |  |
| 4717                                                                               | 18.0 (Commercial) | 0.1                     |  |
| 4703                                                                               | 7.1 (Commercial)  | 0.1                     |  |
| 4721                                                                               | 7.7 (Commercial)  | 0.1                     |  |
| 4722                                                                               | 12.4 (Commercial) | 0.1                     |  |
| 4704                                                                               | 12.1 (Commercial) | 0.1                     |  |

\*From OC Hydrology Manual figure C-4: "Actual Impervious Cover for Developed Areas"

Input parameters into AES Program:

Time of Concentration: 25.9 min.

Total Area: 277.5 Ac

Effective Area: 277.5 Ac (assume it is the same as "Total Area")

Total Runoff: 342.1cfs

*Fp* = 0.25 *in/hr* (From OC Hydrology Manual table C.2: "Maximum Effective Pervious Area Loss Rates") *Pervious Area Fraction Ap: 0.1* 

# APPENDIX I: EXISTING HYDROLOGY (BOYLE ENGINEERING)



02/23/94

HYDRAULIC ANALYSIS SUMMARY

Page No. 1

|                        | Pop                    | dway    | -          |            |                                 |         |        | -                |             |                         |            |                       |                |               | Page No.           |
|------------------------|------------------------|---------|------------|------------|---------------------------------|---------|--------|------------------|-------------|-------------------------|------------|-----------------------|----------------|---------------|--------------------|
| ID                     | Name                   | Slope   | ĸ          | Diam/Depth | Existing Drain<br>Base Width Si |         | ĸ      | Design<br>Runoff | Roadway     | ction Capaci<br>Conduit | Total      | Deficient<br>Capacity | -Improvement   | Alternatives- | Recommended        |
| <u></u>                |                        | (ft/ft) | Č          | (in)/ (ft) | (ft) Slo                        |         |        | (cfs)            | (cfs)       | (cfs)                   | (cfs)      | (cfs)                 | Replacement    | New/Parallel  | Improvemen         |
| Map Area               | :37                    |         |            |            |                                 |         |        |                  |             |                         |            |                       |                |               |                    |
| 605-3701               | FLOWER                 | 0.0050  | 566        | 66.0       |                                 | 0.00357 | 3365   | 1007 5           | 40.0        | 201.1                   | 241.1      | 766.4                 | 208 Euf E DOD  | 12 5 4 5 202  |                    |
| 3711-3712              | PARTON                 | 0.0050  | 566        |            |                                 |         |        | 12.9             | 40.0        | 0.0                     | 40.0       | 0.0                   | 208.5x6.5 RCB  | 12.5x6.5 RCB  | 208.5x6.5 R        |
| 3712-3713              | ST. ANDREWS            | 0.0020  | 382        |            |                                 |         |        | 12.9             | 17.1        | 0.0                     | 17.1       | 0.0                   |                |               |                    |
| 3713-3714              | ST. ANDREWS            | 0.0020  | 382        |            |                                 |         |        | 19.3             | 17.1        | 0.0                     | 17.1       | 2.2                   |                | 18" RCP       | 18" RCP            |
| 3714-3701              | ST. ANDREWS            | 0.0020  | 283        |            |                                 |         |        | 24.5             | 12.7        | 0.0                     | 12.7       | 11.9                  |                | 27" RCP       | 27" RCP            |
| 3701-3702<br>3716-3717 | FLOWER<br>ST. GERTRUDE | 0.0050  | 566<br>283 | 66.0       |                                 | 0.00357 | 3365   |                  | 40.0        | 201.1                   | 241.1      | 778.1                 | 208.5x6.5 RCB  | 12.5x6.5 RCB  | 228.5x6.5 R        |
| 3717-3723              | ST. GERTRUDE           | 0.0020  | 283        |            |                                 |         |        | 16.6             | 12.7        | 0.0                     | 12.7       | 3.9                   |                | 18" RCP       | 18" RCP            |
| 3719-3720              | BIRCH                  | 0.0050  | 566        |            |                                 |         |        | 16.6             | 12.7        | 0.0                     | 12.7       | 3.9                   |                | 18" RCP       | 18" RCP            |
| 3720-3721              | ST. ANDREWS            | 0.0020  | 283        |            |                                 |         |        | 13.2             | 40.0        | 0.0                     | 40.0       | 0.0                   |                | 100 000       |                    |
| 3721-3722              | ST. ANDREWS            | 0.0020  | 283        |            | 10                              |         |        | 20.0             | 12.7        | 0.0                     | 12.7       | 0.6                   |                | 18" RCP       | 18" RCP            |
| 3722-3723              | VAN NESS               | 0.0050  | 566        |            |                                 |         |        | 36.4             | 40.0        | 0.0                     | 40.0       | 0.0                   |                | 24" RCP       | 24" RCP            |
| 3723-3724              | ST. GERTRUDE           | 0.0020  | 283        |            |                                 |         |        | 56.8             | 12.7        | 0.0                     | 12.7       | 44.2                  |                | 42" RCP       | 24" RCP<br>42" RCP |
| 3724-3725              | ST. GERTRUDE           |         | 283        |            |                                 |         |        | 61.6             | 12.7        | 0.0                     | 12.7       | 48.9                  |                | 45" RCP       | 45" RCP            |
| 3725-3702              | ST. GERTRUDE           |         | 283        |            |                                 |         |        | 67.8             | 12.7        | 0.0                     | 12.7       | 55.1                  |                | 48" RCP       | 48" RCP            |
| 3702-3703              | FLOWER                 | 0.0050  | 566        | 66.0       |                                 | 0.00357 | 3365   | 1069.1           | 40.0        | 201.1                   | 241.1      | 828.0                 | 2@9x6.5 RCB    | 13x6.5 RCB    | 209x6.5 RCB        |
| 3727-3728              | ANAHURST               | 0.0020  | 283        |            |                                 |         |        | 16.2             | 12.7        | 0.0                     | 12.7       | 3.5                   | ALL CALLS ALLS | 18" RCP       | 18" RCP            |
| 3728-3729              | ANAHURST               | 0.0020  | 283        |            |                                 |         |        | 16.2             | 12.7        | 0.0                     | 12.7       | 3.5                   |                | 18" RCP       | 18" RCP            |
| 3729-3703              | ANAHURST               | 0.0020  | 566        |            |                                 |         |        | 28.3             | 25.3        | 0.0                     | 25.3       | 3.0                   |                | 18" RCP       | 18" RCP            |
| 3703-3704              | FLOWER                 | 0.0050  | 566        | 10.0       |                                 | 0.00357 |        |                  | 40.0        | 1615.6                  | 1655.6     | 0.0                   |                |               |                    |
| 3805-3733<br>3731-3732 | WARNER                 | 0.0020  | 35         | 60.0       |                                 | 0.00200 | 2610   |                  | 1.6         | 116.7                   | 118.3      | 860.6                 | 15x8 RCB       | 2010x6.5 RCB  | 14.5x8 RCB         |
| 3732-3733              | MAPLE                  | 0.0050  | 566        |            |                                 |         |        | 10.9             | 40.0        | 0.0                     | 40.0       | 0.0                   |                |               |                    |
| 3733-3739              | WARNER                 | 0.0020  | 566<br>35  | 69.0       |                                 | 0 00200 | 3789   | 10.9             | 40.0        | 0.0                     | 40.0       | 0.0                   | 15.0 000       |               | 10.4.4.1.1.        |
| 3735-3736              | ORANGE                 | 0.0050  | 566        | 09.0       |                                 | 0.00200 | 3/09   | 19.4             | 1.6         | 169.5                   | 171.0 40.0 | 816.2                 | 15x8 RCB       | 2@9.5x6.5 RCB | 14.5x8 RCB         |
| 3736-3737              | ORANGE                 | 0.0050  | 566        |            |                                 |         |        | 19.4             | 40.0        | 0.0                     | 40.0       | 0.0                   |                |               |                    |
| 3737-3738              | ORANGE                 | 0.0050  | 566        |            |                                 |         |        | 30.0             | 40.0        | 0.0                     | 40.0       | 0.0                   |                |               |                    |
| 3738-3739              | ORANGE                 | 0.0050  | 566        |            |                                 |         |        | 36.6             | 40.0        | 0.0                     | 40.0       | 0.0                   |                |               |                    |
| 3739-3745              | WARNER                 | 0.0020  | 35         | 69.0       |                                 | 0.00200 | 3789   | 1018.2           | 1.6         | 169.5                   | 171.0      | 847.2                 | 2011x6.5 RCB   | 209.5x6.5 RCB | 15y8 PCB           |
| 3741-3742              | CYPRESS                | 0.0050  | 566        |            |                                 |         |        | 13.7             | 40.0        | 0.0                     | 40.0       | 0.0                   | Lutinois Rus   | Luriskois Keb | 1340 100           |
| 3742-3743              | CYPRESS                | 0.0050  | 566        |            |                                 |         |        | 13.7             | 40.0        | 0.0                     | 40.0       | 0.0                   |                |               |                    |
| 3743-3744              | CYPRESS                | 0.0050  | 566        |            |                                 |         |        | 20.3             | 40.0        | 0.0                     | 40.0       | 0.0                   |                |               |                    |
| 3744-3745              | CYPRESS                | 0.0050  | 566        |            |                                 |         |        | 30.0             | 40.0        | 0.0                     | 40.0       | 0.0                   |                |               |                    |
| 3745-3746              | WARNER                 | 0.0050  | 35         | 69.0       |                                 | 0.00200 | 3789   |                  | 2.5         | 169.5                   | 171.9      | 863.7                 | 15.5x8 RCB     | 2010x6.5 RCB  | 15x8 RCB           |
| 3748-3749              | MAIN                   | 0.0050  | 70         |            |                                 |         |        | 13.7             | 5.0         | 0.0                     | 5.0        | 8.8                   |                | 21" RCP       | 21" RCP            |
| 3749-3750              | MAIN                   | 0.0050  | 70         |            |                                 |         |        | 13.7             | 5.0         | 0.0                     | 5.0        | 8.8                   |                | 21" RCP       | 21" RCP            |
| 3750-3751              | MAIN                   | 0.0050  | 70         |            |                                 |         |        | 19.9             | 5.0         | 0.0                     | 5.0        | 14.9                  |                | 24" RCP       | 24" RCP            |
| 3751-3752 3752-3746    | MAIN                   | 0.0050  | 70<br>561  |            |                                 |         |        | 28.7             | 5.0<br>39.7 | 0.0                     | 5.0        | 23.7                  |                | 30" RCP       | 30" RCP            |
| 3746-3766              | WARNER                 | 0.0020  | 35         | 69.0       |                                 | 0.00200 | 3780   |                  | 1.6         | 169.5                   | 171.0      | 0.0<br>879.6          | 15.5x8 RCB     | 2010x6.5 RCB  | 30" RCP            |
| 3761-3762              | POMONA                 | 0.0020  | 566        | 07.0       |                                 | 0.00200 | 5107   | 15.5             | 25.3        | 0.0                     | 25.3       | 0.0                   | IJ.JAO KUB     | ZOTUXO.J KLB  | 15.5x8 RCB         |
| 3762-3763              | BROADWAY               | 0.0050  | 500        |            |                                 |         |        | 15.5             | 0.0         | 0.0                     | 0.0        | 15.5                  |                | 24" RCP       | 24" RCP            |
| 3763-3764              | BROADWAY               | 0.0050  |            |            |                                 |         |        | 32.3             | 0.0         | 0.0                     | 0.0        | 32.3                  |                | 33" RCP       | 33" RCP            |
| 3764-3765              | BROADWAY               | 0.0050  |            |            |                                 |         |        | 46.4             | 0.0         | 0.0                     | 0.0        | 46.4                  |                | 36" RCP       | 36" RCP            |
| 3765-3766              | BROADWAY               | 0.0050  |            |            |                                 |         |        | 59.8             | 0.0         | 0.0                     | 0.0        | 59.8                  |                | 42" RCP       | 42" RCP            |
| 3766-3767              | WARNER                 | 0.0020  | 30         | 69.0       |                                 | 0.00200 | 3789   |                  | 1.3         | 169.5                   | 170.8      | 906.4                 | 2011.5x6.5 RC  |               |                    |
| 3767-3704              | WARNER                 | 0.0020  | 30         | 69.0       |                                 | 0.00200 | 3789   |                  | 1.3         | 169.5                   | 170.8      | 906.4                 | 2011.5x6.5 RC  |               |                    |
| 3771-3772              | BRISTOL                | 0.0050  | 70         | 24.24      |                                 |         | 1000   | 14.2             | 5.0         | 0.0                     | 5.0        | 9.2                   |                | 21" RCP       | 21" RCP            |
| 3772-3773              | BRISTOL                | 0.0050  | 70         |            |                                 |         |        | 14.2             | 5.0         | 0.0                     | 5.0        | 9.2                   |                | 21" RCP       | 21" RCP            |
| 3773-3774              | BRISTOL                | 0.0050  | 70         |            |                                 |         |        | 23.1             | 5.0         | 0.0                     | 5.0        | 18.1                  |                | 27" RCP       | 27" RCP            |
| 3774-3775              | BRISTOL                | 0.0050  | 70         |            |                                 |         | -22.00 | 36.1             | 5.0         | 0.0                     | 5.0        | 31.2                  | 100 C          | 33" RCP       | 33" RCP            |
| 3775-3776              | WARNER                 | 0.0010  | 70         | 42.0       |                                 | 0.00100 | 1008   |                  | 2.2         | 31.9                    | 34.1       | 24.1                  | 54" RCP        | 39" RCP       | 54" RCP            |
| 3776-3790              | WARNER                 | 0.0010  | 70         | 42.0       |                                 | 0.00100 | 1008   | 62.4             | 2.2         | 31.9                    | 34.1       | 28.3                  | 54" RCP        | 42" RCP       | 54" RCP            |

Boyle Engineering Corporation

02/23/94

HYDRAULIC ANALYSIS SUMMARY

Page No. 2

| KER<br>KER<br>KER<br>WELL | (ft/ft)<br>0.0050<br>0.0050<br>0.0050                                                    | К<br>566<br>566                                                                                                                                                                                                                                                                                                                                                       | Diam/Depth H<br>(in)/ (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Base Width<br>(ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Side<br>Slope                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Slope<br>(ft/ft)                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Runoff<br>(cfs)                                                                                                                                                                                                                                        | Roadway<br>(cfs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Conduit<br>(cfs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Total<br>(cfs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Capacity<br>(cfs)                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Alternatives-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Recommended<br>Improvement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| KER                       | 0.0050                                                                                   | 566                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TTERFORMULL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (015)                                                 | Replacement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | New/Parallel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| KER                       | 0.0050                                                                                   |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13.4                                                                                                                                                                                                                                                   | 40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                           |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13.4                                                                                                                                                                                                                                                   | 40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| WELL                      |                                                                                          | 566                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21.9                                                                                                                                                                                                                                                   | 40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                           | 0.0050                                                                                   | 566                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17.1                                                                                                                                                                                                                                                   | 40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| RKELEY                    |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CIDENTAL                  |                                                                                          | 566                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 191 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18" RCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CIDENTAL                  |                                                                                          | 566                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 27" RCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| KER                       |                                                                                          | 566                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| KER                       | 0.0050                                                                                   | 566                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 33" RCP<br>36" RCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| KER                       | 0.0050                                                                                   | 566                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 39" RCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| SEMOOD                    | 0.0050                                                                                   | 566                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| RNER (ADV)                | 0.0010                                                                                   |                                                                                                                                                                                                                                                                                                                                                                       | 42.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00100                                                                                                                                                                                                                                                                                                                                                                                                         | 1008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       | 011 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 42" RCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| IVE                       | 0.0050                                                                                   | 566                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                 | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       | OF KUP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ()" KLP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 81" RCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| . GERTRUDE                | 0.0020                                                                                   | 566                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| RK                        |                                                                                          | 566                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| RNER (ADV)                |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                       | 42.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00100                                                                                                                                                                                                                                                                                                                                                                                                         | 1008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       | 7 5-4 5 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 044 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.5.4.5.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| RNER (ADV)                |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.5x6.5 RCB<br>7.5x6.5 RCB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CCKKKKSRI .RR             | IDENTAL<br>IDENTAL<br>ER<br>ER<br>EWOOD<br>NER (ADV)<br>VE<br>GERTRUDE<br>K<br>NER (ADV) | IDENTAL         0.0020           IDENTAL         0.0020           ER         0.0050           ER         0.0050           ER         0.0050           ER         0.0050           EWOOD         0.0050           NER (ADV)         0.0010           VE         0.0050           GERTRUDE         0.0020           K         0.0050           NER (ADV)         0.0010 | IDENTAL         0.0020         566           IDENTAL         0.0020         566           ER         0.0050         566           ER         0.0050         566           ER         0.0050         566           EW         0.0050         566           EW         0.0050         566           EW         0.0050         566           EW         0.0050         566           ER         0.0050         566           ER         0.0050         566           GERTRUDE         0.0020         566           K         0.0050         566           NER (ADV)         0.0010         566 | IDENTAL         0.0020         566           IDENTAL         0.0020         566           ER         0.0050         566           ER         0.0050         566           ER         0.0050         566           EVODD         0.0050         566           EVODD         0.0050         566           NER (ADV)         0.0010         42.0           VE         0.0050         566           GERTRUDE         0.0020         566           K         0.0050         566           NER (ADV)         0.0010         42.0 | IDENTAL         0.0020         566           IDENTAL         0.0020         566           ER         0.0050         566           ER         0.0050         566           ER         0.0050         566           EVOOD         0.0050         566           NER (ADV)         0.0010         42.0           VE         0.0050         566           GERTRUDE         0.0020         566           K         0.0050         566           NER (ADV)         0.0010         42.0 | IDENTAL       0.0020       566         IDENTAL       0.0020       566         ER       0.0050       566         ER       0.0050       566         ER       0.0050       566         EVOOD       0.0050       566         NER (ADV)       0.0010       42.0         VE       0.0050       566         GERTRUDE       0.0020       566         K       0.0050       566         NER (ADV)       0.0010       42.0 | IDENTAL         0.0020         566           IDENTAL         0.0020         566           ER         0.0050         566           ER         0.0050         566           ER         0.0050         566           EVOOD         0.0050         566           EVOOD         0.0050         566           EVOOD         0.0050         566           GERTRUDE         0.0020         566           K         0.0050         566           NER (ADV)         0.0010         42.0         0.00100 | IDENTAL 0.0020 566<br>IDENTAL 0.0020 566<br>ER 0.0050 566<br>ER 0.0050 566<br>EWOOD 0.0050 566<br>EWOOD 0.0050 566<br>NER (ADV) 0.0010 42.0 0.00100 1008<br>VE 0.0050 566<br>GERTRUDE 0.0020 566<br>K 0.0050 566<br>NER (ADV) 0.0010 42.0 0.00100 1008 | KELEY         0.0050         566         17.1           IDENTAL         0.0020         566         28.2           IDENTAL         0.0020         566         38.8           ER         0.0050         566         74.3           ER         0.0050         566         81.3           ER         0.0050         566         93.7           EWOOD         0.0050         566         102.0           NER (ADV)         0.0010         42.0         0.00100         1008         175.8           VE         0.0050         566         14.7         14.7           GERTRUDE         0.0020         566         34.6           NER (ADV)         0.0010         42.0         0.00100         1008         215.3 | KELEY         0.0050         566         17.1         40.0           IDENTAL         0.0020         566         28.2         25.3           IDENTAL         0.0020         566         38.8         25.3           IDENTAL         0.0050         566         74.3         40.0           ER         0.0050         566         74.3         40.0           ER         0.0050         566         93.7         40.0           EWCOD         0.0050         566         102.0         40.0           EWCOD         0.0050         566         102.0         40.0           VE         0.0050         566         14.7         40.0           GERTRUDE         0.0020         566         14.7         25.3           K         0.0050         566         34.6         40.0           NER (ADV)         0.0010         42.0         0.00100         1008         215.3         0.0 | KELEY         0.0050         566         17.1         40.0         0.0           IDENTAL         0.0020         566         28.2         25.3         0.0           IDENTAL         0.0020         566         38.8         25.3         0.0           ER         0.0050         566         74.3         40.0         0.0           ER         0.0050         566         81.3         40.0         0.0           ER         0.0050         566         93.7         40.0         0.0           EWOOD         0.0050         566         102.0         40.0         0.0           EWOOD         0.0050         566         102.0         40.0         0.0           VE         0.0050         566         102.0         40.0         0.0           VE         0.0050         566         14.7         25.3         0.0           K         0.0050         566         14.7         25.3         0.0           K         0.0050         566         34.6         40.0         0.0           NER (ADV)         0.0010         42.0         0.00100         1008         215.3         0.0         31.9 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | KELEY       0.0050       566       17.1       40.0       0.0       40.0       0.0         IDENTAL       0.0020       566       28.2       25.3       0.0       25.3       2.8         IDENTAL       0.0020       566       38.8       25.3       0.0       25.3       13.5         ER       0.0050       566       74.3       40.0       0.0       40.0       34.3         ER       0.0050       566       74.3       40.0       0.0       40.0       41.3         ER       0.0050       566       93.7       40.0       0.0       40.0       53.7         EWOOD       0.0050       566       102.0       40.0       0.0       40.0       53.7         EWOOD       0.0050       566       102.0       40.0       0.0       40.0       53.7         EWOOD       0.0050       566       102.0       40.0       0.0       40.0       62.0         VE       0.0050       566       14.7       40.0       0.0       40.0       0.0         GERTRUDE       0.0050       566       14.7       25.3       0.0       0.0       0.0         K       0.0050       566 | KELEY $0.0050$ $566$ $17.1$ $40.0$ $0.0$ $40.0$ $0.0$ IDENTAL $0.0020$ $566$ $28.2$ $25.3$ $0.0$ $25.3$ $2.8$ IDENTAL $0.0020$ $566$ $38.8$ $25.3$ $0.0$ $25.3$ $2.8$ ER $0.0050$ $566$ $74.3$ $40.0$ $0.0$ $40.0$ $34.3$ ER $0.0050$ $566$ $74.3$ $40.0$ $0.0$ $40.0$ $41.3$ ER $0.0050$ $566$ $93.7$ $40.0$ $0.0$ $40.0$ $62.0$ NER (ADV) $0.0010$ $42.0$ $0.00100$ $1008$ $175.8$ $0.0$ $31.9$ $31.9$ $81"$ RCP         VE $0.0050$ $566$ $14.7$ $25.3$ $0.0$ $0.0$ GERTRUDE $0.0020$ $566$ $14.7$ $25.3$ $0.0$ $0.0$ K $0.0050$ $566$ $14.7$ $25.3$ $0.0$ $0.0$ $0.0$ K $0.0050$ $566$ $14.7$ | KELEY       0.0050       566       17.1       40.0       0.0       40.0       0.0         IDENTAL       0.0020       566       28.2       25.3       0.0       25.3       2.8       18" RCP         IDENTAL       0.0020       566       38.8       25.3       0.0       25.3       2.8       18" RCP         ER       0.0050       566       74.3       40.0       0.0       40.0       34.3       33" RCP         ER       0.0050       566       74.3       40.0       0.0       40.0       34.3       33" RCP         ER       0.0050       566       93.7       40.0       0.0       40.0       53.7       39" RCP         ENCOOD       0.0050       566       93.7       40.0       0.0       40.0       62.0       42" RCP         VE       0.0050       566       102.0       40.0       0.0       40.0       62.0       42" RCP         VE       0.0050       566       14.7       40.0       0.0       0.0       40.0       62.0         K       0.0050       566       14.7       25.3       0.0       0.0       62.0         K       0.0050       566 |

| n=.0130 D= 1.8<br>    27.0"-PIPE<br>   ADD SUBAREA                                                                                                                                                          | 19.3                                                                                                                                           | .123                                                                                                                                                                                                                                                                                       | - 13       | 25.911.28                                                                                                                                                                               | *                                                                                  | 1 1 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 60/AC                                                                                                         | <u> </u>                                 | 18.5                                                                                                          | 6.6                                                                          | 3713.00<br>3713.00                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| D= .4 ,)<br>        FLOODWII<br>   <br>                                                                                                                                                                     | 12.8 303                                                                                                                                       | .125                                                                                                                                                                                                                                                                                       | <u>-13</u> | 51.32                                                                                                                                                                                   | 24.6                                                                               | 7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 60/AC                                                                                                         | 0                                        | 11.9                                                                                                          | 6.9                                                                          | 48.ft-STREET  <br>FLOW TO PT.#  <br>3712.00                                                                                           |
|                                                                                                                                                                                                             | 7.1 863                                                                                                                                        | .125                                                                                                                                                                                                                                                                                       | .13        | 3 1.69                                                                                                                                                                                  | 16.8                                                                               | 1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 60/AC                                                                                                         | 0                                        | 5.0                                                                                                           | 5.0                                                                          | 3711.00                                                                                                                               |
| -     FOR CONFLUENCE                                                                                                                                                                                        | 1007.4                                                                                                                                         | 10                                                                                                                                                                                                                                                                                         | <u> </u>   | .93                                                                                                                                                                                     | 44.5                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                               |                                          | 1286.3                                                                                                        |                                                                              | 3701.00                                                                                                                               |
| = 5.0 Fm(IN/HR) = .103; Ybar = .426<br>COURSE = 3280.0 WITH LENGTH = 18240.3 FEET<br>1.31; 6HR = 1.81; 24HR= 3.03<br>.99; 6HR = 1.00; 24HR= 1.00<br>.0%; VALLEY(UNDEV)/DESERT = .0%<br>LUME(AF)= 212.27<br> | 5.0 Fm(IN/HR) =<br>5.0 Fm(IN/HR) =<br>31; 6HR = 1.81;<br>39; 6HR = 1.00; 2<br>99; 6HR = 1.00; 2<br>; VALLEY(UNDEV)/D<br>E(AF)= 212.27<br>-[[[] | HR) = .59 TIME INTERVAL(MIN.) = 5.0 Fm(         UPSTREAM NODE OF LONGEST WATERCOURSE = 328         IOM = .59; THR = .78; 3HR = 1.31; 6HR =         .30M = .94; THR = .94; 3HR = .99; 6HR =         .0THILL = .0%; MOUNTAIN = .0%; VALLEY(1)         45 TIME OF PEAK(HR) = 16.7 VOLUME(AF)= | 1 7 4 2    | = .59 TIME INTERVAL(MIN.) =<br>STREAM NODE OF LONGEST WATERCO<br>= .59; THR = .78; 3HR = 1<br>OM = .94; THR = .94; 3HR = .<br>ILL = .0%; MOUNTAIN = .00<br>TIME OF PEAK(HR) = 16.7 VOLU | 59 TIME IN<br>959 TIME IN<br>59; 1HR =<br>.94; 1HR =<br>.0%; MO<br>0F PEAK(HR)<br> | .59 T<br>.59; 1<br>.59; 1<br>.59 | LAG TIME(HR) =<br>1286.3 UPSTREA<br>= .26; 30M =<br>5M = .94; 30M =<br>100.0%; FOOTHILL =<br>1007.45 TIME<br> | TIME(HR) =<br>26; 30M =<br>26; 30M =<br> | LAG TIME(HR) =<br>1286.3 UPSTF<br>= .26; 30M =<br>5M = .94; 30M<br>100.0%; FOOTHILL<br>= 1007.45 TI<br>= -[[] | 44.48 L<br>CRES)=<br>4):5M =<br>ACTORS:5<br>ACTORS:5<br>TE(CFS)=<br>TE(CFS)= | TC(MIN.) = 44.48<br>TOTAL AREA(ACRES)=<br>RAINFALL(INCH): 5M =<br>DEPTH-AREA FACTORS:<br>S-GRAPH : VALLEY = 1<br>PEAK FLOW RATE(CFS)= |
| 1716 .0036 14.4 opipe=1007.4cfs                                                                                                                                                                             |                                                                                                                                                | .103 1007.4                                                                                                                                                                                                                                                                                |            | .93                                                                                                                                                                                     | 44.5                                                                               | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                               |                                          | 22.2 1286.3                                                                                                   | 22.2                                                                         | 3701.00<br>3701.00                                                                                                                    |
|                                                                                                                                                                                                             |                                                                                                                                                | EAM<br>AREA(acres)<br>1264.00                                                                                                                                                                                                                                                              |            | Ybar ARE                                                                                                                                                                                | <br>ED ONTO MAI<br>Fm(in/hr)<br>.102                                               | Find of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                               |                                          |                                                                                                               | 10 M                                                                         | 3605.00                                                                                                                               |
|                                                                                                                                                                                                             |                                                                                                                                                | AREA(acres)<br>1264.00                                                                                                                                                                                                                                                                     | AREA       | -  <br>LOWS:<br>Ybar A<br>.43                                                                                                                                                           |                                                                                    | FINED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                               | -                                        |                                                                                                               | 100                                                                          | 3605.00                                                                                                                               |
| PATH SLOPE V HYDRAULICS                                                                                                                                                                                     | Q PAI                                                                                                                                          | Fm  <br>(Avg)                                                                                                                                                                                                                                                                              | : 3        | 1<br>  in/h                                                                                                                                                                             | M T                                                                                | MIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SOIL DEV.   Tt   Tc<br> TYPE  TYPE  MIN.   MIN.                                                               | a complete the state of                  | ACRES)                                                                                                        | AREA (J<br>SUBAREA                                                           | CONCENTRATION AREA (ACRES)<br>POINT NUMBER SUBAREA SUM                                                                                |
| CALCULATED BY:<br>CHECKED BY:<br>PAGE NUMBER 1 OF                                                                                                                                                           |                                                                                                                                                | 3/1994 CANC II LOSSES) POFTWARED - 1983-1991 ADVANCED ENGINEERING SOFTWARED -                                                                                                                                                                                                              | SU         | II LOSSES)                                                                                                                                                                              | IC II                                                                              | - 1001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2/23/1994<br>HOD STUDY                                                                                        | 2/2<br>METHOD                            | 10:46<br>IONAL                                                                                                | SA37.DAT<br>OF STUDY: 10:46<br>STORM RATIONAL 1                              | FILE NAME:SA37.DAT<br>TIME/DATE OF STUDY: 10:46 2/23/1994<br>5.0-YEAR STORM RATIONAL METHOD STUDY (AMC                                |
|                                                                                                                                                                                                             |                                                                                                                                                |                                                                                                                                                                                                                                                                                            | - EALNG    | LEVEL                                                                                                                                                                                   | SE LEVEL                                                                           | IDENC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | OF DRA                                                                                                        | PLAN<br>AT 50                            | ASTER                                                                                                         | A ANA M                                                                      | CITY OF SANTA ANA MASTER PLAN OF DRAINAGE<br>110-YEAR RETURN FREQUENCY AT 50% CONFIDENCE<br>MAP # 37                                  |

.

1-1-38

-

| 3702.00                               | S-GRAPH : VALLEY = 10<br>PEAK FLOW RATE(CFS)=                           | RAINFALL(INCH): 5M =<br>DEPTH-AREA FACTORS: 5M | TC(MIN.) = 45.61<br>TOTAL AREA(ACRES)=                                                                                                         | 3702.00                     |                                | S-GRAPH : VALLEY = 100.0%; FOOTHILL =<br>PEAK FLOW RATE(CFS)= 1019.19 TIME | TC(MIN.) = 44.48 LAG T<br>TOTAL AREA(ACRES)= 13:<br>RAINFALL(INCH): 5M = .2<br>DEPTH-AREA FACTORS: 5M =             | CONFLUENCE  <br>ANALYSIS  <br>FOR POINT#  <br>3701.00                                                                             | 3701.00                                        | 3714.00                                                       | CONCENTRATION AREA (ACRES)        | FILE NAME:SA37.DAT<br>TIME/DATE OF STUDY: 10:46 2/23/1994<br>5.0-YEAR STORM RATIONAL METHOD STUDY | CITY OF SANTA ANA MASTER PLAN OF DRAINAGE<br>10-YEAR RETURN FREQUENCY AT 50% CONFIDENCE<br>MAP # 37 |
|---------------------------------------|-------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| MAIN                                  | CFS)=                                                                   | ORS: 5M                                        | 5                                                                                                                                              | 12.4                        |                                | EY = 100<br>(CFS)=                                                         | 44.48 L<br>CRES)=<br>H): 5M =<br>ACTORS: 5H                                                                         | MEA                                                                                                                               |                                                | 5.7                                                           | AREA (A                           | SA37.DAT<br>OF STUDY:<br>STORM RATI                                                               | TA ANA MAS<br>JRN FREQUE                                                                            |
| N-STREAM                              | 1020.                                                                   | " N                                            | LAG TIME(HR) =<br>1322.9 UPSTR                                                                                                                 | <br>12.4 1322.9             |                                | 1019.                                                                      | LAG TIME(HR) =<br>1310.5 UPSTR<br>= .26; 30M =<br>5M = .94; 30M                                                     | TIME O                                                                                                                            |                                                | 24.3                                                          |                                   | 10:46<br>IONAL ME                                                                                 | ASTER PI                                                                                            |
| MAIN-STREAM COPIED ONTO MEMORY BANK # | 100.0%; FOOTHILL = .0%; MOUNTAIN =<br>= 1020.02 TIME OF PEAK(HR) = 16.7 | - de                                           | IG TIME(HR) = .61 TIME INTERVAL(MIN.) = 5.0 Fm(IN/HR) = .103; Ybar = 1322.9 UPSTREAM NODE OF LONGEST WATERCOURSE = 3280.0 WITH LENGTH = 19217. | UNIT HYDROGRAPH INFORMATION |                                | 00.0%; FOOTHILL = .0%; MOUNTAIN = 16.7<br>1019.19 TIME OF PEAK(HR) = 16.7  | 11ME(HR) =<br>10.5 UPSTRE/<br>16; 30M = .<br>.94; 30M =                                                             | <pre>PEAK FLOW RATE(CFS) = 101 TIME OF CONCENTRATION(MIN.) = 44.5 MEAN VALUES: Fm(IN/HR) = .103; Ybar = TOTAL AREA(ACRES) =</pre> |                                                | c  60/AC                                                      | SOIL DEV. Tt                      | - F(c) 1983-1991 ADVANCED ENGINEEDING SOFTWARE1                                                   | LAN OF D                                                                                            |
|                                       | E OF PE                                                                 | .59; 1HR =<br>= .94; 1HR =                     | .61 TI                                                                                                                                         | 1.1 <br>                    |                                |                                                                            | .9. N                                                                                                               | PEAK FLOW RATE(CFS) =<br>NCENTRATION(MIN.) = 4<br>m(IN/HR) = .103; Yba<br>TOTAL AREA(ACRES) =<br>HYDROGRAPH INFORMATIO            |                                                |                                                               | YPE MIN.                          | 994<br>UDY (AMC                                                                                   | DRA I NAGE                                                                                          |
| MEMORY B                              | .0%; MOUNTAIN = PEAK(HR) = 16.7                                         | 11                                             | OF LON                                                                                                                                         | 45.6                        |                                | .0%; MOUNTAIN =<br>PEAK(HR) = 16.7<br>                                     | ME INTE                                                                                                             | ATE(CFS<br>A(MIN.)<br>.103)<br>EA(ACRE                                                                                            |                                                | 27.1                                                          | HIN.                              | - LORANG                                                                                          | 111                                                                                                 |
| BANX # 2                              | TAIN =<br>= 16.7                                                        | .78; 3HR =                                     | TIME INTERVAL(MIN.) =<br>DOE OF LONGEST WATERCO                                                                                                | .92 .1                      | $-\frac{1}{1}$                 | JNTAIN =<br>) = 16.7                                                       | 59 TIME INTERVAL(MIN.)<br>M NODE OF LONGEST WATER(<br>59; 1HR = .78; 3HR =<br>.94; 1HR = .94; 3HR =                 | = -<br>4/<br>4/<br>4/<br>7/bar<br>710                                                                                             |                                                | 1.25 .13                                                      | 1   Fm                            | LORANCE COUNTYJ-<br>II LOSSES)                                                                    |                                                                                                     |
|                                       | VOLL                                                                    |                                                | N.) = !                                                                                                                                        | .13 .103 1020.0             |                                |                                                                            | TIME INTERVAL(MIN.) = 5.0<br>ODE OF LONGEST WATERCOURSE =<br>THR = .78; 3HR = 1.31; 0<br>4; THR = .94; 3HR = .99; 0 | A                                                                                                                                 |                                                | within the second second statistics -                         | n   Fm  <br> (Avg)                | Y]                                                                                                |                                                                                                     |
|                                       | .0%; VALLEY(UNDEV)/DESERT =<br>DLUME(AF)= 217.41                        | 1.31; 6HR = 1.81; 24HR= 3.                     | 5.0 Fm<br>URSE = 321                                                                                                                           | 1020.0                      |                                | .0%; VALLEY(UNDEV)/DESERT<br>DLUME(AF)= 215.45                             | = 5.0 fm(IN/HR) = .103;<br>WRSE = 3280.0 WITH LENGTH =<br>.31; 6HR = 1.81; 24HR= 3.<br>.99; 6HR = 1.00; 24HR= 1.00  | 9.2<br>LAG TIME(HR)<br>.430<br>.310.52                                                                                            |                                                | 24.5                                                          | SUM O                             | SOFTUAL                                                                                           |                                                                                                     |
|                                       | CUNDEV3/00<br>217.41                                                    | = 1.81<br>= 1.00;                              | Fm(IN/HR) = 3280.0 WITH                                                                                                                        |                             | 977                            | 215.45                                                                     | fm(IN/HR) =<br>3280.0 WITH<br>HR = 1.81;<br>HR = 1.00; 2                                                            | ± .59                                                                                                                             | 186                                            | 301 .0020                                                     | PATH SLOPE<br> (ft) ft/ft<br>     |                                                                                                   |                                                                                                     |
|                                       | DESERT                                                                  | 1.81; 24HR=<br>1.00; 24HR=                     | = .1<br>TH LENG                                                                                                                                |                             | 0036   14                      | /DESERT<br>45<br>                                                          | N/HR) = .1<br>.0 WITH LENG<br>1.81; 24HR=<br>1.00; 24HR=                                                            | · · ·                                                                                                                             | .0020 4                                        | 0020                                                          | PATH SLOPE  V<br> (ft) ft/ft FPS. | CALCULATED BY:<br>CHECKED BY:<br>PAGE NUMBER                                                      |                                                                                                     |
| $\frac{1}{1} - \frac{1}{1}$           |                                                                         | 3.03                                           | .103; Ybar<br>NGTH = 1921                                                                                                                      |                             | .4   api                       | 1 n                                                                        | .103; Ybar<br>NGTH = 182<br>R= 3.03<br>(= 1.00                                                                      |                                                                                                                                   | <u>à</u>                                       | 4.3 Opipe=<br>  4.3 Opipe=<br>  12.0130<br>  33.<br>  300 S   | <u>  //</u>                       | BY:<br>BY:<br>R 2 OF                                                                              |                                                                                                     |
|                                       | .0%                                                                     |                                                | ar = .430<br>9217.7 FEET                                                                                                                       | 126.0"-PIPE<br>ADD SUBAREA  | 977 .0036 14.4 apipe=1019.2cfs | .0%                                                                        | oar = .430<br>8240.3 FEET                                                                                           |                                                                                                                                   | Qpipe= 24.5cfs<br>n=.0130 D= 2.1<br>36.0"-PIPE | Qpipe= 19.3cfs<br>n=.0130 D= 1.9<br>33.0"-PIPE<br>ADD SUBAREA | HYDRAULICS<br>AND NOTES           |                                                                                                   |                                                                                                     |

4

| AT 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AT 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AT 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AT 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AT 50% CONFIDENCE LEVEL       CRANGE COUNTY)       CAL         2/23/1994       CAL         HETHOD STUDY (AMC 11 LOSSES)       PAG         ISOIL [DEV.]       Tt       Tt       Fm       GAL         SOIL [DEV.]       Tt       Tt       I       Fm       GAL         ISOIL [DEV.]       Tt       Tt       I       Fm       GAL         ISOIL [DEV.]       Tt       Tt       I       Fm       GAL         ISOIL [DEV.]       Tt       Tt       I       Fm       GA       PATH         ISOIL [DEV.]       Tt       Tt       I       Fm       GA       PATH         ISOIL [DEV.]       Tt       Tt       I.13       .125       9.7          I.C       60/AC        20.6       1.44       .13       .125       9.7          I.C       60/AC        21.8       1.40       .13       .125       23.9          I.C       60/AC        14.6       .13       .125       7.3        23.9         23.9         23.9         23.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AT 50% CONFIDENCE LEVEL       CRANGE COUNTY)       CAL         2/23/1994       CAL         HETHOD STUDY (AMC 11 LOSSES)       PAG         ISOIL [DEV.]       Tt       Tt       Fm       GAL         SOIL [DEV.]       Tt       Tt       I       Fm       GAL         ISOIL [DEV.]       Tt       Tt       I       Fm       GAL         ISOIL [DEV.]       Tt       Tt       I       Fm       GAL         ISOIL [DEV.]       Tt       Tt       I       Fm       GA       PATH         ISOIL [DEV.]       Tt       Tt       I       Fm       GA       PATH         ISOIL [DEV.]       Tt       Tt       I.13       .125       9.7          I.C       60/AC        20.6       1.44       .13       .125       9.7          I.C       60/AC        21.8       1.40       .13       .125       23.9          I.C       60/AC        14.6       .13       .125       7.3        23.9         23.9         23.9         23.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AT 50% CONFIDENCE LEVEL         2/23/1994         ETHOD STUDY (AMC II LOSSES)         ISOIL JDEV. ITT         TTYPE ITYPE MIN.         MIN.         ITYPE ITYPE MIN.         MIN.         ITYPE ITYPE MIN.         MIN.         ITT         IT         ITT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3723.00 | 4<br>4<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 3722.00<br>3722.00 16.6 35.7           | 3721.00 6.9 19.1 | 3721.00  | 48.ft-STREET   5.6   5.6   5.6   5.6   5.6   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2   5.2 | 3719.00 5.1 5.1 |                  | 3723.00 20.8 | 3723.00<br>3723.00 6.8 20.8 | 3717.00 6.9 14.0 | 48.ft-STREET | 3716.00 7.1 7 | CONCENTRATION AREA (ACRES) | FILE NAME:SA37.DAT<br>TIME/DATE OF STUDY: 10:46 2/2:<br>5.0-YEAR STORM RATIONAL METHOD | 10-YEAR RETURN FREQUENCY AT 50% CONFIDENC<br>MAP # 37 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------------------------------------------------|----------------------------------------|------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------|--------------|-----------------------------|------------------|--------------|---------------|----------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------|
| 23/1994<br>23/1994<br>5 STUDY (AMC 11 LOSSES)<br>6 STUDY (AMC 11 LOSSES)<br>1983-1991 ADVANCED EN<br>1983-1991 ADVANCED EN<br>1983-1991 ADVANCED EN<br>1983-1991 ADVANCED EN<br>1983-1991 ADVANCED EN<br>100/AC 1 17.5 1.64<br>1.2<br>60/AC 1 17.5 1.64<br>1.2<br>60/AC 1 21.8 1.40<br>21.8 1.40<br>21.8 1.40<br>21.8 1.40<br>21.8 1.40<br>26.8 1.20<br>60/AC 1 25.7 1.29<br>60/AC 1 26.8 1.20<br>26.8 1.20<br>2.3<br>2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 23/1994       EIRANGE COUNTY]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 23/1994       II LOSSES         0 STUDY (AMC II LOSSES)       1983-1991 ADVANCED ENGINEERING S         1983-1991 ADVANCED ENGINEERING S       100/0000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 23/1994       II LOSSES)         > STUDY (AMC       II LOSSES)         > 1983-1991       ADVANCED       ENGINEERING       SOFTWAR         IPEV.       Tt       Tc       I       Fm       q         ITYPE       MIN.       MIN.       In/h       (Avg)       SUH         60/AC        20.6       1.44       .13       .125       9.7         60/AC        21.8       1.40       .13       .125       23.9         60/AC        21.8       1.40       .13       .125       7.3          21.8       1.40       .13       .125       7.3          21.8       1.40       .13       .125       7.3          21.8       1.40       .13       .126       7.3          21.8       1.40       .13       .127       20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CONFIDENCE LEVEL       CANGE COUNTY)       CAL         \$/1994       I LOSSES)       PAG         1983-1991 ADVANCED ENGINEERING SOFTWARE]       PAG         1982-1991 ADVANCED ENGINEERING SOFTWARE]       PAG         10040       17.5   1.64       .13       .125       9.7         10040       17.5   1.64       .13       .125       9.7          1.2       20.6   1.44       .13       .125       9.7          1.2       21.8   1.40       .13       .125       9.7           21.8   1.40       .13       .125       16.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CONFIDENCE LEVEL       CANGE COUNTY)       CAL         \$/1994       I LOSSES)       PAG         1983-1991 ADVANCED ENGINEERING SOFTWARE]       PAG         1982-1991 ADVANCED ENGINEERING SOFTWARE]       PAG         10040       17.5   1.64       .13       .125       9.7         10040       17.5   1.64       .13       .125       9.7          1.2       20.6   1.44       .13       .125       9.7          1.2       21.8   1.40       .13       .125       9.7           21.8   1.40       .13       .125       16.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CONFIDENCE LEVEL       CALCULATED BY:       CALCULATED BY:         STUDY (ANC II LOSSES)       PAGE NUMBER ING SOFTWARE]       PAGE NUMBER ING         1983-1991 ADVANCED ENGINEERING SOFTWARE]       PAGE NUMBER ING         10EV.       Tt       Tc       I       Fm       G       PATH       SLOPE[V]         11.2       1.2       1.64       .13       .125       9.7           12.2       20.6       1.44       .13       .125       9.7           12.2       20.6       1.44       .13       .125       9.7           12.2       20.6       1.44       .13       .125       9.7           12.2       21.8       1.40       .13       .125       1.6.6           12.2       21.8       1.40       .13       .125       7.3           13.125       7.3         836       0050           13.127       20.0         973       0050       2.2          14.1       1.26       .13       .127 <t< td=""><td></td><td></td><td>0</td><td>0</td><td></td><td>00</td><td>; 0</td><td>2<br/></td><td></td><td>0</td><td>10</td><td></td><td>0</td><td></td><td>6 2/2<br/>METHO</td><td>AT 50</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |                                                                                                  | 0                                      | 0                |          | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ; 0             | 2<br>            |              | 0                           | 10               |              | 0             |                            | 6 2/2<br>METHO                                                                         | AT 50                                                 |
| IDENCE LEVEL<br>IDENCE LEVEL<br>IDENCE LEVEL<br>CAMC II LOSSES:<br>Y (AMC II LOSSES:<br>Y (AMC II LOSSES:<br>T C I I<br>TT Tc I I<br>TT Tc I I<br>TT Tc I I<br>TT Tc I I<br>T.5 1.64<br>21.8 1.40<br>21.8 1.40<br>21.8 1.40<br>25.7 1.29<br>25.8 1.26<br>25.8 1.26 | IDENCE LEVEL<br>IDENCE LEVEL<br>IDENCE LEVEL<br>IDENCE LORANGE COUNTY)<br>ISON ADVANCED ENGINEER<br>ITT Tc I Fm  <br>ITT Tc I Fm  <br>IN.N. MIN.   in/h  <br>ITT Tc I Fm  <br>IN.N. MIN.   in/h  <br>ITT Tc I Fm  <br>ITT Tc I Fm  <br>IN.N.   in/h  <br>ITT Tc I Fm  <br>ITT Tc I Fm  <br>II.1  <br>I.2  <br>I.3  <br>I.4  <br>I.3  <br>I.4  <br>I.3  <br>I.5  <br>I.4  <br>I.3  <br>I.4  <br>I.5  <br>I.4  <br>I.5  <br>I.4  <br>I.5  <br>I.4  <br>I.5  <br>I.5  <br>I.4  <br>I.5  <br>I | IDENCE LEVEL         IDENCE LEVEL         IT       I LOSSES)         1991 ADVANCED ENGINEERING S         IT       Tc       I       Fm       Fm         MIN.       MIN.       In/h       I (Avg)         MIN.       MIN.       In/h       I (Avg)          20.6       1.44       .13       .125          21.8       1.40       .13       .125          21.8       1.40       .13       .125          21.8       1.40       .13       .125          21.8       1.40       .13       .125          25.7       1.29       .13       .125          25.7       1.29       .13       .125          26.8       1.26       .13       .127                1.3       1.26       .13       .127 <td>IDENCE LEVEL<br/>IDENCE LEVEL<br/>IDENCE LEVEL<br/>CAMC II LOSSES)<br/>1997 ADVANCED ENGINEERING SOFTWAR<br/>TTC   I Fm Fm Q<br/>MIN. MIN. IN/h   (Avg) SUM<br/>   20.6   1.44 .13 .125   1.64<br/>   21.8   1.40   .13 .125   1.64<br/>   2.1.8   1.40   .13 .125   1.64<br/>   2.1.8   1.40   .13 .125   2.3.9<br/>   2.4.4   1.33 .15   .128   1.25   .128   1.25   .128   1.26   .13   .125   .128   1.27   .128   1.27   .128   1.26   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .15   .126   .14   .15   .126   .14   .15   .126   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .15   .15   .15   .15   .15   .15   .15   .15   .15   .15   .15   .15   .15   .15   .15   .15   .15   .15  </td> <td>LEVEL<br/>II LOSSES)<br/>II LOSSES)<br/>TC I Fm Fm Q PAG<br/>TC I Fm I Fm I Fm I Q PAG<br/>TC I FM I Fm I Fm I Q PAG<br/>TC I FM I Fm I Fm I Fm I Fm I Q PAG<br/>TC I FM I F</td> <td>LEVEL<br/>II LOSSES)<br/>II LOSSES)<br/>TC I Fm Fm Q PAG<br/>TC I Fm I Fm I Fm I Q PAG<br/>TC I FM I Fm I Fm I Q PAG<br/>TC I FM I Fm I Fm I Fm I Fm I Q PAG<br/>TC I FM I F</td> <td>LEVEL.</td> <td></td> <td></td> <td>60/AC</td> <td>6D/AC</td> <td><u> </u></td> <td>6D/AC</td> <td>6D/AC</td> <td>3<br/>3<br/>1<br/>1</td> <td></td> <td>6D/AC</td> <td>6D/AC</td> <td></td> <td>60/AC</td> <td>DEV.</td> <td>23/1990<br/>23/1990<br/>23/1990</td> <td>* CONF</td> | IDENCE LEVEL<br>IDENCE LEVEL<br>IDENCE LEVEL<br>CAMC II LOSSES)<br>1997 ADVANCED ENGINEERING SOFTWAR<br>TTC   I Fm Fm Q<br>MIN. MIN. IN/h   (Avg) SUM<br>  20.6   1.44 .13 .125   1.64<br>  21.8   1.40   .13 .125   1.64<br>  2.1.8   1.40   .13 .125   1.64<br>  2.1.8   1.40   .13 .125   2.3.9<br>  2.4.4   1.33 .15   .128   1.25   .128   1.25   .128   1.26   .13   .125   .128   1.27   .128   1.27   .128   1.26   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .13   .126   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .15   .126   .14   .15   .126   .14   .15   .126   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .14   .15   .15   .15   .15   .15   .15   .15   .15   .15   .15   .15   .15   .15   .15   .15   .15   .15   .15 | LEVEL<br>II LOSSES)<br>II LOSSES)<br>TC I Fm Fm Q PAG<br>TC I Fm I Fm I Fm I Q PAG<br>TC I FM I Fm I Fm I Q PAG<br>TC I FM I Fm I Fm I Fm I Fm I Q PAG<br>TC I FM I F | LEVEL<br>II LOSSES)<br>II LOSSES)<br>TC I Fm Fm Q PAG<br>TC I Fm I Fm I Fm I Q PAG<br>TC I FM I Fm I Fm I Q PAG<br>TC I FM I Fm I Fm I Fm I Fm I Q PAG<br>TC I FM I F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LEVEL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                                                                                                  | 60/AC                                  | 6D/AC            | <u> </u> | 6D/AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6D/AC           | 3<br>3<br>1<br>1 |              | 6D/AC                       | 6D/AC            |              | 60/AC         | DEV.                       | 23/1990<br>23/1990<br>23/1990                                                          | * CONF                                                |
| LEVEL<br>11 LOSSES:<br>ADVANCED EN<br>TC I I<br>MIN. in/h<br>20.6 1.44<br>20.6 1.44<br>21.8 1.40<br>21.8 1.40<br>25.7 1.29<br>26.8 1.26<br>26.8 1.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LEVEL<br>II LOSSES)<br>ADVANCED ENGINEER<br>Tc I Fm  <br>MIN. in/h Fm  <br>17.5 1.64 .13<br>20.6 1.44 .13<br>21.8 1.40 .13<br>21.8 1.40 .13<br>21.8 1.40 .13<br>24.4 1.33 .15<br>24.4 1.33 .15<br>25.7 1.29 .13<br>24.4 1.33 .15<br>24.4 1.33 .15<br>25.7 1.29 .13<br>26.8 1.26 .13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LEVEL<br>11 LOSSES)<br>11 LOSSES)<br>ADVANCED ENGINEERING S<br>TC     Fm   Fm   (Avg)<br>17.5   1.64   .13   .125<br>20.6   1.44   .13   .125<br>21.8   1.40   .13   .125<br>21.8   1.40   .13   .125<br>21.8   1.40   .13   .125<br>24.4   1.33   .15   .125<br>24.4   1.33   .15   .125<br>24.4   1.33   .15   .128<br>24.4   1.33   .15   .128<br>24.4   1.33   .15   .128<br>24.4   1.33   .15   .128<br>24.4   1.33   .125   .128<br>24.4   1.33   .125   .128<br>24.4   1.33   .126   .13   .126<br>25.7   1.29   .13   .126<br>26.8   1.26   .13   .126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LEVEL<br>II LOSSES)<br>ADVANCED ENGINEERING SOFTWAR<br>Tc I Fm Fm Q<br>MIN. in/h KM KAYS<br>20.6 164 .13 .125 9.7<br>17.5 164 .13 .125 9.7<br>17.5 164 .13 .125 16.6<br>20.6 144 .13 .125 16.6<br>20.6 144 .13 .125 23.9<br>21.8 140 .13 .125 23.9<br>21.8 140 .13 .125 23.9<br>21.8 140 .13 .125 7.3<br>16.6 170 .13 .125 7.3<br>16.6 170 .13 .125 7.3<br>16.8 126 .13 .127 20.0<br>25.7 129 .13 .126 36.4<br>26.8 126 .13 .126 36.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LEVEL<br>II LOSSES)<br>II LOSSES)<br>TC I Fm Fm Q PAG<br>TC I Fm I Fm I Fm I Q PAG<br>TC I FM I Fm I Fm I Q PAG<br>TC I FM I Fm I Fm I Fm I Fm I Q PAG<br>TC I FM I F | LEVEL<br>11 LOSSES)<br>11 LOSSES)<br>11 LOSSES)<br>11 LOSSES)<br>11 LOSSES)<br>12 LOSES<br>12 LOSES<br>12 LOSES<br>13 LOSE<br>14 LOSES<br>15 LOSE<br>15 L | LEVEL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | 2.3                                                                                              | ······································ |                  | <u>.</u> | ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 | • •              |              | 1.2                         |                  | ы<br>2       | : :           | MIN.                       | 4<br>Y (AMC<br>- 1001                                                                  | IDENCE                                                |
| I 1. 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | E COUNTY)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IE COUNTY)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IE COUNTY)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ALCULATED BY:<br>CHECKED BY:<br>AGE NUMBER 2<br>CHECKED BY:<br>CHECKED CHECKED CHECK |         |                                                                                                  | 26.8                                   | 25.7             |          | 24.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6               | 1<br>1<br>1      | 21.8         |                             | 20.6             | ·            |               | MIN.                       |                                                                                        | LEVEL                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NTY)<br>SINEERING S<br>Fm Fm A<br>(Avg)<br>.13 .125<br>.13 .125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NTY)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ALCULATED BY:<br>CHECKED BY:<br>AGE NUMBER 2<br>CHECKED BY:<br>CHECKED BY:<br>AGE NUMBER 2<br>CHECKED BY:<br>CHECKED CHECKED C   |         | •                                                                                                | *                                      |                  |          | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.70            |                  | 1.40         | 1.40                        |                  |              |               | <br>I I I                  | ED EN                                                                                  | 2                                                     |

|                                                                                                       | -                                                                                                |                                                                                                      |                             |                |                                                                                            |                |                                      | -                                                     |               |                               |                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------|----------------|--------------------------------------------------------------------------------------------|----------------|--------------------------------------|-------------------------------------------------------|---------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| n=.0130 D= 8.4<br>  126.0"-PIPE                                                                       |                                                                                                  |                                                                                                      |                             |                |                                                                                            |                |                                      |                                                       |               |                               | 3703.00                                                                                                                                                |
| 227.37<br>                                                                                            | 227.37<br>  <br>675 .0036 14.                                                                    | AF)=                                                                                                 | VOLUME (AF)=<br>-  <br>-    |                | TIME OF PEAK(HR) = 16.7                                                                    | OF PEAK(       | TIME OF                              |                                                       | 11            | (CFS)=                        | PEAK FLOW RATE(CFS)=                                                                                                                                   |
| 3.03<br>1.00<br>= .0%                                                                                 | Z -                                                                                              | VALLEY(L                                                                                             |                             |                | <u> </u>                                                                                   | -0%; 1HR =     |                                      |                                                       | N 11          |                               | AAINFALL(INCH): 5M =<br>DEPTH-AREA FACTORS: 5M =<br>S-GRAPH : VALLEY = 100.0                                                                           |
| .104; Ybar = .435<br>NGTH = 19217.7 FEET                                                              | (N/HR) =                                                                                         | 5.0 Fm(<br>RSE = 328                                                                                 | RCOURS                      | NL (MIN.       | .61 TIME INTERVAL(MIN.) =<br>AM NODE OF LONGEST WATERCO                                    | TIME           | REAN I                               | LAG TIME(HR) =<br>1393.3 UPST                         | 5             | 45.61<br>CRES)=               | TC(MIN.) = 45.61<br>TOTAL AREA(ACRES)=                                                                                                                 |
| 1<br>2<br>2<br>2<br>2<br>4<br>4<br>4<br>4<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | 3<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |                                                                                                      | TEAM                        | VIN-STI        | 2 CONFLUENCED WITH MAIN-STREAM                                                             | JENCED         | CONFLU                               |                                                       | MEMORY BANK # | Ä                             | 3702.00                                                                                                                                                |
| 51.0"-PIPE                                                                                            | *<br>*<br>*<br>*<br>*<br>*                                                                       |                                                                                                      | *<br>*<br>*<br>*            |                | <u> </u>                                                                                   | 1.4            | <u>.</u>                             | <u> </u>                                              |               | *                             | 3702.00                                                                                                                                                |
| 5.9   Qpipe= 67.7cfs                                                                                  | 490 .0020 5                                                                                      | 4<br>1<br>1<br>1<br>1                                                                                |                             |                |                                                                                            |                |                                      | 1<br>1<br>1                                           |               |                               |                                                                                                                                                        |
| ADD SURAPEA                                                                                           | <u> </u>                                                                                         | 67.7                                                                                                 | 125                         |                | 23.711.35                                                                                  | .9             | 60/AC -                              | 0                                                     | 61.4          | D-<br>D-                      | 3725.00                                                                                                                                                |
| n=.0130 D= 3.0<br>  48.0"-PIPE<br>  ADD SUBAREA<br>5.7 qpipe= 61.6cfs                                 |                                                                                                  | 61.6                                                                                                 | 125                         |                | 22.7 1.38                                                                                  |                | 6D/AC                                | 0                                                     | 0 54.6        | 7.0                           | 3724.00<br>3724.00                                                                                                                                     |
| 5.6   Opipe= 56.8cfs                                                                                  | 298 .0020 5                                                                                      |                                                                                                      |                             | $\frac{1}{1}$  |                                                                                            | $\frac{1}{11}$ | ; ;                                  | $\frac{1}{1}$                                         |               |                               |                                                                                                                                                        |
|                                                                                                       | Ae(acres) NODE<br>47.58 3715.0<br>56.50 3718.0                                                   | m(avg) I(in/hr) A<br>.126 1.40<br>.126 1.19                                                          | IG                          |                | Ap(avg)<br>_50                                                                             |                | Fp(avg)<br>.250<br>.250              | Tc(min)<br>21.85<br>29.12                             | 91<br>20      | Q(cfs)<br>56.81<br>56.20      |                                                                                                                                                        |
| LARGEST                                                                                               | 126                                                                                              | 56.8<br>N.) = 21.8<br>.502; Fm(IN/HR) =                                                              | 56.8<br>N.) = 2<br>.502; Fi | P = .          | PEAK FLOW RATE(CFS) = $56.8$<br>TIME OF CONCENTRATION(MIN.) = $p(IN/HR) = .250; Ap = .502$ | CONCE          | THE OF                               | PEAK FLOW  <br>TIME OF CO<br>MEAN VALUES: FP(IN/HR) = | EAN VAL       |                               | FOR POINT#                                                                                                                                             |
|                                                                                                       |                                                                                                  |                                                                                                      |                             | $\frac{1}{1}$  | $\frac{1}{1}$                                                                              |                |                                      |                                                       |               |                               |                                                                                                                                                        |
| S. AND NOTES                                                                                          | PATH SLOPE V<br>(ft) ft/ft FPS.                                                                  | SUM D                                                                                                | Fm<br>(Avg)                 | - <u>''</u> Fa | Tc   I<br>MIN.   in/h                                                                      |                | SOIL DEV. TE                         | The second second                                     | (ACRES)       | AREA                          | CONCENTRATION AREA (ACRES)<br>POINT NUMBER SUBAREA SUM                                                                                                 |
| A OF                                                                                                  | CALCULATED BY:<br>CHECKED BY:<br>PAGE NUMBER                                                     | C<br>2/23/1994  <br>THOD STUDY (AMC II LOSSES)   P<br>I(c) 1983-1991 ADVANCED ENGINEERING SOFTWARE)- | ERING                       | ENGINE         | II LOSSES)<br>DVANCED ENG                                                                  | (AMC<br>991 AD | 2/23/1994<br>HOD STUDY<br>(c) 1983-1 | i m                                                   | 10:4          | A37.DAT<br>F STUDY<br>FORM RA | FILE NAME:SA37.DAT<br>TIME/DATE OF STUDY: 10:46 2/23/1994<br>5.0-YEAR STORM RATIONAL METHOD STUDY (AMC                                                 |
|                                                                                                       |                                                                                                  |                                                                                                      |                             | CUNTY          | LEVEL                                                                                      | • m            | F DRAIN<br>CONFIL                    | PLAN O                                                | MASTER        | UF SIL                        | DESCRIPTION OF STUDT:<br>  CITY OF SANTA ANA MASTER PLAN OF DRAINAGE<br>  10-YEAR RETURN FREQUENCY AT 50% CONFIDENCE LEVEL<br>  MAP # 37<br>  MAP # 37 |

-

|            |                                   |                                                                          | 48.f                                    |           |                | DEPT<br>S-GR<br>PEAK                                                     | TCCM<br>TOTA                                                                                                                                        |                                | CONCE                                                  | FILE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MAR CI                                                                                              |
|------------|-----------------------------------|--------------------------------------------------------------------------|-----------------------------------------|-----------|----------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| 3703.00    | 2<br>2<br>7<br>2<br>7             | 3729.00                                                                  | 48.ft-STREET<br>FLOW TO PT.#<br>3728.00 | 3727.00   | 3703.00        | DEPTH-AREA FACTORS: 5W<br>S-GRAPH : VALLEY = 100<br>PEAK FLOW RATE(CFS)= | TC(MIN.) = 46.39<br>TOTAL AREA(ACRES)=                                                                                                              | 3703.00                        | CONCENTRATION AREA (ACRES)<br>POINT NUMBER SUBAREA SUB | NAME<br>DATE<br>YEAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CITY OF SANTA ANA MASTER PLAN OF DRAINAGE<br>10-YEAR RETURN FREQUENCY AT 50% CONFIDENCE<br>MAP # 37 |
|            | 5<br>8<br>2<br>1<br>8<br>2<br>5   | 10.1                                                                     | 9.3                                     | 4.8       |                | A FACTORS:<br>VALLEY = 1:<br>RATE(CFS)=                                  | R 1                                                                                                                                                 |                                | AREA (                                                 | NAME:SA37.DAT<br>/DATE OF STUDY:<br>-YEAR STORM RAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CITY OF SANTA ANA MASTER PLAN OF DRAINAGE<br>10-YEAR RETURN FREQUENCY AT 50% CONFIDENC<br>MAP # 37  |
|            | *<br>5<br>5<br>5<br>7             | 26.2                                                                     | 14.1                                    | 4-8       | 72.9           | .0%                                                                      | LAG TIME(HR) =<br>1404.7 UPST                                                                                                                       | <br>6.8<br>1.9<br>2.7   1404.7 | ACRES)                                                 | 10:46<br>IONAL HI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IASTER P                                                                                            |
|            |                                   | C 6D/AC                                                                  | c  60/AC                                | C 60/AC   |                | 5M = .94; 30M =<br>100.0%; FOOTHILL :<br>= 1069.06 TIM                   | UN11 HT<br>TIME(HR) =<br>404.7 UPSTR                                                                                                                |                                | SOIL DEV.   TT                                         | 2/23/1994<br>ETHOD STUDY<br>-[(c) 1983-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LAN OF D                                                                                            |
|            |                                   | 200                                                                      |                                         |           |                |                                                                          | MII HTURGGRAPH INFORMATION<br>HR) = .62 TIME INTERVAL(MIN.) = 5.0<br>'UPSTREAM NODE OF LONGEST WATERCOURSE =<br>DM = .59- THR = .78- 3HR = 1.31- 6H | 60/AC<br>40/AC<br>Park         | V. Tt PEMIN.                                           | 2/23/1994 CAMC II LOSSES) PROFILE PROFILIPA PROFILI PROFILI PROFILI PROFILI PROFILI PROFILI PR | NFIDENCE                                                                                            |
|            |                                   | 24-5                                                                     | 22.0 1.40                               | 15.9 1.75 |                | - V C                                                                    | TIME INFORMATION<br>TIME INTERVAL(MIN.)<br>DOE OF LONGEST WATER                                                                                     | 46.4                           | Te  <br>MIN.   i                                       | ADVANCED ENG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E LEVEL                                                                                             |
|            |                                   | 1.33                                                                     | 40 .13                                  | .75 .13   | .91            | 3HR                                                                      | ERVAL(MIN.                                                                                                                                          | .91 .21                        | 1 Fm<br>in/h                                           | SSES)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LEVEL                                                                                               |
|            |                                   | .127                                                                     | .125                                    | -125      |                | · O #                                                                    | -) = 5.1<br>= 7.31                                                                                                                                  | .105   1069.1                  | Fm  <br>(Avg)                                          | ERING S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | K<br>B<br>B<br>F<br>F<br>S<br>L                                                                     |
|            |                                   | 28.3                                                                     | 16.2                                    | 7.0       | 1069.1         |                                                                          | 5.0 Fm()<br>8SE = 3280                                                                                                                              | 1069.1                         | SUM D                                                  | OFTWARED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5<br>†<br>†<br>†<br>†<br>;                                                                          |
|            | 501 .0020                         |                                                                          |                                         | 755 .0050 | $\frac{1}{1}$  | .99; 6HR = 1.00; 24HR=<br>.0%; VALLEY(UNDEV)/DESERT<br>LUME(AF)= 229.00  | Fm(IN/HR) = .105<br>3280.0 WITH LENGTH                                                                                                              |                                | PATH SLOPE  V<br> (ft) ft/ft FPS.                      | AG AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,         |
|            | 4.7                               | <u> </u>                                                                 | <u>.   _ </u> ;                         |           |                | 1 11 1                                                                   | .105;<br>LENGTH                                                                                                                                     |                                | ft FPS.                                                | CULATED BY:<br>CHECKED BY:<br>E NUMBER 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2<br>1<br>2<br>2<br>2<br>3<br>3<br>3                                                                |
| 36.0"-P1PE | 2pipe= 28.3cfs<br> n=.0130 D= 2.4 | 4.1   up:pe= 10.201<br>  n=.0130 D= 1.9<br>  30.0"-PIPE<br>  ADD SUBAREA |                                         | 1.5       | FOR CONFLUENCE | .0%                                                                      | .105; Ybar =<br>.105; Ybar =<br>ENGTH = 19892.7<br>HR= 3.03                                                                                         | ADD SUBAREA                    | HYDRAULICS<br>AND NOTES                                | 0F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4<br>4<br>7<br>7<br>8<br>4<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8    |
|            | 8.3cfs                            | D= 1.9<br>D= 1.9<br>)"-PIPE<br>JBAREA                                    | 12.3CTS<br>0*V= 1.0<br>0TH=29.3         | SUBAREA   | UENCE          |                                                                          | .436<br>FEET                                                                                                                                        | AREA                           | ILICS                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t                                                                                                   |

~

S-GRAPH : VALLEY = 100.0%; FOOTHILL = DEPTH-AREA FACTORS: 5M = CONCENTRATION | AREA (ACRES) PEAK FLOW RATE(CFS)= RAINFALL(INCH): 5M = TOTAL AREA(ACRES)= TC(MIN.) = PEAK FLOW RATE(CFS)= S-GRAPH : VALLEY = 100.0%; FOOTHILL = **DEPTH-AREA FACTORS:** TOTAL AREA(ACRES)= POINT NUMBER SUBAREA RAINFALL(INCH): 5M = Tc(MIN.) = FOR POINT# CONFLUENCE TIME/DATE FILE NAME: SA37.DAT MAP # 37 10-YEAR RETURN FREQUENCY AT 50% CONFIDENCE LEVEN CITY OF SANTA ANA MASTER PLAN OF DRAINAGE DESCRIPTION OF STUDY: ANALYSIS 5.0-YEAR STORM RATIONAL METHOD STUDY (AMC 3704.00 3704.00 3704.00 3704-00 3703.00 OF STUDY: 10:46 47.17 46.39 4.3 6.5 MAIN-STREAM COPIED ONTO MEMORY BANK # 3 MEMORY BANK # 2 CLEARED .1 1441.9 MEAN VALUES: Fm(IN/HR) = LAG TIME(HR) = 5M # LAG TIME(HR) = 1 1 1441.9 ----- [(c) 1983-1991 ADVANCED ENGINEERING SOFTWARE] --1430.9 TIME OF CONCENTRATION(MIN.) = SUM .26; 30M = 1085.67 TIME OF PEAK(HR) = 16.7 VOLUME(AF)= .26; 30M = 1085.67 .94; 30M = .94; 30M = - UNIT HYDROGRAPH INFORMATION ---------UNIT TYPE TYPE MIN. 0 SOIL DEV. | Tt 0 0 UPSTREAM NODE OF LONGEST WATERCOURSE = 3280.0 WITH LENGTH = 19892.7 FEET UPSTREAM NODE OF LONGEST WATERCOURSE = 3280.0 WITH LENGTH = 20566.4 FEET 2/23/1994 60/AC ----4D/AC 60/AC 1.1.1.1.1 TIME OF PEAK(HR) = 16.7 VOLUME(AF)= PEAK FLOW RATE(CFS) = HYDROGRAPH INFORMATION -1 .63 .62 TOTAL AREA(ACRES) = .59; 1HR = .59; 1HR = ..... -----.94; 1HR = .94; 1HR = 8 ..... TIME INTERVAL(MIN.) = TIME INTERVAL(MIN.) = 00 .0%; MOUNTAIN = .0%; MOUNTAIN = ----MIN. ----.... 47.2 [ORANGE COUNTY] -Fo II LOSSES) .105; Ybar = ++ in/h 1 -78; 3HR = .78; 3HR = \_94; 3HR = .90 .10 .105 1085.7 .94; 3HR = 46.4 .... Fa . 15 13 1085.7 1430.91 LAG TIME(HR) .438 (Avg) ..... 1 ..... ..... Fm .0%; VALLEY(UNDEV)/DESERT = .0%; VALLEY(UNDEV)/DESERT = 1.31; 6HR = 1.31; 6HR = :99: .99: 5.0 5.0 : 6HR = 6HR = 1.00; 24HR= 1.00 SUM D Fm(IN/HR) =Fm(IN/HR) = (ft) ft/ft FPS. ---n PATH SLOPE V \*\*\*\* 1.00; 673 .0036 14.4 PAGE NUMBER CALCULATED BY: 234.22 1.81; 24HR= 232.55 1.81; 24HR= CHECKED BY: -62 ----.... 24HR= 1.00 \*\* .105; Ybar = .105; Ybar = 3.03 3.03 0 apipe=1085.7cfs n=.0130 D= 8.5 9 ADD SUBAREA .0% 126.0"-PIPE HYDRAULICS -0% AND NOTES .438 .438

|  | 3733.00  | 48.ft-STREET<br>FLOW TO PT.#<br>3732.00 | 3731.00         | 3733.00        | 3733.00                                          | 3805.00                                                                   | 3805.00                                 | 3805.00  | CONCENTRATION AREA (ACRES)<br>POINT NUMBER SUBAREA SUM | MAP # 37<br>FILE NAME:SA37.DAT<br>TIME/DATE OF STUDY: 10:46 2/23/1994<br>5.0-YEAR STORM RATIONAL METHOD STUDY (AMC | 10-YEAR RETURN FREQUENCY AT 50% CONFIDENCI |
|--|----------|-----------------------------------------|-----------------|----------------|--------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------|----------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
|  | 10.8     | 3.5                                     | 3               | :              |                                                  | 97 D T                                                                    | <br>MEN<br>97 0                         | MEN      | AREA (ACRES)                                           | SA37.DAT<br>OF STUDY:<br>STORM RATI                                                                                | IN FREQU                                   |
|  | 18.8     | 7.9                                     | ы<br>           | 1365.1         |                                                  |                                                                           | MEMORY BANK #<br>Q(cfs) Tc<br>978.92 5  |          | CRES)<br>SUM                                           | · · ·                                                                                                              | IENCY A                                    |
|  | 0 0      | 00                                      | c               | 1              |                                                  | × -                                                                       |                                         |          | SOL                                                    | ETHON                                                                                                              | 1 50                                       |
|  | 6D/AC    | 6D/AC                                   | 60/AC           | $\overline{ }$ | Ī                                                | <br># 1 COP<br># 1 COP<br>Te(min)<br>52.99                                | 1 DEF<br>(min)<br>2.99                  | 1 CLE/   | SOIL DEV. Tt                                           |                                                                                                                    | AT 50% CONFIDENCE                          |
|  | <u> </u> | 5.2                                     |                 |                | <u>tu</u>                                        |                                                                           | <br>INED AS FO<br>Fm(in/hr)<br>.094<br> | NRED     | MIN.                                                   | T CAMC                                                                                                             | (11                                        |
|  | 21.2     | 17.1                                    | 11.9            | 53.3           |                                                  | TO MA                                                                     | for the                                 |          | HIN.                                                   | EORAN                                                                                                              | LEVEL                                      |
|  | 1.42     | 1.66                                    | 2.03            | .90            |                                                  | <br>1 COPIED ONTO MAIN-STREAM<br>(min) Fm(in/hr) Ybar AR<br>2.99 .094 .39 |                                         | <u> </u> | in/h                                                   | LORANGE COUNTY).<br>II LOSSES)                                                                                     | C                                          |
|  | 5.5.     |                                         | -13             |                |                                                  | · . ლ · ·                                                                 | AREA                                    | <u> </u> |                                                        | NTY]-                                                                                                              |                                            |
|  | .127     | .129                                    | .125            |                |                                                  | EAM<br>AREA(acres)<br>1365.15                                             | AREA(acres)<br>1365.15                  |          | (Avg)                                                  |                                                                                                                    |                                            |
|  | 22.0     | 10.9                                    | 5               | 978.9          |                                                  | 1 1                                                                       |                                         |          | MUS                                                    | OFTWARE                                                                                                            |                                            |
|  |          | 1332                                    | 366             |                | 224                                              |                                                                           | 1 1                                     | 1        | PATH<br>(ft)                                           |                                                                                                                    |                                            |
|  |          |                                         | .0050           |                | 224 .0020 111.4                                  |                                                                           | <u> </u>                                |          | PATH SLOPE V<br>(ft) ft/ft FPS.                        | CALCULATED BY:<br>CHECKED BY:<br>PAGE NUMBER                                                                       |                                            |
|  |          | 5                                       | 21:             |                |                                                  | ĪĪ                                                                        | 1                                       | 1        | ۲<br>FPS.                                              | R 87:                                                                                                              |                                            |
|  | 2 . 0    | D= .4 ,D*V= .9<br>FLOCOWIDTH=14.4<br>   | INITIAL SUBAREA | FOR CONFLUENCE | apipe= 978.9cfs<br>n=.0130 D= 8.8<br>138.0"-PIPE |                                                                           |                                         |          | HYDRAULICS<br>AND NOTES                                | 7 OF                                                                                                               |                                            |

ł

48. ft-STREET FLOW TO PT.# PEAK FLOW RATE(CFS)= S-GRAPH : VALLEY = 100.0%; FOOTHILL = DEPTH-AREA FACTORS: 5M = RAINFALL(INCH): 5M = TOTAL AREA(ACRES)= TC(MIN.) = PEAK FLOW RATE(CFS)= CONCENTRATION | AREA (ACRES) |SOIL |DEV. | Tt S-GRAPH : DEPTH-AREA FACTORS: 5M = RAINFALL(INCH): 5M = TOTAL AREA(ACRES)= TC(MIN.) = POINT NUMBER SUBAREA FOR POINT# CONFLUENCE MAP # 37 ANALYSIS FILE NAME: SA37.DAT DESCRIPTION OF STUDY: TIME/DATE 10-YEAR RETURN FREQUENCY AT 50% CONFIDENCE LEVEL CITY OF SANTA ANA MASTER PLAN OF DRAINAGE 5.0-YEAR STORM RATIONAL METHOD STUDY CAMC .......... 3736.00 3739.00 3735.00 3739.00 3739.00 3733.00 VALLEY = OF STUDY: 10:46 53.79 53.31 ....... -----11.2 9.8 7.3 MEAN VALUES: Fm(IN/HR) = 100.0%; FOOTHILL = LAG TIME(HR) = LAG TIME(HR) = 1395.3 ..... 1 1395.3 UPSTREAM NODE OF LONGEST WATERCOURSE 17.2 30.2 1384.0 ..... -26; 30M = TIME OF CONCENTRATION(MIN.) = SUM 7.3 ---- UNIT HYDROGRAPH INFORMATION --.26; 30M = 988.31 987.20 .94; 30M = -- UNIT HYDROGRAPH INFORMATION --.94; 30# = C -- [(c) 1983-1991 ADVANCED ENGINEERING SOFTWARE] ---0 -----TYPE TYPE MIN. 0 -------C 4D/AC ----UPSTREAM NODE OF LONGEST WATERCOURSE = 3180.0 WITH LENGTH = 20203.7 FEET 2/23/1994 60/AC 60/AC .... 10000 TIME OF PEAK(HR) = 16.8 60/AC \* \* \* \* \* TIME OF PEAK(HR) = 16.8 VOLUME(AF)= PEAK FLOW RATE(CFS) = .59; 1HR = .72 TIME INTERVAL(MIN.) = .71 TOTAL AREA(ACRES) = .59; 1HR = .94; 1HR = .94; 3HR = .... .94; 1HR = \* \* \* \* -4.5 ..... TIME INTERVAL(MIN.) = ŝ .0%; MOUNTAIN = .0%; MOUNTAIN = 53.8 \*\*\*\*\* ..... - LORANGE COUNTY) -18.2 1.59 22.7 1.38 .13 53.8 MIN. in/h Tc I II LOSSES) .095; Ybar = .... .78; 3HR = .78; 3HR = 1 .84 .84 \* \* \* \* .94; 3HR = .53.3 Fm .13 .13 .15 .095 987.2 VOLUME (AF)= 1384.00 . 125 .125 .393 LAG TIME(HR) = (Avg) .0%; VALLEY(UNDEV)/DESERT = ..... .0%; VALLEY(UNDEV)/DESERT = 1.31; 6HR = Fm 1.31; 6HR = .99; 6HR = 1.00; 24HR= 1.00 .99; 6HR = 1.00; 24HR= 1.00 5.0 5.0 -----988.3 988.3 19.4 = 3180.0 WITH LENGTH = 20530.0 FEET SUM 9.6 Fm(IN/HR) = Fm(IN/HR) = ø t 1 1 1 (ft) ft/ft FPS. 880 .0035 ..... 612 .0050 ----PATH SLOPE V .... 326 .0020 11.5 apipe= 987.2cts PAGE NUMBER CALCULATED BY: 1.81; 24HR= 239.27 1.81; 24HR= 237.47 .71 CHECKED BY: ..... ..... ----..... 1 2.4 Qest.= k F .095; Ybar = 1 .095; Ybar = 1 3.03 3.03 8 OF \*\*\*\* INITIAL SUBAREA FOR CONFLUENCE FLOODWIDTH=18.0 0= .5 n=.0130 D= 8.9 1 ADD SUBAREA .0% .0% 138.0"-PIPE HYDRAULICS AND NOTES ,D\*V= 1.2 15.2cfs .394 .393

PEAK FLOW RATE(CFS)= S-GRAPH : VALLEY = 100.0%; FOOTHILL = DEPTH-AREA FACTORS: TC(MIN.) = RAINFALL(INCH): 5M = TOTAL AREA(ACRES)= CONCENTRATION | AREA (ACRES) POINT NUMBER CONFLUENCE FOR POINT# ANALYSIS FILE NAME: SA37.DAT MAP # 37 TIME/DATE CITY OF SANTA ANA MASTER PLAN OF DRAINAGE DESCRIPTION OF STUDY: 10-YEAR RETURN FREQUENCY AT 50% CONFIDENCE LEVEL 5.0-YEAR STORM RATIONAL METHOD STUDY (AMC 3745.00 3739.00 3739.00 3739.00 3738.00 3738.00 3737.00 3737.00 OF STUDY: 53.79 SUBAREA 11.2 10.6 -1.4 7.0 MEAN VALUES: Fm(IN/HR) = 5H = LAG TIME(HR) = 1442.7 10:46 TIME OF CONCENTRATION(MIN.) 27.8 SUM .26; 30M = 47.4 36.1 1018.20 TIME OF PEAK(HR) = 16.8 VOLUME(AF)= .94; 30M = -- UNIT HYDROGRAPH INFORMATION -0 0 0 1 - I(c) 1983-1991 ADVANCED ENGINEERING SOFTWARE] ---UPSTREAM NODE OF LONGEST WATERCOURSE = 3180.0 WITH LENGTH = 20530.0 FEET 0 TYPE | TYPE | MIN. SOIL DEV. | Tt 0 2/23/1994 4D/AC 60/AC PEAK FLOW RATE(CFS) = 40/AC 60/AC ..... 60/AC \*\*\*\* TOTAL AREA(ACRES) = .72 TIME INTERVAL(MIN.) = .59; 1HR = .94; 1HR = -2.4 1.8 0 .0%; MOUNTAIN = 26.9 MIN. 30.0 1.16 24.5 1.33 Te [ORANGE COUNTY] . .096; Ybar = II LOSSES) .78; 3HR = 1.25 in/h .94; 3HR = .... -53.8 . 13 . 15 1018.2 - 15 . 13 . 13 Fm 1442.74 .399 LAG TIME(HR) .0%; VALLEY(UNDEV)/DESERT = 1 \* (Avg) .125 . 126 . 126 1.31; 6HR = Fm .99; 6HR = 1.00; 24HR= 1.00 5.0 36.6 30.0 44.2 ----SUM Fm(IN/HR) = 11 D 1 11 1 1326 403 .0020 11.5 Qpipe=1018.2cfs (ft) ft/ft FPS. ..... PATH SLOPE V 999 245.92 654 .0050 1.81; 24HR= PAGE NUMBER CALCULATED BY: .72 .0050 CHECKED BY: . .0050 .096; Ybar = 7.2 | apipe= 36.6cfs 6.1 apipe= 1 6.9 Opipe= 3.03 0 n=.0130 D= 9.2 n=.0130 D= 2.0 n=\_0130 D= 1\_9 n=.0130 D= 1.7 OF ADD SUBAREA ADD SUBAREA ADD SUBAREA 138.0"-PIPE .0% HYDRAULICS 36.0"-PIPE 33.0"-PIPE 27.0"-PIPE AND NOTES 30.0cfs 19.4cfs .399

| 3744.00     | 3744.00    |                                                                                                  | <br>3743.00      |             | 3743.00        | 1<br>4<br>5<br>5<br>1<br>1<br>1<br>5<br>5<br>6<br>7<br>1<br>7<br>1<br>7<br>1<br>7<br>7<br>1<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 | 3742.00                                             | 48.ft-SIREET    | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 3741.00                                                                                     | <u>-</u>                                                                                    |                 |                       | 3745.00        | , ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; | 1                                       | PEAK FLOW RATE(CFS)=        |                  | RAINFALL(INCH): 5M = | TOTAL AREA(ACRES)=   | Tc(MIN.) = 54       | 5745.00             |                  |      |          | TUINI NUMBER SUDAREN | CONCENTRATION AREA (ACRES) |                                         |             | FILE NAME:SA37.DAT<br>TIME/DATE OF STUDY |                                 | 10-YEAR RETURN FREQUENCY AT 50% CONFIDENCE |
|-------------|------------|--------------------------------------------------------------------------------------------------|------------------|-------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------|-----------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------|-----------------------|----------------|-----------------------------------------|-----------------------------------------|-----------------------------|------------------|----------------------|----------------------|---------------------|---------------------|------------------|------|----------|----------------------|----------------------------|-----------------------------------------|-------------|------------------------------------------|---------------------------------|--------------------------------------------|
|             | °<br>⊻     | _                                                                                                | 1.6              | <u>1 -1</u> |                |                                                                                                                                               | 2.9                                                 | <br><br>        | *<br>*<br>*                             | 2.1                                                                                         | 1.9                                                                                         |                 |                       |                | 1                                       |                                         | CFS)=                       | ORS:             | 5¥<br>#              | =( S                 |                     |                     | - <sup>1</sup> N | 12.4 | •<br>••• |                      | AREA (                     |                                         | RM RAT      | 7.DAT<br>STUDY:                          | F<br>F<br>F<br>F                | N FREC                                     |
| 25.0        |            | 1<br>2<br>4<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 15.8             |             |                |                                                                                                                                               | 9.8                                                 |                 |                                         | 4.2                                                                                         |                                                                                             |                 | 3<br>1<br>1<br>1<br>1 | 60.2           | 1<br>1<br>1<br>1<br>1<br>1<br>1         |                                         | )= 1018.64 TIME             |                  | N                    | 1455.5               | LAG TIME(HR) =      | 0 1455.5            |                  |      |          | 90m                  | ACRES)                     | 1                                       | IONAL I     | :SA37.DAT<br>OF STUDY: 10:46             | 2<br>2<br>2<br>2<br>2<br>2<br>1 | NUENCY                                     |
|             | - — -      | :                                                                                                | <u> </u>         |             |                | :                                                                                                                                             |                                                     | <u> </u>        | :                                       | c                                                                                           | 0                                                                                           | <u></u>         |                       | -              | :                                       | 1<br>1                                  | 1018.64                     | 94.              | -26; 30M =           |                      | IE (HR              |                     | -                | 0    |          | •                    |                            | [(o                                     | METHO       | 2/                                       |                                 | AT 50                                      |
| 60/AC       | A<br>      |                                                                                                  | Apt 60/AC        | Com         |                | -                                                                                                                                             | 60/AC                                               | Apt             | 9<br>9<br>9<br>9<br>9                   | 60/AC                                                                                       | Apt                                                                                         | Com             |                       | ·              |                                         |                                         | TIME                        |                  |                      | TRE                  | ) = .72             | C 4D/AC 54.4 .84 .1 | 60/AC            | Apt  | Com      | <br> =               | SOIL DEV. Tt               | -[(c) 1983-1991 ADVANCED                | onls o      | 2/23/1994                                |                                 | DX CONF                                    |
|             | 2.7        |                                                                                                  | ·<br>·           |             | 1.9            |                                                                                                                                               | 4<br>1<br>1                                         | 5.0             |                                         | *                                                                                           | †<br>1<br>1                                                                                 |                 | 1                     | 1<br>1<br>1    | 8<br>8<br>8<br>8<br>8                   |                                         | PF -                        | .94;             | -59; 1               | NOD                  | 72 T                | 47 42               |                  |      |          | 1 7                  | li li                      | -1991                                   | Y (AMC      | 4                                        |                                 | IDENC                                      |
| 22.0 1.40   |            |                                                                                                  | <br>19.3 1.51    |             | <u> </u>       |                                                                                                                                               | 17.3                                                |                 | )<br>5<br>7<br>8                        | 12.4                                                                                        |                                                                                             |                 |                       | 54.4           | 4<br>1-<br>1-<br>1-<br>1-<br>1-         |                                         | TIME OF PEAK(NR) = 16.8     | .94; 1HR =       |                      |                      | TIME INTERVAL(MIN.) | 54.4                |                  |      |          | 312.                 | Tc                         | ADVAN                                   |             |                                          | - LORAN                         | JE LEVEL                                   |
| 1.40        |            |                                                                                                  | 1.51             | <u> </u>    |                |                                                                                                                                               | 1-65                                                |                 | 1                                       | 1.99                                                                                        |                                                                                             |                 |                       | 84             | 1                                       | 7<br>1<br>1<br>1                        | J = 16                      | .94              | .78;                 | ONGEST               | TERVAL              | 84                  |                  |      |          |                      |                            |                                         | II LOSSES)  |                                          | CORANGE COUNTY]-                | F                                          |
| - 35        | 2          |                                                                                                  | .13              | .03         |                |                                                                                                                                               | .13                                                 | .03             |                                         | .13                                                                                         |                                                                                             | 03              | :                     |                | 1<br>1<br>1<br>1                        | :                                       |                             | .94; 3HR =       | 3HR =                | WATE                 | . (MIN.             | .15                 | .13              | .05  | .03      | :                    | Fa                         | <b>VGINE</b>                            | S           |                                          | CALNG                           |                                            |
| .068        |            | -                                                                                                | .078             |             |                | 1<br>1<br>1<br>1<br>1<br>1                                                                                                                    | .085                                                |                 | 1<br>1<br>1<br>5                        | .088                                                                                        |                                                                                             |                 |                       |                | 1<br>}<br>;<br>;                        |                                         | -UZ; VALL                   | "<br>"           |                      | ~~~                  | 11                  |                     |                  | _    |          | (AA)                 | Fm                         | ERING                                   |             |                                          | •                               |                                            |
| 30.0        |            |                                                                                                  | 20.3             |             |                | 7<br>8<br>8<br>8<br>9<br>9                                                                                                                    | 13.7                                                |                 | *<br>;<br>;<br>;                        | 7.1                                                                                         |                                                                                             |                 |                       | 1018.6         | 6<br>7<br>7<br>8                        |                                         | .U%; VALLEY(UNDEV)/DESERT # | .99; 6HR = 1.00; | 1; 6HR =             | SE = 31              | 5.0 Fm              | .096 1018.6         |                  |      |          |                      |                            | ENGINEERING SOFTWAREJ -                 |             |                                          | * * * * * *                     |                                            |
|             |            | 997                                                                                              | t<br>9<br>5<br>9 |             |                | 651                                                                                                                                           | †<br>†<br>1                                         |                 | 616                                     | ;                                                                                           | +<br>2<br>1<br>+                                                                            | 070             | 7.57                  |                | ;                                       |                                         | (UNDE<br>243                | - 1.0            | - 1.81;              | 30.01                | Fm(IN/HR) =         |                     |                  |      |          |                      | PATH                       | <u> </u>                                | PAG         | CAL                                      | 8<br>8<br>8<br>8                |                                            |
|             |            | 997 .0050                                                                                        | 8<br>8<br>8<br>8 |             |                | 0050                                                                                                                                          |                                                     |                 | .0050                                   | ;                                                                                           |                                                                                             |                 |                       | *<br>*<br>*    | 1<br>1<br>1<br>1                        |                                         | DEV)/DESE<br>248.55         | 0; 24HF          |                      | 3180.0 WITH LENGTH = | R) =                | 1                   |                  |      |          | TE/TE PPS.<br>       | PATH SLOPE                 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | PAGE NUMBER | CALCULATED BY:<br>CHECKED BY:            |                                 |                                            |
|             |            | 6.1                                                                                              | 1                |             |                | 5.6                                                                                                                                           | 1<br>1<br>1                                         |                 | 2.2                                     | 3<br>7<br>7                                                                                 |                                                                                             | ; ;             |                       | F<br>6<br>1    | †<br>1<br>1                             | *<br>*<br>*                             | 2                           | 24HR= 1.00       | R.                   | NGTH                 | 960                 |                     |                  |      |          | 1 77%.               | ~ <                        | f<br>f<br>t                             | ER 10       | 0 8Y:                                    |                                 |                                            |
| ADD SUBAREA | 27.0"-PIPE | @pipe= 20.3cfs<br> n= 1130 n= 1 8                                                                | ADD SUBAREA      |             | n=.0130 b= 1.5 | apipe= 13                                                                                                                                     | *<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>* | D= .4 ,D+V= 1.0 | Qest.= 11.1cfs                          | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | *<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>* | INTITAL SUBAREA |                       | FOR CONFLUENCE |                                         | * * * * * * * * * * * * * * * * * * * * | <b>,</b> 07                 | 8                | 3.03                 | = 20933.9 FEET       | .096; Ybar = .397   | ADD SUBAREA         |                  |      |          | AND NOIES            | HYDRAULICS                 |                                         | 0 OF        |                                          |                                 |                                            |

Ψ.

| 3748.00   | 3746.00        | TOTAL AREA(ACRES)=<br>RAINFALL(INCH): 5M =<br>DEPTH-AREA FACTORS:<br>S-GRAPH : VALLEY = 1<br>PEAK FLOW RATE(CFS)=                                   | 3746.00<br>3746.00                                          | Total AREA(ACRES)=<br>RAINFALL(INCH): 5M =<br>DEPTH-AREA FACTORS:<br>S-GRAPH : VALLEY = 1<br>PEAK FLOW RATE(CFS)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CONFLUENCE<br>ANALYSIS<br>FOR POINT#<br>3745.00                                                                                                   | 374                                               | CONCENTRATION                                                                                                                              | FILE NAME<br>TIME/DATE<br>5.0-YEAR                                                                | 10-YEAR<br>MAP # 37 |
|-----------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------|
| 00        | 8              | ACA<br>INC                                                                                                                                          | 5.00                                                        | aca<br>cinc<br>cinc<br>cinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NCE<br>IS<br>NT#                                                                                                                                  | 3745.00                                           | TION                                                                                                                                       | AR S                                                                                              | RE RE               |
| 3.7       |                | A(ACRES)=<br>INCH): 5M =<br>A FACTORS: 5<br>VALLEY = 10<br>VALLEY = 10                                                                              |                                                             | = 54.37  <br>((ACRES)=<br>(NCH): 5M =<br>() FACTORS: 1<br>() FACTORS: 1<br>VALLEY = 1<br>VALLEY = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                   |                                                   | I AREA (ACRES)                                                                                                                             | FILE NAME:SA37.DAT<br>TIME/DATE OF STUDY: 10:46 2/23/1994<br>5.0-YEAR STORM RATIONAL METHOD STUDY | MAP # 37            |
| 4.1       | 29.1           | 1484.6 UPSTREA<br>= .26; 30M = .<br>: 5M = .93; 30M =<br>100.0%; FOOTHILL =<br>= 1035.65 TIME                                                       | 4.1 1484.6                                                  | LAG TIME(HR) = .<br>1480.5 UPSTREA<br>= .26; 30M = .<br>5M = .93; 30M =<br>100.0%; FOOTHILL =<br>= 1035.65 TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TIME OF CONCENTRAT<br>TIME OF CONCENTRAT<br>MEAN VALUES: Fm(IN/HR)<br>TOTAL                                                                       |                                                   | RES)                                                                                                                                       | 10:46                                                                                             | UENCY A             |
| 0 0       |                | 30M<br>30M<br>33; 33; 33; 33; 33; 33; 33; 33; 33; 33;                                                                                               | N n                                                         | TIME(HR)<br>80.5 UP<br>26; 30M<br>26; 30M<br>26; 500<br>37; 3<br>400<br>7; FOOTF<br>1035.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | UNI                                                                                                                                               | 1 11                                              | -E(c                                                                                                                                       | 2/<br>2/                                                                                          | T 50                |
| Apt       |                | 4.6 UPSTREAM )<br>6; 30M = .59;<br>.93; 30M = .5<br>; FOOTHILL =<br>035.65 TIME 0<br>                                                               | Com T HYDRC                                                 | ME(HR) = .72<br>).5 UPSTREAM )<br>; 30M = .59<br>; 30M = .93<br>; 30M = .9<br>; 93; 30M = .9<br>; 50THILL =<br>; 50THILL =<br>; 50THILL =<br>; 50THILL =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PEAK I<br>ONCENTF<br>Fm(IN/I<br>Fm(IN/I<br>T HYDRC                                                                                                |                                                   | L(c) 1983-1991<br>SOIL  DEV.   Tt<br>TYPE  TYPE  MIN.                                                                                      | 2/23/1994<br>HOD STUDY                                                                            | AT 50% CONFIDENCE   |
|           |                |                                                                                                                                                     | JGRAP                                                       | .72 TIME<br>AM NODE OF<br>.59; 1HR =<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FLOW<br>RATIO<br>RATIO<br>GRAP                                                                                                                    | 3.2                                               | -1991<br>Tt                                                                                                                                | r (AMC                                                                                            | IDENC               |
| 12.6 1.98 | 55.0           |                                                                                                                                                     |                                                             | = .72 TIME INTERVAL(MIN.) =<br>TREAM NODE OF LONGEST WATERCOU<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PEAK FLOW RATE(CFS) = 10<br>OF CONCENTRATION(MIN.) = 54.4<br>ES: Fm(IN/HR) = .095; Ybar =<br>TOTAL AREA(ACRES) =<br>UNIT HYDROGRAPH INFORMATION - |                                                   | ADVANC                                                                                                                                     | - [ORANGE COUNTY]<br>C 11 LOSSES)                                                                 | E LEVEL             |
| 1.98      | .83            | -78;<br>-78;<br>-93;<br>-93;<br>                                                                                                                    | <br>.83                                                     | .78;<br>.78;<br>.93;<br>.93;<br>.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E(CFS) = 10<br>IIN.) = 54.4<br>.095; Ybar =<br>.(ACRES) =<br>.NFORMATION -                                                                        |                                                   | CED EX                                                                                                                                     | II LOSSES)                                                                                        |                     |
| .03       |                | .78; 3HR =<br>.78; 3HR =<br>.93; 3HR =<br>.NTAIN =<br>                                                                                              |                                                             | EERVAL(MIN.)<br>DNGEST WATER<br>.78; 3HR =<br>.93; 3HR =<br>.93; 3HR =<br>.93; 3HR =<br>.94; 3HR = .94; 3H                                                                                                                                                                                                                                                                                                 |                                                                                                                                                   |                                                   | I Fm                                                                                                                                       | UNTY]                                                                                             |                     |
| .027      |                | ERCOURSE = :<br>= 1.31; 6HI<br>= .99; 6HI<br>.0%; VALLI<br>VOLUME(AF)=                                                                              | .095                                                        | <pre>L) = 5.0  <br/>ERCOURSE = :<br/>= 1.31; 6H<br/>= .99; 6H<br/>= .99; 6H<br/>0%; VALLI<br/>VOLUME(AF)=<br/>  </pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35.7<br>LAG TIME(HR)<br>.396<br>1480.53                                                                                                           |                                                   | ERING S<br>Fm  <br>(Avg)                                                                                                                   |                                                                                                   |                     |
| 7.2       | 1035.7         | COURSE = 3180.0 WITH LENG<br>1.31; 6HR = 1.81; 24HR=<br>.99; 6HR = 1.00; 24HR=<br>.0%; VALLEY(UNDEV)/DESERT<br>LUME(AF)= 254.07<br>LUME(AF)= 254.07 | 1 64 1                                                      | HR) = .72 TIME INTERVAL(MIN.) = 5.0 Fm(IN/HR) = .095; )         UPSTREAM NODE OF LONGEST WATERCOURSE = 3180.0 WITH LENGTH =         DM = .59; 1HR = .78; 3HR = 1.31; 6HR = 1.81; 24HR= 3.0         30M = .93; 1HR = .93; 3HR = .99; 6HR = 1.00; 24HR= 1.00         7 30M = .93; 1HR = .93; 3HR = .99; 6HR = 1.00; 24HR= 1.00         OTHILL = .0%; MOUNTAIN = .0%; VALLEY(UNDEV)/DESERT =         65 TIME OF PEAK(HR) = 16.8 VOLUME(AF)=       253.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ME(HR)                                                                                                                                            |                                                   | -[(c) 1983-1991 ADVANCED ENGINEERING SOFTWARE]<br> SOIL DEV.  Tt   Tc   I   Fm   Fm   G   P<br> TYPE TYPE MIN.  MIN. in/h   (Avg)  SUM   ( |                                                                                                   |                     |
| 651       |                | 30.0 WI1<br>= 1.81<br>= 1.00;<br>= 1.00;<br>(UNDEV),<br>254.1<br>254.1                                                                              | 433 .00<br>                                                 | Fm(1N/HR) =<br>3180.0 WITH<br>IR = 1.81;<br>IR = 1.00; 2<br>IR = 1.00 | I B                                                                                                                                               | 1326                                              | PATH<br>Cft)                                                                                                                               | CAL                                                                                               |                     |
| 1 1 1 6 1 |                | 3180.0 WITH LENGTH =<br>HR = 1.81; 24HR= 3.(<br>HR = 1.00; 24HR= 1.00<br>HR = 1.00; 254.07<br>= 254.07                                              |                                                             | <pre>//HR) = .095;<br/>.0 WITH LENGTH =<br/>1.81; 24HR= 3.<br/>.00; 24HR= 1.00<br/>.DEV)/DESERT =<br/>253.17<br/>253.17</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .72                                                                                                                                               |                                                   | PATH SLOPE  V<br>  Cft)   ft/ft   FPS.                                                                                                     | CALCULATED BY:<br>CHECKED BY:<br>PAGE NUMBER 1                                                    |                     |
|           |                | TH LENGTH =<br>; 24HR= 3.(<br>24HR= 1.00<br>/DESERT =<br>)7                                                                                         | 11.5                                                        | .095<br>RT = 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                   | 6.9                                               | FPS.                                                                                                                                       | BY:<br>BY:<br>R 1                                                                                 |                     |
|           | FOR CON        | H = 21367.3<br>3.03<br>.00<br>= .0%                                                                                                                 | .00220 11.5 apipe=1035                                      | .095; Ybar =<br>NGTH = 20933.9<br>R= 3.03<br>= 1.00<br>RT = .0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                   | 6.9 apipe= 30.0cf<br>n=.0130 b= 1.9<br>33.0"+PIPE | HYDR                                                                                                                                       | 1 OF                                                                                              |                     |
| SUBAREA   | FOR CONFLUENCE | 1                                                                                                                                                   | ipe=1035.7cfs<br>.0130 D= 9.3<br>138.0"-PIPE<br>ADD SUBAREA | .396<br>.9 FEET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                   | e= 30.0cfs<br>1130 b= 1.9<br>33.0"-PIPE           | HYDRAULICS<br>AND NOTES                                                                                                                    |                                                                                                   |                     |

-

| 3746.00                                               | 3752.00                        | 3752.00                                             | 3751.00       | 3751.00                                                    | 3750.00     | 3750.00                                               |                                                            | POINT NUMBER                | FILE NAME:SA37.DAT<br>TIME/DATE OF STUDY: 10:46 2/23/1994<br>5.0-YEAR STORM RATIONAL METHOD STUDY (AMC | CITY OF SANTA ANA MASTER PLAN OF DRAINAGE<br>10-YEAR RETURN FREQUENCY AT 50% CONFIDENCE<br>MAP # 37 |
|-------------------------------------------------------|--------------------------------|-----------------------------------------------------|---------------|------------------------------------------------------------|-------------|-------------------------------------------------------|------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
|                                                       | 6.7<br>.0                      |                                                     | .2            |                                                            | .2          | 5.3                                                   | 5.2                                                        | AREA (ACRES)                | SA37.DAT<br>OF STUDY:<br>STORM RATI                                                                    | 'A ANA MJ                                                                                           |
|                                                       | 31.3                           |                                                     | 23.3          |                                                            | 15.0        |                                                       | 9.5                                                        | CRES)  <br>SUM              | 10:46                                                                                                  | JENCY AT                                                                                            |
|                                                       | c   Com<br>c   Apt<br>c  4D/AC |                                                     | C Com         |                                                            | C Apt       | C Com                                                 | c Com                                                      | TYPE TYPE                   | 2/23/1994<br>THOD STUDY (AMC II LOSSES)                                                                | AN OF D                                                                                             |
| <u>`</u> @                                            |                                | 2.5                                                 |               | 2.7                                                        |             |                                                       |                                                            | PE MIN.                     | 994<br>994<br>UDY (AM                                                                                  | NFIDENC                                                                                             |
|                                                       | 24.6                           |                                                     | 22.2          |                                                            | 19.4        |                                                       | 17.5                                                       | HIN.                        | - LOKANG<br>C II L<br>C II L                                                                           | 171                                                                                                 |
|                                                       | .32 .15                        |                                                     | 1.40 .03      |                                                            | 1.50 .05    |                                                       | 11.64 .03                                                  | I   Fm<br> in/h <br>        | IDRANGE COONITJ<br>II LOSSES)<br>II LOSSES)                                                            | n<br>2222                                                                                           |
|                                                       | 5 .031                         |                                                     | 13<br>15 .026 |                                                            | 15 .026     | <u> </u>                                              | .03                                                        |                             |                                                                                                        | 5                                                                                                   |
|                                                       | 36.3                           |                                                     | 28.7          |                                                            | 19.9        | 1<br>3<br>3<br>4<br>1<br>1                            | 13.7                                                       | NUS I                       |                                                                                                        |                                                                                                     |
| 336.0050                                              |                                |                                                     |               |                                                            |             | 651                                                   | 616                                                        | I V X                       | CALCUL<br>CHE                                                                                          |                                                                                                     |
|                                                       |                                | and and a second                                    |               | .0000.                                                     |             | .0050 5.                                              | Contraction of the second second                           | SLOPE  V<br> ft/ft FPS.<br> | CALCULATED BY:<br>CHECKED BY:<br>PAGE NUMBER 12                                                        |                                                                                                     |
| 7.0 apipe= 36.3cfs<br> n=.0130 D= 2.2<br>  33.0"-PIPE | ADD SUBAREA                    | o.o(upipe= 20.7CTS)<br>n=.0130 D= 1.8<br>33.0"-PIPE |               | 0.1   qpipe= 19.9cts<br>  n=.0130 D= 1.7  <br>  27.0"-PIPE | ADD SUBAREA | 5.6 qpipe= 13.7cfs<br> n=.0130 D= 1.5<br>  24.0"-PIPE | 2.2 Qest.= 11.1cfs<br> D= .5 ,D*V= 1.0<br> FLOODWIDTH=15.7 | HYDRAULICS                  | Y:<br>Y:<br>12 OF                                                                                      |                                                                                                     |

.....

|                                                         |                                                                                 |                           |                                            |               |                    |                                                                         |                     | 2.4                       |                                             | ;                       |                          |                               | 3764.00                                                               |
|---------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------|--------------------------------------------|---------------|--------------------|-------------------------------------------------------------------------|---------------------|---------------------------|---------------------------------------------|-------------------------|--------------------------|-------------------------------|-----------------------------------------------------------------------|
| ADD SUBAREA<br>.9 0pipe= 32.3cf<br> n=.0130 D= 2.0      | +0050 6.9 Opipe=                                                                | 80                        | 32.3                                       |               |                    | 19.0 1.53                                                               | 19.0                | ]                         | 4D/AC                                       | 0                       | 24.4                     |                               | 3763.00                                                               |
|                                                         |                                                                                 |                           |                                            |               | a second property. |                                                                         |                     | · · · · · · · · · · · · · | Com<br>60/AC                                | 00                      |                          | 7.3                           |                                                                       |
| n=.0130 D= 1.6<br>  24.0"-PIPE                          |                                                                                 |                           |                                            |               |                    |                                                                         |                     | 2.9                       |                                             |                         |                          |                               | 3763.00                                                               |
| 5.7 Onine=                                              | -                                                                               | usuu 1800                 |                                            | - ucu.        |                    | 16.0 1./4                                                               | 16.0                | 1                         | 60/AC                                       | 1                       | 10.2                     | 2.5                           | 3762.00                                                               |
| D= .6 ,D*V= 1.0<br>FL000WIDTH=29.3                      |                                                                                 |                           |                                            | <u> </u>      | .03                |                                                                         |                     | 3,2                       | Com                                         |                         |                          | N 10                          | 48.ft-STREET<br>FLOW TO PT.#                                          |
| - <br>7 0est.=                                          | .0020 1.                                                                        | 314                       | 8.8                                        | .026          | - 13               | 12.9 1.96                                                               | 12.9                |                           | 60/AC                                       | 00                      | 5.1                      | 0.5                           | 3761.00                                                               |
| INITIAL SUBAREA                                         | 0050                                                                            | 823 .0050                 |                                            |               | 2                  |                                                                         |                     | :                         |                                             | , ,                     |                          | 1                             |                                                                       |
| - FOR CONFLUENCE                                        |                                                                                 | 11                        | 1050.6                                     |               | 1<br>1<br>2<br>    | 1.30                                                                    | 55.4                |                           |                                             |                         | 31.3                     |                               | 3766.00                                                               |
| 7   apipe=1050.6cf<br>  n=.0130 D= 8.9<br>  144.0"-PIPE | 297   .0020   11.7   apipe=1050.6cfs<br>      n=.0130 D= 8.9<br>    144.0"-PIPE | 297 .                     |                                            |               |                    |                                                                         |                     |                           | T                                           | <u>+</u>                |                          | *<br>*<br>*<br>*              | 3766.00                                                               |
| .074; fbar -<br>NGTH = 21367<br>R= 3.03                 | LE 24H                                                                          | 3180.0  WITH<br>R = 1.81; | = 3.0 Find<br>COURSE = 3180<br>1.31; 68R = | 1.31; 6       | .78; 3HR =         | TIME INTERVAL(MIN.) =<br>ODE OF LONGEST WATERCOU<br>THR = .78; 3HR = 1. | M NODE OF LO        | ./S TIME .<br>.59; THR =  | 11ME(HR) = .<br>15.9 UPSTREA<br>26; 30M = . | 515.9 UPS<br>-26; 30M = | . 5                      | 55.00 1<br>CRES)=<br>H): 5M = | Tc(MIN.) = 55.00 LA<br>  TOTAL AREA(ACRES)=<br>  RAINFALL(INCH): 5M = |
| -   -                                                   |                                                                                 |                           |                                            |               | N                  | DROGRAPH INFORMATIO                                                     | H INFO              | OGRAPH                    |                                             | UNI                     |                          | 1.2                           | : 5                                                                   |
| • •                                                     |                                                                                 |                           |                                            | .391          | # 0                | X                                                                       |                     | 来) =                      | VALUES: Fm(IN/HR) = .094                    | JES:                    | MEAN VALUES: Fm(IN/HR) = | ME                            | FOR POINT#                                                            |
|                                                         | ~                                                                               | 7                         | D.6                                        | .6            | = 1050.6           | i S                                                                     | PEAK FLOW RATE(CFS) | FLOW I                    | PEAK                                        | 2                       |                          |                               | CONFLUENCE                                                            |
| +++++++++++++++++++++++++++++++++++++++                 |                                                                                 | 1 1<br>1 1<br>1 1<br>1 1  |                                            |               | $\frac{1}{1}$      |                                                                         |                     | $\overline{ }$            |                                             | $\frac{1}{1}$           |                          |                               |                                                                       |
| ·                                                       | PATH SLOPE  V<br>(ft) ft/ft FPS.                                                | PATH SLOPE                | Q P                                        | Fm  <br>(Avg) | Fm                 | Tc   I  <br>MIN.   In/h                                                 | MIN.                | MIN.                      | SOIL DEV. Tt                                |                         | ACRES)                   | AREA ()                       | CONCENTRATION AREA (ACRES)                                            |
| 13 0                                                    | PAGE NUMBER 13 OF                                                               | PAGE                      | ETHOD STUDY (AMC II LOSSES) P.             | VING SC       | GINEER             | II LOSSES)                                                              | ADVAN               | - 1991                    | o stud                                      | HETHO                   | IONAL M                  | TORM RAT                      | 5.0-YEAR STORM RATIONAL METHOD STUDY (AMC                             |
|                                                         | CULATED BY:<br>CHECKED BY:                                                      | CALCULATED                |                                            |               |                    |                                                                         | Lower               | 4                         | 2/23/1994                                   | 2/                      | 10:46                    | A37.DAT<br>F STUDY:           | FILE NAME:SA37.DAT<br>TIME/DATE OF STUDY: 10:46                       |
|                                                         |                                                                                 |                           | *<br>*<br>*<br>*<br>*                      | 1             | NTY1               | TORANGE COUNTYT                                                         | - TORAN             |                           |                                             |                         |                          |                               | NAP # 37                                                              |
|                                                         |                                                                                 |                           |                                            |               |                    |                                                                         |                     | INAGE                     | OF DRA                                      | T SO                    | ASTER F                  | TA ANA M                      | CITY OF SANTA ANA MASTER PLAN OF DRAINAGE                             |

| 3767.00                                                    | TC(MIN.) = 55.42<br>TOTAL AREA(ACRES)=<br>RAINFALL(INCH): 5M =<br>DEPTH-AREA FACTORS:<br>S-GRAPH : VALLEY = 1<br>PEAK FLOW RATE(CFS)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CONFLUENCE<br>ANALYSIS<br>FOR POINT#<br>3766.00 | 3766.00                                  | 3765.00                     | 3764.00          | CONCENTRATION AREA (ACRES)        | FILE NAME:SA37.DAT<br>TIME/DATE OF STUDY: 10:46 2/23/1994<br>5.0-YEAR STORN RATIONAL METHOD STUDY (AMC | CITY OF SANTA ANA MASTER PLAN OF DRAINAGE<br>10-YEAR RETURN FREQUENCY AT 50% CONFIDENCE<br>MAP # 37 |
|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------|-----------------------------|------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
|                                                            | = 55.42<br>A(ACRES)=<br>INCH): 5M =<br>A FACTORS:<br>VALLEY = 1<br>VALLEY = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                        |                                          | 0<br>5.2<br>9.0             |                  | N AREA (                          | SA37.DAT<br>OF STUDY: 10:46<br>STORM RATIONAL I                                                        | OF SANTA ANA MASTER PLAN OF DRAINAGE<br>EAR RETURN FREQUENCY AT 50% CONFIDENC<br># 37               |
|                                                            | LAG<br>15<br>5M =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HEAN VALUES: Fm(IN/HR)                          |                                          | 52.6                        | 5 38.5           | (ACRES)                           | : 10:46<br>TIONAL M                                                                                    | MASTER P                                                                                            |
| <br>                                                       | TIME(HR) = .<br>568.5 UPSTREJ<br>.26; 30M = .<br>.26; 30M = .<br>.26; 70M = .26; 70M = .<br>.26; 70M = .26; 70M = .<br>.26; 70M = .26; 70M | PEA<br>PEA<br>S: Fm(1                           |                                          | C Com                       | C Com<br>C 6D/AC | SOIL DEV. Tt                      | 2/23/1994<br>ETHOO STUDY<br>-[(c) 1983-                                                                | LAN OF 1<br>T 50% C                                                                                 |
| <br>                                                       | .74 T<br>.74 T<br>.59; 1<br>.59; 1<br>.93;<br>= .93;<br>= .93;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FLOW I<br>NTRATION<br>N/HR) =<br>TOTAL AS       |                                          | AC                          | - <u>Ac</u>      | SOIL DEV. Tt                      | 3/1994<br>STUDY (AM<br>1983-1991                                                                       | DRAINAGE<br>ONFIDENC                                                                                |
|                                                            | HR) = .74 TIME INTERVAL(MIN.) = 5.0 Fm(IN/HR) = .093; Ybar =<br>UPSTREAM NODE OF LONGEST WATERCOURSE = 3180.0 WITH LENGTH = 21664<br>OM = .59; 1HR = .78; 3HR = 1.31; 6HR = 1.81; 24HR= 3.03<br>; 30M = .93; 1HR = .93; 3HR = .99; 6HR = .99; 24HR= 1.00<br>OTHILL = .0%; MOUNTAIN = .0%; VALLEY(UNDEV)/DESERT = .0%<br>17 TIME OF PEAK(HR) = 16.8 VOLUME(AF)= 270.15<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RAT RAT                                         |                                          | 23.8                        | 21.4 1.42        | MIN.                              | IC II LOS                                                                                              | E<br>DE LEVEL                                                                                       |
| <br>                                                       | TERVAL(MIN.)<br>DNGEST WATER<br>78; 3HR =<br>.73; 3HR =<br>.93; 3HR = .93; 3HR =<br>.93; 3HR = .93; 3HR                                                                                                                                                                                                                                                                                 | ))))))))))))))))))))))))))))))))))))))          |                                          |                             | 1.42             |                                   |                                                                                                        | LEVEL                                                                                               |
| <br>                                                       | IN.) = 5.0<br>ATERCOURSE =<br>R = 1.31; 6H<br>R = .99; 6H<br>.0%; VALL<br>VOLUME(AF)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1077.2<br>5.4 LAG TIN<br>- = .390<br>1568.48    |                                          | .03<br>.13<br>.081          | .03<br>.13 .078  | m   Fm  <br> (Avg)                | SES)   C                                                                                               | Y]                                                                                                  |
|                                                            | = 5.0 Fm(1N/HR) = .0<br>COURSE = 3180.0 WITH LENG<br>1.31; 6HR = 1.81; 24HR=<br>.99; 6HR = .99; 24HR=<br>.0%; VALLEY(UNDEV)/DESERT<br>LUME(AF)= 270.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.2<br>LAG TIME(HR) =<br>.390<br>I568.48        |                                          | 59.8                        | B 46.4           | SUM D                             | SOFTWA                                                                                                 |                                                                                                     |
| 1203                                                       | Fm(IN/HR) =<br>3180.0 WITH<br>4R = 1.81;<br>4R = .99; 2<br>4R = .99; 2<br>EY(UNDEV)/DI<br>2 270.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 74                                            | 320                                      |                             |                  | PATH S                            | AG                                                                                                     |                                                                                                     |
| <br>1203 ,0020 11.8 @pipe=1<br>      n=.0130<br>      144. | //HR) = .093;<br>0 WITH LENGTH =<br>1.81; 24HR= 3.1<br>.99; 24HR= 1.00<br>DEV)/DESERT =<br>270.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                                               | .0050 8                                  | and and and and a should be | .0050            | PATH SLOPE  V<br> (ft) ft/ft FPS. | CALCULATED BY:<br>CHECKED BY:<br>PAGE NUMBER 1                                                         | 1<br>2<br>3<br>4<br>2<br>3                                                                          |
| <br>.8 opipe=11<br>n=.0130<br>144.1                        | .093; Ybar =<br>NGTH = 21664<br>R= 3.03<br>= 1.00<br>RT = .0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | 8.1 apipe=<br>n=.0130<br>42.0            | n=.(                        | 7.6 Qpipe=       |                                   | 8Y:<br>8Y:<br>? 14 OF                                                                                  |                                                                                                     |
| pe=1077.2cfs<br>0130                                       | ar = ,390<br>1664,4 FEET<br>.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                 | ce= 59.8cfs<br>0130 D= 2.5<br>42.0"-PIPE | č o                         | SUBA             | AND NOTES                         |                                                                                                        | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                             |

)

1-1-51

CONCENTRATION | AREA (ACRES) PEAK FLOW RATE(CFS)= S-GRAPH : DEPTH-AREA FACTORS: 5M = RAINFALL(INCH): 5M = TOTAL AREA(ACRES)= Tc(MIN.) = PEAK FLOW RATE(CFS)= S-GRAPH : DEPTH-AREA FACTORS: 5M = RAINFALL(INCH): 5M = TOTAL AREA(ACRES)=  $Tc(MIN_{-}) =$ POINT NUMBER SUBAREA MAP # 37 DESCRIPTION OF STUDY: FILE NAME: SA37.DAT CITY OF SANTA ANA MASTER PLAN OF DRAINAGE TIME/DATE OF STUDY: 10:46 **10-YEAR RETURN FREQUENCY** 5.0-YEAR STORM RATIONAL METHOD STUDY (AMC 3771.00 3704.00 3704.00 3704.00 3704.00 3767.00 1 1 1 1 1 1 VALLEY = VALLEY = 1 58.68 57.13 • 4.5 9.4 7.9 STORE HYDROLOGIC DATA TO A FILE **MEMORY BANK # 3 CLEARED** ţ. MEMORY BANK # 1 CONFLUENCED WITH MAIN-STREAM 100.0%; FOOTHILL = .1 1585.9 100.0%; FOOTHILL = LAG TIME(HR) = LAG TIME(HR) = ł \* 3 \* 5 \* 5 i 3027.8 UPSTREAM NODE OF LONGEST WATERCOURSE = 3180.0 WITH LENGTH = 23963.9 SUM 1585.9 UPSTREAM NODE OF LONGEST WATERCOURSE .26; 30M = .26; 30M = сл Сл 1077.17 TIME OF PEAK(HR) = 16.8 VOLUME(AF)= 1886.77 .86; 30M = --- UNIT HYDROGRAPH INFORMATION ----.93; 30M = AT 50% CONFIDENCE LEVEL -- [(c) 1983-1991 ADVANCED ENGINEERING SOFTWARE]-----0 \* 1 UNIT HYDROGRAPH INFORMATION --TYPE TYPE MIN. SOIL DEV. Tt 0 n D 60/AC ---2/23/1994 4D/AC 60/AC \* \* \* \* f 1 1 1 6D/AC Com Com TIME OF PEAK(HR) = 16.8 .76 .78 .59; 1HR = .59; 1HR = .86; 1HR = .93; 1HR = \* \* \* \* 1 \* \* \* \* 1.6 : TIME INTERVAL(MIN.) = TIME INTERVAL(MIN.) = .0%; MOUNTAIN = .0%; MOUNTAIN = 1 \*\*\*\* ..... \* \* \* \* \* MIN. 14.2 1.87 .15 57.1 .81 .10 .093 1077.2 --[ORANGE COUNTY] -5 II LOSSES) in/h .78; 3HR = \_78; 3HR = \* \* \* \* .86; 3HR = ----.93; 3HR = 1 : - Fm ; ł 1 1 1 . 13 - 13 .03 3 VOLUME(AF)= (Avg) : ï ----.132 1,31; .0%; VALLEY(UNDEV)/DESERT = .0%; VALLEY(UNDEV)/DESERT = Fin 1.31; 6HR = .98; 6HR = .99; 6HR = 5.0 5.0 1 7 6HR = = 3180.0 WITH LENGTH = 22867.8 SUM ((ft) ft/ft FPS. ----8.6 Ð Fm(IN/HR) =Fm(IN/HR) = -; : PATH SLOPE V 1096 .0020 11.8 apipe=1077.2cfs ł 882 .0035 PAGE NUMBER 15 OF CALCULATED BY: .99; 24HR= 1.81; 24HR= 273.43 1.81; 24HR= 504.26 .99; 24HR= 1.00 CHECKED BY: 1 t J \* \* \* : ; .099; Ybar = .093; Ybar = \* \* \* : . 8 3.03 3.03 i n=.0130 D= 9.1 INITIAL ADD SUBAREA ×0. 144.0"-PIPE 20% HYDRAULICS AND NOTES SUBAREA .414 .389 FEET FEET

| 3778.00                      |                           | 3790.00                     | 3790.00                                | 3776.00                                                                   | 3775.00                                                           | 3774.00<br>3774.00                                                          | 3773.00                                                            | 64.ft-STREET<br>FLOW TO PT.#<br>3772.00                     | CONCENTRATION AREA (ACRES) POINT NUMBER SUBAREA SUM | FILE NAME:SA37.DAT<br>TIME/DATE OF STUDY: 10:46 2/23/1994<br>5.0-YEAR STORM RATIONAL METHOD STUDY (AMC | MAP # 37 |
|------------------------------|---------------------------|-----------------------------|----------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------|
| 2.3                          | 5                         | HAIN-                       | 16.4                                   | 6.7                                                                       | 8.3                                                               | 13.2                                                                        | 7.7                                                                | 5.7                                                         | AREA (J<br>SUBAREA                                  | SA37.DAT<br>OF STUDY: 10:46<br>STORM RATIONAL                                                          | 1 7 1 9  |
| 6.4 C                        |                           | MAIN-STREAM COPIED          | 79.2 0                                 | 62.7                                                                      | 55.8                                                              | 32.9                                                                        | 19.7                                                               | 11.6                                                        |                                                     | 10:46<br>IONAL M                                                                                       | 00401    |
| and the second second        | -                         |                             | Com<br>60/AC                           | C   Com                                                                   | C 60/AC                                                           | C  60/AC                                                                    | c 60/AC                                                            |                                                             | SOIL DEV.   Tt<br>TYPE TYPE MIN.                    | [ORANGE COUNTY][<br>2/23/1994<br>ETHOD STUDY (AMC II LOSSES)                                           | 1 20% 00 |
| 1                            | $\frac{ \cdot }{ \cdot }$ | NTO ME                      | 1.3                                    | 1.7                                                                       | 2.9                                                               | 2.7                                                                         |                                                                    |                                                             | MIN.                                                | 94<br>94<br>107 (AH                                                                                    | AL JORU  |
| 17.6 1.63                    |                           | ONTO MEMORY BANK            | the second second second second second | 28.3                                                                      | 26.6                                                              | 23.7                                                                        | 20.9                                                               |                                                             | HIN.                                                | - LORAN                                                                                                | E LEVEL  |
| 5 million area               |                           | : ** !                      |                                        |                                                                           | .26                                                               | 1.35                                                                        | 1.43                                                               | 1.49                                                        | In/h                                                | LORANGE COUNTY]<br>II LOSSES)                                                                          | f        |
| - 15]<br>- 1                 | <u></u> -                 | 2                           |                                        | -03                                                                       | <u> </u>                                                          | .13                                                                         | .13                                                                | .03                                                         | Fm                                                  | INTY] -                                                                                                |          |
| -134                         | - <u>-i</u> -             | $\frac{1}{1}$               | 108                                    | .104                                                                      | .102                                                              | .129                                                                        | .132                                                               | .137                                                        | (Avg)                                               |                                                                                                        |          |
| 8.6 -                        |                           |                             | 75.8                                   | 62.4                                                                      | 58.2                                                              | 36.1                                                                        | 23.1                                                               | 14.2                                                        | SUM                                                 | DETUAD                                                                                                 |          |
| $\left  \frac{1}{1} \right $ | 812 .0                    | $\frac{1}{1}$ $\frac{1}{1}$ | 0010. 855                              | 454 .0010                                                                 | 1219                                                              | 1056 .0050                                                                  | 455                                                                | 693                                                         | PATH<br>(ft)                                        |                                                                                                        |          |
|                              | .0035                     | <u>t 1</u>                  | the second second second second        |                                                                           |                                                                   | -0050                                                                       | .0050                                                              | .0050                                                       | PATH SLOPE  V<br> (ft) ft/ft FPS.                   | CALCULATED BY:<br>CHECKED BY:<br>PAGE NUMBER 1                                                         |          |
|                              |                           |                             |                                        |                                                                           |                                                                   | 6.4                                                                         | 5.6                                                                | 2.2                                                         | FPS.                                                | D BY:<br>D BY:<br>ER 10                                                                                |          |
|                              | INITIAL SUBAREA           |                             | 4.5 Apipe= 62.4cfs                     | 4.3   apipe= 58.2cfs<br>  n=.0130 D= 3.5<br>  54.0"-PIPE<br>  ADD SUBAREA | 7.0 apipe= 36.1cfs<br>n=.0130 D= 2.2<br>33.0"-PIPE<br>ADD SUBAREA | 6.4  Qpipe= 23.1cfs<br> n=.0130 D= 1.7  <br>  30.0"-PIPE  <br>  ADD SUBAREA | opipe= 14.2cfs<br> n=.0130 D= 1.5<br>  24.0"-PIPE<br>  ADD SUBAREA | <br> aest.= 12.3cfs<br> D= ,5 ,D*V= 1.1<br> FL000WJDTH=16.4 | HYDRAULICS<br>AND NOTES                             | Y:<br>Y:<br>16 OF                                                                                      |          |

| PLAW OF DRAINAGE<br>AT 50% CONFIDENCE LEVEL<br>2/23/1994<br>FICHO STUDY (AMC II LOSSES)<br>FICO 1983-1991 ADVANCED ENGINEERING SOFTWARE]<br>SOIL  DEV.  TT TC   1  Fm  Fm   Q  PATH<br> TYPE  TYPE  MIN.   In//h   (Avg)   SUM (ft)<br> | PLAN OF DRAIMAGE       CONFIDENCE LEVEL       CALCULATED         2/23/1994       CALCULATED       CALCULATED         SOLL DEV.       TT       LOSSES)       PAGE NUMRE         IPPE       PRIMO STUDY (AMC 11 LOSSES)       PAGE NUMRE       CHECKED         SOLL DEV.       TT       TC       I       Fm       Fm       SOL DEV.         IPPE       IPPE       INV.       IN/h       KITMOS       SUM (ft)       FME         IPPE       IPPE       IPPE       IPPE       IPPE       IPPE       IPPE       IPPE         IPPE       IPPE       IPPE       IPPE       IPPE       IPPE       IPPE       IPPE       IPPE       IPPE       IPPE       IPPE       IPPE       IPPE       IPPE       IPPE       IPPE       IPPE       IPPE       IPPE       IPPE       IPPE       IPPE       IPPE       IPPE       IPPE       IPPE       IPPE       IPPE       IPPE       IPPE       IPPE       IPPE       IPPE       IPPE       IPPE       IPPE       IPPE       IPPE       IPPE       IPPE       IPPE       IPPE       IPPE       IPPE       IPPE       IPPE       IPPE       IPPE       IPPE       IPPE       IPPE       IPPE       IPPE <th>3781.00</th> <th>3786.00<br/>3786.00</th> <th>3785.00<br/>3785.00</th> <th>48.ft-STREET<br/>FLOW TO PT.#<br/>3784.00</th> <th>3783.00</th> <th>3781.00</th> <th>3781.00</th> <th>3780_00</th> <th>48.ft-STREET<br/>FLOW TO PT.#<br/>3779.00</th> <th>CONCENTRATION AREA (ACRES)</th> <th>FILE NAME:SA37.DAT<br/>TIME/DATE OF STUDY<br/>5.0-YEAR STORM RA</th> <th>CITY OF SAN<br/>10-YEAR RETL<br/>MAP # 37</th> | 3781.00                        | 3786.00<br>3786.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3785.00<br>3785.00                                                                 | 48.ft-STREET<br>FLOW TO PT.#<br>3784.00 | 3783.00          | 3781.00        | 3781.00                                       | 3780_00 | 48.ft-STREET<br>FLOW TO PT.#<br>3779.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CONCENTRATION AREA (ACRES) | FILE NAME:SA37.DAT<br>TIME/DATE OF STUDY<br>5.0-YEAR STORM RA | CITY OF SAN<br>10-YEAR RETL<br>MAP # 37 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------|------------------|----------------|-----------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------------------------------------|-----------------------------------------|
| PLAW OF DRAINAGE<br>AT 50% CONFIDENCE LEVEL<br>2/23/1994<br>IC (2) 1983-1991 ADVANCED ENGINEERING SOFTWARE]<br>SOLL  DEV.  Tt Tc   1 Fm Fm 2  PATH<br>ITYPE  TYPE  MIN.   In//h   (Avg)   SUM (ft)<br>                                  | PLAN OF DRAIMGE<br>AT 50% CONFIDENCE LEVEL<br>2/23/1994<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                | 9.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.0                                                                                | 7.4                                     | 4.2              |                | 10.6                                          | 3 4     | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AREA (J<br>SUBAREA         | 37-DAT<br>STUDY:<br>ORM RAT                                   | TA ANA MAS<br>URN FREQUE                |
| LEVEL                                                                                                                                                                                                                                   | LEVEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | :                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |                                         | 4.2              | 31.0           | 31.0                                          | 18.6    | 11.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            | 10:46                                                         | ASTER P                                 |
| LEVEL                                                                                                                                                                                                                                   | LEVEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                | A DESCRIPTION OF A DESC |                                                                                    |                                         |                  |                | the second design of the second design of the |         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SOIL DEV                   |                                                               | T 50% CON                               |
| LEVEL                                                                                                                                                                                                                                   | LEVEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.6                            | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                    |                                         |                  | 1              |                                               | 1       | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E MIN.                     | 94<br>94<br>DY (AM)<br>3-1991                                 | IFIDENCI                                |
| SofTWARE]                                                                                                                                                                                                                               | CALCULATED         PAGE NUMBE         SOFTWAREJ         SUM         II3.4         II3.4         II3.4         II3.4         II3.4         II3.4         II3.4         II3.4         III3.4         IIII         IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    | 15.91                                   | 11.4 2           | 21.5           |                                               | 20.8    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tc                         | - LORANG                                                      | E LEVEL                                 |
| SofTWARE]                                                                                                                                                                                                                               | CALCULATED         PAGE NUMBE         SOFTWAREJ         SUM         II3.4         II3.4         II3.4         II3.4         II3.4         II3.4         II3.4         II3.4         III3.4         IIII         IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 1                                                                                |                                         |                  | .42            | t                                             |         | the second secon | 1   F                      | E COUNT                                                       |                                         |
| SOFTWARE]                                                                                                                                                                                                                               | CAL CULATED         PAGE         PAGE         NUMRE         Q         PATH         SUM         13.4            20.5         21.8            35.8            35.8            35.8            35.8            35.8            35.8            35.8            35.8            35.8            35.8            35.8            35.8            35.8            35.8            35.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |                                         |                  |                |                                               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m   Fm<br> (Avg)           | YJ                                                            |                                         |
| CAL<br>PAGE<br>PAGE<br>PAGE<br>289<br>289<br>279<br>279<br>279<br>279<br>279<br>279<br>279<br>279<br>279<br>27                                                                                                                          | CALCULATED<br>CHECKED<br>PAGE NUMBE<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                | 38.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28.2                                                                               |                                         |                  | 35.8           |                                               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SUX D                      | SOFTWAR                                                       |                                         |
|                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                | 812                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                    |                                         | a state where we |                |                                               |         | 289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DATH<br>Cft)               |                                                               |                                         |
|                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n=.0130 b= 2.6  <br>42.0"-PIPE | § . 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | upipe= 17.0cts<br>n=.0130 D= 1.5  <br>27.0"-PIPE  <br>ADD SUBAREA  <br>ADD SUBAREA |                                         | 1 5 1            | FOR CONFLUENCE | ADD SUBAREA                                   | 0. 22   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HYDRAULICS<br>AND NOTES    | 9                                                             |                                         |

-

|                                       | 3790.00<br>  17<br>  17<br>  16                                                                                                            | 3789.00<br>3789.00<br>3789.00                                                                                             | 3788.00<br>3788.00                            | 3787.00                         | CONFLUENCE<br>ANALYSIS<br>FOR POINT#<br>3781.00                                                                                           | CONCENTRATION AREA (ACRES)<br>POINT NUMBER SUBAREA SUM | TU-TEAR RETURN FREQUENCY AT 50% CONFIDENCE<br>MAP # 37<br>FILE NAME:SA37.DAT<br>TIME/DATE OF STUDY: 10:46 2/23/1994<br>5.0-YEAR STORM RATIONAL METHOD STUDY (AMC |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                       | MEMORY<br>Q(cfs)<br>175.76<br>175.72<br>169.96<br>TOTAL                                                                                    | ·····                                                                                                                     | 13.6                                          | 10.0                            | MEAN<br>EFFEC<br>Q(cfs)<br>74.30<br>74.32                                                                                                 | AREA (ACF<br>SUBAREA                                   | SA37.DAT<br>OF STUDY: 10:46                                                                                                                                      |
|                                       | ' BANK # 2 CO<br>Tc(min) Fp<br>26.44<br>26.83<br>29.60<br>AREA(ACRES)=                                                                     | 93.5<br>                                                                                                                  | 84.1 C                                        | 70.5 C                          | VALUES: F<br>TIVE AREA<br>Tc(min)<br>21.49<br>21.10                                                                                       | SUM T                                                  | ACY AT                                                                                                                                                           |
|                                       | # 2 CONI<br>1) Fp(a<br>3 .22<br>3 .22<br>3 .22                                                                                             | 60/AC                                                                                                                     | 60/AC                                         |                                 | PEAK FLOW<br>TIME OF C<br>MEAN VALUES: FP(IN/HR) =<br>EFFECTIVE AREA(ACRES) =<br>cfs) Tc(min) Fp(avg)<br>.30 21.49 .250<br>.32 21.10 .250 | SOIL DEV. Tt Tc I Fm Fm Q PA                           | 50% CONFI<br>2/23/1994<br>HOD STUDY                                                                                                                              |
| 4-1                                   | CONFLUENCED L<br>Fp(avg) Ap(<br>.250 .<br>.250 .<br>.250 .<br>.250 .<br>.250 .                                                             | 2.4                                                                                                                       | 13                                            | <u> </u>                        | HE OF CON<br>HE OF CON<br>IN/HR) =<br>IN/HR) =<br>CRES) =<br>Fp(avg) /<br>.250<br>.250                                                    |                                                        | 94<br>94<br>97 (AMC                                                                                                                                              |
|                                       | CED WITH<br>Ap(avg)<br>.48<br>.48<br>.48<br>.48<br>.47<br>.47<br>.47<br>.47                                                                | 24.0 1.34                                                                                                                 | 23                                            | 21.7 1.41                       | PEAX FLOW RATE(CFS) =<br>TIME OF CONCENTRATION(M)<br>p(IN/HR) = .250; Ap =<br>(ACRES) = .60.37 TC<br>Fp(avg) Ap(avg) Fm(a<br>.250 .51 .1  | HIN. In                                                | LEVEL<br>LORANGE COUN                                                                                                                                            |
|                                       | CONFLUENCED WITH MAIN-STREAM<br>Fp(avg) Ap(avg) Fm(avg) I<br>.250 .48 .119<br>.250 .48 .119<br>.250 .47 .119<br>.250 .47 .119<br>)= 173.24 | 34 .13                                                                                                                    | 1.37 .13                                      |                                 |                                                                                                                                           | I Fm                                                   | LEVEL<br>LORANGE COUNTY]-<br>JI LOSSES)                                                                                                                          |
|                                       | 2                                                                                                                                          | .127                                                                                                                      | .128                                          | .128                            | 74.3<br>74.3<br>.515; Fm(IN/HR) =<br>.515; Fm(IN/HR) =<br>TAL AREA(ACRES) =<br>Vg) I(in/hr) Ae(<br>29 1.42<br>29 1.43                     | (Avg)                                                  |                                                                                                                                                                  |
|                                       |                                                                                                                                            | 102.0                                                                                                                     | 93.7                                          | 22                              | 3<br>= 21.1<br>5; Fm(IN/HR<br>5; Fm(IN/HR<br>4REA(ACRES)<br>1(in/hr)<br>1.42<br>1.43                                                      | SUH SUH                                                |                                                                                                                                                                  |
|                                       | Ae(acres)<br>164.21<br>165.83<br>173.24                                                                                                    | 1352                                                                                                                      |                                               | 302 .0050                       |                                                                                                                                           | PATH S                                                 | CALCI                                                                                                                                                            |
|                                       | s) NODE<br>1 3782.0<br>3 3777.0<br>4 37770.0                                                                                               | 6 0500                                                                                                                    |                                               |                                 | (    <br>129<br>= - 60.93<br>+e(acres) NODE<br>- 60.93 3777.0<br>- 60.37 3782.0                                                           | PATH SLOPE  V<br>(ft) ft/ft FPS.                       | CALCULATED BY:<br>CHECKED BY:<br>PAGE NUMBER 18 OF                                                                                                               |
|                                       | <u> </u>                                                                                                                                   | 9.0   0pipe=<br>  48<br>  ADD \$<br>9.2   0pipe=<br>  n=.0130<br>  51.                                                    | 8.0   upipe=<br>  n=.0130<br>  45.<br>  ADD S | 8.5  qpipe=<br> n=.0130<br>  45 | <u> </u>                                                                                                                                  | - <u></u>                                              | 3Y:<br>3Y:<br>18 OF                                                                                                                                              |
| , , , , , , , , , , , , , , , , , , , |                                                                                                                                            | 9.0 000 000 95.7cfs<br>n=.0130 D= 3.1<br>48.0"-PIPE<br>ADD SUBAREA<br>9.2 000 000 000 000<br>n=.0130 D= 3.1<br>51.0"-PIPE | v                                             |                                 | LARGEST<br>CONFLUENCE<br>D= 74.3                                                                                                          | HYDRAULICS<br>AND NOTES                                |                                                                                                                                                                  |

....

1-1-55

Ч. Т

| <br>ANALYSIS<br>FOR POINT#<br>3795.00                                                                                                                                                                                                                                                             | 3795.00               | 3794.00               | 48.ft-STREET  <br>FLOW TO PT.#  <br>3793.00 | 3792.00   | 3795.00        | 3795.00                                     | POINT NUMBER SUBAREA SUM                                     | FILE NAME:SA37.DAT<br>TIME/DATE OF STUDY: 10:46 2/23/1994<br>5.0-YEAR STORM RATIONAL METHOD STUDY (AMC | 10-YEAR RETURN FREQUENCY AT 50% CONFIDENCE LEVEL<br>MAP # 37 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|---------------------------------------------|-----------|----------------|---------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| <br>MEAN<br>EFFE<br>Q(cfs)<br>215.31<br>215.36<br>209.13<br>214.24                                                                                                                                                                                                                                | 1                     | 3.9                   | 4.6                                         | 6.4       |                | 3.2                                         | AREA (A<br>UBAREA                                            | SA37.DAT<br>OF STUDY: 10:46<br>STORM RATIONAL                                                          | IN FREQU                                                     |
| <br>MEAN VALUES:         Fp(IN/HR)           EFFECTIVE         AREA(ACRES)           cfs)         Tc(min)         Fp(avg)           i.31         28.00         .250           i.06         28.40         .250           i.13         31.17         .250           i.24         29.00         .250 |                       | 32.9                  | 3.1                                         | 6.4       | 183.0          | 183.0                                       | 1 1                                                          | 10:46<br>ONAL HE                                                                                       | IENCY AT                                                     |
| <br>070037                                                                                                                                                                                                                                                                                        | <u>;</u>              |                       | C C                                         | c _6      |                | <u> </u>                                    | SOIL  DEV.   Tt<br> TYPE  TYPE  MIN.<br>                     | 2/23<br>1100                                                                                           | 50%                                                          |
| <br>TIME OF CO<br>Fp(IN/HR) =<br>EA(ACRES) =<br>n) Fp(avg)<br>0 .250<br>0 .250<br>7 .250<br>0 .250<br>0 .250                                                                                                                                                                                      | <u> -</u>             | 60/AC  <br>  Park   - | 6D/AC<br>Park                               | 6D/AC     | <u> </u>       | 60/AC                                       | DEV.                                                         | 2/23/1994<br>1000 STUDY<br>1000 STUDY                                                                  | CONFI                                                        |
| <br>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                         | 4.0                   |                       | 5.2                                         | ;:<br>    | <u>   </u>     | 1.6                                         |                                                              | (AHC                                                                                                   | DENCE                                                        |
| <br>TIME OF CONCENTRATION(MIN.) =<br>p(IN/HR) = .250; Ap = .497<br>(ACRES) = 214.72 TOTAL AI<br>Fp(avg) Ap(avg) Fm(avg) .<br>.250 .50 .124<br>.250 .50 .124<br>.250 .50 .124                                                                                                                      | 1                     | 25.0 1.31             | 22.5                                        | 17.3      | 28.0 1.22      | 28.0                                        | MIN.                                                         | EORANGE COUNTY)<br>II LOSSES)<br>ADVANCED ENGINEE                                                      | LEVEL                                                        |
|                                                                                                                                                                                                                                                                                                   | 1                     | 3                     | 11.39                                       | 11.65     | 1.22           | 1.22                                        | I<br>  in/h                                                  | DRANGE COUN<br>11 LOSSES)<br>DVANCED ENG                                                               |                                                              |
| <br>N(MIN.) =<br>p = .497;<br>TOTAL ARE<br>Fm(avg) I(<br>.124<br>.124<br>.124                                                                                                                                                                                                                     | { <u> </u>            | .213                  | .13                                         | .13       |                | .13                                         | <u> </u>                                                     | NTY)-                                                                                                  | 5                                                            |
|                                                                                                                                                                                                                                                                                                   | •                     | . 141                 | .139                                        | .125      |                | . 121                                       | Fm<br>(Avg)                                                  | RING                                                                                                   |                                                              |
| (MIN.) = 28.0<br>= .497; Fm(IN/HR) =<br>TOTAL AREA(ACRES) =<br>m(avg) I(in/hr) Ae(<br>.124 1.22 2<br>.124 1.21 2<br>.124 1.19 2                                                                                                                                                                   | 1<br>1<br>1<br>1<br>1 | 34.6                  | 14.7                                        | 8.7       | 180.9          | 180.9                                       | SUX O                                                        | - [(c) 1983-1991 ADVANCED ENGINEERING SOFTWARE]                                                        |                                                              |
| 14<br>14<br>19                                                                                                                                                                                                                                                                                    | 1                     | 1691                  | <u>8</u>   8                                | 629       |                |                                             | PATH<br>(ft)<br><br>534                                      |                                                                                                        |                                                              |
|                                                                                                                                                                                                                                                                                                   | 1                     | 1691 .0050            | 0020                                        | 929 .0050 |                |                                             | PATH SLOPE  V<br> (ft) ft/ft FPS.<br>   <br> -534 .0010  5.7 | CALCULATED BY:<br>CHECKED BY:<br>PAGE NUMBER 1                                                         |                                                              |
| 4<br>4,88<br>NODE<br>3782.0<br>3777.0<br>3777.0<br>3777.0<br>3771.0                                                                                                                                                                                                                               | 1                     |                       |                                             |           | ĪĪ             |                                             | V<br>  FPS.<br>                                              |                                                                                                        |                                                              |
| LARGEST<br>CONFLUENCE<br>Q= 215.3                                                                                                                                                                                                                                                                 | n=.0130 D= 2.1        |                       | D= .5 ,0<br> FLOODWID                       |           | FOR CONFLUENCE | n=.0130 D= 5.4<br>81.0"-PIPE<br>ADD SUBAREA | HYDRAULICS  <br>AND NOTES  <br>                              | 11<br>12<br>19 OF                                                                                      |                                                              |

a.

56

| PLAN OF DRAINAGE<br>AT 50% CONFIDENCE LEVEL<br>2/23/1994<br>METHOD STUDY (AMC 11 LOSSES)<br>- [(c) 1983-1991 ADVANCED ENGINEERING SOF<br> SOIL DEV,  Tt   Tc   1   Fm   Fm  <br> TYPE TYPE MIN.   MIN.   (n/h   (Avg)  <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PLAM OF DRAINAGE<br>AT 50% CONFIDENCE LEVEL<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <br>3704.00 3268.2 3704.00 3268.2                   | Tc(MIN.) =       58.68       LAG         TOTAL AREA(ACRES)=       32.         RAINFALL(INCH):       5M =          DEPTH-AREA FACTORS:       5M =          S-GRAPH :       VALLEY =       100.02         PEAK FLOW RATE(CFS)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3704.00                              | 3704.00                         | 3704,00  | 3796.00<br>3796.00      | POINT NUMBER SUBAREA | FILE NAME:SA37.DAT<br>TIME/DATE OF STUDY: 10:46<br>5.0-YEAR STORM RATIONAL<br>CONCENTRATION AREA (ACRES) | CITY OF SANTA ANA MAS<br>10-YEAR RETURN FREQUE<br>MAP # 37                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------|----------|-------------------------|----------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| LEVEL<br>[ORANGE COUNTY]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LEVEL<br>I LOSSES)   CALCULATE<br>I LOSSES)   CALCULATE<br>CHECKEI<br>II LOSSES)   PAGE NUMBE<br>DVANCED ENGINEERING SOFTUARE]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <br> 3268.2  <br> 3268.2  <br> RATION(MIN.)=        | 8.68 LAG TIME<br>ES)= 3268.2<br>: 5M = .26;<br>TORS: 5M = .8<br>TORS: 5M = .8<br>(CFS)= 100.0%; FG<br>(CFS)= 2006;<br>(CFS)= 2006;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MEMORY BAN                           | MEMORY BAN<br>Q(cfs)<br>1886.77 |          |                         | 1 1                  | A37.DAT<br>STUDY: 10:46<br>ORM RATIONAL M                                                                | TA ANA MASTER F                                                                                  |
| LEVEL<br>[ORANGE COUNTY]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LEVEL<br>I LOSSES)<br>To (I DENCINERING SOFTWARE)<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULATE<br>CALCULAT                                                                                                                                                                                                                                                     | <br>58.6                                            | (HR) = .78 T<br>UPSTREAM NOD<br>30M = .59; 1<br>5; 30M = .85;<br>5; 30M = .85;<br>.55 TIME OF P<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <br>K # 3 CONFLUEN<br>UNIT HYDROGRAP |                                 | 1.5      | <br> 60/AC<br>  Park  - | TYPE  TYPE  MIN      | 2/23/1994<br>ETHOD STUDY (A<br>-[(c) 1983-199<br> SOIL DEV.  Tt                                          | PLAN OF DRAINAG                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CALCULATE<br>CALCULATE<br>CHECKE<br>PAGE NUMB<br>RG SOFTWARE]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                     | IME         INTERVAL(           IME         INTERVAL(           HR         .78; 3           HR         .78; 3           HR         .85;           1HR         .85;           COX;         MOUNTAIN           OX;         MOUNTAIN           EAK(HR)         = 16.0           Image: Imag |                                      |                                 | <u> </u> |                         | HIN.                 | MC II LOSSES                                                                                             | GE<br>NCE LEVEL                                                                                  |
| CALCUL<br>CHE<br>PAGE W<br>THAREJ<br>PAGE W<br>THAREJ<br>THAREJ<br>PAGE W<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>THAREJ<br>T | AGE NUMB<br>AGE NUMB<br>AGE NUMB<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010]<br>90].0010] | <br>                                                | HIN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <br>-STREAM                          | AREA(acres)<br>3027.80          |          | -126                    | 1 1                  | GINEERING SOF                                                                                            | NTV1                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <br>  <br>6.5  <br>  <br>PEAK FLC0<br>: Fm(IN/HR) : | Fm(IN/HR) =<br>3180.0 WITH<br>HR = 1.81;<br>HR = .99; 2<br>LEY(UNDEV)/D<br>= 538.32<br>= 538.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |                                 |          | 16.4                    |                      | TIA A                                                                                                    | 4<br>1<br>1<br>2<br>2<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4 |

-



02/23/94

HYDRAULIC ANALYSIS SUMMARY

Page No. 1

|            | Road          | av      |     |            | Existing D | noin  |         | -    | Destan           | -     |                        |       |                       |              | the second second | ruge no.     |
|------------|---------------|---------|-----|------------|------------|-------|---------|------|------------------|-------|------------------------|-------|-----------------------|--------------|-------------------|--------------|
| ID         | Name          | Slope   | K   | Diam/Depth | Base Width | Side  | Slope   | ĸ    | Design<br>Runoff |       | tion Capaci<br>Conduit | Total | Deficient<br>Capacity | -Improvement | Alternatives-     |              |
|            | 2             | (ft/ft) | -   | (in)/ (ft) | (ft)       | Slope | (ft/ft) | 2    | (cfs)            | (cfs) | (cfs)                  | (cfs) | (cfs)                 | Replacement  | New/Parallel      | Improvement  |
| Map Area   | :38           |         |     |            |            |       |         |      |                  |       |                        |       |                       |              |                   |              |
| 504-3801   | ROUSELLE      | 0.0050  |     | 51.0       |            |       | 0.00500 | 1692 | 804.8            | 0.0   | 119.6                  | 119.6 | 685.1                 | 11x6.5 RCB   | 10.4 5 000        | 11           |
| 5811-3812  | HALLADAY      | 0.0050  | 566 |            |            |       |         |      | 10.9             | 40.0  | 0.0                    | 40.0  | 0.0                   | TIXO.5 KUB   | 10x6.5 RCB        | 11x6.5 RCB   |
| 5812-3813  | OCCIDENTAL    | 0.0050  | 283 |            |            |       |         |      | 10.9             | 20.0  | 0.0                    | 20.0  | 0.0                   |              |                   |              |
| 5813-3801  | OCCIDENTAL    | 0.0050  | 283 |            |            |       |         |      | 15.8             | 20.0  | 0.0                    | 20.0  | 0.0                   |              |                   |              |
| \$801-3802 | ROUSELLE      | 0.0050  | 566 | 51.0       |            |       | 0.00500 | 1692 | 807.2            | 40.0  | 119.6                  | 159.7 | 647.5                 | 11x6.5 RCB   | 9.5x6.5 RCB       | 11x6.5 RCB   |
| 1802-3803  | ROUSELLE      | 0.0050  | 566 | 51.0       |            |       | 0.00500 | 1692 | 816.4            | 40.0  | 119.6                  | 159.7 | 656.7                 | 11x6.5 RCB   | 9.5x6.5 RCB       | 11x6.5 RCB   |
| \$816-3817 | ST. GERTRUDE  | 0.0020  | 283 |            |            |       |         |      | 14.7             | 12.7  | 0.0                    | 12.7  | 2.0                   | TINO.5 NOD   | 18" RCP           | 18" RCP      |
| \$817-3818 | ST. GERTRUDE  | 0.0020  | 283 |            |            |       |         |      | 14.7             | 12.7  | 0.0                    | 12.7  | 2.0                   |              | 18" RCP           | 18" RCP      |
| 3818-3803  | ST. GERTRUDE  | 0.0020  | 283 |            |            |       |         |      | 22.2             | 12.7  | 0.0                    | 12.7  | 9.5                   |              | 24" RCP           | 24" RCP      |
| \$803-3804 | ROUSELLE      | 0.0050  | 566 | 51.0       |            |       | 0.00500 | 1692 | 829.7            | 40.0  | 119.6                  | 159.7 | 670.1                 | 11x6.5 RCB   | 9.5x6.5 RCB       | 11x6.5 RCB   |
| \$804-3805 | ROUSELLE      | 0.0050  |     | 51.0       |            |       | 0.00500 | 1692 |                  | 0.0   | 119.6                  | 119.6 | 710.7                 | 11.5x6.5 RCB | 10x6.5 RCB        | 11.5x6.5 RCB |
| \$821-3822 | STANDARD      | 0.0050  | 566 |            |            |       |         |      | 68.6             | 40.0  | 0.0                    | 40.0  | 28.6                  | 11.370.3 100 | 30" RCP           | 33" RCP      |
| 5822-3823  | STANDARD      | 0.0050  | 566 |            |            |       |         |      | 79.1             | 40.0  | 0.0                    | 40.0  | 39.0                  |              | 36" RCP           | 36" RCP      |
| 5823-3824  | STANDARD      | 0.0050  | 566 |            |            |       |         |      | 87.7             | 40.0  | 0.0                    | 40.0  | 47.7                  |              | 39" RCP           | 39" RCP      |
| 5824-3825  | STANDARD      | 0.0050  | 566 |            |            |       |         |      | 102.7            | 40.0  | 0.0                    | 40.0  | 62.7                  |              | 42" RCP           | 42" RCP      |
| \$825-3826 | STANDARD      | 0.0050  | 566 |            |            |       |         |      | 112.2            | 40.0  | 0.0                    | 40.0  | 72.2                  |              | 45" RCP           | 45" RCP      |
| \$826-3834 | WARNER        | 0.0020  | 70  | 27.0       |            |       | 0.00200 | 310  | 121.7            | 3.1   | 13.9                   | 17.0  | 104.8                 | 63" RCP      | 60" RCP           | 63" RCP      |
| 3831-3832  | EVERGREEN     | 0.0050  | 566 |            |            |       |         |      | 12.5             | 40.0  | 0.0                    | 40.0  | 0.0                   | 00 1101      | OU KUP            | UJ KUP       |
| \$832-3833 | EVERGREEN     | 0.0050  | 566 |            |            |       |         |      | 12.5             | 40.0  | 0.0                    | 40.0  | 0.0                   |              |                   |              |
| 5833-3834  | EVERGREEN     | 0.0050  | 566 |            |            |       |         |      | 18.6             | 40.0  | 0.0                    | 40.0  | 0.0                   |              |                   |              |
| \$834-3845 | WARNER        | 0.0020  | 70  | 27.0       |            |       | 0.00200 | 310  |                  | 3.1   | 13.9                   | 17.0  | 131.1                 | 66" RCP      | 63" RCP           | 66" RCP      |
| 5841-3842  | CEDAR         | 0.0050  | 566 |            |            |       |         |      | 17.9             | 40.0  | 0.0                    | 40.0  | 0.0                   | 00 1101      | OD NOT            | OU KUP       |
| \$842-3843 | CEDAR         | 0.0050  | 566 |            |            |       |         |      | 17.9             | 40.0  | 0.0                    | 40.0  | 0.0                   |              |                   |              |
| \$843-3844 | ST. GERGTRUDE | 0.0020  | 566 |            |            |       |         |      | 24.8             | 25.3  | 0.0                    | 25.3  | 0.0                   |              |                   |              |
| \$844-3845 | HALLADAY      | 0.0050  | 566 |            |            |       |         |      | 30.8             | 40.0  | 0.0                    | 40.0  | 0.0                   |              |                   |              |
| \$845-3805 | WARNER        | 0.0020  | 70  | 27.0       |            |       | 0.00200 | 310  |                  | 3.1   | 13.9                   | 17.0  | 173.0                 | 72" RCP      | 72" RCP           | 72" RCP      |
| 1594-3821  | STANDARD      | 0.0050  | 566 |            |            |       |         |      | 58.9             | 40.0  | 0.0                    | 40.0  | 18.9                  |              | 27" RCP           | 33" RCP      |

| 3813.00<br>3813.00 | 48.ft-STREET  <br>FLOW TO PT.#  <br>3812.00 | 3811.00         | 3801.00        | TC(MIN.) = 49.91 LAG TIME(HR) = .<br>TOTAL AREA(ACRES)= 1080.4 UPSTREA<br>RAINFALL(INCH): 5M = .26; 30M = .<br>DEPTH-AREA FACTORS: 5M = .95; 30M =<br>S-GRAPH : VALLEY = 100.0%; FOOTHILL =<br>PEAK FLOW RATE(CFS)= 804.78 TIME | 3801.00                                                               | 3504.00                                                            | 3504.00                                                                                       | CONCENTRATION AREA (ACRES) POINT NUMBER SUBAREA SUM | FILE NAME:SA38.DAT<br>TIME/DATE OF STUDY: 10:45 2/2<br>5.0-YEAR STORM RATIONAL METHOD | 10-YEAR RETURN FREQUENCY AT 50% CONFIDENCE LEVEL<br>MAP # 38                                               |
|--------------------|---------------------------------------------|-----------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| 5.7 16.1           | 4.4 10.3                                    | 5.9 5.9         | 1080.4         | LAG TIME<br>1080.4<br>.26;<br>.5M = .5<br>500.0%; F<br>804                                                                                                                                                                      |                                                                       | MEMORY BAN<br>Q(cfs)<br>804.78                                     | MEMORY BAN<br>Q(cfs)<br>804.78                                                                |                                                     | i fin                                                                                 | FREQUENCY AT                                                                                               |
| c 60/AC            | c  60/AC                                    | c  60/AC        |                |                                                                                                                                                                                                                                 |                                                                       | -                                                                  | MEMORY BANK # 1 DEFINED AS FOLLOWS:<br>Q(cfs) Tc(min) Fm(in/hr) Ybar<br>804.78 48.60 .093 .38 |                                                     |                                                                                       | 10-YEAR RETURN FREQUENCY AT 50% CONFIDENC<br>MAP # 38                                                      |
| 2.7                | 2.6                                         |                 | 49.9           | 77 TIME INTERVALION<br>77 TIME INTERVAL(M<br>1000E OF LONGEST W<br>97 THR = .78; 3H<br>.95; THR = .95; 3I<br>.0%; MOUNTAIN =<br>05 PEAK(HR) = 16.8<br>                                                                          | 1.3                                                                   | ED ONTO MAIN-STI<br>ED ONTO MAIN-STI<br>Em(in/hr) Ybar<br>_093 _38 | NED AS FOLLOW<br>Fm(in/hr) YE                                                                 | It Tc I<br>N. MIN. in/h                             | STUDY (AMC II LOSSES)   P<br>1983-1991 ADVANCED ENGINEERING SOFTWAREJ-                | ENCE LEVEL                                                                                                 |
|                    | 30 .13 .125                                 | 38 . 13 . 125   | .87            | = ;<br>= ;<br>= ;                                                                                                                                                                                                               |                                                                       | - <br>EA(a<br>106                                                  | -048:<br>Ybar AREA(acres)<br>.38 1061.12                                                      | /h Fm Fm                                            | SES)                                                                                  | LEVEL                                                                                                      |
| 125 15.8           | 10.9                                        | 6.7             | 804.8          | .) = 5.0 Fm(I<br>ERCOURSE = 3180<br>= 1.31; 6HR =<br>= .99; 6HR =<br>.0%; VALLEY(U<br>VOLUME(AF)=<br>   -                                                                                                                       | 804.8                                                                 |                                                                    |                                                                                               | Fm a p                                              | G SOFTWARED                                                                           | 9<br>2<br>9<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                   |
| 1 1                | vi i v                                      | 833 .0010       |                | ) = 5.0 Fm(1N/HR) = .094; Ybar =<br>CCOURSE = 3180.0 WITH LENGTH = 17140.0<br>1.31; 6HR = 1.81; 24HR= 3.03<br>= .99; 6HR = 1.00; 24HR= 1.00<br>.0%; VALLEY(UNDEV)/DESERT = .0%<br>DLUME(AF)= 188.09                             | 1206 0050 15.4                                                        |                                                                    |                                                                                               | PATH SLOPE V<br>(ft) ft/ft FPS.                     | CALCULATED BY:<br>CHECKED BY:<br>PAGE NUMBER                                          | 6<br>6<br>9<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>3<br>2<br>3<br>2<br>3<br>3<br>3<br>3<br>3 |
|                    | 100                                         | INITIAL SUBAREA | FOR CONFLUENCE | .094; Ybar = .380<br>NGTH = 17140.0 FEET<br>R= 3.03<br>RT = .0%                                                                                                                                                                 | qpipe= 804.8cfs<br>  n=.0130 D= 6.9<br>  108.0"-PIPE<br>  ADD SUBAREA |                                                                    |                                                                                               | HYDRAULICS                                          | 1 OF                                                                                  |                                                                                                            |

PEAK FLOW RATE(CFS)= DEPTH-AREA FACTORS: 5M = S-GRAPH : RAINFALL(INCH): 5M = TOTAL AREA(ACRES)= Te(MIN.) = PEAK FLOW RATE(CFS)= S-GRAPH : VALLEY = 100.0%; FOOTHILL = DEPTH-AREA FACTORS: CONCENTRATION RAINFALL(INCH): 5M = TOTAL AREA(ACRES)= TC(MIN.) = POINT NUMBER SUBAREA FOR POINT# CONFLUENCE TIME/DATE FILE NAME: SA38.DAT MAP # 38 CITY OF SANTA ANA MASTER PLAN OF DRAINAGE DESCRIPTION OF STUDY: 10-YEAR RETURN FREQUENCY AT 50% CONFIDENCE LEVEL ANALYSIS 5.0-YEAR STORM RATIONAL METHOD STUDY (AMC 3803.00 3802.00 3802.00 3801.00 3801.00 VALLEY = OF STUDY: 10:45 50.47 ..... 49.91 \* \* \* \*\*\*\* AREA (ACRES) 12.1 100.0%; FOOTHILL = MEAN VALUES: Fm(IN/HR) = LAG TIME(HR) = 5# = 1108.6 LAG TIME(HR) = 1108.6 UPSTREAM NODE OF LONGEST WATERCOURSE = 3180.0 WITH LENGTH = 17658.5 FEET 1096.5 .26; 30M = TIME OF CONCENTRATION(MIN.) = SUM .26; 30# = 816.37 .95; 30M = -- UNIT HYDROGRAPH INFORMATION -807.20 .95; 30M = -- UNIT HYDROGRAPH INFORMATION TYPE TYPE MIN. SOIL DEV. 0 .... -[(c) 1983-1991 UPSTREAM NODE OF LONGEST WATERCOURSE = 2/23/1994 1 60/AC TIME OF PEAK(HR) = 16.8 VOLUME(AF)= TIME OF PEAK(HR) = 16.8 VOLUME(AF)= PEAK FLOW RATE(CFS) .67 .59; 1HR = TOTAL AREA(ACRES) = .59; 1HR = .67 .95; 1HR = ----.95; 1HR = -1.9 ..... 77 TIME INTERVAL(MIN.) = 0 TIME INTERVAL(MIN.) = 5.0 .0%; MOUNTAIN = .0%; MOUNTAIN = 3 5 9 2 1 50.5 ADVANCED ENGINEERING MIN. | in/h ..... [ORANGE COUNTY] 10 .094; Ybar = II LOSSES) ----.78; 3HR = .78; 3HR = .95; 3HR = .87 .95; 3HR = ----49.9 \* .13 .094 816.4 F 807.2 LAG TIME(HR) ----1096.49 ..... .384 (Avg) -0%; VALLEY(UNDEV)/DESERT = .0%; VALLEY(UNDEV)/DESERT = 1.31; 6HR = 1.31; FB .99; 6HR = 1.00; 24HR= 1.00 .99; 6HR = 1.00; 24HR= 1.00 5.0 ...... SOFTWARE] -\*\*\*\*\* 6HR = NUS Fm(IN/HR) = Ð Fm(IN/HR) = 3180.0 WITH LENGTH = \*\*\* 986 ŧ (ft) ft/ft FPS. PATH SLOPE V 518 .0050 15.4 opipe= 807.2cfs 685 192.06 1.81; 24HR= PAGE NUMBER CALCULATED BY: 1.81; 24HR= 4 190.13 .0050 15.4 1 . . . . .67 CHECKED BY: ..... .0050 .094; Ybar = 5.9 apipe= .094; Ybar = 3.03 3.03 apipe= 816.4cfs 1 n=.0130 D= 7.0 -N 7= n=.0130 D= 1.4 0 ADD SUBAREA .0130 D= 17140.0 FEET .0% 108.0"-PIPE 108.0"-PIPE HYDRAULICS 0% 27.0"-PIPE AND NOTES 15.8cfs .385 .384 6.9

| <br>3803.00                  | 3818.00<br>3818.00 | 48.ft-STREET  <br>FLOW TO PT.# <br>3817.00 | 3816.00         | 3803.00        | CITY OF SANTA ANA MASTER PLAN OF DRAINAGE<br>10-YEAR RETURN FREQUENCY AT 50% CONFIDENCE<br>MAP # 38<br>FILE NAME:SA38.DAT<br>TIME/DATE OF STUDY: 10:45 2/23/1994<br>5.0-YEAR STORM RATIONAL METHOO STUDY (AMC<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------|--------------------|--------------------------------------------|-----------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <br>                         | 6.                 | 5.8                                        | 6.4             |                | ANTA ANA MASTER<br>ETURN FREQUENCY<br>OF STUDY: 10:45<br>STORM RATIONAL J<br>STORM STORM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <br>                         | 19.1               | 12:3                                       | 6.4             | 32.3           | va Master Plan OF         FREQUENCY AT 50% C         DAT         JDY: 10:45       2/23/         JDY: 10:45       2/23/         RATIONAL METHOD S         RATION S         NREA       SUM         T112.7       C         C       1112.7         UNIT H         4       LAG TIME(HR) =         =       1112.7         PH       .26; 30M =         S:       SM = .26; 30M =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <br>                         | 0                  | 0                                          | <u> </u>        | <u> </u>       | R       PLAN (         Y       AT 50;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                              | 60/AC              | 60/AC                                      | 6D/AC           |                | 2       2/23/1994         S       2/23/1994         METHOD STUDY (AMC II LOSSES)        [(c) 1983-1991 ADVANCED ENGIN         SOIL  DEV.   Tt   Tc   I   FD         SOIL  DEV.   Tt   Tc   I   FD         METHOD STUDY (AMC II LOSSES)        [(c) 1983-1991 ADVANCED ENGIN         METHOD STUDY (AMC II LOSSES)        [(c) 1983-1991 ADVANCED ENGIN         METHOD STUDY (AMC II LOSSES)        []         1       Tc   I   FD         METHOD STUDY (AMC II LOSSES)         [(c) 1983-1991 ADVANCED ENGIN         METHOD STUDY (AMC II LOSSES)         []         []         []         []         []         []         []         []         []         []         []         []         []         []         []         []         []         []         []         []         []         []         [] </td                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <br><u>:</u>                 | <u></u>            | 2.7                                        | 1:              |                | RAINAGE<br>NFIDENCE LEVE<br>994<br>994<br>UDY (AMC II<br>83-1991 ADVAN<br>83-1991 ADVAN<br>84-1991 ADVAN<br>84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                              | 21.4               | 20.2 1.45                                  | 17.6            | 51.5           | <pre>clevel<br/>for and<br/>for any<br/>any<br/>any<br/>clevel<br/>for log<br/>for log<br/>for</pre> |
| <br>                         | 1.42               |                                            | 1.63            | .86            | GE<br>GE<br>NCE LEVEL<br>[ORANGE COUNTY]<br>AMC II LOSSES)<br>ADVANCED ENGINEERIN<br>P1 ADVANCED ENGINEERI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                              |                    | 3                                          | .13             | <u> </u>       | UNTY] -<br>SS)<br>UNTY] -<br>NGINEE<br>SS)<br><br>Fm<br><br><br>SHR =<br>S<br>SHR =<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                              | .125               | . 125                                      | .125            |                | ]<br>EERING SOFTW<br>= [Avg) SU<br>- []<br>- [] SU<br>- []                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                              | 22.2               | 14.7                                       | 8.7             | 817.0          | LAN OF DRAINAGE<br>T 50% CONFIDENCE LEVEL<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                              |                    |                                            | 970             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                              |                    |                                            | 970 .0050       |                | CALCULATED BY:<br>CALCULATED BY:<br>CHECKED BY:<br>PAGE NUMBER<br>E]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                              |                    |                                            |                 |                | D BY:<br>D BY:<br>ER 3<br>FPS.<br>FPS.<br>FRT =<br>R= 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| n=.0130 D= 2.2<br>33.0"-P1PE | 60                 | D= .6 ,D*V= 1.0<br> FLOODWIDTH=29.3        | INITIAL SUBAREA | FOR CONFLUENCE | STER PLAN OF DRAINAGE         ENCY AT 50% CONFIDENCE LEVEL         Interval         Inte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

\*

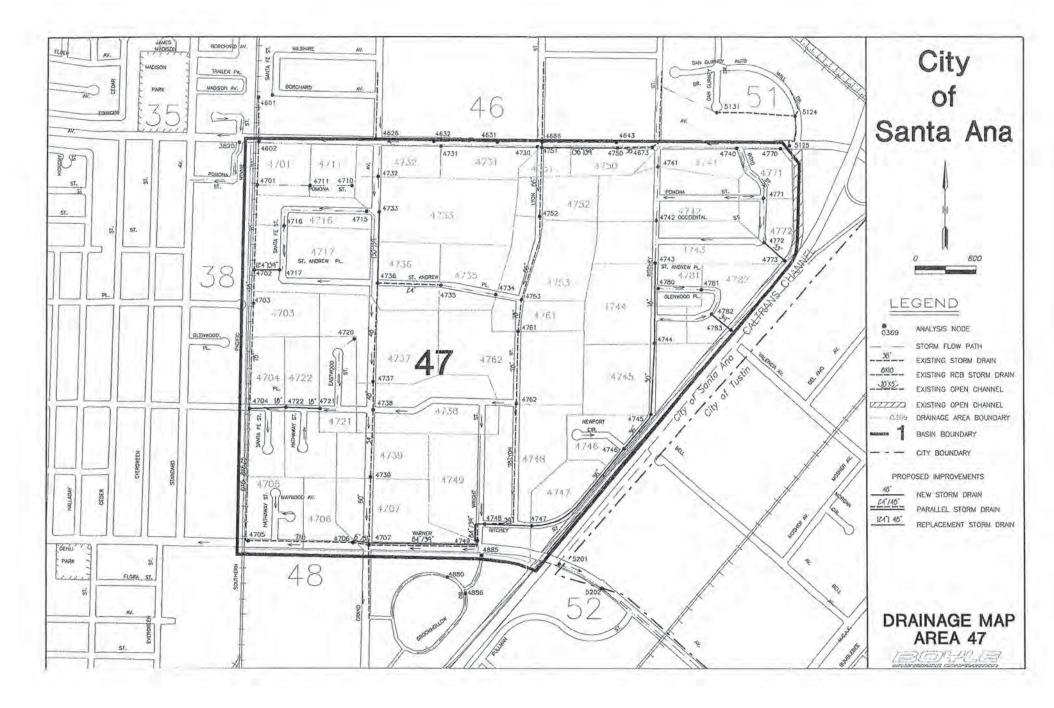
|  | 3805.00                                              | TOTAL AREA(ACRES)= 1139.0 UPSTREA<br>RAINFALL(INCH): 5M = .26; 30M = .<br>DEPTH-AREA FACTORS: 5M = .95; 30M =<br>S-GRAPH : VALLEY = 100.0%; FOOTHILL =<br>PEAK FLOW RATE(CFS)= 830.29 TIME                                                                                                                         | 3804.1<br>3804.1<br>7c(MIN.) =                 | TC(MIN.) =       51.54       LAG TIHE(HR) =         TOTAL AREA(ACRES)=       1131.8       UPSTREAN         RAINFALL(INCH):       5M =       .26; 30M =       .1         DEPTH-AREA FACTORS:       5M =       .95; 30M =       .2         S-GRAPH :       VALLEY =       100.0%; FOOTHILL =         PEAK FLOW RATE(CFS)=       829.74       TIME                                                              | CONFLUENCE<br>ANALYSIS<br>FOR POINT#<br>3803.00                                                                                                                   | CONCENTRATION AREA (ACRES)      | FILE NAME                                       | CITY OF                                                                     |
|--|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------|
|  |                                                      | EA(ACRE<br>(INCH):<br>EA FACT<br>: VALLE<br>: VALLE<br>A RATE(                                                                                                                                                                                                                                                     | 188 1                                          | ) = 5<br>REA(ACRI<br>.(INCH):<br>.EEA FACI<br>: VALLE<br>: VALLE                                                                                                                                                                                                                                                                                                                                             | LUENCE  <br> LYSIS  <br>POINT#  <br> 3803.00                                                                                                                      | ATION                           |                                                 |                                                                             |
|  | same manager and | DRES)=<br>+): 5M =<br>ACTORS: 5M<br>ACTORS: 5M<br>ACTORS: 5M<br>LEY = 100<br>E(CFS)=<br>E(CFS)=                                                                                                                                                                                                                    | 52.27 LA                                       | 51.54 L<br>CRES)=<br>H): 5M =<br>H): 5M =<br>ACTORS: 5J<br>ACTORS: 5J<br>LLEY = 100<br>LLEY = 100<br>LLEY = 100                                                                                                                                                                                                                                                                                              | MEA                                                                                                                                                               | AREA (A<br>SUBAREA              | SA38.DAT<br>OF STUDY: 10:45<br>STORM RATIONAL 1 | SANTA ANA MASTER PLAN OF DRAINAGE<br>RETURN FREQUENCY AT 50% CONFIDENC<br>B |
|  |                                                      | .26; 3<br>= .95<br>= .95; FC<br>830.                                                                                                                                                                                                                                                                               |                                                | LAG TIME(HR) =<br>1131.8 UPSTF<br>26; 30M =<br>26; 30M =<br>25; 30M<br>95; 30M<br>95; 30M<br>95; 10M<br>                                                                                                                                                                                                                                                                                                     | MEAN VALUES: Fm(IN/HR) =<br>TOTAL AI                                                                                                                              | CRES)                           | 10:45<br>IONAL M                                | ASTER P                                                                     |
|  |                                                      | 9.0 UPSTREA<br>6; 30M = .<br>.95; 30M =<br>; FOOTHILL =<br>; FOOTHILL =<br>330.29 TIME                                                                                                                                                                                                                             |                                                | G TIME(HR) = .69 TIME INTERVAL(MIN.) = 5.0 Fm(IN/HR) = .095; Ybar =<br>1131.8 UPSTREAM NODE OF LONGEST WATERCOURSE = 3180.0 WITH LENGTH = 18645.1<br>.26; 30M = .59; 1HR = .78; 3HR = 1.31; 6HR = 1.81; 24HR= 3.03<br>= .95; 30M = .95; 1HR = .95; 3HR = .99; 6HR = 1.00; 24HR= 1.00<br>.0%; FOOTHILL = .0%; MOUNTAIN = .0%; VALLEY(UNDEV)/DESERT = .0%<br>829.74 TIME OF PEAK(HR) = 16.8 VOLUME(AF)= 195.24 | PEAK FLOW RATE(CFS) = 829.7<br>TIME OF CONCENTRATION(MIN.) = 51.5 LA<br>VALUES: Fm(IN/HR) = .095; Ybar = .3<br>TOTAL AREA(ACRES) = 113<br>TOTAL AREA(ACRES) = 113 |                                 | 2/23/1994<br>ETHOD STUDY                        | LAN OF<br>T 50% C                                                           |
|  | many secondly advanta disciony                       | = .95; 1HR =<br>.59; 1HR =<br>= .95; 1HR<br>= .0%; N<br>= .0%; N<br>HE OF PEAK()                                                                                                                                                                                                                                   |                                                |                                                                                                                                                                                                                                                                                                                                                                                                              | PEAK FLOW RATE(CFS)<br>NCENTRATION(MIN.) =<br>'m(IN/HR) = .095; '<br>TOTAL AREA(ACRES)<br>HYDROGRAPH INFORMA                                                      | YPE   11                        | 1994<br>1994<br>TUDY (/                         | DRAINA                                                                      |
|  | and and and an and an and an and an and              | .95; 1HR =<br>.95; 1HR =<br>.95; 1HR =<br>.0%; MQ<br>OF PEAK(HR)                                                                                                                                                                                                                                                   | <br>                                           | 69 TIME IN<br>M NODE OF LC<br>59; THR =<br>.95; THR =<br>.0%; MO<br>OF PEAK(HR;<br>                                                                                                                                                                                                                                                                                                                          | - I<br>RATE()<br>ON(MIN<br>= .01<br>AREA(AU<br>AREA(AU                                                                                                            | I. MIN.                         | MC II                                           | ACE LEV                                                                     |
|  |                                                      | DDE OF LONGEST WATE<br>1HR = .78; 3HR =<br>; 1HR = .95; 3HR -<br>.0%; MOUNTAIN =<br>PEAK(HR) = 16.8 V(<br>                                                                                                                                                                                                         |                                                | TIME INTERVAL(MIN.<br>DDE OF LONGEST WATEI<br>1HR = .78; 3HR =<br>.78; 1HR = .95; 3HR +<br>.0%; MOUNTAIN =<br>PEAK(HR) = 16.8 V(                                                                                                                                                                                                                                                                             |                                                                                                                                                                   | 1  <br>  1  <br>  in/h          | IL LOSSES)                                      | 5 P<br>2                                                                    |
|  | state destates and spectral impacts and              | STREAM NODE OF LONGEST WATERCOURSE = :         =       .59; 1HR =       .78; 3HR =       1.31; 6H         IOM =       .95; 1HR =       .95; 3HR =       .99; 6H         ILL =       .0%; MOUNTAIN =       .0%; VALLI         TIME OF PEAK(HR) =       16.8       VOLUME(AF)=                                       |                                                | .69 TIME INTERVAL(MIN.) =<br>EAM NODE OF LONGEST WATERCOU<br>.59; 1HR = .78; 3HR = 1.<br>= .95; 1HR = .95; 3HR = .<br>= .0%; MOUNTAIN = .0%<br>ME OF PEAK(HR) = 16.8 VOLUM                                                                                                                                                                                                                                   | = 829.7<br>= 829.7<br>51.5 LAG T<br>bar = .389<br>= 1131.8<br>10N                                                                                                 |                                 |                                                 |                                                                             |
|  |                                                      | RCOURSE = 3180.0 WITH LENGTH =<br>1.31; 6HR = 1.81; 24HR= 3.<br>99; 6HR = 1.00; 24HR= 1.00<br>.0%; VALLEY(UNDEV)/DESERT =<br>DLUME(AF)= 196.39                                                                                                                                                                     | 668<br>.095 830.3                              | ) = 5.0 Fm(IN/HR) = .095<br>RCOURSE = 3180.0 WITH LENGTH<br>1.31; 6HR = 1.81; 24HR=<br>99; 6HR = 1.00; 24HR= 1.<br>.0%; VALLEY(UNDEV)/DESERT =<br>DLUME(AF)= 195.24<br>                                                                                                                                                                                                                                      | 1131.80                                                                                                                                                           | EKING SOF                       |                                                 |                                                                             |
|  |                                                      | 3180.0<br>HR = 1<br>HR = 1                                                                                                                                                                                                                                                                                         | 668 .00<br>                                    | <pre>= 5.0 Fm(IN/HR) = .095;<br/>course = 3180.0 WITH LENGTH =<br/>1.31; 6HR = 1.81; 24HR= 3.<br/>.99; 6HR = 1.00; 24HR= 1.00<br/>0%; VALLEY(UNDEV)/DESERT =<br/>JME(AF)= 195.24<br/>JME(AF)= 195.24</pre>                                                                                                                                                                                                   | (HR) #                                                                                                                                                            | O PA                            |                                                 |                                                                             |
|  |                                                      | 1.0 WITH LENG<br>1.81; 24HR=<br>1.00; 24HR=<br>1.00; 24HR=<br>NDEV)/DESERT<br>196.39                                                                                                                                                                                                                               | 68 .005                                        | N/HR) = .0<br>.0 WITH LENG<br>1.81; 24HR=<br>1.00; 24HR= '<br>NDEV)/DESERT<br>195.24                                                                                                                                                                                                                                                                                                                         | .69                                                                                                                                                               | PATH SLOPE  V<br> (ft) ft/ft FP | CALCULATED E<br>CHECKED E<br>PAGE NUMBER        |                                                                             |
|  | 0 15.4                                               | LENGTH<br>4HR= 1.0<br>HR= 1.0<br>SERT =                                                                                                                                                                                                                                                                            | -                                              | .095<br>LENGTH<br>24HR=<br>24HR= 1.                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                   | PE V<br>ft Fps.                 | **                                              |                                                                             |
|  | apipe=<br> n=.013<br> 108                            | rH = 1931<br>3.03<br>1.00<br>= .0%                                                                                                                                                                                                                                                                                 | 15.4 opipe=<br> n=.0130<br>  108.1<br>  ADD SI | .095; Ybar =<br>NGTH = 18645<br>R= 3.03<br>= 1.00<br>RT = .0X                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                   | T                               | 4 05                                            |                                                                             |
|  | 665 .0050 15.4 Opipe= 830.3cfs                       | UPSTREAM NODE OF LONGEST WATERCOURSE = 3180.0 WITH LENGTH = 19314.0 FEET<br>50M = .59; 1HR = .78; 3HR = 1.31; 6HR = 1.81; 24HR= 3.03<br>530M = .95; 1HR = .95; 3HR = .99; 6HR = 1.00; 24HR= 1.00<br>50THILL = .0%; MOUNTAIN = .0%; VALLEY(UNDEV)/DESERT = .0%<br>29 TIME OF PEAK(HR) = 16.8 VOLUME(AF)= 196.39<br> | 668 .0050 15.4 opipe= 829.7cfs                 | = .389<br>5.1 FEET                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                   | HYDRAULICS<br>AND NOTES         |                                                 |                                                                             |

÷

| 3822.00<br>3822.00                          | 3821.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       | 3594.00                                   | 3594.00                                                                                                         | 3805.00                                 | PEAK FLOW RATE(CFS)=           | RAINFALL(INCH): 5M =<br>DEPTH-AREA FACTORS: 5M =<br>S-GRAPH : VALLEY = 100.05              | TC(MIN.) = 52.99<br>TOTAL AREA(ACRES)=                                                       | 3805.00              | CONCENTRATION AREA (ACRES)<br>POINT NUMBER SUBAREA SUM     | FILE WAME:SA38.DAT<br>TIME/DATE OF STUDY: 10:45 2/23/1994<br>5.0-YEAR STORM RATIONAL METHOD STUDY (AMC II LOSSES) | 10-YEAR RETURN FREQUENCY AT 50% CONFIDENCE LEVEL<br>MAP # 38 |
|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
|                                             | - 00 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $-\frac{1}{1}$                        | 81                                        | 8                                                                                                               | 118                                     | RAT                            | FA                                                                                         | \$                                                                                           | 8                    | ION                                                        | REOS                                                                                                              | RET                                                          |
| 10.7                                        | 8.8<br>N 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       | MEMOR<br>Q(cfs)<br>58.88<br>TOTAL         | немоя<br>Q(cfs)<br>58.88<br>Тотац                                                                               | MA                                      | E(CFS)=                        | 0: 5M =<br>(CTORS:<br>LEY = 1)                                                             |                                                                                              |                      | AREA (                                                     | SA38.DAT<br>OF STUDY: 10:45<br>STORM RATIONAL I                                                                   | 10-YEAR RETURN FREQUENCY AT 50% CONFIDENC<br>MAP # 38        |
| 70.9                                        | 59.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       | 4                                         | AL                                                                                                              | MAIN-STREAM COPIED ONTO MEMORY BANK # 2 |                                | = .26; 30M = .5<br>5M = .95; 30M =<br>100.0%: FOOTHILL =                                   | LAG TIME(HR) =<br>1162.9 UPST                                                                | 23.9 1162.9 C 660/AC |                                                            | 10:45<br>IONAL M                                                                                                  | NENCY A                                                      |
| 00                                          | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       | BANK # 3<br>Tc(min)<br>22.64<br>AREA(ACRE | BANK #<br>22.64<br>EA(AC                                                                                        | CC                                      |                                | 30)<br>95;                                                                                 | Q L                                                                                          | Eni                  | ISO IS                                                     | ETHIC                                                                                                             | 4 5                                                          |
| Com<br>60/AC                                | Com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | 3 COPIED<br>3 FP(avg)<br>.250<br>RES)=    | BANK # 3 DEFINED<br>Tc(min) Fp(avg)<br>22.64 .250<br>.22.64 .250<br>.REA(ACRES)=                                |                                         | 10 TIME                        | 26; 30M = .<br>.95; 30M = .                                                                | I) = .                                                                                       | C (60/AC             | SOIL DEV.   TT                                             | 2/23/1994<br>7/23/1994<br>1400 STUDY                                                                              | 0% CONF                                                      |
| 1.4                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7 T                                   |                                           | EFINED<br>p(avg)<br>.250<br>                                                                                    | DNTO                                    | OF P                           | · 0 ·                                                                                      | M NO                                                                                         |                      | HIN                                                        | -199                                                                                                              | IDEN                                                         |
| 24.9 1.31                                   | 3 <br>  23.5 1.36<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |                                           | BANK # 3 DEFINED AS FOLLOWS:<br>Tc(min) Fp(avg) Ap(avg) Fm(avg<br>22.64 .250 .38 .094<br>AREA(ACRES)= 50.84<br> | MEMORY BANK                             | 840.10 TIME OF PEAK(HR) = 16.8 | .59; 1HR = .78; 3H<br>95; 1HR = .95; 3H<br>= .0%; MOUNTAIN =                               | AG TIME(HR) = .71 TIME INTERVAL(MIN.) = 5.0<br>1162.9 UPSTREAM NODE OF LONGEST WATERCOURSE = |                      | SOIL DEV.   Tt   Tc   1<br> TYPE  TYPE  MIN.   MIN.   in/h | ETHOD STUDY (AMC II LOSSES)   PA<br>F(c) 1983-1991 ADVANCED ENGINEERING SOFTWARE)                                 | • m                                                          |
|                                             | 11.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11                                    | 8<br>1N-S)<br>1<br>8                      | 3)  <br>3)  <br>8<br>8<br>8<br>8<br>8<br>8<br>8                                                                 | BAN                                     | ) = 1                          |                                                                                            | TERV                                                                                         | .85                  | 1                                                          | LOSS                                                                                                              | 57 F                                                         |
| -13 -03                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | <br>STREAM<br>Fm(avg)<br>-094             |                                                                                                                 | * N                                     | 1                              | .78; 3HR =<br>.95; 3HR =<br>JNTAIN =                                                       | ALCMIN.                                                                                      | 1                    | - <u>-</u>                                                 | ENGINEE                                                                                                           | LEVEL                                                        |
| .075                                        | .084                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       | 1                                         | 10                                                                                                              |                                         | VOLUME(AF)=                    | •                                                                                          | ) = 5<br>RCOURS                                                                              | 960*                 | Fm (<br>(Avg)                                              | RINGS                                                                                                             |                                                              |
| 79.1                                        | 68.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       | [<br>1(in/hr)<br>1.38                     |                                                                                                                 |                                         | (AF)= 200.10<br>   <br>        | 1.31; 6HR = 1.81; 24HR= 3.<br>= .99; 6HR = 1.00; 24HR= 1.00<br>.0%: VALLEY(UNDEV)/DESERT = | 5.0 Fm<br>JRSE = 31                                                                          | 840.1                | Q NUS                                                      | OFTWAR                                                                                                            | *<br>*<br>*<br>*                                             |
|                                             | - desired all and the state of | 400                                   | <br>Ae(acres)<br>50.84                    | Ae(acres)<br>50.84                                                                                              | $\overline{11}$                         | 20                             | = 1.<br>= 1.0                                                                              | Fm(IN/HR) =<br>3180.0 WITH                                                                   |                      | PATH<br>(ft)                                               | 1 6 F                                                                                                             | F<br>1<br>1<br>1<br>1                                        |
|                                             | 694 .0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 400 .0050                             |                                           |                                                                                                                 |                                         | 200.10                         | 1.81; 24HR=<br>1.00; 24HR= 1<br>NDEV)/DESERT                                               | R) =<br>WITH L                                                                               |                      | Q  PATH SLOPE  V<br>SUM ((ft)  ft/ft FPS.                  | CALCULATED BY:<br>CHECKED BY:<br>PAGE NUMBER                                                                      |                                                              |
| 1                                           | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.1                                   | NODE<br>3590.0                            | NODE<br>3590.0                                                                                                  | $\frac{1}{1}$                           | $\overline{1}$                 | HR= 1<br>ERT                                                                               | .09                                                                                          |                      | FPS                                                        | D BY:<br>D BY:<br>ER                                                                                              | 7                                                            |
|                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | - <u>-</u>                                | · <u>-</u>                                                                                                      | $\frac{1}{1}$                           | $\frac{1}{1}$                  | 3.03                                                                                       | H = H                                                                                        |                      |                                                            | i UT                                                                                                              | 1<br>7<br>8                                                  |
| n=.0130 D= 2.8<br>42.0"-P1PE<br>ADD SUBAREA | 42.0"-PIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <br> apipe= 58.9cf<br> n=.0130 D= 2.5 |                                           |                                                                                                                 |                                         |                                | .0%                                                                                        | Fm(IN/HR) = .096; Ybar = 3180.0 WITH LENGTH = 19979.5                                        | ADD SUBAREA          | HYDRAULICS<br>AND NOTES                                    | Р.                                                                                                                | *                                                            |
| 1130 D= 2.8<br>42.0#-P1PE<br>D SUBAREA      | 42.0"-PIPE<br>D SUBAREA<br>W= 68.6cfs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 58.9cfs<br>D= 2.5                     |                                           |                                                                                                                 |                                         |                                |                                                                                            | .390<br>5 FEET                                                                               | BAREA                | AND NOTES                                                  |                                                                                                                   |                                                              |

~

| 138.047       Common Finder Liver       COMARGE COUNTY       CALCULATED BY         138.047       Common Finder County       CALCULATED BY       CALCULATED BY         138.047       Common Finder County       Fallowski County       Fallowski County         138.047       Common Finder County       Fallowski County       Fallowski County       Fallowski County         138.04       C       Common Finder County       Fallowski County       Fallowski County       Fallowski County         14.1       To       I.0       I.1       I.1       I.1       I.1       I.1       Fallowski County       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 48.ft-STREET  <br>FLOW TO PT.#<br>3832.00                  | 3831.00 | 3834.00        | 3834.00<br>3834.00                                                      | 3826.00                             | 3825.00                                         | 3824.00<br>3824.00          | 3823.00                                  | POINT NUMBER                                                       | FILE NAME:SA38.DAT<br>TIME/DATE OF STUDY<br>5.0-YEAR STORH RA | 10-YEAR RET<br>MAP # 38                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------|----------------|-------------------------------------------------------------------------|-------------------------------------|-------------------------------------------------|-----------------------------|------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------|
| LEVEL       CALCULATED BY         I1 LOSSES)       PAGE UNBER         DVANCED ENGINEERING SOFTWARE]       PAGE UNBER         TC   I   Fm   Fm   Q   PATH  SLOPE   V         MIN.   in/h   (Avg)   SUM (ft)   ft/ft   FPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.3                                                        | 5.1     | <u> </u>       | 10.3                                                                    | 10.2                                | 9.8                                             | 14.1<br>3.9                 | 7.5                                      | AREA SUBARE                                                        | A38.DAT<br>F STUDY<br>TORM RA                                 | SAWIA ANA MASTER PLAN OF DRAINAGE<br>RETURN FREQUENCY AT 50% CONFIDENC<br>3 |
| LEVEL       CALCULATED BY<br>CHECKED BY<br>ILLOSSES)       CALCULATED BY<br>CHECKED BY<br>PAGE UNMBER<br>PAGE UNMBER |                                                            |         | 133.8          | 133.8                                                                   | 123.5                               | 110.7                                           | 98.3                        | 1                                        | A                                                                  | : 10:45                                                       | QUENCY                                                                      |
| LEVEL       CALCULATED BY<br>CHECKED BY<br>ILLOSSES)       CALCULATED BY<br>CHECKED BY<br>PAGE UNMBER<br>PAGE UNMBER | All states and states and states and states and states and |         | <u>i</u>       |                                                                         | and the second second second second | 0.0                                             |                             | And the state of the second second a     |                                                                    |                                                               | PLAN<br>AT 5                                                                |
| LEVEL       CALCULATED BY<br>CHECKED BY<br>ILLOSSES)       CALCULATED BY<br>CHECKED BY<br>PAGE UNMBER<br>PAGE UNMBER | sp/ac -                                                    | 60/AC   | <u> </u>       |                                                                         | Com<br>60/AC                        | Com<br>60/AC                                    | Com<br>  60/AC              | Com                                      | IL DEV.                                                            | /23/19<br>00 STU                                              | OX CON                                                                      |
| LEVEL       CALCULATED BY<br>CHECKED BY<br>ILLOSSES)       CALCULATED BY<br>CHECKED BY<br>PAGE UNMBER<br>PAGE UNMBER |                                                            |         |                | <u> </u>                                                                | <u></u>                             | 1.2                                             | 1.3                         |                                          | HR.                                                                | 94<br>94<br>94<br>94                                          | FIDENC                                                                      |
| COUNTYJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            | 16.5    | 31.0           |                                                                         | 30.1                                | 29.0                                            | 27,8                        | 25.9                                     | HIN.                                                               | - LOKA                                                        | E LEVEL                                                                     |
| Image: construction of the state of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                            |         | 1.14           |                                                                         |                                     | 1.19                                            | 1.23                        | 1.28                                     | I I<br>I I<br>I I<br>I I<br>I I<br>I I<br>I I<br>I I<br>I I<br>I I | LOSSE CO                                                      | 1                                                                           |
| Image: construction of the state of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                            |         |                | <u>.</u>                                                                | .13                                 | .13                                             | .13 63                      |                                          | - Fa                                                               | UNITY                                                         |                                                                             |
| ALCULATED BY<br>CHECKED BY<br>AGE NUMBER<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .125                                                       | .125    |                | .068                                                                    | .063                                | .065                                            |                             |                                          | Fm (Avg)                                                           | EDINC                                                         |                                                                             |
| ALCULATED BY<br>CHECKED BY<br>AGE NUMBER<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.5                                                       | 7.2     | 129.6          | 129.6                                                                   | 121.7                               | 112.2                                           |                             |                                          | SULL SUM                                                           |                                                               |                                                                             |
| CULATED BY<br>CHECKED BY<br>E NUMBER<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 33.4                                                       |         |                | 347                                                                     | 032                                 |                                                 |                             | the same same trans when we are          | PATH                                                               |                                                               |                                                                             |
| 2.1 0 BY:<br>2.1 0 BY:<br>5.8 0 BY:                                                                         |                                                            | 0050    |                | 0200                                                                    |                                     |                                                 | .0050                       |                                          | SLOPE                                                              | CULATE<br>CHECKE                                              |                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                            |         |                | 6.8                                                                     | 9.3                                 |                                                 |                             | a second designs and a second design and | FPS                                                                | D BY                                                          |                                                                             |
| :<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                            | 1 5 1   | FOR CONFLUENCE | 6.8 0pipe= 121.7cfs<br> n=.0130 D= 4.1<br>  63.0"-PIPE<br>  ADD SUBAREA | apipe= 112.2c<br>  n=.0130          | n=.0130 b= 3.1<br>  51.0"-PIPE<br>  ADD SUBAREA | n=.0130<br>  48.<br>  400 S | opipe=<br> n=.0130<br>  45.0             |                                                                    | 0                                                             |                                                                             |


-

| 3843.00<br>3843.00        | 48.ft-STREET  <br>FLOW TO PT.#  <br>3842.00                | 3841.00   | 3845.00<br>3845.00<br>3845.00                                         | CONFLUENCE<br>ANALYSIS<br>FOR POINT#<br>3834.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3833.00                                                                                                                     | CONCENTRATION AREA (ACRES)                                                                                                                                                                                             | HU-TEAR REIDEN FREquency AF SUZ CONFIDENCE<br>MAP # 38<br><br>FILE NAME:SA38.DAT<br>TIME/DATE OF STUDY: 10:45 2/23/1994<br>5.0-YEAR STORM RATIONAL METHOD STUDY (AMC | CITY OF SAN                       |
|---------------------------|------------------------------------------------------------|-----------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| 7.8                       | 10.8                                                       | 5-4       | 19.3                                                                  | HEAN<br>HEAN<br>BEFFE<br>QCCFS<br>148.10<br>147.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.0                                                                                                                         | AREA ()<br>SUBAREA                                                                                                                                                                                                     | STORM RATIONAL METHOD STUDY (AMC                                                                                                                                     | SANIA ANA MASIER PLAN OF DRAINAGE |
| 24.0                      | 16.2                                                       |           | 171.5                                                                 | A VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18.4                                                                                                                        | ACRES)                                                                                                                                                                                                                 | 10:45                                                                                                                                                                | ASTER P                           |
| <u> </u>                  | 0                                                          | 0         |                                                                       | 1 1<br>LUES: F<br>VE AREA<br>VE AREA<br>TC(min)<br>30.97<br>30.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                           | -ECc                                                                                                                                                                                                                   | т эс<br>2/                                                                                                                                                           | LAN                               |
| 60/AC                     | 60/AC                                                      | <br>60/AC | 60/AC                                                                 | PEAK FLOW<br>TIME OF CO<br>FP(IN/HR) =<br>EA(ACRES) =<br>EA(ACRES) =<br>CA(ACRES) | 60/AC                                                                                                                       | -[(c) 1983-1991<br> SOIL DEV.  Tt<br> TYPE TYPE MIN.<br>                                                                                                                                                               | 2/23/1994<br>1400 STUDY                                                                                                                                              | OF DRA                            |
| 2.7                       | 7.0                                                        |           | 1.5                                                                   | - FLOW  <br>OF COI<br>/HR) =<br>ES) =<br>ES) =<br>(avg)<br>.250<br>.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.0                                                                                                                         | -1991<br>Tt<br>HIN.                                                                                                                                                                                                    | IDENC                                                                                                                                                                | INAGE                             |
| 26.3 1.27                 | 23.6                                                       |           | 32.5                                                                  | FLOW RATE(CFS) =       148.1         OF CONCENTRATION(MIN.) =       .298         /HR) =       .250; Ap =       .298         ES) =       152.20       TOTAL AI         (avg) Ap(avg) Fm(avg)       .074         .250       .30       .075         .250       .30       .075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 26.9 1.25                                                                                                                   | ADVAN<br>Tc<br>HIN.                                                                                                                                                                                                    |                                                                                                                                                                      |                                   |
| 1.27                      | 1.35                                                       | 1.70      | 1.12                                                                  | E(CFS) =<br>NTRATION<br>.250; Ap<br>152.20<br>(avg) Fr<br>.30<br>.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.25                                                                                                                        | CED E                                                                                                                                                                                                                  | JRANGE COUN                                                                                                                                                          |                                   |
| .13                       | :                                                          | - 13      | .13                                                                   | = 148.1<br>= 148.1<br>p = .298<br>h TOTAL AN<br>Fm(avg)<br>.074<br>.075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.3                                                                                                                         | NGINE                                                                                                                                                                                                                  | UNTY)                                                                                                                                                                |                                   |
| .125                      | .125                                                       | .125      | .080                                                                  | 148.1<br>148.1<br>HIN.) = 31.0<br>= .298; Fm(IN/HR<br>TOTAL AREA(ACRES)<br>1(3vg) I(in/hr)<br>.074 1.14<br>.075 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .125                                                                                                                        | ERING S<br>Fm<br>(Avg)                                                                                                                                                                                                 |                                                                                                                                                                      |                                   |
| 24.8                      | 17.9                                                       | 7.6       | 160.1                                                                 | 148.1<br>148.1<br>.298; Fm(1N/HR) =<br>TAL AREA(ACRES) =<br>vg) I(in/hr) Ae(<br>74 1.14 1<br>75 1.15 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18.6                                                                                                                        | [(c) 1983-1991 ADVANCED ENGINEERING SOFTWARE]         SOIL   DEV.   Tt   Tc   1   Fm   Fm   Q   PAT         SOIL   DEV.   Tt   Tc   1   Fm   Fm   Q   PAT         TYPE   TYPE   MIN.   MIN.   fn/h   (Avg)   SUM   (ft |                                                                                                                                                                      |                                   |
|                           |                                                            | 835       | 654                                                                   | <br> ) = .07<br>= 15<br>= 15<br>Ae(acres)<br>Ae(acres)<br>152.20<br>152.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 995                                                                                                                         | PATH<br>(ft)                                                                                                                                                                                                           | CAL PAG                                                                                                                                                              |                                   |
|                           |                                                            | .0050     |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .0050                                                                                                                       | <br> PATH SLOPE  V<br> (ft) ft/ft FPS.                                                                                                                                                                                 | CALCULATED BY:<br>CHECKED BY:<br>PAGE NUMBER                                                                                                                         |                                   |
|                           | 6.0                                                        | <u>.</u>  | 7.2                                                                   | NODE<br>3590.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                             | FPS.                                                                                                                                                                                                                   | BY:                                                                                                                                                                  |                                   |
| 27.0"-PIPE<br>ADD SUBAREA | D= .5 ,D*V= 1.1<br> FLOODWIDTH=17.3<br>6.0  Opipe= 17.9cfs | 1 - 13    | 7.2 Qpipe= 148.1cfs<br> n=.0130 D= 4.3<br>69.0"-PIPE<br>  ADD SUBAREA | LARGEST<br>CONFLUENCE<br>Q= 148.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.5 appipe= 12.5cfs<br> n=.0130 D= 1.4<br>24.0"-PIPE<br>ADD SUBAREA<br>6.1 appipe= 18.6cfs<br>[n=.0130 D= 1.6<br>27.0"-PIPE | HYDR                                                                                                                                                                                                                   | <br>                                                                                                                                                                 |                                   |

×

| CITY OF SAN<br>10-YEAR RET<br>MAP # 38                                       | CITY OF SANTA ANA MASTER PLAN OF DRAINAGE<br>10-YEAR RETURN FREQUENCY AT 50% CONFIDENCE LEVEL<br>MAP # 38                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FILE WAME:SA38.DAT<br>TIME/DATE OF STUDY<br>5.0-YEAR STORM RA                | FILE WAME:SA38.DAT   CALCULATED BY:<br>TIME/DATE OF STUDY: 10:45 2/23/1994   CHECKED BY:<br>5.0-YEAR STORM RATIONAL METHOD STUDY (AMC 11 LOSSES)   PAGE NUMBER 8 OF                                                                      | #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CONCENTRATION<br>POINT NUMBER                                                | CONCENTRATION AREA (ACRES) SOIL DEV. Tt   Tc   I   Fm   Fm   Q  PATH SLOPE   V  <br>POINT NUMBER SUBAREA   SUM  TYPE  TYPE  MIN.   MIN.   in/h   (Avg)   SUM  (ft)   ft/ft   FPS.                                                        | HYDRAULICS<br>AND NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3844.00                                                                      |                                                                                                                                                                                                                                          | Qpipe= 24.8cfs<br>n=.0130 D= 2.1<br>36.0"-PIPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3844.00<br>3845.00                                                           | 6.7 30.7 C 60/AC 27.4 1.24 .13 .125 30.8 ADD :<br>1321.0050 6.9 opipe=<br>1321.0050 6.9 opipe=<br>1321.0050 6.9 opipe=<br>1321.0050 6.9 opipe=<br>1321.0050 6.9 opipe=<br>1321.0050 6.9 opipe=<br>                                       | ADD SUBAREA<br>Opipe= 30.8cfs<br>n=.0130 D= 1.9<br>33.0"-PIPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| CONFLUENCE  <br>ANALYSIS  <br>FOR POINT#  <br>3845.00                        | PEAK FLOW RATE(CFS) = 190.0<br>TIME OF CONCENTRATION(MIN.) = 32.5<br>MEAN VALUES: Fp(IN/HR) = .250; Ap = .348; Fm(IN/HR) = .087<br>EFFECTIVE AREA(ACRES) = 202.26 TOTAL AREA(ACRES) = 202.26                                             | LARGEST<br>CONFLUENCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                              | Ap(avg) Fm(avg) I(in/hr) Ae(acr<br>.35 .087 1.13 200.3<br>.35 .087 1.12 202.3<br>.35 .087 1.15 192.1                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3805.00                                                                      | 2.5                                                                                                                                                                                                                                      | ipe= 190.0cfs<br>.0130 D= 4.7  <br>.75.0"-PIPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3805.00                                                                      | MEMORY BANK # 3 CONFLUENCED WITH MAIN-STREAM                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TC(MIN.) = 52.99  <br>TOTAL AREA(ACRES)=<br>RAINFALL(INCH): 5M =             | 52.99 LAG TIME(HR) = .71 TIME INTERVAL(MIN.) = 5.0 Fm(IN/HR) = .094; Ybar = .785)= 1365.1 UPSTREAM NODE OF LONGEST WATERCOURSE = 3180.0 WITH LENGTH = 19979.5<br>(1): 5M = .26; 30M = .59; 1HR = .78; 3HR = 1.31; 6HR = 1.81; 24HR= 3.03 | bar = .391  <br>19979.5 FEET  <br>3 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| DEPTH-AREA FACTORS: 5M =<br>S-GRAPH : VALLEY = 100.0<br>PEAK FLOW RATE(CFS)= | 5M = .94; 30M = .94; 1HR = .94; 3HR = .99; 6HR = .<br>00.0%; FOOTHILL = .0%; MOUNTAIN = .0%; VALLEY(U)<br>978.92 TIME OF PEAK(HR) = 16.8 VOLUME(AF)=                                                                                     | .0x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3805.00                                                                      |                                                                                                                                                                                                                                          | The second secon |
|                                                                              |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                              |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| <br>TIME OF CONCENTRATION(MIN.)=                          | 3805.00        |                                     | 5.0-YEAR STORM RATIONAL METHOD STUDY (AMC | FILE NAME:SA38.DAT            | CITY OF SANTA ANA MASTER PLAN OF DRAINAGE<br>10-YEAR RETURN FREQUENCY AT 50% CONFIDENCE LEVEL<br>MAP # 38 |
|-----------------------------------------------------------|----------------|-------------------------------------|-------------------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------|
|                                                           |                | AREA (AC                            | ORM RATIO                                 | :SA38.DAT<br>OF STUDY: 10:45  | A ANA MAS                                                                                                 |
|                                                           | 1365.1         | And the second of the second of the | NAL MET                                   | 0:45                          | NCY AT                                                                                                    |
| <br>                                                      |                | SOIL DEV.   Tt                      | ETHOD STUDY (AMC II LOSSES)   PA          | 2/23/1994                     | 50% CON                                                                                                   |
| <br>   <br>9 LAG TIME(HR)=<br>                            |                |                                     | 3-1991 /                                  | 24                            | · •                                                                                                       |
| <br>   <br>LAG TIME(HR)=<br>                              | 53.0           | HIN.                                | II LOSSES)                                |                               | LEVEL                                                                                                     |
| <br>which there was and and and and and and and and and a |                | 1   Fm<br> in/h                     | SES)                                      |                               | LEVEL                                                                                                     |
| 71 MEAN VALUES:                                           |                | Fm<br>(Avg)                         | ERING S                                   |                               |                                                                                                           |
|                                                           | 978.9          | SUM                                 | OFTWARE                                   |                               |                                                                                                           |
| <br>PEAK FLOW<br>Fm(IN/HR) =                              | $\frac{1}{1}$  | PATH SLOPE                          | PAGE NUMBER                               | CALCUL                        |                                                                                                           |
|                                                           | $\frac{1}{1}$  | OPE V<br>/ft FPS.                   | UMBER                                     | CALCULATED BY:<br>CHECKED BY: |                                                                                                           |
| RATE(CFS)=<br>.094; Ybar                                  | -   STREA      |                                     | 9 OF                                      |                               | \$<br>2<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                |
| 978.92<br>ar = .391                                       | STREAM SUMMARY | HYDRAULICS<br>AND NOTES             |                                           |                               |                                                                                                           |



11/01/93

HYDRAULIC ANALYSIS SUMMARY

Page No. 1

.

|           |              |                  |      |                          |                                  |               |                  |      |                           |                  |                                |                |                                |                            | Carrier Contraction Contraction                                                                                 | Page No.                   |
|-----------|--------------|------------------|------|--------------------------|----------------------------------|---------------|------------------|------|---------------------------|------------------|--------------------------------|----------------|--------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------|
| ID        | Name Road    | Slope<br>(ft/ft) | ĸ    | Diam/Depth<br>(in)/ (ft) | Existing D<br>Base Width<br>(ft) | side<br>Slope | Slope<br>(ft/ft) | κ    | Design<br>Runoff<br>(cfs) | Roadway<br>(cfs) | tion Capac<br>Conduit<br>(cfs) | Total<br>(cfs) | Deficient<br>Capacity<br>(cfs) | Improvement<br>Replacement | Alternatives-                                                                                                   | Recommended<br>Improvement |
| Map Area  | :47          |                  |      |                          |                                  |               |                  |      | · · · · ·                 |                  |                                |                |                                |                            |                                                                                                                 |                            |
| 4602-4701 | RXR          | 0.0050           |      | 73.0                     |                                  |               |                  |      |                           |                  |                                |                |                                |                            |                                                                                                                 |                            |
| 4711-4701 | ALLEY HOBLS  | 0.0020           | 566  | 72.0                     |                                  |               | 0.00540          | 4244 | 273.3                     | 0.0              | 311.9                          | 311.9          | 0.0                            |                            |                                                                                                                 |                            |
| 4701-4702 | RXR          | 0.0050           | 300  | 73.0                     |                                  |               |                  |      | 17.8                      | 25.3             | 0.0                            | 25.3           | 0.0                            |                            |                                                                                                                 |                            |
| 4716-4717 | SANTA FE     | 0.0050           | 566  | 72.0                     |                                  |               | 0.00635          | 4244 |                           | 0.0              | 338.2                          | 338.2          | 0.0                            |                            |                                                                                                                 |                            |
| 4717-4702 | ESMT         | 0.0020           | 200  | 5/ 0                     |                                  |               |                  |      | 34.6                      | 40.0             | 0.0                            | 40.0           | 0.0                            |                            |                                                                                                                 |                            |
| 4702-4703 | RXR          | 0.0050           |      | 24.0                     |                                  |               | 0.00200          | 227  | 34.6                      | 0.0              | 10.2                           | 10.2           | 24.4                           | 39" RCP                    | 36" RCP                                                                                                         | 39" RCP                    |
| 4703-4704 | RXR          | 0.0050           |      | 78.0<br>78.0             |                                  |               | 0.00480          | 5254 | 318.1                     | 0.0              | 364.0                          | 364.0          | 0.0                            |                            |                                                                                                                 | 57 NO                      |
| 4721-4722 | ST. GERTRUDE | 0.0020           | 566  | 10.0                     |                                  |               | 0.00500          | 5254 | 318.1                     | 0.0              | 371.5                          | 371.5          | 0.0                            |                            |                                                                                                                 |                            |
| 4722-4704 | ST. GERTRUDE | 0.0020           | 566  |                          |                                  |               |                  |      | 28.5                      | 25.3             | 0.0                            | 25.3           | 3.2                            |                            | 18" RCP                                                                                                         | 18" RCP                    |
| 4704-4705 | RXR          | 0.0050           | 200  | 6.0                      |                                  |               | -                |      | 28.5                      | 25.3             | 0.0                            | 25.3           | 3.2                            |                            | 18" RCP                                                                                                         | 18" RCP                    |
| 4705-4706 | WARNER       | 0.0010           |      | 6.0                      | 6.                               |               | 0.00600          | 6550 |                           | 0.0              | 507.4                          | 507.4          | 0.0                            |                            | 1997 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - | 15                         |
| 4706-4707 | WARNER       | 0.0010           |      |                          | 8.                               |               | 0.00360          | 9862 | 342.0                     | 0.0              | 591.7                          | 591.7          | 0.0                            |                            |                                                                                                                 |                            |
| 4731-4732 | GRAND        | 0.0050           | 561  | 6.0                      | 7.                               |               | 0.00100          | 9336 | 342.0                     | 0.0              | 295.2                          | 295.2          | 46.8                           | 11x6.5 RCB                 | 51" RCP                                                                                                         | 51" RCP                    |
| 4732-4733 | GRAND        | 0.0050           | 561  |                          |                                  |               |                  |      | 15.6                      | 39.7             | 0.0                            | 39.7           | 0.0                            |                            |                                                                                                                 |                            |
| 4733-4736 | GRAND        | 0.0050           | 280  | 30.0                     |                                  |               | 0.00400          |      | 15.6                      | 39.7             | 0.0                            | 39.7           | 0.0                            |                            |                                                                                                                 |                            |
| 4735-4736 | ST. ANDREWS  | 0.0020           | 566  | 24.0                     |                                  |               | 0.00100          | 411  | 41.3                      | 19.8             | 13.0                           | 32.8           | 8.5                            | 39" RCP                    | 27" RCP                                                                                                         | 39" RCP                    |
| 4736-4737 | GRAND        | 0.0050           | 561  | 48.0                     |                                  |               | 0.00240          | 227  | 15.6                      | 25.3             | 11.1                           | 36.4           | 0.0                            |                            | 200 C 83/48                                                                                                     | a tract                    |
| 4737-4738 | GRAND        | 0.0050           | 561  | 48.0                     |                                  |               | 0.00500          | 1440 | 64.2                      | 39.7             | 101.8                          | 141.5          | 0.0                            |                            |                                                                                                                 |                            |
| 4738-4739 | GROUND       | 0.0050           | 561  | 54.0                     |                                  |               | 0.00760          | 1440 | 81.9                      | 39.7             | 125.5                          | 165.2          | 0.0                            |                            |                                                                                                                 |                            |
| 4739-4707 | GRAND        | 0.0050           | 561  | 60.0                     |                                  |               | 0.00500          | 1971 | 104.2                     | 39.7             | 139.4                          | 179.0          | 0.0                            |                            |                                                                                                                 |                            |
| 4741-4742 | RITCHEY      | 0.0050           | 566  | 00.0                     |                                  |               | 0.00200          | 2610 | 111.3                     | 39.7             | 116.7                          | 156.4          | 0.0                            |                            |                                                                                                                 |                            |
| 4742-4743 | RITCHEY      | 0.0050           | 566  |                          |                                  |               |                  |      | 26.3                      | 40.0             | 0.0                            | 40.0           | 0.0                            |                            |                                                                                                                 |                            |
| 4743-4744 | RITCHEY      | 0.0050           | 566  |                          |                                  |               |                  |      | 26.3                      | 40.0             | 0.0                            | 40.0           | 0.0                            |                            |                                                                                                                 |                            |
| 4744-4745 | RITCHEY      | 0.0050           | 566  |                          |                                  |               |                  |      | 45.5                      | 40.0             | 0.0                            | 40.0           | 5.5                            |                            | 18" RCP                                                                                                         | 18" RCP                    |
| 4745-4746 | RITCHEY      | 0.0050           | 566  |                          |                                  |               |                  |      | 68.9                      | 40.0             | 0.0                            | 40.0           | 11.3                           |                            | 24" RCP                                                                                                         | 30" RCP                    |
| 4746-4747 | RITCHEY      | 0.0050           | 566  |                          |                                  |               |                  |      | 76.1                      | 40.0             | 0.0                            | 40.0           | 28.8                           |                            | 30" RCP                                                                                                         | 36" RCP                    |
| 4747-4748 | RITCHEY      | 0.0050           | 566  |                          |                                  |               |                  |      | 81.8                      | 40.0             | 0.0                            | 40.0           | 36.1                           |                            | 33ª RCP                                                                                                         | 36" RCP                    |
| 4673-4750 | EDINGER      | 0.0020           | 1222 | 36.0                     |                                  |               | 0.00780          | 668  | 34.3                      | 0.0              | 0.0                            | 40.0           | 41.8                           |                            | 36" RCP                                                                                                         | 39" RCP                    |
| 4750-4751 | EDINGER      | 0.0020           |      | 36.0                     |                                  |               | 0.00320          | 668  | 40.5                      | 0.0              | 37.8                           | 59.0<br>37.8   | 0.0                            | 704 000                    | A AND COURSE                                                                                                    | and the second             |
| 4666-4751 | LYON/EDINGER | 0.0035           |      | 48.0                     |                                  |               | 0.00600          | 1440 | 147.0                     | 0.0              | 111.5                          | 111.5          | 2.8                            | 39" RCP                    | 18" RCP                                                                                                         | 39" RCP                    |
| 4751-4752 | LYON         | 0.0050           | 566  | 66.0                     |                                  |               | 0.00480          | 3365 | 183.7                     | 40.0             | 233.1                          | 273.2          | 0.0                            | 54" RCP                    | 33" RCP                                                                                                         | 54" RCP                    |
| 4752-4753 | LYON         | 0.0050           | 566  | 66.0                     |                                  |               | 0.00760          | 3365 | 183.7                     | 40.0             | 293.4                          | 333.4          | 0.0                            |                            |                                                                                                                 |                            |
| 4753-4761 | LYON         | 0.0050           | 566  | 78.0                     |                                  |               | 0.00500          | 5254 | 213.3                     | 40.0             | 371.5                          | 411.5          | 0.0                            |                            |                                                                                                                 |                            |
| 4761-4762 | LYON         | 0.0050           | 566  | 78.0                     |                                  |               | 0.00500          | 5254 | 217.6                     | 40.0             | 371.5                          | 411.5          | 0.0                            |                            |                                                                                                                 |                            |
| 4762-4748 | LYON         | 0.0050           | 566  | 78.0                     |                                  |               | 0.00500          | 5254 | 241.1                     | 40.0             | 371.5                          | 411.5          | 0.0                            |                            |                                                                                                                 |                            |
| 4748-4749 | WRIGHT       | 0.0050           | 566  | 84.0                     |                                  | 3             | 0.00200          | 6402 | 340.0                     | 40.0             | 286.3                          | 326.3          | 13.7                           | 7.5x6.5 RCB                | 27" RCP                                                                                                         | 39" RCP**                  |
| 4749-4707 | WARNER       | 0.0020           | 561  | 84.0                     |                                  | 1.13          | 0.00200          | 6402 | 349.9                     | 25.1             | 286.3                          | 311.4          | 38.5                           | 8x6.5 RCB                  | 42" RCP                                                                                                         | 39" RCP**                  |
| 4771-4772 | BOYD         | 0.0050           | 566  |                          |                                  |               |                  |      | 16.5                      | 40.0             | 0.0                            | 40.0           | 0.0                            | ONGED NOD                  | AC ALP                                                                                                          | DA. KChur                  |
| 4772-4773 | FWY          | 0.0010           |      |                          |                                  |               |                  |      | 16.5                      | 0.0              | 0.0                            | 0.0            | 16.5                           |                            | 33" RCP                                                                                                         | 33" RCP                    |
| 4781-4782 | GLENWOOD     | 0.0050           | 566  |                          |                                  |               | 1                |      | 21.2                      | 40.0             | 0.0                            | 40.0           | 0.0                            |                            | 33" KLF                                                                                                         | 55" KUP                    |
| 4782-4783 | GLENWOOD     | 0.0010           |      |                          |                                  |               |                  |      | 21.2                      | 0.0              | 0.0                            | 0.0            | 21.2                           |                            | 39" RCP                                                                                                         | 39" RCP                    |
| 4755-4756 | ST. ANDREWS  | 0.0020           | 566  | 27.0                     |                                  | 3             | 0.00200          | 310  | 9.3                       | 25.3             | 13.9                           | 39.2           | 0.0                            |                            | ST NUT                                                                                                          |                            |
| 4756-4753 | ST. ANDREWS  | 0.0020           | 566  | 36.0                     |                                  |               | 0.00200          | 668  | 14.0                      | 25.3             | 29.9                           | 55.2           | 0.0                            |                            |                                                                                                                 |                            |

| 8 |           |                             | 748-474<br>749-470<br>750-475<br>772-477<br>782-477                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 744-47<br>745-47<br>746-47<br>747-47 | 221-1-<br>221-1-<br>221-1-1-                                   | Map Area:4 | ID                               | 04/12/94                    |
|---|-----------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------------|------------|----------------------------------|-----------------------------|
|   |           |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      | 54" RCP<br>39" RCP<br>18" RCP<br>18" RCP<br>39" RCP<br>18" RCP |            | Description                      |                             |
|   |           | Engineering and Administrat | 540040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 200000<br>20110                      | 53<br>158<br>247<br>331<br>17<br>56<br>17<br>792<br>17         |            | COSTESTIMAT<br>Quantity Unit (\$ | PROPOSED WORKS COST OPINION |
|   | Total     | ive                         | tota                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1112<br>130<br>130<br>130            | 182<br>174<br>138<br>138<br>138                                |            | T E<br>Rate<br>(\$/Unit)         |                             |
|   | 1,195,490 | 199,24<br>195,49            | 5005,029<br>300,029<br>301,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,029<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,020<br>302,0000000000 | 8084                                 | 50404040                                                       |            | Amount<br>(\$)                   | Page No.                    |

Boyle Engineering Corporation

(cstrep1)

|                                       | 4711.00         | 4701.00        | 4701.00                                                                      |                  |        |            | _      |         |         |        |        | 4602.00                                                           |    |              |         |        |        |         |         |         |         |           | 4602.00 |      |           | POINT NUMBER SUBAREA SUM TYPE TYPE MIN. | CONCENTRATION AREA (ACRES) |              | E D. VEND STORM BATTOWN | FILE NAME: SA47.DAT | 10-YEAR RETURN FREQUENCY AT 50% CONFIDENCE LEVEL<br>MAP # 47 | CITY OF SANTA ANA MASTER PLAN OF DRAINAGE |
|---------------------------------------|-----------------|----------------|------------------------------------------------------------------------------|------------------|--------|------------|--------|---------|---------|--------|--------|-------------------------------------------------------------------|----|--------------|---------|--------|--------|---------|---------|---------|---------|-----------|---------|------|-----------|-----------------------------------------|----------------------------|--------------|-------------------------|---------------------|--------------------------------------------------------------|-------------------------------------------|
|                                       | 5.2             |                |                                                                              | TOTAL            | 267.56 | 273.37     | 272.53 | 271.56  | 266.94  | 269.53 | 273.25 | A(cfs)                                                            |    | 101          | 267.56  | 271.76 | 273.37 | 272.53  | 271.56  | 266.94  | 269.53  | U(CTS)    |         | -    |           | SUBAREA                                 | AREA (                     | NUKE KAI     | OF STUDY                | SA47.DAT            | TURN FRE                                                     | NTA ANA I                                 |
|                                       | v.<br>2         | 211.6          |                                                                              | ARE              |        |            |        |         |         |        |        | RY                                                                |    | F            |         |        |        |         |         |         |         | ~         | RY      |      |           | MDS                                     | ACRES)                     | IONAL        | : 12:12                 |                     | QUENCY                                                       | MASTER                                    |
|                                       |                 | ;<br>;<br>;    | $\frac{1}{1}$ $ \frac{1}{1}$ .                                               | AREA(ACRES)=     | 28.06  | 23.93      | 23.07  | 22.35   | 21.51   | 27.64  | 24 57  | BANK # 1<br>Tc(min)                                               | 11 | AREA(ACRES)= | 28.06   | 26.16  | 23.93  | 23.07   | 22.35   | 21.51   | 27.64   | 26 ET     | ANK #   |      | 1         | TYPE                                    |                            | [(c)         | 10/2                    |                     | AT 50%                                                       | PLAN O                                    |
|                                       | Com             |                |                                                                              | $\frac{1}{1}$    | .281   | .280       | .280   | .280    | .280    | . 281  | 280    | COPIED (                                                          |    |              | .281    | .281   | .280   | . 280   | - 280   | . 280   | 281     | tp(avg)   | DEFINED |      |           | TYPE MI                                 | SOIL DEV.   Tt             | 1983-19      | 10/29/1993              |                     | CONFID                                                       | FDRAIN                                    |
|                                       |                 | 24.5           | - 6                                                                          | 231,63           | .12    | .12        | .12    | .12     | . 12    | . 12   |        | BANK # 1 COPIED ONTO MAIN-STREAM<br>Tc(min) Fp(avg) Ab(avg) fm(av |    | 231.63       |         |        |        |         |         |         |         | Apo       |         |      |           | IN. MIN                                 | nt   Te                    |              |                         | Turi                | ំ ពា                                                         | AGE                                       |
|                                       | 11.6 2.05       | 1.30           |                                                                              |                  |        |            |        | NI      |         |        |        | (IN-STR                                                           |    |              | .12     | .12    | .12    | .12     | 10      | .12     | 10 . 12 |           | S       | +    |           | MIN.   in/h                             |                            | 11 LOSSES)   |                         | TORVAGE CODALL1     | VEL                                                          |                                           |
|                                       | -03             |                | <u> </u>                                                                     | -                | .034   | .033       | .033   | .033    | .033    | .034   | 024    | TREAM<br>Fm(ava)                                                  |    |              | .034    | .034   | .033   | .033    | .033    | -033    | .034    | Fm(avg)   |         | :    | 1         | I                                       | Fm                         | S)<br>NGINEE |                         | TINU                |                                                              |                                           |
|                                       | .025            |                | $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$        |                  |        | ي.<br>بو ا |        |         |         | - e    |        | I (in/hr)                                                         |    |              |         |        |        | -       |         |         |         |           |         |      | 1 1 1 1 1 | (Avg)                                   | Fm                         | RING         |                         |                     |                                                              |                                           |
|                                       | 9.5             | 273.4          |                                                                              | 3<br>7<br>1<br>1 | 1.28   | 1.34       | 1.37   | 1.39    | 1 41    | 1.93   |        |                                                                   |    |              | 1.22    | 1.28   | 1.34   | 1.37    | 1 30    | 1.41    | 1.52    | I (in/hr) |         |      |           | SUM                                     | 0                          | SOFTWAR      |                         |                     |                                                              |                                           |
| 1.                                    | 403 .0020       | 1              | 423                                                                          |                  | 224.45 | 211.61     | 205.72 | 200.06  | 107 40  | 212.40 | 340    | Aplacroci                                                         |    |              | 231.63  | 224.45 | 211.61 | 205.72  | 200 04  | 10.00   | 275.48  | Ae(acres) |         |      | 1         |                                         | PATH                       | PAGE         | -                       | CAL                 |                                                              |                                           |
|                                       | 0200            |                | 0054   1                                                                     | 1.1              |        |            |        |         |         |        |        |                                                                   |    |              |         |        |        |         |         |         |         |           |         |      |           | (ft)  ft/ft  FPS.                       | PATH SLOPE V               | PAGE NUMBER  | CHECKED BY:             | CALCULATED BY:      |                                                              |                                           |
|                                       |                 | <u></u>        | 2.1                                                                          |                  | 4540.0 | 4530.0     | 4510.0 | 4520.01 | 4020.01 | 4630.0 |        |                                                                   |    |              | 4501.01 | 4540.0 | 4530.0 | 4510.01 | 4010.01 | 4020-01 | 4650.0  | NODE      | _       | **** |           | FPS.                                    | <                          | ER 1         | BY:                     | 0 BY:               |                                                              |                                           |
| · · · · · · · · · · · · · · · · · · · | INITIAL SUBAREA | FOR CONFLUENCE | 423 .0054 12.1 opipe= 273.4cfs<br>        n=.0130 D= 4.5<br>      72.0"-PIPE |                  |        |            |        |         |         |        |        |                                                                   |    |              |         |        |        |         |         |         |         |           |         |      |           | AND NOTES                               | HYDRAULICS                 | Ģ            |                         |                     |                                                              |                                           |

1-1-72

-

| 4702.00                        | 48.ft-STREET<br>FLOW TO PT.#<br>4717.00 | 4716.00 | 4702.00          | 4702.00                                                                      | FILE NAME:SA47.DAT         TIME/DATE OF STUDY: 12:12 T0/29/1993         5.0-YEAR STORM RATIONAL METHOD STUDY         POINT NUMBER STORM RATIONAL METHOD STUDY         POINT NUMBER SUBAREA       SUM         HOW TO PT.#                 FLOW TO PT.#                 FOR POINT NUMBER       SUM         Store       STORM RATIONAL METHOD STUDY         CONCENTRATION       AREA (ACRES)         SUM       ITYPE [TYPE]         POINT NUMBER SUBAREA       SUM         48.ft-STREET                 FLOW TO PT.#                 FLOW TO PT.#                 FOR POINT#       MEAN VALUES: Fp(1M/HR         4701.00       EFFECTIVE AREA(ACRES)         ANALYSIS       TC(min) Fp(av)         QC(fS)       TC(min) Fp(av)         286.19       22.93       .27         287.48       24.52       .27         2885.14       26.74       .27         2882.43       28.23       .27         2882.43       28.65       .27         2882.43       28.65       .27         2882.43       28.65       .27         2882.45       28.65       .27         2882.45       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------|-----------------------------------------|---------|------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                | 18.0                                    | 7.9     | *                |                                                                              | STORM RATIO<br>STORM RATIO<br>STORM RATIO<br>RISUBAREA (AC<br>BISUBAREA (AC<br>BISUBARE                                                           |
|                                | 26.0 c                                  | 7.9 C   | 223.7            |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| .8                             | Com                                     | Com : : |                  |                                                                              | 10/29/1993       [CRANGE COUNTY]         ETHOD STUDY (ANC II LOSSES)       [AVANCED ENGINEERING SOFTWARE]         [SOIL]DEV.       [Tt]       [Tc]       [I]       [Fm]       [Avg]       [PA         [SOIL]DEV.       [Tt]       [Tc]       [I]       [Fm]       [Avg]       [PA         [SOIL]DEV.       [Tt]       [Tc]       [I]       [Fm]       [Avg]       [PA         [SOIL]DEV.       [Tt]       [I]       [Fm]       [Avg]       [PA         [ITYPE]TYPE       [MIN.] [in/h]       [Avg]       [Avg]       [PA         [ITYPE]TYPE       [MIN.] [in/h]       [Avg]       [Avg]       [PA         [ITYPE]TYPE       [MIN.] [in/h]       [Avg]       [Avg]       [PA         [I]       [S.5]       []       []       []       []         [I]       []       []       []       []       []         [I]       []       []       []       []       []       []         [I]       []       []       []       []       []       []       []         [I]       []       []       []       []       []       []       []       []         [I]       [] <td< td=""></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                | 19,4 1.50                               | 1.7     | 25.6 1.29        |                                                                              | 29/1993         29/1993         STUDY (AMC II LOSSES)         1983-1991 ADVANCED ENGINEERI         10EV.       Tt         11       Tc         12       Fm         1983-1991 ADVANCED ENGINEERI         10EV.       Tt         11       Tc         1983-1991 ADVANCED ENGINEERI         10EV.       Tt         11       Tc         11       Fm         11       Fm         11       Fm         11       Fm         11       Fm         11       Fm         12       11         13       11         14       11         15.5       11         15.5       11         15.5       17         15.5       17.1         16.03       .03             15.5       287.5         TIME OF CONCENTRATION(MIN.) =         PE(Avg)       Ap(avg)         PG(avg)       Ap(avg)         .278       .12         .279       .12         .279       .12         .279 <td< td=""></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                | .03                                     |         |                  |                                                                              | CCOUNTY)<br>ENGINEERI<br>  Fm  <br>   <br>-    <br>-    <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-  <br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                | .025                                    |         | - 2              |                                                                              | JMTY1        -       -         S)       -       -       -         VGINEERING SOFTWARE1-       -       -       -         I       (Avg)       SUM       (Avg)       -         I         -       -           -       -       -           -       -       -           -       -       -           -       -       -           -       -       -         -287.5       117.8       -       -       -         -287.5       2118; Fm(1N/HR) =       -       -       -         -033       1.37       2       -       -       -         .033       1.31       2       -       -       -       -         .033       1.26       2       -       -       -       -         .033       1.20       2       -       -       -       -         .033       1.66       1       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ,<br>,<br>,<br>,<br>,<br>,     | 34.6                                    | 12.1    | 287.5            |                                                                              | <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                | <br> <br>0. 257                         |         |                  | 832 . 0                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                | 000 1 0000                              |         |                  | 064 12.                                                                      | CALCULATED BY:<br>CHECKED BY:<br>PAGE NUMBER<br>CHECKED BY:<br>PAGE NUMBER<br>CHECKED BY:<br>PAGE NUMBER<br>Cft) ft/ft   FPS.<br>Cft)   ft/ft   FPS.<br>Cft   FPS.<br>Cft |
| m=.0130 D= 2.6<br>  39.0"-PIPE | D= .6 ,[<br> FLOODWII                   | INITIAL | - FOR CONFLUENCE | 832 .0064 12.9 @pipe= 287.5cfs<br>        n=.0130 D= 4.6<br>      69.0"-PIPE | Y:<br>2 OF<br>2 OF<br>2 OF<br>4 HYDRAULICS<br>S.   AND NOTES<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

\*

| 4722.00                       |                                                             | 4721.00 7.7     | 4704.00        | 4704.00<br>4704.00 12.1 | 4703.00<br>4703.00 7                            |                              | 306.18                         | 310.38 | 314.18 | 317.35        | 318 | 317           | 314                          | ,              | 4702.00                    | FOR POINT#  | CONFLUENCE            | POINT NUMBER SUBAREA CACKES        |                                               | FILE NAME:SA47.DAT<br>TIME/DATE OF STUDY: 12:12 10/29/1993<br>5.0-YEAR STORM RATIONAL METHOD STUDY (AMC | MAP # 47                                |
|-------------------------------|-------------------------------------------------------------|-----------------|----------------|-------------------------|-------------------------------------------------|------------------------------|--------------------------------|--------|--------|---------------|-----|---------------|------------------------------|----------------|----------------------------|-------------|-----------------------|------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------|
| 4 20.1 0                      |                                                             | 7  7.7  c       | 263.0          | 1 263.0 C               | 7.1 250.9 C                                     |                              | .18 20.22                      |        |        | 317.35 26.23  |     |               | 298.60 18.19<br>314.24 23.18 | Q(cfs) Tc(min) | EFFECTIVE AREA(ACRES) =    | TIME OF CO  |                       | S                                  |                                               | STORM RATIONAL MET                                                                                      | REQUENCY AT                             |
|                               | 3.6                                                         | Com             |                | Com                     | Com .5                                          |                              | 2 .275                         |        |        | .276          | ŝ   |               | 19 .275<br>18 .275           | in) Fp(avg)    | EA(ACRES) =                | FD(IN/HR)   | PEAK FLOW             |                                    | [(c) 1983-1991 ADVANCED ENGINEERING SOFTWARE] | 10/29/1993<br>ETHOD STUDY (A                                                                            | 50% CONFIDEN                            |
| 18.0 1.60                     |                                                             | 14.5 1.85       | 26.6 1.26      | 26.6 1.26               | 25.2 1.30                                       |                              | - 12                           | .12    | -12    | -12           | -12 | .12           | .12                          | ~              |                            | NCE         | PEAK FLOW RATE(CFS) = |                                    | 1 ADVANCED E                                  | MC II LOSSES)                                                                                           | LORANGE COUNTY] -                       |
| .03 .025                      |                                                             | .03 .025        |                | .03 .032                | .03 -032                                        |                              | 32<br>32                       |        |        | .032          | 6   | .032          | .032                         | Fm(avg) I(i    | 243.76 TOTAL AREA(APPES) = | I(MIN.) = 2 | 31                    | <br>  Fm   Fm<br>)   (Avg)         | ENGINEERING                                   | 5                                                                                                       | OUNTY]                                  |
| 28.5                          | 331                                                         | 12.6            | 318.2          |                         | 318.2                                           | 3                            | 1.17 2<br>1.45 2               |        |        | 1.29 2        |     | 1.34 2        |                              | I(in/hr) Ae(   | (ACRES) =                  | 24.7        |                       | SUM O                              | SOFTWARE]                                     |                                                                                                         |                                         |
| $\left  -\frac{1}{1} \right $ | .0020                                                       |                 |                |                         |                                                 | 26 .0048 1                   | 269.67 4501.0<br>205.60 4715.0 |        |        | 249.66 4530.0 |     | 238.11 4520.0 |                              | ~ 5            | 200.                       |             | 100                   | PATH SLOPE  V<br>(ft) ft/ft FPS.   |                                               | CALCULATED BY:<br>CHECKED BY:                                                                           |                                         |
|                               | 1.7  qest.= 21.5cfs<br> D= .6 ,D*V= 1.1<br> FLOODWIDTH=29.3 | INITIAL SUBAREA | FOR CONFLUENCE | U W W                   | n=.0130 D= 5.1<br>  75.0"-PIPE<br>  ADD SUBAREA | 326 0048 11_8 00100 318 2010 | 5.0                            | 0.0    | 0.0    | 0.0           | 0.0 | 0.0           | 4710.0                       | DE             | L CONFLU                   | LARGEST     |                       | V   HYDRAULICS<br>FPS.   AND NOTES |                                               | BY:<br>BY:                                                                                              | * * * * * * * * * * * * * * * * * * * * |

3

| PLAN OF DRAINAGE         AT 50% CONFIDENCE LEVEL         10/29/1993         ITYPE         ITT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PLAN OF DRAINAGE         AT 50% CONFIDENCE LEVEL         10/29/1993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PLAN OF DRAINAGE         AT 50% CONFIDENCE LEVEL         10/29/1993 | 4707.00                                                                                | 4706.00                                                           | 4705.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MAP # 47         FILE NAME:SA47.DAT         TIME/DATE OF STUDY: 12:12         5.0-YEAR STORM RATIONAL         POINT NUMBER SUBAREA (ACRES)         A704.00                 4704.00       EFFECTIVE         4704.00       effective         326.06       332.47         338.83       341.90         341.34       341.34         340.18       340.18         329.20       325.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CITY OF SANTA ANA MAS   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| PLAN OF DRAINAGE         AT 50% CONFIDENCE LEVEL         10/29/1993         I-10/29/1993         METHOD STUDY (AMC II LOSSES)         - [C: ] 1983-1991 ADVANCED ENGI         ITYPE [TYPE  MIN.   MIN.   in/h          ITYPE [TYPE  MIN.   MIN.   in/h          ITYPE [TYPE  MIN.   MIN.   in/h          ITTYPE  TYPE  MIN.   MIN.   in/h          ITTHE OF CONCENTRATION(HI         IES: FP(IN/HR) = .277.5  T.23         ITTYPE   .11         ITTYPE   .11         ITTYPE   .11         ITTYPE   .11         ITTYPE   .11 <td>PLAN OF DRAINAGE         AT 50% CONFIDENCE LEVEL         10/29/1993        </td> <td>PLAN OF DRAINAGE         AT 50% CONFIDENCE LEVEL         10/29/1993        </td> <td>·</td> <td></td> <td></td> <td>MEAA<br/>F STUDY:<br/>F STUDY:<br/>F STUDY:<br/>F STUDY:<br/>F STUDY:<br/>AREA (AI<br/>SUBAREA  <br/>  <br/>-<br/> <br/>-<br/> <br/>-<br/></td> <td>A ANA MA<br/>RN FREQU</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PLAN OF DRAINAGE         AT 50% CONFIDENCE LEVEL         10/29/1993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PLAN OF DRAINAGE         AT 50% CONFIDENCE LEVEL         10/29/1993 | ·                                                                                      |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MEAA<br>F STUDY:<br>F STUDY:<br>F STUDY:<br>F STUDY:<br>F STUDY:<br>AREA (AI<br>SUBAREA  <br>  <br>-<br> <br>-<br> <br>-<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A ANA MA<br>RN FREQU    |
| E LEVEL<br>- [ORANGE COUNT<br>- [ORANGE COUNT<br>ADVANCED ENGI<br>  Tc   1   F<br>  Tc   1   Tc   1   F<br>  Tc   1   Tc   Tc   Tc   Tc   Tc   Tc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | E LEVEL<br>- [ORANGE COUNTY]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E LEVEL<br>- [ORANGE COUNTY]                                        | ·                                                                                      | · · · ·                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9 1 1 9 8 7 6 8 5 12 0 2 <sup>1</sup> m 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | STER PLAN<br>ENCY AT 50 |
| E LEVEL<br>- [ORANGE COUNT<br>- [ORANGE COUNT<br>ADVANCED ENGI<br>  Tc   1   F<br>  Tc   1   Tc   1   F<br>  Tc   1   Tc   Tc   Tc   Tc   Tc   Tc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | E LEVEL<br>- [ORANGE COUNTY]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E LEVEL<br>- [ORANGE COUNTY]                                        | i                                                                                      | ·                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 229/1993<br>229/1993<br>200 STUDY (<br>201 STUDY (<br>201 STUDY (<br>201 PB3-19<br>201 PB3-19<br>2 | OF DRAINA<br>D% CONFIDE |
| E COUNT<br>E COUNT<br>ED ENGI<br>I   F<br>I   F<br>I | E COUNTYJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E COUNTYJ                                                           | · · · · · · · · · · · · · · · · · · ·                                                  |                                                                   | 27.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [ORANG<br>91 ADVANC<br>t   Tc  <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NCE LEVEL               |
| ERING SO<br>  Fm  <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Finil       Q       P         Finil       Q       P         I       Finil       Q         I       Finil       P         I       I       P         I       I       P         I       I       P         I       I       P         I       I       P         I       I       P         I       I       P         I       I       P         I       I       P <td></td> <td>the second second second because in the second because in the second because in</td> <td></td> <td>All and a second s</td> <td>E COUNTY]<br/>E COUNTY]<br/>I   Fm<br/>I   Fm<br/>in/h <br/> <br/> <br/>S) = 34<br/>TION(MIN.<br/>S) = 34<br/>CO31<br/>.031<br/>.031<br/>.031<br/>.031<br/>.031<br/>.031<br/>.031<br/>.031<br/>.031<br/>.031<br/>.032<br/>.032</td> <td></td> |                                                                     | the second second second because in the second because in the second because in        |                                                                   | All and a second s | E COUNTY]<br>E COUNTY]<br>I   Fm<br>I   Fm<br>in/h <br> <br> <br>S) = 34<br>TION(MIN.<br>S) = 34<br>CO31<br>.031<br>.031<br>.031<br>.031<br>.031<br>.031<br>.031<br>.031<br>.031<br>.031<br>.032<br>.032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SUM [FTWARE]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CALCULATE<br>  CALCULATE<br>CHECKE<br>  PAGE NUMB<br>FTWARE]        | ,030                                                                                   |                                                                   | .031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PERING SO<br>PERING SO                                                                                                                                                                                               |                         |
| ALCULATED BY:<br>ALCULATED BY:<br>AGE NUMBER<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                     | 4pipe= 342.1cfs<br>  n=.0130 D= 6.6<br>  108.0"-PIPE<br>  ADD SUBAREA<br>  ADD SUBAREA | 100 542.1018<br>  n=.0130 D= 5.3<br>  84.0"-PIPE<br>  ADD SUBAREA | Qpipe= 342.1cfs<br>n=.0130 D= 4.9<br>75.0"-PIPE<br>ADD SUBAREA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | OF<br>HYDRAULICS<br>AND NOTES<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |

~

| т Ф<br>В В В<br>В В В<br>Т В В<br>Т В В<br>В В В В<br>В В В<br>В В В В |                                                                              | t t<br>1 t<br>1 t<br>1 t<br>1 t<br>1 t<br>1 t<br>1 t |                                 | + + + + + + + + + + + + + + + + + + + |           |                                  | 1                                     |                          |                                       |                     |                                                                        |                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------|---------------------------------------|-----------|----------------------------------|---------------------------------------|--------------------------|---------------------------------------|---------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ae(acres) NODE  <br>53.29 4730.0<br>39.24 4734.0                             |                                                      | 1(1n/nr)<br>1.27<br>1.78        | ,025<br>,025                          |           | . 10<br>. 10<br>. 10             | rp(avg)<br>.250<br>.250               |                          | 26.18<br>15.45                        |                     | 62.62<br>64.15                                                         |                                                                                        |
| Q= 64.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 53                                                                           | TAL AREA(ACRES) =                                    | TOTAL AREA(ACRES)               | 5                                     | N,        | •                                | s) = -                                | EA(ACRES) =              |                                       | CTIVE               |                                                                        | 4736.00                                                                                |
| LARGEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                              | 4                                                    | .1<br>= 15.4                    | - <u>-</u>                            | FS) =     | FLOW RATE(CFS)<br>OF CONCENTRATI | FLOW                                  | PEAK<br>TIME             |                                       | WEAN VALUES.        | <b>X</b> n                                                             | CONFLUENCE                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                              |                                                      |                                 |                                       |           |                                  |                                       | +<br>+<br>+<br>1         |                                       | 1                   |                                                                        |                                                                                        |
| <u>"</u> . 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ¢<br>2<br>7<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 30.0                                                 | 025                             | .03                                   | 15.4 1.78 |                                  | 2.4                                   | Com                      | <u> </u>                              | 19.0                | 10.0                                                                   | 4736.00                                                                                |
| INITIAL SUBAREA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 545 .0020  <br>                                                              | 15.6                                                 | .025                            |                                       | 11.94     |                                  |                                       | Com                      | <u>- 0</u>                            | 9.0                 | 0                                                                      | 4735.00                                                                                |
| FOR CONFLUENCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                              | 41.3                                                 |                                 | * * * * * * * * * * * * * * * * * * * | 2 1.27    | 26.2                             |                                       |                          | - <del></del>                         | 34.3                | 1<br>1<br>1<br>1<br>1<br>1                                             | 4736.00                                                                                |
| upipe= 41.3cfs<br> n=.0130 D= 3.1<br>  48.0"-PIPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                              |                                                      |                                 |                                       |           |                                  | 2.9                                   |                          | +<br>+<br>                            |                     | 8<br>9<br>6<br>7<br>4<br>1                                             | 4736.00                                                                                |
| 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                              | 41.3                                                 | .025                            | .0                                    | 3 1.36    |                                  | 1.0                                   | Com                      |                                       | 34.3                | 21.6                                                                   | 4733.00                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .0050 5.7                                                                    | 15.6                                                 | .025                            | .03                                   | - 3 1.39  | 9<br>-  22.3<br>                 |                                       |                          |                                       | 12.7                | 6.2                                                                    | 64.ft-STREET  <br>FLOW TO PT.#  <br>4732.00                                            |
| INITIAL SUBAREA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 955   .0020    <br>955   .0020    <br>                                       | 9.8                                                  | .025                            | .03                                   | 4 11.71   | - 16.4                           | · · · · · · · · · · · · · · · · · · · | Com                      | 6.5                                   | · · · · ·           | 6.5                                                                    | 4731.00                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                              | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                |                                 | - <u> </u>                            |           | -                                | ONTO                                  | COPIED                   | REAM C                                |                     | MA                                                                     | 4707.00                                                                                |
| HYDRAULICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PATH SLOPE  V<br> (ft) ft/ft FPS.                                            |                                                      | Fm  <br> (Avg)                  |                                       | -         | HIN.                             | MIN.                                  | TYPE   TYPE   MIN.       | · · · · · · · · · · · · · · · · · · · | (ACRES)             | AREA C                                                                 | CONCENTRATION AREA (ACRES)<br>POINT NUMBER SUBAREA SUM                                 |
| Q<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ALCULATED BY:<br>CHECKED BY:<br>AGE NUMBER                                   |                                                      |                                 | ES)                                   | II LOSSES | 9/1993<br>STUDY (AMC 11 LOSS     |                                       | 10/29/1993<br>THOD STUDY | 12 10/29<br>L METHOD                  | : 12:12<br>TIONAL M | SA47.DAT                                                               | FILE NAME:SA47.DAT<br>TIME/DATE OF STUDY: 12:12 10/2<br>5.0-YEAR STORM RATIONAL METHOD |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                              | -<br>0<br>0<br>0<br>0<br>0<br>1                      | P<br>P<br>1<br>4<br>4<br>4<br>4 | DINTYT                                | LEVEL     | + m                              | CONFIDENCE                            | AN OF DI<br>50% CO       | R PLAN<br>Y AT 5                      | MASTE               | SANTA ANA MASTER PLAN OF DRAINAGE<br>RETURN FREQUENCY AT 50% CONFIDENC | CITY OF SANTA ANA MASTER<br>10-YEAR RETURN FREQUENCY<br>MAP # 47                       |

| 1 2 4 1 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 |           | 3<br>6<br>8<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 |              | 4          |          | - 4    |            |        |        |        |        |          |             |        | 4/01.00          |            | 4707.00    |                     | 4739.00               | 4739.00    |                                       | 00.001      | 4738.00      |     |                       | 4737.00                         |                |                       | 2<br>7<br>7<br>2<br>7<br>7<br>7<br>8<br>7<br>8<br>7<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8 | POINT NUMBER SUBAREA | CONCENTRATION AREA (ACRES)                      | 5.0-YEAR STORM RATIONAL METHOD STUDY (AMC | TIME/DATE OF    | FILE NAME: SA47.DAT                   | 10-YEAR RETURN FREQUENCY AT 50% CONFIDENCE<br>MAP # 47 | CITY OF SANTA ANA MASTER PLAN OF DRAINAGE |
|-----------------------------------------|-----------|-------------------------------------------------------------------------------------------------------|--------------|------------|----------|--------|------------|--------|--------|--------|--------|----------|-------------|--------|------------------|------------|------------|---------------------|-----------------------|------------|---------------------------------------|-------------|--------------|-----|-----------------------|---------------------------------|----------------|-----------------------|--------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------|-------------------------------------------|-----------------|---------------------------------------|--------------------------------------------------------|-------------------------------------------|
|                                         |           | 1<br>1<br>1<br>1<br>1                                                                                 | TOTAL        | 425.78     | 432.42   | 438.95 | 440.88     | 442.43 | 443.45 | 420.09 | 433.97 | 434.60   | 439.34      | 420.43 | Q(cfs)           |            |            | ;                   | 9.3                   | <u> </u>   |                                       | 10.7        | <b>1</b> 2 7 |     | ;<br>;<br>;<br>;      | 17.1                            |                |                       |                                                                                                  | UBAREA               |                                                 | RM RATI                                   | OF STUDY: 12:12 | 7.DAT                                 | N FREQL                                                | ANA MI                                    |
| 1<br>1<br>1<br>1                        | <u> </u>  | 1                                                                                                     |              | 34.81      | 33.31    | 31.69  | 31.05      | 30.19  | 29.47  | 28.67  | 23.71  | 22.91    | 31.57       | 20.73  | Tc(min)          | 1          |            |                     | 82.4                  |            |                                       |             | ±            |     | *<br>*<br>1<br>7      | 56.3                            | ~              | 1<br>1<br>7<br>7<br>7 |                                                                                                  |                      |                                                 | ONAL ME                                   |                 | 1                                     | JENCY AT                                               | ASTER PI                                  |
|                                         |           |                                                                                                       | AREA(ACRES)= | 81         | 31       | 69     | 05         | 19     | 47     | 67     | 17     | 91       | 57          |        | ~ ~              | , <u> </u> | <u> </u>   |                     | c Com                 | <u> </u>   | _ ~-                                  | ר.   רסוו   |              |     |                       | с  <br>С                        |                |                       |                                                                                                  | TYPEIT               | soft bi                                         | THOD S                                    | 10/29/1993      | ,<br>,<br>,<br>,                      | r 50% c                                                | AN OF                                     |
| 1                                       | <u></u>   | 1                                                                                                     | . 200        | .268       | .267     | .267   | .267       | .266   | .266   | .266   | .264   | -264     | .267        | .264   | CUNFLUENCED WITH |            | 1.7        |                     |                       | 1.2        | ·                                     |             | י<br><br>זיי |     |                       | m _ ∠.0                         |                | ,<br>,<br>,           |                                                                                                  | TYPE TYPE MIN. MIN.  | -L(C) 1983-1999 ADVANCED ENGINEERING SOFTWAREJ- | FUDY (A                                   | 1993            | t<br>8<br>8<br>8<br>8<br>8<br>8       | ONFIDEN                                                | DRAINAG                                   |
| 1<br>E<br>2<br>7<br>7                   |           |                                                                                                       | 437.04       | •<br>• • • | •        | .1     |            | •<br>  |        |        |        | . 11     | •           | - 11   | CED WITH         |            | <u> </u>   | 1<br>1<br>1<br>1    | ····· ,               |            |                                       |             |              |     | :                     |                                 |                |                       |                                                                                                  | MIN (                | T ADVAN                                         | MC II                                     |                 | LORAN                                 | רהו                                                    | μ.                                        |
| 1<br>9<br>9<br>6<br>8                   |           | 1<br>1<br>1<br>1                                                                                      |              |            |          |        |            |        |        |        |        |          |             |        |                  |            |            |                     | 19.1 1.53             |            |                                       | 11.91.01    |              | ·   | ;                     | <br>17.4  1.64                  |                |                       |                                                                                                  | lin/h                | CED EN                                          | II LOSSES                                 |                 | LORANGE COUNTY]                       |                                                        |                                           |
|                                         |           | <u>-</u>                                                                                              | .020         | ,030       | .030     | .029   | .029       | .029   | .029   | .029   | .029   | .029     | .029        | 020    | MAIN-STREAM      |            |            |                     | .03                   |            |                                       |             |              | ·   |                       | .03                             |                | +                     |                                                                                                  |                      | GINEE                                           |                                           |                 | - LAAN                                | 1                                                      |                                           |
|                                         |           |                                                                                                       |              | د.<br>•    | <br>•    | <br>-  | . <b>`</b> | »      |        |        | د ۱    | a        | <b>&gt;</b> |        | AM               |            |            |                     | .025                  |            |                                       | C20         |              | · · |                       | .025                            |                | 1                     |                                                                                                  | (Ava)                |                                                 |                                           |                 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |                                                        |                                           |
| 1<br>1<br>7<br>1                        |           | *                                                                                                     | +.07         | 1.08       | 1.10     | 1.13   | 1.14       | 1.16   | 1.18   | 1.20   | 1.35   | 1.37     | 1.13        |        | -                | -          |            |                     | 111.3                 |            |                                       | 104.2       | 2            |     | r<br>F<br>F<br>T      | 81.9                            |                | 1<br>4<br>7<br>7<br>7 |                                                                                                  | SUM<br>MUS           | OFTWAR                                          |                                           |                 | 1<br>1<br>1<br>1<br>1                 |                                                        |                                           |
|                                         |           | +                                                                                                     | 407.04       | 436.27     | 429.85   | 420.88 | 416.34     | 409.33 | 402.74 | 305.13 | 342.35 | 333.23   | 420.17      | 306.78 | Aplacreel        |            |            | 664 .               |                       |            | nron-1 rro                            | 457         |              |     |                       | 1<br>1<br>1<br>1<br>1<br>1<br>7 |                | 963                   |                                                                                                  | [(ft) ft/ft FPS_     | E]                                              | PAGE                                      | ç               |                                       |                                                        |                                           |
|                                         | <b></b> , |                                                                                                       | + 4001.0     |            | 5 4540.0 |        |            |        |        | 4/15.0 |        | 3 4720.0 |             | ~      |                  |            |            | .0020               | +<br>+<br>+<br>+<br>+ | <u>-</u> - | -                                     |             |              |     | 278 .0076 10.1 apipe= | 1<br>1<br>1<br>1<br>1           |                | 963 .0050 8.2 apipe=  |                                                                                                  | 1/ft   F             | DATUISIODEL V                                   | PAGE NUMBER                               | CHECKED BY:     | CALCULATED BY:                        |                                                        |                                           |
|                                         |           |                                                                                                       |              |            | 0.0      | 0.0    | 0          | 0      |        |        |        | 0.0      | 0           |        |                  |            |            | 6-6 a               |                       |            | tul<br>Inlet k                        | 2           |              | 7   | 0.10                  | 1<br>1<br>1                     | - <u>-</u>     | 8.2 Q                 |                                                                                                  |                      | <                                               | 6 OF                                      | ΒΥ:             | RY:                                   |                                                        |                                           |
| , , , , , , , , , , , , , , , , , , ,   |           |                                                                                                       |              |            |          |        |            |        |        |        |        |          |             |        |                  |            | 3dId-n0*09 | 6.6 apipe= 111.3cfs | ADD SUBAREA           | 3414-m0.15 | L & EU UXIOTEU<br>S122"Ent madidale"A | ADD SUBAREA | 42.0"-PIPE   | 0   | pipe≕ 81.9cfs         | 42.0"-PIPE                      | n=.0130 D= 2.7 | pipe= 64.1cfs         |                                                                                                  | AND NOTES            |                                                 | 0f                                        |                 | 4 9 8 8 9 6 9 6 9 6 8 8 8             |                                                        |                                           |

-

WARNER AVENUE FROM MAIN STREET TO GRAND AVENUE WIDENING PROJECT PRELIMINARY DRAINAGE STUDY

# APPENDIX J: PROPOSED HYDROLOGY – RATIONAL METHOD

# (AES OUTPUT)

#### 

Analysis prepared by:

IBI Group 10 Exchange Place, Suite 112 Salt Lake City, UT 84111 (801) 532-4233

\_\_\_\_\_ FILE NAME: HYDRO\_TY.DAT TIME/DATE OF STUDY: 10:42 06/05/2009 \_\_\_\_\_ USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: --\*TIME-OF-CONCENTRATION MODEL\*--USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 12.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 \*DATA BANK RAINFALL USED\* \*ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD\* \*USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL\* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (FT) (n) NO. --- ---- ----- ----- ------ ----- ----- 

 1
 30.0
 20.0
 0.018/0.018/0.020
 0.67
 2.00
 0.0312
 0.167
 0.0150

 2
 43.0
 38.0
 0.020/0.020/0.020
 0.67
 2.00
 0.0312
 0.167
 0.0150

 3 40.0 4 35.0 35.0 0.020/0.020/0.020 0.67 2.00 0.0312 0.167 0.0150 30.0 0.020/0.020/0.020 0.67 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = -0.10 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)\*(Velocity) Constraint = 6.0 (FT\*FT/S) \*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.\* \*USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED FLOW PROCESS FROM NODE 0.00 TO NODE 3826.00 IS CODE = 21 \_\_\_\_\_ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW-LENGTH(FEET) = 803.00 ELEVATION DATA: UPSTREAM(FEET) = 63.00 DOWNSTREAM(FEET) = 59.90 Tc = K\*[(LENGTH\*\* 3.00)/(ELEVATION CHANGE)]\*\*0.20SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 13.410 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.307 SUBAREA TC AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Ap SCS TC Fp GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) LAND USE COMMERCIAL С 10.20 0.25 0.100 69 13.41 RESIDENTIAL

```
"5-7 DWELLINGS/ACRE" C 2.60 0.25 0.500 69 17.16
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.181
 SUBAREA RUNOFF(CFS) = 26.05
 TOTAL AREA(ACRES) =
                  12.80 PEAK FLOW RATE(CFS) =
                                            26.05
FLOW PROCESS FROM NODE 3826.00 TO NODE 3826.00 IS CODE = 1
_____
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
_____
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 13.41
 RAINFALL INTENSITY(INCH/HR) = 2.31
 AREA-AVERAGED Fm(INCH/HR) = 0.05
 AREA-AVERAGED Fp(INCH/HR) = 0.25
 AREA-AVERAGED Ap = 0.18
 EFFECTIVE STREAM AREA(ACRES) =
                          12.80
 TOTAL STREAM AREA(ACRES) = 12.80
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                               26.05
FLOW PROCESS FROM NODE 3825.00 TO NODE 3826.00 IS CODE =
                                               7
  _____
 >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<<
_____
 USER-SPECIFIED VALUES ARE AS FOLLOWS:
 TC(MIN.) = 29.10 RAINFALL INTENSITY(INCH/HR) = 1.48
 EFFECTIVE AREA(ACRES) = 59.90
 TOTAL AREA(ACRES) = 59.90 PEAK FLOW RATE(CFS) = 112.20
 AREA-AVERAGED Fm(INCH/HR) = 0.04 AREA-AVERAGED Fp(INCH/HR) = 0.25
 AREA-AVERAGED Ap = 0.16
 NOTE: EFFECTIVE AREA IS USED AS THE TOTAL CONTRIBUTING AREA FOR ALL
      CONFLUENCE ANALYSES.
FLOW PROCESS FROM NODE 3826.00 TO NODE 3826.00 IS CODE = 1
_____
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<
_____
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 29.10
 RAINFALL INTENSITY(INCH/HR) = 1.48
 AREA-AVERAGED Fm(INCH/HR) = 0.04
 AREA-AVERAGED Fp(INCH/HR) = 0.25
 AREA-AVERAGED Ap = 0.16
 EFFECTIVE STREAM AREA(ACRES) = 59.90
TOTAL STREAM AREA(ACRES) = 59.90
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 112.20
 ** CONFLUENCE DATA **
  STREAMQTcIntensityFp(Fm)ApAeHEADWATERNUMBER(CFS)(MIN.)(INCH/HR)(INCH/HR)(ACRES)NODE
        26.0513.412.3070.25(0.05)0.1812.8112.2029.101.4800.25(0.04)0.1659.9
                                           12.8 0.00
59.9 3825.00
    1
    2
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
```

\*\* PEAK FLOW RATE TABLE \*\*

STREAMQTcIntensityFp(Fm)ApAeHEADWATERNUMBER(CFS)(MIN.)(INCH/HR)(INCH/HR)(ACRES)NODE 1107.4513.412.3070.25(0.04)0.1740.40.002128.7229.101.4800.25(0.04)0.1672.73825.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 128.72 Tc(MIN.) = 29.10 EFFECTIVE AREA(ACRES) = 72.70 AREA-AVERAGED Fm(INCH/HR) = 0.04 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.16 TOTAL AREA(ACRES) = 72.7LONGEST FLOWPATH FROM NODE 0.00 TO NODE 3826.00 = 803.00 FEET. FLOW PROCESS FROM NODE 3826.00 TO NODE 3834.00 IS CODE = 43 \_\_\_\_\_ >>>>COMPUTE COUPLED PIPEFLOW/STREETFLOW THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE(EXISTING) (PRESSURE FLOW) <<<<< \_\_\_\_\_ UPSTREAM NODE ELEVATION(FEET) = 50.30 DOWNSTREAM NODE ELEVATION(FEET) = 49.45 FLOW LENGTH(FEET) = 355.00 MANNING'S N = 0.013 USER SPECIFIED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY(FEET/SEC.) = 3.71 PIPE-FLOW(CFS) = 14.77PIPEFLOW TRAVEL TIME(MIN.) = 1.59 Tc(MIN.) = 30.69 \* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.435 SUBAREA LOSS RATE DATA(AMC II): Fp DEVELOPMENT TYPE/ SCS SOIL AREA SCS Ap LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL "5-7 DWELLINGS/ACRE" C 10.30 0.25 0.500 69 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.500 SUBAREA AREA(ACRES) = 10.30 SUBAREA RUNOFF(CFS) = 12.15 EFFECTIVE AREA(ACRES) = 83.00 AREA-AVERAGED Fm(INCH/HR) = 0.05 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.21 TOTAL AREA(ACRES) = 83.0 PEAK FLOW RATE(CFS) = 128.72NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE STREET CROSS-SECTION INFORMATION: CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 43.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 38.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 MAXIMUM ALLOWABLE STREET FLOW DEPTH(FEET) = 0.57 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0300 \*NOTE: STREET-CAPACITY MAY BE EXCEEDED\* STREETFLOW HYDRAULICS BASED ON MAINLINE Tc : STREET HYDRAULICS COMPUTED USING ESTIMATED FLOW(CFS) = 113.96 \*\*\*STREET FLOWING FULL\*\*\* STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 1.03HALFSTREET FLOOD WIDTH(FEET) = 61.34 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.51 PRODUCT OF DEPTH&VELOCITY(FT\*FT/SEC.) = 2.59 \*NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS, AND L = 355.0 FT WITH ELEVATION-DROP = 0.8 FT, IS 20.0 CFS, WHICH EXCEEDS THE SPECIFIED STREET CAPACITY AT NODE 3834.00

LONGEST FLOWPATH FROM NODE 0.00 TO NODE 3834.00 = 1158.00 FEET. FLOW PROCESS FROM NODE 3834.00 TO NODE 3834.00 IS CODE = 1 \_\_\_\_\_ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< \_\_\_\_\_ TOTAL NUMBER OF STREAMS = 2CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 30.69 RAINFALL INTENSITY(INCH/HR) = 1.44 AREA-AVERAGED Fm(INCH/HR) = 0.05AREA-AVERAGED Fp(INCH/HR) = 0.25AREA-AVERAGED Ap = 0.21EFFECTIVE STREAM AREA(ACRES) = 83.00 TOTAL STREAM AREA(ACRES) = 83.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 128.72 FLOW PROCESS FROM NODE 3833.00 TO NODE 3834.00 IS CODE = 7 \_\_\_\_\_ >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< \_\_\_\_\_ USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN.) = 26.90 RAINFALL INTENSITY(INCH/HR) = 1.55 EFFECTIVE AREA(ACRES) = 18.40 TOTAL AREA(ACRES) = 18.40 PEAK FLOW RATE(CFS) = 18.60 AREA-AVERAGED Fm(INCH/HR) = 0.12 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.50NOTE: EFFECTIVE AREA IS USED AS THE TOTAL CONTRIBUTING AREA FOR ALL CONFLUENCE ANALYSES. FLOW PROCESS FROM NODE 3834.00 TO NODE 3834.00 IS CODE = 1 \_\_\_\_\_ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<< >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< \_\_\_\_\_ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 26.90 RAINFALL INTENSITY(INCH/HR) = 1.55 AREA-AVERAGED Fm(INCH/HR) = 0.12AREA-AVERAGED Fp(INCH/HR) = 0.25AREA-AVERAGED Ap = 0.50EFFECTIVE STREAM AREA(ACRES) = 18.40 TOTAL STREAM AREA(ACRES) = 18.40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 18.60 \*\* CONFLUENCE DATA \*\* Q TC Intensity Fp(Fm) Ap Ae HEADWATER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE STREAM Q Tc Intensity Fp(Fm) NUMBER 107.4515.002.1630.25(0.06)0.2350.70.00128.7230.691.4350.25(0.05)0.2183.03825.0018.6026.901.5480.25(0.12)0.5018.43833.00 1 1 2 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. \*\* PEAK FLOW RATE TABLE \*\* STREAMQTcIntensityFp(Fm)ApAeHEADWATERNUMBER(CFS)(MIN.)(INCH/HR)(INCH/HR)(ACRES)NODE 122.31 15.00 2.163 0.25( 0.07) 0.28 61.0 0.00 1

142.1826.901.5480.25(0.07)0.2793.63833.00145.8530.691.4350.25(0.06)0.26101.43825.00 2 3 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: 30.69 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.26 TOTAL AREA(ACRES) = 101.40.00 TO NODE 3834.00 = 1158.00 FEET. LONGEST FLOWPATH FROM NODE FLOW PROCESS FROM NODE 3834.00 TO NODE 3845.00 IS CODE = 43 \_\_\_\_\_ >>>>COMPUTE COUPLED PIPEFLOW/STREETFLOW THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE(EXISTING) (PRESSURE FLOW) <<<<< \_\_\_\_\_ UPSTREAM NODE ELEVATION(FEET) = 49.45 DOWNSTREAM NODE ELEVATION(FEET) = 47.94 FLOW LENGTH(FEET) = 646.00 MANNING'S N = 0.013USER SPECIFIED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY(FEET/SEC.) = 3.67 PIPE-FLOW(CFS) = 14.59\*NOTE: USER SPECIFIED PIPE SYSTEM CAN NOT CARRY TOTAL UPSTREAM PIPEFLOW\* PIPEFLOW TRAVEL TIME(MIN.) = 2.94 Tc(MIN.) = 33.63 \* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.362 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA SCS Fp Ap LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL 19.30 "5-7 DWELLINGS/ACRE" C 0.25 0.500 69 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.500 SUBAREA AREA(ACRES) = 19.30 SUBAREA RUNOFF(CFS) = 21.49 EFFECTIVE AREA(ACRES) = 120.70 AREA-AVERAGED Fm(INCH/HR) = 0.07 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.30TOTAL AREA(ACRES) = 120.7 PEAK FLOW RATE(CFS) = 145.85NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE STREET CROSS-SECTION INFORMATION: CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 43.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 38.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 MAXIMUM ALLOWABLE STREET FLOW DEPTH(FEET) = 0.57 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0300 \*NOTE: STREET-CAPACITY MAY BE EXCEEDED\* STREETFLOW HYDRAULICS BASED ON MAINLINE Tc : STREET HYDRAULICS COMPUTED USING ESTIMATED FLOW(CFS) = 131.26 \*\*\*STREET FLOWING FULL\*\*\* STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 1.08HALFSTREET FLOOD WIDTH(FEET) = 63.42 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.60 PRODUCT OF DEPTH&VELOCITY(FT\*FT/SEC.) = 2.79 \*NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS, AND L = 646.0 FT WITH ELEVATION-DROP = 1.5 FT, IS 32.4 CFS, WHICH EXCEEDS THE SPECIFIED STREET CAPACITY AT NODE 3845.00 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 3845.00 = 1804.00 FEET.

```
FLOW PROCESS FROM NODE 3845.00 TO NODE 3845.00 IS CODE =
                                                 1
_____
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 33.63
 RAINFALL INTENSITY(INCH/HR) = 1.36
 AREA-AVERAGED Fm(INCH/HR) = 0.07
 AREA-AVERAGED Fp(INCH/HR) = 0.25
 AREA-AVERAGED Ap = 0.30
 EFFECTIVE STREAM AREA(ACRES) = 120.70
 TOTAL STREAM AREA(ACRES) = 120.70
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                               145.85
FLOW PROCESS FROM NODE 3844.00 TO NODE 3845.00 IS CODE =
                                                 7
_____
 >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<<
_____
 USER-SPECIFIED VALUES ARE AS FOLLOWS:
 TC(MIN.) = 27.40 RAINFALL INTENSITY(INCH/HR) = 1.53
 EFFECTIVE AREA(ACRES) = 30.70
 TOTAL AREA(ACRES) = 30.70
                           PEAK FLOW RATE(CFS) = 
                                               30.80
 AREA-AVERAGED Fm(INCH/HR) = 0.12 AREA-AVERAGED Fp(INCH/HR) = 0.25
 AREA-AVERAGED Ap = 0.50
 NOTE: EFFECTIVE AREA IS USED AS THE TOTAL CONTRIBUTING AREA FOR ALL
      CONFLUENCE ANALYSES.
FLOW PROCESS FROM NODE 3845.00 TO NODE 3845.00 IS CODE =
                                                1
_____
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<
TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 27.40
 RAINFALL INTENSITY(INCH/HR) = 1.53
 AREA-AVERAGED Fm(INCH/HR) = 0.12
 AREA-AVERAGED Fp(INCH/HR) = 0.25
 AREA-AVERAGED Ap = 0.50
 EFFECTIVE STREAM AREA(ACRES) = 30.70
 TOTAL STREAM AREA(ACRES) = 30.70
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                               30.80
 ** CONFLUENCE DATA **
          Q TC Intensity Fp(Fm) Ap Ae HEADWATER
(CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE
  STREAM Q Tc Intensity Fp(Fm)
  NUMBER
        135.0317.941.9520.25(0.08)0.3380.3142.1829.841.4590.25(0.08)0.31112.9145.8533.631.3620.25(0.07)0.30120.730.8027.401.5320.25(0.12)0.5030.7
                                                  0.00
    1
    1
                                                   3833.00
                                          120.7 3825.00
30.7 3844.00
    1
    2
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
  STREAMQTcIntensityFp(Fm)ApAeHEADWATERNUMBER(CFS)(MIN.)(INCH/HR)(INCH/HR)(ACRES)NODE
        161.23 17.94 1.952 0.25( 0.09) 0.37 100.4
                                                 0.00
   1
```

171.5227.401.5320.25(0.09)0.36136.93844.00171.3829.841.4590.25(0.09)0.35143.63833.00172.9433.631.3620.25(0.08)0.34151.43825.00 2 3 4 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 172.94 Tc(MIN.) = 33.63 EFFECTIVE AREA(ACRES) = 151.40 AREA-AVERAGED Fm(INCH/HR) = 0.08 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.34 TOTAL AREA(ACRES) = 151.4LONGEST FLOWPATH FROM NODE 0.00 TO NODE 3845.00 = 1804.00 FEET. FLOW PROCESS FROM NODE 3845.00 TO NODE 3805.00 IS CODE = 43 \_\_\_\_\_ >>>>COMPUTE COUPLED PIPEFLOW/STREETFLOW THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE(EXISTING) (PRESSURE FLOW) <<<<< UPSTREAM NODE ELEVATION(FEET) = 47.91 DOWNSTREAM NODE ELEVATION(FEET) = 44.72 FLOW LENGTH(FEET) = 1110.00 MANNING'S N = 0.013 USER SPECIFIED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY(FEET/SEC.) = 4.07PIPE-FLOW(CFS) = 16.18PIPEFLOW TRAVEL TIME(MIN.) = 4.55 Tc(MIN.) = 38.18 \* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.266 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp SCS Ap LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN RESIDENTIAL 23.90 "5-7 DWELLINGS/ACRE" С 0.25 0.500 69 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.500 SUBAREA AREA(ACRES) = 23.90 SUBAREA RUNOFF(CFS) = 24.55 EFFECTIVE AREA(ACRES) = 175.30 AREA-AVERAGED Fm(INCH/HR) = 0.09 AREA-AVERAGED  $F_p(INCH/HR) = 0.25$  AREA-AVERAGED  $A_p = 0.36$ TOTAL AREA(ACRES) = 175.3 PEAK FLOW RATE(CFS) = 185.59 STREET CROSS-SECTION INFORMATION: CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 43.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 38.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 MAXIMUM ALLOWABLE STREET FLOW DEPTH(FEET) = 0.57 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0300 \*NOTE: STREET-CAPACITY MAY BE EXCEEDED\* STREETFLOW HYDRAULICS BASED ON MAINLINE Tc : STREET HYDRAULICS COMPUTED USING ESTIMATED FLOW(CFS) = 169.41 \*\*\*STREET FLOWING FULL\*\*\* STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 1.12HALFSTREET FLOOD WIDTH(FEET) = 65.61 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.01 PRODUCT OF DEPTH&VELOCITY(FT\*FT/SEC.) = 3.37 \*NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS, AND L = 1110.0 FT WITH ELEVATION-DROP = 3.2 FT, IS 36.0 CFS, WHICH EXCEEDS THE SPECIFIED STREET CAPACITY AT NODE 3805.00 \*\* PEAK FLOW RATE TABLE \*\*

STREAMQTcIntensityFp(Fm)ApAeHEADWATERNUMBER(CFS)(MIN.)(INCH/HR)(INCH/HR)(ACRES)NODE 0.00 180.87 22.49 1.715 0.25( 0.10) 0.39 124.3 1 189.36 31.95 1.403 0.25( 0.09) 0.38 160.8 2 3844.00 188.7334.391.3450.25(0.09)0.37167.53833.00185.5938.181.2660.25(0.09)0.36175.33825.00 3 4 NEW PEAK FLOW DATA ARE: PEAK FLOW RATE(CFS) = 189.36 Tc(MIN.) = 31.95 AREA-AVERAGED Fm(INCH/HR) = 0.09 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.38 EFFECTIVE AREA(ACRES) = 160.81LONGEST FLOWPATH FROM NODE 0.00 TO NODE 3805.00 = 2914.00 FEET. FLOW PROCESS FROM NODE 3805.00 TO NODE 3805.00 IS CODE = 1 \_\_\_\_\_ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< \_\_\_\_\_ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 31.95 RAINFALL INTENSITY(INCH/HR) = 1.40 AREA-AVERAGED Fm(INCH/HR) = 0.10AREA-AVERAGED Fp(INCH/HR) = 0.25AREA-AVERAGED Ap = 0.39EFFECTIVE STREAM AREA(ACRES) = 160.81 TOTAL STREAM AREA(ACRES) = 175.30PEAK FLOW RATE(CFS) AT CONFLUENCE = 189.36 FLOW PROCESS FROM NODE 3804.00 TO NODE 3805.00 IS CODE = 7 \_\_\_\_\_ >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< \_\_\_\_\_\_ USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN.) = 52.30 RAINFALL INTENSITY(INCH/HR) = 1.06 EFFECTIVE AREA(ACRES) = 1138.80 TOTAL AREA(ACRES) = 1138.80 PEAK FLOW RATE(CFS) = 830.30 AREA-AVERAGED Fm(INCH/HR) = 0.12 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.50NOTE: EFFECTIVE AREA IS USED AS THE TOTAL CONTRIBUTING AREA FOR ALL CONFLUENCE ANALYSES. FLOW PROCESS FROM NODE 3805.00 TO NODE 3805.00 IS CODE = 1 \_\_\_\_\_ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< \_\_\_\_\_\_ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 52.30RAINFALL INTENSITY(INCH/HR) = 1.06 AREA-AVERAGED Fm(INCH/HR) = 0.12AREA-AVERAGED Fp(INCH/HR) = 0.25AREA-AVERAGED Ap = 0.50EFFECTIVE STREAM AREA(ACRES) = 1138.80 TOTAL STREAM AREA(ACRES) = 1138.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 830.30 \*\* CONFLUENCE DATA \*\* STREAMQTcIntensityFp(Fm)ApAeHEADWATERNUMBER(CFS)(MIN.)(INCH/HR)(INCH/HR)(ACRES)NODE 180.87 22.49 1.715 0.25( 0.10) 0.39 124.3 0.00 1

| 1<br>1<br>1<br>2                                                                                            | 189.3631188.7334185.5938830.3052                                                                            | .95 1.403<br>.39 1.345<br>.18 1.266<br>.30 1.058                                                                                  | 0.25(<br>0.25(<br>0.25(<br>0.25(<br>0.25(                                                                        | 0.09)<br>0.09)<br>0.09)<br>0.12)                 | 0.38<br>0.37<br>0.36<br>0.50                      | 160.8<br>167.5<br>175.3<br>1138.8           | 3844.00<br>3833.00<br>3825.00<br>3804.00      |
|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|---------------------------------------------|-----------------------------------------------|
|                                                                                                             |                                                                                                             | TIME OF CON<br>D FOR 2 STR                                                                                                        |                                                                                                                  | ON RAI                                           | DIO                                               |                                             |                                               |
| STREAM<br>NUMBER<br>1<br>2<br>3<br>4                                                                        | (CFS) (MI<br>789.71 22<br>884.28 31<br>902.78 34<br>927.55 38                                               | E **<br>c Intensit<br>N.) (INCH/HR<br>.49 1.715<br>.95 1.403<br>.39 1.345<br>.18 1.266<br>.30 1.058                               | 1       (INCH/         0.25(         0.25(         0.25(         0.25(         0.25(         0.25(         0.25( | HR)<br>0.12)<br>0.12)<br>0.12)<br>0.12)<br>0.12) | ()<br>0.48<br>0.48<br>0.48<br>0.48                | ACRES)<br>614.0<br>856.5<br>916.2<br>1006.7 | NODE<br>0.00<br>3844.00<br>3833.00<br>3825.00 |
| PEAK FLOW<br>EFFECTIVE<br>AREA-AVERA<br>TOTAL AREA                                                          | RATE(CFS) =<br>AREA(ACRES)<br>GED Fp(INCH/<br>(ACRES) =<br>OWPATH FROM                                      | NODE 0.                                                                                                                           | Tc(MIN<br>AREA-<br>AREA-AV<br>00 TO NC                                                                           | I.) =<br>AVERAG<br>VERAGED<br>DDE 3              | ED Fm(I<br>) Ap =<br>8805.00                      | NCH/HR) =<br>0.48<br>= 2914                 | .00 FEET.                                     |
|                                                                                                             | SS FROM NODE                                                                                                | 3805.00 I                                                                                                                         | O NODE                                                                                                           | 3733.                                            | 00 IS C                                           |                                             |                                               |
| >>>>USING<br>===========<br>UPSTREAM N<br>DOWNSTREAM<br>FLOW LENGT<br>USER SPECI                            | USER-SPECIF<br>=======<br>ODE ELEVATIC<br>NODE ELEVAT<br>H(FEET) =                                          | N(FEET) =<br>ION(FEET) =<br>248.00 MAN<br>AMETER(INCH)                                                                            | E(EXISTIN<br>========<br>44.57<br>43.53<br>NING'S N                                                              | IG) (PR<br>======<br> <br>  = 0.                 | 2ESSURE                                           | FLOW)<<<<                                   |                                               |
| PIPE-FLOW<br>PIPE-FLOW(<br>PIPEFLOW T<br>* 10 YEAR                                                          | VELOCITY(FEE<br>CFS) = 1<br>RAVEL TIME(M                                                                    | T/SEC.) =<br>64.41<br>IN.) = 0.4<br>TENSITY(INCH                                                                                  | 9 Tc(                                                                                                            |                                                  | = 52.7                                            | 9                                           |                                               |
| DEVELOPME                                                                                                   | NT TYPE/<br>USE                                                                                             | SCS SOIL<br>GROUP (                                                                                                               |                                                                                                                  |                                                  |                                                   |                                             | CS<br>CN                                      |
| "5-7 DWELL<br>RESIDENTIA<br>"3-4 DWELL<br>SUBAREA AV<br>SUBAREA AV<br>SUBAREA AR<br>EFFECTIVE<br>AREA-AVERA | INGS/ACRE"<br>L<br>INGS/ACRE"<br>ERAGE PERVIC<br>ERAGE PERVIC<br>EA(ACRES) =<br>AREA(ACRES)<br>GED Fp(INCH/ | C<br>C<br>US LOSS RATE<br>US AREA FRAC<br>10.90<br>= 1325.00<br>HR) = 0.25<br>1325.0                                              | 0.10<br>; Fp(INC<br>TION, Ap<br>SUBAREA<br>AREA-<br>AREA-AV                                                      | 0.<br>H/HR)<br>= 0.<br>RUNOF<br>AVERAG           | 25<br>= 0.25<br>501<br>FF(CFS)<br>ED Fm(I<br>Ap = | 0.600<br>= 9.09<br>NCH/HR) =<br>0.48        | 0.12                                          |
| CURB HEIGH<br>DISTANCE F<br>INSIDE STR<br>OUTSIDE ST<br>SPECIFIED<br>MAXIMUM AL<br>STREET PAR               | T(INCHES) =<br>ROM CROWN TO<br>EET CROSSFAL<br>REET CROSSFA<br>NUMBER OF HA<br>LOWABLE STRE<br>KWAY CROSSFA | NFORMATION:<br>8.0 S<br>CROSSFALL G<br>L(DECIMAL) =<br>LL(DECIMAL)<br>LFSTREETS CA<br>ET FLOW DEPT<br>LL(DECIMAL)<br>TOR for Stre | TREET HA<br>RADEBREA<br>0.020<br>= 0.02<br>RRYING R<br>H(FEET)<br>= 0.02                                         | K(FEET<br>20<br>2UNOFF<br>= 0.<br>20             | r) = 38<br>= 1<br>57                              | .00                                         | 0.0150                                        |

Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0300 \*NOTE: STREET-CAPACITY MAY BE EXCEEDED\* STREETFLOW HYDRAULICS BASED ON MAINLINE Tc : STREET HYDRAULICS COMPUTED USING ESTIMATED FLOW(CFS) = 946.32 \*\*\*STREET FLOWING FULL\*\*\* STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 1.84HALFSTREET FLOOD WIDTH(FEET) = 101.44 AVERAGE FLOW VELOCITY(FEET/SEC.) = 5.38 PRODUCT OF DEPTH&VELOCITY(FT\*FT/SEC.) = 9.87 \*NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS, AND L = 248.0 FT WITH ELEVATION-DROP = 1.0 FT, IS 24.7 CFS, WHICH EXCEEDS THE SPECIFIED STREET CAPACITY AT NODE 3733.00 \*\* PEAK FLOW RATE TABLE \*\* STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE NUMBER 22.98 1.694 0.25( 0.12) 0.48 885.35 624.9 0.00 1 867.4 927.1 992.21 1.390 0.25( 0.12) 0.48 32.44 2 3844.00 1013.49 34.88 1.334 0.25( 0.12) 0.48 3 3833.00 1.334 0.25(0.12) 0.48 1017.61042.33 38.67 4 3825.00 1110.73 52.79 1.052 0.25( 0.12) 0.48 1325.0 5 3804.00 NEW PEAK FLOW DATA ARE: PEAK FLOW RATE(CFS) = 1110.73 Tc(MIN.) = 52.79 AREA-AVERAGED Fm(INCH/HR) = 0.12 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.48 EFFECTIVE AREA(ACRES) = 1325.00 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 3733.00 = 3162.00 FEET. FLOW PROCESS FROM NODE 3733.00 TO NODE 3733.00 IS CODE = 1 \_\_\_\_\_ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< \_\_\_\_\_\_ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 52.79RAINFALL INTENSITY(INCH/HR) = 1.05 AREA-AVERAGED Fm(INCH/HR) = 0.12AREA-AVERAGED Fp(INCH/HR) = 0.25AREA-AVERAGED Ap = 0.48EFFECTIVE STREAM AREA(ACRES) = 1325.00 TOTAL STREAM AREA(ACRES) = 1325.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1110.73 FLOW PROCESS FROM NODE 3732.00 TO NODE 3733.00 IS CODE = 7 \_\_\_\_\_ >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< \_\_\_\_\_\_ USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN.) = 21.20 RAINFALL INTENSITY(INCH/HR) = 1.77 EFFECTIVE AREA(ACRES) = 8.00 TOTAL AREA(ACRES) = 8.00 PEAK FLOW RATE(CFS) = 22.00AREA-AVERAGED Fm(INCH/HR) = 0.13 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.52NOTE: EFFECTIVE AREA IS USED AS THE TOTAL CONTRIBUTING AREA FOR ALL CONFLUENCE ANALYSES. FLOW PROCESS FROM NODE 3733.00 TO NODE 3733.00 IS CODE = 1 \_\_\_\_\_ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<

>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<

\_\_\_\_\_ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 21.20 RAINFALL INTENSITY(INCH/HR) = 1.77 AREA-AVERAGED Fm(INCH/HR) = 0.13AREA-AVERAGED Fp(INCH/HR) = 0.25AREA-AVERAGED Ap = 0.528.00 EFFECTIVE STREAM AREA(ACRES) = TOTAL STREAM AREA(ACRES) = 8.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 22.00 \*\* CONFLUENCE DATA \*\* STREAM Q Tc Intensity Fp(Fm) Q TC Intensity Fp(Fm) Ap Ae HEADWAT (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE HEADWATER NUMBER 885.35 22.98 1.694 0.25( 0.12) 0.48 624.9 1 0.00 992.21 32.44 1.390 0.25( 0.12) 0.48 867.4 3844.00 1 1013.49 34.88 1.334 0.25( 0.12) 0.48 927.1 3833.00 1 1042.3338.671.2570.25(0.12)0.481017.61110.7352.791.0520.25(0.12)0.481325.022.0021.201.7740.25(0.13)0.528.0 3825.00 1 1 3804.00 8.0 3732.00 2 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. \*\* PEAK FLOW RATE TABLE \*\* STREAMQTcIntensityFp(Fm)ApAeHEADWATERNUMBER(CFS)(MIN.)(INCH/HR)(INCH/HR)(ACRES)NODE 880.2621.201.7740.25(0.12)0.48584.4906.2822.981.6940.25(0.12)0.48632.9 3732.00 1 632.90.00875.43844.00 2 1009.08 32.44 1.390 0.25( 0.12) 0.48 3 1029.6034.881.3340.25(0.12)0.48935.13833.001057.4138.671.2570.25(0.12)0.481025.63825.001123.0752.791.0520.25(0.12)0.481333.03804.00 4 5 6 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 1123.07 Tc(MIN.) = 52.79 EFFECTIVE AREA(ACRES) = 1333.00 AREA-AVERAGED Fm(INCH/HR) = 0.12 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.48 TOTAL AREA(ACRES) = 1333.0LONGEST FLOWPATH FROM NODE 0.00 TO NODE 3733.00 = 3162.00 FEET. FLOW PROCESS FROM NODE 3733.00 TO NODE 3739.00 IS CODE = 43 \_\_\_\_\_ >>>>COMPUTE COUPLED PIPEFLOW/STREETFLOW THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE(EXISTING) (PRESSURE FLOW) << << \_\_\_\_\_\_ UPSTREAM NODE ELEVATION(FEET) = 43.53 DOWNSTREAM NODE ELEVATION(FEET) = 42.23 FLOW LENGTH(FEET) = 278.00 MANNING'S N = 0.013 USER SPECIFIED PIPE DIAMETER(INCH) = 60.00 NUMBER OF PIPES = 1 ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY(FEET/SEC.) = 8.83 PIPE-FLOW(CFS) = 173.61 PIPEFLOW TRAVEL TIME(MIN.) = 0.52 Tc(MIN.) = 53.32 \* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.046 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp SCS Ap GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE RESIDENTIAL "5-7 DWELLINGS/ACRE" C 11.20 0.25 0.500 69

RESTDENTIAL "3-4 DWELLINGS/ACRE" C 0.10 0.25 0.600 69 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.501 9.36 SUBAREA AREA(ACRES) = 11.30 SUBAREA RUNOFF(CFS) = EFFECTIVE AREA(ACRES) = 1344.30 AREA-AVERAGED Fm(INCH/HR) = 0.12 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.48 TOTAL AREA(ACRES) = 1344.3 PEAK FLOW RATE(CFS) = 1123.07NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE STREET CROSS-SECTION INFORMATION: CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 43.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 38.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 MAXIMUM ALLOWABLE STREET FLOW DEPTH(FEET) = 0.57 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0300 \*NOTE: STREET-CAPACITY MAY BE EXCEEDED\* STREETFLOW HYDRAULICS BASED ON MAINLINE TC : STREET HYDRAULICS COMPUTED USING ESTIMATED FLOW(CFS) = 949.45 \*\*\*STREET FLOWING FULL\*\*\* STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 1.80HALFSTREET FLOOD WIDTH(FEET) = 99.79 AVERAGE FLOW VELOCITY(FEET/SEC.) = 5.61 PRODUCT OF DEPTH&VELOCITY(FT\*FT/SEC.) = 10.11 \*NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS, AND L = 278.0 FT WITH ELEVATION-DROP = 1.3 FT, IS 25.3 CFS, WHICH EXCEEDS THE SPECIFIED STREET CAPACITY AT NODE 3739.00 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 3739.00 = 3440.00 FEET. FLOW PROCESS FROM NODE 3739.00 TO NODE 3739.00 IS CODE = 1 \_\_\_\_\_ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< \_\_\_\_\_ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 53.32 RAINFALL INTENSITY(INCH/HR) = 1.05 AREA-AVERAGED Fm(INCH/HR) = 0.12AREA-AVERAGED Fp(INCH/HR) = 0.25AREA-AVERAGED Ap = 0.48 EFFECTIVE STREAM AREA(ACRES) = 1344.30 TOTAL STREAM AREA(ACRES) = 1344.30 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1123.07 FLOW PROCESS FROM NODE 3738.00 TO NODE 3739.00 IS CODE = \_\_\_\_\_ >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN.) = 26.90 RAINFALL INTENSITY(INCH/HR) = 1.55 EFFECTIVE AREA(ACRES) = 36.10 TOTAL AREA(ACRES) = 36.10 PEAK FLOW RATE(CFS) = 36.60 AREA-AVERAGED Fm(INCH/HR) = 0.12 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.50NOTE: EFFECTIVE AREA IS USED AS THE TOTAL CONTRIBUTING AREA FOR ALL CONFLUENCE ANALYSES.

FLOW PROCESS FROM NODE 3739.00 TO NODE 3739.00 IS CODE = 1 \_\_\_\_\_ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< \_\_\_\_\_ TOTAL NUMBER OF STREAMS = 2CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 26.90 RAINFALL INTENSITY(INCH/HR) = 1.55 AREA-AVERAGED Fm(INCH/HR) = 0.12AREA-AVERAGED Fp(INCH/HR) = 0.25AREA-AVERAGED Ap = 0.50EFFECTIVE STREAM AREA(ACRES) = 36.10 TOTAL STREAM AREA(ACRES) = 36.10 PEAK FLOW RATE(CFS) AT CONFLUENCE = 36.60 \*\* CONFLUENCE DATA \*\* 
 Q
 Tc
 Intensity
 Fp(Fm)
 Ap
 Ae
 HEADWATER

 (CFS)
 (MIN.)
 (INCH/HR)
 (INCH/HR)
 (ACRES)
 NODE

 880.26
 21.72
 1.749
 0.25( 0.12)
 0.48
 595.7
 3732.00

 906.28
 23.51
 1.672
 0.25( 0.12)
 0.48
 644.2
 0.00

 1009.08
 32.97
 1.378
 0.25( 0.12)
 0.48
 886.7
 3844.00

 1029.60
 35.40
 1.322
 0.25( 0.12)
 0.48
 946.4
 3833.00

 1057.41
 39.20
 1.247
 0.25( 0.12)
 0.48
 1036.9
 3825.00

 1123.07
 53.32
 1.046
 0.25( 0.12)
 0.48
 1344.3
 3804.00

 36.60
 26.90
 1.548
 0.25( 0.12)
 0.50
 36.1
 3738.00
 STREAM Q NUMBER 1 1 1 1 1 1 2 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. \*\* PEAK FLOW RATE TABLE \*\* STREAMQTcIntensityFp(Fm)ApAeHEADWATNUMBER(CFS)(MIN.)(INCH/HR)(INCH/HR)(ACRES)NODE Ae HEADWATER 914.01 21.72 1.749 0.25( 0.12) 0.48 624.8 3732.00 1 675.7 2 941.06 23.51 1.672 0.25( 0.12) 0.48 0.00 3 979.73 26.90 1.548 0.25( 0.12) 0.48 767.2 3738.00 1041.30 32.97 1.378 0.25( 0.12) 0.48 922.8 3844.00 4 982.5 3833.00 5 1060.40 35.40 1.322 0.25( 0.12) 0.48 1086.28 39.20 1.247 0.25( 0.12) 0.48 1073.0 3825.00 6 1146.75 53.32 1.046 0.25( 0.12) 0.48 1380.4 3804.00 7 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.48 TOTAL AREA(ACRES) = 1380.4LONGEST FLOWPATH FROM NODE 0.00 TO NODE 3739.00 = 3440.00 FEET. FLOW PROCESS FROM NODE 3739.00 TO NODE 3745.00 IS CODE = 43 \_\_\_\_\_ >>>>COMPUTE COUPLED PIPEFLOW/STREETFLOW THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE(EXISTING) (PRESSURE FLOW) <<<<< \_\_\_\_\_ UPSTREAM NODE ELEVATION(FEET) = 42.23 DOWNSTREAM NODE ELEVATION(FEET) = 40.67 FLOW LENGTH(FEET) = 377.00 MANNING'S N = 0.013

USER SPECIFIED PIPE DIAMETER(INCH) = 60.00 NUMBER OF PIPES = 1 ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY(FEET/SEC.) = 8.31

PIPE-FLOW(CFS) = 163.32\*NOTE: USER SPECIFIED PIPE SYSTEM CAN NOT CARRY TOTAL UPSTREAM PIPEFLOW\* PIPEFLOW TRAVEL TIME(MIN.) = 0.76 Tc(MIN.) = 54.07 \* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.037 SUBAREA LOSS RATE DATA(AMC II): Fp DEVELOPMENT TYPE/ SCS SOIL AREA SCS Ар GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE 0.10 0.25 0.100 69 12.40 0.25 0.200 69 COMMERCIAL С С APARTMENTS RESIDENTIAL "5-7 DWELLINGS/ACRE" C 0.25 0.500 69 0.20 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.204 SUBAREA AREA(ACRES) = 12.70 SUBAREA RUNOFF(CFS) = 11.28 EFFECTIVE AREA(ACRES) = 1393.10 AREA-AVERAGED Fm(INCH/HR) = 0.12 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.48 TOTAL AREA(ACRES) = 1393.1 PEAK FLOW RATE(CFS) = 1150.36 STREET CROSS-SECTION INFORMATION: CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 43.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 38.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 MAXIMUM ALLOWABLE STREET FLOW DEPTH(FEET) = 0 57 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0300 \*NOTE: STREET-CAPACITY MAY BE EXCEEDED\* STREETFLOW HYDRAULICS BASED ON MAINLINE Tc : STREET HYDRAULICS COMPUTED USING ESTIMATED FLOW(CFS) = 987.04 \*\*\*STREET FLOWING FULL\*\*\* STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 1.87 HALFSTREET FLOOD WIDTH(FEET) = 103.15 AVERAGE FLOW VELOCITY(FEET/SEC.) = 5.40 PRODUCT OF DEPTH&VELOCITY(FT\*FT/SEC.) = 10.09 \*NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS, AND L = 377.0 FT WITH ELEVATION-DROP = 1.6 FT, IS 31.0 CFS, WHICH EXCEEDS THE SPECIFIED STREET CAPACITY AT NODE 3745.00 \*\* PEAK FLOW RATE TABLE \*\* STREAM Q Tc Intensity Fp(Fm) Q TC Intensity Fp(Fm) Ap Ae HEADWAT (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE HEADWATER NUMBER 916.2022.481.7160.25(0.12)0.47637.53732.00943.7924.271.6420.25(0.12)0.48688.40.00 1 943.79 24.27 2 779.9 3738.00 985.96 27.66 1.523 0.25( 0.12) 0.48 3 

 985.96
 27.66
 1.523
 0.25( 0.12)
 0.48
 779.9
 3738.00

 1044.89
 33.72
 1.360
 0.25( 0.12)
 0.47
 935.5
 3844.00

 1063.95
 36.16
 1.307
 0.25( 0.12)
 0.47
 995.2
 3833.00

 1089.81
 39.96
 1.234
 0.25( 0.12)
 0.47
 1085.7
 3825.00

 1150.36
 54.07
 1.037
 0.25( 0.12)
 0.48
 1393.1
 3804.00

 4 5 6 7 NEW PEAK FLOW DATA ARE: PEAK FLOW RATE(CFS) = 1150.36 Tc(MIN.) = 54.07 AREA-AVERAGED Fm(INCH/HR) = 0.12 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.48 EFFECTIVE AREA(ACRES) = 1393.10 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 3745.00 = 3817.00 FEET. FLOW PROCESS FROM NODE 3745.00 TO NODE 3745.00 IS CODE = 1 \_\_\_\_\_ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< \_\_\_\_\_ TOTAL NUMBER OF STREAMS = 2

```
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 54.07
 RAINFALL INTENSITY(INCH/HR) = 1.04
 AREA-AVERAGED Fm(INCH/HR) = 0.12
 AREA-AVERAGED Fp(INCH/HR) = 0.25
 AREA-AVERAGED Ap = 0.48
 EFFECTIVE STREAM AREA(ACRES) = 1393.10
 TOTAL STREAM AREA(ACRES) = 1393.10
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1150.36
FLOW PROCESS FROM NODE 3744.00 TO NODE 3745.00 IS CODE = 7
_____
 >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<<
_____
 USER-SPECIFIED VALUES ARE AS FOLLOWS:
 TC(MIN.) = 22.00 RAINFALL INTENSITY(INCH/HR) = 1.74
 EFFECTIVE AREA(ACRES) = 25.00
 TOTAL AREA(ACRES) = 25.00 PEAK FLOW RATE(CFS) =
                                                        30.00
 AREA-AVERAGED Fm(INCH/HR) = 0.07 AREA-AVERAGED Fp(INCH/HR) = 0.25
 AREA-AVERAGED Ap = 0.27
 NOTE: EFFECTIVE AREA IS USED AS THE TOTAL CONTRIBUTING AREA FOR ALL
       CONFLUENCE ANALYSES.
FLOW PROCESS FROM NODE 3745.00 TO NODE 3745.00 IS CODE = 1
 _____
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<
_____
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 22.00
 RAINFALL INTENSITY(INCH/HR) = 1.74
 AREA-AVERAGED Fm(INCH/HR) = 0.07
 AREA-AVERAGED Fp(INCH/HR) = 0.25
 AREA-AVERAGED Ap = 0.27
 EFFECTIVE STREAM AREA(ACRES) = 25.00
 TOTAL STREAM AREA(ACRES) = 25.00
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                     30.00
 ** CONFLUENCE DATA **
            Q TC Intensity Fp(Fm) Ap Ae HEADWATER
(CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE
  STREAM Q Tc Intensity Fp(Fm)
  NUMBER
          916.2022.481.7160.25(0.12)0.47637.53732.00943.7924.271.6420.25(0.12)0.48688.40.00
     1
     1
                                                   779.9 3738.00
          985.96 27.66 1.523 0.25( 0.12) 0.48
     1
         985.9627.661.5230.25(0.12)0.48779.93738.001044.8933.721.3600.25(0.12)0.47935.53844.001063.9536.161.3070.25(0.12)0.47995.23833.001089.8139.961.2340.25(0.12)0.471085.73825.001150.3654.071.0370.25(0.12)0.481393.13804.0030.0022.001.7370.25(0.07)0.2725.03744.00
     1
     1
     1
     1
     2
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
  STREAMQTcIntensityFp(Fm)ApAeHEADWATERNUMBER(CFS)(MIN.)(INCH/HR)(INCH/HR)(ACRES)NODE
          938.61 22.00 1.737 0.25( 0.12) 0.47 648.9
     1
                                                           3744.00
         945.8122.481.7160.25(0.12)0.47662.53732.00972.0924.271.6420.25(0.12)0.47713.40.001012.1327.661.5230.25(0.12)0.47804.93738.00
     2
     3
     4
```

1068.1133.721.3600.25(0.12)0.47960.53844.001086.2236.161.3070.25(0.12)0.471020.23833.001110.7739.961.2340.25(0.12)0.471110.73825.001167.7954.071.0370.25(0.12)0.481418.13804.00 5 6 7 8 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 1167.79 Tc(MIN.) = 54.07 EFFECTIVE AREA(ACRES) = 1418.10 AREA-AVERAGED Fm(INCH/HR) = 0.12 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.48 TOTAL AREA(ACRES) = 1418.10.00 TO NODE 3745.00 = LONGEST FLOWPATH FROM NODE 3817.00 FEET. FLOW PROCESS FROM NODE 3745.00 TO NODE 3746.00 IS CODE = 43 \_\_\_\_\_ >>>>COMPUTE COUPLED PIPEFLOW/STREETFLOW THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE(EXISTING) (PRESSURE FLOW) <<<<< \_\_\_\_\_ UPSTREAM NODE ELEVATION(FEET) = 40.39 DOWNSTREAM NODE ELEVATION(FEET) = 39.40 FLOW LENGTH(FEET) = 385.00 MANNING'S N = 0.013 USER SPECIFIED PIPE DIAMETER(INCH) = 66.00 NUMBER OF PIPES = 1 ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY(FEET/SEC.) = 6.98 PIPE-FLOW(CFS) = 166.00PIPEFLOW TRAVEL TIME(MIN.) = 0.92 Tc(MIN.) = 54.99 \* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.028 SUBAREA LOSS RATE DATA(AMC II): Fp DEVELOPMENT TYPE/ SCS SOIL AREA SCS Ap LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL C 1.50 0.25 0.100 69 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100 SUBAREA AREA(ACRES) = 1.50 SUBAREA RUNOFF(CFS) = 1.35 EFFECTIVE AREA(ACRES) = 1419.60 AREA-AVERAGED Fm(INCH/HR) = 0.12 AREA-AVERAGED  $F_p(INCH/HR) = 0.25$  AREA-AVERAGED  $A_p = 0.48$ TOTAL AREA(ACRES) = 1419.6 PEAK FLOW RATE(CFS) = 1167.79 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE STREET CROSS-SECTION INFORMATION: CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 43.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 38.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 MAXIMUM ALLOWABLE STREET FLOW DEPTH(FEET) = 0.57 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0300 \*NOTE: STREET-CAPACITY MAY BE EXCEEDED\* STREETFLOW HYDRAULICS BASED ON MAINLINE Tc : STREET HYDRAULICS COMPUTED USING ESTIMATED FLOW(CFS) = 1001.79 \*\*\*STREET FLOWING FULL\*\*\* STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 2.06HALFSTREET FLOOD WIDTH(FEET) = 112.43 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.49 PRODUCT OF DEPTH&VELOCITY(FT\*FT/SEC.) = 9.23 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 3746.00 = 4202.00 FEET. FLOW PROCESS FROM NODE 3746.00 TO NODE 3747.00 IS CODE = 43

\_\_\_\_\_ >>>>COMPUTE COUPLED PIPEFLOW/STREETFLOW THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE(EXISTING) (PRESSURE FLOW) <<<<< \_\_\_\_\_ UPSTREAM NODE ELEVATION(FEET) = 39.27 DOWNSTREAM NODE ELEVATION(FEET) = 39.07 FLOW LENGTH(FEET) = 137.00 MANNING'S N = 0.013USER SPECIFIED PIPE DIAMETER(INCH) = 69.00 NUMBER OF PIPES = 1 ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY(FEET/SEC.) = 5.42 PIPE-FLOW(CFS) = 140.82\*NOTE: USER SPECIFIED PIPE SYSTEM CAN NOT CARRY TOTAL UPSTREAM PIPEFLOW\* PIPEFLOW TRAVEL TIME(MIN.) = 0.42 Tc(MIN.) = 55.42 \* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.023 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE 2.60 0.25 С 69 COMMERCIAL 0.100 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100 SUBAREA RUNOFF(CFS) = SUBAREA AREA(ACRES) = 2.60 EFFECTIVE AREA(ACRES) = 1422.20 2.34 AREA-AVERAGED Fm(INCH/HR) = 0.12AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.48 TOTAL AREA(ACRES) = 1422.2PEAK FLOW RATE(CFS) = 1167.79 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE STREET CROSS-SECTION INFORMATION: CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 43.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 38.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 MAXIMUM ALLOWABLE STREET FLOW DEPTH(FEET) = 0.57 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0300 \*NOTE: STREET-CAPACITY MAY BE EXCEEDED\* STREETFLOW HYDRAULICS BASED ON MAINLINE Tc : STREET HYDRAULICS COMPUTED USING ESTIMATED FLOW(CFS) = 1026.97 \*\*\*STREET FLOWING FULL\*\*\* STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 2.31HALFSTREET FLOOD WIDTH(FEET) = 125.31 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.61 PRODUCT OF DEPTH&VELOCITY(FT\*FT/SEC.) = 8.36 \*NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS, AND L = 137.0 FT WITH ELEVATION-DROP = 0.2 FT, IS 7.2 CFS, WHICH EXCEEDS THE SPECIFIED STREET CAPACITY AT NODE 3747.00 0.00 TO NODE 3747.00 = 4339.00 FEET. LONGEST FLOWPATH FROM NODE FLOW PROCESS FROM NODE 3747.00 TO NODE 3747.00 IS CODE = 1 \_\_\_\_\_ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< \_\_\_\_\_ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 55.42 RAINFALL INTENSITY(INCH/HR) = 1.02 AREA-AVERAGED Fm(INCH/HR) = 0.12AREA-AVERAGED Fp(INCH/HR) = 0.25AREA-AVERAGED Ap = 0.48

EFFECTIVE STREAM AREA(ACRES) = 1422.20 TOTAL STREAM AREA(ACRES) = 1422.20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1167.79 FLOW PROCESS FROM NODE 3752.00 TO NODE 3747.00 IS CODE = 7 \_\_\_\_\_ >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN.) = 24.60 RAINFALL INTENSITY(INCH/HR) = 1.63 EFFECTIVE AREA(ACRES) = 31.30 TOTAL AREA(ACRES) = 31.30 PEAK FLOW RATE(CFS) = 36.30 AREA-AVERAGED Fm(INCH/HR) = 0.03 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.12NOTE: EFFECTIVE AREA IS USED AS THE TOTAL CONTRIBUTING AREA FOR ALL CONFLUENCE ANALYSES. FLOW PROCESS FROM NODE 3747.00 TO NODE 3747.00 IS CODE = 1 \_\_\_\_\_ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<< >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< \_\_\_\_\_ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 24.60 RAINFALL INTENSITY(INCH/HR) = 1.63 AREA-AVERAGED Fm(INCH/HR) = 0.03AREA-AVERAGED Fp(INCH/HR) = 0.25AREA-AVERAGED Ap = 0.12EFFECTIVE STREAM AREA(ACRES) = 31.30 TOTAL STREAM AREA(ACRES) = 31.30 PEAK FLOW RATE(CFS) AT CONFLUENCE = 36.30 \*\* CONFLUENCE DATA \*\* STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER (CFS) (MIN.) (INCH/HR) (INCH/HR) NUMBER (ACRES) NODE 938.61 23.34 1.679 0.25( 0.12) 0.46 653.0 3744.00 1 945.8123.821.6600.25(0.12)0.46666.63732.00972.0925.611.5920.25(0.12)0.47717.50.001012.1329.001.4830.25(0.12)0.47809.03738.001068.1135.071.3300.25(0.12)0.47964.63844.00 1 1 1 1012.13 29.00 1.483 0.25( 0.12) 0.47 1 1086.2237.501.2800.25(0.12)0.471024.33833.001110.7741.301.2110.25(0.12)0.471114.83825.001167.7955.421.0230.25(0.12)0.481422.23804.0036.3024.601.6290.25(0.03)0.1231.33752.00 1 1 1 2 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. \*\* PEAK FLOW RATE TABLE \*\* 

 \*\* PEAK FLOW RATE TABLE \*\*

 STREAM
 Q
 Tc
 Intensity
 Fp(Fm)
 Ap
 Ae
 HEADWATER

 NUMBER
 (CFS)
 (MIN.)
 (INCH/HR)
 (INCH/HR)
 (ACRES)
 NODE

 1
 974.13
 23.34
 1.679
 0.25(0.11)
 0.45
 682.7
 3744.00

 2
 981.63
 23.82
 1.660
 0.25(0.11)
 0.45
 696.9
 3732.00

 3
 993.58
 24.60
 1.629
 0.25(0.11)
 0.45
 720.1
 3752.00

 4
 1007.55
 25.61
 1.592
 0.25(0.11)
 0.45
 748.8
 0.00

 5
 1045.10
 29.00
 1.483
 0.25(0.11)
 0.45
 840.3
 3738.00

 6
 1097.62
 35.07
 1.330
 0.25(0.11)
 0.46
 995.9
 3844.00

 7
 114.58
 37.50
 1.280
 0.25(0.11)
 0.46
 1055.6
 3833.00

 8
 1137.57
 41.30
 1.211
 0.25(0.12)
 0.47
 1453.5
 3804.00

 9
 1190.33
 55.42
 1.023</td

```
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 1190.33 Tc(MIN.) = 55.42
 EFFECTIVE AREA(ACRES) = 1453.50 AREA-AVERAGED Fm(INCH/HR) = 0.12
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.47
 TOTAL AREA(ACRES) = 1453.5
 LONGEST FLOWPATH FROM NODE
                        0.00 TO NODE 3747.00 =
                                              4339.00 FEET.
FLOW PROCESS FROM NODE 3747.00 TO NODE 3766.00 IS CODE = 41
_____
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
 >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<<
_____
 ELEVATION DATA: UPSTREAM(FEET) = 39.07 DOWNSTREAM(FEET) = 38.47
 FLOW LENGTH(FEET) = 300.00 MANNING'S N = 0.013
 ASSUME FULL-FLOWING PIPELINE
 PIPE-FLOW VELOCITY(FEET/SEC.) = 6.35
 (PIPE FLOW VELOCITY CORRESPONDING TO FULL PIPE CAPACITY FLOW)
 GIVEN PIPE DIAMETER(INCH) = 69.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 1190.33
 PIPE TRAVEL TIME(MIN.) = 0.79
                          Tc(MIN.) =
                                    56.20
 LONGEST FLOWPATH FROM NODE
                        0.00 TO NODE 3766.00 =
                                              4639.00 FEET.
FLOW PROCESS FROM NODE 3766.00 TO NODE 3766.00 IS CODE =
                                                 1
_____
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
_____
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 56.20
 RAINFALL INTENSITY(INCH/HR) = 1.01
 AREA-AVERAGED Fm(INCH/HR) = 0.12
 AREA-AVERAGED Fp(INCH/HR) = 0.25
 AREA-AVERAGED Ap = 0.47
 EFFECTIVE STREAM AREA(ACRES) = 1453.50
 TOTAL STREAM AREA(ACRES) = 1453.50
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1190.33
FLOW PROCESS FROM NODE 3761.00 TO NODE 3761.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
_____
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 735.00
 ELEVATION DATA: UPSTREAM(FEET) = 73.00 DOWNSTREAM(FEET) = 66.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 10.805
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.610
 SUBAREA TC AND LOSS RATE DATA(AMC II):
                  SCS SOIL AREA
                                         Ap SCS
  DEVELOPMENT TYPE/
                                  Fp
                                                    TC
                   GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
    LAND USE
 COMMERCIAL
                    С
                           5.00 0.25 0.100 69 10.81
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                   С
                            0.10 0.25 0.500 69 13.83
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.108
 SUBAREA RUNOFF(CFS) = 11.86
TOTAL AREA(ACRES) = 5.10 PEAK FLOW RATE(CFS) = 11.86
```

FLOW PROCESS FROM NODE 3761.00 TO NODE 3762.00 IS CODE = 61 \_\_\_\_\_ >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>(STANDARD CURB SECTION USED) << << \_\_\_\_\_ UPSTREAM ELEVATION(FEET) = 66.00 DOWNSTREAM ELEVATION(FEET) = 65.00 STREET LENGTH(FEET) = 315.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 18.00DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 13.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 \*\*TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 17.00 \*\*\*STREET FLOWING FULL\*\*\* STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.56HALFSTREET FLOOD WIDTH(FEET) = 18.00 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.05 PRODUCT OF DEPTH&VELOCITY(FT\*FT/SEC.) = 1.14 STREET FLOW TRAVEL TIME(MIN.) = 2.56 Tc(MIN.) = 13.36 \* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.311 SUBAREA LOSS RATE DATA(AMC II): SCS DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE 2.60 0.25 0.100 69 COMMERCIAL С RESIDENTIAL "5-7 DWELLINGS/ACRE" 2.50 0.25 С 0.500 69 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.296 SUBAREA AREA(ACRES) = 5.10 SUBAREA RUNOFF(CFS) = 10.27 EFFECTIVE AREA(ACRES) = 10.20 AREA-AVERAGED Fm(INCH/HR) = 0.05 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.20 TOTAL AREA(ACRES) = 10.2 PEAK FLOW RATE(CFS) = 20.75 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.59 HALFSTREET FLOOD WIDTH(FEET) = 18.00 FLOW VELOCITY(FEET/SEC.) = 2.22 DEPTH\*VELOCITY(FT\*FT/SEC.) = 1.30 LONGEST FLOWPATH FROM NODE 3761.00 TO NODE 3762.00 = 1050.00 FEET. FLOW PROCESS FROM NODE 3762.00 TO NODE 3763.00 IS CODE = 43 \_\_\_\_\_ >>>>COMPUTE COUPLED PIPEFLOW/STREETFLOW THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE(EXISTING) (PRESSURE FLOW) <<<<< UPSTREAM NODE ELEVATION(FEET) = 49.10 DOWNSTREAM NODE ELEVATION(FEET) = 47.10 FLOW LENGTH(FEET) = 1000.00 MANNING'S N = 0.013 USER SPECIFIED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY(FEET/SEC.) = 3.14 PIPE-FLOW(CFS) = 9.86 PIPEFLOW TRAVEL TIME(MIN.) = 5.32 Tc(MIN.) = 18.68 \* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.908 SUBAREA LOSS RATE DATA(AMC II):

DEVELOPMENT TYPE/ SCS SOIL AREA Fp SCS Ap LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN 0.100 69 COMMERCIAL С 7.30 0.25 RESIDENTIAL "5-7 DWELLINGS/ACRE" C 6.10 0.25 0.500 69 RESIDENTIAL "3-4 DWELLINGS/ACRE" C 0.80 0.25 0.600 69 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.300SUBAREA AREA(ACRES) = 14.20 SUBAREA RUNOFF(CFS) = 23.42 EFFECTIVE AREA(ACRES) = 24.40 AREA-AVERAGED Fm(INCH/HR) = 0.06 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.26 TOTAL AREA(ACRES) = 24.4PEAK FLOW RATE(CFS) = 40.47 STREET CROSS-SECTION INFORMATION: CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 35.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 30.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 MAXIMUM ALLOWABLE STREET FLOW DEPTH(FEET) = 0.57 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0300 \*NOTE: STREET-CAPACITY MAY BE EXCEEDED\* STREETFLOW HYDRAULICS BASED ON MAINLINE Tc : STREET HYDRAULICS COMPUTED USING ESTIMATED FLOW(CFS) = 30.61 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.72HALFSTREET FLOOD WIDTH(FEET) = 30.69 AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.88 PRODUCT OF DEPTH&VELOCITY(FT\*FT/SEC.) = 1.35 \*NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS, AND L = 1000.0 FT WITH ELEVATION-DROP = 2.0 FT, IS 25.0 CFS, WHICH EXCEEDS THE SPECIFIED STREET CAPACITY AT NODE 3763.00 LONGEST FLOWPATH FROM NODE 3761.00 TO NODE 3763.00 = 2050.00 FEET. FLOW PROCESS FROM NODE 3763.00 TO NODE 3764.00 IS CODE = 43 \_\_\_\_\_ >>>>COMPUTE COUPLED PIPEFLOW/STREETFLOW THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE(EXISTING) (PRESSURE FLOW)<<<<< \_\_\_\_\_ UPSTREAM NODE ELEVATION(FEET) = 47.10 DOWNSTREAM NODE ELEVATION(FEET) = 45.10 FLOW LENGTH(FEET) = 1000.00 MANNING'S N = 0.013 USER SPECIFIED PIPE DIAMETER(INCH) = 33.00 NUMBER OF PIPES = 1 ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY(FEET/SEC.) = 3.88 PIPE-FLOW(CFS) = 23.05PIPEFLOW TRAVEL TIME(MIN.) = 4.30 Tc(MIN.) = 22.98 \* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.694 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp SCS qА LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL С 3.40 0.25 0.100 69 RESIDENTIAL "5-7 DWELLINGS/ACRE" C 10.60 0.25 0.500 69 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.403 SUBAREA AREA(ACRES) = 14.00 SUBAREA RUNOFF(CFS) = 20.08 EFFECTIVE AREA(ACRES) = 38.40 AREA-AVERAGED Fm(INCH/HR) = 0.08

AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.31 TOTAL AREA(ACRES) = 38.4 PEAK FLOW RATE(CFS) = 55.86 STREET CROSS-SECTION INFORMATION: CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 35.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 30.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 MAXIMUM ALLOWABLE STREET FLOW DEPTH(FEET) = 0.57STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0300 \*NOTE: STREET-CAPACITY MAY BE EXCEEDED\* STREETFLOW HYDRAULICS BASED ON MAINLINE Tc : STREET HYDRAULICS COMPUTED USING ESTIMATED FLOW(CFS) = 32.81 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.73HALFSTREET FLOOD WIDTH(FEET) = 32.22 AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.91 PRODUCT OF DEPTH&VELOCITY(FT\*FT/SEC.) = 1.40 \*NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS, AND L = 1000.0 FT WITH ELEVATION-DROP = 2.0 FT, IS 24.4 CFS, WHICH EXCEEDS THE SPECIFIED STREET CAPACITY AT NODE 3764.00 LONGEST FLOWPATH FROM NODE 3761.00 TO NODE 3764.00 = 3050.00 FEET. FLOW PROCESS FROM NODE 3764.00 TO NODE 3765.00 IS CODE = 43 \_\_\_\_\_ >>>>COMPUTE COUPLED PIPEFLOW/STREETFLOW THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE(EXISTING) (PRESSURE FLOW) <<<<< \_\_\_\_\_ UPSTREAM NODE ELEVATION(FEET) = 45.10 DOWNSTREAM NODE ELEVATION(FEET) = 42.90 FLOW LENGTH(FEET) = 1100.00 MANNING'S N = 0.013 USER SPECIFIED PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY(FEET/SEC.) = 4.11 PIPE-FLOW(CFS) = 29.07 PIPEFLOW TRAVEL TIME(MIN.) = 4.46 Tc(MIN.) = 27.44 \* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.530 SUBAREA LOSS RATE DATA(AMC II): Fp DEVELOPMENT TYPE/ SCS SOIL AREA Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL С 5.20 0.25 0.100 69 RESIDENTIAL "5-7 DWELLINGS/ACRE" C 9.00 0.25 0.500 69 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.354 SUBAREA AREA(ACRES) = 14.20SUBAREA RUNOFF(CFS) = 18.43EFFECTIVE AREA(ACRES) = 52.60AREA-AVERAGED Fm(INCH/HR) = 0.08AREA-AVERAGED Fp(INCH/HR) = 0.25AREA-AVERAGED Ap = 0.32 TOTAL AREA(ACRES) = 52.6PEAK FLOW RATE(CFS) = 68.63 STREET CROSS-SECTION INFORMATION: CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 35.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 30.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 MAXIMUM ALLOWABLE STREET FLOW DEPTH(FEET) = 0.57 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020

```
Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
  Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0300
  *NOTE: STREET-CAPACITY MAY BE EXCEEDED*
  STREETFLOW HYDRAULICS BASED ON MAINLINE Tc :
  STREET HYDRAULICS COMPUTED USING ESTIMATED FLOW(CFS) = 39.56
    STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
    STREET FLOW DEPTH(FEET) = 0.78
    HALFSTREET FLOOD WIDTH(FEET) = 36.43
    AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.97
    PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.53
  *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
         AND L = 1100.0 FT WITH ELEVATION-DROP = 2.2 FT, IS 24.3 CFS,
         WHICH EXCEEDS THE SPECIFIED STREET CAPACITY AT NODE 3765.00
  LONGEST FLOWPATH FROM NODE 3761.00 TO NODE 3765.00 = 4150.00 FEET.
FLOW PROCESS FROM NODE 3765.00 TO NODE 3766.00 IS CODE = 41
_____
  >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
  >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<<
ELEVATION DATA: UPSTREAM(FEET) = 42.90 DOWNSTREAM(FEET) = 42.26
  FLOW LENGTH(FEET) = 320.00 MANNING'S N = 0.013
  ASSUME FULL-FLOWING PIPELINE
  PIPE-FLOW VELOCITY(FEET/SEC.) = 4.56
  (PIPE FLOW VELOCITY CORRESPONDING TO FULL PIPE CAPACITY FLOW)
  GIVEN PIPE DIAMETER(INCH) = 42.00 NUMBER OF PIPES =
  PIPE-FLOW(CFS) = 68.63
  PIPE TRAVEL TIME(MIN.) = 1.17 Tc(MIN.) = 28.61
  LONGEST FLOWPATH FROM NODE 3761.00 TO NODE 3766.00 =
                                                                    4470.00 FEET.
FLOW PROCESS FROM NODE 3766.00 TO NODE 3766.00 IS CODE = 1
_____
  >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
  >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<
TOTAL NUMBER OF STREAMS = 2
  CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
  TIME OF CONCENTRATION(MIN.) = 28.61
  RAINFALL INTENSITY(INCH/HR) = 1.49
  AREA-AVERAGED Fm(INCH/HR) = 0.08
  AREA-AVERAGED Fp(INCH/HR) = 0.25
  AREA-AVERAGED Ap = 0.32
  EFFECTIVE STREAM AREA(ACRES) = 52.60
  TOTAL STREAM AREA(ACRES) = 52.60
  PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                              68.63
  ** CONFLUENCE DATA **
               CICIntensityFp(Fm)ApAeHEADWATER(CFS)(MIN.)(INCH/HR)(INCH/HR)(ACRES)NODE974.1324.131647025.41
   STREAM Q Tc Intensity Fp(Fm)
   NUMBER

      974.13
      24.13
      1.647
      0.25(
      0.11)
      0.45
      682.7

      981.63
      24.61
      1.629
      0.25(
      0.11)
      0.45
      696.9

      993.58
      25.39
      1.600
      0.25(
      0.11)
      0.45
      720.1

      1007.55
      26.39
      1.565
      0.25(
      0.11)
      0.45
      748.8

                                                                         3744.00
      1

      981.63
      24.61
      1.629
      0.25(
      0.11)
      0.45
      696.9
      3732.00

      993.58
      25.39
      1.600
      0.25(
      0.11)
      0.45
      720.1
      3752.00

      1007.55
      26.39
      1.565
      0.25(
      0.11)
      0.45
      748.8
      0.00

      1045.10
      29.78
      1.460
      0.25(
      0.11)
      0.45
      840.3
      3738.00

      1097.62
      35.85
      1.313
      0.25(
      0.11)
      0.46
      995.9
      3844.00

      1
      1
      1
      1
      1
      1
            1114.58 38.29 1.264 0.25( 0.11) 0.46 1055.6 3833.00
           1137.5742.081.1980.25(0.11)0.461146.13825.001190.3356.201.0150.25(0.12)0.471453.53804.0068.6328.611.4940.25(0.08)0.3252.63761.00
      1
      1
      2
```

RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO

CONFLUENCE FORMULA USED FOR 2 STREAMS.

\*\* PEAK FLOW RATE TABLE \*\* STREAMQTcIntensityFp(Fm)ApAeHEADWATERNUMBER(CFS)(MIN.)(INCH/HR)(INCH/HR)(ACRES)NODE 1038.28 24.13 1.647 0.25( 0.11) 0.44 727.1 1 3744.00 1046.29 24.61 1.629 0.25( 0.11) 0.44 742.2 2 3732.00 3 1059.04 25.39 1.600 0.25( 0.11) 0.44 766.8 3752.00 4 1074.02 26.39 1.565 0.25( 0.11) 0.44 797.4 0.00 1100.71 28.61 1.494 0.25( 0.11) 0.45 861.2 3761.00 5 1112.07 29.78 1.460 0.25( 0.11) 0.45 892.9 3738.00 6 1157.44 35.85 1.313 0.25( 0.11) 0.45 1048.5 7 3844.00 1172.05 38.29 1.264 0.25( 0.11) 0.45 1108.2 8 3833.00 1191.8142.081.1980.25(0.11)0.451198.73825.001235.6856.201.0150.25(0.12)0.461506.13804.00 9 10 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 1235.68 Tc(MIN.) = 56.20EFFECTIVE AREA(ACRES) = 1506.10 AREA-AVERAGED Fm(INCH/HR) = 0.12AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.46 TOTAL AREA(ACRES) = 1506.1LONGEST FLOWPATH FROM NODE 0.00 TO NODE 3766.00 = 4639.00 FEET. FLOW PROCESS FROM NODE 3766.00 TO NODE 3767.00 IS CODE = 43 \_\_\_\_\_ >>>>COMPUTE COUPLED PIPEFLOW/STREETFLOW THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE(EXISTING) (PRESSURE FLOW) <<<<< \_\_\_\_\_ UPSTREAM NODE ELEVATION(FEET) = 38.47 DOWNSTREAM NODE ELEVATION(FEET) = 36.07 FLOW LENGTH(FEET) = 1200.00 MANNING'S N = 0.013 USER SPECIFIED PIPE DIAMETER(INCH) = 69.00 NUMBER OF PIPES = 1 ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY(FEET/SEC.) = 6.34PIPE-FLOW(CFS) = 164.83\*NOTE: USER SPECIFIED PIPE SYSTEM CAN NOT CARRY TOTAL UPSTREAM PIPEFLOW\* PIPEFLOW TRAVEL TIME(MIN.) = 3.15 Tc(MIN.) = 59.36 \* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 0.984 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp SCS Ap LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL С 7.90 0.25 0.100 69 RESIDENTIAL "5-7 DWELLINGS/ACRE" C 9.40 0.25 0.500 69 RESIDENTIAL "5-7 DWELLINGS/ACRE" D 0.10 0.20 0.500 75 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.318 SUBAREA AREA(ACRES) =17.40SUBAREA RUNOFF(CFS) =14.16EFFECTIVE AREA(ACRES) =1523.50AREA-AVERAGED Fm(INCH/HR) =0.12 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.46 TOTAL AREA(ACRES) = 1523.5PEAK FLOW RATE(CFS) = 1235.68 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE STREET CROSS-SECTION INFORMATION: CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 40.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 35.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 MAXIMUM ALLOWABLE STREET FLOW DEPTH(FEET) = 0.57

```
STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0300
 *NOTE: STREET-CAPACITY MAY BE EXCEEDED*
 STREETFLOW HYDRAULICS BASED ON MAINLINE Tc :
 STREET HYDRAULICS COMPUTED USING ESTIMATED FLOW(CFS) = 1070.85
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 2.24
   HALFSTREET FLOOD WIDTH(FEET) = 118.70
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.14
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 9.27
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 1200.0 FT WITH ELEVATION-DROP = 2.4 FT, IS 29.3 CFS,
       WHICH EXCEEDS THE SPECIFIED STREET CAPACITY AT NODE 3767.00
                           0.00 TO NODE 3767.00 = 5839.00 FEET.
 LONGEST FLOWPATH FROM NODE
FLOW PROCESS FROM NODE 3767.00 TO NODE 3704.00 IS CODE = 43
_____
 >>>>COMPUTE COUPLED PIPEFLOW/STREETFLOW THRU SUBAREA<<<<<
 >>>>USING USER-SPECIFIED PIPESIZE(EXISTING) (PRESSURE FLOW) <<<<<
_____
 UPSTREAM NODE ELEVATION(FEET) = 36.07
DOWNSTREAM NODE ELEVATION(FEET) = 33.91
 FLOW LENGTH(FEET) = 1080.00 MANNING'S N = 0.013
 USER SPECIFIED PIPE DIAMETER(INCH) = 69.00 NUMBER OF PIPES = 1
 ASSUME FULL-FLOWING PIPELINE
 PIPE-FLOW VELOCITY(FEET/SEC.) = 6.34
 PIPE-FLOW(CFS) = 164.83
 *NOTE: USER SPECIFIED PIPE SYSTEM CAN NOT CARRY TOTAL UPSTREAM PIPEFLOW*
 PIPEFLOW TRAVEL TIME(MIN.) = 2.84 Tc(MIN.) = 62.19
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 0.958
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                        Fp
                                                        SCS
                                                   Ap
     LAND USE
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
                                6.50
 "5-7 DWELLINGS/ACRE" C
                                        0.25
                                                0.500
                                                          69
 RESIDENTIAL
                                4.30
                                         0.25
 "3-4 DWELLINGS/ACRE" C
                                                0.600
                                                          69
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE" D
                                0.10 0.20
                                                0.500
                                                          75
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.539
 SUBAREA AREA(ACRES) = 10.90 SUBAREA RUNOFF(CFS) = 8.07
 EFFECTIVE AREA(ACRES) = 1534.40 AREA-AVERAGED Fm(INCH/HR) = 0.12
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.46
 TOTAL AREA(ACRES) = 1534.4 PEAK FLOW RATE(CFS) = 1235.68
 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
 STREET CROSS-SECTION INFORMATION:
 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 35.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 30.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 MAXIMUM ALLOWABLE STREET FLOW DEPTH(FEET) =
                                         0.57
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0300
 *NOTE: STREET-CAPACITY MAY BE EXCEEDED*
 STREETFLOW HYDRAULICS BASED ON MAINLINE Tc :
```

|             | DRAULICS (<br>ET FLOWING                |          |                | FIMATED FLC                | W(CFS)  | = 1070.85      |              |
|-------------|-----------------------------------------|----------|----------------|----------------------------|---------|----------------|--------------|
|             |                                         |          |                | FIMATED FLC                | W:      |                |              |
|             | FLOW DEPT                               |          |                |                            |         |                |              |
|             |                                         |          | (EET) = 12     |                            |         |                |              |
|             |                                         |          | ET/SEC.) =     |                            | FO      |                |              |
|             |                                         |          | -              | EC.) = 9<br>Th Subarea     |         | TDC.           |              |
|             |                                         |          |                | ATION-DROP                 |         |                | 15.7 CFS.    |
|             |                                         |          |                | STREET CAPA                |         |                |              |
|             |                                         |          |                |                            |         |                | 19.00 FEET.  |
| ==========  | ======================================= | =======  | ===========    |                            | ======  | ===========    |              |
|             | UDY SUMMAI                              |          | 4 - 0 4 4      |                            |         | 1.0            |              |
|             |                                         |          |                | TC(MIN.) =<br>AREA-AVERAG  |         |                | 0 10         |
|             |                                         |          |                | AREA-AVERAG<br>AREA-AVERAG |         |                | 0.12         |
|             | RATE(CFS                                |          |                | AIGA AVBILAC               | пр чр - | 0.101          |              |
|             |                                         | ,        |                |                            |         |                |              |
|             | LOW RATE                                |          |                |                            |         |                |              |
| STREAM      | Q                                       | Tc       | Intensity      | Fp(Fm)<br>(INCH/HR)        | Ap      | Ae             | HEADWATER    |
| NUMBER      | (CFS)                                   | (MIN.)   | (INCH/HR)      | (INCH/HR)                  |         | (ACRES)        | NODE         |
| 1           | 1038.28                                 | 30.12    | 1.451          | 0.25( 0.11                 | ) 0.44  | 755.4          | 3744.00      |
| 2<br>3      |                                         |          |                |                            |         |                | 3732.00      |
|             | 1059.04                                 | 31.30    | 1,41/<br>1,200 | 0.25(0.11)                 | ) 0.44  | 795.1<br>025 7 | 3752.00      |
| 4<br>5      | 1074.02<br>1100.71                      | 34 60    | 1 340          | 0.25(0.11)                 | ) 0.44  | 889 5          | 0.00 3761.00 |
| 6           | 1112.07                                 | 35 78    | 1.315          | 0.25( 0.11                 | ) 0.45  | 921 2          | 3738.00      |
| 7           | 1157.44                                 |          |                | 0.25( 0.11                 | -       |                |              |
| 8           | 1172.05                                 |          |                | 0.25( 0.11                 |         | 1136.5         | 3833.00      |
| 9           | 1191.81                                 | 48.08    |                | 0.25( 0.11                 |         | 1227.0         | 3825.00      |
| 10          |                                         |          |                | 0.25( 0.12                 |         |                | 3804.00      |
|             | ============                            | =======  |                |                            | ======  |                |              |
| =========== | ===========                             | ======== | ===========    |                            | ======= | ==========     | ============ |

END OF RATIONAL METHOD ANALYSIS

#### 

Analysis prepared by:

IBI Group 10 Exchange Place, Suite 112 Salt Lake City, UT 84111

\_\_\_\_\_ FILE NAME: HYDRO\_E.DAT TIME/DATE OF STUDY: 15:03 05/29/2009 \_\_\_\_\_ USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: --\*TIME-OF-CONCENTRATION MODEL\*--USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 12.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 \*DATA BANK RAINFALL USED\* \*ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD\* \*USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL\* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (n) --- ---- ----- ----- ------ ----- ----- 
 1
 30.0
 20.0
 0.018/0.018/0.020
 0.67
 2.00
 0.0312
 0.167
 0.0150

 2
 43.0
 38.0
 0.020/0.020/0.020
 0.67
 2.00
 0.0312
 0.167
 0.0150
 35.00.020/0.020/0.0200.672.000.03120.1670.015033.00.020/0.020/0.0200.672.000.03120.1670.0150 3 40.0 4 38.0 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.10 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)\*(Velocity) Constraint = 6.0 (FT\*FT/S) \*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.\* \*USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED FLOW PROCESS FROM NODE 0.00 TO NODE 4705.00 IS CODE = 21 \_\_\_\_\_ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW-LENGTH(FEET) = 1060.00 ELEVATION DATA: UPSTREAM(FEET) = 64.00 DOWNSTREAM(FEET) = 62.56 Tc = K\*[(LENGTH\*\* 3.00)/(ELEVATION CHANGE)]\*\*0.20SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 18.467 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.920 SUBAREA TC AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Ap SCS TC Fp LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) С 9.50 0.25 0.100 69 18.47 COMMERCIAL SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25

```
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA RUNOFF(CFS) = 16.20
 TOTAL AREA(ACRES) =
                   9.50 PEAK FLOW RATE(CFS) =
                                            16.20
FLOW PROCESS FROM NODE 4705.00 TO NODE 4705.00 IS CODE = 1
_____
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 18.47
 RAINFALL INTENSITY(INCH/HR) = 1.92
 AREA-AVERAGED Fm(INCH/HR) = 0.03
 AREA-AVERAGED Fp(INCH/HR) = 0.25
 AREA-AVERAGED Ap = 0.10
 EFFECTIVE STREAM AREA(ACRES) =
                            9.50
 TOTAL STREAM AREA(ACRES) = 9.50
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                               16.20
FLOW PROCESS FROM NODE 4704.00 TO NODE 4705.00 IS CODE = 7
_____
 >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<<
_____
 USER-SPECIFIED VALUES ARE AS FOLLOWS:
 TC(MIN.) = 25.90 RAINFALL INTENSITY(INCH/HR) = 1.58
 EFFECTIVE AREA(ACRES) = 277.50
 TOTAL AREA(ACRES) = 277.50 PEAK FLOW RATE(CFS) = 342.10
 AREA-AVERAGED Fm(INCH/HR) = 0.03 AREA-AVERAGED Fp(INCH/HR) = 0.25
 AREA-AVERAGED Ap = 0.10
 NOTE: EFFECTIVE AREA IS USED AS THE TOTAL CONTRIBUTING AREA FOR ALL
      CONFLUENCE ANALYSES.
FLOW PROCESS FROM NODE 4705.00 TO NODE 4705.00 IS CODE = 1
   _____
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<
_____
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 25.90
 RAINFALL INTENSITY(INCH/HR) = 1.58
 AREA-AVERAGED Fm(INCH/HR) = 0.03
 AREA-AVERAGED Fp(INCH/HR) = 0.25
 AREA-AVERAGED Ap = 0.10
 EFFECTIVE STREAM AREA(ACRES) = 277.50
 TOTAL STREAM AREA(ACRES) = 277.50
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 342.10
 ** CONFLUENCE DATA **
          ×ICIntensityFp(Fm)ApAeHEADWATER(CFS)(MIN.)(INCH/HR)(INCH/HR)(ACRES)NODE16.2018.471.920025(0022)010
  STREAM Q Tc Intensity Fp(Fm)
  NUMBER
        16.2018.471.9200.25(0.03)0.109.50.00342.1025.901.5820.25(0.03)0.10277.54704.00
    1
    2
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
  STREAMQTcIntensityFp(Fm)ApAeHEADWATERNUMBER(CFS)(MIN.)(INCH/HR)(INCH/HR)(ACRES)NODE
```

313.1318.471.9200.25(0.03)0.10207.40.00355.4125.901.5820.25(0.03)0.10287.04704.00 1 2 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 355.41 Tc(MIN.) = 25.90 EFFECTIVE AREA(ACRES) = 287.00 AREA-AVERAGED Fm(INCH/HR) = 0.03 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 287.00.00 TO NODE 4705.00 = LONGEST FLOWPATH FROM NODE 1060.00 FEET. FLOW PROCESS FROM NODE 4705.00 TO NODE 4706.00 IS CODE = 46 \_\_\_\_\_ >>>>COMPUTE BOX-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED BOX SIZE (EXISTING ELEMENT) << << \_\_\_\_\_ ELEVATION DATA: UPSTREAM(FEET) = 51.75 DOWNSTREAM(FEET) = 48.00 FLOW LENGTH(FEET) = 1041.60 MANNING'S N = 0.013 GIVEN BOX BASEWIDTH(FEET) = 7.00 GIVEN BOX HEIGHT(FEET) = 6.00 FLOWDEPTH IN BOX IS 4.66 FEET BOX-FLOW VELOCITY(FEET/SEC.) = 10.89 BOX-FLOW(CFS) = 355.41BOX-FLOW TRAVEL TIME(MIN.) = 1.59 Tc(MIN.) = 27.49 2101.60 FEET. LONGEST FLOWPATH FROM NODE 0.00 TO NODE 4706.00 = FLOW PROCESS FROM NODE 4706.00 TO NODE 4706.00 IS CODE = 81 \_\_\_\_\_ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< \_\_\_\_\_ MAINLINE TC(MIN.) = 27.49 \* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.529 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN C 5.90 0.25 0.100 69 COMMERCIAL SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100 SUBAREA AREA(ACRES) =5.90SUBAREA RUNOFF(CFS) =7.98EFFECTIVE AREA(ACRES) =292.90AREA-AVERAGED Fm(INCH/HR) =0.03 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 292.9 PEAK FLOW RATE(CFS) = 396.36 \*\* PEAK FLOW RATE TABLE \*\* STREAMQTcIntensityFp(Fm)ApAeHEADWATERNUMBER(CFS)(MIN.)(INCH/HR)(INCH/HR)(ACRES)NODE 346.5120.081.8300.25(0.03)0.10213.30.00396.8927.431.5310.25(0.03)0.10292.94704.00 1 2 NEW PEAK FLOW DATA ARE: PEAK FLOW RATE(CFS) = 396.89 Tc(MIN.) = 27.43AREA-AVERAGED Fm(INCH/HR) = 0.03 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED AP = 0.10 EFFECTIVE AREA(ACRES) = 292.90 FLOW PROCESS FROM NODE 4706.00 TO NODE 4707.00 IS CODE = 46 \_\_\_\_\_ >>>>COMPUTE BOX-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED BOX SIZE (EXISTING ELEMENT) << << \_\_\_\_\_ ELEVATION DATA: UPSTREAM(FEET) = 48.00 DOWNSTREAM(FEET) = 47.56 FLOW LENGTH(FEET) = 133.00 MANNING'S N = 0.013 GIVEN BOX BASEWIDTH(FEET) = 7.00 GIVEN BOX HEIGHT(FEET) = 6.00 ASSUME FULL-FLOWING BOX BOX-FLOW VELOCITY(FEET/SEC.) = 9.45 BOX-FLOW(CFS) = 396.89

```
BOX-FLOW TRAVEL TIME(MIN.) = 0.23 Tc(MIN.) = 27.67
 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 4707.00 = 2234.60 FEET.
1
 FLOW PROCESS FROM NODE 4707.00 TO NODE 4707.00 IS CODE =
_____
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<
_____
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 27.67
 RAINFALL INTENSITY(INCH/HR) = 1.52
 AREA-AVERAGED Fm(INCH/HR) = 0.03
 AREA-AVERAGED Fp(INCH/HR) = 0.25
 AREA-AVERAGED Ap = 0.10
 EFFECTIVE STREAM AREA(ACRES) = 292.90
 TOTAL STREAM AREA(ACRES) = 292.90
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                               396.89
FLOW PROCESS FROM NODE 4738.00 TO NODE 4739.00 IS CODE =
                                                7
_____
 >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<<
_____
 USER-SPECIFIED VALUES ARE AS FOLLOWS:
 TC(MIN.) = 26.90 RAINFALL INTENSITY(INCH/HR) = 1.55
 EFFECTIVE AREA(ACRES) = 36.10
 TOTAL AREA(ACRES) = 36.10
                          PEAK FLOW RATE(CFS) = 36.60
 AREA-AVERAGED Fm(INCH/HR) = 0.12 AREA-AVERAGED Fp(INCH/HR) = 0.25
 AREA-AVERAGED Ap = 0.50
 NOTE: EFFECTIVE AREA IS USED AS THE TOTAL CONTRIBUTING AREA FOR ALL
      CONFLUENCE ANALYSES.
FLOW PROCESS FROM NODE 4739.00 TO NODE 4707.00 IS CODE = 43
_____
 >>>>COMPUTE COUPLED PIPEFLOW/STREETFLOW THRU SUBAREA<<<<<
 >>>>USING USER-SPECIFIED PIPESIZE (EXISTING) (NON-PRESSURE FLOW) << <<
_____
 UPSTREAM NODE ELEVATION(FEET) = 50.54
 DOWNSTREAM NODE ELEVATION(FEET) = 47.61
 FLOW LENGTH(FEET) = 671.00 MANNING'S N = 0.013
 USER SPECIFIED PIPE DIAMETER(INCH) = 60.00 NUMBER OF PIPES = 1
 DEPTH OF FLOW IN 60.0 INCH PIPE IS 18.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 6.96
 PIPE-FLOW(CFS) = 36.60
 *NOTE: USER SPECIFIED PIPE SYSTEM CAN CARRY TOTAL UPSTREAM FLOW*
 PIPEFLOW TRAVEL TIME(MIN.) = 1.64 Tc(MIN.) = 28.54
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.496
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                  SCS SOIL AREA
                                Fp
                                          Ap SCS
                  GROUP (ACRES) (INCH/HR) (DECIMAL) CN
C 16.10 0.25 0.100 69
    LAND USE
 COMMERCIAL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 16.10 SUBAREA RUNOFF(CFS) = 21.32
 EFFECTIVE AREA(ACRES) = 52.20 AREA-AVERAGED Fm(INCH/HR) = 0.09
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.38
 TOTAL AREA(ACRES) = 52.2
                          PEAK FLOW RATE(CFS) = 65.88
 STREET CROSS-SECTION INFORMATION:
 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 43.00
```

DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 38.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 MAXIMUM ALLOWABLE STREET FLOW DEPTH(FEET) = 0.77 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0300 STREETFLOW HYDRAULICS BASED ON MAINLINE Tc : STREET HYDRAULICS COMPUTED USING ESTIMATED FLOW(CFS) = 29.28 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.63HALFSTREET FLOOD WIDTH(FEET) = 23.74 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.51 PRODUCT OF DEPTH&VELOCITY(FT\*FT/SEC.) = 1.59 LONGEST FLOWPATH FROM NODE 4738.00 TO NODE 4707.00 = 671.00 FEET. FLOW PROCESS FROM NODE 4707.00 TO NODE 4707.00 IS CODE = 1 \_\_\_\_\_ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< \_\_\_\_\_ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 28.54 RAINFALL INTENSITY(INCH/HR) = 1.50 AREA-AVERAGED Fm(INCH/HR) = 0.09AREA-AVERAGED Fp(INCH/HR) = 0.25AREA-AVERAGED Ap = 0.38EFFECTIVE STREAM AREA(ACRES) = 52.20 TOTAL STREAM AREA(ACRES) = 52.20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 65.88 \*\* CONFLUENCE DATA \*\* STREAM Q Tc Intensity Fp(Fm) Ae HEADWATER Ap (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE NUMBER 346.5120.291.8190.25(0.03)0.10213.30.00396.8927.671.5230.25(0.03)0.10292.94704.00 1 

 27.07
 1.523
 0.25(0.03)
 0.10
 292.9
 4704.00

 65.88
 28.54
 1.496
 0.25(0.09)
 0.38
 52.2
 4738
 00

 1 2 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. \*\* PEAK FLOW RATE TABLE \*\* STREAMQTcIntensityFp(Fm)ApAeHEADWATERNUMBER(CFS)(MIN.)(INCH/HR)(INCH/HR)(ACRES)NODE 404.1420.291.8190.25(0.04)0.14250.40.00461.9827.671.5230.25(0.04)0.14343.54704.00 1 2 451.98 27.87 1.525 0.25( 0.04) 0.14 345.5 4704.00 455.68 28.54 1.496 0.25( 0.04) 0.14 345.1 4738.00 3 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 461.98 Tc(MIN.) = 27.67 EFFECTIVE AREA(ACRES) = 343.51 AREA-AVERAGED Fm(INCH/HR) = 0.04 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.14TOTAL AREA(ACRES) = 345.1LONGEST FLOWPATH FROM NODE 0.00 TO NODE 4707.00 = 2234.60 FEET. FLOW PROCESS FROM NODE 4749.00 TO NODE 4707.00 IS CODE = 81 \_\_\_\_\_ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< \_\_\_\_\_

MAINLINE TC(MIN.) = 27.67 \* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.523 SUBAREA LOSS RATE DATA(AMC II): Fp Ap DEVELOPMENT TYPE/ SCS SOIL AREA SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE COMMERCIAL 259.50 0.25 0.100 69 С SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100 SUBAREA AREA(ACRES) = 259.50 SUBAREA RUNOFF(CFS) = 349.89 EFFECTIVE AREA(ACRES) = 603.01 AREA-AVERAGED Fm(INCH/HR) = 0.03 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.12 TOTAL AREA(ACRES) = 604.6 PEAK FLOW RATE(CFS) = 809.91 \*\* PEAK FLOW RATE TABLE \*\* STREAMQTcIntensityFp(Fm)ApNUMBER(CFS)(MIN.)(INCH/HR)(INCH/HR) Ae HEADWATER (ACRES) NODE 821.1320.291.8190.25(0.03)0.12509.90.00809.9127.671.5230.25(0.03)0.12603.04704.00 1 2 797.39 28.54 1.496 0.25( 0.03) 0.12 603.0 3 4738.00 NEW PEAK FLOW DATA ARE: PEAK FLOW RATE(CFS) = 821.13 Tc(MIN.) = 20.29 AREA-AVERAGED Fm(INCH/HR) = 0.03 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED AP = 0.12 EFFECTIVE AREA(ACRES) = 509.87 \_\_\_\_\_ END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 604.6 TC(MIN.) = 20.29 EFFECTIVE AREA(ACRES) = 509.87 AREA-AVERAGED Fm(INCH/HR) = 0.03 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.120 PEAK FLOW RATE(CFS) = 821.13 \*\* PEAK FLOW RATE TABLE \*\* STREAMQTcIntensityFp(Fm)ApAeHEADWATNUMBER(CFS)(MIN.)(INCH/HR)(INCH/HR)(ACRES)NODE Ae HEADWATER 821.13 20.29 1.819 0.25( 0.03) 0.12 509.9 1 0.00 809.91 27.67 1.523 0.25( 0.03) 0.12 603.0 4704.00 2 3 797.39 28.54 1.496 0.25(0.03) 0.12 604.6 4738.00 \_\_\_\_\_ END OF RATIONAL METHOD ANALYSIS

WARNER AVENUE FROM MAIN STREET TO GRAND AVENUE WIDENING PROJECT PRELIMINARY DRAINAGE STUDY

# APPENDIX K: HYDRAULICS – PROPOSED CONDITION

## MAIN STREET TO STANDARD AVE:

### Summary of HGL Output (AES – Pipeflow):

| Node | FL Elevation | MH Rim/<br>FS Elev | Maximum HGL<br>(2' below gutter<br>grade)* | Existing HGL | Proposed HGL |
|------|--------------|--------------------|--------------------------------------------|--------------|--------------|
| 3826 |              |                    |                                            |              |              |
| 3834 |              |                    |                                            |              |              |
| 3845 | 47.91/47.94  | 57.80              | 55.80                                      | 1022.22      |              |
| 3805 | 44.57/44.72  | 56.88              | 54.88                                      | 607.25       |              |
| 3733 | 43.53        |                    |                                            |              |              |
| 3739 | 42.23        | 55.34              | 53.34                                      | 409.09       |              |
| 3745 | 40.39/40.67  |                    |                                            |              |              |
| 3746 | 39.27/39.40  | 54.01              | 52.01                                      | 334.94       |              |
| 3747 | 39.07        | 53.98              | 51.98                                      | 321.87       |              |
|      |              |                    |                                            |              |              |

\*Assume Storm Drain is located at the CL of Warner Ave.

### STANDARD AVE TO GRAND AVE:

#### Summary of HGL Output (AES – Pipeflow):

| Node | FL Elevation | MH Rim/<br>FS Elev | Maximum HGL<br>(2' below gutter<br>grade)* | Existing HGL | Proposed HGL |
|------|--------------|--------------------|--------------------------------------------|--------------|--------------|
| 4705 | 39.07        | 53.98              | 51.98                                      | 57.46        |              |
| 4706 | 39.27/39.40  | 54.01              | 52.01                                      | 55.53        |              |
| 4707 | 40.39/40.67  |                    |                                            |              |              |
|      |              |                    |                                            |              |              |
|      |              |                    |                                            |              |              |
|      |              |                    |                                            |              |              |
|      |              |                    |                                            |              |              |
|      |              |                    |                                            |              |              |
|      |              |                    |                                            |              |              |
|      |              |                    |                                            |              |              |

\*Assume Storm Drain is located at the CL of Warner Ave.

### WARNER AVENUE FROM MAIN STREET TO GRAND AVENUE WIDENING PROJECT PRELIMINARY DRAINAGE STUDY

## APPENDIX L: REFERENCES

1. Hromadka II, T.V.," Orange County Hydrology Manual", October, 1986

2. Local Drainage Committee, "Orange County Local Drainage Manual", County of Orange, Environmental Management Agency, Santa Ana, California; January, 1996

3. Advanced Engineering Software, AES Rational Method Hydrology Software package, 2008

4. Boyle Engineering, Drainage Study, 1993