Attachment 5 — Updated Rational Method Hydrology Calculations Q10

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1355

Analysis prepared by:

```
* SANTA ANA MPD - GARDEN WATERSHED
* RATIONAL METHOD HYDROLOGY - EXISTING CONDITION-UPDATED 1-2023
* 10-YEAR SEPTEMBER 2014 KCHAN REV FEB 2015 MCHANDOO REV DEC 2022 SAUSILI  *
 *******************************
 FILE NAME: GC10EX.DAT
 TIME/DATE OF STUDY: 18:07 01/18/2023
------
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
               --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) =
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
   WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE / WAY (FT) (FT) (FT) (FT) (n)
                 0.020/0.020/0.020 0.50
    20.0
         10.0
                                      2.00 0.0313 0.125 0.0150
                 0.020/0.020/0.020 0.67
   42.0
           21.0
                                       2.00 0.0313 0.167 0.0150
           25.0 0.020/0.020/0.020 0.67 2.00 0.0313 0.167 0.0150
 3 51.0
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
****************************
 FLOW PROCESS FROM NODE
                     100.00 TO NODE
                                   101.00 IS CODE = 21
>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
 ELEVATION DATA: UPSTREAM(FEET) =
                           108.00 DOWNSTREAM(FEET) =
                                                    106.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
```

```
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
                                         8.586
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.978
 SUBAREA TC AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                      SCS SOIL
                                AREA
                                         Fp
                                                   Aр
                                                          SCS
                                                               Tc
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
                                                              (MIN.)
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         C
                                 1.40
                                                               10.99
                                          0.25
                                                  0.500
                                                           69
 COMMERCIAL
                         C
                                 1.50
                                          0.25
                                                  0.100
                                                           69
                                                                8.59
 URBAN POOR COVER
 "TURF"
                         C
                                 0.20
                                          0.25
                                                  1.000
                                                          83
                                                               14.83
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.339
 SUBAREA RUNOFF(CFS) =
                        8.07
                       3.10 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                                                      8.07
***************************
 FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 106.00 DOWNSTREAM ELEVATION(FEET) = 100.00
 STREET LENGTH(FEET) = 641.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                     14.77
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.43
   HALFSTREET FLOOD WIDTH(FEET) = 15.66
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.84
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
                                         1.22
 STREET FLOW TRAVEL TIME(MIN.) = 3.76 Tc(MIN.) =
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.418
 SUBAREA LOSS RATE DATA(AMC II):
                      SCS SOIL
  DEVELOPMENT TYPE/
                                AREA
                                         Fp
                                                   Ap
                                                          SCS
                              (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
                       GROUP
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         C
                                 5.00
                                          0.25
                                                  0.500
                                                           69
 COMMERCIAL
                         C
                                 1.40
                                          0.25
                                                  0.100
                                                           69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.413
 SUBAREA AREA(ACRES) = 6.40 SUBAREA RUNOFF(CFS) = 13.33
 EFFECTIVE AREA(ACRES) = 9.50
                                 AREA-AVERAGED Fm(INCH/HR) =
                                                            0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.39
 TOTAL AREA(ACRES) =
                         9.5
                                   PEAK FLOW RATE(CFS) =
                                                           19.84
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.47 HALFSTREET FLOOD WIDTH(FEET) = 17.62
 FLOW VELOCITY(FET/SEC.) = 3.05 DEPTH*VELOCITY(FT*FT/SEC.) = 1.43
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 102.00 = 971.00 FEET.
```

```
****************************
 FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 62
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 100.00 DOWNSTREAM ELEVATION(FEET) = 92.00
 STREET LENGTH(FEET) = 1712.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                 38.72
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.62
   HALFSTREET FLOOD WIDTH(FEET) = 26.03
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.93
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 9.73 Tc(MIN.) =
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.733
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                              AREA
                                      Fp
                                                Aр
                                                     SCS
     LAND USE
                     GROUP
                           (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                       В
                              16.80
                                       0.30
                                               0.500
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                       C
                               2.80
                                       0.25
                                               0.500
                                                      69
 COMMERCIAL
                       В
                               4.40
                                       0.30
                                               0.100
                                                      56
 COMMERCIAL
                       C
                               1.60
                                       0.25
                                               0.100
                                                      69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.29
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.406
 SUBAREA AREA(ACRES) = 25.60 SUBAREA RUNOFF(CFS) = 37.20
 EFFECTIVE AREA(ACRES) = 35.10 AREA-AVERAGED Fm(INCH/HR) = 0.11
 AREA-AVERAGED Fp(INCH/HR) = 0.28 AREA-AVERAGED Ap = 0.40
                      35.1
 TOTAL AREA(ACRES) =
                                PEAK FLOW RATE(CFS) =
                                                       51.19
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.67 HALFSTREET FLOOD WIDTH(FEET) = 28.72
 FLOW VELOCITY(FEET/SEC.) = 3.17 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 1712.0 FT WITH ELEVATION-DROP = 8.0 FT, IS
                                                   42.9 CFS,
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 103.00
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 103.00 = 2683.00 FEET.
*************************************
 FLOW PROCESS FROM NODE 103.00 TO NODE 109.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 2 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 92.00 DOWNSTREAM ELEVATION(FEET) = 86.00
 STREET LENGTH(FEET) = 2064.00 CURB HEIGHT(INCHES) = 8.0
```

```
STREET HALFWIDTH(FEET) = 42.00
```

```
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 21.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                     89.58
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.93
   HALFSTREET FLOOD WIDTH(FEET) = 52.10
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.64
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 2.46
 STREET FLOW TRAVEL TIME(MIN.) = 13.05 Tc(MIN.) =
                                                 35.13
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.328
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                      SCS SOIL
                                AREA
                                         Fp
                       GROUP
                               (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
                                19.80
 "5-7 DWELLINGS/ACRE"
                         В
                                          0.30
                                                  0.500
                                                          56
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         C
                                30.00
                                          0.25
                                                  0.500
                                                          69
                                 7.20
 COMMERCIAL
                         В
                                          0.30
                                                  0.100
                                                          56
                         C
 COMMERCIAL
                                11.30
                                          0.25
                                                  0.100
                                                          69
 URBAN POOR COVER
 "TURF"
                                 1.20
                         C
                                          0.25
                                                  1.000
                                                          83
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.27
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.402
 SUBAREA AREA(ACRES) = 69.50 SUBAREA RUNOFF(CFS) = 76.33
 EFFECTIVE AREA(ACRES) = 104.60
                                AREA-AVERAGED Fm(INCH/HR) =
 AREA-AVERAGED Fp(INCH/HR) = 0.27 AREA-AVERAGED Ap = 0.40
 TOTAL AREA(ACRES) =
                      104.6
                                   PEAK FLOW RATE(CFS) =
                                                          114.72
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 1.00 HALFSTREET FLOOD WIDTH(FEET) = 58.73
 FLOW VELOCITY(FEET/SEC.) = 2.76 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 2064.0 FT WITH ELEVATION-DROP = 6.0 FT, IS 105.7 CFS,
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 109.00
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE
                                          109.00 =
                                                      4747.00 FEET.
**************************
 FLOW PROCESS FROM NODE 109.00 TO NODE 109.00 IS CODE = 1
>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 35.13
 RAINFALL INTENSITY(INCH/HR) =
 AREA-AVERAGED Fm(INCH/HR) = 0.11
 AREA-AVERAGED Fp(INCH/HR) = 0.27
 AREA-AVERAGED Ap = 0.40
 EFFECTIVE STREAM AREA(ACRES) =
 TOTAL STREAM AREA(ACRES) =
                            104.60
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                     114.72
```

```
****************************
 FLOW PROCESS FROM NODE
                      104.00 TO NODE
                                     105.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
 ELEVATION DATA: UPSTREAM(FEET) =
                              92.50 DOWNSTREAM(FEET) =
                                                         92.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.329
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.541
 SUBAREA TC AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                    SCS SOIL
                              AREA
                                      Fp
                           (ACRES) (INCH/HR) (DECIMAL) CN
                      GROUP
     LAND USE
                                                         (MIN.)
 RESIDENTIAL
                               2.00
 "5-7 DWELLINGS/ACRE"
                       В
                                       0.30
                                               0.500
                                                      56
                                                          14.50
 COMMERCIAL
                       В
                               0.80
                                       0.30
                                               0.100
                                                      56
                                                          11.33
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.386
 SUBAREA RUNOFF(CFS) =
                     6.11
 TOTAL AREA(ACRES) =
                     2.80 PEAK FLOW RATE(CFS) =
****************************
 FLOW PROCESS FROM NODE 105.00 TO NODE 106.00 IS CODE = 62
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<
______
 UPSTREAM ELEVATION(FEET) = 92.00 DOWNSTREAM ELEVATION(FEET) = 90.00
 STREET LENGTH(FEET) = 650.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                 11.65
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.47
   HALFSTREET FLOOD WIDTH(FEET) = 17.77
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.76
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.83
 STREET FLOW TRAVEL TIME(MIN.) = 6.15 Tc(MIN.) =
                                              17.48
  10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.982
 SUBAREA LOSS RATE DATA(AMC II):
                    SCS SOIL
  DEVELOPMENT TYPE/
                              AREA
                                      Fp
                      GROUP
                           (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                       В
                               5.40
                                       0.30
                                               0.500
                                                      56
 COMMERCIAL
                       В
                               1.20
                                       0.30
                                               0.100
                                                      56
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.427
 SUBAREA AREA(ACRES) = 6.60
                             SUBAREA RUNOFF(CFS) =
```

```
9.40
                                 AREA-AVERAGED Fm(INCH/HR) = 0.12
 EFFECTIVE AREA(ACRES) =
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.41
 TOTAL AREA(ACRES) =
                        9.4
                                 PEAK FLOW RATE(CFS) =
                                                          15.71
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.52 HALFSTREET FLOOD WIDTH(FEET) = 20.84
 FLOW VELOCITY(FEET/SEC.) = 1.89 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE 104.00 TO NODE 106.00 = 980.00 FEET.
**************************
 FLOW PROCESS FROM NODE 106.00 TO NODE 107.00 IS CODE = 62
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 90.00 DOWNSTREAM ELEVATION(FEET) = 88.00
 STREET LENGTH(FEET) = 712.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                    26.08
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.60
   HALFSTREET FLOOD WIDTH(FEET) = 24.81
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.18
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.30
 STREET FLOW TRAVEL TIME(MIN.) = 5.44 Tc(MIN.) =
                                                22.92
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.697
 SUBAREA LOSS RATE DATA(AMC II):
                     SCS SOIL
  DEVELOPMENT TYPE/
                               AREA
                                        Fp
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                        В
                               11.20
                                         0.30
                                                 0.500
                                                         56
 COMMERCIAL
                        В
                                3.40
                                         0.30
                                                 0.100
                                                         56
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.407
 SUBAREA AREA(ACRES) = 14.60 SUBAREA RUNOFF(CFS) = 20.69
 EFFECTIVE AREA(ACRES) = 24.00 AREA-AVERAGED Fm(INCH/HR) = 0.12
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.41
 TOTAL AREA(ACRES) =
                       24.0
                                  PEAK FLOW RATE(CFS) =
                                                          33.99
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.64 HALFSTREET FLOOD WIDTH(FEET) = 27.19
 FLOW VELOCITY(FEET/SEC.) = 2.36 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 712.0 FT WITH ELEVATION-DROP = 2.0 FT, IS
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 107.00
 LONGEST FLOWPATH FROM NODE 104.00 TO NODE 107.00 = 1692.00 FEET.
**************************
```

FLOW PROCESS FROM NODE 107.00 TO NODE 108.00 IS CODE = 62

```
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<
______
 UPSTREAM ELEVATION(FEET) = 88.00 DOWNSTREAM ELEVATION(FEET) = 87.00
 STREET LENGTH(FEET) = 293.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                   52.60
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.71
   HALFSTREET FLOOD WIDTH(FEET) = 30.67
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.85
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
                                        2.03
 STREET FLOW TRAVEL TIME(MIN.) = 1.71 Tc(MIN.) =
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.628
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                               AREA
                                        Fp
                                                  Aр
                                                        SCS
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                        В
                               20.20
                                         0.30
                                                 0.500
                                                         56
 COMMERCIAL
                        В
                                7.20
                                         0.30
                                                 0.100
                                                         56
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.395
 SUBAREA AREA(ACRES) = 27.40 SUBAREA RUNOFF(CFS) = 37.22
 EFFECTIVE AREA(ACRES) = 51.40 AREA-AVERAGED Fm(INCH/HR) = 0.12
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.40
 TOTAL AREA(ACRES) =
                       51.4
                                 PEAK FLOW RATE(CFS) =
                                                         69.73
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.78 HALFSTREET FLOOD WIDTH(FEET) = 34.03
 FLOW VELOCITY(FEET/SEC.) = 3.06 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 293.0 FT WITH ELEVATION-DROP = 1.0 FT, IS
                                                       67.7 CFS,
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 108.00
 LONGEST FLOWPATH FROM NODE 104.00 TO NODE 108.00 =
                                                    1985.00 FEET.
****************************
 FLOW PROCESS FROM NODE 108.00 TO NODE 109.00 IS CODE = 62
.....
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 87.00 DOWNSTREAM ELEVATION(FEET) = 86.00
 STREET LENGTH(FEET) = 533.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
```

```
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                     87.60
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.93
   HALFSTREET FLOOD WIDTH(FEET) = 41.60
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.56
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 2.38
 STREET FLOW TRAVEL TIME(MIN.) = 3.47 Tc(MIN.) =
                                                 28.11
   10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.509
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                      SCS SOIL
                                AREA
                                         Fp
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         В
                                12.00
                                          0.30
                                                  0.500
                                                          56
 COMMERCIAL
                         В
                                 6.10
                                          0.30
                                                  0.100
                                                          56
 URBAN POOR COVER
 "TURF"
                         В
                                 4.50
                                          0.30
                                                  1.000
                                                          74
 SCHOOL
                         В
                                 6.70
                                          0.30
                                                  0.600
                                                          56
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.516
 SUBAREA AREA(ACRES) = 29.30 SUBAREA RUNOFF(CFS) = 35.72
 EFFECTIVE AREA(ACRES) = 80.70
                                AREA-AVERAGED Fm(INCH/HR) =
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.44
 TOTAL AREA(ACRES) =
                        80.7
                                   PEAK FLOW RATE(CFS) =
                                                           99.97
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.98 HALFSTREET FLOOD WIDTH(FEET) = 43.79
 FLOW VELOCITY(FEET/SEC.) = 2.63 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 533.0 FT WITH ELEVATION-DROP = 1.0 FT, IS
                                                        57.4 CFS,
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE
                                                        109.00
 LONGEST FLOWPATH FROM NODE 104.00 TO NODE 109.00 = 2518.00 FEET.
****************************
 FLOW PROCESS FROM NODE 109.00 TO NODE 109.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) =
                              28.11
 RAINFALL INTENSITY(INCH/HR) =
 AREA-AVERAGED Fm(INCH/HR) = 0.13
 AREA-AVERAGED fp(INCH/HR) = 0.30
 AREA-AVERAGED Ap = 0.44
 EFFECTIVE STREAM AREA(ACRES) =
                                 80.70
 TOTAL STREAM AREA(ACRES) =
                            80.70
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                      99.97
 ** CONFLUENCE DATA **
  STREAM
                    Tc Intensity Fp(Fm)
                                                   Ae
                                                         HEADWATER
            (CFS) (MIN.) (INCH/HR) (INCH/HR)
  NUMBER
                                                  (ACRES)
                                                           NODE
           114.72 35.13 1.328 0.27( 0.11) 0.40
     1
                                                    104.6
                                                             100.00
```

99.97 28.11 1.509 0.30(0.13)0.44 80.7 104.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** Tc Intensity Fp(Fm) STREAM Ae HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE 1.509 0.29(0.12) 0.42 205.40 28.11 1 164.4 104.00 1.328 0.29(0.12) 0.42 201.54 35.13 2 185.3 100.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 205.40 Tc(MIN.) = 28.11 EFFECTIVE AREA(ACRES) = 164.39 AREA-AVERAGED Fm(INCH/HR) = 0.12 AREA-AVERAGED Fp(INCH/HR) = 0.29 AREA-AVERAGED Ap = 0.42 TOTAL AREA(ACRES) = 185.3 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 109.00 = 4747.00 FEET. ******************************* FLOW PROCESS FROM NODE 109.00 TO NODE 115.00 IS CODE = 31 ______ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)< ______ ELEVATION DATA: UPSTREAM(FEET) = 86.00 DOWNSTREAM(FEET) = 85.50 FLOW LENGTH(FEET) = 1021.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 102.0 INCH PIPE IS 76.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.50 ESTIMATED PIPE DIAMETER(INCH) = 102.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 205.40PIPE TRAVEL TIME(MIN.) = 3.78 Tc(MIN.) = 31.89 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 115.00 = 5768.00 FEET. ************************** FLOW PROCESS FROM NODE 115.00 TO NODE 115.00 IS CODE = 1 ______ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE< ______ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 31.89 RAINFALL INTENSITY(INCH/HR) = 1.40 AREA-AVERAGED Fm(INCH/HR) = 0.12AREA-AVERAGED fp(INCH/HR) = 0.29AREA-AVERAGED Ap = 0.42EFFECTIVE STREAM AREA(ACRES) = TOTAL STREAM AREA(ACRES) = 185.30 PEAK FLOW RATE(CFS) AT CONFLUENCE = 205.40 **************************** FLOW PROCESS FROM NODE 112.00 TO NODE 113.00 IS CODE = 21 ----->>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< -----INITIAL SUBAREA FLOW-LENGTH(FEET) = 281.00 ELEVATION DATA: UPSTREAM(FEET) = 103.00 DOWNSTREAM(FEET) = Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.956

```
* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.907
 SUBAREA TC AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                       SCS SOIL
                                 AREA
                                           Fp
                                                     Aр
                                                           SCS
                                                                Tc
      LAND USE
                        GROUP
                              (ACRES) (INCH/HR) (DECIMAL) CN
                                                                (MIN.)
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                          C
                                  0.90
                                           0.25
                                                    0.500
                                                            69
                                                                 11.46
 COMMERCIAL
                          C
                                  1.10
                                           0.25
                                                    0.100
                                                            69
                                                                 8.96
 NATURAL FAIR COVER
                                  0.10
                                                    1.000
 "OPEN BRUSH"
                          C
                                           0.25
                                                            77
                                                                20.80
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.314
 SUBAREA RUNOFF(CFS) =
                        5.35
                        2.10 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                                                       5.35
***********************
 FLOW PROCESS FROM NODE
                        113.00 TO NODE
                                         114.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 3 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 103.00 DOWNSTREAM ELEVATION(FEET) = 96.00
 STREET LENGTH(FEET) = 1341.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 51.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 25.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0150
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                       19.40
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.55
   HALFSTREET FLOOD WIDTH(FEET) = 19.48
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.43
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.33
 STREET FLOW TRAVEL TIME(MIN.) = 9.19 Tc(MIN.) =
                                                   18.14
    10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.940
 SUBAREA LOSS RATE DATA(AMC II):
                       SCS SOIL
  DEVELOPMENT TYPE/
                                 AREA
                                           Fp
                        GROUP
                               (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                          В
                                 12.10
                                           0.30
                                                    0.500
                                                            56
                                  4.60
 COMMERCIAL
                          C
                                           0.25
                                                    0.100
                                                            69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.390
 SUBAREA AREA(ACRES) = 16.70
                                 SUBAREA RUNOFF(CFS) =
 EFFECTIVE AREA(ACRES) = 18.80
                                 AREA-AVERAGED Fm(INCH/HR) = 0.11
 AREA-AVERAGED Fp(INCH/HR) = 0.29 AREA-AVERAGED Ap = 0.38
 TOTAL AREA(ACRES) =
                         18.8
                                    PEAK FLOW RATE(CFS) =
                                                             30.94
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.63 HALFSTREET FLOOD WIDTH(FEET) = 23.42
 FLOW VELOCITY(FEET/SEC.) = 2.73 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE 112.00 TO NODE 114.00 = 1622.00 FEET.
```

```
FLOW PROCESS FROM NODE 114.00 TO NODE
                                       115.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<
______
 UPSTREAM ELEVATION(FEET) = 96.00 DOWNSTREAM ELEVATION(FEET) = 85.50
 STREET LENGTH(FEET) = 2539.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                   68.63
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.75
   HALFSTREET FLOOD WIDTH(FEET) = 32.68
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.27
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
                                      2.46
 STREET FLOW TRAVEL TIME(MIN.) = 12.95 Tc(MIN.) =
                                                31.09
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.425
 SUBAREA LOSS RATE DATA(AMC II):
                     SCS SOIL
  DEVELOPMENT TYPE/
                               AREA
                                        Fp
                       GROUP
     LAND USE
                            (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                               16.90
                                         0.30
                                                 0.500
                        В
                                                         56
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                        C
                               19.40
                                         0.25
                                                 0.500
                                                         69
                                8.00
                                         0.30
 COMMERCIAL
                        В
                                                 0.100
                                                         56
 COMMERCIAL
                        C
                               13.50
                                         0.25
                                                 0.100
                                                         69
 URBAN POOR COVER
 "TURF"
                        C
                                0.10
                                         0.25
                                                 1.000
                                                         83
 SCH00L
                        C
                                4.60
                                         0.25
                                                 0.600
                                                         69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.27
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.371
 SUBAREA AREA(ACRES) = 62.50
                              SUBAREA RUNOFF(CFS) = 74.50
 EFFECTIVE AREA(ACRES) = 81.30
                               AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.28 AREA-AVERAGED Ap = 0.37
 TOTAL AREA(ACRES) =
                       81.3
                                  PEAK FLOW RATE(CFS) =
                                                          96.72
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.84 HALFSTREET FLOOD WIDTH(FEET) = 37.14
 FLOW VELOCITY(FEET/SEC.) = 3.55 DEPTH*VELOCITY(FT*FT/SEC.) =
                                                           2.99
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 2539.0 FT WITH ELEVATION-DROP = 10.5 FT, IS
                                                       94.8 CFS,
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 115.00
 LONGEST FLOWPATH FROM NODE 112.00 TO NODE 115.00 = 4161.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 115.00 TO NODE 115.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
```

```
TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 31.09
 RAINFALL INTENSITY(INCH/HR) =
 AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.28
 AREA-AVERAGED Ap = 0.37
 EFFECTIVE STREAM AREA(ACRES) =
 TOTAL STREAM AREA(ACRES) =
                          81.30
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                   96.72
 ** CONFLUENCE DATA **
  STREAM
                  Tc Intensity Fp(Fm)
                                                Аe
                                                     HEADWATER
            Q
  NUMBER
                 (MIN.) (INCH/HR) (INCH/HR)
                                              (ACRES)
           (CFS)
                                                       NODE
    1
          205.40
                 31.89
                         1.404 0.29( 0.12) 0.42
                                                164.4
                                                         104.00
          201.54
                         1.253 0.29( 0.12) 0.42
                                                185.3
    1
                 38.92
                                                         100.00
                         1.425 0.28( 0.10) 0.37
           96.72 31.09
    2
                                                 81.3
                                                         112.00
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
                  Tc Intensity Fp(Fm)
  STREAM
                                                Ae
                                                     HEADWATER
            Q
                (MIN.) (INCH/HR) (INCH/HR)
  NUMBER
           (CFS)
                                              (ACRES)
                                                       NODE
                         1.425 0.28( 0.11) 0.41
    1
          300.19
                 31.09
                                                241.6
                                                         112.00
                         1.404 0.28( 0.12) 0.41
    2
          300.62
                 31.89
                                                 245.7
                                                         104.00
          285.68 38.92
                         1.253 0.28( 0.11) 0.41
    3
                                                266.6
                                                         100.00
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 300.62 Tc(MIN.) = 31.89
EFFECTIVE AREA(ACRES) = 245.69 AREA-AVERAGED Fm(INCH/HR) = 0.12
 AREA-AVERAGED Fp(INCH/HR) = 0.28 AREA-AVERAGED Ap = 0.41
 TOTAL AREA(ACRES) = 266.6
 LONGEST FLOWPATH FROM NODE
                         100.00 TO NODE
                                         115.00 =
                                                  5768.00 FEET.
****************************
 FLOW PROCESS FROM NODE 115.00 TO NODE 120.00 IS CODE = 31
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 85.50 DOWNSTREAM(FEET) = 85.00
 FLOW LENGTH(FEET) = 473.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 102.0 INCH PIPE IS 76.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 6.60
 ESTIMATED PIPE DIAMETER(INCH) = 102.00
                                    NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 300.62
 PIPE TRAVEL TIME(MIN.) = 1.19
                              Tc(MIN.) = 33.08
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE
                                         120.00 =
                                                   6241.00 FEET.
*****************************
 FLOW PROCESS FROM NODE 120.00 TO NODE 120.00 IS CODE = 1
>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 33.08
 RAINFALL INTENSITY(INCH/HR) = 1.37
 AREA-AVERAGED Fm(INCH/HR) = 0.12
```

AREA-AVERAGED fp(INCH/HR) = 0.28

```
AREA-AVERAGED Ap = 0.41
 EFFECTIVE STREAM AREA(ACRES) =
 TOTAL STREAM AREA(ACRES) = 266.60
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                   300.62
*******************************
 FLOW PROCESS FROM NODE 116.00 TO NODE 117.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
                               88.50 DOWNSTREAM(FEET) =
 ELEVATION DATA: UPSTREAM(FEET) =
                                                          88.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.329
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.541
 SUBAREA TC AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                    SCS SOIL AREA
                                       Fp
                                                Aр
                                                      SCS
                                                           Tc
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                        В
                               1.70
                                        0.30
                                                0.500
                                                       56
                                                           14.50
 COMMERCIAL
                        В
                               0.30
                                        0.30
                                                0.100
                                                       56
                                                           11.33
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.440
 SUBAREA RUNOFF(CFS) =
                      4.34
                      2.00 PEAK FLOW RATE(CFS) =
                                                   4.34
 TOTAL AREA(ACRES) =
*******************************
 FLOW PROCESS FROM NODE 117.00 TO NODE 118.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
UPSTREAM ELEVATION(FEET) = 88.00 DOWNSTREAM ELEVATION(FEET) = 87.00
 STREET LENGTH(FEET) = 506.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                   7.76
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.45
   HALFSTREET FLOOD WIDTH(FEET) = 16.52
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.35
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 6.25 Tc(MIN.) = 17.58
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.975
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                       Fp
                                                Aр
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
```

```
GC10EX
 "5-7 DWELLINGS/ACRE"
                         В
                                 3.40
                                          0.30
                                                  0.500
                                                          56
 COMMERCIAL
                         В
                                 0.70
                                          0.30
                                                  0.100
                                                          56
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.432
 SUBAREA AREA(ACRES) = 4.10 SUBAREA RUNOFF(CFS) =
 EFFECTIVE AREA(ACRES) = 6.10
                                AREA-AVERAGED Fm(INCH/HR) =
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.43
 TOTAL AREA(ACRES) =
                        6.1
                                  PEAK FLOW RATE(CFS) =
                                                           10.13
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.48 HALFSTREET FLOOD WIDTH(FEET) = 18.40
 FLOW VELOCITY(FEET/SEC.) = 1.43 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE 116.00 TO NODE 118.00 =
                                                      836.00 FEET.
*************************************
 FLOW PROCESS FROM NODE 118.00 TO NODE 119.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 87.00 DOWNSTREAM ELEVATION(FEET) = 86.00
 STREET LENGTH(FEET) = 545.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                    16.46
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.56
   HALFSTREET FLOOD WIDTH(FEET) = 22.86
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.63
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.91
 STREET FLOW TRAVEL TIME(MIN.) = 5.57 Tc(MIN.) =
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.687
 SUBAREA LOSS RATE DATA(AMC II):
                    SCS SOIL
  DEVELOPMENT TYPE/
                                AREA
                                         Fp
                                                   Aр
                                                         SCS
                             (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
                       GROUP
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                                 7.30
                         В
                                          0.30
                                                  0.500
                                                          56
 COMMERCIAL
                         В
                                 1.70
                                          0.30
                                                  0.100
                                                          56
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.424
 SUBAREA AREA(ACRES) = 9.00 SUBAREA RUNOFF(CFS) = 12.63
 EFFECTIVE AREA(ACRES) = 15.10
                                AREA-AVERAGED Fm(INCH/HR) =
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.43
 TOTAL AREA(ACRES) =
                        15.1
                                  PEAK FLOW RATE(CFS) =
                                                           21.18
```

```
WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE
 LONGEST FLOWPATH FROM NODE 116.00 TO NODE 119.00 = 1381.00 FEET.
**********************************
 FLOW PROCESS FROM NODE 119.00 TO NODE 120.00 IS CODE = 62
-----
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<
UPSTREAM ELEVATION(FEET) = 86.00 DOWNSTREAM ELEVATION(FEET) = 85.00
 STREET LENGTH(FEET) = 662.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.70
   HALFSTREET FLOOD WIDTH(FEET) = 29.75
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.86
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.29
 STREET FLOW TRAVEL TIME(MIN.) = 5.95 Tc(MIN.) =
                                               29.10
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.480
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                        Fp
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                               12.90
                        В
                                         0.30
                                                 0.500
                                                        56
 COMMERCIAL
                        В
                                4.80
                                         0.30
                                                 0.100
                                                        56
 URBAN POOR COVER
                                0.30
                        В
                                         0.30
                                                 1.000
                                                        74
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.402
 SUBAREA AREA(ACRES) = 18.00 SUBAREA RUNOFF(CFS) = 22.02 EFFECTIVE AREA(ACRES) = 33.10 AREA-AVERAGED Fm(INCH/HR) = 0.12
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.41
 TOTAL AREA(ACRES) =
                       33.1
                                 PEAK FLOW RATE(CFS) =
                                                         40.38
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.75 HALFSTREET FLOOD WIDTH(FEET) = 32.32
 FLOW VELOCITY(FEET/SEC.) = 1.97 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 662.0 FT WITH ELEVATION-DROP = 1.0 FT, IS
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 120.00
 LONGEST FLOWPATH FROM NODE 116.00 TO NODE 120.00 = 2043.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 120.00 TO NODE 120.00 IS CODE = 1
>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
```

```
TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) =
                           29.10
 RAINFALL INTENSITY(INCH/HR) =
 AREA-AVERAGED Fm(INCH/HR) = 0.12
 AREA-AVERAGED Fp(INCH/HR) = 0.30
 AREA-AVERAGED Ap = 0.41
 EFFECTIVE STREAM AREA(ACRES) =
 TOTAL STREAM AREA(ACRES) = 33.10
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                  40.38
 ** CONFLUENCE DATA **
            Q
  STREAM
                  Tc Intensity Fp(Fm)
                                              Аe
                                                    HEADWATER
  NUMBER
           (CFS) (MIN.) (INCH/HR) (INCH/HR)
                                             (ACRES)
                                                      NODE
    1
          300.19
                 32.29
                        1.394 0.28( 0.11) 0.41
                                               241.6
                                                       112.00
                        1.375 0.28( 0.12) 0.41
          300.62 33.08
    1
                                               245.7
                                                       104.00
                        1.231 0.28( 0.11) 0.41
          285.68 40.12
    1
                                               266.6
                                                       100.00
           40.38 29.10
                        1.480 0.30( 0.12) 0.41
    2
                                                33.1
                                                       116.00
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
                 Tc Intensity Fp(Fm)
  STREAM
                                              Ae
                                                   HEADWATER
           Q
           (CFS) (MIN.) (INCH/HR) (INCH/HR)
  NUMBER
                                             (ACRES)
                                                      NODE
    1
          329.03 29.10
                        1.480 0.29(0.12)0.41
                                               250.8
                                                       116.00
          338.02 32.29
                        1.394 0.29( 0.12) 0.41
    2
                                               274.7
                                                       112.00
          337.88 33.08
                        1.375 0.29( 0.12) 0.41
    3
                                               278.8
                                                       104.00
          318.65 40.12 1.231 0.28( 0.12) 0.41
    4
                                               299.7
                                                       100.00
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 338.02 Tc(MIN.) = 32.29
EFFECTIVE AREA(ACRES) = 274.69 AREA-AVERAGED Fm(INCH/HR) = 0.12
 AREA-AVERAGED Fp(INCH/HR) = 0.29 AREA-AVERAGED Ap = 0.41
 TOTAL AREA(ACRES) = 299.7
 LONGEST FLOWPATH FROM NODE
                         100.00 TO NODE
                                        120.00 =
                                                 6241.00 FEET.
*****************************
 FLOW PROCESS FROM NODE 120.00 TO NODE 127.00 IS CODE = 31
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 85.00 DOWNSTREAM(FEET) = 78.00
 FLOW LENGTH(FEET) = 1464.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 78.0 INCH PIPE IS 62.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 11.81
 ESTIMATED PIPE DIAMETER(INCH) = 78.00
                                   NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 338.02
 PIPE TRAVEL TIME(MIN.) = 2.07 Tc(MIN.) = 34.35
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE
                                        127.00 = 7705.00 FEET.
*************************************
 FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 10
______
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<<
_____
**************************
```

FLOW PROCESS FROM NODE 121.00 TO NODE 122.00 IS CODE = 21

```
>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
 ELEVATION DATA: UPSTREAM(FEET) =
                                  96.50 DOWNSTREAM(FEET) =
                                                              96.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.329
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.541
 SUBAREA TC AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                       SCS SOIL
                                 AREA
                                                          SCS
                                                               Tc
      LAND USE
                        GROUP
                               (ACRES)
                                       (INCH/HR) (DECIMAL) CN
                                                               (MIN.)
 COMMERCIAL
                         C
                                 0.70
                                           0.25
                                                   0.100
                                                           69
                                                               11.33
 SCHOOL
                         C
                                 0.70
                                           0.25
                                                   0.600
                                                           69
                                                               15.35
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.350
 SUBAREA RUNOFF(CFS) =
                        3.09
                             PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                       1.40
                                                      3.09
**************************
 FLOW PROCESS FROM NODE
                        122.00 TO NODE
                                         123.00 \text{ IS CODE} = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 2 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 96.00 DOWNSTREAM ELEVATION(FEET) = 94.00
 STREET LENGTH(FEET) = 439.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 42.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 21.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                      6.11
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.41
   HALFSTREET FLOOD WIDTH(FEET) = 12.43
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.76
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 4.15 Tc(MIN.) =
                                                  15.48
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.125
 SUBAREA LOSS RATE DATA(AMC II):
                       SCS SOIL
  DEVELOPMENT TYPE/
                                 AREA
      LAND USE
                        GROUP
                               (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
                         C
 "5-7 DWELLINGS/ACRE"
                                  1.10
                                           0.25
                                                   0.500
                                                           69
 COMMERCIAL
                         C
                                  1.20
                                           0.25
                                                   0.100
                                                           69
 SCHOOL
                         C
                                  1.00
                                           0.25
                                                   0.600
                                                           69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.385
 SUBAREA AREA(ACRES) = 3.30 SUBAREA RUNOFF(CFS) =
 EFFECTIVE AREA(ACRES) =
                        4.70
                                 AREA-AVERAGED Fm(INCH/HR) =
                                                             0.09
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.37
                         4.7
 TOTAL AREA(ACRES) =
                                   PEAK FLOW RATE(CFS) =
                                                             8.59
```

```
END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.45 HALFSTREET FLOOD WIDTH(FEET) = 14.36
 FLOW VELOCITY(FEET/SEC.) = 1.91 DEPTH*VELOCITY(FT*FT/SEC.) = 0.85
 LONGEST FLOWPATH FROM NODE 121.00 TO NODE 123.00 =
                                                    769.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 123.00 TO NODE 124.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 2 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 94.00 DOWNSTREAM ELEVATION(FEET) = 90.00
 STREET LENGTH(FEET) = 870.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 42.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 21.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                  13.28
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.50
   HALFSTREET FLOOD WIDTH(FEET) = 17.18
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.12
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.06
 STREET FLOW TRAVEL TIME(MIN.) = 6.86 Tc(MIN.) = 22.33
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.722
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                       Fр
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                       C
                                3.30
                                        0.25
                                                0.500
                                                       69
 COMMERCIAL
                        C
                                2.00
                                        0.25
                                                0.100
                                                       69
 SCH00L
                        C
                                1.10
                                        0.25
                                                0.600
                                                       69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.392
 SUBAREA AREA(ACRES) = 6.40 SUBAREA RUNOFF(CFS) =
 EFFECTIVE AREA(ACRES) = 11.10 AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.38
 TOTAL AREA(ACRES) =
                      11.1
                                 PEAK FLOW RATE(CFS) =
                                                        16.24
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.53 HALFSTREET FLOOD WIDTH(FEET) = 18.59
 FLOW VELOCITY(FEET/SEC.) = 2.23 DEPTH*VELOCITY(FT*FT/SEC.) = 1.18
 LONGEST FLOWPATH FROM NODE 121.00 TO NODE 124.00 = 1639.00 FEET.
*************************************
 FLOW PROCESS FROM NODE 124.00 TO NODE 125.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 2 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 90.00 DOWNSTREAM ELEVATION(FEET) = 85.00
 STREET LENGTH(FEET) = 967.00 CURB HEIGHT(INCHES) = 8.0
```

```
STREET HALFWIDTH(FEET) = 42.00
```

STREET FLOW DEPTH(FEET) = 0.68

```
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 21.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                     25.40
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.59
   HALFSTREET FLOOD WIDTH(FEET) = 21.70
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.59
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
                                       1.54
 STREET FLOW TRAVEL TIME(MIN.) = 6.21 Tc(MIN.) =
                                                 28.55
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.496
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                      SCS SOIL
                                AREA
                                         Fp
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         C
                                 8.50
                                          0.25
                                                  0.500
                                                          69
 COMMERCIAL
                         C
                                 4.80
                                          0.25
                                                  0.100
                                                          69
 SCHOOL
                         C
                                 1.20
                                          0.25
                                                  0.600
                                                          69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.376
 SUBAREA AREA(ACRES) = 14.50 SUBAREA RUNOFF(CFS) = 18.30
 EFFECTIVE AREA(ACRES) = 25.60
                                 AREA-AVERAGED Fm(INCH/HR) =
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.38
 TOTAL AREA(ACRES) =
                        25.6
                                   PEAK FLOW RATE(CFS) =
                                                           32.28
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.63 HALFSTREET FLOOD WIDTH(FEET) = 23.83
 FLOW VELOCITY(FEET/SEC.) = 2.75 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE
                          121.00 TO NODE
                                          125.00 = 2606.00 FEET.
*****************************
 FLOW PROCESS FROM NODE 125.00 TO NODE 126.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 2 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 85.00 DOWNSTREAM ELEVATION(FEET) = 82.00
 STREET LENGTH(FEET) = 452.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 42.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 21.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                     46.76
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
```

```
HALFSTREET FLOOD WIDTH(FEET) = 27.00
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.31
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
                                     2.26
 STREET FLOW TRAVEL TIME(MIN.) = 2.28 Tc(MIN.) =
                                            30.82
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.432
 SUBAREA LOSS RATE DATA(AMC II):
                   SCS SOIL AREA
  DEVELOPMENT TYPE/
                                     Fp
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                      C
                             11.70
                                      0.25
                                             0.500
                                                    69
 COMMERCIAL
                      C
                             12.00
                                      0.25
                                             0.100
                                                    69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.297
 SUBAREA AREA(ACRES) = 23.70 SUBAREA RUNOFF(CFS) =
 EFFECTIVE AREA(ACRES) = 49.30 AREA-AVERAGED Fm(INCH/HR) =
                                                      0.09
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.34
                     49.3
 TOTAL AREA(ACRES) =
                               PEAK FLOW RATE(CFS) =
                                                     59.75
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.73 HALFSTREET FLOOD WIDTH(FEET) = 32.08
 FLOW VELOCITY(FEET/SEC.) = 3.49 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 452.0 FT WITH ELEVATION-DROP = 3.0 FT, IS
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 126.00
 LONGEST FLOWPATH FROM NODE 121.00 TO NODE 126.00 = 3058.00 FEET.
*****************************
 FLOW PROCESS FROM NODE 126.00 TO NODE 126.50 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 82.00 DOWNSTREAM(FEET) = 80.00
 FLOW LENGTH(FEET) = 847.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 48.0 INCH PIPE IS 35.7 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.97
 ESTIMATED PIPE DIAMETER(INCH) = 48.00
                                   NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 59.75
 PIPE TRAVEL TIME(MIN.) = 2.37
                             Tc(MIN.) =
                                       33.19
 LONGEST FLOWPATH FROM NODE 121.00 TO NODE
                                        126.50 =
                                                 3905.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 126.50 TO NODE 126.50 IS CODE = 1
.....
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 33.19
 RAINFALL INTENSITY(INCH/HR) =
 AREA-AVERAGED Fm(INCH/HR) = 0.09
 AREA-AVERAGED Fp(INCH/HR) = 0.25
 AREA-AVERAGED Ap = 0.34
 EFFECTIVE STREAM AREA(ACRES) =
 TOTAL STREAM AREA(ACRES) = 49.30
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                 59.75
******************************
 FLOW PROCESS FROM NODE 126.10 TO NODE 126.20 IS CODE = 21
```

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< ______ INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00 85.00 DOWNSTREAM(FEET) = ELEVATION DATA: UPSTREAM(FEET) = 84.00 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.751 SUBAREA TC AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp **GROUP** (ACRES) (INCH/HR) (DECIMAL) CN LAND USE (MIN.) RESIDENTIAL "5-7 DWELLINGS/ACRE" C 0.80 0.25 0.500 69 12.62 COMMERCIAL C 0.30 0.25 0.100 69 9.86 **URBAN POOR COVER** "TURF" 0.70 C 0.25 1.000 83 17.03 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.628 SUBAREA RUNOFF(CFS) = 4.20 TOTAL AREA(ACRES) = 1.80 PEAK FLOW RATE(CFS) = 4.20 ***************************** 126.20 TO NODE FLOW PROCESS FROM NODE 126.30 IS CODE = 62 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA< >>>>(STREET TABLE SECTION # 1 USED)< ______ UPSTREAM ELEVATION(FEET) = 84.00 DOWNSTREAM ELEVATION(FEET) = 82.00 STREET LENGTH(FEET) = 625.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 8.47 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.43 HALFSTREET FLOOD WIDTH(FEET) = 15.51 AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.66 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.71 STREET FLOW TRAVEL TIME(MIN.) = 6.28 Tc(MIN.) = 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.074 SUBAREA LOSS RATE DATA(AMC II): SCS SOIL DEVELOPMENT TYPE/ AREA Fp SCS **GROUP** (ACRES) (INCH/HR) (DECIMAL) CN LAND USE RESIDENTIAL C 1.10 0.500 "5-7 DWELLINGS/ACRE" 0.25 69 1.20 COMMERCIAL Α 0.40 0.100 32 COMMERCIAL C 0.60 0.25 0.100 69 **URBAN POOR COVER** "TURF" В 1.20 0.30 1.000 74 **URBAN POOR COVER** "TURF" C 0.80 0.25 1.000 83

```
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.28
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.557
 SUBAREA AREA(ACRES) = 4.90
                               SUBAREA RUNOFF(CFS) =
 EFFECTIVE AREA(ACRES) = 6.70
                                 AREA-AVERAGED Fm(INCH/HR) = 0.16
 AREA-AVERAGED Fp(INCH/HR) = 0.27 AREA-AVERAGED Ap = 0.58
 TOTAL AREA(ACRES) =
                         6.7
                                   PEAK FLOW RATE(CFS) =
                                                           11.57
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.47 HALFSTREET FLOOD WIDTH(FEET) = 17.62
 FLOW VELOCITY(FEET/SEC.) = 1.78 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE 126.10 TO NODE
                                          126.30 =
                                                      955.00 FEET.
*****************************
 FLOW PROCESS FROM NODE 126.30 TO NODE 126.40 IS CODE = 62
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 82.00 DOWNSTREAM ELEVATION(FEET) = 81.00
 STREET LENGTH(FEET) = 292.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                     18.30
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.53
   HALFSTREET FLOOD WIDTH(FEET) = 21.45
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.07
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
                                         1.09
 STREET FLOW TRAVEL TIME(MIN.) = 2.35 Tc(MIN.) =
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.919
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                     SCS SOIL
                                AREA
                                         Fp
                                                   Ap
                                                          SCS
                              (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
                       GROUP
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         C
                                 3.80
                                          0.25
                                                  0.500
                                                           69
 COMMERCIAL
                         В
                                 1.40
                                          0.30
                                                  0.100
                                                           56
 COMMERCIAL
                         C
                                 2.90
                                          0.25
                                                  0.100
                                                          69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.288
 SUBAREA AREA(ACRES) = 8.10
                              SUBAREA RUNOFF(CFS) = 13.46
 EFFECTIVE AREA(ACRES) = 14.80
                                AREA-AVERAGED Fm(INCH/HR) =
 AREA-AVERAGED Fp(INCH/HR) = 0.26 AREA-AVERAGED Ap = 0.42
 TOTAL AREA(ACRES) =
                        14.8
                                   PEAK FLOW RATE(CFS) =
                                                           24.09
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.57 HALFSTREET FLOOD WIDTH(FEET) = 23.41
 FLOW VELOCITY(FEET/SEC.) = 2.27 DEPTH*VELOCITY(FT*FT/SEC.) =
                                                            1.29
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 292.0 FT WITH ELEVATION-DROP = 1.0 FT, IS
                                                         20.4 CFS,
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE
```

```
LONGEST FLOWPATH FROM NODE 126.10 TO NODE 126.40 = 1247.00 FEET.
***************************
 FLOW PROCESS FROM NODE 126.40 TO NODE 126.50 IS CODE = 62
.....
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 81.00 DOWNSTREAM ELEVATION(FEET) = 80.00
 STREET LENGTH(FEET) = 449.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                   34.17
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.67
   HALFSTREET FLOOD WIDTH(FEET) = 28.35
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.17
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.45
 STREET FLOW TRAVEL TIME(MIN.) = 3.44 Tc(MIN.) = 21.94
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.740
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                      Fp
                                                 Aр
                                                        SCS
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                        C
                                4.10
                                         0.25
                                                 0.500
                                                        69
 COMMERCIAL
                        В
                                1.60
                                         0.30
                                                 0.100
                                                        56
 COMMERCIAL
                        C
                                7.60
                                         0.25
                                                 0.100
                                                         69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.223
 SUBAREA AREA(ACRES) = 13.30 SUBAREA RUNOFF(CFS) = 20.15 EFFECTIVE AREA(ACRES) = 28.10 AREA-AVERAGED Fm(INCH/HR) = 0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.26 AREA-AVERAGED Ap = 0.33
 TOTAL AREA(ACRES) =
                       28.1
                                 PEAK FLOW RATE(CFS) =
                                                         41.85
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.71 HALFSTREET FLOOD WIDTH(FEET) = 30.49
 FLOW VELOCITY(FEET/SEC.) = 2.30 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 449.0 FT WITH ELEVATION-DROP = 1.0 FT, IS
                                                      28.9 CFS,
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 126.50
 LONGEST FLOWPATH FROM NODE 126.10 TO NODE 126.50 = 1696.00 FEET.
*************************************
 FLOW PROCESS FROM NODE 126.50 TO NODE 126.50 IS CODE =
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
```

CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:

```
TIME OF CONCENTRATION(MIN.) =
                           21.94
 RAINFALL INTENSITY(INCH/HR) = 1.74
 AREA-AVERAGED Fm(INCH/HR) = 0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.26
 AREA-AVERAGED Ap = 0.33
 EFFECTIVE STREAM AREA(ACRES) =
                           28.10
 TOTAL STREAM AREA(ACRES) =
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                   41.85
 ** CONFLUENCE DATA **
  STREAM
            0
                  Tc Intensity Fp(Fm)
                                               Ae
                                                    HEADWATER
                (MIN.) (INCH/HR) (INCH/HR)
                                              (ACRES)
  NUMBER
           (CFS)
                                                      NODE
                         1.372 0.25( 0.09) 0.34
    1
           59.75
                 33.19
                                                49.3
                                                        121.00
                         1.740 0.26( 0.08) 0.33
           41.85 21.94
    2
                                                 28.1
                                                        126.10
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
  STREAM
           Q
                 Tc Intensity Fp(Fm)
                                         Aр
                                               Ae
                                                   HEADWATER
           (CFS) (MIN.) (INCH/HR) (INCH/HR)
  NUMBER
                                             (ACRES)
                                                      NODE
                       1.740 0.25( 0.08) 0.33
    1
           92.62 21.94
                                               60.7
                                                        126.10
           92.31 33.19
                         1.372 0.25( 0.08) 0.34
    2
                                                77.4
                                                        121.00
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 92.62 Tc(MIN.) = 21.94
EFFECTIVE AREA(ACRES) = 60.68 AREA-AVERAGED Fm(INCH/HR) = 0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.33
                  77.4
 TOTAL AREA(ACRES) =
 LONGEST FLOWPATH FROM NODE
                         121.00 TO NODE
                                        126.50 =
                                                  3905.00 FEET.
********************************
 FLOW PROCESS FROM NODE 126.50 TO NODE 127.00 IS CODE = 31
-----
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 80.00 DOWNSTREAM(FEET) = 78.00
 FLOW LENGTH(FEET) = 889.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 57.0 INCH PIPE IS 42.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 6.53
 ESTIMATED PIPE DIAMETER(INCH) = 57.00
                                   NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 92.62
 PIPE TRAVEL TIME(MIN.) = 2.27
                            Tc(MIN.) = 24.20
 LONGEST FLOWPATH FROM NODE 121.00 TO NODE
                                        127.00 =
                                                  4794.00 FEET.
**************************
 FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 11
______
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **
  STREAM
            Q
                 Tc Intensity Fp(Fm)
                                                    HEADWATER
           (CFS) (MIN.) (INCH/HR) (INCH/HR)
  NUMBER
                                             (ACRES)
                                                      NODE
                         1.644 0.25( 0.08) 0.33
                                              60.7
    1
           92.62
                 24.20
           92.31
                         1.321 0.25( 0.08) 0.34
    2
                 35.46
                                                77.4
 LONGEST FLOWPATH FROM NODE
                        121.00 TO NODE
                                       127.00 = 4794.00 FEET.
```

^{**} MEMORY BANK # 1 CONFLUENCE DATA **

```
GC10EX
                 Tc Intensity Fp(Fm) Ap
  STREAM
                                           Ae
                                                HEADWATER
          (CFS) (MIN.) (INCH/HR) (INCH/HR)
  NUMBER
                                          (ACRES)
                                                 NODE
                       1.423 0.29( 0.12) 0.41
                                           250.8
    1
         329.03
               31.17
                                                    116.00
                       1.345 0.29( 0.12) 0.41
         338.02 34.35
    2
                                            274.7
                                                    112.00
                       1.328 0.29( 0.12) 0.41 278.8
1.196 0.28( 0.12) 0.41 299.7
         337.88 35.15
    3
                                                    104.00
         318.65 42.20
    4
                                                    100.00
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 127.00 = 7705.00 FEET.
 ** PEAK FLOW RATE TABLE **
               Tc Intensity Fp(Fm)
  STREAM
          Q
                                      Aр
                                           Ae
                                                HEADWATER
          (CFS) (MIN.) (INCH/HR) (INCH/HR)
 NUMBER
                                          (ACRES)
                                                  NODE
         391.52 24.20
                      1.644 0.28( 0.11) 0.39
    1
                                            255.5
                                                    126.10
         421.46 31.17
                       1.423 0.28( 0.11) 0.39
    2
                                            321.9
                                                    116.00
        430.36 34.35
                     1.345 0.28( 0.11) 0.39
    3
                                            350.5
                                                    112.00
        430.20 35.15 1.328 0.28( 0.11) 0.39
    4
                                            355.7
                                                    104.00
         429.34 35.46 1.321 0.28( 0.11) 0.39
                                            357.1
    5
                                                    121.00
                     1.196 0.28( 0.11) 0.39
         401.61 42.20
                                            377.1
    6
                                                   100.00
  TOTAL AREA(ACRES) =
                      377.1
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 430.36 Tc(MIN.) = 34.354
EFFECTIVE AREA(ACRES) = 350.45 AREA-AVERAGED Fm(INCH/HR) = 0.11
 AREA-AVERAGED Fp(INCH/HR) = 0.28 AREA-AVERAGED Ap = 0.39
 TOTAL AREA(ACRES) = 377.1
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE
                                     127.00 = 7705.00 FEET.
***************************
 FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 12
______
 >>>>CLEAR MEMORY BANK # 1 <<<<<
_____
*******************************
 FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 34.35
 RAINFALL INTENSITY(INCH/HR) =
 AREA-AVERAGED Fm(INCH/HR) = 0.11
 AREA-AVERAGED Fp(INCH/HR) = 0.28
 AREA-AVERAGED Ap = 0.39
 EFFECTIVE STREAM AREA(ACRES) = 350.45
 TOTAL STREAM AREA(ACRES) = 377.10
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                              430.36
*****************************
 FLOW PROCESS FROM NODE 126.60 TO NODE 126.70 IS CODE = 21
-----
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
                            80.00 DOWNSTREAM(FEET) =
 ELEVATION DATA: UPSTREAM(FEET) =
                                                    79.50
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
```

SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.329 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.541

```
SUBAREA TC AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                    SCS SOIL
                               AREA
                                                       SCS
                                                            Tc
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 COMMERCIAL
                        В
                                9.20
                                        0.30
                                                0.100
                                                        56
                                                            11.33
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA RUNOFF(CFS) =
                      20.79
 TOTAL AREA(ACRES) =
                      9.20 PEAK FLOW RATE(CFS) =
                                                   20.79
**************************
 FLOW PROCESS FROM NODE 126.70 TO NODE 126.80 IS CODE = 62
.....
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 2 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 79.50 DOWNSTREAM ELEVATION(FEET) = 79.00
 STREET LENGTH(FEET) = 350.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 42.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 21.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                   30.83
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.76
   HALFSTREET FLOOD WIDTH(FEET) = 34.54
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.64
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.24
 STREET FLOW TRAVEL TIME(MIN.) = 3.55 Tc(MIN.) = 14.88
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.173
 SUBAREA LOSS RATE DATA(AMC II):
                     SCS SOIL
  DEVELOPMENT TYPE/
                               AREA
                                       Fp
                                                       SCS
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 COMMERCIAL
                       В
                               10.40
                                        0.30
                                                0.100
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 10.40 SUBAREA RUNOFF(CFS) = 20.06
 EFFECTIVE AREA(ACRES) = 19.60
                               AREA-AVERAGED Fm(INCH/HR) = 0.03
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) =
                       19.6
                                 PEAK FLOW RATE(CFS) =
                                                         37.80
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.80 HALFSTREET FLOOD WIDTH(FEET) = 39.14
 FLOW VELOCITY(FEET/SEC.) = 1.71 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 350.0 FT WITH ELEVATION-DROP = 0.5 FT, IS
                                                      23.0 CFS,
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE
                                                      126.80
 LONGEST FLOWPATH FROM NODE
                         126.60 TO NODE
                                        126.80 =
                                                     680.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 126.80 TO NODE 127.00 IS CODE = 62
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 2 USED)<<<<<
```

26

```
______
 UPSTREAM ELEVATION(FEET) = 79.00 DOWNSTREAM ELEVATION(FEET) = 78.00
 STREET LENGTH(FEET) = 461.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 42.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 21.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                    62.38
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.88
   HALFSTREET FLOOD WIDTH(FEET) = 46.36
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.20
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
                                      1.93
 STREET FLOW TRAVEL TIME(MIN.) = 3.49 Tc(MIN.) = 18.37
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.926
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                     SCS SOIL
                               AREA
                                        Fp
                                                  Αp
                                                        SCS
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 COMMERCIAL
                        В
                               26.90
                                         0.30
                                                 0.100
 URBAN POOR COVER
 "TURF"
                                2.20
                                         0.30
                                                 1.000
                                                         74
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.168
 SUBAREA AREA(ACRES) = 29.10 SUBAREA RUNOFF(CFS) = 49.12
 EFFECTIVE AREA(ACRES) = 48.70
                               AREA-AVERAGED Fm(INCH/HR) =
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.14
                                  PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                       48.7
                                                          82.56
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.95 HALFSTREET FLOOD WIDTH(FEET) = 53.74
 FLOW VELOCITY(FEET/SEC.) = 2.31 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 461.0 FT WITH ELEVATION-DROP = 1.0 FT, IS
                                                       62.9 CFS,
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 127.00
 LONGEST FLOWPATH FROM NODE
                         126.60 TO NODE
                                         127.00 =
                                                     1141.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 127.00 TO NODE 127.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) =
                             18.37
 RAINFALL INTENSITY(INCH/HR) =
 AREA-AVERAGED Fm(INCH/HR) = 0.04
 AREA-AVERAGED Fp(INCH/HR) = 0.30
 AREA-AVERAGED Ap = 0.14
 EFFECTIVE STREAM AREA(ACRES) =
                                48.70
 TOTAL STREAM AREA(ACRES) =
                            48.70
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                     82.56
```

```
** CONFLUENCE DATA **
                   Tc Intensity Fp(Fm)
                                                     HEADWATER
  STREAM
           Q
                                          Aр
                                                Ae
  NUMBER
           (CFS) (MIN.) (INCH/HR) (INCH/HR)
                                               (ACRES)
                                                        NODE
    1
          391.52 24.20
                         1.644 0.28( 0.11) 0.39
                                                 255.5
                                                          126.10
          421.46 31.17
                         1.423 0.28( 0.11) 0.39
    1
                                                 321.9
                                                          116.00
          430.36 34.35
                         1.345 0.28( 0.11) 0.39
    1
                                                 350.5
                                                          112.00
          430.20 35.15
                         1.328 0.28( 0.11) 0.39
    1
                                                 355.7
                                                          104.00
          429.34 35.46
                         1.321 0.28( 0.11) 0.39
    1
                                                 357.1
                                                          121.00
          401.61 42.20
                         1.196 0.28( 0.11) 0.39
                                                377.1
    1
                                                          100.00
           82.56 18.37
                         1.926 0.30(0.04)0.14
     2
                                                 48.7
                                                          126.60
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
                  Tc Intensity Fp(Fm)
  STREAM
                                                     HEADWATER
            Q
                                          Aр
                                                Ae
  NUMBER
           (CFS) (MIN.) (INCH/HR) (INCH/HR)
                                               (ACRES)
                                                        NODE
                         1.926 0.28( 0.10) 0.34
    1
          434.19
                 18.37
                                                 242.6
                                                          126.60
          461.74 24.20
                         1.644 0.28( 0.10) 0.35
                                                 304.2
    2
                                                          126.10
          481.96 31.17
                         1.423 0.28( 0.10) 0.36
    3
                                                 370.6
                                                          116.00
          487.49 34.35
                        1.345 0.28( 0.10) 0.36
    4
                                                 399.2
                                                          112.00
          486.55 35.15 1.328 0.28( 0.10) 0.36
                                                404.4
    5
                                                          104.00
          485.40 35.46
                         1.321 0.28( 0.10) 0.36
                                                405.8
    6
                                                          121.00
          452.18 42.20 1.196 0.28( 0.10) 0.36
                                                 425.8
     7
                                                          100.00
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 487.49 Tc(MIN.) = 34.35
EFFECTIVE AREA(ACRES) = 399.15 AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.28 AREA-AVERAGED Ap = 0.36
 TOTAL AREA(ACRES) = 425.8
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 127.00 = 7705.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 128.00 TO NODE 129.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
                               78.50 DOWNSTREAM(FEET) =
 ELEVATION DATA: UPSTREAM(FEET) =
                                                          78.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.329
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.541
 SUBAREA TC AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                    SCS SOIL AREA
                                       Fp
                                                Aр
                                                      SCS
                                                           Tc
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 APARTMENTS
                        В
                               7.90
                                     0.30
                                               0.200
                                                       56
                                                           12.07
 COMMERCIAL
                        В
                               0.20
                                        0.30
                                                0.100
                                                       56 11.33
 URBAN POOR COVER
                        В
                               0.10
                                        0.30
                                               1.000
                                                       74 19.56
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.207
 SUBAREA RUNOFF(CFS) = 18.29
                      8.20 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
*******************************
 FLOW PROCESS FROM NODE 129.00 TO NODE 130.00 IS CODE = 62
______
```

>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<

```
>>>>(STREET TABLE SECTION # 1 USED)<
______
 UPSTREAM ELEVATION(FEET) = 78.00 DOWNSTREAM ELEVATION(FEET) = 75.00
 STREET LENGTH(FEET) = 525.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                   29.08
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.56
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.86
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
                                        1.60
 STREET FLOW TRAVEL TIME(MIN.) = 3.05 Tc(MIN.) = 14.38
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.216
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                     SCS SOIL
                               AREA
                                        Fp
                                                  Aр
                                                        SCS
                       GROUP
                            (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 APARTMENTS
                        В
                               10.80
                                         0.30
                                                 0.200
                                                         56
 COMMERCIAL
                        В
                                0.20
                                         0.30
                                                 0.100
                                                         56
 URBAN POOR COVER
 "TURF"
                        В
                                0.10
                                         0.30
                                                 1.000
                                                         74
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.205
 SUBAREA AREA(ACRES) = 11.10
                              SUBAREA RUNOFF(CFS) =
 EFFECTIVE AREA(ACRES) = 19.30
                                AREA-AVERAGED Fm(INCH/HR) =
                                                          0.06
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.21
 TOTAL AREA(ACRES) =
                       19.3
                                  PEAK FLOW RATE(CFS) =
                                                          37.41
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.60 HALFSTREET FLOOD WIDTH(FEET) = 24.87
 FLOW VELOCITY(FEET/SEC.) = 3.11 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 525.0 FT WITH ELEVATION-DROP = 3.0 FT, IS
                                                       26.0 CFS,
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 130.00
 LONGEST FLOWPATH FROM NODE 128.00 TO NODE 130.00 =
                                                      855.00 FEET.
**************************
                       130.00 TO NODE 130.50 IS CODE = 62
 FLOW PROCESS FROM NODE
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<
______
 UPSTREAM ELEVATION(FEET) = 75.00 DOWNSTREAM ELEVATION(FEET) = 74.00
 STREET LENGTH(FEET) = 837.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
```

OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020

```
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                 47.12
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.82
   HALFSTREET FLOOD WIDTH(FEET) = 35.80
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.86
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.52
 STREET FLOW TRAVEL TIME(MIN.) = 7.48 Tc(MIN.) =
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.743
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                                      Fp
                              AREA
                                               Aр
                                                     SCS
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                              0.10
                       В
                                       0.30
                                               0.500
                                                      56
 APARTMENTS
                       В
                              12.40
                                       0.30
                                               0.200
                                                      56
 COMMERCIAL
                       В
                               0.10
                                       0.30
                                               0.100
                                                      56
 URBAN POOR COVER
 "TURF"
                       В
                               0.10
                                       0.30
                                               1.000
                                                      74
 SCHOOL
                       В
                               0.10
                                       0.30
                                               0.600
                                                      56
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.211
 SUBAREA AREA(ACRES) = 12.80 SUBAREA RUNOFF(CFS) = 19.35
 EFFECTIVE AREA(ACRES) = 32.10 AREA-AVERAGED Fm(INCH/HR) =
                                                        0.06
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.21
 TOTAL AREA(ACRES) =
                      32.1
                                PEAK FLOW RATE(CFS) =
                                                       48.55
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.82 HALFSTREET FLOOD WIDTH(FEET) = 36.22
 FLOW VELOCITY(FEET/SEC.) = 1.88 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 837.0 FT WITH ELEVATION-DROP = 1.0 FT, IS
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 130.50
 LONGEST FLOWPATH FROM NODE 128.00 TO NODE 130.50 = 1692.00 FEET.
***************************
 FLOW PROCESS FROM NODE 130.50 TO NODE 131.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 74.00 DOWNSTREAM(FEET) = 73.50
 FLOW LENGTH(FEET) = 188.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 42.0 INCH PIPE IS 33.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.83
                                    NUMBER OF PIPES = 1
 ESTIMATED PIPE DIAMETER(INCH) = 42.00
 PIPE-FLOW(CFS) =
                48.55
 PIPE TRAVEL TIME(MIN.) = 0.54 Tc(MIN.) =
                                         22.40
 LONGEST FLOWPATH FROM NODE 128.00 TO NODE
                                         131.00 =
                                                  1880.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 132.00 TO NODE 133.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
```

```
INITIAL SUBAREA FLOW-LENGTH(FEET) =
                                   330.00
 ELEVATION DATA: UPSTREAM(FEET) =
                                   88.00 DOWNSTREAM(FEET) =
                                                              87.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) =
 SUBAREA TC AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                      SCS SOIL
                                AREA
                                          Fp
                                                    Aр
                                                          SCS
                                                                Tc
                        GROUP (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
                                                               (MIN.)
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                          C
                                  0.80
                                           0.25
                                                   0.500
                                                           69
                                                                12.62
 COMMERCIAL
                          C
                                  0.90
                                           0.25
                                                   0.100
                                                           69
                                                                 9.86
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.288
 SUBAREA RUNOFF(CFS) =
                         4.10
                        1.70 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                                                       4.10
**********************************
 FLOW PROCESS FROM NODE 133.00 TO NODE 134.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 87.00 DOWNSTREAM ELEVATION(FEET) = 84.00
 STREET LENGTH(FEET) = 733.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                       9.77
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.43
   HALFSTREET FLOOD WIDTH(FEET) = 15.66
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.88
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 6.51 Tc(MIN.) =
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.058
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                      SCS SOIL
                                 AREA
                                          Fp
                                                    Ap
                                                          SCS
                        GROUP
                              (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                          C
                                  3.30
                                           0.25
                                                   0.500
                                                           69
 COMMERCIAL
                         C
                                  3.00
                                           0.25
                                                   0.100
                                                           69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.310
 SUBAREA AREA(ACRES) = 6.30
                                SUBAREA RUNOFF(CFS) = 11.23
 EFFECTIVE AREA(ACRES) =
                        8.00
                                  AREA-AVERAGED Fm(INCH/HR) =
                                                             0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.30
 TOTAL AREA(ACRES) =
                         8.0
                                    PEAK FLOW RATE(CFS) =
                                                            14.27
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.48 HALFSTREET FLOOD WIDTH(FEET) = 18.24
 FLOW VELOCITY(FEET/SEC.) = 2.05 DEPTH*VELOCITY(FT*FT/SEC.) =
                                                             0.99
```

LONGEST FLOWPATH FROM NODE 132.00 TO NODE 134.00 = 1063.00 FEET. *************************** FLOW PROCESS FROM NODE 134.00 TO NODE 135.00 IS CODE = 62 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA< >>>>(STREET TABLE SECTION # 1 USED)<<<<< ______ UPSTREAM ELEVATION(FEET) = 84.00 DOWNSTREAM ELEVATION(FEET) = 83.50 STREET LENGTH(FEET) = 385.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 27.84 ***STREET FLOWING FULL*** STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.68 HALFSTREET FLOOD WIDTH(FEET) = 29.02 AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.69 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.15 STREET FLOW TRAVEL TIME(MIN.) = 3.80 Tc(MIN.) = 20.17 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.826 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE RESIDENTIAL "5-7 DWELLINGS/ACRE" C 8.60 0.25 0.500 69 COMMERCIAL C 8.60 0.25 0.100 69 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.300 SUBAREA AREA(ACRES) = 17.20 SUBAREA RUNOFF(CFS) = 27.10 EFFECTIVE AREA(ACRES) = 25.20 AREA-AVERAGED FM(INCH/HR) = AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.30 TOTAL AREA(ACRES) = 25.2 PEAK FLOW RATE(CFS) = 39.69 **END OF SUBAREA STREET FLOW HYDRAULICS:** DEPTH(FEET) = 0.76 HALFSTREET FLOOD WIDTH(FEET) = 33.05 FLOW VELOCITY(FEET/SEC.) = 1.85 DEPTH*VELOCITY(FT*FT/SEC.) = *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS, AND L = 385.0 FT WITH ELEVATION-DROP = 0.5 FT, IS WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 135.00 LONGEST FLOWPATH FROM NODE 132.00 TO NODE 135.00 = 1448.00 FEET. *************************** FLOW PROCESS FROM NODE 135.00 TO NODE 136.00 IS CODE = 31 ______ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)< ______ ELEVATION DATA: UPSTREAM(FEET) = 83.50 DOWNSTREAM(FEET) = 82.00 FLOW LENGTH(FEET) = 1072.00 MANNING'S N = 0.013

DEPTH OF FLOW IN 45.0 INCH PIPE IS 34.2 INCHES

```
PIPE-FLOW VELOCITY(FEET/SEC.) = 4.41
                                 NUMBER OF PIPES = 1
 ESTIMATED PIPE DIAMETER(INCH) = 45.00
 PIPE-FLOW(CFS) =
                39.69
 PIPE TRAVEL TIME(MIN.) = 4.05 Tc(MIN.) =
                                      24.22
 LONGEST FLOWPATH FROM NODE 132.00 TO NODE
                                      136.00 =
                                               2520.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 136.00 TO NODE 136.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 24.22
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.644
 SUBAREA LOSS RATE DATA(AMC II):
                   SCS SOIL
  DEVELOPMENT TYPE/
                            AREA
                                    Fp
                    GROUP
                         (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
                      C
                            15.20
 "5-7 DWELLINGS/ACRE"
                                    0.25
                                           0.500
                                                  69
                            13.20
 COMMERCIAL
                      C
                                    0.25
                                           0.100
                                                  69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.314
 SUBAREA AREA(ACRES) = 28.40 SUBAREA RUNOFF(CFS) = 40.01
 EFFECTIVE AREA(ACRES) = 53.60 AREA-AVERAGED Fm(INCH/HR) = 0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.31
                            PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                    53.6
*****************************
 FLOW PROCESS FROM NODE 136.00 TO NODE 137.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 82.00 DOWNSTREAM(FEET) = 76.00
 FLOW LENGTH(FEET) = 1011.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 45.0 INCH PIPE IS 32.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 8.99
 ESTIMATED PIPE DIAMETER(INCH) = 45.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
               75.58
 PIPE TRAVEL TIME(MIN.) = 1.87
                            Tc(MIN.) =
                                      26.09
 LONGEST FLOWPATH FROM NODE 132.00 TO NODE
                                      137.00 =
                                               3531.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 137.00 TO NODE 137.00 IS CODE = 81
......
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
_____
 MAINLINE Tc(MIN.) = 26.09
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.575
 SUBAREA LOSS RATE DATA(AMC II):
                  SCS SOIL
  DEVELOPMENT TYPE/
                            AREA
                                    Fp
                                                  SCS
                         (ACRES) (INCH/HR) (DECIMAL) CN
                    GROUP
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                      C
                            16.20
                                    0.25
                                           0.500
                                                  69
 COMMERCIAL
                      C
                            14.10
                                    0.25
                                           0.100
                                                  69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.314
                            SUBAREA RUNOFF(CFS) = 40.81
 SUBAREA AREA(ACRES) = 30.30
 EFFECTIVE AREA(ACRES) = 83.90 AREA-AVERAGED Fm(INCH/HR) = 0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.31
 TOTAL AREA(ACRES) = 83.9
                            PEAK FLOW RATE(CFS) =
                                                  113.08
```

```
***************************
 FLOW PROCESS FROM NODE 137.00 TO NODE
                                 141.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 76.00 DOWNSTREAM(FEET) = 74.00
 FLOW LENGTH(FEET) = 1012.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 63.0 INCH PIPE IS 46.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 6.54
 ESTIMATED PIPE DIAMETER(INCH) = 63.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 113.08
 PIPE TRAVEL TIME(MIN.) = 2.58 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 132.00 TO NODE
                                    141.00 =
                                             4543.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 141.00 TO NODE 141.00 IS CODE = 1
......
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) =
                         28.67
 RAINFALL INTENSITY(INCH/HR) =
 AREA-AVERAGED Fm(INCH/HR) = 0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.25
 AREA-AVERAGED Ap = 0.31
 EFFECTIVE STREAM AREA(ACRES) =
 TOTAL STREAM AREA(ACRES) = 83.90
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                              113.08
*******************************
 FLOW PROCESS FROM NODE 138.00 TO NODE 139.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
                            76.00 DOWNSTREAM(FEET) =
 ELEVATION DATA: UPSTREAM(FEET) =
                                                   75.50
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.329
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.541
 SUBAREA TC AND LOSS RATE DATA(AMC II):
 DEVELOPMENT TYPE/
                  SCS SOIL AREA
                                  Fp
                                                SCS
                                                    Tc
                   GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
    LAND USE
 COMMERCIAL
                     В
                            2.10
                                 0.30
                                          0.100
                                                56
                                                    11.33
 COMMERCIAL
                     C
                            3.20
                                   0.25
                                          0.100
                                                69 11.33
 URBAN POOR COVER
 "TURF"
                            0.10
                                   0.30
                                          1.000
                                                74 19.56
                     В
 SCH00L
                            3.20
                                                56 15.35
                     В
                                   0.30
                                          0.600
                                                69 15.35
 SCHOOL
                     C
                            0.70
                                   0.25
                                          0.600
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.29
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.319
 SUBAREA RUNOFF(CFS) =
                   20.50
                   9.30 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                                            20.50
**************************
 FLOW PROCESS FROM NODE 139.00 TO NODE
                                 140.00 IS CODE = 62
```

```
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<
______
 UPSTREAM ELEVATION(FEET) = 75.50 DOWNSTREAM ELEVATION(FEET) = 75.00
 STREET LENGTH(FEET) = 560.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                   33.61
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.77
   HALFSTREET FLOOD WIDTH(FEET) = 33.29
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.54
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 6.06 Tc(MIN.) = 17.39
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.988
 SUBAREA LOSS RATE DATA(AMC II):
                    SCS SOIL
  DEVELOPMENT TYPE/
                               AREA
                                        Fp
                                                 Aр
                                                        SCS
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 COMMERCIAL
                        В
                                4.20
                                         0.30
                                                 0.100
 URBAN POOR COVER
 "TURF"
                        В
                                0.30
                                         0.30
                                                 1.000
                                                        74
 SCHOOL
                        В
                                5.00
                                         0.30
                                                 0.600
                                                        56
 SCHOOL
                        C
                                6.10
                                         0.25
                                                 0.600
                                                        69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.28
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.473
 SUBAREA AREA(ACRES) = 15.60 SUBAREA RUNOFF(CFS) = 26.08
 EFFECTIVE AREA(ACRES) = 24.90
                               AREA-AVERAGED Fm(INCH/HR) = 0.12
 AREA-AVERAGED Fp(INCH/HR) = 0.28 AREA-AVERAGED Ap = 0.42
                       24.9
 TOTAL AREA(ACRES) =
                                 PEAK FLOW RATE(CFS) =
                                                         41.95
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.82 HALFSTREET FLOOD WIDTH(FEET) = 36.16
 FLOW VELOCITY(FEET/SEC.) = 1.63 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 560.0 FT WITH ELEVATION-DROP = 0.5 FT, IS
                                                       27.9 CFS,
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 140.00
 LONGEST FLOWPATH FROM NODE 138.00 TO NODE 140.00 =
                                                      890.00 FEET.
***************************
 FLOW PROCESS FROM NODE 140.00 TO NODE 141.00 IS CODE = 31
.....
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 75.00 DOWNSTREAM(FEET) = 74.00
 FLOW LENGTH(FEET) = 391.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 42.0 INCH PIPE IS 30.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.65
                                     NUMBER OF PIPES = 1
 ESTIMATED PIPE DIAMETER(INCH) = 42.00
```

PIPE-FLOW(CFS) =

41.95

```
PIPE TRAVEL TIME(MIN.) = 1.15 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 138.00 TO NODE
                                        141.00 =
                                                  1281.00 FEET.
********************************
 FLOW PROCESS FROM NODE 141.00 TO NODE 141.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 18.54
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.916
 SUBAREA LOSS RATE DATA(AMC II):
                    SCS SOIL
  DEVELOPMENT TYPE/
                              AREA
                                      Fp
                     GROUP
                            (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
                               1.30
 "5-7 DWELLINGS/ACRE"
                       В
                                       0.30
                                              0.500
                                                      56
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                       C
                               2.00
                                       0.25
                                              0.500
                                                      69
                               3.60
 COMMERCIAL
                       В
                                       0.30
                                              0.100
                                                      56
 COMMERCIAL
                       C
                               4.80
                                       0.25
                                              0.100
                                                      69
 URBAN POOR COVER
 "TURF"
                               0.20
                                       0.30
                                              1.000
                       В
                                                     74
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.27
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.226
 SUBAREA AREA(ACRES) = 11.90
                          SUBAREA RUNOFF(CFS) = 19.86
 EFFECTIVE AREA(ACRES) = 36.80 AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.28 AREA-AVERAGED Ap = 0.35
                      36.8
                               PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                                                      60.20
********************************
 FLOW PROCESS FROM NODE 141.00 TO NODE 141.00 IS CODE = 1
>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 18.54
 RAINFALL INTENSITY(INCH/HR) =
 AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED fp(INCH/HR) = 0.28
 AREA-AVERAGED Ap = 0.35
 EFFECTIVE STREAM AREA(ACRES) =
 TOTAL STREAM AREA(ACRES) = 36.80
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                   60.20
 ** CONFLUENCE DATA **
  STREAM
                  Tc Intensity Fp(Fm)
                                               Ae
                                                    HEADWATER
                (MIN.) (INCH/HR) (INCH/HR)
                                              (ACRES)
  NUMBER
           (CFS)
                                                      NODE
                         1.492 0.25( 0.08) 0.31
    1
          113.08
                 28.67
                                                 83.9
                                                        132.00
                         1.916 0.28( 0.10) 0.35
    2
           60.20
                 18.54
                                                 36.8
                                                        138.00
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
                     Intensity Fp(Fm)
  STREAM
            Q
                  Tc
                                               Ae
                                                     HEADWATER
                 (MIN.) (INCH/HR) (INCH/HR)
  NUMBER
           (CFS)
                                              (ACRES)
                                                      NODE
                         1.916 0.26( 0.09) 0.33
    1
          155.20
                 18.54
                                                91.1
                                                        138.00
                         1.492 0.26( 0.08) 0.32
    2
          159.25
                 28.67
                                                120.7
                                                        132.00
                                        36
```

```
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 159.25 Tc(MIN.) = 28.67
EFFECTIVE AREA(ACRES) = 120.70 AREA-AVERAGED Fm(INCH/HR) = 0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.26 AREA-AVERAGED Ap = 0.32
 TOTAL AREA(ACRES) = 120.7
 LONGEST FLOWPATH FROM NODE 132.00 TO NODE
                                       141.00 =
                                                 4543.00 FEET.
**************************
 FLOW PROCESS FROM NODE 142.00 TO NODE 143.00 IS CODE = 21
>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
 ELEVATION DATA: UPSTREAM(FEET) =
                                78.00 DOWNSTREAM(FEET) =
                                                         77.50
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.329
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.541
 SUBAREA TC AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                     SCS SOIL
                              AREA
                                       Fp
                                                Aр
                                                      SCS
                                                           Tc
     LAND USE
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
 APARTMENTS
                       В
                               0.30
                                       0.30
                                               0.200
                                                       56
                                                           12.07
 COMMERCIAL
                       В
                               0.40
                                        0.30
                                               0.100
                                                       56
                                                         11.33
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.143
 SUBAREA RUNOFF(CFS) = 1.57
                      0.70 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
********************************
 FLOW PROCESS FROM NODE 143.00 TO NODE 144.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 77.50 DOWNSTREAM ELEVATION(FEET) = 77.00
 STREET LENGTH(FEET) = 307.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                   2.93
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.35
   HALFSTREET FLOOD WIDTH(FEET) = 11.52
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 0.99
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.34
 STREET FLOW TRAVEL TIME(MIN.) = 5.16 Tc(MIN.) =
                                              16.49
  10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.049
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                              AREA
                                       Fp
                      GROUP
                             (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
```

GC10EX **APARTMENTS** В 1.20 0.30 0.200 56 COMMERCIAL В 0.30 0.30 0.100 56 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.180 SUBAREA AREA(ACRES) = 1.50 SUBAREA RUNOFF(CFS) = EFFECTIVE AREA(ACRES) = 2.20 AREA-AVERAGED Fm(INCH/HR) = AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.17 TOTAL AREA(ACRES) = 2.2 PEAK FLOW RATE(CFS) = 3.96 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.38 HALFSTREET FLOOD WIDTH(FEET) = 13.09 FLOW VELOCITY(FEET/SEC.) = 1.06 DEPTH*VELOCITY(FT*FT/SEC.) = LONGEST FLOWPATH FROM NODE 142.00 TO NODE 144.00 = 637.00 FEET. ************************************ FLOW PROCESS FROM NODE 144.00 TO NODE 145.00 IS CODE = 62 ______ >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA< >>>>(STREET TABLE SECTION # 1 USED)<<<<< ______ UPSTREAM ELEVATION(FEET) = 77.00 DOWNSTREAM ELEVATION(FEET) = 76.00 STREET LENGTH(FEET) = 632.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 6.76 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.44 HALFSTREET FLOOD WIDTH(FEET) = 16.37 AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.20 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.53 STREET FLOW TRAVEL TIME(MIN.) = 8.80 Tc(MIN.) = 25.29 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.603 SUBAREA LOSS RATE DATA(AMC II): SCS SOIL DEVELOPMENT TYPE/ AREA Fp SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE **APARTMENTS** В 3.30 0.30 0.200 56 COMMERCIAL В 0.70 0.30 0.100 56 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.183 SUBAREA AREA(ACRES) = 4.00 SUBAREA RUNOFF(CFS) = EFFECTIVE AREA(ACRES) = 6.20 AREA-AVERAGED Fm(INCH/HR) = 0.05 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.18 TOTAL AREA(ACRES) = 6.2 PEAK FLOW RATE(CFS) = 8.65 **END OF SUBAREA STREET FLOW HYDRAULICS:**

FLOW PROCESS FROM NODE 145.00 TO NODE 146.00 IS CODE = 62

FLOW VELOCITY(FEET/SEC.) = 1.28 DEPTH*VELOCITY(FT*FT/SEC.) =

DEPTH(FEET) = 0.48 HALFSTREET FLOOD WIDTH(FEET) = 18.01

```
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<
______
 UPSTREAM ELEVATION(FEET) = 76.00 DOWNSTREAM ELEVATION(FEET) = 72.00
 STREET LENGTH(FEET) = 1273.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                     15.90
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.52
   HALFSTREET FLOOD WIDTH(FEET) = 20.84
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.91
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 11.12 Tc(MIN.) =
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.301
 SUBAREA LOSS RATE DATA(AMC II):
                    SCS SOIL
  DEVELOPMENT TYPE/
                                AREA
                                         Fp
                                                   Aр
                                                         SCS
                             (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
                       GROUP
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         В
                                 2.50
                                          0.30
                                                  0.500
                                                          56
 COMMERCIAL
                         В
                                 2.70
                                          0.30
                                                  0.100
                                                          56
 SCH00L
                         В
                                 8.60
                                          0.30
                                                  0.600
                                                          56
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.484
 SUBAREA AREA(ACRES) = 13.80 SUBAREA RUNOFF(CFS) = 14.36
 EFFECTIVE AREA(ACRES) = 20.00
                                AREA-AVERAGED Fm(INCH/HR) = 0.12
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.39
 TOTAL AREA(ACRES) =
                        20.0
                                  PEAK FLOW RATE(CFS) =
                                                           21.32
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.56 HALFSTREET FLOOD WIDTH(FEET) = 22.80
 FLOW VELOCITY(FEET/SEC.) = 2.12 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 1273.0 FT WITH ELEVATION-DROP = 4.0 FT, IS
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 146.00
 LONGEST FLOWPATH FROM NODE 142.00 TO NODE 146.00 = 2542.00 FEET.
****************************
 FLOW PROCESS FROM NODE 146.00 TO NODE 146.50 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 2 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 72.00 DOWNSTREAM ELEVATION(FEET) = 71.00
 STREET LENGTH(FEET) = 594.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 42.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 21.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
```

```
OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
```

```
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                  30.68
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.74
   HALFSTREET FLOOD WIDTH(FEET) = 32.58
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.76
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.30
 STREET FLOW TRAVEL TIME(MIN.) = 5.63 Tc(MIN.) = 42.05
   10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.198
 SUBAREA LOSS RATE DATA(AMC II):
                     SCS SOIL
  DEVELOPMENT TYPE/
                               AREA
                                       Fp
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                        В
                               10.50
                                        0.30
                                                0.500
                                                       56
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                       C
                               2.10
                                        0.25
                                                0.500
                                                       69
                                5.30
 COMMERCIAL
                        В
                                        0.30
                                                0.100
                                                       56
 COMMERCIAL
                        C
                                0.60
                                        0.25
                                                0.100
                                                       69
 URBAN POOR COVER
 "TURF"
                        В
                                0.70
                                        0.30
                                                1.000
                                                       74
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.29
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.395
 SUBAREA AREA(ACRES) = 19.20 SUBAREA RUNOFF(CFS) = 18.71
 EFFECTIVE AREA(ACRES) = 39.20 AREA-AVERAGED Fm(INCH/HR) =
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.39
                      39.2
 TOTAL AREA(ACRES) =
                                PEAK FLOW RATE(CFS) =
                                                        38.18
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.79 HALFSTREET FLOOD WIDTH(FEET) = 37.50
 FLOW VELOCITY(FEET/SEC.) = 1.83 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 594.0 FT WITH ELEVATION-DROP = 1.0 FT, IS
                                                     36.8 CFS,
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 146.50
 LONGEST FLOWPATH FROM NODE 142.00 TO NODE 146.50 = 3136.00 FEET.
********************************
 FLOW PROCESS FROM NODE 146.50 TO NODE 147.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<><
______
 ELEVATION DATA: UPSTREAM(FEET) = 71.00 DOWNSTREAM(FEET) = 70.00
 FLOW LENGTH(FEET) = 74.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 30.0 INCH PIPE IS 21.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 10.33
 ESTIMATED PIPE DIAMETER(INCH) = 30.00
                                     NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 38.18
 PIPE TRAVEL TIME(MIN.) = 0.12 Tc(MIN.) = 42.17
 LONGEST FLOWPATH FROM NODE 142.00 TO NODE
                                         147.00 =
                                                    3210.00 FEET.
********************************
 FLOW PROCESS FROM NODE 148.00 TO NODE 149.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
```

```
>>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
```

```
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
 ELEVATION DATA: UPSTREAM(FEET) =
                                 74.00 DOWNSTREAM(FEET) =
                                                            72.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.978
 SUBAREA TC AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                     SCS SOIL AREA
                                         Fp
                                                  Aр
                                                        SCS
                                                             Tc
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
                                                             (MIN.)
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         В
                                 1.30
                                         0.30
                                                 0.500
                                                         56
                                                              10.99
 COMMERCIAL
                         В
                                 0.60
                                         0.30
                                                 0.100
                                                         56
                                                              8.59
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.374
 SUBAREA RUNOFF(CFS) =
                        4.90
                            PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                       1.90
                                                     4.90
********************************
 FLOW PROCESS FROM NODE
                       149.00 TO NODE
                                       150.00 IS CODE = 62
------
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<
______
 UPSTREAM ELEVATION(FEET) = 72.00 DOWNSTREAM ELEVATION(FEET) = 70.00
 STREET LENGTH(FEET) = 341.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                     9.30
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.40
   HALFSTREET FLOOD WIDTH(FEET) = 14.26
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.13
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 2.67 Tc(MIN.) =
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.551
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                      SCS SOIL
                                AREA
                                         Fp
                                                        SCS
                             (ACRES) (INCH/HR) (DECIMAL)
      LAND USE
                       GROUP
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         В
                                 2.80
                                         0.30
                                                 0.500
                                                         56
 COMMERCIAL
                         В
                                 1.20
                                         0.30
                                                 0.100
                                                         56
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.380
 SUBAREA AREA(ACRES) = 4.00
                               SUBAREA RUNOFF(CFS) =
 EFFECTIVE AREA(ACRES) =
                       5.90
                                 AREA-AVERAGED Fm(INCH/HR) =
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.38
 TOTAL AREA(ACRES) =
                        5.9
                                  PEAK FLOW RATE(CFS) =
                                                          12.94
```

```
DEPTH(FEET) = 0.44 HALFSTREET FLOOD WIDTH(FEET) = 16.29
 FLOW VELOCITY(FEET/SEC.) = 2.31 DEPTH*VELOCITY(FT*FT/SEC.) = 1.02
 LONGEST FLOWPATH FROM NODE 148.00 TO NODE 150.00 = 671.00 FEET.
********************************
 FLOW PROCESS FROM NODE 150.00 TO NODE 151.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
UPSTREAM ELEVATION(FEET) = 70.00 DOWNSTREAM ELEVATION(FEET) = 69.50
 STREET LENGTH(FEET) = 383.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                  17.72
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.60
   HALFSTREET FLOOD WIDTH(FEET) = 24.81
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.48
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.88
 STREET FLOW TRAVEL TIME(MIN.) = 4.31 Tc(MIN.) = 15.56
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.118
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                     Fp
                                                Aр
                                                      SCS
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                        В
                               4.00
                                        0.30
                                               0.500
                                                       56
 COMMERCIAL
                        В
                               1.30
                                        0.30
                                               0.100
                                                       56
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.402
 SUBAREA AREA(ACRES) = 5.30 SUBAREA RUNOFF(CFS) = 9.53
EFFECTIVE AREA(ACRES) = 11.20 AREA-AVERAGED Fm(INCH/HR) = 0.12
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.39
 TOTAL AREA(ACRES) =
                      11.2
                                 PEAK FLOW RATE(CFS) =
                                                        20.18
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.62 HALFSTREET FLOOD WIDTH(FEET) = 25.91
 FLOW VELOCITY(FEET/SEC.) = 1.54 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 383.0 FT WITH ELEVATION-DROP = 0.5 FT, IS
                                                    10.9 CFS,
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 151.00
 LONGEST FLOWPATH FROM NODE 148.00 TO NODE 151.00 = 1054.00 FEET.
*********************************
 FLOW PROCESS FROM NODE 151.00 TO NODE 151.50 IS CODE = 62
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
UPSTREAM ELEVATION(FEET) = 69.50 DOWNSTREAM ELEVATION(FEET) = 69.00
```

```
GC10EX
```

```
STREET LENGTH(FEET) = 502.00
                               CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.69
   HALFSTREET FLOOD WIDTH(FEET) = 29.57
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.50
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.04
 STREET FLOW TRAVEL TIME(MIN.) = 5.58 Tc(MIN.) =
                                                  21.14
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.777
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                      SCS SOIL
                                 AREA
                        GROUP
      LAND USE
                              (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                          В
                                  5.30
                                           0.30
                                                   0.500
                                                            56
 COMMERCIAL
                          В
                                  1.80
                                           0.30
                                                   0.100
                                                            56
 URBAN POOR COVER
 "TURF"
                          В
                                  0.30
                                           0.30
                                                   1.000
                                                            74
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.423
 SUBAREA AREA(ACRES) = 7.40 SUBAREA RUNOFF(CFS) = 10.99
 EFFECTIVE AREA(ACRES) = 18.60
                                 AREA-AVERAGED Fm(INCH/HR) = 0.12
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.40
 TOTAL AREA(ACRES) =
                        18.6
                                    PEAK FLOW RATE(CFS) =
                                                             27.72
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.71 HALFSTREET FLOOD WIDTH(FEET) = 30.43
 FLOW VELOCITY(FEET/SEC.) = 1.53 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
        AND L = 502.0 FT WITH ELEVATION-DROP = 0.5 FT, IS
        WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 151.50
 LONGEST FLOWPATH FROM NODE 148.00 TO NODE 151.50 =
                                                       1556.00 FEET.
********************************
 FLOW PROCESS FROM NODE 151.50 TO NODE 152.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 69.00 DOWNSTREAM(FEET) = 68.50
 FLOW LENGTH(FEET) = 168.16 MANNING'S N = 0.013
 DEPTH OF FLOW IN 36.0 INCH PIPE IS 24.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.43
 ESTIMATED PIPE DIAMETER(INCH) = 36.00
                                       NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                     27.72
 PIPE TRAVEL TIME(MIN.) = 0.52
                                 Tc(MIN.) =
                                             21.66
 LONGEST FLOWPATH FROM NODE 148.00 TO NODE
                                             152.00 =
                                                        1724.16 FEET.
```

43

GC10EX FLOW PROCESS FROM NODE 153.00 TO NODE 154.00 IS CODE = 21 ______ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< ______ INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00 70.00 DOWNSTREAM(FEET) = **ELEVATION DATA: UPSTREAM(FEET) =** 69.50 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.329 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.541 SUBAREA TC AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp GROUP LAND USE (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) RESIDENTIAL 1.50 "5-7 DWELLINGS/ACRE" R 0.30 0.500 14.50 56 **RESIDENTIAL** "5-7 DWELLINGS/ACRE" C 0.10 0.500 0.25 69 14.50 COMMERCIAL В 0.60 0.30 0.100 56 11.33 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.391 SUBAREA RUNOFF(CFS) = 4.80 TOTAL AREA(ACRES) = 2.20 PEAK FLOW RATE(CFS) = 4.80 ************************** FLOW PROCESS FROM NODE 154.00 TO NODE 155.00 IS CODE = 62 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA< >>>>(STREET TABLE SECTION # 1 USED)<<<<< ______ UPSTREAM ELEVATION(FEET) = 69.50 DOWNSTREAM ELEVATION(FEET) = 69.00 STREET LENGTH(FEET) = 403.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 9.94 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.52 HALFSTREET FLOOD WIDTH(FEET) = 20.73 AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.20 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.62 STREET FLOW TRAVEL TIME(MIN.) = 5.59 Tc(MIN.) = 16.92 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.019 SUBAREA LOSS RATE DATA(AMC II): SCS SOIL DEVELOPMENT TYPE/ AREA Fp SCS GROUP LAND USE (ACRES) (INCH/HR) (DECIMAL) CN **RESIDENTIAL** 3.80 "5-7 DWELLINGS/ACRE" В 0.30 0.500 56 RESIDENTIAL "5-7 DWELLINGS/ACRE" C 0.10 0.25 0.500 69 COMMERCIAL В 1.50 0.30 0.100 56

URBAN POOR COVER

```
"TURF"
                               0.60
                                       0.30
                                               1.000
                                                      74
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.450
 SUBAREA AREA(ACRES) = 6.00 SUBAREA RUNOFF(CFS) = 10.17
EFFECTIVE AREA(ACRES) = 8.20 AREA-AVERAGED Fm(INCH/HR) = 0.13
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.43
                       8.2
                               PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                                                       13.94
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.56 HALFSTREET FLOOD WIDTH(FEET) = 23.10
 FLOW VELOCITY(FEET/SEC.) = 1.35 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 403.0 FT WITH ELEVATION-DROP = 0.5 FT, IS
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 155.00
 LONGEST FLOWPATH FROM NODE 153.00 TO NODE 155.00 =
                                                  733.00 FEET.
********************************
 FLOW PROCESS FROM NODE 155.00 TO NODE 156.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
ELEVATION DATA: UPSTREAM(FEET) = 69.00 DOWNSTREAM(FEET) = 68.50
 FLOW LENGTH(FEET) = 123.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 27.0 INCH PIPE IS 17.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.16
 ESTIMATED PIPE DIAMETER(INCH) = 27.00
                                    NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 13.94
 PIPE TRAVEL TIME(MIN.) = 0.40 Tc(MIN.) =
                                         17.32
 LONGEST FLOWPATH FROM NODE 153.00 TO NODE
                                         156.00 =
                                                    856.00 FEET.
********************************
 FLOW PROCESS FROM NODE 157.00 TO NODE 158.00 IS CODE = 21
------
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
 ELEVATION DATA: UPSTREAM(FEET) =
                               74.00 DOWNSTREAM(FEET) =
                                                        72.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.586
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.978
 SUBAREA TC AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                   SCS SOIL AREA
                                      Fp
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                       C
                               3.30
                                       0.25
                                               0.500
                                                      69
                                                          10.99
 COMMERCIAL
                       C
                               0.90
                                       0.25
                                               0.100
                                                      69
                                                          8.59
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.414
 SUBAREA RUNOFF(CFS) = 10.87
 TOTAL AREA(ACRES) =
                      4.20 PEAK FLOW RATE(CFS) =
                                                 10.87
********************************
 FLOW PROCESS FROM NODE 158.00 TO NODE 159.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
```

```
UPSTREAM ELEVATION(FEET) = 72.00 DOWNSTREAM ELEVATION(FEET) =
                                                            70.00
 STREET LENGTH(FEET) = 307.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                     15.33
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.46
   HALFSTREET FLOOD WIDTH(FEET) = 17.07
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.50
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
                                       1.15
 STREET FLOW TRAVEL TIME(MIN.) = 2.04 Tc(MIN.) =
                                                 10.63
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.635
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                      SCS SOIL
                                AREA
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         C
                                 2.60
                                          0.25
                                                  0.500
                                                          69
 COMMERCIAL
                         C
                                 1.30
                                          0.25
                                                  0.100
                                                          69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.367
 SUBAREA AREA(ACRES) = 3.90 SUBAREA RUNOFF(CFS) =
                       8.10
 EFFECTIVE AREA(ACRES) =
                                AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.39
 TOTAL AREA(ACRES) =
                        8.1
                                  PEAK FLOW RATE(CFS) =
                                                           18.50
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.48 HALFSTREET FLOOD WIDTH(FEET) = 18.40
 FLOW VELOCITY(FEET/SEC.) = 2.62 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE 157.00 TO NODE
                                          159.00 =
                                                      637.00 FEET.
**************************
 FLOW PROCESS FROM NODE 159.00 TO NODE 159.50 IS CODE = 62
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<
______
 UPSTREAM ELEVATION(FEET) = 70.00 DOWNSTREAM ELEVATION(FEET) = 69.50
 STREET LENGTH(FEET) = 624.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                     25.34
   ***STREET FLOWING FULL***
```

```
GC10EX
```

```
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.71
   HALFSTREET FLOOD WIDTH(FEET) = 30.61
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.38
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 7.55 Tc(MIN.) =
                                               18.17
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.938
 SUBAREA LOSS RATE DATA(AMC II):
                     SCS SOIL AREA
  DEVELOPMENT TYPE/
                                       Fp
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                        C
                                5.70
                                        0.25
                                                0.500
                                                        69
 COMMERCIAL
                        C
                                2.50
                                        0.25
                                                0.100
                                                        69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.378
 SUBAREA AREA(ACRES) = 8.20
                             SUBAREA RUNOFF(CFS) =
 EFFECTIVE AREA(ACRES) = 16.30
                               AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.38
 TOTAL AREA(ACRES) =
                       16.3
                                 PEAK FLOW RATE(CFS) =
                                                         27.02
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.73 HALFSTREET FLOOD WIDTH(FEET) = 31.34
 FLOW VELOCITY(FEET/SEC.) = 1.40 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 624.0 FT WITH ELEVATION-DROP = 0.5 FT, IS
                                                      14.4 CFS,
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 159.50
 LONGEST FLOWPATH FROM NODE 157.00 TO NODE 159.50 = 1261.00 FEET.
*********************************
 FLOW PROCESS FROM NODE 159.50 TO NODE
                                      160.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<><
ELEVATION DATA: UPSTREAM(FEET) = 69.50 DOWNSTREAM(FEET) = 69.00
 FLOW LENGTH(FEET) = 110.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 33.0 INCH PIPE IS 22.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 6.33
 ESTIMATED PIPE DIAMETER(INCH) = 33.00
                                     NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                    27.02
 PIPE TRAVEL TIME(MIN.) = 0.29
                               Tc(MIN.) =
                                          18.46
 LONGEST FLOWPATH FROM NODE 157.00 TO NODE
                                          160.00 =
                                                    1371.00 FEET.
********************************
 FLOW PROCESS FROM NODE 161.00 TO NODE 162.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
------
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
                                86.00 DOWNSTREAM(FEET) =
 ELEVATION DATA: UPSTREAM(FEET) =
                                                          85.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) =
 SUBAREA TC AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                     SCS SOIL
                               AREA
                                        Fp
     LAND USE
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
                                                           (MIN.)
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                        C
                                1.50
                                                0.500
                                                        69
                                        0.25
                                                            12.62
```

```
C
                               0.50
                                       0.25
                                              0.100
                                                      69
                                                           9.86
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.400
 SUBAREA RUNOFF(CFS) = 4.77
                     2.00 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                                                  4.77
********************************
 FLOW PROCESS FROM NODE 162.00 TO NODE 163.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 85.00 DOWNSTREAM ELEVATION(FEET) = 84.00
 STREET LENGTH(FEET) = 437.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                  7.57
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.43
   HALFSTREET FLOOD WIDTH(FEET) = 15.90
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.41
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.61
 STREET FLOW TRAVEL TIME(MIN.) = 5.15 Tc(MIN.) =
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.162
 SUBAREA LOSS RATE DATA(AMC II):
                    SCS SOIL AREA
  DEVELOPMENT TYPE/
                                      Fp
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                       C
                               2.10
                                       0.25
                                              0.500
                                                      69
 COMMERCIAL
                       C
                               0.80
                                       0.25
                                              0.100
                                                      69
 URBAN POOR COVER
                               0.10
                                       0.25
                       C
                                              1.000
                                                      83
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.410
 SUBAREA AREA(ACRES) = 3.00 SUBAREA RUNOFF(CFS) =
 EFFECTIVE AREA(ACRES) = 5.00
                              AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.41
 TOTAL AREA(ACRES) =
                                PEAK FLOW RATE(CFS) =
                      5.0
                                                       9.27
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.46 HALFSTREET FLOOD WIDTH(FEET) = 17.23
 FLOW VELOCITY(FEET/SEC.) = 1.49 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE 161.00 TO NODE 163.00 =
                                                  767.00 FEET.
*********************************
 FLOW PROCESS FROM NODE 163.00 TO NODE 164.00 IS CODE = 62
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<
UPSTREAM ELEVATION(FEET) = 84.00 DOWNSTREAM ELEVATION(FEET) = 82.00
```

```
STREET LENGTH(FEET) = 283.00
                              CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                     13.59
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.44
   HALFSTREET FLOOD WIDTH(FEET) = 16.05
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.49
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
                                         1.09
 STREET FLOW TRAVEL TIME(MIN.) = 1.89 Tc(MIN.) =
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.020
 SUBAREA LOSS RATE DATA(AMC II):
                     SCS SOIL AREA
  DEVELOPMENT TYPE/
                                         Fp
                                                   Aр
                                                         SCS
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         C
                                 3.90
                                          0.25
                                                  0.500
                                                          69
 COMMERCIAL
                         C
                                 1.10
                                          0.25
                                                  0.100
                                                          69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.412
 SUBAREA AREA(ACRES) = 5.00 SUBAREA RUNOFF(CFS) =
 EFFECTIVE AREA(ACRES) = 10.00
                                 AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.41
 TOTAL AREA(ACRES) =
                        10.0
                                   PEAK FLOW RATE(CFS) =
                                                           17.26
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.47 HALFSTREET FLOOD WIDTH(FEET) = 17.62
 FLOW VELOCITY(FEET/SEC.) = 2.65 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE
                          161.00 TO NODE
                                          164.00 = 1050.00 FEET.
**************************
 FLOW PROCESS FROM NODE
                        164.00 TO NODE 165.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<
______
 UPSTREAM ELEVATION(FEET) = 82.00 DOWNSTREAM ELEVATION(FEET) = 80.00
 STREET LENGTH(FEET) = 584.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                     25.05
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
```

```
STREET FLOW DEPTH(FEET) = 0.57
   HALFSTREET FLOOD WIDTH(FEET) = 23.71
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.30
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.32
 STREET FLOW TRAVEL TIME(MIN.) = 4.23 Tc(MIN.) =
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.777
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                    SCS SOIL
                                AREA
                                         Fp
                                                   Aр
                                                         SCS
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         C
                                 7.70
                                          0.25
                                                  0.500
                                                          69
 COMMERCIAL
                         C
                                 2.60
                                          0.25
                                                  0.100
                                                          69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.399
 SUBAREA AREA(ACRES) = 10.30 SUBAREA RUNOFF(CFS) = 15.55
 EFFECTIVE AREA(ACRES) = 20.30
                                AREA-AVERAGED Fm(INCH/HR) =
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.40
 TOTAL AREA(ACRES) =
                        20.3
                                  PEAK FLOW RATE(CFS) =
                                                           30.63
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.61 HALFSTREET FLOOD WIDTH(FEET) = 25.36
 FLOW VELOCITY(FEET/SEC.) = 2.45 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 584.0 FT WITH ELEVATION-DROP = 2.0 FT, IS
                                                        21.8 CFS,
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE
                                                        165.00
 LONGEST FLOWPATH FROM NODE 161.00 TO NODE 165.00 =
                                                      1634.00 FEET.
**************************
 FLOW PROCESS FROM NODE 165.00 TO NODE 166.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 80.00 DOWNSTREAM ELEVATION(FEET) = 78.00
 STREET LENGTH(FEET) = 939.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                     41.10
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.71
   HALFSTREET FLOOD WIDTH(FEET) = 30.55
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.24
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.60
 STREET FLOW TRAVEL TIME(MIN.) = 6.97 Tc(MIN.) =
                                                 28.11
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.509
 SUBAREA LOSS RATE DATA(AMC II):
                     SCS SOIL
  DEVELOPMENT TYPE/
                                AREA
                                         Fp
     LAND USE
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                        C
                                12.60
                                                  0.500
                                          0.25
                                                          69
```

```
COMMERCIAL
                         C
                                  3.90
                                          0.25
                                                   0.100
                                                           69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.405
 SUBAREA AREA(ACRES) = 16.50
                             SUBAREA RUNOFF(CFS) =
 EFFECTIVE AREA(ACRES) = 36.80
                                 AREA-AVERAGED Fm(INCH/HR) =
                                                            0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.40
 TOTAL AREA(ACRES) =
                        36.8
                                   PEAK FLOW RATE(CFS) =
                                                            46.64
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.74 HALFSTREET FLOOD WIDTH(FEET) = 32.01
 FLOW VELOCITY(FEET/SEC.) = 2.32 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 939.0 FT WITH ELEVATION-DROP = 2.0 FT, IS
                                                         29.4 CFS,
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 166.00
 LONGEST FLOWPATH FROM NODE 161.00 TO NODE 166.00 = 2573.00 FEET.
********************************
 FLOW PROCESS FROM NODE
                        166.00 TO NODE 167.00 IS CODE = 62
......
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
UPSTREAM ELEVATION(FEET) = 78.00 DOWNSTREAM ELEVATION(FEET) = 73.00
 STREET LENGTH(FEET) = 761.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                     62.14
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.68
   HALFSTREET FLOOD WIDTH(FEET) = 28.96
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.78
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
                                         2.57
 STREET FLOW TRAVEL TIME(MIN.) = 3.35 Tc(MIN.) =
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.415
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                      SCS SOIL
                                AREA
                                          Fp
                                                   Ap
                                                          SCS
                        GROUP
                              (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         C
                                 18.00
                                          0.25
                                                   0.500
                                                           69
 COMMERCIAL
                         C
                                 7.90
                                          0.25
                                                   0.100
                                                           69
 URBAN POOR COVER
 "TURF"
                                 0.20
                                                   1.000
                         C
                                          0.25
                                                           83
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.383
 SUBAREA AREA(ACRES) = 26.10
                                SUBAREA RUNOFF(CFS) = 30.99
 EFFECTIVE AREA(ACRES) = 62.90
                                 AREA-AVERAGED Fm(INCH/HR) =
                                                            0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.40
 TOTAL AREA(ACRES) =
                        62.9
                                   PEAK FLOW RATE(CFS) =
                                                            74.51
```

END OF SUBAREA STREET FLOW HYDRAULICS:

```
DEPTH(FEET) = 0.72 HALFSTREET FLOOD WIDTH(FEET) = 30.91
 FLOW VELOCITY(FEET/SEC.) = 3.97 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 761.0 FT WITH ELEVATION-DROP = 5.0 FT, IS
                                                       56.1 CFS,
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 167.00
 LONGEST FLOWPATH FROM NODE 161.00 TO NODE 167.00 =
                                                     3334.00 FEET.
********************************
 FLOW PROCESS FROM NODE 167.00 TO NODE 168.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<
______
 UPSTREAM ELEVATION(FEET) = 73.00 DOWNSTREAM ELEVATION(FEET) = 72.00
 STREET LENGTH(FEET) = 291.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                    84.87
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.83
   HALFSTREET FLOOD WIDTH(FEET) = 36.59
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.21
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
                                      2.67
 STREET FLOW TRAVEL TIME(MIN.) = 1.51 Tc(MIN.) = 32.97
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.378
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                     SCS SOIL
                               AREA
                                         Fp
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         C
                                12.60
                                         0.25
                                                 0.500
                                                         69
                                 5.10
 COMMERCIAL
                         C
                                         0.25
                                                 0.100
                                                         69
 URBAN POOR COVER
 "TURF"
                                 0.30
                        C
                                         0.25
                                                 1.000
                                                         83
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.395
 SUBAREA AREA(ACRES) = 18.00 SUBAREA RUNOFF(CFS) =
 EFFECTIVE AREA(ACRES) = 80.90 AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.40
 TOTAL AREA(ACRES) =
                        80.9
                                  PEAK FLOW RATE(CFS) =
                                                          93.10
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.86 HALFSTREET FLOOD WIDTH(FEET) = 37.93
 FLOW VELOCITY(FEET/SEC.) = 3.28 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 291.0 FT WITH ELEVATION-DROP = 1.0 FT, IS
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 168.00
 LONGEST FLOWPATH FROM NODE 161.00 TO NODE 168.00 = 3625.00 FEET.
**************************
```

FLOW PROCESS FROM NODE 168.00 TO NODE 169.00 IS CODE = 31

```
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 72.00 DOWNSTREAM(FEET) = 70.00
 FLOW LENGTH(FEET) = 621.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 54.0 INCH PIPE IS 39.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 7.51
 ESTIMATED PIPE DIAMETER(INCH) = 54.00
                                   NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 93.10
 PIPE TRAVEL TIME(MIN.) = 1.38
                              Tc(MIN.) =
                                        34.35
 LONGEST FLOWPATH FROM NODE 161.00 TO NODE
                                        169.00 =
                                                  4246.00 FEET.
****************************
 FLOW PROCESS FROM NODE 170.00 TO NODE 171.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
 ELEVATION DATA: UPSTREAM(FEET) =
                              68.00 DOWNSTREAM(FEET) =
                                                        67.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.751
 SUBAREA TC AND LOSS RATE DATA(AMC II):
                   SCS SOIL AREA
  DEVELOPMENT TYPE/
                                      Fp
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                       C
                               2.50
                                       0.25
                                              0.500
                                                      69
                                                          12.62
 COMMERCIAL
                       C
                               0.70
                                       0.25
                                              0.100
                                                      69
                                                          9.86
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.413
 SUBAREA RUNOFF(CFS) = 7.62
                    3.20 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                                                  7.62
**************************
 FLOW PROCESS FROM NODE 171.00 TO NODE 172.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<
______
 UPSTREAM ELEVATION(FEET) = 67.00 DOWNSTREAM ELEVATION(FEET) = 66.00
 STREET LENGTH(FEET) = 398.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                 11.30
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.48
   HALFSTREET FLOOD WIDTH(FEET) = 18.32
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.61
```

```
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
                                         0.78
 STREET FLOW TRAVEL TIME(MIN.) = 4.11 Tc(MIN.) =
                                                 13.98
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.253
 SUBAREA LOSS RATE DATA(AMC II):
                      SCS SOIL
  DEVELOPMENT TYPE/
                                AREA
                                         Fp
                                                         SCS
                       GROUP
      LAND USE
                               (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         В
                                 0.60
                                          0.30
                                                  0.500
                                                          56
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         C
                                 2.40
                                          0.25
                                                  0.500
                                                          69
 COMMERCIAL
                         В
                                 0.10
                                          0.30
                                                  0.100
                                                          56
 COMMERCIAL
                         C
                                 0.70
                                          0.25
                                                  0.100
                                                          69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.26
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.416
 SUBAREA AREA(ACRES) = 3.80 SUBAREA RUNOFF(CFS) =
                       7.00
 EFFECTIVE AREA(ACRES) =
                                AREA-AVERAGED Fm(INCH/HR) =
 AREA-AVERAGED Fp(INCH/HR) = 0.26 AREA-AVERAGED Ap = 0.41
                         7.0
 TOTAL AREA(ACRES) =
                                   PEAK FLOW RATE(CFS) =
                                                           13.53
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.51 HALFSTREET FLOOD WIDTH(FEET) = 20.11
 FLOW VELOCITY(FEET/SEC.) = 1.69 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE 170.00 TO NODE 172.00 =
                                                      728.00 FEET.
**************************
 FLOW PROCESS FROM NODE 172.00 TO NODE 173.00 IS CODE = 62
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 66.00 DOWNSTREAM ELEVATION(FEET) = 65.50
 STREET LENGTH(FEET) = 435.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                     17.75
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.61
   HALFSTREET FLOOD WIDTH(FEET) = 25.36
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.42
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 5.11 Tc(MIN.) =
                                                 19.08
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.884
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                     SCS SOIL
                                AREA
                                         Fp
                                                   Ap
                                                         SCS
                             (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
                       GROUP
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         В
                                 3.70
                                          0.30
                                                  0.500
                                                          56
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         C
                                 0.20
                                          0.25
                                                  0.500
                                                          69
                                 1.40
 COMMERCIAL
                         В
                                          0.30
                                                  0.100
                                                          56
```

```
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.394
 SUBAREA AREA(ACRES) = 5.30 SUBAREA RUNOFF(CFS) = 8.43 EFFECTIVE AREA(ACRES) = 12.30 AREA-AVERAGED Fm(INCH/HR) = 0.11
 AREA-AVERAGED Fp(INCH/HR) = 0.27 AREA-AVERAGED Ap = 0.41
                              PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                     12.3
                                                    19.63
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.62 HALFSTREET FLOOD WIDTH(FEET) = 26.21
 FLOW VELOCITY(FEET/SEC.) = 1.47 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
      AND L = 435.0 FT WITH ELEVATION-DROP = 0.5 FT, IS
      WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 173.00
 LONGEST FLOWPATH FROM NODE 170.00 TO NODE 173.00 = 1163.00 FEET.
**************************
 FLOW PROCESS FROM NODE 173.00 TO NODE 174.00 IS CODE = 31
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 65.50 DOWNSTREAM(FEET) = 65.00
 FLOW LENGTH(FEET) = 149.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 30.0 INCH PIPE IS 21.7 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.17
 ESTIMATED PIPE DIAMETER(INCH) = 30.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 19.63
 PIPE TRAVEL TIME(MIN.) = 0.48 Tc(MIN.) = 19.56
 LONGEST FLOWPATH FROM NODE 170.00 TO NODE
                                      174.00 =
                                               1312.00 FEET.
********************************
 FLOW PROCESS FROM NODE 175.00 TO NODE 176.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
                             74.00 DOWNSTREAM(FEET) =
 ELEVATION DATA: UPSTREAM(FEET) =
                                                     72.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.586
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.978
 SUBAREA TC AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                    Fp
                                            Aр
                                                  SCS
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                             3.40
                                     0.30
                                            0.500
                                                   56 10.99
                      В
 COMMERCIAL
                      В
                             0.40
                                     0.30
                                            0.100
                                                   56
                                                      8.59
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.458
 SUBAREA RUNOFF(CFS) = 9.72
                    3.80 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                                               9.72
*************************
 FLOW PROCESS FROM NODE 176.00 TO NODE 177.00 IS CODE = 62
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<
______
 UPSTREAM ELEVATION(FEET) = 72.00 DOWNSTREAM ELEVATION(FEET) = 70.00
```

```
STREET LENGTH(FEET) = 522.00
                               CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.53
   HALFSTREET FLOOD WIDTH(FEET) = 21.27
   AVERAGE FLOW VELOCITY(FEET/SEC.) =
                                   2.16
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
                                        1.14
 STREET FLOW TRAVEL TIME(MIN.) = 4.02 Tc(MIN.) =
                                                  12.61
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.390
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                      SCS SOIL
                                AREA
                        GROUP
                              (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         В
                                 7.90
                                           0.30
                                                   0.500
                                                           56
 COMMERCIAL
                         В
                                 1.00
                                           0.30
                                                   0.100
                                                           56
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.455
                               SUBAREA RUNOFF(CFS) = 18.05
 SUBAREA AREA(ACRES) = 8.90
 EFFECTIVE AREA(ACRES) = 12.70
                                AREA-AVERAGED Fm(INCH/HR) = 0.14
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.46
 TOTAL AREA(ACRES) =
                        12.7
                                   PEAK FLOW RATE(CFS) =
                                                            25.75
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.57 HALFSTREET FLOOD WIDTH(FEET) = 23.47
 FLOW VELOCITY(FEET/SEC.) = 2.42 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 522.0 FT WITH ELEVATION-DROP = 2.0 FT, IS
                                                         19.3 CFS,
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 177.00
 LONGEST FLOWPATH FROM NODE 175.00 TO NODE 177.00 =
                                                       852.00 FEET.
********************************
 FLOW PROCESS FROM NODE 177.00 TO NODE 178.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 70.00 DOWNSTREAM ELEVATION(FEET) = 68.00
 STREET LENGTH(FEET) = 539.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
```

```
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                     36.00
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.63
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.65
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
                                         1.66
 STREET FLOW TRAVEL TIME(MIN.) = 3.39 Tc(MIN.) = 15.99
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.085
 SUBAREA LOSS RATE DATA(AMC II):
                    SCS SOIL
  DEVELOPMENT TYPE/
                                AREA
                                         Fp
                                                   Αp
                                                          SCS
                             (ACRES) (INCH/HR) (DECIMAL) CN
                       GROUP
      LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         В
                                10.90
                                          0.30
                                                  0.500
                                                           56
 COMMERCIAL
                         В
                                 0.80
                                          0.30
                                                  0.100
                                                           56
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.473
 SUBAREA AREA(ACRES) = 11.70 SUBAREA RUNOFF(CFS) = 20.46
 EFFECTIVE AREA(ACRES) = 24.40
                                AREA-AVERAGED Fm(INCH/HR) =
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.46
                                  PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                        24.4
                                                           42.73
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.66 HALFSTREET FLOOD WIDTH(FEET) = 28.05
 FLOW VELOCITY(FEET/SEC.) = 2.78 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 539.0 FT WITH ELEVATION-DROP = 2.0 FT, IS
                                                        25.0 CFS,
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE
                                                        178.00
 LONGEST FLOWPATH FROM NODE 175.00 TO NODE
                                          178.00 =
                                                      1391.00 FEET.
********************************
 FLOW PROCESS FROM NODE 178.00 TO NODE 179.00 IS CODE = 62
-----
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 2 USED)<
______
 UPSTREAM ELEVATION(FEET) = 68.00 DOWNSTREAM ELEVATION(FEET) = 66.00
 STREET LENGTH(FEET) = 1457.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 42.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 21.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                     60.95
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.93
   HALFSTREET FLOOD WIDTH(FEET) = 51.77
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.81
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 13.40 Tc(MIN.) =
                                                 29.40
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.471
 SUBAREA LOSS RATE DATA(AMC II):
                      SCS SOIL
  DEVELOPMENT TYPE/
                                AREA
                                         Fp
                                                   Aр
                                                         SCS
                                           57
```

```
GROUP
                               (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         В
                                 15.00
                                           0.30
                                                   0.500
                                                           56
 COMMERCIAL
                         В
                                 14.20
                                           0.30
                                                   0.100
                                                           56
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.305
 SUBAREA AREA(ACRES) = 29.20
                                SUBAREA RUNOFF(CFS) = 36.25
 EFFECTIVE AREA(ACRES) = 53.60
                                 AREA-AVERAGED Fm(INCH/HR) =
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.38
 TOTAL AREA(ACRES) =
                        53.6
                                   PEAK FLOW RATE(CFS) =
                                                            65.50
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.95 HALFSTREET FLOOD WIDTH(FEET) = 53.74
 FLOW VELOCITY(FEET/SEC.) = 1.83 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 1457.0 FT WITH ELEVATION-DROP = 2.0 FT, IS
                                                         44.6 CFS,
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 179.00
 LONGEST FLOWPATH FROM NODE 175.00 TO NODE
                                          179.00 =
                                                       2848.00 FEET.
********************************
 FLOW PROCESS FROM NODE 179.00 TO NODE 180.00 IS CODE = 62
-----
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 2 USED)<
______
 UPSTREAM ELEVATION(FEET) = 66.00 DOWNSTREAM ELEVATION(FEET) = 65.50
 STREET LENGTH(FEET) = 1087.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 42.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 21.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                     81.22
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 1.16
   HALFSTREET FLOOD WIDTH(FEET) = 66.91
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.31
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.52
 STREET FLOW TRAVEL TIME(MIN.) = 13.84 Tc(MIN.) =
                                                  43.24
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.179
 SUBAREA LOSS RATE DATA(AMC II):
                       SCS SOIL
  DEVELOPMENT TYPE/
                                 AREA
                                          Fp
                                                          SCS
      LAND USE
                        GROUP
                               (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                                  2.90
                                           0.30
                                                   0.500
                         В
                                                           56
 COMMERCIAL
                         В
                                  5.40
                                           0.30
                                                   0.100
                                                           56
 COMMERCIAL
                         C
                                  0.30
                                           0.25
                                                   0.100
                                                           69
 URBAN POOR COVER
 "TURF"
                         В
                                 19.10
                                           0.30
                                                   1.000
                                                           74
 SCH00L
                         В
                                  7.60
                                           0.30
                                                   0.600
                                                           56
 SCHOOL
                         C
                                  0.80
                                           0.25
                                                   0.600
                                                           69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.725
```

```
SUBAREA AREA(ACRES) = 36.10 SUBAREA RUNOFF(CFS) = 31.27
 EFFECTIVE AREA(ACRES) = 89.70 AREA-AVERAGED Fm(INCH/HR) = 0.15
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.52
 TOTAL AREA(ACRES) = 89.7
                             PEAK FLOW RATE(CFS) =
                                                   82.70
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 1.17 HALFSTREET FLOOD WIDTH(FEET) = 67.22
 FLOW VELOCITY(FEET/SEC.) = 1.32 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
      AND L = 1087.0 FT WITH ELEVATION-DROP = 0.5 FT, IS
                                               47.7 CFS.
      WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 180.00
 LONGEST FLOWPATH FROM NODE 175.00 TO NODE 180.00 = 3935.00 FEET.
**************************
 FLOW PROCESS FROM NODE 180.00 TO NODE 181.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 65.50 DOWNSTREAM(FEET) = 65.00
 FLOW LENGTH(FEET) = 61.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 42.0 INCH PIPE IS 32.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 10.23
 ESTIMATED PIPE DIAMETER(INCH) = 42.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 82.70
 PIPE TRAVEL TIME(MIN.) = 0.10 Tc(MIN.) = 43.34
 LONGEST FLOWPATH FROM NODE 175.00 TO NODE
                                     181.00 = 3996.00 FEET.
**********************************
 FLOW PROCESS FROM NODE 181.10 TO NODE 181.20 IS CODE = 21
......
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
 ELEVATION DATA: UPSTREAM(FEET) =
                            75.00 DOWNSTREAM(FEET) =
                                                    74.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.862
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.751
 SUBAREA TC AND LOSS RATE DATA(AMC II):
 DEVELOPMENT TYPE/ SCS SOIL AREA
                                   Fр
                                                 SCS
                                                     Tc
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                     C
                            0.60
                                    0.25
                                           0.500
                                                  69
                                                     12.62
 COMMERCIAL
                     C
                            1.30
                                    0.25
                                           0.100
                                                  69
                                                     9.86
 URBAN POOR COVER
 "TURF"
                     C
                            0.20
                                    0.25
                                           1.000
                                                  83 17.03
                                                  69 13.37
 SCHOOL
                     C
                            2.10
                                    0.25
                                           0.600
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.450
 SUBAREA RUNOFF(CFS) = 9.97
                  4.20 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                                              9.97
********************************
 FLOW PROCESS FROM NODE 181.20 TO NODE 181.30 IS CODE = 62
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 2 USED)<<<<<
______
```

```
UPSTREAM ELEVATION(FEET) = 74.00 DOWNSTREAM ELEVATION(FEET) = 72.50
 STREET LENGTH(FEET) = 711.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 42.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 21.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                      17.65
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.61
   HALFSTREET FLOOD WIDTH(FEET) = 22.44
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.69
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
                                        1.03
 STREET FLOW TRAVEL TIME(MIN.) = 7.01 Tc(MIN.) =
                                                   16.87
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.022
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                       SCS SOIL
                                 AREA
      LAND USE
                        GROUP
                              (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                          C
                                  5.30
                                           0.25
                                                    0.500
                                                            69
 COMMERCIAL
                          C
                                  2.50
                                           0.25
                                                    0.100
                                                            69
 SCHOOL
                          C
                                  1.00
                                           0.25
                                                    0.600
                                                            69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.398
 SUBAREA AREA(ACRES) = 8.80 SUBAREA RUNOFF(CFS) = 15.23
 EFFECTIVE AREA(ACRES) = 13.00
                                  AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.41
                                    PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                         13.0
                                                             22.44
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.65 HALFSTREET FLOOD WIDTH(FEET) = 24.65
 FLOW VELOCITY(FEET/SEC.) = 1.79 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE
                            181.10 TO NODE 181.30 = 1041.00 FEET.
************************************
 FLOW PROCESS FROM NODE
                        181.30 TO NODE 181.40 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 2 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 72.50 DOWNSTREAM ELEVATION(FEET) = 72.00
 STREET LENGTH(FEET) = 216.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 42.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 21.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
```

```
GC10EX
```

```
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.76
   HALFSTREET FLOOD WIDTH(FEET) = 34.71
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.10
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
                                         1.60
 STREET FLOW TRAVEL TIME(MIN.) = 1.71 Tc(MIN.) =
                                                  18.59
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.913
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                      SCS SOIL
                                AREA
                                          Fp
                               (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
                       GROUP
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         C
                                 13.20
                                           0.25
                                                   0.500
                                                           69
 COMMERCIAL
                         C
                                 6.20
                                           0.25
                                                   0.100
                                                           69
 URBAN POOR COVER
 "TURF"
                         C
                                 1.80
                                           0.25
                                                   1.000
                                                           83
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.425
 SUBAREA AREA(ACRES) = 21.20
                                SUBAREA RUNOFF(CFS) =
 EFFECTIVE AREA(ACRES) = 34.20
                                  AREA-AVERAGED Fm(INCH/HR) = 0.11
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.42
 TOTAL AREA(ACRES) =
                        34.2
                                   PEAK FLOW RATE(CFS) =
                                                            55.64
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.84 HALFSTREET FLOOD WIDTH(FEET) = 42.75
 FLOW VELOCITY(FEET/SEC.) = 2.22 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 216.0 FT WITH ELEVATION-DROP = 0.5 FT, IS
                                                         54.0 CFS,
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 181.40
 LONGEST FLOWPATH FROM NODE
                          181.10 TO NODE
                                          181.40 =
                                                       1257.00 FEET.
********************************
 FLOW PROCESS FROM NODE 181.40 TO NODE 181.50 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 2 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 72.00 DOWNSTREAM ELEVATION(FEET) = 69.00
 STREET LENGTH(FEET) = 690.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 42.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 21.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                     74.39
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.83
   HALFSTREET FLOOD WIDTH(FEET) = 42.09
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.03
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 2.52
 STREET FLOW TRAVEL TIME(MIN.) = 3.80 Tc(MIN.) =
                                                  22.38
  10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.720
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                       SCS SOIL
                                 AREA
                                          Fp
                       GROUP
      LAND USE
                               (ACRES) (INCH/HR) (DECIMAL) CN
```

```
RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                                          0.30
                                                  0.500
                                 5.60
                                                          56
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         C
                                13.70
                                          0.25
                                                  0.500
                                                          69
 COMMERCIAL
                         В
                                 1.80
                                          0.30
                                                  0.100
                                                          56
                                          0.25
 COMMERCIAL
                         C
                                 4.70
                                                  0.100
                                                          69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.26
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.399
 SUBAREA AREA(ACRES) = 25.80 SUBAREA RUNOFF(CFS) = 37.48
 EFFECTIVE AREA(ACRES) = 60.00 AREA-AVERAGED Fm(INCH/HR) =
                                                           0.11
 AREA-AVERAGED Fp(INCH/HR) = 0.26 AREA-AVERAGED Ap = 0.41
 TOTAL AREA(ACRES) =
                        60.0
                                  PEAK FLOW RATE(CFS) =
                                                           87.17
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.87 HALFSTREET FLOOD WIDTH(FEET) = 46.03
 FLOW VELOCITY(FEET/SEC.) = 3.11 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 690.0 FT WITH ELEVATION-DROP = 3.0 FT, IS
                                                       53.8 CFS,
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 181.50
 LONGEST FLOWPATH FROM NODE 181.10 TO NODE 181.50 = 1947.00 FEET.
**************************
 FLOW PROCESS FROM NODE 181.50 TO NODE 181.60 IS CODE = 62
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 2 USED)<
______
 UPSTREAM ELEVATION(FEET) = 69.00 DOWNSTREAM ELEVATION(FEET) = 66.50
 STREET LENGTH(FEET) = 623.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 42.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 21.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                    105.55
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.93
   HALFSTREET FLOOD WIDTH(FEET) = 52.10
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.11
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
                                         2.90
 STREET FLOW TRAVEL TIME(MIN.) = 3.34 Tc(MIN.) =
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.588
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                                AREA
                                         Fp
                                                   Αp
                                                         SCS
                             (ACRES) (INCH/HR) (DECIMAL) CN
                       GROUP
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         В
                                 5.60
                                          0.30
                                                  0.500
                                                          56
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         C
                                12.90
                                          0.25
                                                  0.500
                                                          69
 COMMERCIAL
                         В
                                 3.80
                                          0.30
                                                  0.100
                                                          56
 COMMERCIAL
                         C
                                 5.10
                                          0.25
                                                  0.100
                                                          69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.27
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.370
 SUBAREA AREA(ACRES) = 27.40
                              SUBAREA RUNOFF(CFS) = 36.73
```

```
EFFECTIVE AREA(ACRES) =
                     87.40
                           AREA-AVERAGED fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.26 AREA-AVERAGED Ap = 0.40
                    87.4
                             PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                                                  116.79
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.96 HALFSTREET FLOOD WIDTH(FEET) = 54.89
 FLOW VELOCITY(FEET/SEC.) = 3.16 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
      AND L = 623.0 FT WITH ELEVATION-DROP = 2.5 FT, IS
      WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 181.60
 LONGEST FLOWPATH FROM NODE 181.10 TO NODE 181.60 = 2570.00 FEET.
****************************
 FLOW PROCESS FROM NODE 181.60 TO NODE 181.70 IS CODE = 31
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 66.50 DOWNSTREAM(FEET) = 66.00
 FLOW LENGTH(FEET) = 93.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 51.0 INCH PIPE IS 41.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 9.44
 ESTIMATED PIPE DIAMETER(INCH) = 51.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 116.79
 PIPE TRAVEL TIME(MIN.) = 0.16 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 181.10 TO NODE
                                     181.70 =
                                               2663.00 FEET.
****************************
 FLOW PROCESS FROM NODE 182.00 TO NODE 183.00 IS CODE = 21
>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
                            62.50 DOWNSTREAM(FEET) =
 ELEVATION DATA: UPSTREAM(FEET) =
                                                    62.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.329
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.541
 SUBAREA TC AND LOSS RATE DATA(AMC II):
                  SCS SOIL AREA
 DEVELOPMENT TYPE/
                                   Fp
                                                 SCS
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                            1.20
                     В
                                    0.30
                                           0.500
                                                  56
                                                     14.50
                                                  56 11.33
 COMMERCIAL
                     В
                            0.60
                                    0.30
                                           0.100
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.367
 SUBAREA RUNOFF(CFS) = 3.94
                  1.80 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                                              3.94
****************************
 FLOW PROCESS FROM NODE 183.00 TO NODE 184.00 IS CODE = 62
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<>>
______
 UPSTREAM ELEVATION(FEET) = 62.00 DOWNSTREAM ELEVATION(FEET) = 61.00
 STREET LENGTH(FEET) = 513.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
```

```
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                      6.50
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.42
   HALFSTREET FLOOD WIDTH(FEET) = 15.43
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.29
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
                                       0.55
 STREET FLOW TRAVEL TIME(MIN.) = 6.65 Tc(MIN.) = 17.98
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.950
 SUBAREA LOSS RATE DATA(AMC II):
                      SCS SOIL
  DEVELOPMENT TYPE/
                                AREA
                                         Fp
                             (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
                       GROUP
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                                 2.40
                         В
                                          0.30
                                                  0.500
                                                          56
 COMMERCIAL
                         В
                                 0.70
                                          0.30
                                                  0.100
                                                          56
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.410
 SUBAREA AREA(ACRES) = 3.10
                             SUBAREA RUNOFF(CFS) =
                       4.90
 EFFECTIVE AREA(ACRES) =
                                AREA-AVERAGED Fm(INCH/HR) =
                                                            0.12
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.39
 TOTAL AREA(ACRES) =
                         4.9
                                   PEAK FLOW RATE(CFS) =
                                                            8.08
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.45 HALFSTREET FLOOD WIDTH(FEET) = 16.84
 FLOW VELOCITY(FEET/SEC.) = 1.35 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE 182.00 TO NODE
                                          184.00 =
                                                       843.00 FEET.
****************************
 FLOW PROCESS FROM NODE 184.00 TO NODE 185.00 IS CODE = 62
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 61.00 DOWNSTREAM ELEVATION(FEET) = 60.00
 STREET LENGTH(FEET) = 574.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                     16.87
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.57
   HALFSTREET FLOOD WIDTH(FEET) = 23.28
   AVERAGE FLOW VELOCITY(FEET/SEC.) =
                                   1.61
```

```
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
                                       0.91
 STREET FLOW TRAVEL TIME(MIN.) = 5.95 Tc(MIN.) =
                                               23.93
  10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.655
 SUBAREA LOSS RATE DATA(AMC II):
                     SCS SOIL
  DEVELOPMENT TYPE/
                               AREA
                                       Fp
                            (ACRES) (INCH/HR) (DECIMAL) CN
                      GROUP
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                        В
                                8.70
                                        0.30
                                                0.500
                                                        56
                                3.90
 COMMERCIAL
                        В
                                        0.30
                                                0.100
                                                        56
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.376
 SUBAREA AREA(ACRES) = 12.60
                             SUBAREA RUNOFF(CFS) = 17.49
 EFFECTIVE AREA(ACRES) = 17.50
                               AREA-AVERAGED Fm(INCH/HR) = 0.11
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.38
 TOTAL AREA(ACRES) =
                       17.5
                                 PEAK FLOW RATE(CFS) =
                                                        24.27
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.63 HALFSTREET FLOOD WIDTH(FEET) = 26.28
 FLOW VELOCITY(FEET/SEC.) = 1.80 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 574.0 FT WITH ELEVATION-DROP = 1.0 FT, IS
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 185.00
 LONGEST FLOWPATH FROM NODE 182.00 TO NODE 185.00 = 1417.00 FEET.
****************************
 FLOW PROCESS FROM NODE 185.00 TO NODE 186.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<><
______
 ELEVATION DATA: UPSTREAM(FEET) = 60.00 DOWNSTREAM(FEET) =
 FLOW LENGTH(FEET) = 580.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 36.0 INCH PIPE IS 27.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.22
 ESTIMATED PIPE DIAMETER(INCH) = 36.00
                                     NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                    24.27
 PIPE TRAVEL TIME(MIN.) = 2.29
                               Tc(MIN.) =
                                          26.22
 LONGEST FLOWPATH FROM NODE 182.00 TO NODE
                                          186.00 =
                                                    1997.00 FEET.
****************************
 FLOW PROCESS FROM NODE 186.00 TO NODE 186.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
_____
 MAINLINE Tc(MIN.) = 26.22
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.571
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                     SCS SOIL
                               AREA
                                       Fρ
                                                       SCS
                            (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
                      GROUP
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                        В
                               10.20
                                        0.30
                                                0.500
                                                        56
 COMMERCIAL
                        В
                                5.20
                                        0.30
                                                0.100
                                                        56
 URBAN POOR COVER
 "TURF"
                                0.20
                                        0.30
                                                1.000
                                                        74
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.373
 SUBAREA AREA(ACRES) = 15.60
                               SUBAREA RUNOFF(CFS) = 20.48
 EFFECTIVE AREA(ACRES) = 33.10 AREA-AVERAGED Fm(INCH/HR) = 0.11
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.38
                               PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) = 33.1
                                                        43.42
```

```
****************************
 FLOW PROCESS FROM NODE
                      187.00 TO NODE
                                     188.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
 ELEVATION DATA: UPSTREAM(FEET) =
                               72.00 DOWNSTREAM(FEET) =
                                                         70.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.978
 SUBAREA TC AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                    SCS SOIL
                              AREA
                                      Fp
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
                                                          (MIN.)
 RESIDENTIAL
                       C
 "5-7 DWELLINGS/ACRE"
                               1.60
                                       0.25
                                               0.500
                                                      69
                                                          10.99
 COMMERCIAL
                       C
                               5.80
                                       0.25
                                               0.100
                                                      69
                                                           8.59
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.186
 SUBAREA RUNOFF(CFS) = 19.52
 TOTAL AREA(ACRES) =
                     7.40 PEAK FLOW RATE(CFS) =
****************************
 FLOW PROCESS FROM NODE 188.00 TO NODE 189.00 IS CODE = 62
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<
______
 UPSTREAM ELEVATION(FEET) = 70.00 DOWNSTREAM ELEVATION(FEET) = 68.00
 STREET LENGTH(FEET) = 447.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.59
   HALFSTREET FLOOD WIDTH(FEET) = 24.44
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.72
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 2.74 Tc(MIN.) =
   10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.541
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                    SCS SOIL
                              AREA
                                      Fp
                                                     SCS
                           (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
                      GROUP
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                       C
                               3.60
                                       0.25
                                               0.500
                                                      69
 COMMERCIAL
                       C
                               7.10
                                       0.25
                                               0.100
                                                      69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.235
```

```
SUBAREA AREA(ACRES) = 10.70
                                SUBAREA RUNOFF(CFS) = 23.90
 EFFECTIVE AREA(ACRES) = 18.10
                                 AREA-AVERAGED Fm(INCH/HR) =
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.21
 TOTAL AREA(ACRES) =
                   18.1
                                  PEAK FLOW RATE(CFS) =
                                                           40.51
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.63 HALFSTREET FLOOD WIDTH(FEET) = 26.64
 FLOW VELOCITY(FEET/SEC.) = 2.93 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 447.0 FT WITH ELEVATION-DROP = 2.0 FT, IS
                                                        25.3 CFS,
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 189.00
 LONGEST FLOWPATH FROM NODE 187.00 TO NODE 189.00 =
                                                       777.00 FEET.
****************************
 FLOW PROCESS FROM NODE 189.00 TO NODE 190.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<
______
 UPSTREAM ELEVATION(FEET) = 68.00 DOWNSTREAM ELEVATION(FEET) = 63.00
 STREET LENGTH(FEET) = 1345.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                     69.18
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.77
   HALFSTREET FLOOD WIDTH(FEET) = 33.42
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.15
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 2.42
 STREET FLOW TRAVEL TIME(MIN.) = 7.12 Tc(MIN.) =
                                                 18.45
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.921
 SUBAREA LOSS RATE DATA(AMC II):
                     SCS SOIL
  DEVELOPMENT TYPE/
                                AREA
                                         Fp
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         В
                                 5.70
                                          0.30
                                                  0.500
                                                          56
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         C
                                14.70
                                          0.25
                                                  0.500
                                                          69
 COMMERCIAL
                         В
                                 2.20
                                          0.30
                                                  0.100
                                                          56
 COMMERCIAL
                         C
                                11.90
                                          0.25
                                                  0.100
                                                          69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.26
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.337
 SUBAREA AREA(ACRES) = 34.50 SUBAREA RUNOFF(CFS) = 56.90
 EFFECTIVE AREA(ACRES) = 52.60
                                AREA-AVERAGED Fm(INCH/HR) =
 AREA-AVERAGED Fp(INCH/HR) = 0.26 AREA-AVERAGED Ap = 0.29
 TOTAL AREA(ACRES) =
                        52.6
                                  PEAK FLOW RATE(CFS) =
                                                           87.33
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.83 HALFSTREET FLOOD WIDTH(FEET) = 36.47
 FLOW VELOCITY(FEET/SEC.) = 3.33 DEPTH*VELOCITY(FT*FT/SEC.) =
                                                            2.76
```

```
*NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
      AND L = 1345.0 FT WITH ELEVATION-DROP = 5.0 FT, IS
                                                60.6 CFS,
      WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 190.00
 LONGEST FLOWPATH FROM NODE 187.00 TO NODE 190.00 = 2122.00 FEET.
********************************
 FLOW PROCESS FROM NODE 190.00 TO NODE 194.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 63.00 DOWNSTREAM(FEET) = 62.00
 FLOW LENGTH(FEET) = 522.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 57.0 INCH PIPE IS 43.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 6.04
 ESTIMATED PIPE DIAMETER(INCH) = 57.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
               87.33
 PIPE TRAVEL TIME(MIN.) = 1.44 Tc(MIN.) = 19.89
 LONGEST FLOWPATH FROM NODE 187.00 TO NODE
                                     194.00 =
                                              2644.00 FEET.
**************************
 FLOW PROCESS FROM NODE 194.00 TO NODE 194.00 IS CODE = 1
>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 19.89
 RAINFALL INTENSITY(INCH/HR) =
 AREA-AVERAGED Fm(INCH/HR) = 0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.26
 AREA-AVERAGED Ap = 0.29
 EFFECTIVE STREAM AREA(ACRES) =
 TOTAL STREAM AREA(ACRES) = 52.60
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                               87.33
****************************
 FLOW PROCESS FROM NODE 191.00 TO NODE 192.00 IS CODE = 21
-----
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
                            68.00 DOWNSTREAM(FEET) =
 ELEVATION DATA: UPSTREAM(FEET) =
                                                    66.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.586
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.978
 SUBAREA TC AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                   Fp
                                           Αp
                                                 SCS
                                                     Tc
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                     В
                            1.90
                                    0.30
                                           0.500
                                                  56
                                                     10.99
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                     C
                            0.50
                                    0.25
                                           0.500
                                                  69 10.99
 COMMERCIAL
                     В
                            0.50
                                    0.30
                                           0.100
                                                  56
                                                      8.59
                                                     8.59
 COMMERCIAL
                     C
                            0.10
                                    0.25
                                           0.100
                                                  69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.29
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.420
 SUBAREA RUNOFF(CFS) =
                    7.71
```

```
TOTAL AREA(ACRES) =
                      3.00 PEAK FLOW RATE(CFS) =
                                                  7.71
***********************
 FLOW PROCESS FROM NODE 192.00 TO NODE 193.00 IS CODE = 62
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 66.00 DOWNSTREAM ELEVATION(FEET) = 64.00
 STREET LENGTH(FEET) = 548.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                 13.59
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.48
   HALFSTREET FLOOD WIDTH(FEET) = 18.32
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.94
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.94
 STREET FLOW TRAVEL TIME(MIN.) = 4.71 Tc(MIN.) = 13.29
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.318
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                      Fp
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                               4.30
                                       0.30
                                               0.500
                       В
                                                      56
                               1.60
                                       0.30
 COMMERCIAL
                       В
                                               0.100
                                                      56
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.392
 SUBAREA AREA(ACRES) = 5.90 SUBAREA RUNOFF(CFS) = 11.68 EFFECTIVE AREA(ACRES) = 8.90 AREA-AVERAGED Fm(INCH/HR) = 0.12
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.40
                       8.9
                               PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                                                       17.62
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.52 HALFSTREET FLOOD WIDTH(FEET) = 21.03
 FLOW VELOCITY(FEET/SEC.) = 2.08 DEPTH*VELOCITY(FT*FT/SEC.) = 1.08
 LONGEST FLOWPATH FROM NODE 191.00 TO NODE 193.00 = 878.00 FEET.
****************************
 FLOW PROCESS FROM NODE 193.00 TO NODE 194.00 IS CODE = 62
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<
______
 UPSTREAM ELEVATION(FEET) = 64.00 DOWNSTREAM ELEVATION(FEET) = 62.00
 STREET LENGTH(FEET) = 767.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
```

```
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                       25.30
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.60
   HALFSTREET FLOOD WIDTH(FEET) = 24.87
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.11
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
                                         1.26
 STREET FLOW TRAVEL TIME(MIN.) = 6.07 Tc(MIN.) =
                                                   19.37
    10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.869
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                       SCS SOIL
                                 AREA
                        GROUP
                                (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                          В
                                  6.90
                                            0.30
                                                    0.500
                                                             56
 COMMERCIAL
                          В
                                   2.80
                                            0.30
                                                    0.100
                                                             56
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.385
 SUBAREA AREA(ACRES) = 9.70
                                 SUBAREA RUNOFF(CFS) =
 EFFECTIVE AREA(ACRES) =
                         18.60
                                   AREA-AVERAGED Fm(INCH/HR) = 0.12
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.39
 TOTAL AREA(ACRES) =
                         18.6
                                    PEAK FLOW RATE(CFS) =
                                                             29.32
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.62 HALFSTREET FLOOD WIDTH(FEET) = 26.15
 FLOW VELOCITY(FEET/SEC.) = 2.20 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
        AND L = 767.0 FT WITH ELEVATION-DROP = 2.0 FT, IS
                                                          18.4 CFS,
        WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 194.00
 LONGEST FLOWPATH FROM NODE 191.00 TO NODE 194.00 =
                                                      1645.00 FEET.
****************************
 FLOW PROCESS FROM NODE
                         194.00 TO NODE
                                          194.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
-----
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) =
                              19.37
 RAINFALL INTENSITY(INCH/HR) =
 AREA-AVERAGED Fm(INCH/HR) = 0.12
 AREA-AVERAGED fp(INCH/HR) = 0.30
 AREA-AVERAGED Ap = 0.39
 EFFECTIVE STREAM AREA(ACRES) =
 TOTAL STREAM AREA(ACRES) =
                               18.60
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                       29.32
 ** CONFLUENCE DATA **
  STREAM
                     Tc Intensity
                                    Fp(Fm)
                                                     Ae
                                                           HEADWATER
              0
                   (MIN.) (INCH/HR) (INCH/HR)
                                                   (ACRES)
  NUMBER
            (CFS)
                                                             NODE
                            1.840 0.26( 0.08) 0.29
     1
            87.33
                    19.89
                                                       52.6
                                                               187.00
     2
            29.32 19.37
                            1.869 0.30(0.12)0.39
                                                       18.6
                                                               191.00
```

CONFLUENCE FORMULA USED FOR 2 STREAMS.

```
** PEAK FLOW RATE TABLE **
  STREAM
          Q
               Tc Intensity Fp(Fm)
                                      Aр
                                           Ae
                                                HEADWATER
 NUMBER
          (CFS) (MIN.) (INCH/HR) (INCH/HR)
                                          (ACRES)
                                                  NODE
         115.72 19.37 1.869 0.27( 0.09) 0.32
    1
                                           69.8
                                                    191.00
         116.17 19.89 1.840 0.27(0.09) 0.32
    2
                                             71.2
                                                    187.00
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 116.17 Tc(MIN.) = 19.89
EFFECTIVE AREA(ACRES) = 71.20 AREA-AVERAGED Fm(INCH/HR) = 0.09
 AREA-AVERAGED Fp(INCH/HR) = 0.27 AREA-AVERAGED Ap = 0.32
 TOTAL AREA(ACRES) = 71.2
 LONGEST FLOWPATH FROM NODE 187.00 TO NODE
                                     194.00 =
                                              2644.00 FEET.
**************************
 FLOW PROCESS FROM NODE 194.00 TO NODE 198.00 IS CODE = 31
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 62.00 DOWNSTREAM(FEET) = 61.00
 FLOW LENGTH(FEET) = 265.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 57.0 INCH PIPE IS 41.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 8.43
 ESTIMATED PIPE DIAMETER(INCH) = 57.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 116.17
 PIPE TRAVEL TIME(MIN.) = 0.52 Tc(MIN.) = 20.41
 LONGEST FLOWPATH FROM NODE 187.00 TO NODE
                                     198.00 =
                                              2909.00 FEET.
********************************
 FLOW PROCESS FROM NODE 198.00 TO NODE 198.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) =
                         20.41
 RAINFALL INTENSITY(INCH/HR) =
 AREA-AVERAGED Fm(INCH/HR) = 0.09
 AREA-AVERAGED Fp(INCH/HR) = 0.27
 AREA-AVERAGED Ap = 0.32
 EFFECTIVE STREAM AREA(ACRES) =
 TOTAL STREAM AREA(ACRES) = 71.20
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                               116.17
**************************
 FLOW PROCESS FROM NODE 195.00 TO NODE 196.00 IS CODE = 21
-----
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
 ELEVATION DATA: UPSTREAM(FEET) =
                            66.00 DOWNSTREAM(FEET) =
                                                    64.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.586
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.978
 SUBAREA TC AND LOSS RATE DATA(AMC II):
                  SCS SOIL AREA
 DEVELOPMENT TYPE/
                                   Fp
                                           Aр
                                                 SCS Tc
```

```
GC10EX
                       GROUP
                              (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                                         0.30
                                                             10.99
                        В
                                1.40
                                                 0.500
                                                         56
 COMMERCIAL
                        В
                                0.70
                                         0.30
                                                 0.100
                                                         56
                                                              8.59
 URBAN POOR COVER
 "TURF"
                                0.40
                                         0.30
                                                 1.000
                                                         74 14.83
                        В
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.468
 SUBAREA RUNOFF(CFS) =
                       6.38
                       2.50 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                                                    6.38
**************************
 FLOW PROCESS FROM NODE 196.00 TO NODE 197.00 IS CODE = 62
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 64.00 DOWNSTREAM ELEVATION(FEET) = 62.00
 STREET LENGTH(FEET) = 384.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                    9.23
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.41
   HALFSTREET FLOOD WIDTH(FEET) = 14.57
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.03
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 3.15 Tc(MIN.) = 11.73
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.490
 SUBAREA LOSS RATE DATA(AMC II):
                    SCS SOIL
                                        Fp
  DEVELOPMENT TYPE/
                               AREA
                                                  Aр
                                                        SCS
                      GROUP
                            (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                                1.80
                        В
                                         0.30
                                                 0.500
                                                         56
 COMMERCIAL
                        В
                                0.50
                                         0.30
                                                 0.100
                                                         56
 URBAN POOR COVER
 "TURF"
                        В
                                0.40
                                         0.30
                                                 1.000
                                                         74
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.500
 SUBAREA AREA(ACRES) = 2.70 SUBAREA RUNOFF(CFS) =
 EFFECTIVE AREA(ACRES) = 5.20
                                AREA-AVERAGED Fm(INCH/HR) = 0.15
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.48
 TOTAL AREA(ACRES) =
                        5.2
                                  PEAK FLOW RATE(CFS) =
                                                          10.97
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.43 HALFSTREET FLOOD WIDTH(FEET) = 15.66
 FLOW VELOCITY(FEET/SEC.) = 2.11 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE
                         195.00 TO NODE 197.00 = 714.00 FEET.
**************************
```

FLOW PROCESS FROM NODE 197.00 TO NODE 198.00 IS CODE = 62

```
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<
UPSTREAM ELEVATION(FEET) = 62.00 DOWNSTREAM ELEVATION(FEET) = 61.00
 STREET LENGTH(FEET) = 585.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                   14.40
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.54
   HALFSTREET FLOOD WIDTH(FEET) = 22.19
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.52
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 6.43 Tc(MIN.) =
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.939
 SUBAREA LOSS RATE DATA(AMC II):
                    SCS SOIL
  DEVELOPMENT TYPE/
                               AREA
                                        Fp
                                                  Aр
                                                        SCS
                            (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
                       GROUP
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                        В
                                2.60
                                         0.30
                                                 0.500
                                                         56
 COMMERCIAL
                        В
                                1.10
                                         0.30
                                                 0.100
                                                         56
 URBAN POOR COVER
 "TURF"
                                0.50
                                         0.30
                                                 1.000
                        В
                                                         74
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.455
 SUBAREA AREA(ACRES) = 4.20 SUBAREA RUNOFF(CFS) =
 EFFECTIVE AREA(ACRES) = 9.40
                                AREA-AVERAGED Fm(INCH/HR) = 0.14
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.47
 TOTAL AREA(ACRES) =
                        9.4
                                  PEAK FLOW RATE(CFS) =
                                                          15.21
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.55 HALFSTREET FLOOD WIDTH(FEET) = 22.55
 FLOW VELOCITY(FEET/SEC.) = 1.55 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE 195.00 TO NODE 198.00 = 1299.00 FEET.
**************************
 FLOW PROCESS FROM NODE
                       >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 18.16
 RAINFALL INTENSITY(INCH/HR) =
 AREA-AVERAGED Fm(INCH/HR) = 0.14
 AREA-AVERAGED Fp(INCH/HR) = 0.30
 AREA-AVERAGED Ap = 0.47
 EFFECTIVE STREAM AREA(ACRES) =
                                 9.40
```

TOTAL STREAM AREA(ACRES) = 9.40
PEAK FLOW RATE(CFS) AT CONFLUENCE = 15.21

** CONFLUENCE DATA **

STREAM Tc Intensity Fp(Fm) Ae **HEADWATER** (MIN.) (INCH/HR) (INCH/HR) NUMBER (ACRES) (CFS) NODE 1.840 0.27(0.09)0.32 1 115.72 19.89 69.8 191.00 1.813 0.27(0.09)0.32 1 116.17 20.41 71.2 187.00 1.939 0.30(0.14)0.47 15.21 18.16 9.4 2 195.00

RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS.

** PEAK FLOW RATE TABLE **
STREAM Q TC

STREAM	Q	Tc	Intensity	Fp(Fm)	Aр	Ae	HEADWATER
NUMBER	(CFS)	(MIN.)	(INCH/HR)	(INCH/HR)		(ACRES)	NODE
1	126.79	18.16	1.939	0.28(0.09)	0.34	73.1	195.00
2	130.09	19.89	1.840	0.28(0.09)	0.34	79.2	191.00
3	130.32	20.41	1.813	0.28(0.09)	0.34	80.6	187.00

COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:

PEAK FLOW RATE(CFS) = 130.32 Tc(MIN.) = 20.41

EFFECTIVE AREA(ACRES) = 80.60 AREA-AVERAGED Fm(INCH/HR) = 0.09

EFFECTIVE AREA(ACRES) = 80.60 AREA-AVERAGED Fm(INCH/HR) = 0.09
AREA-AVERAGED Fp(INCH/HR) = 0.28 AREA-AVERAGED Ap = 0.34

TOTAL AREA(ACRES) = 80.6

LONGEST FLOWPATH FROM NODE 187.00 TO NODE 198.00 = 2909.00 FEET.

FLOW PROCESS FROM NODE 198.00 TO NODE 199.00 IS CODE = 31

>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<

>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)

ELEVATION DATA: UPSTREAM(FEET) = 61.00 DOWNSTREAM(FEET) = 60.00 FLOW LENGTH(FEET) = 169.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 54.0 INCH PIPE IS 40.4 INCHES

PIPE-FLOW VELOCITY(FEET/SEC.) = 10.22

ESTIMATED PIPE DIAMETER(INCH) = 54.00 NUMBER OF PIPES = 1

PIPE-FLOW(CFS) = 130.32

PIPE TRAVEL TIME(MIN.) = 0.28 Tc(MIN.) = 20.69

LONGEST FLOWPATH FROM NODE 187.00 TO NODE 199.00 = 3078.00 FEET.

FLOW PROCESS FROM NODE 200.00 TO NODE 201.00 IS CODE = 21

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<

>>>>KAIIUNAL MEINUU INIIIAL SUDAKEA ANALYSISKKKK

>>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<

INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00

ELEVATION DATA: UPSTREAM(FEET) = 64.00 DOWNSTREAM(FEET) = 62.00

Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.586

В

* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.978

SUBAREA TC AND LOSS RATE DATA(AMC II):

COMMERCIAL

DEVELOPMENT TYPE/ SCS SOIL AREA Fp Aр SCS Tc GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE (MIN.) RESIDENTIAL "5-7 DWELLINGS/ACRE" В 2.20 0.30 0.500 56 10.99

1.40

0.100

56

8.59

```
4.30
                                        0.30
                                                0.600
                                                        56 11.64
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.484
 SUBAREA RUNOFF(CFS) =
                      20.14
                      7.90 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
*******************************
 FLOW PROCESS FROM NODE 201.00 TO NODE 202.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 62.00 DOWNSTREAM ELEVATION(FEET) = 61.00
 STREET LENGTH(FEET) = 464.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                   28.57
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.64
   HALFSTREET FLOOD WIDTH(FEET) = 26.76
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.05
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
                                       1.30
 STREET FLOW TRAVEL TIME(MIN.) = 3.78 Tc(MIN.) = 12.37
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.416
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                    SCS SOIL
                               AREA
                                        Fp
                                                 Αp
                                                       SCS
                            (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
                      GROUP
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                        В
                                2.70
                                        0.30
                                                0.500
                                                        56
 COMMERCIAL
                        В
                                1.70
                                        0.30
                                                0.100
                                                        56
                                3.80
 SCHOOL
                        В
                                        0.30
                                                0.600
                                                        56
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.463
                             SUBAREA RUNOFF(CFS) = 16.80
 SUBAREA AREA(ACRES) = 8.20
 EFFECTIVE AREA(ACRES) = 16.10
                               AREA-AVERAGED Fm(INCH/HR) = 0.14
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.47
                                 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                       16.1
                                                         32.95
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.66 HALFSTREET FLOOD WIDTH(FEET) = 28.17
 FLOW VELOCITY(FEET/SEC.) = 2.12 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 464.0 FT WITH ELEVATION-DROP = 1.0 FT, IS
                                                      17.0 CFS,
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE
                                                      202.00
 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 202.00 =
                                                     794.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 202.00 TO NODE 203.00 IS CODE = 62
______
```

>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<

```
GC10EX
 >>>>(STREET TABLE SECTION # 1 USED)<
______
 UPSTREAM ELEVATION(FEET) = 61.00 DOWNSTREAM ELEVATION(FEET) = 60.00
 STREET LENGTH(FEET) = 647.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                   43.89
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.76
   HALFSTREET FLOOD WIDTH(FEET) = 33.23
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.02
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
                                      1.54
 STREET FLOW TRAVEL TIME(MIN.) = 5.34 Tc(MIN.) = 17.71
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.967
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                               AREA
                                        Fp
                                                 Aр
                                                       SCS
                            (ACRES) (INCH/HR) (DECIMAL) CN
                      GROUP
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                        В
                                9.50
                                         0.30
                                                0.500
                                                        56
 COMMERCIAL
                        В
                                3.60
                                         0.30
                                                0.100
                                                        56
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.390
 SUBAREA AREA(ACRES) = 13.10 SUBAREA RUNOFF(CFS) = 21.81
 EFFECTIVE AREA(ACRES) = 29.20
                               AREA-AVERAGED Fm(INCH/HR) =
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.44
 TOTAL AREA(ACRES) =
                       29.2
                                 PEAK FLOW RATE(CFS) =
                                                         48.25
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.79 HALFSTREET FLOOD WIDTH(FEET) = 34.39
 FLOW VELOCITY(FEET/SEC.) = 2.07 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 647.0 FT WITH ELEVATION-DROP = 1.0 FT, IS
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 203.00
 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 203.00 =
                                                    1441.00 FEET.
**************************
 FLOW PROCESS FROM NODE 203.00 TO NODE 204.00 IS CODE = 31
-----
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 60.00 DOWNSTREAM(FEET) =
 FLOW LENGTH(FEET) = 728.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 42.0 INCH PIPE IS 33.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.92
                                     NUMBER OF PIPES = 1
 ESTIMATED PIPE DIAMETER(INCH) = 42.00
 PIPE-FLOW(CFS) =
                48.25
```

PIPE TRAVEL TIME(MIN.) = 2.05

LONGEST FLOWPATH FROM NODE 200.00 TO NODE

204.00 = 2169.00 FEET.

Tc(MIN.) = 19.76

```
**************************
 FLOW PROCESS FROM NODE 204.00 TO NODE 204.00 IS CODE = 81
>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
MAINLINE Tc(MIN.) = 19.76
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.847
 SUBAREA LOSS RATE DATA(AMC II):
                 SCS SOIL
 DEVELOPMENT TYPE/
                         AREA
                                Fp
                  GROUP (ACRES) (INCH/HR) (DECIMAL) CN
    LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                    В
                         15.50
                                 0.30
                                       0.500
                                              56
 COMMERCIAL
                    В
                          3.80
                                 0.30
                                       0.100
                                              56
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.421
 SUBAREA AREA(ACRES) = 19.30 SUBAREA RUNOFF(CFS) = 29.89
 EFFECTIVE AREA(ACRES) = 48.50 AREA-AVERAGED Fm(INCH/HR) = 0.13
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.43
                 48.5
 TOTAL AREA(ACRES) =
                          PEAK FLOW RATE(CFS) =
**************************
 FLOW PROCESS FROM NODE 204.00 TO NODE
                               209.00 IS CODE = 31
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 58.00 DOWNSTREAM(FEET) = 57.00
 FLOW LENGTH(FEET) = 437.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 51.0 INCH PIPE IS 40.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 6.16
 ESTIMATED PIPE DIAMETER(INCH) = 51.00
                              NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
             75.00
 PIPE TRAVEL TIME(MIN.) = 1.18 Tc(MIN.) =
                                  20.94
 LONGEST FLOWPATH FROM NODE 200.00 TO NODE
                                  209.00 =
                                           2606.00 FEET.
**************************
 FLOW PROCESS FROM NODE 209.00 TO NODE 209.00 IS CODE = 1
-----
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 20.94
 RAINFALL INTENSITY(INCH/HR) =
 AREA-AVERAGED Fm(INCH/HR) = 0.13
 AREA-AVERAGED fp(INCH/HR) = 0.30
 AREA-AVERAGED Ap = 0.43
 EFFECTIVE STREAM AREA(ACRES) =
 TOTAL STREAM AREA(ACRES) = 48.50
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                             75.00
****************************
 FLOW PROCESS FROM NODE 205.00 TO NODE 206.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
 ELEVATION DATA: UPSTREAM(FEET) = 66.00 DOWNSTREAM(FEET) =
                                                65.00
```

```
GC10EX
```

```
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) =
 SUBAREA TC AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                       SCS SOIL
                                  AREA
                                           Fp
                                                            SCS
                                                                 Tc
                              (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
                        GROUP
                                                                 (MIN.)
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                          В
                                   4.50
                                            0.30
                                                    0.500
                                                             56
                                                                 12.62
 COMMERCIAL
                          В
                                   2.10
                                            0.30
                                                    0.100
                                                             56
                                                                  9.86
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.373
 SUBAREA RUNOFF(CFS) =
                        15.67
                        6.60 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
****************************
 FLOW PROCESS FROM NODE
                         206.00 TO NODE
                                          207.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 65.00 DOWNSTREAM ELEVATION(FEET) = 64.00
 STREET LENGTH(FEET) = 487.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                       24.87
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.61
   HALFSTREET FLOOD WIDTH(FEET) = 25.73
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.93
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
                                           1.19
 STREET FLOW TRAVEL TIME(MIN.) = 4.20 Tc(MIN.) =
                                                   14.07
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.244
 SUBAREA LOSS RATE DATA(AMC II):
                       SCS SOIL
  DEVELOPMENT TYPE/
                                 AREA
                                           Fp
                                                     Ap
                                                            SCS
                               (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
                        GROUP
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                                   7.50
                          В
                                            0.30
                                                    0.500
                                                             56
 COMMERCIAL
                          В
                                   2.10
                                            0.30
                                                    0.100
                                                             56
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.412
 SUBAREA AREA(ACRES) = 9.60
                                  SUBAREA RUNOFF(CFS) = 18.32
 EFFECTIVE AREA(ACRES) = 16.20
                                   AREA-AVERAGED Fm(INCH/HR) =
                                                              0.12
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.40
 TOTAL AREA(ACRES) =
                         16.2
                                    PEAK FLOW RATE(CFS) =
                                                              30.99
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.66 HALFSTREET FLOOD WIDTH(FEET) = 27.80
 FLOW VELOCITY(FEET/SEC.) = 2.05 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
        AND L = 487.0 FT WITH ELEVATION-DROP = 1.0 FT, IS
                                                           19.7 CFS,
```

```
WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE
 LONGEST FLOWPATH FROM NODE 205.00 TO NODE 207.00 = 817.00 FEET.
**********************************
 FLOW PROCESS FROM NODE 207.00 TO NODE 208.00 IS CODE = 62
-----
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<
UPSTREAM ELEVATION(FEET) = 64.00 DOWNSTREAM ELEVATION(FEET) = 60.00
 STREET LENGTH(FEET) = 1239.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.67
   HALFSTREET FLOOD WIDTH(FEET) = 28.72
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.63
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.78
 STREET FLOW TRAVEL TIME(MIN.) = 7.84 Tc(MIN.) =
                                               21.91
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.741
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                       Fp
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                        В
                              11.60
                                        0.30
                                                0.500
                                                        56
 COMMERCIAL
                        В
                               4.10
                                        0.30
                                                0.100
                                                       56
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.396
 SUBAREA AREA(ACRES) = 15.70 SUBAREA RUNOFF(CFS) = 22.93 EFFECTIVE AREA(ACRES) = 31.90 AREA-AVERAGED Fm(INCH/HR) = 0.12
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.40
                      31.9
 TOTAL AREA(ACRES) =
                                PEAK FLOW RATE(CFS) =
                                                        46.58
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.69 HALFSTREET FLOOD WIDTH(FEET) = 29.63
 FLOW VELOCITY(FEET/SEC.) = 2.71 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 1239.0 FT WITH ELEVATION-DROP = 4.0 FT, IS
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 208.00
 LONGEST FLOWPATH FROM NODE 205.00 TO NODE 208.00 = 2056.00 FEET.
************************************
 FLOW PROCESS FROM NODE
                      208.00 TO NODE
                                      209.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 60.00 DOWNSTREAM ELEVATION(FEET) = 57.00
 STREET LENGTH(FEET) = 1850.00 CURB HEIGHT(INCHES) = 6.0
```

```
STREET HALFWIDTH(FEET) = 20.00
```

```
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                     57.02
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.83
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.20
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
                                         1.81
 STREET FLOW TRAVEL TIME(MIN.) = 14.05 Tc(MIN.) =
                                                 35.95
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.311
 SUBAREA LOSS RATE DATA(AMC II):
                     SCS SOIL
  DEVELOPMENT TYPE/
                                AREA
                                          Fp
                                                   Aр
                                                          SCS
                             (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
                       GROUP
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         В
                                  5.60
                                          0.30
                                                   0.500
                                                           56
 COMMERCIAL
                         В
                                  8.30
                                          0.30
                                                   0.100
                                                           56
 SCH00L
                         В
                                  5.30
                                          0.30
                                                   0.600
                                                           56
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.355
 SUBAREA AREA(ACRES) = 19.20
                               SUBAREA RUNOFF(CFS) =
 EFFECTIVE AREA(ACRES) = 51.10
                                 AREA-AVERAGED Fm(INCH/HR) = 0.11
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.38
 TOTAL AREA(ACRES) =
                        51.1
                                   PEAK FLOW RATE(CFS) =
                                                            55.04
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.82 HALFSTREET FLOOD WIDTH(FEET) = 35.86
 FLOW VELOCITY(FEET/SEC.) = 2.17 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 1850.0 FT WITH ELEVATION-DROP = 3.0 FT, IS
                                                         28.0 CFS,
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE
                                                        209.00
 LONGEST FLOWPATH FROM NODE 205.00 TO NODE 209.00 =
                                                     3906.00 FEET.
*******************************
 FLOW PROCESS FROM NODE
                        209.00 TO NODE
                                         209.00 IS CODE =
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) =
                              35.95
 RAINFALL INTENSITY(INCH/HR) =
 AREA-AVERAGED Fm(INCH/HR) = 0.11
 AREA-AVERAGED Fp(INCH/HR) = 0.30
 AREA-AVERAGED Ap = 0.38
 EFFECTIVE STREAM AREA(ACRES) =
 TOTAL STREAM AREA(ACRES) =
                              51.10
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                      55.04
```

				GC.	TREY			
STREAM	0	Tc Intensi	tv Fp(Fm)	Αp	Ae	HEADWATER	
NUMBER	(CFS) (M	IN.) (INCH/H	IR) (INCH	/HR)	•	(ACRES)	NODE	
1	75.00 2	III.) (INCH/F 0.94 1.78 5.95 1.31	7 9 39(0.13)	0 43	48 5	200 00	
2	75.00 Z	E OF 1 21	1 0.30(0.11)	0.75	F1 1	205.00	
2	33.04	3.33 1.31	11 0.30(0.11)	0.30	31.1	203.00	
		D TIME OF CO		ION RA	TIO			
** DEAK EL	NA DATE TAR	. F **						
** PEAK FLO							HEADILATED	
SIREAM	Q	Tc Intensi	ту гр(FM)	Ар	Ae	HEADWATER	
NUMBER	(CFS) (M	IIN.) (INCH/H	HR) (INCH	/HR)		(ACRES)	NODE	
1	119.81 2	IIN.) (INCH/H 0.94 1.78 5.95 1.31	37 0.30(0.12)	0.41	78.3	200.00	
2	108.51	5.95 1.31	L1 0.30(0.12)	0.40	99.6	205.00	
PEAK FLOW F EFFECTIVE A AREA-AVERAC TOTAL AREA(LONGEST FLO *********** FLOW PROCES	RATE(CFS) = AREA(ACRES) GED FP(INCH (ACRES) = DWPATH FROM ************ FS FROM NOD COMPUTER-E EEEEEEE DATA: UPSTR H(FEET) = LOW IN 87. VELOCITY(FE PIPE DIAMET CFS) = L TIME(MIN.	E 209.00 W TRAVEL TIM STIMATED PIF ====================================	Tc(MI 26 AREA 3 AREA-A 5.00 TO N ******** TO NODE 	N.) = -AVERAGE VERAGEI ODE ****** 210 UBAREA ON-PRE ===== DOWN: N = 0 INCHE: NUMBEI	GED Fm D Ap = 209.0 ****** .00 IS <<<<< SSURE ===== STREAM .013 S R OF P	(INCH/HR) 0.41 0 = 39 ******** CODE = FLOW)<<<< ======== (FEET) =	06.00 FEET. ******** 31 < =========== 56.50	•
LONGEST FLO	OWPATH FROM	NODE 205	.00 TO N	ODE	210.0	0 = 52	21.00 FEET.	
********								ŧ
		E 210.00					81	
>>>>ADDIT	ON OF SUBA	REA TO MAINL	INE PEAK	FLOW<	< <<			
MAINLINE TO	(MIN.) =	27.08						
* 10 YEAR	RAINFALL I	NTENSITY(INC	CH/HR) =	1.542				
		A(AMC II):	•					
	NT TYPE/		AREA	Fp		Ар	SCS	
LAND U		GROUP	(ACRES)	-		(DECIMAL)	CN	
RESIDENTIAL			、		,	,		
"5-7 DWELL]		В	10.90	a	.30	0.500	56	
RESIDENTIAL	-		10.50	·	. 50	0.300	50	
"5-7 DWELL		С	3.00	a	.25	0.500	69	
COMMERCIAL	INGS/ ACKE	В		_			56	
			3.50		.30	0.100		
COMMERCIAL		С	3.50	0	.25	0.100	69	
URBAN POOR	COVER	_		_				
"TURF"		С	0.30		. 25	1.000	83	
		OUS LOSS RAT				29		
		OUS AREA FRA						
SUBAREA ARE) = 27.		
		= 99.46					= 0.12	
		I/HR) = 0.36						
TOTAL AREA	(ACRES) =	120.8	PEAK	FLOW	RATE(C	FS) =	127.29	
				8	31			

```
****************************
 FLOW PROCESS FROM NODE
                      210.10 TO NODE
                                     210.20 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
 ELEVATION DATA: UPSTREAM(FEET) =
                               60.00 DOWNSTREAM(FEET) =
                                                         59.50
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.329
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.541
 SUBAREA TC AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                    SCS SOIL
                              AREA
                                      Fp
                           (ACRES) (INCH/HR) (DECIMAL) CN
                      GROUP
     LAND USE
                                                          (MIN.)
 RESIDENTIAL
                               1.10
 "5-7 DWELLINGS/ACRE"
                       В
                                       0.30
                                               0.500
                                                      56
                                                          14.50
 COMMERCIAL
                       В
                               0.50
                                       0.30
                                               0.100
                                                      56
                                                          11.33
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.375
 SUBAREA RUNOFF(CFS) =
                      3.50
 TOTAL AREA(ACRES) =
                    1.60 PEAK FLOW RATE(CFS) =
****************************
 FLOW PROCESS FROM NODE 210.20 TO NODE
                                     210.30 IS CODE = 62
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<
______
 UPSTREAM ELEVATION(FEET) = 59.50 DOWNSTREAM ELEVATION(FEET) = 59.00
 STREET LENGTH(FEET) = 538.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                  5.79
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.46
   HALFSTREET FLOOD WIDTH(FEET) = 17.07
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 0.95
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.43
 STREET FLOW TRAVEL TIME(MIN.) = 9.49 Tc(MIN.) =
                                              20.82
  10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.793
 SUBAREA LOSS RATE DATA(AMC II):
                    SCS SOIL
  DEVELOPMENT TYPE/
                              AREA
                                      Fp
                      GROUP
                           (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
                               2.10
 "5-7 DWELLINGS/ACRE"
                       В
                                       0.30
                                               0.500
                                                      56
 COMMERCIAL
                       В
                               0.90
                                       0.30
                                               0.100
                                                      56
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.380
 SUBAREA AREA(ACRES) = 3.00
                              SUBAREA RUNOFF(CFS) =
```

```
EFFECTIVE AREA(ACRES) =
                       4.60 AREA-AVERAGED Fm(INCH/HR) = 0.11
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.38
                               PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                       4.6
                                                       6.95
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.48 HALFSTREET FLOOD WIDTH(FEET) = 18.40
 FLOW VELOCITY(FEET/SEC.) = 0.98 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE 210.10 TO NODE 210.30 = 868.00 FEET.
**************************
 FLOW PROCESS FROM NODE 210.30 TO NODE 210.40 IS CODE = 62
-----
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 59.00 DOWNSTREAM ELEVATION(FEET) = 58.00
 STREET LENGTH(FEET) = 325.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                 9.91
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.45
   HALFSTREET FLOOD WIDTH(FEET) = 16.68
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.69
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.76
 STREET FLOW TRAVEL TIME(MIN.) = 3.20 Tc(MIN.) = 24.02
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.652
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                    Fp
                                               Αр
                                                     SCS
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                              3.30
                       В
                                       0.30
                                              0.500
                                                      56
 COMMERCIAL
                       В
                              1.00
                                       0.30
                                              0.100
                                                      56
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.407
 SUBAREA AREA(ACRES) = 4.30 SUBAREA RUNOFF(CFS) =
 EFFECTIVE AREA(ACRES) = 8.90 AREA-AVERAGED Fm(INCH/HR) = 0.12
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.39
 TOTAL AREA(ACRES) =
                      8.9
                               PEAK FLOW RATE(CFS) =
                                                      12.29
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.48 HALFSTREET FLOOD WIDTH(FEET) = 18.16
 FLOW VELOCITY(FEET/SEC.) = 1.78 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE 210.10 TO NODE 210.40 = 1193.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 210.40 TO NODE 210.50 IS CODE = 62
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
```

```
UPSTREAM ELEVATION(FEET) = 58.00 DOWNSTREAM ELEVATION(FEET) = 57.50
 STREET LENGTH(FEET) = 619.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                     16.45
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.62
   HALFSTREET FLOOD WIDTH(FEET) = 26.21
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.23
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
                                         0.77
 STREET FLOW TRAVEL TIME(MIN.) = 8.40 Tc(MIN.) =
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.391
 SUBAREA LOSS RATE DATA(AMC II):
                     SCS SOIL
  DEVELOPMENT TYPE/
                                AREA
                                         Fp
                                                   Αp
                                                          SCS
                       GROUP
                             (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                                 4.40
                         В
                                          0.30
                                                  0.500
                                                           56
 COMMERCIAL
                         В
                                 2.60
                                          0.30
                                                  0.100
                                                           56
 URBAN POOR COVER
 "TURF"
                                 0.20
                         В
                                          0.30
                                                  1.000
                                                          74
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.369
 SUBAREA AREA(ACRES) = 7.20 SUBAREA RUNOFF(CFS) =
 EFFECTIVE AREA(ACRES) = 16.10
                                 AREA-AVERAGED Fm(INCH/HR) =
                                                            0.11
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.38
 TOTAL AREA(ACRES) =
                        16.1
                                   PEAK FLOW RATE(CFS) =
                                                           18.49
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.65 HALFSTREET FLOOD WIDTH(FEET) = 27.31
 FLOW VELOCITY(FEET/SEC.) = 1.27 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 619.0 FT WITH ELEVATION-DROP = 0.5 FT, IS
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE
                                                        210.50
 LONGEST FLOWPATH FROM NODE 210.10 TO NODE 210.50 =
                                                      1812.00 FEET.
**************************
 FLOW PROCESS FROM NODE 211.00 TO NODE 212.00 IS CODE = 21
>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
 ELEVATION DATA: UPSTREAM(FEET) =
                                  67.00 DOWNSTREAM(FEET) =
                                                             66.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.751
 SUBAREA TC AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                      SCS SOIL
                                AREA
                                         Fp
                                                   Aр
      LAND USE
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
```

```
RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                        C
                                1.60
                                        0.25
                                                0.500
                                                       69 12.62
                                                           9.86
 COMMERCIAL
                        C
                               0.50
                                        0.25
                                                0.100
                                                       69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.405
 SUBAREA RUNOFF(CFS) = 5.01
                      2.10 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
**************************
 FLOW PROCESS FROM NODE 212.00 TO NODE 213.00 IS CODE = 62
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<
______
 UPSTREAM ELEVATION(FEET) = 66.00 DOWNSTREAM ELEVATION(FEET) = 64.00
 STREET LENGTH(FEET) = 523.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                  11.20
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.45
   HALFSTREET FLOOD WIDTH(FEET) = 16.76
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.89
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.86
 STREET FLOW TRAVEL TIME(MIN.) = 4.60 Tc(MIN.) =
                                               14.46
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.209
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                     SCS SOIL
                              AREA
                                       Fp
                      GROUP
                            (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                        C
                               4.80
                                        0.25
                                                0.500
                                                       69
 COMMERCIAL
                        C
                               1.60
                                        0.25
                                                0.100
                                                       69
 URBAN POOR COVER
 "TURF"
                               0.10
                        C
                                        0.25
                                                1.000
                                                       83
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.409
 SUBAREA AREA(ACRES) = 6.50
                           SUBAREA RUNOFF(CFS) = 12.32
 EFFECTIVE AREA(ACRES) = 8.60
                               AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.41
 TOTAL AREA(ACRES) =
                        8.6
                                 PEAK FLOW RATE(CFS) =
                                                        16.31
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.51 HALFSTREET FLOOD WIDTH(FEET) = 19.80
 FLOW VELOCITY(FEET/SEC.) = 2.07 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE
                          211.00 TO NODE
                                        213.00 =
*******************************
 FLOW PROCESS FROM NODE 213.00 TO NODE 214.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
```

85

>>>>(STREET TABLE SECTION # 1 USED)<<<<<

```
UPSTREAM ELEVATION(FEET) = 64.00 DOWNSTREAM ELEVATION(FEET) = 60.00
 STREET LENGTH(FEET) = 1186.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                    27.79
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.59
   HALFSTREET FLOOD WIDTH(FEET) = 24.57
   AVERAGE FLOW VELOCITY(FEET/SEC.) =
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
                                       1.40
 STREET FLOW TRAVEL TIME(MIN.) = 8.33 Tc(MIN.) =
                                                22.80
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.702
 SUBAREA LOSS RATE DATA(AMC II):
                     SCS SOIL
  DEVELOPMENT TYPE/
                               AREA
                                        Fp
     LAND USE
                       GROUP
                             (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                        C
                                11.50
                                         0.25
                                                 0.500
                                                         69
 COMMERCIAL
                         C
                                4.20
                                         0.25
                                                 0.100
                                                         69
 URBAN POOR COVER
 "TURF"
                        C
                                0.10
                                         0.25
                                                 1.000
                                                         83
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.397
 SUBAREA AREA(ACRES) = 15.80
                            SUBAREA RUNOFF(CFS) =
 EFFECTIVE AREA(ACRES) = 24.40
                                AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.40
 TOTAL AREA(ACRES) =
                        24.4
                                  PEAK FLOW RATE(CFS) =
                                                          35.17
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.63 HALFSTREET FLOOD WIDTH(FEET) = 26.64
 FLOW VELOCITY(FEET/SEC.) = 2.54 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 1186.0 FT WITH ELEVATION-DROP = 4.0 FT, IS
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE
                                                       214.00
 LONGEST FLOWPATH FROM NODE 211.00 TO NODE 214.00 =
                                                     2039.00 FEET.
**************************
 FLOW PROCESS FROM NODE
                       214.00 TO NODE
                                       214.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) =
                             22.80
 RAINFALL INTENSITY(INCH/HR) =
 AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.25
 AREA-AVERAGED Ap = 0.40
 EFFECTIVE STREAM AREA(ACRES) =
                                24.40
 TOTAL STREAM AREA(ACRES) =
                             24.40
```

PEAK FLOW RATE(CFS) AT CONFLUENCE = 35.17

```
****************************
 FLOW PROCESS FROM NODE 215.00 TO NODE 216.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
 ELEVATION DATA: UPSTREAM(FEET) =
                               68.00 DOWNSTREAM(FEET) =
                                                        66.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.978
 SUBAREA TC AND LOSS RATE DATA(AMC II):
                   SCS SOIL AREA
  DEVELOPMENT TYPE/
                                      Fp
                                                     SCS
                                                          Tc
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                       C
                               0.20
                                       0.25
                                              0.500
                                                      69
                                                          10.99
 COMMERCIAL
                       C
                               1.50
                                       0.25
                                              0.100
                                                      69
                                                         8.59
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.147
 SUBAREA RUNOFF(CFS) =
                      4.50
                     1.70 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                                                  4.50
****************************
 FLOW PROCESS FROM NODE 216.00 TO NODE 217.00 IS CODE = 62
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<
______
 UPSTREAM ELEVATION(FEET) = 66.00 DOWNSTREAM ELEVATION(FEET) = 62.00
 STREET LENGTH(FEET) = 970.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                  8.04
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.41
   HALFSTREET FLOOD WIDTH(FEET) = 14.49
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.79
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.73
 STREET FLOW TRAVEL TIME(MIN.) = 9.04 Tc(MIN.) = 17.63
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.972
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                   SCS SOIL
                             AREA
                                      Fp
                                               Aр
                                                     SCS
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 COMMERCIAL
                       C
                               3.80
                                       0.25
                                              0.100
 URBAN POOR COVER
 "TURF"
                       C
                               0.20
                                       0.25
                                              1.000
                                                      83
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.145
```

```
SUBAREA AREA(ACRES) = 4.00 SUBAREA RUNOFF(CFS) = 6.97
EFFECTIVE AREA(ACRES) = 5.70 AREA-AVERAGED Fm(INCH/HR) = 0.04
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.15
 TOTAL AREA(ACRES) =
                  5.7
                               PEAK FLOW RATE(CFS) =
                                                       9.93
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.43 HALFSTREET FLOOD WIDTH(FEET) = 15.74
 FLOW VELOCITY(FEET/SEC.) = 1.89 DEPTH*VELOCITY(FT*FT/SEC.) = 0.82
 LONGEST FLOWPATH FROM NODE 215.00 TO NODE 217.00 = 1300.00 FEET.
****************************
 FLOW PROCESS FROM NODE 217.00 TO NODE 214.00 IS CODE = 31
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
-----
 ELEVATION DATA: UPSTREAM(FEET) = 62.00 DOWNSTREAM(FEET) = 60.00
 FLOW LENGTH(FEET) = 1132.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 27.0 INCH PIPE IS 18.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.45
 ESTIMATED PIPE DIAMETER(INCH) = 27.00
                                   NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 9.93
 PIPE TRAVEL TIME(MIN.) = 5.46 Tc(MIN.) =
                                        23.09
 LONGEST FLOWPATH FROM NODE 215.00 TO NODE
                                        214.00 =
                                                 2432.00 FEET.
****************************
 FLOW PROCESS FROM NODE 214.00 TO NODE 214.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 23.09
 RAINFALL INTENSITY(INCH/HR) = 1.69
 AREA-AVERAGED Fm(INCH/HR) = 0.04
 AREA-AVERAGED Fp(INCH/HR) = 0.25
 AREA-AVERAGED Ap = 0.15
 EFFECTIVE STREAM AREA(ACRES) =
 TOTAL STREAM AREA(ACRES) = 5.70
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                  9.93
 ** CONFLUENCE DATA **
                  Tc Intensity Fp(Fm)
                                                   HEADWATER
  STREAM
        Q
                                              Ae
           (CFS) (MIN.) (INCH/HR) (INCH/HR)
  NUMBER
                                             (ACRES)
                                                    NODE
                 22.80 1.702 0.25( 0.10) 0.40
                                              24.4
    1
           35.17
                                                       211.00
           9.93 23.09
                        1.689 0.25( 0.04) 0.15
                                                5.7
    2
                                                       215.00
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
                 Tc Intensity Fp(Fm)
  STREAM
           Q
                                              Ae
                                                    HEADWATER
           (CFS) (MIN.) (INCH/HR) (INCH/HR)
  NUMBER
                                             (ACRES)
                                                     NODE
                        1.702 0.25( 0.09) 0.35
    1
           45.05
                 22.80
                                                30.0
                                                       211.00
           44.83 23.09
                        1.689 0.25(0.09)0.35
    2
                                                30.1
                                                       215.00
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 45.05 Tc(MIN.) = 22.80
                     30.03 AREA-AVERAGED Fm(INCH/HR) = 0.09
 EFFECTIVE AREA(ACRES) =
```

```
AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.35
 TOTAL AREA(ACRES) = 30.1
 LONGEST FLOWPATH FROM NODE 215.00 TO NODE
                                    214.00 = 2432.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 214.00 TO NODE 222.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
ELEVATION DATA: UPSTREAM(FEET) = 60.00 DOWNSTREAM(FEET) =
 FLOW LENGTH(FEET) = 1041.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 45.0 INCH PIPE IS 33.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.15
 ESTIMATED PIPE DIAMETER(INCH) = 45.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 45.05
 PIPE TRAVEL TIME(MIN.) = 3.37 Tc(MIN.) =
                                    26.17
 LONGEST FLOWPATH FROM NODE 215.00 TO NODE
                                    222.00 =
                                             3473.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 222.00 TO NODE 222.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) =
 RAINFALL INTENSITY(INCH/HR) =
 AREA-AVERAGED Fm(INCH/HR) = 0.09
 AREA-AVERAGED Fp(INCH/HR) = 0.25
 AREA-AVERAGED Ap = 0.35
 EFFECTIVE STREAM AREA(ACRES) =
 TOTAL STREAM AREA(ACRES) = 30.10
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                               45.05
****************************
 FLOW PROCESS FROM NODE 218.00 TO NODE 219.00 IS CODE = 21
>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
                           62.00 DOWNSTREAM(FEET) =
 ELEVATION DATA: UPSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.862
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.751
 SUBAREA TC AND LOSS RATE DATA(AMC II):
 DEVELOPMENT TYPE/
                  SCS SOIL
                          AREA
                                  Fp
                   GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
    LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                     C
                           1.10
                                          0.500
                                   0.25
                                                69
                                                    12.62
 COMMERCIAL
                     C
                           0.70
                                   0.25
                                          0.100
                                                69
                                                   9.86
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.344
 SUBAREA RUNOFF(CFS) =
                   4.32
                   1.80 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                                             4.32
**************************
 FLOW PROCESS FROM NODE
                    219.00 TO NODE
                                 220.00 IS CODE = 62
```

```
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 2 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 61.00 DOWNSTREAM ELEVATION(FEET) = 60.00
 STREET LENGTH(FEET) = 301.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 42.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 21.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                    7.80
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.45
   HALFSTREET FLOOD WIDTH(FEET) = 14.73
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.65
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.75
 STREET FLOW TRAVEL TIME(MIN.) = 3.04 Tc(MIN.) =
  10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.359
 SUBAREA LOSS RATE DATA(AMC II):
                     SCS SOIL
  DEVELOPMENT TYPE/
                               AREA
                                        Fp
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                        C
                                2.20
                                         0.25
                                                 0.500
                                                         69
 COMMERCIAL
                        C
                                1.20
                                         0.25
                                                 0.100
                                                         69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.359
 SUBAREA AREA(ACRES) = 3.40 SUBAREA RUNOFF(CFS) =
 EFFECTIVE AREA(ACRES) = 5.20 AREA-AVERAGED Fm(INCH/HR) = 0.09
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.35
 TOTAL AREA(ACRES) =
                        5.2
                                  PEAK FLOW RATE(CFS) =
                                                         10.62
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.49 HALFSTREET FLOOD WIDTH(FEET) = 16.73
 FLOW VELOCITY(FEET/SEC.) = 1.78 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE
                           218.00 TO NODE
                                         220.00 =
                                                    631.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 220.00 TO NODE 221.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 2 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 60.00 DOWNSTREAM ELEVATION(FEET) = 59.00
 STREET LENGTH(FEET) = 680.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 42.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 21.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) =
```

```
Manning's FRICTION FACTOR for Back-of-Walk Flow Section =
                                                       0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                      15.10
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.61
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.42
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 8.01 Tc(MIN.) =
                                                  20.90
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.789
 SUBAREA LOSS RATE DATA(AMC II):
                      SCS SOIL
  DEVELOPMENT TYPE/
                                 AREA
                                          Fp
                                                    Αp
                                                          SCS
                              (ACRES) (INCH/HR) (DECIMAL) CN
                        GROUP
      LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         C
                                  3.30
                                           0.25
                                                   0.500
                                                           69
 COMMERCIAL
                         C
                                  2.50
                                           0.25
                                                   0.100
                                                           69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.328
 SUBAREA AREA(ACRES) = 5.80
                                SUBAREA RUNOFF(CFS) =
 EFFECTIVE AREA(ACRES) = 11.00
                                  AREA-AVERAGED Fm(INCH/HR) =
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.34
 TOTAL AREA(ACRES) =
                        11.0
                                   PEAK FLOW RATE(CFS) =
                                                            16.86
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.63 HALFSTREET FLOOD WIDTH(FEET) = 23.67
 FLOW VELOCITY(FEET/SEC.) = 1.46 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE
                            218.00 TO NODE
                                           221.00 = 1311.00 FEET.
*********************************
 FLOW PROCESS FROM NODE
                        221.00 TO NODE
                                         222.00 IS CODE = 62
......
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 2 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 59.00 DOWNSTREAM ELEVATION(FEET) = 58.00
 STREET LENGTH(FEET) = 915.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 42.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 21.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                      29.20
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.78
   HALFSTREET FLOOD WIDTH(FEET) = 36.35
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.46
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.13
 STREET FLOW TRAVEL TIME(MIN.) = 10.47 Tc(MIN.) =
                                                  31.38
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.417
 SUBAREA LOSS RATE DATA(AMC II):
                      SCS SOIL
  DEVELOPMENT TYPE/
                                 AREA
                                          Fp
      LAND USE
                       GROUP
                               (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         C
                                 15.20
                                                   0.500
                                           0.25
                                                           69
```

```
5.50
 COMMERCIAL
                         C
                                           0.25
                                                   0.100
                                                           69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.394
 SUBAREA AREA(ACRES) = 20.70 SUBAREA RUNOFF(CFS) = 24.57
 EFFECTIVE AREA(ACRES) = 31.70
                                 AREA-AVERAGED Fm(INCH/HR) = 0.09
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.38
                        31.7
                                   PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                                                            37.76
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.84 HALFSTREET FLOOD WIDTH(FEET) = 42.42
 FLOW VELOCITY(FEET/SEC.) = 1.52 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
        AND L = 915.0 FT WITH ELEVATION-DROP = 1.0 FT, IS
                                                        34.3 CFS,
        WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 222.00
 LONGEST FLOWPATH FROM NODE 218.00 TO NODE 222.00 = 2226.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 222.00 TO NODE 222.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 31.38
 RAINFALL INTENSITY(INCH/HR) = 1.42
 AREA-AVERAGED Fm(INCH/HR) = 0.09
 AREA-AVERAGED fp(INCH/HR) = 0.25
 AREA-AVERAGED Ap = 0.38
 EFFECTIVE STREAM AREA(ACRES) =
 TOTAL STREAM AREA(ACRES) = 31.70
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                      37.76
 ** CONFLUENCE DATA **
                    Tc Intensity Fp(Fm)
  STREAM
             Q
                                                    Ae
                                                          HEADWATER
                  (MIN.) (INCH/HR) (INCH/HR)
                                                  (ACRES)
  NUMBER
            (CFS)
                                                            NODE
                           1.573 0.25(0.09)0.35
     1
            45.05
                   26.17
                                                      30.0
                                                              211.00
                           1.563 0.25(0.09) 0.35
     1
            44.83
                   26.46
                                                      30.1
                                                              215.00
                           1.417 0.25( 0.09) 0.38
     2
            37.76
                   31.38
                                                      31.7
                                                              218.00
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
                    Tc Intensity Fp(Fm)
  STREAM
             Q
                                                    Ae
                                                          HEADWATER
                 (MIN.) (INCH/HR) (INCH/HR)
  NUMBER
            (CFS)
                                                  (ACRES)
                                                            NODE
                          1.573 0.25( 0.09) 0.36
    1
            80.23
                   26.17
                                                      56.5
                                                              211.00
                           1.563 0.25(0.09)0.36
     2
            80.17
                   26.46
                                                      56.8
                                                              215.00
                           1.417 0.25(0.09)0.36
     3
            78.17
                   31.38
                                                      61.8
                                                              218.00
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 80.23 Tc(MIN.) = 26.17
EFFECTIVE AREA(ACRES) = 56.46 AREA-AVERAGED Fm(INCH/HR) = 0.09
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.36
 TOTAL AREA(ACRES) = 61.8
 LONGEST FLOWPATH FROM NODE
                            215.00 TO NODE
                                             222.00 =
                                                       3473.00 FEET.
******************************
 FLOW PROCESS FROM NODE 222.00 TO NODE 227.00 IS CODE = 31
```

```
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 58.00 DOWNSTREAM(FEET) = 57.00
 FLOW LENGTH(FEET) = 411.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 54.0 INCH PIPE IS 39.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 6.52
 ESTIMATED PIPE DIAMETER(INCH) = 54.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
               80.23
 PIPE TRAVEL TIME(MIN.) = 1.05 Tc(MIN.) = 27.22
 LONGEST FLOWPATH FROM NODE 215.00 TO NODE
                                    227.00 =
                                             3884.00 FEET.
****************************
 FLOW PROCESS FROM NODE 227.00 TO NODE 227.00 IS CODE = 1
>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) =
                        27.22
 RAINFALL INTENSITY(INCH/HR) =
 AREA-AVERAGED fm(INCH/HR) = 0.09
 AREA-AVERAGED Fp(INCH/HR) = 0.25
 AREA-AVERAGED Ap = 0.36
 EFFECTIVE STREAM AREA(ACRES) =
 TOTAL STREAM AREA(ACRES) = 61.80
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                              80.23
*********************************
 FLOW PROCESS FROM NODE 223.00 TO NODE 224.00 IS CODE = 21
>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
 ELEVATION DATA: UPSTREAM(FEET) =
                           63.00 DOWNSTREAM(FEET) =
                                                  62.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.751
 SUBAREA TC AND LOSS RATE DATA(AMC II):
 DEVELOPMENT TYPE/
                 SCS SOIL AREA
                                  Fp
                                              SCS
                   GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
    LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                    В
                           0.50
                                   0.30
                                         0.500
                                                56
                                                   12.62
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                    C
                           1.60
                                   0.25
                                         0.500
                                                69 12.62
 COMMERCIAL
                    В
                           0.20
                                   0.30
                                         0.100
                                                56
                                                   9.86
                                                69 9.86
 COMMERCIAL
                    C
                           0.70
                                   0.25
                                         0.100
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.26
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.380
 SUBAREA RUNOFF(CFS) = 7.16
                  3.00 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                                            7.16
*******************************
 FLOW PROCESS FROM NODE 224.00 TO NODE 225.00 IS CODE = 62
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
_______
```

```
UPSTREAM ELEVATION(FEET) = 62.00 DOWNSTREAM ELEVATION(FEET) =
                                                             59.00
 STREET LENGTH(FEET) = 749.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                     10.62
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.44
   HALFSTREET FLOOD WIDTH(FEET) = 16.29
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.89
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.84
 STREET FLOW TRAVEL TIME(MIN.) = 6.59 Tc(MIN.) =
                                                 16.45
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.052
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                      SCS SOIL
                                AREA
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         C
                                 2.70
                                          0.25
                                                  0.500
                                                          69
 COMMERCIAL
                         C
                                 1.20
                                          0.25
                                                  0.100
                                                          69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.377
 SUBAREA AREA(ACRES) = 3.90 SUBAREA RUNOFF(CFS) =
 EFFECTIVE AREA(ACRES) = 6.90
                                AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.26 AREA-AVERAGED Ap = 0.38
 TOTAL AREA(ACRES) =
                        6.9
                                  PEAK FLOW RATE(CFS) =
                                                           12.14
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.46 HALFSTREET FLOOD WIDTH(FEET) = 17.15
 FLOW VELOCITY(FEET/SEC.) = 1.97 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE
                           223.00 TO NODE
                                          225.00 = 1079.00 FEET.
****************************
 FLOW PROCESS FROM NODE 225.00 TO NODE 226.00 IS CODE = 62
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<
______
 UPSTREAM ELEVATION(FEET) = 59.00 DOWNSTREAM ELEVATION(FEET) = 58.00
 STREET LENGTH(FEET) = 381.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                     18.95
   ***STREET FLOWING FULL***
```

```
GC10EX
```

```
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.55
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.92
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 3.31 Tc(MIN.) = 19.76
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.847
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                      SCS SOIL AREA
                                         Fp
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                                 3.10
                                          0.30
                                                  0.500
                                                          56
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         C
                                 3.50
                                          0.25
                                                  0.500
                                                          69
 COMMERCIAL
                         В
                                 0.70
                                          0.30
                                                  0.100
                                                          56
 COMMERCIAL
                         C
                                 1.40
                                          0.25
                                                  0.100
                                                          69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.27
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.403
 SUBAREA AREA(ACRES) = 8.70 SUBAREA RUNOFF(CFS) = 13.60
 EFFECTIVE AREA(ACRES) = 15.60 AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.27 AREA-AVERAGED Ap = 0.39
                        15.6
                                  PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                                                           24.47
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.59 HALFSTREET FLOOD WIDTH(FEET) = 24.57
 FLOW VELOCITY(FEET/SEC.) = 2.09 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 381.0 FT WITH ELEVATION-DROP = 1.0 FT, IS
                                                        19.6 CFS,
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 226.00
 LONGEST FLOWPATH FROM NODE 223.00 TO NODE 226.00 =
                                                      1460.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 226.00 TO NODE 227.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<
______
 UPSTREAM ELEVATION(FEET) = 58.00 DOWNSTREAM ELEVATION(FEET) = 57.00
 STREET LENGTH(FEET) = 714.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                     37.15
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.74
   HALFSTREET FLOOD WIDTH(FEET) = 31.77
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.87
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.38
 STREET FLOW TRAVEL TIME(MIN.) = 6.35 Tc(MIN.) =
                                                 26.11
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.575
 SUBAREA LOSS RATE DATA(AMC II):
```

				GC10EX		
DEVELOPMEN	T TYPE/	SCS SOIL	AREA		Ap	SCS
				(INCH/HR)		
RESIDENTIAL						
	NGS/ACRE"	В	4.80	0.30	0.500	56
RESIDENTIAL						
"5-7 DWELLI	NGS/ACRE"	С	10.90	0.25	0.500	69
COMMERCIAL		В	1.50	0.30 0.25	0.100	56
COMMERCIAL		С	1.10	0.25	0.100	69
URBAN POOR	COVER	_				
"TURF"		В	0.50	0.30	1.000	74
URBAN POOR	COVER	_				
"TURF"	DACE DEDVICE			0.25		83
SUBAREA AVE					.27	
SUBAREA AVE					c) 25 /	20
SUBAREA ARE	A(ACKES) =	19.40	SUBAKE.	A KUNUFF(CF	S) = 25.4 $m(TNCH/UD)$	48 _ 0.13
ADEA AVEDAC	REA(ACRES)	= 35.00	O AKEA	-AVEKAGED F	m(INCH/HK)	= 0.12
AREA-AVERAG						45 02
TOTAL AREA(ACKES) =	35.0	PEA	K FLOW KAIE	(CFS) =	45.93
END OF SUBA	DEA STREET	ELON HADDVI	II TCC.			
DEPTH(FEET)				TU/FFFT\ _	24 20	
FLOW VELOCI						_ 1 55
*NOTE: INIT						- 1.55
						24 6 656
	L = 714.0 H EXCEEDS TI					
LONGEST FLO						
LUNGEST FLO	WPAIR FROM I	NODE 22:	א טו שש.כ	ODE 227.	00 = 21	74.00 FEET.
*****	******	******	******	******	*****	*****
FLOW PROCES						
						-
	ATE INDEPEN	DENT STREAM				
>>>>DESIGN			FOR CON	FLUENCE<	<	
	MPUTE VARIO	US CONFLUE	M FOR CON	FLUENCE<<<< AM VALUES<<	<	
>>>>DESIGN >>>>>AND CO	MPUTE VARIO	US CONFLUE	M FOR CON	FLUENCE<<<< AM VALUES<<	<	
>>>>DESIGN	MPUTE VARIO ======= R OF STREAM:	US CONFLUE! =======: S = 2	M FOR CON NCED STRE	FLUENCE<<<< AM VALUES<<	< <<< =======	
>>>>DESIGN >>>>>AND CO ====== TOTAL NUMBE	MPUTE VARIO ======== R OF STREAM! VALUES USED	US CONFLUE! ======= S = 2 FOR INDEP!	M FOR CON NCED STRE ======= ENDENT ST	FLUENCE<<<< AM VALUES<<	< <<< =======	
>>>>DESIGN >>>>>AND CO ======== TOTAL NUMBE CONFLUENCE	MPUTE VARIO ======== R OF STREAM: VALUES USED CENTRATION(I	US CONFLUE! ======== S = 2 FOR INDEP! MIN.) = 2	M FOR CON NCED STRE ======= ENDENT ST 26.11	FLUENCE<<<< AM VALUES<<	< <<< =======	
>>>>DESIGN >>>>>AND CO ========= TOTAL NUMBE CONFLUENCE TIME OF CON	MPUTE VARION ====================================	US CONFLUE! ======== S = 2 FOR INDEP! MIN.) = 2 H/HR) = 2	M FOR CON NCED STRE ======= ENDENT ST 26.11 1.57	FLUENCE<<<< AM VALUES<<	< <<< =======	
>>>>DESIGN >>>>>AND CO ========= TOTAL NUMBE CONFLUENCE TIME OF CON RAINFALL IN	MPUTE VARION ===================================	US CONFLUER ===================================	M FOR CON NCED STRE ======= ENDENT ST 26.11 1.57	FLUENCE<<<< AM VALUES<<	< <<< =======	
>>>>DESIGN >>>>>AND CO ========= TOTAL NUMBE CONFLUENCE TIME OF CON RAINFALL IN AREA-AVERAG AREA-AVERAG AREA-AVERAG	MPUTE VARION ===================================	US CONFLUER ===================================	M FOR CON NCED STRE ======= ENDENT ST 26.11 1.57 2	FLUENCE<<<< AM VALUES<< ===================================	< <<< =======	
>>>>DESIGN >>>>>AND CO ========= TOTAL NUMBE CONFLUENCE TIME OF CON RAINFALL IN AREA-AVERAG AREA-AVERAG AREA-AVERAG	MPUTE VARION ===================================	US CONFLUER ===================================	M FOR CON NCED STRE ======= ENDENT ST 26.11 1.57 2	FLUENCE<<<< AM VALUES<< ===================================	< <<< =======	
>>>>DESIGN >>>>>AND CO ========= TOTAL NUMBE CONFLUENCE TIME OF CON RAINFALL IN AREA-AVERAG AREA-AVERAG AREA-AVERAG EFFECTIVE S	MPUTE VARION ===================================	US CONFLUER ===================================	M FOR CON NCED STRE ======= ENDENT ST 26.11 1.57 2	FLUENCE<<<< AM VALUES<< ===================================	< <<< =======	
>>>>DESIGN >>>>>AND CO ========= TOTAL NUMBE CONFLUENCE TIME OF CON RAINFALL IN AREA-AVERAG AREA-AVERAG AREA-AVERAG	MPUTE VARION ===================================	US CONFLUER ===================================	M FOR CON NCED STRE ======= ENDENT ST 26.11 1.57 2 7 35.00	FLUENCE<<<< AM VALUES<< ======= REAM 2 ARE	< <<< =======	
>>>>DESIGN >>>>>AND CO ========= TOTAL NUMBE CONFLUENCE TIME OF CON RAINFALL IN AREA-AVERAG AREA-AVERAG AREA-AVERAG EFFECTIVE S TOTAL STREA PEAK FLOW R	MPUTE VARION ===================================	US CONFLUER ===================================	M FOR CON NCED STRE ======= ENDENT ST 26.11 1.57 2 7 35.00	FLUENCE<<<< AM VALUES<< ======= REAM 2 ARE	< <<< =======	
>>>>DESIGN >>>>>AND CO ========= TOTAL NUMBE CONFLUENCE TIME OF CON RAINFALL IN AREA-AVERAG AREA-AVERAG AREA-AVERAG EFFECTIVE S TOTAL STREA	MPUTE VARION ===================================	US CONFLUER ===================================	M FOR CON NCED STRE ======= ENDENT ST 26.11 1.57 2 7 35.00 E =	FLUENCE<<<< AM VALUES<< ======== REAM 2 ARE	< <<< ======:::	
>>>>DESIGN >>>>>AND CO ========== TOTAL NUMBE CONFLUENCE TIME OF CON RAINFALL IN AREA-AVERAG AREA-AVERAG AREA-AVERAG EFFECTIVE S TOTAL STREAM ** CONFLUEN STREAM	MPUTE VARION ===================================	US CONFLUER ===================================	M FOR CON NCED STRE ======= ENDENT ST 26.11 1.57 2 7 35.00 E =	FLUENCE<<<< AM VALUES<< ======== REAM 2 ARE 45.93	< <<< ======:: :	HEADWATER
>>>>DESIGN >>>>>AND CO ========== TOTAL NUMBE CONFLUENCE TIME OF CON RAINFALL IN AREA-AVERAG AREA-AVERAG AREA-AVERAG EFFECTIVE S TOTAL STREAM ** CONFLUEN STREAM	MPUTE VARION ===================================	US CONFLUER ===================================	M FOR CON NCED STRE ======= ENDENT ST 26.11 1.57 2 7 35.00 E = ity Fp(HR) (INCH	FLUENCE<<<< AM VALUES<< ======== REAM 2 ARE 45.93 Fm) Ap /HR)	< <<> < : Ae (ACRES)	HEADWATER NODE
>>>>DESIGN >>>>>AND CO ========= TOTAL NUMBE CONFLUENCE TIME OF CON RAINFALL IN AREA-AVERAG AREA-AVERAG AREA-AVERAG EFFECTIVE S TOTAL STREAM PEAK FLOW R ** CONFLUEN STREAM NUMBER 1	MPUTE VARION ===================================	US CONFLUER ===================================	M FOR CON NCED STRE ======= ENDENT ST 26.11 1.57 2 7 35.00 E = ity Fp(HR) (INCH 38 0.25(FLUENCE<<<< AM VALUES<< ======== REAM 2 ARE 45.93 Fm) Ap /HR) 0.09) 0.36	Ae (ACRES)	HEADWATER NODE 211.00
>>>>DESIGN >>>>>AND CO ========= TOTAL NUMBE CONFLUENCE TIME OF CON RAINFALL IN AREA-AVERAG AREA-AVERAG AREA-AVERAG EFFECTIVE S TOTAL STREAM PEAK FLOW R ** CONFLUEN STREAM NUMBER	MPUTE VARION ===================================	US CONFLUER ===================================	M FOR CON NCED STRE ======= ENDENT ST 26.11 1.57 2 7 35.00 E = ity Fp(HR) (INCH 38 0.25(28 0.25(FLUENCE<<<<< AM VALUES< ======== REAM 2 ARE 45.93 Fm) Ap /HR) 0.09) 0.36 0.09) 0.36	Ae (ACRES) 56.5	HEADWATER NODE 211.00 215.00
>>>>DESIGN >>>>>AND CO ========== TOTAL NUMBE CONFLUENCE TIME OF CON RAINFALL IN AREA-AVERAG AREA-AVERAG AREA-AVERAG EFFECTIVE S TOTAL STREAM PEAK FLOW R ** CONFLUEN STREAM NUMBER 1 1 1	MPUTE VARION ===================================	US CONFLUER ====================================	M FOR CON NCED STRE ======= ENDENT ST 26.11 1.57 2 7 35.00 E = ity Fp(HR) (INCH 38 0.25(28 0.25(FLUENCE<<<< AM VALUES<< ========= REAM 2 ARE 45.93 Fm) Ap /HR) 0.09) 0.36 0.09) 0.36 0.09) 0.36	Ae (ACRES) 56.5 56.8 61.8	HEADWATER NODE 211.00 215.00 218.00
>>>>DESIGN >>>>>AND CO ========= TOTAL NUMBE CONFLUENCE TIME OF CON RAINFALL IN AREA-AVERAG AREA-AVERAG AREA-AVERAG EFFECTIVE S TOTAL STREAM PEAK FLOW R ** CONFLUEN STREAM NUMBER 1 1	MPUTE VARION ===================================	US CONFLUER ====================================	M FOR CON NCED STRE ======= ENDENT ST 26.11 1.57 2 7 35.00 E = ity Fp(HR) (INCH 38 0.25(28 0.25(FLUENCE<<<<< AM VALUES< ======== REAM 2 ARE 45.93 Fm) Ap /HR) 0.09) 0.36 0.09) 0.36	Ae (ACRES) 56.5 56.8 61.8	HEADWATER NODE 211.00 215.00 218.00
>>>>DESIGN >>>>>AND CO ========== TOTAL NUMBE CONFLUENCE TIME OF CON RAINFALL IN AREA-AVERAG AREA-AVERAG AREA-AVERAG EFFECTIVE S TOTAL STREAP PEAK FLOW R ** CONFLUEN STREAM NUMBER 1 1 1 2	MPUTE VARION ====================================	US CONFLUER ===================================	M FOR CON NCED STRE ======== ENDENT ST 26.11 1.57 2 7 35.00 E = ity Fp(HR) (INCH 38 0.25(28 0.25(90 0.25(FLUENCE<<<<< AM VALUES< ====================================	Ae (ACRES) 56.5 56.8 61.8	HEADWATER NODE 211.00 215.00 218.00
>>>>DESIGN >>>>>AND CO ========== TOTAL NUMBE CONFLUENCE TIME OF CON RAINFALL IN AREA-AVERAG AREA-AVERAG EFFECTIVE S TOTAL STREAP PEAK FLOW R ** CONFLUEN STREAM NUMBER 1 1 1 2 RAINFALL IN	MPUTE VARION ===================================	US CONFLUER ===================================	M FOR CON NCED STRE ======= ENDENT ST 26.11 1.57 27 35.00 E = ity Fp(HR) (INCH 38 0.25(28 0.25(90 0.25(75 0.27(FLUENCE<<<<< AM VALUES< ====================================	Ae (ACRES) 56.5 56.8 61.8	HEADWATER NODE 211.00 215.00 218.00
>>>>DESIGN >>>>>AND CO ========== TOTAL NUMBE CONFLUENCE TIME OF CON RAINFALL IN AREA-AVERAG AREA-AVERAG AREA-AVERAG EFFECTIVE S TOTAL STREAP PEAK FLOW R ** CONFLUEN STREAM NUMBER 1 1 1 2	MPUTE VARION ===================================	US CONFLUER ===================================	M FOR CON NCED STRE ======= ENDENT ST 26.11 1.57 27 35.00 E = ity Fp(HR) (INCH 38 0.25(28 0.25(90 0.25(75 0.27(FLUENCE<<<<< AM VALUES< ====================================	Ae (ACRES) 56.5 56.8 61.8	HEADWATER NODE 211.00 215.00 218.00
>>>>DESIGN >>>>>AND CO ========== TOTAL NUMBE CONFLUENCE TIME OF CON RAINFALL IN AREA-AVERAG AREA-AVERAG AREA-AVERAG EFFECTIVE S TOTAL STREAP PEAK FLOW R ** CONFLUEN STREAM NUMBER 1 1 1 2 RAINFALL IN CONFLUENCE	MPUTE VARION ===================================	US CONFLUER ===================================	M FOR CON NCED STRE ======= ENDENT ST 26.11 1.57 27 35.00 E = ity Fp(HR) (INCH 38 0.25(28 0.25(90 0.25(75 0.27(FLUENCE<<<<< AM VALUES< ====================================	Ae (ACRES) 56.5 56.8 61.8	HEADWATER NODE 211.00 215.00 218.00
>>>>DESIGN >>>>AND CO ========== TOTAL NUMBE CONFLUENCE TIME OF CON RAINFALL IN AREA-AVERAG AREA-AVERAG EFFECTIVE S TOTAL STREAM PEAK FLOW R ** CONFLUEN STREAM NUMBER 1 1 2 RAINFALL IN CONFLUENCE ** PEAK FLO	MPUTE VARION ===================================	US CONFLUER ===================================	M FOR CON NCED STRE ======== ENDENT ST 26.11 1.57 27 35.00 E = ity Fp(HR) (INCH 38 0.25(28 0.25(90 0.25(75 0.27(DNCENTRAT FREAMS.	FLUENCE<<<< AM VALUES<< ===================================	Ae (ACRES) 56.5 56.8 61.8 35.0	HEADWATER NODE 211.00 215.00 218.00 223.00
>>>>DESIGN >>>>>AND CO ========== TOTAL NUMBE CONFLUENCE TIME OF CON RAINFALL IN AREA-AVERAG AREA-AVERAG EFFECTIVE S TOTAL STREAP PEAK FLOW R ** CONFLUEN STREAM NUMBER 1 1 2 RAINFALL IN CONFLUENCE ** PEAK FLO STREAM	MPUTE VARION ====================================	US CONFLUER ===================================	M FOR CON NCED STRE ======== ENDENT ST 26.11 1.57 2 7 35.00 E = ity Fp(HR) (INCH 38 0.25(28 0.25(90 0.25(75 0.27(DNCENTRAT TREAMS.	FLUENCE<<<< AM VALUES< ====================================	Ae (ACRES) 56.5 56.8 61.8 35.0	HEADWATER NODE 211.00 215.00 218.00 223.00
>>>>DESIGN >>>>>AND CO ========== TOTAL NUMBE CONFLUENCE TIME OF CON RAINFALL IN AREA-AVERAG AREA-AVERAG AREA-AVERAG EFFECTIVE S TOTAL STREAP PEAK FLOW R ** CONFLUEN STREAM NUMBER 1 1 2 RAINFALL IN CONFLUENCE ** PEAK FLOW STREAM NUMBER	MPUTE VARION ====================================	US CONFLUER ===================================	M FOR CON NCED STRE ======== ENDENT ST 26.11 1.57 2 7 35.00 E = ity Fp(HR) (INCH 38 0.25(28 0.25(90 0.25(75 0.27(DNCENTRAT TREAMS.	FLUENCE<<<<< AM VALUES< ====================================	Ae (ACRES) 56.5 56.8 61.8 35.0	HEADWATER NODE 211.00 215.00 218.00 223.00 HEADWATER NODE
>>>>DESIGN >>>>AND CO ========== TOTAL NUMBE CONFLUENCE TIME OF CON RAINFALL IN AREA-AVERAG AREA-AVERAG EFFECTIVE S TOTAL STREAM PEAK FLOW R ** CONFLUEN STREAM NUMBER 1 1 2 RAINFALL IN CONFLUENCE ** PEAK FLO STREAM NUMBER 1 1 1 1 2	MPUTE VARION ====================================	US CONFLUER ===================================	M FOR CON NCED STRE ======== ENDENT ST 26.11 1.57 2 7 35.00 E = ity Fp(HR) (INCH 38 0.25(28 0.25(90 0.25(75 0.27(DNCENTRAT TREAMS.	FLUENCE<<<<< AM VALUES< ====================================	Ae (ACRES) 56.5 56.8 61.8 35.0 Ae (ACRES) 89.2	HEADWATER NODE 211.00 215.00 218.00 223.00 HEADWATER NODE 223.00
>>>>DESIGN >>>>AND CO ========== TOTAL NUMBE CONFLUENCE TIME OF CON RAINFALL IN AREA-AVERAG AREA-AVERAG EFFECTIVE S TOTAL STREAM PEAK FLOW R ** CONFLUEN STREAM NUMBER 1 1 2 RAINFALL IN CONFLUENCE ** PEAK FLO STREAM NUMBER 1 1 1 1 2	MPUTE VARION ====================================	US CONFLUER ===================================	M FOR CON NCED STRE ======== ENDENT ST 26.11 1.57 2 7 35.00 E = ity Fp(HR) (INCH 38 0.25(28 0.25(90 0.25(75 0.27(DNCENTRAT TREAMS.	FLUENCE<<<<< AM VALUES< ====================================	Ae (ACRES) 56.5 56.8 61.8 35.0 Ae (ACRES) 89.2	HEADWATER NODE 211.00 215.00 218.00 223.00 HEADWATER NODE 223.00

```
GC10EX
```

```
1.528 0.26( 0.10) 0.39
          124.63 27.51
                                                 91.8
                                                         215.00
          118.28 32.46
                         1.390 0.26( 0.10) 0.39
    4
                                                 96.8
                                                         218.00
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 124.99 Tc(MIN.) = 27.22
EFFECTIVE AREA(ACRES) = 91.46 AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.26 AREA-AVERAGED Ap = 0.39
 TOTAL AREA(ACRES) = 96.8
 LONGEST FLOWPATH FROM NODE 215.00 TO NODE 227.00 =
                                                  3884.00 FEET.
****************************
 FLOW PROCESS FROM NODE 228.00 TO NODE 229.00 IS CODE = 21
>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
                               56.00 DOWNSTREAM(FEET) =
 ELEVATION DATA: UPSTREAM(FEET) =
                                                         54.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.586
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.978
 SUBAREA TC AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                   SCS SOIL AREA
                                      Fр
                                                     SCS
                                                          Tc
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                               1.80
                                                          10.99
                       В
                                       0.30
                                               0.500
                                                      56
                                               0.100
                               0.70
 COMMERCIAL
                       В
                                       0.30
                                                      56
                                                          8.59
                                                      56 11.64
 SCH00L
                       В
                               2.20
                                       0.30
                                               0.600
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.487
 SUBAREA RUNOFF(CFS) = 11.98
                    4.70 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                                                 11.98
**************************
 FLOW PROCESS FROM NODE 229.00 TO NODE 230.00 IS CODE = 62
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<
______
 UPSTREAM ELEVATION(FEET) = 54.00 DOWNSTREAM ELEVATION(FEET) = 53.00
 STREET LENGTH(FEET) = 580.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.58
   HALFSTREET FLOOD WIDTH(FEET) = 23.89
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.65
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
                                      0.96
```

```
STREET FLOW TRAVEL TIME(MIN.) = 5.85 Tc(MIN.) = 14.43
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.211
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                   Fp
                                             Aр
                                                   SCS
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                     В
                              2.80
                                      0.30
                                             0.500
 COMMERCIAL
                      В
                              1.40
                                     0.30
                                             0.100
                                                    56
                              1.90
                                      0.30
 SCHOOL
                      В
                                             0.600
                                                    56
                                             0.600
 SCHOOL
                      C
                              0.60
                                      0.25
                                                    69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.29
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.454
 SUBAREA AREA(ACRES) = 6.70 SUBAREA RUNOFF(CFS) = 12.53 EFFECTIVE AREA(ACRES) = 11.40 AREA-AVERAGED Fm(INCH/HR) = 0.14
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.47
                              PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                   11.4
                                                     21.27
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.60 HALFSTREET FLOOD WIDTH(FEET) = 25.18
 FLOW VELOCITY(FEET/SEC.) = 1.73 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 580.0 FT WITH ELEVATION-DROP = 1.0 FT, IS
                                                 12.9 CFS.
      WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 230.00
 LONGEST FLOWPATH FROM NODE 228.00 TO NODE 230.00 = 910.00 FEET.
****************************
 FLOW PROCESS FROM NODE 230.00 TO NODE 234.00 IS CODE = 31
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 53.00 DOWNSTREAM(FEET) = 52.50
 FLOW LENGTH(FEET) = 1212.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 45.0 INCH PIPE IS 33.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 2.39
 ESTIMATED PIPE DIAMETER(INCH) = 45.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 21.27
 PIPE TRAVEL TIME(MIN.) = 8.45 Tc(MIN.) = 22.88
 LONGEST FLOWPATH FROM NODE 228.00 TO NODE
                                       234.00 = 2122.00 FEET.
************************************
 FLOW PROCESS FROM NODE 234.00 TO NODE 234.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 22.88
 RAINFALL INTENSITY(INCH/HR) =
 AREA-AVERAGED Fm(INCH/HR) = 0.14
 AREA-AVERAGED fp(INCH/HR) = 0.30
 AREA-AVERAGED Ap = 0.47
 EFFECTIVE STREAM AREA(ACRES) =
 TOTAL STREAM AREA(ACRES) = 11.40
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                 21.27
*******************************
 FLOW PROCESS FROM NODE 231.00 TO NODE 232.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
```

```
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
 ELEVATION DATA: UPSTREAM(FEET) =
                                 56.00 DOWNSTREAM(FEET) =
                                                            54.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.978
 SUBAREA TC AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                     SCS SOIL AREA
                                        Fp
                                                  Aр
                                                        SCS
                                                             Tc
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
                                                             (MIN.)
 URBAN POOR COVER
 "TURF"
                                 0.30
                         C
                                         0.25
                                                 1.000
                                                         83
                                                              14.83
 COMMERCIAL
                         C
                                 0.60
                                         0.25
                                                 0.100
                                                         69
                                                              8.59
 SCH00L
                         В
                                 1.80
                                         0.30
                                                 0.600
                                                         56
                                                              11.64
                                                 0.600
 SCH00L
                         C
                                 5.30
                                         0.25
                                                         69
                                                              11.64
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.26
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.578
 SUBAREA RUNOFF(CFS) =
                       20.35
 TOTAL AREA(ACRES) =
                       8.00
                            PEAK FLOW RATE(CFS) =
                                                    20.35
**************************
 FLOW PROCESS FROM NODE 232.00 TO NODE
                                       233.00 IS CODE = 62
.....
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<
______
 UPSTREAM ELEVATION(FEET) = 54.00 DOWNSTREAM ELEVATION(FEET) = 53.00
 STREET LENGTH(FEET) = 345.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                    29.53
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.61
   HALFSTREET FLOOD WIDTH(FEET) = 25.73
   AVERAGE FLOW VELOCITY(FEET/SEC.) =
                                  2.29
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.41
 STREET FLOW TRAVEL TIME(MIN.) = 2.51 Tc(MIN.) =
                                                11.09
   10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.571
 SUBAREA LOSS RATE DATA(AMC II):
                      SCS SOIL
  DEVELOPMENT TYPE/
                                AREA
                                         Fp
                       GROUP
     LAND USE
                              (ACRES) (INCH/HR) (DECIMAL) CN
 URBAN POOR COVER
 "TURF"
                         C
                                 0.30
                                         0.25
                                                 1.000
                                                         83
 COMMERCIAL
                         C
                                 0.60
                                         0.25
                                                 0.100
                                                         69
 SCH00L
                         В
                                 0.50
                                         0.30
                                                 0.600
                                                         56
 SCHOOL
                         C
                                 7.00
                                         0.25
                                                 0.600
                                                         69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.579
                                SUBAREA RUNOFF(CFS) =
 SUBAREA AREA(ACRES) = 8.40
```

```
AREA-AVERAGED Fm(INCH/HR) = 0.15
 EFFECTIVE AREA(ACRES) =
                         16.40
 AREA-AVERAGED Fp(INCH/HR) = 0.26 AREA-AVERAGED Ap = 0.58
 TOTAL AREA(ACRES) =
                        16.4
                                   PEAK FLOW RATE(CFS) =
                                                           35.76
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.65 HALFSTREET FLOOD WIDTH(FEET) = 27.50
 FLOW VELOCITY(FEET/SEC.) = 2.42 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 345.0 FT WITH ELEVATION-DROP = 1.0 FT, IS
                                                        19.4 CFS,
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 233.00
 LONGEST FLOWPATH FROM NODE 231.00 TO NODE 233.00 =
                                                      675.00 FEET.
****************************
 FLOW PROCESS FROM NODE 233.00 TO NODE 234.00 IS CODE = 62
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 53.00 DOWNSTREAM ELEVATION(FEET) = 52.50
 STREET LENGTH(FEET) = 375.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                     49.62
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.81
   HALFSTREET FLOOD WIDTH(FEET) = 35.74
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.97
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
                                         1.60
 STREET FLOW TRAVEL TIME(MIN.) = 3.17 Tc(MIN.) =
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.226
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                     SCS SOIL
                                AREA
                                         Fp
                                                   Aр
                                                          SCS
                             (ACRES) (INCH/HR) (DECIMAL) CN
                       GROUP
      LAND USE
 URBAN POOR COVER
 "TURF"
                         C
                                 0.40
                                          0.25
                                                  1.000
                                                          83
 COMMERCIAL
                         C
                                 0.90
                                          0.25
                                                  0.100
                                                           69
 SCHOOL
                         В
                                 1.60
                                          0.30
                                                  0.600
                                                          56
 SCHOOL
                         C
                                11.90
                                          0.25
                                                  0.600
                                                           69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.26
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.580
 SUBAREA AREA(ACRES) = 14.80 SUBAREA RUNOFF(CFS) = 27.68
 EFFECTIVE AREA(ACRES) = 31.20
                                 AREA-AVERAGED Fm(INCH/HR) =
 AREA-AVERAGED Fp(INCH/HR) = 0.26 AREA-AVERAGED Ap = 0.58
 TOTAL AREA(ACRES) =
                        31.2
                                   PEAK FLOW RATE(CFS) =
                                                           58.34
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.86 HALFSTREET FLOOD WIDTH(FEET) = 37.99
 FLOW VELOCITY(FEET/SEC.) = 2.05 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 375.0 FT WITH ELEVATION-DROP = 0.5 FT, IS
                                                        30.4 CFS,
```

```
WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE
 LONGEST FLOWPATH FROM NODE 231.00 TO NODE 234.00 = 1050.00 FEET.
********************************
 FLOW PROCESS FROM NODE 234.00 TO NODE 234.00 IS CODE = 1
......
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 14.27
 RAINFALL INTENSITY(INCH/HR) =
 AREA-AVERAGED Fm(INCH/HR) = 0.15
 AREA-AVERAGED Fp(INCH/HR) = 0.26
 AREA-AVERAGED Ap = 0.58
 EFFECTIVE STREAM AREA(ACRES) =
 TOTAL STREAM AREA(ACRES) = 31.20
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                58.34
 ** CONFLUENCE DATA **
                 Tc Intensity Fp(Fm)
                                                 HEADWATER
  STREAM Q
                                            Ae
          (CFS) (MIN.) (INCH/HR) (INCH/HR)
  NUMBER
                                           (ACRES)
                                                 NODE
                22.88 1.698 0.30( 0.14) 0.47
                                           11.4
    1
          21.27
                                                     228.00
          58.34 14.27
                       2.226 0.26( 0.15) 0.58
    2
                                              31.2
                                                     231.00
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
                Tc Intensity Fp(Fm)
  STREAM
          Q
                                            Ae
                                                 HEADWATER
          (CFS) (MIN.) (INCH/HR) (INCH/HR)
                                           (ACRES)
  NUMBER
                                                  NODE
                      2.226 0.26( 0.15) 0.56
          76.09 14.27
                                           38.3
    1
                                                     231.00
          64.79 22.88
                       1.698 0.27( 0.15) 0.55
    2
                                              42.6
                                                     228.00
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 76.09 Tc(MIN.) = 14.27
EFFECTIVE AREA(ACRES) = 38.31 AREA-AVERAGED Fm(INCH/HR) = 0.15
 AREA-AVERAGED Fp(INCH/HR) = 0.26 AREA-AVERAGED Ap = 0.56
 TOTAL AREA(ACRES) = 42.6
 LONGEST FLOWPATH FROM NODE 228.00 TO NODE 234.00 = 2122.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 234.00 TO NODE 235.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<><
______
 ELEVATION DATA: UPSTREAM(FEET) = 52.50 DOWNSTREAM(FEET) = 52.00
 FLOW LENGTH(FEET) = 66.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 42.0 INCH PIPE IS 31.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 9.79
 ESTIMATED PIPE DIAMETER(INCH) = 42.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 76.09
 PIPE TRAVEL TIME(MIN.) = 0.11 Tc(MIN.) =
                                      14.38
 LONGEST FLOWPATH FROM NODE 228.00 TO NODE
                                      235.00 =
                                               2188.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 236.00 TO NODE 237.00 IS CODE = 21
------
```

```
>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
 ELEVATION DATA: UPSTREAM(FEET) =
                                 58.00 DOWNSTREAM(FEET) =
                                                            57.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) =
 SUBAREA TC AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                      SCS SOIL
                                AREA
                                         Fp
      LAND USE
                       GROUP
                             (ACRES) (INCH/HR) (DECIMAL) CN
                                                             (MIN.)
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         C
                                 2.80
                                         0.25
                                                 0.500
                                                         69
                                                              12.62
 COMMERCIAL
                         C
                                 0.60
                                         0.25
                                                 0.100
                                                         69
                                                              9.86
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.429
 SUBAREA RUNOFF(CFS) =
                        8.09
                            PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                       3.40
                                                     8.09
**************************
 FLOW PROCESS FROM NODE
                       237.00 TO NODE
                                        238.00 IS CODE = 62
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<
______
 UPSTREAM ELEVATION(FEET) = 57.00 DOWNSTREAM ELEVATION(FEET) = 55.00
 STREET LENGTH(FEET) = 436.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                    12.85
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.46
   HALFSTREET FLOOD WIDTH(FEET) = 17.07
   AVERAGE FLOW VELOCITY(FEET/SEC.) =
                                  2.10
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
                                       0.96
 STREET FLOW TRAVEL TIME(MIN.) = 3.46 Tc(MIN.) =
                                                13.33
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.315
 SUBAREA LOSS RATE DATA(AMC II):
                      SCS SOIL
  DEVELOPMENT TYPE/
                                AREA
                              (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
                       GROUP
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         C
                                 2.00
                                         0.25
                                                 0.500
                                                         69
 COMMERCIAL
                         C
                                 2.70
                                         0.25
                                                 0.100
                                                         69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.270
 SUBAREA AREA(ACRES) = 4.70
                               SUBAREA RUNOFF(CFS) =
 EFFECTIVE AREA(ACRES) =
                         8.10
                                 AREA-AVERAGED Fm(INCH/HR) =
                                                           0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.34
 TOTAL AREA(ACRES) =
                        8.1
                                  PEAK FLOW RATE(CFS) =
                                                          16.26
```

```
END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.49 HALFSTREET FLOOD WIDTH(FEET) = 18.79
 FLOW VELOCITY(FEET/SEC.) = 2.21 DEPTH*VELOCITY(FT*FT/SEC.) = 1.09
 LONGEST FLOWPATH FROM NODE 236.00 TO NODE 238.00 = 766.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 238.00 TO NODE 239.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<
______
 UPSTREAM ELEVATION(FEET) = 55.00 DOWNSTREAM ELEVATION(FEET) = 52.00
 STREET LENGTH(FEET) = 915.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.56
   HALFSTREET FLOOD WIDTH(FEET) = 22.80
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.16
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
                                     1.20
 STREET FLOW TRAVEL TIME(MIN.) = 7.06 Tc(MIN.) =
                                               20.39
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.814
 SUBAREA LOSS RATE DATA(AMC II):
                    SCS SOIL AREA
  DEVELOPMENT TYPE/
                                       Fр
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                       C
                                5.50
                                        0.25
                                                0.500
                                                       69
 COMMERCIAL
                       C
                                1.50
                                        0.25
                                                0.100
                                                       69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.414
 SUBAREA AREA(ACRES) = 7.00 SUBAREA RUNOFF(CFS) = 10.78 EFFECTIVE AREA(ACRES) = 15.10 AREA-AVERAGED FM(INCH/HR) =
                              AREA-AVERAGED fm(INCH/HR) = 0.09
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.37
 TOTAL AREA(ACRES) =
                       15.1
                                 PEAK FLOW RATE(CFS) =
                                                        23.39
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.57 HALFSTREET FLOOD WIDTH(FEET) = 23.35
 FLOW VELOCITY(FEET/SEC.) = 2.22 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE 236.00 TO NODE
                                        239.00 = 1681.00 FEET.
****************************
 FLOW PROCESS FROM NODE 239.00 TO NODE 240.00 IS CODE = 62
 ------
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<
______
 UPSTREAM ELEVATION(FEET) = 52.00 DOWNSTREAM ELEVATION(FEET) = 51.50
 STREET LENGTH(FEET) = 610.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
```

```
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.77
   HALFSTREET FLOOD WIDTH(FEET) = 33.54
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.48
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.14
 STREET FLOW TRAVEL TIME(MIN.) = 6.85 Tc(MIN.) = 27.24
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.537
 SUBAREA LOSS RATE DATA(AMC II):
                    SCS SOIL AREA
  DEVELOPMENT TYPE/
                                        Fp
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                        C
                               10.50
                                         0.25
                                                 0.500
                                                         69
 COMMERCIAL
                        C
                                4.00
                                         0.25
                                                 0.100
                                                         69
 URBAN POOR COVER
                                0.10
                        C
                                         0.25
                                                 1.000
                                                         83
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.394
 SUBAREA AREA(ACRES) = 14.60 SUBAREA RUNOFF(CFS) = 18.90
 EFFECTIVE AREA(ACRES) = 29.70 AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.38
 TOTAL AREA(ACRES) =
                       29.7
                                 PEAK FLOW RATE(CFS) =
                                                          38.52
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.81 HALFSTREET FLOOD WIDTH(FEET) = 35.61
 FLOW VELOCITY(FEET/SEC.) = 1.54 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 610.0 FT WITH ELEVATION-DROP = 0.5 FT, IS
                                                       25.7 CFS,
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 240.00
 LONGEST FLOWPATH FROM NODE 236.00 TO NODE 240.00 = 2291.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 240.00 TO NODE 241.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<><
______
 ELEVATION DATA: UPSTREAM(FEET) = 51.50 DOWNSTREAM(FEET) = 51.00
 FLOW LENGTH(FEET) = 131.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 36.0 INCH PIPE IS 29.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 6.30
 ESTIMATED PIPE DIAMETER(INCH) = 36.00
                                      NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                  38.52
 PIPE TRAVEL TIME(MIN.) = 0.35 Tc(MIN.) =
                                           27.58
 LONGEST FLOWPATH FROM NODE 236.00 TO NODE
                                           241.00 =
                                                     2422.00 FEET.
*****************************
 FLOW PROCESS FROM NODE 242.00 TO NODE 243.00 IS CODE = 21
```

```
>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
                                 54.00 DOWNSTREAM(FEET) =
 ELEVATION DATA: UPSTREAM(FEET) =
                                                              53.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.751
 SUBAREA TC AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                       SCS SOIL
                                 AREA
                                          Fp
                              (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
                        GROUP
                                                               (MIN.)
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         C
                                  1.70
                                           0.25
                                                   0.500
                                                           69
                                                               12.62
 COMMERCIAL
                         C
                                 0.50
                                           0.25
                                                   0.100
                                                           69
                                                                9.86
 URBAN POOR COVER
 "TURF"
                         C
                                 0.20
                                           0.25
                                                   1.000
                                                           83
                                                               17.03
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.458
 SUBAREA RUNOFF(CFS) =
                        5.69
 TOTAL AREA(ACRES) =
                       2.40 PEAK FLOW RATE(CFS) =
                                                      5.69
****************************
                        243.00 TO NODE
 FLOW PROCESS FROM NODE
                                         244.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<
______
 UPSTREAM ELEVATION(FEET) = 53.00 DOWNSTREAM ELEVATION(FEET) = 52.00
 STREET LENGTH(FEET) = 412.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                     11.96
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.49
   HALFSTREET FLOOD WIDTH(FEET) = 18.87
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.61
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.80
 STREET FLOW TRAVEL TIME(MIN.) = 4.26 Tc(MIN.) =
                                                  14.12
   10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.239
 SUBAREA LOSS RATE DATA(AMC II):
                       SCS SOIL
  DEVELOPMENT TYPE/
                                 AREA
                                          Fp
                        GROUP
                               (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
 RESIDENTIAL
                         C
                                 4.50
 "5-7 DWELLINGS/ACRE"
                                           0.25
                                                   0.500
                                                           69
 COMMERCIAL
                         C
                                 1.60
                                           0.25
                                                   0.100
                                                           69
 URBAN POOR COVER
 "TURF"
                                 0.40
                         C
                                           0.25
                                                   1.000
                                                           83
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.432
 SUBAREA AREA(ACRES) = 6.50
                                 SUBAREA RUNOFF(CFS) =
```

```
EFFECTIVE AREA(ACRES) =
                      8.90 AREA-AVERAGED Fm(INCH/HR) = 0.11
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.44
                             PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                     8.9
                                                   17.06
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.54 HALFSTREET FLOOD WIDTH(FEET) = 22.12
 FLOW VELOCITY(FEET/SEC.) = 1.81 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
      AND L = 412.0 FT WITH ELEVATION-DROP = 1.0 FT, IS
                                                14.3 CFS,
      WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 244.00
 LONGEST FLOWPATH FROM NODE 242.00 TO NODE 244.00 = 742.00 FEET.
****************************
 FLOW PROCESS FROM NODE 244.00 TO NODE 245.00 IS CODE = 31
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 52.00 DOWNSTREAM(FEET) = 51.00
 FLOW LENGTH(FEET) = 169.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 27.0 INCH PIPE IS 17.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 6.25
 ESTIMATED PIPE DIAMETER(INCH) = 27.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 17.06
 PIPE TRAVEL TIME(MIN.) = 0.45 Tc(MIN.) =
                                      14.57
 LONGEST FLOWPATH FROM NODE 242.00 TO NODE
                                      245.00 =
                                                911.00 FEET.
**************************
 FLOW PROCESS FROM NODE 246.00 TO NODE 247.00 IS CODE = 21
>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
 ELEVATION DATA: UPSTREAM(FEET) = 53.00 DOWNSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.329
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.541
 SUBAREA TC AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                   Fp
                                                SCS
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                             0.80
                                    0.25
                                           0.500
                                                  69
                     C
                                                      14.50
 COMMERCIAL
                                                  69 11.33
                     C
                             0.40
                                    0.25
                                           0.100
                                                  56 15.35
 SCHOOL
                      В
                            7.10
                                    0.30
                                           0.600
                                                69 15.35
                             9.60
                                           0.600
 SCHOOL
                     C
                                    0.25
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.27
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.584
 SUBAREA RUNOFF(CFS) = 38.38
TOTAL AREA(ACRES) = 17.90 PEAK FLOW RATE(CFS) =
**************************
 FLOW PROCESS FROM NODE 247.00 TO NODE
                                   248.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 52.50 DOWNSTREAM ELEVATION(FEET) = 52.00
 STREET LENGTH(FEET) = 587.00 CURB HEIGHT(INCHES) = 6.0
```

```
STREET HALFWIDTH(FEET) = 20.00
```

```
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                   50.07
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.88
   HALFSTREET FLOOD WIDTH(FEET) = 39.09
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.66
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.46
 STREET FLOW TRAVEL TIME(MIN.) = 5.90 Tc(MIN.) = 17.23
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.998
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                        Fp
                                                  Aр
                                                        SCS
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                        C
                                1.10
                                         0.25
                                                 0.500
                                                         69
 COMMERCIAL
                        C
                                1.30
                                         0.25
                                                 0.100
                                                         69
 SCHOOL
                        C
                               11.50
                                         0.25
                                                 0.600
                                                         69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.545
 SUBAREA AREA(ACRES) = 13.90 SUBAREA RUNOFF(CFS) = 23.29
 EFFECTIVE AREA(ACRES) = 31.80 AREA-AVERAGED Fm(INCH/HR) = 0.15
 AREA-AVERAGED Fp(INCH/HR) = 0.26 AREA-AVERAGED Ap = 0.57
 TOTAL AREA(ACRES) =
                       31.8
                                 PEAK FLOW RATE(CFS) =
                                                          52.93
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.90 HALFSTREET FLOOD WIDTH(FEET) = 39.89
 FLOW VELOCITY(FEET/SEC.) = 1.68 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 587.0 FT WITH ELEVATION-DROP = 0.5 FT, IS
                                                       24.4 CFS,
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 248.00
 LONGEST FLOWPATH FROM NODE 246.00 TO NODE 248.00 =
                                                     917.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 248.00 TO NODE 248.50 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 52.00 DOWNSTREAM(FEET) =
 FLOW LENGTH(FEET) = 1285.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 48.0 INCH PIPE IS 38.7 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.88
 ESTIMATED PIPE DIAMETER(INCH) = 48.00
                                      NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                 52.93
 PIPE TRAVEL TIME(MIN.) = 4.39 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 246.00 TO NODE
                                           248.50 =
                                                     2202.00 FEET.
*****************************
 FLOW PROCESS FROM NODE 248.50 TO NODE 248.50 IS CODE = 81
```

```
______
 MAINLINE Tc(MIN.) = 21.62
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.754
 SUBAREA LOSS RATE DATA(AMC II):
                   SCS SOIL
                                     Fp
  DEVELOPMENT TYPE/
                             AREA
                                              Ap
                                                    SCS
                     GROUP
                           (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                       C
                             16.30
                                      0.25
                                              0.500
                                                     69
 COMMERCIAL
                       C
                              7.10
                                      0.25
                                              0.100
                                                     69
 URBAN POOR COVER
 "TURF"
                              1.70
                                              1.000
                       C
                                      0.25
                                                     83
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.421
 SUBAREA AREA(ACRES) = 25.10
                           SUBAREA RUNOFF(CFS) = 37.25
 EFFECTIVE AREA(ACRES) = 56.90 AREA-AVERAGED Fm(INCH/HR) = 0.13
 AREA-AVERAGED Fp(INCH/HR) = 0.26 AREA-AVERAGED Ap = 0.50
 TOTAL AREA(ACRES) =
                     56.9
                              PEAK FLOW RATE(CFS) =
                                                     83.20
*******************************
 FLOW PROCESS FROM NODE 249.00 TO NODE 250.00 IS CODE = 21
------
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
 ELEVATION DATA: UPSTREAM(FEET) =
                              50.00 DOWNSTREAM(FEET) =
                                                       49.50
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.329
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.541
 SUBAREA TC AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                    SCS SOIL
                             AREA
                                      Fp
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
                                                        (MIN.)
 RESIDENTIAL
                       C
 "5-7 DWELLINGS/ACRE"
                              1.50
                                      0.25
                                              0.500
                                                     69
                                                         14.50
 COMMERCIAL
                       C
                              0.40
                                      0.25
                                              0.100
                                                     69
                                                         11.33
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.416
 SUBAREA RUNOFF(CFS) =
                     4.17
                     1.90 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                                                 4.17
*******************************
 FLOW PROCESS FROM NODE
                      250.00 TO NODE
                                    251.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 49.50 DOWNSTREAM ELEVATION(FEET) = 49.00
 STREET LENGTH(FEET) = 457.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
```

```
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                      6.46
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.46
   HALFSTREET FLOOD WIDTH(FEET) = 17.30
   AVERAGE FLOW VELOCITY(FEET/SEC.) =
                                   1.03
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 7.41 Tc(MIN.) =
                                                  18.74
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.904
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                       SCS SOIL
                                AREA
                        GROUP
                               (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         C
                                  2.00
                                           0.25
                                                   0.500
                                                           69
 COMMERCIAL
                         C
                                 0.80
                                           0.25
                                                   0.100
                                                           69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.386
 SUBAREA AREA(ACRES) = 2.80
                               SUBAREA RUNOFF(CFS) =
 EFFECTIVE AREA(ACRES) =
                         4.70
                                  AREA-AVERAGED Fm(INCH/HR) =
                                                            0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.40
 TOTAL AREA(ACRES) =
                         4.7
                                   PEAK FLOW RATE(CFS) =
                                                             7.63
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.49 HALFSTREET FLOOD WIDTH(FEET) = 18.48
 FLOW VELOCITY(FEET/SEC.) = 1.07 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE
                            249.00 TO NODE
                                          251.00 =
                                                        787.00 FEET.
***************************
 FLOW PROCESS FROM NODE 251.00 TO NODE
                                        252.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 49.00 DOWNSTREAM ELEVATION(FEET) = 47.00
 STREET LENGTH(FEET) = 920.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                     11.28
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.49
   HALFSTREET FLOOD WIDTH(FEET) = 18.79
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.53
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 9.99 Tc(MIN.) =
                                                  28.73
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.491
 SUBAREA LOSS RATE DATA(AMC II):
                      SCS SOIL
  DEVELOPMENT TYPE/
                                AREA
                                          Fp
                                                    Ap
                                                          SCS
                        GROUP
                              (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         C
                                 4.20
                                           0.25
                                                   0.500
                                                           69
 COMMERCIAL
                         C
                                  1.60
                                           0.25
                                                   0.100
                                                           69
                                           109
```

```
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.390
 SUBAREA AREA(ACRES) = 5.80
                              SUBAREA RUNOFF(CFS) =
 EFFECTIVE AREA(ACRES) = 10.50
                                 AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.39
 TOTAL AREA(ACRES) =
                        10.5
                                   PEAK FLOW RATE(CFS) =
                                                           13.16
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.52 HALFSTREET FLOOD WIDTH(FEET) = 20.73
 FLOW VELOCITY(FEET/SEC.) = 1.59 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE 249.00 TO NODE 252.00 = 1707.00 FEET.
****************************
 FLOW PROCESS FROM NODE 252.00 TO NODE 253.00 IS CODE = 62
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 47.00 DOWNSTREAM ELEVATION(FEET) = 46.00
 STREET LENGTH(FEET) = 756.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                     20.13
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.62
   HALFSTREET FLOOD WIDTH(FEET) = 25.85
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.55
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 8.14 Tc(MIN.) =
  10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.292
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                    SCS SOIL
                                AREA
                                         Fp
                                                   Aр
                                                         SCS
                             (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
                       GROUP
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         C
                                 9.10
                                          0.25
                                                  0.500
                                                          69
 COMMERCIAL
                         C
                                 3.50
                                          0.25
                                                  0.100
                                                          69
 URBAN POOR COVER
 "TURF"
                         C
                                 0.40
                                          0.25
                                                  1.000
                                                          83
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.408
 SUBAREA AREA(ACRES) = 13.00
                                SUBAREA RUNOFF(CFS) = 13.92
 EFFECTIVE AREA(ACRES) = 23.50
                                 AREA-AVERAGED Fm(INCH/HR) =
                                                            0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.40
 TOTAL AREA(ACRES) =
                        23.5
                                   PEAK FLOW RATE(CFS) =
                                                           25.20
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.66 HALFSTREET FLOOD WIDTH(FEET) = 27.92
 FLOW VELOCITY(FEET/SEC.) = 1.65 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 756.0 FT WITH ELEVATION-DROP = 1.0 FT, IS
                                                        23.0 CFS,
```

```
WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE
 LONGEST FLOWPATH FROM NODE 249.00 TO NODE 253.00 = 2463.00 FEET.
**********************************
 FLOW PROCESS FROM NODE 253.00 TO NODE 253.50 IS CODE = 62
-----
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<
UPSTREAM ELEVATION(FEET) = 46.00 DOWNSTREAM ELEVATION(FEET) = 45.50
 STREET LENGTH(FEET) = 172.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.63
   HALFSTREET FLOOD WIDTH(FEET) = 26.28
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.34
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.46
 STREET FLOW TRAVEL TIME(MIN.) = 1.23 Tc(MIN.) =
                                                38.10
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.268
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                        Fp
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                        C
                                8.20
                                         0.25
                                                 0.500
                                                         69
 COMMERCIAL
                        C
                                3.40
                                         0.25
                                                 0.100
                                                         69
 URBAN POOR COVER
                                0.20
                        C
                                         0.25
                                                 1.000
                                                         83
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.393
 SUBAREA AREA(ACRES) = 11.80 SUBAREA RUNOFF(CFS) = 12.42 EFFECTIVE AREA(ACRES) = 35.30 AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.40
 TOTAL AREA(ACRES) =
                       35.3
                                 PEAK FLOW RATE(CFS) =
                                                         37.12
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.66 HALFSTREET FLOOD WIDTH(FEET) = 27.86
 FLOW VELOCITY(FEET/SEC.) = 2.45 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 172.0 FT WITH ELEVATION-DROP = 0.5 FT, IS
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 253.50
 LONGEST FLOWPATH FROM NODE 249.00 TO NODE 253.50 = 2635.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 253.50 TO NODE 254.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<><
_______
```

```
ELEVATION DATA: UPSTREAM(FEET) = 45.50 DOWNSTREAM(FEET) =
                                                       45.00
 FLOW LENGTH(FEET) = 143.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 36.0 INCH PIPE IS 29.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 6.03
 ESTIMATED PIPE DIAMETER(INCH) = 36.00
                                    NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 37.12
 PIPE TRAVEL TIME(MIN.) = 0.39
                              Tc(MIN.) =
                                         38.49
 LONGEST FLOWPATH FROM NODE 249.00 TO NODE
                                         254.00 =
                                                  2778.00 FEET.
**************************
 FLOW PROCESS FROM NODE 255.00 TO NODE 256.00 IS CODE = 21
>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
                              50.00 DOWNSTREAM(FEET) =
 ELEVATION DATA: UPSTREAM(FEET) =
                                                        48.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.586
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.978
 SUBAREA TC AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                   SCS SOIL AREA
                                      Fp
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
                                                         (MIN.)
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                       C
                               2.60
                                       0.25
                                              0.500
                                                      69
                                                          10.99
 COMMERCIAL
                       C
                               1.40
                                       0.25
                                              0.100
                                                      69
                                                          8.59
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.360
 SUBAREA RUNOFF(CFS) = 10.40
 TOTAL AREA(ACRES) =
                     4.00 PEAK FLOW RATE(CFS) =
*******************************
 FLOW PROCESS FROM NODE 256.00 TO NODE 257.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 2 USED)<
______
 UPSTREAM ELEVATION(FEET) = 48.00 DOWNSTREAM ELEVATION(FEET) = 47.00
 STREET LENGTH(FEET) = 425.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 42.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 21.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                 17.67
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.60
   HALFSTREET FLOOD WIDTH(FEET) = 21.94
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.77
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.05
 STREET FLOW TRAVEL TIME(MIN.) = 4.01 Tc(MIN.) =
                                             12.60
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.391
 SUBAREA LOSS RATE DATA(AMC II):
```

```
GC10EX
```

```
DEVELOPMENT TYPE/
                       SCS SOIL
                                AREA
                                                          SCS
                              (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
                        GROUP
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         C
                                 4.60
                                          0.25
                                                   0.500
                                                           69
 COMMERCIAL
                         C
                                  2.40
                                          0.25
                                                   0.100
                                                           69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.363
 SUBAREA AREA(ACRES) = 7.00
                                SUBAREA RUNOFF(CFS) =
                                  AREA-AVERAGED Fm(INCH/HR) = 0.09
 EFFECTIVE AREA(ACRES) =
                         11.00
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.36
 TOTAL AREA(ACRES) =
                        11.0
                                   PEAK FLOW RATE(CFS) =
                                                            22.77
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.64 HALFSTREET FLOOD WIDTH(FEET) = 24.24
 FLOW VELOCITY(FEET/SEC.) = 1.88 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE 255.00 TO NODE
                                          257.00 =
                                                       755.00 FEET.
*****************************
 FLOW PROCESS FROM NODE 257.00 TO NODE 258.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 2 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 47.00 DOWNSTREAM ELEVATION(FEET) = 46.00
 STREET LENGTH(FEET) = 1528.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 42.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 21.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                     34.01
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.87
   HALFSTREET FLOOD WIDTH(FEET) = 46.19
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.21
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 21.10 Tc(MIN.) =
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.360
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                      SCS SOIL
                                AREA
                                         Fp
                                                   Ap
                                                          SCS
                        GROUP
                              (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         C
                                 13.00
                                          0.25
                                                   0.500
                                                           69
 COMMERCIAL
                         C
                                 6.40
                                          0.25
                                                   0.100
                                                           69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.368
 SUBAREA AREA(ACRES) = 19.40
                                SUBAREA RUNOFF(CFS) = 22.15
 EFFECTIVE AREA(ACRES) = 30.40
                                 AREA-AVERAGED Fm(INCH/HR) =
                                                            0.09
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.37
 TOTAL AREA(ACRES) =
                        30.4
                                   PEAK FLOW RATE(CFS) =
                                                            34.72
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.88 HALFSTREET FLOOD WIDTH(FEET) = 46.69
 FLOW VELOCITY(FEET/SEC.) = 1.21 DEPTH*VELOCITY(FT*FT/SEC.) =
```

```
*NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 1528.0 FT WITH ELEVATION-DROP = 1.0 FT, IS
                                                      26.7 CFS,
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE
                                                      258.00
 LONGEST FLOWPATH FROM NODE 255.00 TO NODE 258.00 = 2283.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 258.00 TO NODE 259.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<
______
 UPSTREAM ELEVATION(FEET) = 46.00 DOWNSTREAM ELEVATION(FEET) = 44.00
 STREET LENGTH(FEET) = 1287.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                   43.95
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.76
   HALFSTREET FLOOD WIDTH(FEET) = 33.17
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.03
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.55
 STREET FLOW TRAVEL TIME(MIN.) = 10.57 Tc(MIN.) = 44.27
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.164
 SUBAREA LOSS RATE DATA(AMC II):
                    SCS SOIL AREA
  DEVELOPMENT TYPE/
                                        Fp
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                        C
                               14.20
                                        0.25
                                                0.500
                                                        69
 COMMERCIAL
                        C
                                4.80
                                        0.25
                                                0.100
                                                        69
 URBAN POOR COVER
                                0.30
                                        0.25
                        C
                                                1.000
                                                        83
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.408
 SUBAREA AREA(ACRES) = 19.30 SUBAREA RUNOFF(CFS) = 18.44
 EFFECTIVE AREA(ACRES) = 49.70
                               AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.38
 TOTAL AREA(ACRES) =
                       49.7
                                 PEAK FLOW RATE(CFS) =
                                                         47.77
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.79 HALFSTREET FLOOD WIDTH(FEET) = 34.27
 FLOW VELOCITY(FEET/SEC.) = 2.06 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 1287.0 FT WITH ELEVATION-DROP = 2.0 FT, IS
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 259.00
 LONGEST FLOWPATH FROM NODE 255.00 TO NODE 259.00 = 3570.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 259.00 TO NODE 260.00 IS CODE = 31
------
```

>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<

```
>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 44.00 DOWNSTREAM(FEET) =
 FLOW LENGTH(FEET) = 135.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 36.0 INCH PIPE IS 26.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 8.69
 ESTIMATED PIPE DIAMETER(INCH) = 36.00
                                   NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 47.77
 PIPE TRAVEL TIME(MIN.) = 0.26
                             Tc(MIN.) =
                                       44.53
 LONGEST FLOWPATH FROM NODE 255.00 TO NODE
                                       260.00 =
                                                 3705.00 FEET.
****************************
 FLOW PROCESS FROM NODE 261.00 TO NODE 262.00 IS CODE = 21
>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
                              56.00 DOWNSTREAM(FEET) =
 ELEVATION DATA: UPSTREAM(FEET) =
                                                       54.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.586
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.978
 SUBAREA TC AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                   SCS SOIL AREA
                                     Fp
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
                                                        (MIN.)
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                      C
                              1.70
                                      0.25
                                                        10.99
                                             0.500
                                                    69
 COMMERCIAL
                      C
                              3.00
                                      0.25
                                             0.100
                                                    69
                                                        8.59
                                                    69
 SCHOOL
                      C
                              1.10
                                      0.25
                                             0.600
                                                        11.64
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.312
 SUBAREA RUNOFF(CFS) = 15.14
                     5.80 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
****************************
 FLOW PROCESS FROM NODE 262.00 TO NODE 263.00 IS CODE = 62
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 54.00 DOWNSTREAM ELEVATION(FEET) = 52.00
 STREET LENGTH(FEET) = 704.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                26.02
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.59
   HALFSTREET FLOOD WIDTH(FEET) = 24.75
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.19
```

```
GC10EX
```

```
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
                                         1.30
 STREET FLOW TRAVEL TIME(MIN.) = 5.37 Tc(MIN.) =
                                                 13.95
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.255
 SUBAREA LOSS RATE DATA(AMC II):
                      SCS SOIL
  DEVELOPMENT TYPE/
                                AREA
                                         Fp
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                                 4.30
                         C
                                          0.25
                                                  0.500
                                                           69
 COMMERCIAL
                         C
                                 2.30
                                          0.25
                                                  0.100
                                                          69
 URBAN POOR COVER
 "TURF"
                         C
                                 0.20
                                          0.25
                                                  1.000
                                                          83
 SCHOOL
                         C
                                 4.40
                                          0.25
                                                  0.600
                                                          69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.466
 SUBAREA AREA(ACRES) = 11.20 SUBAREA RUNOFF(CFS) = 21.55
 EFFECTIVE AREA(ACRES) = 17.00
                                AREA-AVERAGED Fm(INCH/HR) =
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.41
 TOTAL AREA(ACRES) =
                        17.0
                                  PEAK FLOW RATE(CFS) =
                                                           32.92
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.64 HALFSTREET FLOOD WIDTH(FEET) = 26.82
 FLOW VELOCITY(FEET/SEC.) = 2.35 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 704.0 FT WITH ELEVATION-DROP = 2.0 FT, IS
                                                         22.0 CFS,
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 263.00
 LONGEST FLOWPATH FROM NODE 261.00 TO NODE 263.00 =
                                                      1034.00 FEET.
****************************
 FLOW PROCESS FROM NODE 263.00 TO NODE 264.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 52.00 DOWNSTREAM ELEVATION(FEET) = 48.00
 STREET LENGTH(FEET) = 2045.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                     46.44
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.75
   HALFSTREET FLOOD WIDTH(FEET) = 32.44
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.24
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.68
 STREET FLOW TRAVEL TIME(MIN.) = 15.19 Tc(MIN.) =
                                                 29.14
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.479
 SUBAREA LOSS RATE DATA(AMC II):
                     SCS SOIL
  DEVELOPMENT TYPE/
                                AREA
                                         Fp
      LAND USE
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         C
                                14.90
                                                  0.500
                                          0.25
                                                          69
```

```
GC10EX
 COMMERCIAL
                       C
                               5.80
                                       0.25
                                              0.100
                                                      69
 URBAN POOR COVER
 "TURF"
                       C
                               0.90
                                       0.25
                                              1.000
                                                      83
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.413
 SUBAREA AREA(ACRES) = 21.60 SUBAREA RUNOFF(CFS) = 26.74
 EFFECTIVE AREA(ACRES) = 38.60
                              AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.41
 TOTAL AREA(ACRES) =
                      38.6
                                PEAK FLOW RATE(CFS) =
                                                       47.78
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.76 HALFSTREET FLOOD WIDTH(FEET) = 32.81
 FLOW VELOCITY(FEET/SEC.) = 2.26 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 2045.0 FT WITH ELEVATION-DROP = 4.0 FT, IS
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 264.00
 LONGEST FLOWPATH FROM NODE 261.00 TO NODE 264.00 = 3079.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 264.00 TO NODE 265.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 48.00 DOWNSTREAM(FEET) = 47.00
 FLOW LENGTH(FEET) = 200.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 39.0 INCH PIPE IS 27.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 7.51
 ESTIMATED PIPE DIAMETER(INCH) = 39.00
                                    NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 47.78
 PIPE TRAVEL TIME(MIN.) = 0.44
                              Tc(MIN.) =
                                         29.58
 LONGEST FLOWPATH FROM NODE 261.00 TO NODE
                                         265.00 =
                                                  3279.00 FEET.
**************************
 FLOW PROCESS FROM NODE 266.00 TO NODE 267.00 IS CODE = 21
-----
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
------
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
 ELEVATION DATA: UPSTREAM(FEET) =
                              50.00 DOWNSTREAM(FEET) =
                                                        49.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.862
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.751
 SUBAREA TC AND LOSS RATE DATA(AMC II):
                   SCS SOIL AREA
  DEVELOPMENT TYPE/
                                      Fp
                                               Aр
                                                     SCS
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
                                                         (MIN.)
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                       C
                               5.30
                                       0.25
                                              0.500
                                                      69
                                                          12.62
 COMMERCIAL
                       C
                               1.90
                                       0.25
                                              0.100
                                                      69
                                                          9.86
 URBAN POOR COVER
 "TURF"
                       C
                               0.40
                                       0.25
                                              1.000
                                                      83 17.03
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.426
 SUBAREA RUNOFF(CFS) =
                      18.09
                      7.60 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                                                 18.09
```

FLOW PROCESS FROM NODE 267.00 TO NODE 268.00 IS CODE = 62

```
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 49.00 DOWNSTREAM ELEVATION(FEET) = 48.00
 STREET LENGTH(FEET) = 513.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                   29.56
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.65
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.98
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 4.31 Tc(MIN.) = 14.17
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.235
 SUBAREA LOSS RATE DATA(AMC II):
                    SCS SOIL
  DEVELOPMENT TYPE/
                               AREA
                                        Fp
                                                  Ap
                                                        SCS
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                        C
                                7.60
                                         0.25
                                                 0.500
                                                         69
 COMMERCIAL
                        C
                                3.60
                                         0.25
                                                 0.100
                                                         69
 URBAN POOR COVER
 "TURF"
                                0.70
                                                 1.000
                        C
                                         0.25
                                                         83
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.408
 SUBAREA AREA(ACRES) = 11.90 SUBAREA RUNOFF(CFS) = 22.84
 EFFECTIVE AREA(ACRES) = 19.50
                               AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.42
 TOTAL AREA(ACRES) =
                       19.5
                                 PEAK FLOW RATE(CFS) =
                                                         37.39
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.70 HALFSTREET FLOOD WIDTH(FEET) = 30.00
 FLOW VELOCITY(FEET/SEC.) = 2.12 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 513.0 FT WITH ELEVATION-DROP = 1.0 FT, IS
                                                       24.2 CFS,
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 268.00
 LONGEST FLOWPATH FROM NODE 266.00 TO NODE 268.00 =
                                                      843.00 FEET.
****************************
 FLOW PROCESS FROM NODE 268.00 TO NODE 269.00 IS CODE = 62
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
------
 UPSTREAM ELEVATION(FEET) = 48.00 DOWNSTREAM ELEVATION(FEET) = 47.00
 STREET LENGTH(FEET) = 809.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
```

```
INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                       50.04
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.83
   HALFSTREET FLOOD WIDTH(FEET) = 36.41
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.91
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
                                         1.58
 STREET FLOW TRAVEL TIME(MIN.) = 7.05 Tc(MIN.) =
                                                   21.22
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.773
 SUBAREA LOSS RATE DATA(AMC II):
                       SCS SOIL
  DEVELOPMENT TYPE/
                                 AREA
                                           Fp
      LAND USE
                        GROUP
                              (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                          C
                                 10.20
                                            0.25
                                                    0.500
                                                             69
 COMMERCIAL
                          C
                                  5.80
                                            0.25
                                                    0.100
                                                             69
 URBAN POOR COVER
 "TURF"
                          C
                                  0.70
                                            0.25
                                                    1.000
                                                            83
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.382
 SUBAREA AREA(ACRES) = 16.70
                               SUBAREA RUNOFF(CFS) =
 EFFECTIVE AREA(ACRES) = 36.20
                                  AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.40
 TOTAL AREA(ACRES) =
                         36.2
                                    PEAK FLOW RATE(CFS) =
                                                             54.51
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.85 HALFSTREET FLOOD WIDTH(FEET) = 37.57
 FLOW VELOCITY(FEET/SEC.) = 1.96 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
        AND L = 809.0 FT WITH ELEVATION-DROP = 1.0 FT, IS
                                                          28.9 CFS,
        WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 269.00
 LONGEST FLOWPATH FROM NODE 266.00 TO NODE 269.00 =
                                                       1652.00 FEET.
************************************
                         269.00 TO NODE
 FLOW PROCESS FROM NODE
                                          270.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 47.00 DOWNSTREAM ELEVATION(FEET) = 46.00
 STREET LENGTH(FEET) = 1458.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
```

```
***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 1.03
   HALFSTREET FLOOD WIDTH(FEET) = 46.29
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.64
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.68
 STREET FLOW TRAVEL TIME(MIN.) = 14.83 Tc(MIN.) =
                                             36.05
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.309
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                      Fp
                                               Aр
                                                     SCS
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                      C
                              11.00
                                       0.25
                                              0.500
                                                      69
 COMMERCIAL
                       C
                              15.30
                                       0.25
                                              0.100
                                                      69
 URBAN POOR COVER
 "TURF"
                              0.80
                                       0.25
                                              1.000
                       C
                                                      83
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.289
 SUBAREA AREA(ACRES) = 27.10 SUBAREA RUNOFF(CFS) = 30.16
 EFFECTIVE AREA(ACRES) = 63.30 AREA-AVERAGED Fm(INCH/HR) =
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.35
                               PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                   63.3
                                                      69.54
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 1.03 HALFSTREET FLOOD WIDTH(FEET) = 46.29
 FLOW VELOCITY(FEET/SEC.) = 1.64 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 1458.0 FT WITH ELEVATION-DROP = 1.0 FT, IS
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 270.00
 LONGEST FLOWPATH FROM NODE 266.00 TO NODE 270.00 = 3110.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 270.00 TO NODE 271.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 46.00 DOWNSTREAM(FEET) = 45.00
 FLOW LENGTH(FEET) = 218.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 45.0 INCH PIPE IS 33.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 7.96
 ESTIMATED PIPE DIAMETER(INCH) = 45.00
                                   NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 69.54
 PIPE TRAVEL TIME(MIN.) = 0.46 Tc(MIN.) =
                                        36.51
 LONGEST FLOWPATH FROM NODE 266.00 TO NODE
                                        271.00 =
                                                  3328.00 FEET.
**************************
 FLOW PROCESS FROM NODE 272.00 TO NODE 273.00 IS CODE = 21
>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
 ELEVATION DATA: UPSTREAM(FEET) =
                               45.00 DOWNSTREAM(FEET) =
                                                        44.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.862
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.751
 SUBAREA TC AND LOSS RATE DATA(AMC II):
                   SCS SOIL AREA
  DEVELOPMENT TYPE/
                                      Fp
                                               Aр
                                                     SCS Tc
```

```
GROUP
      LAND USE
                               (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         C
                                 4.00
                                          0.25
                                                  0.500
                                                          69
                                                               12.62
 COMMERCIAL
                         C
                                 1.80
                                          0.25
                                                  0.100
                                                          69
                                                               9.86
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.376
 SUBAREA RUNOFF(CFS) =
                       13.87
 TOTAL AREA(ACRES) =
                       5.80 PEAK FLOW RATE(CFS) =
                                                     13.87
**************************
 FLOW PROCESS FROM NODE 273.00 TO NODE 274.00 IS CODE = 62
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 44.00 DOWNSTREAM ELEVATION(FEET) = 42.00
 STREET LENGTH(FEET) = 863.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.58
   HALFSTREET FLOOD WIDTH(FEET) = 23.83
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.91
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.10
 STREET FLOW TRAVEL TIME(MIN.) = 7.53 Tc(MIN.) = 17.39
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.987
 SUBAREA LOSS RATE DATA(AMC II):
                      SCS SOIL
  DEVELOPMENT TYPE/
                                AREA
                                         Fp
                       GROUP
                             (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         C
                                 3.20
                                          0.25
                                                  0.500
                                                           69
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         D
                                 2.80
                                          0.20
                                                  0.500
                                                          75
 COMMERCIAL
                         C
                                 0.80
                                          0.25
                                                  0.100
                                                           69
 COMMERCIAL
                         D
                                 1.50
                                          0.20
                                                  0.100
                                                          75
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.23
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.389
 SUBAREA AREA(ACRES) = 8.30 SUBAREA RUNOFF(CFS) = 14.19
 EFFECTIVE AREA(ACRES) = 14.10
                                 AREA-AVERAGED Fm(INCH/HR) = 0.09
 AREA-AVERAGED Fp(INCH/HR) = 0.24 AREA-AVERAGED Ap = 0.38
 TOTAL AREA(ACRES) =
                        14.1
                                   PEAK FLOW RATE(CFS) =
                                                           24.07
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.60 HALFSTREET FLOOD WIDTH(FEET) = 24.93
 FLOW VELOCITY(FEET/SEC.) = 1.99 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 863.0 FT WITH ELEVATION-DROP = 2.0 FT, IS
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 274.00
 LONGEST FLOWPATH FROM NODE 272.00 TO NODE
                                          274.00 = 1193.00 FEET.
```

```
****************************
 FLOW PROCESS FROM NODE 274.00 TO NODE
                                 278.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 42.00 DOWNSTREAM(FEET) = 40.00
 FLOW LENGTH(FEET) = 494.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 30.0 INCH PIPE IS 23.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.75
 ESTIMATED PIPE DIAMETER(INCH) = 30.00
                               NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                 24.07
 PIPE TRAVEL TIME(MIN.) = 1.43 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 272.00 TO NODE
                                   278.00 =
                                            1687.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 278.00 TO NODE 278.00 IS CODE = 1
......
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 18.82
 RAINFALL INTENSITY(INCH/HR) =
 AREA-AVERAGED Fm(INCH/HR) = 0.09
 AREA-AVERAGED Fp(INCH/HR) = 0.24
 AREA-AVERAGED Ap = 0.38
 EFFECTIVE STREAM AREA(ACRES) =
 TOTAL STREAM AREA(ACRES) = 14.10
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                              24.07
*******************************
 FLOW PROCESS FROM NODE 275.00 TO NODE 276.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
 ELEVATION DATA: UPSTREAM(FEET) =
                           46.00 DOWNSTREAM(FEET) =
                                                 44.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.978
 SUBAREA TC AND LOSS RATE DATA(AMC II):
                 SCS SOIL AREA
 DEVELOPMENT TYPE/
                                 Fp
                                         Aр
                                              SCS
                   GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
    LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                    C
                           1.20
                                  0.25
                                         0.500
                                               69
                                                   10.99
 COMMERCIAL
                    C
                           0.30
                                  0.25
                                         0.100
                                               69
                                                  8.59
 URBAN POOR COVER
 "TURF"
                           0.20
                                  0.25
                                         1.000
                    C
                                               83 14.83
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.488
 SUBAREA RUNOFF(CFS) = 4.37
                   1.70 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                                            4.37
*******************************
 FLOW PROCESS FROM NODE 276.00 TO NODE 277.00 IS CODE = 62
______
```

```
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 44.00 DOWNSTREAM ELEVATION(FEET) = 42.00
 STREET LENGTH(FEET) = 453.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                    7.43
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.39
   HALFSTREET FLOOD WIDTH(FEET) = 13.79
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.81
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 4.16 Tc(MIN.) = 12.75
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.374
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                               AREA
                                        Fp
                                                 Aр
                                                        SCS
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                        C
                                2.00
                                         0.25
                                                 0.500
                                                         69
 COMMERCIAL
                        C
                                0.70
                                         0.25
                                                 0.100
                                                        69
 URBAN POOR COVER
 "TURF"
                                0.30
                                                 1.000
                        C
                                         0.25
                                                        83
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.457
 SUBAREA AREA(ACRES) = 3.00 SUBAREA RUNOFF(CFS) =
 EFFECTIVE AREA(ACRES) = 4.70 AREA-AVERAGED FM(INCH/HR) =
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.47
 TOTAL AREA(ACRES) =
                        4.7
                                 PEAK FLOW RATE(CFS) =
                                                          9.55
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.42 HALFSTREET FLOOD WIDTH(FEET) = 15.27
 FLOW VELOCITY(FEET/SEC.) = 1.92 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE
                          275.00 TO NODE
                                        277.00 =
                                                     783.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 277.00 TO NODE 278.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<
______
 UPSTREAM ELEVATION(FEET) = 42.00 DOWNSTREAM ELEVATION(FEET) = 40.00
 STREET LENGTH(FEET) = 735.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
```

```
Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                        17.62
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.54
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.90
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
                                           1.02
 STREET FLOW TRAVEL TIME(MIN.) = 6.45 Tc(MIN.) =
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.878
 SUBAREA LOSS RATE DATA(AMC II):
                       SCS SOIL
  DEVELOPMENT TYPE/
                                  AREA
                                           Fp
                                                      Aр
                                                            SCS
      LAND USE
                        GROUP
                               (ACRES) (INCH/HR) (DECIMAL)
                                                            CN
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                          C
                                   2.30
                                            0.25
                                                     0.500
                                                             69
 RESIDENTIAL
                                                             75
 "5-7 DWELLINGS/ACRE"
                          D
                                   5.50
                                            0.20
                                                     0.500
 COMMERCIAL
                          C
                                   0.90
                                            0.25
                                                     0.100
                                                             69
 COMMERCIAL
                          D
                                   0.80
                                            0.20
                                                     0.100
                                                             75
 URBAN POOR COVER
 "TURF"
                          C
                                   0.30
                                            0.25
                                                     1.000
                                                             83
 URBAN POOR COVER
 "TURF"
                          D
                                   0.20
                                            0.20
                                                     1.000
                                                             87
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.22
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.457
 SUBAREA AREA(ACRES) = 10.00
                                  SUBAREA RUNOFF(CFS) =
 EFFECTIVE AREA(ACRES) = 14.70
                                   AREA-AVERAGED Fm(INCH/HR) =
 AREA-AVERAGED Fp(INCH/HR) = 0.23 AREA-AVERAGED Ap = 0.46
 TOTAL AREA(ACRES) =
                         14.7
                                     PEAK FLOW RATE(CFS) =
                                                              23.46
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.58 HALFSTREET FLOOD WIDTH(FEET) = 24.08
 FLOW VELOCITY(FEET/SEC.) = 2.09 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
        AND L = 735.0 FT WITH ELEVATION-DROP = 2.0 FT, IS
                                                           19.5 CFS,
        WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE
                                                             278.00
 LONGEST FLOWPATH FROM NODE
                           275.00 TO NODE
                                            278.00 =
                                                         1518.00 FEET.
************************************
 FLOW PROCESS FROM NODE
                         278.00 TO NODE
                                          278.00 IS CODE =
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) =
                               19.20
 RAINFALL INTENSITY(INCH/HR) =
 AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.23
 AREA-AVERAGED Ap = 0.46
 EFFECTIVE STREAM AREA(ACRES) =
 TOTAL STREAM AREA(ACRES) =
                               14.70
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                        23.46
 ** CONFLUENCE DATA **
  STREAM
                     Tc
                         Intensity
                                     Fp(Fm)
                                               Ap
                                                      Аe
                                                            HEADWATER
             (CFS) (MIN.) (INCH/HR) (INCH/HR)
  NUMBER
                                                    (ACRES)
                                                              NODE
```

							14.1 14.7		
RAINFALL I CONFLUENCE	_			-	ION RA	TIO			
** PEAK FL	OW RATE	TARIF **							
STRFAM	0	Tc	Intensit	ty Fp((Fm)	Ар	Ae	HEAD	WATER
NUMBER	(CFS)	(MIN.)	(INCH/H	R) (INCH	I/HR)		(ACRES)	NC	DE
1	47.35	18.82	1.899	9 0.23(0.10)	0.42	(ACRES) 28.5 28.8		272.00
2	47.25	19.20	1.878	8 0.23(0.10)	0.42	28.8		275.00
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 47.35 Tc(MIN.) = 18.82 EFFECTIVE AREA(ACRES) = 28.51 AREA-AVERAGED Fm(INCH/HR) = 0.10 AREA-AVERAGED Fp(INCH/HR) = 0.23 AREA-AVERAGED Ap = 0.42 TOTAL AREA(ACRES) = 28.8 LONGEST FLOWPATH FROM NODE 272.00 TO NODE 278.00 = 1687.00 FEET.									
******	*****	******	******	******	*****	****	******	****	*****
FLOW PROCE									
>>>>>COMPU									
		-			-		FLOW)<<<<	<	
	======	======				====:			
FLOW LENGT DEPTH OF F PIPE-FLOW ESTIMATED	H(FEET) LOW IN VELOCITY PIPE DIA	= 156.0 36.0 INC (FEET/SEO METER(INC	00 MAN H PIPE 1 C.) = CH) = 3	NNING'S IS 27.6 8.14	N = 0	.013 S	M(FEET) = PIPES = 1		0.00
PIPE-FLOW(
DIDE TRAVE	. TTME/M	TN: \	0 22	T - / MTN		40.4			
PIPE TRAVE	L TIME(M	IN.) =	0.32	Tc(MIN	l.) =	19.14	4 20 = 182	13 00	FFFT
PIPE TRAVE LONGEST FL	L TIME(M	IN.) = ROM NODE	0.32 272	Tc(MIN 00 TO N	1.) = IODE	19.14 279.0	1 90 = 184	13.00) FEET.
*******	*****	******	*****	******	*****	****	*****	****	
**************************************	********	******* NODE :	****** 280.00	******* TO NODE	****** 281	***** .00 I	********* S CODE = 2	**** 21	*****
********** FLOW PROCE >>>>RATIO >>USE TIME INITIAL SU	******** SS FROM NAL METH -OF-CONC	******** NODE	******** 280.00 1 AL SUBAR N NOMOGR	******** TO NODE REA ANAL RAPH FOR 330	281 YSIS<<- R INITI/	***** .00 I! <<< AL SUI	**************************************	***** 21 	******
********** FLOW PROCE >>>>RATIO >>USE TIME	******** SS FROM NAL METH -OF-CONC	******** NODE	******** 280.00 1 AL SUBAR N NOMOGR	******** TO NODE REA ANAL RAPH FOR 330	281 YSIS<<- R INITI/	***** .00 I! <<< AL SUI	**************************************	***** 21 	******
********* FLOW PROCE >>>>RATIO >>USE TIME ======== INITIAL SU ELEVATION TC = K*[(L SUBAREA AN * 10 YEAR	******* SS FROM NAL METH -OF-CONC ====== BAREA FL DATA: UP ENGTH** ALYSIS UE RAINFAL	********* NODE : OD INITI ENTRATION ====== OW-LENGTN STREAM(FI 3.00)/(EI SED MININ L INTENS:	******** 280.00 AL SUBAF N NOMOGF ====== H(FEET) EET) = LEVATION UM Tc(N ITY(INC)	******** TO NODE REA ANAL RAPH FOR ======= = 330 40.0 N CHANGE MIN.) = H/HR) =	281 281 291 275IS<< R INITIA ====== DO DOWN E)]**0.2 11.32	***** .00 IS <<< AL SUI =====: NSTRE	**************************************	***** 21 	******
********* FLOW PROCE >>>>RATIO >>USE TIME ======= INITIAL SU ELEVATION TC = K*[(L SUBAREA AN	******* SS FROM NAL METHO -OF-CONC BAREA FLO DATA: UP ENGTH** ALYSIS UE RAINFAL AND LOS	******** NODE OD INITIA ENTRATION ======= OW-LENGTN STREAM(FI 3.00)/(EI SED MININ L INTENS: S RATE DA SC:	******* 280.00 TO	******** TO NODE REA ANAL RAPH FOR ======= 40.0 N CHANGE MIN.) = H/HR) = II): AREA	********* 281 YSIS<< R INITIA 0.00 00 DOWN 11.32 2.541 Fp	****** .00 IS <<< AL SUI =====: NSTREA 20	**************************************	***** 21 =====	******** 39.50
********* FLOW PROCE >>>>RATIO >>USE TIME ======== INITIAL SU ELEVATION TC = K*[(L SUBAREA AN * 10 YEAR SUBAREA TC DEVELOPME LAND	******* SS FROM NAL METHO BAREA FLO DATA: UP ENGTH** IALYSIS UE RAINFAL AND LOSE NT TYPE/ USE	******** NODE OD INITIA ENTRATION ======= OW-LENGTN STREAM(FI 3.00)/(EI SED MININ L INTENS: S RATE DA SC:	******* 280.00 TO	******** TO NODE REA ANAL RAPH FOR ======= = 330 40.0 N CHANGE MIN.) = H/HR) = II):	********* 281 YSIS<< R INITIA 0.00 00 DOWN 11.32 2.541 Fp	****** .00 IS <<< AL SUI =====: NSTREA 20	**************************************	***** 21 =====	*******
********* FLOW PROCE >>>>RATIO >>USE TIME ======= INITIAL SU ELEVATION TC = K*[(L SUBAREA AN * 10 YEAR SUBAREA TC DEVELOPME LAND RESIDENTIA	******* SS FROM NAL METHO BAREA FLO DATA: UP ENGTH** ALYSIS UE RAINFAL AND LOSE NT TYPE/ USE L	******** NODE OD INITIA ENTRATION STREAM(FI 3.00)/(EI SED MININ L INTENS: S RATE DA SC: GI	******* 280.00 TO	******** FO NODE REA ANAL RAPH FOR ======= 40.0 N CHANGE MIN.) = H/HR) = II): AREA (ACRES)	281	****** .00 IS <<< AL SUI ===== NSTRE 20 29 /HR)	*********** S CODE = 2 BAREA<< ===================================	***** 21 SCS CN	******** 39.50 Tc (MIN.)
********* FLOW PROCE >>>>RATIO >>USE TIME ======== INITIAL SU ELEVATION TC = K*[(L SUBAREA AN * 10 YEAR SUBAREA TC DEVELOPME LAND	******* SS FROM NAL METHOF-CONC BAREA FL DATA: UP ENGTH** ALYSIS U RAINFAL AND LOS: NT TYPE/ USE L INGS/ACR	******** NODE OD INITIA ENTRATION STREAM(FI 3.00)/(EI SED MININ L INTENS: S RATE DA SC: GI	******* 280.00 TO	******** TO NODE REA ANAL RAPH FOR ======= 40.0 N CHANGE MIN.) = H/HR) = II): AREA	281	****** .00 IS <<< AL SUI =====: NSTREA 20	**************************************	***** 21 =====	******** 39.50
********* FLOW PROCE >>>>RATIO >>USE TIME ======== INITIAL SU ELEVATION TC = K*[(L SUBAREA AN * 10 YEAR SUBAREA TC DEVELOPME LAND RESIDENTIA "5-7 DWELL	******* SS FROM NAL METH -OF-CONC BAREA FL DATA: UP ENGTH** ALYSIS U RAINFAL AND LOS: NT TYPE/ USE L INGS/ACR L	******** NODE OD INITIA ENTRATION STREAM(F) 3.00)/(E) SED MININ L INTENS S RATE DA SC: GI E"	******* 280.00 TO	******** FO NODE REA ANAL RAPH FOR ======= 40.0 N CHANGE MIN.) = H/HR) = II): AREA (ACRES)	281	****** .00 IS <<< AL SUI ===== NSTRE 20 29 /HR)	*********** S CODE = 2 BAREA<< ===================================	***** 21 SCS CN	Tc (MIN.)
********* FLOW PROCE >>>> RATIO >>USE TIME ======= INITIAL SU ELEVATION TC = K*[(L SUBAREA AN * 10 YEAR SUBAREA TC DEVELOPME LAND RESIDENTIA "5-7 DWELL RESIDENTIA "5-7 DWELL COMMERCIAL	******* SS FROM NAL METHO -OF-CONC BAREA FLO DATA: UP ENGTH** IALYSIS US RAINFAL AND LOSS NT TYPE/ USE IL INGS/ACR IL INGS/ACR	******** NODE OD INITIA ENTRATION STREAM(F) 3.00)/(E) SED MININ L INTENS S RATE DA SC: GI E"	******* 280.00 TO	******** FO NODE REA ANAL RAPH FOR = 330 40.0 N CHANGE MIN.) = H/HR) = II): AREA (ACRES) 0.30 0.40 0.10	281	****** .00 IS<<< AL SUI ===== NSTRE 20 29 /HR) .25 .20 .25	************ S CODE = 2 BAREA<< ======== AM(FEET) = Ap (DECIMAL) 0.500 0.500 0.100	****** 21 SCS CN 69 75 69	Tc (MIN.) 14.50 14.50 11.33
********* FLOW PROCE >>>>RATIO >>USE TIME ======= INITIAL SU ELEVATION TC = K*[(L SUBAREA AN * 10 YEAR SUBAREA TC DEVELOPME LAND RESIDENTIA "5-7 DWELL RESIDENTIA "5-7 DWELL COMMERCIAL COMMERCIAL	******* SS FROM NAL METH -OF-CONC BAREA FL DATA: UP ENGTH** IALYSIS U RAINFAL AND LOS: NT TYPE/ USE IL INGS/ACR IL INGS/ACR	******** NODE OD INITIA ENTRATION STREAM(F) 3.00)/(E) SED MININ L INTENS S RATE DA SC: GI E"	******* 280.00 TO	******** FO NODE REA ANAL RAPH FOR = 330 40.0 N CHANGE MIN.) = H/HR) = II): AREA (ACRES) 0.30	281	****** .00 IS<<< AL SUI ===== NSTRE 20 29 /HR) .25	*********** S CODE = 2 BAREA<< ======== AM(FEET) = Ap (DECIMAL) 0.500 0.500	****** 21 SCS CN 69 75	Tc (MIN.) 14.50 14.50 11.33
********* FLOW PROCE >>>>>RATIO >>USE TIME ======== INITIAL SU ELEVATION TC = K*[(L SUBAREA AN * 10 YEAR SUBAREA TC DEVELOPME LAND RESIDENTIA "5-7 DWELL RESIDENTIA "5-7 DWELL COMMERCIAL COMMERCIAL URBAN POOR	******* SS FROM NAL METH -OF-CONC BAREA FL DATA: UP ENGTH** IALYSIS U RAINFAL AND LOS: NT TYPE/ USE IL INGS/ACR IL INGS/ACR	******** NODE OD INITIA ENTRATION STREAM(F) 3.00)/(E) SED MININ L INTENS S RATE DA SC: GI E"	******* 280.00 TO	********* FO NODE REA ANAL RAPH FOR = 330 40.0 N CHANGE MIN.) = H/HR) = II): AREA (ACRES) 0.30 0.40 0.10 0.40	281	****** .00 IS	************ S CODE = 2 BAREA<< ========= AM(FEET) = Ap (DECIMAL) 0.500 0.500 0.100 0.100	****** 21 SCS CN 69 75 69 75	Tc (MIN.) 14.50 14.50 11.33 11.33
********* FLOW PROCE >>>>RATIO >>USE TIME ======= INITIAL SU ELEVATION TC = K*[(L SUBAREA AN * 10 YEAR SUBAREA TC DEVELOPME LAND RESIDENTIA "5-7 DWELL RESIDENTIA "5-7 DWELL COMMERCIAL COMMERCIAL	******* SS FROM NAL METHI -OF-CONC BAREA FLI DATA: UP ENGTH** IALYSIS UE RAINFAL AND LOSE NT TYPE/ USE L INGS/ACR L INGS/ACR	******** NODE OD INITIA ENTRATION STREAM(F) 3.00)/(E) SED MININ L INTENS S RATE DA SC: GI E"	******* 280.00 TO	******** FO NODE REA ANAL RAPH FOR = 330 40.0 N CHANGE MIN.) = H/HR) = II): AREA (ACRES) 0.30 0.40 0.10	281	****** .00 IS<<< AL SUI ===== NSTRE 20 29 /HR) .25 .20 .25	************ S CODE = 2 BAREA<< ======== AM(FEET) = Ap (DECIMAL) 0.500 0.500 0.100	****** 21 SCS CN 69 75 69	Tc (MIN.) 14.50 14.50 11.33
********* FLOW PROCE	******* SS FROM NAL METHI -OF-CONC BAREA FLI DATA: UP ENGTH** IALYSIS U RAINFAL AND LOS NT TYPE/ USE IL INGS/ACR IL INGS/ACR COVER	******** NODE OD INITIA ENTRATION ENTRATION STREAM(FI 3.00)/(EI SED MININ L INTENS: S RATE DA SC: GI E"	******* 280.00 TO	******** FO NODE REA ANAL RAPH FOR	281	****** .00 IS	************ S CODE = 2 BAREA<< ========== AP (DECIMAL) 0.500 0.500 0.100 0.100 1.000 1.000	****** 21 SCS CN 69 75 69 75	Tc (MIN.) 14.50 14.50 11.33 11.33

```
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.862
 SUBAREA RUNOFF(CFS) = 12.35
                      5.80 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                                                  12.35
*******************************
 FLOW PROCESS FROM NODE 281.00 TO NODE 282.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
UPSTREAM ELEVATION(FEET) = 39.50 DOWNSTREAM ELEVATION(FEET) = 36.00
 STREET LENGTH(FEET) = 640.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                  17.07
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.49
   HALFSTREET FLOOD WIDTH(FEET) = 18.48
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.40
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.16
 STREET FLOW TRAVEL TIME(MIN.) = 4.45 Tc(MIN.) =
                                              15.78
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.101
 SUBAREA LOSS RATE DATA(AMC II):
                   SCS SOIL AREA
  DEVELOPMENT TYPE/
                                       Fp
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                               1.00
                       D
                                        0.20
                                               0.500
                                                       75
 COMMERCIAL
                       D
                               0.50
                                        0.20
                                               0.100
                                                       75
 URBAN POOR COVER
                               3.90
                                        0.20
                       D
                                               1.000
                                                       87
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.824
 SUBAREA AREA(ACRES) = 5.40 SUBAREA RUNOFF(CFS) = EFFECTIVE AREA(ACRES) = 11.20 AREA-AVERAGED FM(INC
                              AREA-AVERAGED Fm(INCH/HR) = 0.17
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.84
 TOTAL AREA(ACRES) =
                      11.2
                                PEAK FLOW RATE(CFS) =
                                                        19.47
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.50 HALFSTREET FLOOD WIDTH(FEET) = 19.64
 FLOW VELOCITY(FEET/SEC.) = 2.48 DEPTH*VELOCITY(FT*FT/SEC.) = 1.25
 LONGEST FLOWPATH FROM NODE 280.00 TO NODE
                                        282.00 =
                                                   970.00 FEET.
****************************
 FLOW PROCESS FROM NODE 282.00 TO NODE 283.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 36.00 DOWNSTREAM(FEET) = 35.00
 FLOW LENGTH(FEET) = 470.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 33.0 INCH PIPE IS 23.2 INCHES
```

```
PIPE-FLOW VELOCITY(FEET/SEC.) = 4.37
 ESTIMATED PIPE DIAMETER(INCH) = 33.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                19.47
 PIPE TRAVEL TIME(MIN.) = 1.79 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 280.00 TO NODE
                                      283.00 =
                                               1440.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 283.00 TO NODE 283.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>>>
______
 MAINLINE Tc(MIN.) = 17.57
  10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.976
 SUBAREA LOSS RATE DATA(AMC II):
                  SCS SOIL
  DEVELOPMENT TYPE/
                            AREA
                                    Fp
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                      D
                             1.10
                                     0.20
                                            0.500
                                                   75
 COMMERCIAL
                      D
                             0.60
                                     0.20
                                            0.100
                                                   75
 URBAN POOR COVER
 "TURF"
                      D
                             5.60
                                     0.20
                                            1.000
                                                   87
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.851
 SUBAREA AREA(ACRES) = 7.30 SUBAREA RUNOFF(CFS) = 11.86 EFFECTIVE AREA(ACRES) = 18.50 AREA-AVERAGED Fm(INCH/HR) = 0.17
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.85
                    18.5
                            PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                                                   30.06
*********************************
 FLOW PROCESS FROM NODE 284.00 TO NODE 285.00 IS CODE = 21
......
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
                             34.00 DOWNSTREAM(FEET) =
 ELEVATION DATA: UPSTREAM(FEET) =
                                                     32.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 14.827
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.178
 SUBAREA TC AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                   SCS SOIL AREA
                                    Fp
                                                  SCS
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 URBAN POOR COVER
 "TURF"
                      D
                             8.10
                                     0.20
                                            1.000
                                                   87
                                                     14.83
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA RUNOFF(CFS) =
                    14.42
                    8.10 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
****************************
 FLOW PROCESS FROM NODE 285.00 TO NODE
                                   286.00 IS CODE = 62
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 32.00 DOWNSTREAM ELEVATION(FEET) = 31.50
 STREET LENGTH(FEET) = 163.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
```

```
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                  20.58
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.55
   HALFSTREET FLOOD WIDTH(FEET) = 22.61
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.08
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.15
 STREET FLOW TRAVEL TIME(MIN.) = 1.30 Tc(MIN.) = 16.13
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.075
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                      Fр
                                                Aр
                                                      SCS
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 URBAN POOR COVER
 "TURF"
                        D
                               7.20
                                        0.20
                                               1.000
                                                       87
 SCH00L
                        D
                               0.10
                                        0.20
                                               0.600
                                                       75
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.995
 SUBAREA AREA(ACRES) = 7.30 SUBAREA RUNOFF(CFS) = 12.33 EFFECTIVE AREA(ACRES) = 15.40 AREA-AVERAGED Fm(INCH/HR) =
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 1.00
 TOTAL AREA(ACRES) =
                      15.4
                                PEAK FLOW RATE(CFS) =
                                                        25.99
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.59 HALFSTREET FLOOD WIDTH(FEET) = 24.44
 FLOW VELOCITY(FEET/SEC.) = 2.24 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 163.0 FT WITH ELEVATION-DROP = 0.5 FT, IS
                                                     16.6 CFS,
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 286.00
 LONGEST FLOWPATH FROM NODE 284.00 TO NODE 286.00 =
                                                   493.00 FEET.
****************************
 FLOW PROCESS FROM NODE 286.00 TO NODE 287.00 IS CODE = 31
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 31.50 DOWNSTREAM(FEET) = 31.00
 FLOW LENGTH(FEET) = 888.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 45.0 INCH PIPE IS 35.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 2.81
 ESTIMATED PIPE DIAMETER(INCH) = 45.00
                                    NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                   25.99
 PIPE TRAVEL TIME(MIN.) = 5.27 Tc(MIN.) =
                                         21.40
 LONGEST FLOWPATH FROM NODE 284.00 TO NODE
                                         287.00 =
                                                   1381.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 287.00 TO NODE 287.00 IS CODE = 81
>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 21.40
```

```
GC10EX
```

```
* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.764
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                    SCS SOIL
                              AREA
                                      Fp
     LAND USE
                      GROUP
                            (ACRES) (INCH/HR) (DECIMAL) CN
 URBAN POOR COVER
 "TURF"
                                               1.000
                       D
                              12.80
                                       0.20
                                                      87
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA AREA(ACRES) = 12.80 SUBAREA RUNOFF(CFS) = 18.02
 EFFECTIVE AREA(ACRES) = 28.20 AREA-AVERAGED Fm(INCH/HR) = 0.20
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 1.00
 TOTAL AREA(ACRES) =
                      28.2
                               PEAK FLOW RATE(CFS) =
                                                      39.71
****************************
 FLOW PROCESS FROM NODE 288.00 TO NODE 289.00 IS CODE = 21
>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
 ELEVATION DATA: UPSTREAM(FEET) =
                              44.00 DOWNSTREAM(FEET) =
                                                        43.50
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.329
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.541
 SUBAREA TC AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                    SCS SOIL
                              AREA
                                      Fp
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
                                                          (MIN.)
 RESIDENTIAL
                       C
                               1.70
 "5-7 DWELLINGS/ACRE"
                                       0.25
                                               0.500
                                                      69
                                                          14.50
 COMMERCIAL
                       C
                               0.50
                                       0.25
                                               0.100
                                                      69
                                                          11.33
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.409
 SUBAREA RUNOFF(CFS) = 4.83
                      2.20 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                                                  4.83
****************************
 FLOW PROCESS FROM NODE
                      289.00 TO NODE
                                     290.00 IS CODE = 62
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<
______
 UPSTREAM ELEVATION(FEET) = 43.50 DOWNSTREAM ELEVATION(FEET) = 43.00
 STREET LENGTH(FEET) = 456.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                  7.30
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.48
   HALFSTREET FLOOD WIDTH(FEET) = 18.16
   AVERAGE FLOW VELOCITY(FEET/SEC.) =
                                1.06
```

```
GC10EX
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
                                         0.51
 STREET FLOW TRAVEL TIME(MIN.) = 7.17 Tc(MIN.) =
                                                 18.50
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.918
 SUBAREA LOSS RATE DATA(AMC II):
                      SCS SOIL
  DEVELOPMENT TYPE/
                                AREA
                                         Fp
                                                         SCS
                       GROUP
                             (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         C
                                 2.10
                                          0.25
                                                  0.500
                                                          69
 COMMERCIAL
                         C
                                 0.90
                                          0.25
                                                  0.100
                                                          69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.380
 SUBAREA AREA(ACRES) = 3.00
                              SUBAREA RUNOFF(CFS) =
 EFFECTIVE AREA(ACRES) =
                       5.20
                                AREA-AVERAGED Fm(INCH/HR) =
                                                           0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.39
 TOTAL AREA(ACRES) =
                         5.2
                                  PEAK FLOW RATE(CFS) =
                                                            8.52
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.50 HALFSTREET FLOOD WIDTH(FEET) = 19.33
 FLOW VELOCITY(FEET/SEC.) = 1.10 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE 288.00 TO NODE
                                          290.00 =
                                                      786.00 FEET.
**************************
 FLOW PROCESS FROM NODE 290.00 TO NODE
                                        291.00 IS CODE = 62
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<
______
 UPSTREAM ELEVATION(FEET) = 43.00 DOWNSTREAM ELEVATION(FEET) = 41.00
 STREET LENGTH(FEET) = 995.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                     12.88
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.52
   HALFSTREET FLOOD WIDTH(FEET) = 20.90
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.54
                                       0.80
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 10.80 Tc(MIN.) =
                                                 29.30
  10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.474
 SUBAREA LOSS RATE DATA(AMC II):
                      SCS SOIL
  DEVELOPMENT TYPE/
                                AREA
                                         Fp
                       GROUP
                             (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         C
                                 5.30
                                          0.25
                                                  0.500
                                                          69
 COMMERCIAL
                         C
                                 1.70
                                          0.25
                                                  0.100
                                                          69
```

SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.403

AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.40

EFFECTIVE AREA(ACRES) = 12.20 AREA-AVERAGED Fm(INCH/HR) = 0.10

SUBAREA AREA(ACRES) = 7.00

SUBAREA RUNOFF(CFS) =

```
TOTAL AREA(ACRES) =
                        12.2
                                   PEAK FLOW RATE(CFS) =
                                                           15.09
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.54 HALFSTREET FLOOD WIDTH(FEET) = 21.94
 FLOW VELOCITY(FEET/SEC.) = 1.63 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 995.0 FT WITH ELEVATION-DROP = 2.0 FT, IS
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 291.00
 LONGEST FLOWPATH FROM NODE 288.00 TO NODE 291.00 = 1781.00 FEET.
**************************
 FLOW PROCESS FROM NODE 291.00 TO NODE 292.00 IS CODE = 62
.....
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 41.00 DOWNSTREAM ELEVATION(FEET) = 38.00
 STREET LENGTH(FEET) = 2113.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                     26.34
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.66
   HALFSTREET FLOOD WIDTH(FEET) = 28.05
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.71
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 20.55 Tc(MIN.) = 49.85
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.087
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                                AREA
                                         Fp
                                                   Aр
                                                         SCS
                             (ACRES) (INCH/HR) (DECIMAL) CN
                       GROUP
      LAND USE
 RESIDENTIAL
                         C
 "5-7 DWELLINGS/ACRE"
                                18.20
                                          0.25
                                                  0.500
                                                          69
 COMMERCIAL
                         C
                                 6.80
                                          0.25
                                                  0.100
                                                          69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.391
 SUBAREA AREA(ACRES) = 25.00 SUBAREA RUNOFF(CFS) = 22.26
 EFFECTIVE AREA(ACRES) = 37.20
                                AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.39
 TOTAL AREA(ACRES) =
                        37.2
                                   PEAK FLOW RATE(CFS) =
                                                           33.10
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.71 HALFSTREET FLOOD WIDTH(FEET) = 30.43
 FLOW VELOCITY(FEET/SEC.) = 1.82 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 2113.0 FT WITH ELEVATION-DROP = 3.0 FT, IS
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 292.00
 LONGEST FLOWPATH FROM NODE 288.00 TO NODE 292.00 = 3894.00 FEET.
```

```
FLOW PROCESS FROM NODE 292.00 TO NODE
                                       293.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<
______
 UPSTREAM ELEVATION(FEET) = 38.00 DOWNSTREAM ELEVATION(FEET) = 37.00
 STREET LENGTH(FEET) = 307.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                   48.55
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.70
   HALFSTREET FLOOD WIDTH(FEET) = 30.06
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.74
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.92
 STREET FLOW TRAVEL TIME(MIN.) = 1.87 Tc(MIN.) = 51.72
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.064
 SUBAREA LOSS RATE DATA(AMC II):
                     SCS SOIL
  DEVELOPMENT TYPE/
                               AREA
                                        Fp
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                        C
                               26.60
                                         0.25
                                                 0.500
                                                        69
 COMMERCIAL
                        C
                                9.00
                                         0.25
                                                 0.100
                                                        69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.399
 SUBAREA AREA(ACRES) = 35.60 SUBAREA RUNOFF(CFS) =
 EFFECTIVE AREA(ACRES) = 72.80
                               AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.40
 TOTAL AREA(ACRES) =
                       72.8
                                 PEAK FLOW RATE(CFS) =
                                                         63.24
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.76 HALFSTREET FLOOD WIDTH(FEET) = 33.11
 FLOW VELOCITY(FEET/SEC.) = 2.93 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 307.0 FT WITH ELEVATION-DROP = 1.0 FT, IS
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 293.00
 LONGEST FLOWPATH FROM NODE 288.00 TO NODE 293.00 = 4201.00 FEET.
**************************
 FLOW PROCESS FROM NODE 293.00 TO NODE
                                       298.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 37.00 DOWNSTREAM(FEET) = 36.00
 FLOW LENGTH(FEET) = 922.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 57.0 INCH PIPE IS 41.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.53
 ESTIMATED PIPE DIAMETER(INCH) = 57.00
                                     NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                  63.24
```

```
Tc(MIN.) = 55.12
 PIPE TRAVEL TIME(MIN.) = 3.40
 LONGEST FLOWPATH FROM NODE 288.00 TO NODE
                                      298.00 =
                                             5123.00 FEET.
*********************************
 FLOW PROCESS FROM NODE 298.00 TO NODE 298.00 IS CODE = 1
>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
_____
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 55.12
 RAINFALL INTENSITY(INCH/HR) = 1.03
 AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.25
 AREA-AVERAGED Ap = 0.40
 EFFECTIVE STREAM AREA(ACRES) =
                         72.80
 TOTAL STREAM AREA(ACRES) =
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                63.24
*******************************
 FLOW PROCESS FROM NODE 294.00 TO NODE 295.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
------
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
 ELEVATION DATA: UPSTREAM(FEET) = 40.00 DOWNSTREAM(FEET) =
                                                     39.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.862
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.751
 SUBAREA TC AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                  SCS SOIL AREA
                                    Fp
                                            Aр
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                     C
                             4.40
                                    0.25
                                           0.500
                                                  69
                                                      12.62
 COMMERCIAL
                     C
                             1.40
                                    0.25
                                           0.100
                                                  69
                                                      9.86
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.403
 SUBAREA RUNOFF(CFS) = 13.83
TOTAL AREA(ACRES) = 5.80 PEAK FLOW RATE(CFS) =
                                              13.83
*******************************
 FLOW PROCESS FROM NODE 295.00 TO NODE 296.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 39.00 DOWNSTREAM ELEVATION(FEET) = 38.00
 STREET LENGTH(FEET) = 536.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
```

```
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                     21.92
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.60
   HALFSTREET FLOOD WIDTH(FEET) = 25.05
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.80
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.08
 STREET FLOW TRAVEL TIME(MIN.) = 4.97 Tc(MIN.) = 14.83
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.177
 SUBAREA LOSS RATE DATA(AMC II):
                     SCS SOIL
  DEVELOPMENT TYPE/
                                AREA
                                         Fp
                                                   Αp
                                                          SCS
                             (ACRES) (INCH/HR) (DECIMAL) CN
                       GROUP
      LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         C
                                 6.30
                                          0.25
                                                  0.500
                                                           69
 COMMERCIAL
                         C
                                 2.30
                                          0.25
                                                  0.100
                                                           69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.393
 SUBAREA AREA(ACRES) = 8.60 SUBAREA RUNOFF(CFS) = 16.09
 EFFECTIVE AREA(ACRES) = 14.40
                                AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.40
                                  PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                        14.4
                                                           26.93
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.64 HALFSTREET FLOOD WIDTH(FEET) = 26.89
 FLOW VELOCITY(FEET/SEC.) = 1.91 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 536.0 FT WITH ELEVATION-DROP = 1.0 FT, IS
                                                        17.3 CFS,
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE
                                                         296.00
 LONGEST FLOWPATH FROM NODE 294.00 TO NODE
                                          296.00 =
                                                        866.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 296.00 TO NODE 297.00 IS CODE = 62
-----
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<
______
 UPSTREAM ELEVATION(FEET) = 38.00 DOWNSTREAM ELEVATION(FEET) = 36.50
 STREET LENGTH(FEET) = 1133.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                     43.14
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.78
   HALFSTREET FLOOD WIDTH(FEET) = 33.97
   AVERAGE FLOW VELOCITY(FEET/SEC.) =
                                   1.90
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.48
 STREET FLOW TRAVEL TIME(MIN.) = 9.94 Tc(MIN.) =
                                                 24.78
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.622
 SUBAREA LOSS RATE DATA(AMC II):
```

```
GC10EX
  DEVELOPMENT TYPE/
                    SCS SOIL
                             AREA
                                      Fp
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                      C
                             16.90
                                      0.25
                                              0.500
                                                     69
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                       D
                              0.90
                                      0.20
                                                     75
                                              0.500
 COMMERCIAL
                       C
                              5.60
                                      0.25
                                              0.100
                                                     69
 COMMERCIAL
                       D
                              0.10
                                      0.20
                                              0.100
                                                     75
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.403
 SUBAREA AREA(ACRES) = 23.50 SUBAREA RUNOFF(CFS) = 32.21
 EFFECTIVE AREA(ACRES) = 37.90 AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.40
                   37.9
                               PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                                                      51.95
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.83 HALFSTREET FLOOD WIDTH(FEET) = 36.41
 FLOW VELOCITY(FEET/SEC.) = 1.99 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 1133.0 FT WITH ELEVATION-DROP = 1.5 FT, IS
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 297.00
 LONGEST FLOWPATH FROM NODE 294.00 TO NODE 297.00 = 1999.00 FEET.
**************************
 FLOW PROCESS FROM NODE 297.00 TO NODE 298.00 IS CODE = 31
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 36.50 DOWNSTREAM(FEET) = 36.00
 FLOW LENGTH(FEET) = 120.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 42.0 INCH PIPE IS 29.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 7.18
 ESTIMATED PIPE DIAMETER(INCH) = 42.00
                                   NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 51.95
 PIPE TRAVEL TIME(MIN.) = 0.28 Tc(MIN.) =
                                        25.06
 LONGEST FLOWPATH FROM NODE 294.00 TO NODE
                                        298.00 =
                                                 2119.00 FEET.
**************************
 FLOW PROCESS FROM NODE 298.00 TO NODE 298.00 IS CODE = 1
>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 25.06
 RAINFALL INTENSITY(INCH/HR) = 1.61
 AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.25
 AREA-AVERAGED Ap = 0.40
 EFFECTIVE STREAM AREA(ACRES) =
 TOTAL STREAM AREA(ACRES) = 37.90
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                  51.95
 ** CONFLUENCE DATA **
                  Tc Intensity Fp(Fm)
  STREAM
            Q
                                              Ae
                                                    HEADWATER
           (CFS) (MIN.) (INCH/HR) (INCH/HR)
  NUMBER
                                             (ACRES)
                                                     NODE
                        1.026 0.25( 0.10) 0.40
    1
           63.24
                 55.12
                                                72.8
                                                       288.00
```

37.9

294.00

1.612 0.25(0.10) 0.40

51.95

25.06

2

RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS.

```
** PEAK FLOW RATE TABLE **
               Tc Intensity Fp(Fm)
  STREAM
          Q
                                      Aр
                                           Ae
                                                HEADWATER
 NUMBER
          (CFS) (MIN.) (INCH/HR) (INCH/HR)
                                          (ACRES)
                                                  NODE
          98.87 25.06 1.612 0.25(0.10) 0.40
    1
                                            71.0
                                                    294.00
          95.06 55.12 1.026 0.25(0.10) 0.40
    2
                                            110.7
                                                    288.00
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 98.87 Tc(MIN.) = 25.06
EFFECTIVE AREA(ACRES) = 71.00 AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.40
 TOTAL AREA(ACRES) = 110.7
 LONGEST FLOWPATH FROM NODE
                       288.00 TO NODE
                                     298.00 =
                                             5123.00 FEET.
**********************************
 FLOW PROCESS FROM NODE 298.00 TO NODE 303.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 36.00 DOWNSTREAM(FEET) = 35.50
 FLOW LENGTH(FEET) = 745.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 72.0 INCH PIPE IS 56.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.19
 ESTIMATED PIPE DIAMETER(INCH) = 72.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
              98.87
 PIPE TRAVEL TIME(MIN.) = 2.96 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 288.00 TO NODE
                                     303.00 =
                                              5868.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 303.00 TO NODE 303.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) =
                         28.02
 RAINFALL INTENSITY(INCH/HR) =
 AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.25
 AREA-AVERAGED Ap = 0.40
 EFFECTIVE STREAM AREA(ACRES) =
 TOTAL STREAM AREA(ACRES) = 110.70
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                               98.87
**************************
 FLOW PROCESS FROM NODE 299.00 TO NODE 300.00 IS CODE = 21
-----
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
 ELEVATION DATA: UPSTREAM(FEET) =
                            45.00 DOWNSTREAM(FEET) =
                                                    44.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.862
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.751
```

```
SUBAREA TC AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                     SCS SOIL
                                AREA
                                         Fp
                                                   Aр
                                                          SCS
                                                               Tc
                       GROUP
                             (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
                                                              (MIN.)
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         C
                                 3.60
                                          0.25
                                                  0.500
                                                          69
                                                               12.62
 COMMERCIAL
                         C
                                 2.50
                                          0.25
                                                  0.100
                                                          69
                                                                9.86
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.336
 SUBAREA RUNOFF(CFS) =
                        14.64
 TOTAL AREA(ACRES) =
                       6.10 PEAK FLOW RATE(CFS) =
**************************
 FLOW PROCESS FROM NODE 300.00 TO NODE 301.00 IS CODE = 62
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 44.00 DOWNSTREAM ELEVATION(FEET) = 42.00
 STREET LENGTH(FEET) = 885.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                     32.13
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.65
   HALFSTREET FLOOD WIDTH(FEET) = 27.68
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.15
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
                                       1.40
 STREET FLOW TRAVEL TIME(MIN.) = 6.87 Tc(MIN.) =
                                                 16.73
  10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.032
 SUBAREA LOSS RATE DATA(AMC II):
                      SCS SOIL
  DEVELOPMENT TYPE/
                                AREA
                                         Fp
                                                          SCS
      LAND USE
                       GROUP
                             (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
                         C
 "5-7 DWELLINGS/ACRE"
                                13.10
                                          0.25
                                                  0.500
                                                           69
 COMMERCIAL
                         C
                                 6.70
                                          0.25
                                                  0.100
                                                          69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.365
 SUBAREA AREA(ACRES) = 19.80
                                SUBAREA RUNOFF(CFS) =
 EFFECTIVE AREA(ACRES) = 25.90
                                 AREA-AVERAGED Fm(INCH/HR) =
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.36
                        25.9
 TOTAL AREA(ACRES) =
                                   PEAK FLOW RATE(CFS) =
                                                           45.27
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.73 HALFSTREET FLOOD WIDTH(FEET) = 31.34
 FLOW VELOCITY(FEET/SEC.) = 2.35 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 885.0 FT WITH ELEVATION-DROP = 2.0 FT, IS
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 301.00
 LONGEST FLOWPATH FROM NODE 299.00 TO NODE 301.00 = 1215.00 FEET.
```

```
**************************
 FLOW PROCESS FROM NODE 301.00 TO NODE 302.00 IS CODE = 62
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 42.00 DOWNSTREAM ELEVATION(FEET) = 37.00
 STREET LENGTH(FEET) = 1530.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                  68.65
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.78
   HALFSTREET FLOOD WIDTH(FEET) = 34.15
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.99
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
                                       2.34
 STREET FLOW TRAVEL TIME(MIN.) = 8.53 Tc(MIN.) =
                                               25.26
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.605
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                              AREA
                                       Fp
                                                 Aр
                                                       SCS
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                        C
                               8.30
                                        0.25
                                                0.500
                                                        69
 COMMERCIAL
                        D
                               11.60
                                        0.20
                                                0.100
                                                       75
 URBAN POOR COVER
 "TURF"
                                0.70
                        C
                                        0.25
                                                1.000
                                                       83
 URBAN POOR COVER
 "TURF"
                        D
                                1.90
                                        0.20
                                                1.000
                                                       87
 SCH00L
                        C
                                7.20
                                        0.25
                                                0.600
                                                        69
 SCHOOL
                        D
                                4.70
                                        0.20
                                                0.600
                                                       75
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.23
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.437
 SUBAREA AREA(ACRES) = 34.40 SUBAREA RUNOFF(CFS) = 46.55
 EFFECTIVE AREA(ACRES) = 60.30 AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.24 AREA-AVERAGED Ap = 0.40
 TOTAL AREA(ACRES) =
                       60.3
                                 PEAK FLOW RATE(CFS) =
                                                        81.87
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.83 HALFSTREET FLOOD WIDTH(FEET) = 36.47
 FLOW VELOCITY(FEET/SEC.) = 3.12 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 1530.0 FT WITH ELEVATION-DROP = 5.0 FT, IS
                                                      57.3 CFS,
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 302.00
 LONGEST FLOWPATH FROM NODE
                         299.00 TO NODE
                                        302.00 =
                                                   2745.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 302.00 TO NODE 303.00 IS CODE = 31
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
```

>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)

```
______
 ELEVATION DATA: UPSTREAM(FEET) = 37.00 DOWNSTREAM(FEET) = 35.50
 FLOW LENGTH(FEET) = 84.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 36.0 INCH PIPE IS 28.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 13.63
 ESTIMATED PIPE DIAMETER(INCH) = 36.00
                                    NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                  81.87
 PIPE TRAVEL TIME(MIN.) = 0.10
                            Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 299.00 TO NODE
                                        303.00 =
                                                  2829.00 FEET.
**************************
 FLOW PROCESS FROM NODE 303.00 TO NODE 303.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 25.37
 RAINFALL INTENSITY(INCH/HR) = 1.60
 AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED fp(INCH/HR) = 0.24
 AREA-AVERAGED Ap = 0.40
 EFFECTIVE STREAM AREA(ACRES) =
 TOTAL STREAM AREA(ACRES) =
                         60.30
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                   81.87
 ** CONFLUENCE DATA **
  STREAM
                  Tc Intensity Fp(Fm)
                                               Ae
                                                     HEADWATER
            Q
                 (MIN.) (INCH/HR) (INCH/HR)
  NUMBER
           (CFS)
                                              (ACRES)
                                                       NODE
    1
           98.87
                 28.02
                         1.512 0.25( 0.10) 0.40
                                                71.0
                                                         294.00
                         0.996 0.25(0.10)0.40
    1
           95.06
                 58.09
                                                110.7
                                                         288.00
                         1.601 0.24( 0.10) 0.40
           81.87
    2
                 25.37
                                                60.3
                                                         299.00
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
                     Intensity Fp(Fm)
  STREAM
            Q
                  Tc
                                               Аe
                                                     HEADWATER
           (CFS) (MIN.) (INCH/HR) (INCH/HR)
  NUMBER
                                              (ACRES)
                                                       NODE
                         1.601 0.24( 0.10) 0.40
    1
          176.99
                 25.37
                                                124.6
                                                         299.00
          175.91
                         1.512 0.24( 0.10) 0.40
    2
                 28.02
                                                131.3
                                                         294.00
          144.02 58.09
                         0.996 0.25(0.10)0.40
                                                171.0
                                                         288.00
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 176.99 Tc(MIN.) = 25.37
EFFECTIVE AREA(ACRES) = 124.57 AREA-AVERAGED Fm(INCH/HR) = 0.10
 EFFECTIVE AREA(ACRES) =
 AREA-AVERAGED Fp(INCH/HR) = 0.24 AREA-AVERAGED Ap = 0.40
 TOTAL AREA(ACRES) = 171.0
 LONGEST FLOWPATH FROM NODE
                          288.00 TO NODE
                                         303.00 =
                                                   5868.00 FEET.
**************************
 FLOW PROCESS FROM NODE 303.00 TO NODE 304.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 35.50 DOWNSTREAM(FEET) = 35.00
 FLOW LENGTH(FEET) = 1880.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 108.0 INCH PIPE IS 81.3 INCHES
```

```
PIPE-FLOW VELOCITY(FEET/SEC.) = 3.44
 ESTIMATED PIPE DIAMETER(INCH) = 108.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                176.99
 PIPE TRAVEL TIME(MIN.) = 9.10
                           Tc(MIN.) =
                                       34.47
 LONGEST FLOWPATH FROM NODE 288.00 TO NODE
                                       304.00 =
                                                7748.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 304.00 TO NODE 304.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 34.47
  10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.343
 SUBAREA LOSS RATE DATA(AMC II):
                   SCS SOIL
  DEVELOPMENT TYPE/
                            AREA
                                     Fp
                     GROUP
                           (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                      C
                             0.40
                                     0.25
                                            0.500
                                                    69
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                      D
                            22.30
                                     0.20
                                            0.500
                                                   75
 COMMERCIAL
                      C
                             0.10
                                     0.25
                                            0.100
                                                    69
                            12.40
                                     0.20
 COMMERCIAL
                      D
                                            0.100
                                                   75
 URBAN POOR COVER
 "TURF"
                             1.70
                                     0.20
                                            1.000
                      D
                                                   87
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.388
 SUBAREA AREA(ACRES) = 36.90
                          SUBAREA RUNOFF(CFS) = 42.02
 EFFECTIVE AREA(ACRES) = 161.47 AREA-AVERAGED Fm(INCH/HR) = 0.09
 AREA-AVERAGED Fp(INCH/HR) = 0.23 AREA-AVERAGED Ap = 0.40
                   207.9
 TOTAL AREA(ACRES) =
                             PEAK FLOW RATE(CFS) =
                                                   181.63
*******************************
 FLOW PROCESS FROM NODE 305.00 TO NODE 306.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
 ELEVATION DATA: UPSTREAM(FEET) =
                              38.00 DOWNSTREAM(FEET) =
                                                      36.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.586
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.978
 SUBAREA TC AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                   SCS SOIL
                            AREA
                                     Fp
                                             Aр
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
                                                       (MIN.)
 RESIDENTIAL
                                                   75
 "5-7 DWELLINGS/ACRE"
                      D
                             1.20
                                     0.20
                                            0.500
                                                        10.99
 COMMERCIAL
                      D
                             0.30
                                     0.20
                                            0.100
                                                   75
                                                        8.59
 URBAN POOR COVER
                             0.60
                                     0.20
                      D
                                            1.000
                                                   87 14.83
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.586
 SUBAREA RUNOFF(CFS) =
                     5.41
                     2.10 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
*******************************
 FLOW PROCESS FROM NODE 306.00 TO NODE 307.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
```

```
GC10EX
 >>>>(STREET TABLE SECTION # 1 USED)<
______
 UPSTREAM ELEVATION(FEET) = 36.00 DOWNSTREAM ELEVATION(FEET) = 34.00
 STREET LENGTH(FEET) = 826.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                   16.04
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.53
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.77
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 7.78 Tc(MIN.) = 16.36
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.058
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                               AREA
                                       Fp
                                                 Aр
                                                       SCS
                            (ACRES) (INCH/HR) (DECIMAL) CN
                      GROUP
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                                8.20
                        D
                                        0.20
                                                0.500
                                                        75
 COMMERCIAL
                        D
                                3.00
                                        0.20
                                                0.100
                                                        75
 URBAN POOR COVER
 "TURF"
                                0.50
                                        0.20
                                                1.000
                        D
                                                        87
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.419
 SUBAREA AREA(ACRES) = 11.70 SUBAREA RUNOFF(CFS) = 20.79
 EFFECTIVE AREA(ACRES) = 13.80 AREA-AVERAGED Fm(INCH/HR) =
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.44
 TOTAL AREA(ACRES) =
                       13.8
                                 PEAK FLOW RATE(CFS) =
                                                         24.46
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.60 HALFSTREET FLOOD WIDTH(FEET) = 24.87
 FLOW VELOCITY(FEET/SEC.) = 2.04 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 826.0 FT WITH ELEVATION-DROP = 2.0 FT, IS
                                                      22.0 CFS,
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 307.00
 LONGEST FLOWPATH FROM NODE 305.00 TO NODE
                                        307.00 =
                                                    1156.00 FEET.
**************************
 FLOW PROCESS FROM NODE 307.00 TO NODE 308.00 IS CODE = 62
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
```

```
UPSTREAM ELEVATION(FEET) = 34.00 DOWNSTREAM ELEVATION(FEET) = 33.00
STREET LENGTH(FEET) = 405.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 20.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
```

INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020

```
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.65
   HALFSTREET FLOOD WIDTH(FEET) = 27.31
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.21
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.43
 STREET FLOW TRAVEL TIME(MIN.) = 3.05 Tc(MIN.) = 19.41
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.866
 SUBAREA LOSS RATE DATA(AMC II):
                    SCS SOIL
  DEVELOPMENT TYPE/
                             AREA
                                      Fp
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                       D
                               4.90
                                       0.20
                                              0.500
                                                      75
 COMMERCIAL
                       D
                               4.20
                                       0.20
                                              0.100
                                                      75
 URBAN POOR COVER
 "TURF"
                       D
                               0.50
                                       0.20
                                              1.000
                                                      87
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.351
 SUBAREA AREA(ACRES) = 9.60 SUBAREA RUNOFF(CFS) = 15.52
 EFFECTIVE AREA(ACRES) = 23.40
                              AREA-AVERAGED Fm(INCH/HR) = 0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.41
 TOTAL AREA(ACRES) =
                      23.4
                                PEAK FLOW RATE(CFS) =
                                                       37.59
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.68 HALFSTREET FLOOD WIDTH(FEET) = 28.84
 FLOW VELOCITY(FEET/SEC.) = 2.31 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 405.0 FT WITH ELEVATION-DROP = 1.0 FT, IS
                                                    21.5 CFS,
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 308.00
 LONGEST FLOWPATH FROM NODE 305.00 TO NODE 308.00 = 1561.00 FEET.
**************************
 FLOW PROCESS FROM NODE 308.00 TO NODE 309.00 IS CODE = 31
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 33.00 DOWNSTREAM(FEET) = 32.50
 FLOW LENGTH(FEET) = 449.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 45.0 INCH PIPE IS 36.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.95
 ESTIMATED PIPE DIAMETER(INCH) = 45.00
                                    NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                 37.59
 PIPE TRAVEL TIME(MIN.) = 1.89
                              Tc(MIN.) =
                                         21.31
 LONGEST FLOWPATH FROM NODE 305.00 TO NODE
                                         309.00 =
                                                   2010.00 FEET.
**********************************
 FLOW PROCESS FROM NODE 309.00 TO NODE 309.00 IS CODE = 81
.....
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 21.31
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.769
```

```
SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                              AREA
                                      Fp
                                               Aр
                                                     SCS
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                               3.10
                                                      75
                       D
                                       0.20
                                               0.500
 COMMERCIAL
                       D
                               1.20
                                       0.20
                                               0.100
                                                      75
 URBAN POOR COVER
 "TURF"
                       D
                               7.60
                                       0.20
                                               1.000
                                                      87
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.779
 SUBAREA AREA(ACRES) = 11.90 SUBAREA RUNOFF(CFS) = 17.28
 EFFECTIVE AREA(ACRES) = 35.30 AREA-AVERAGED Fm(INCH/HR) = 0.11
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.53
                      35.3
 TOTAL AREA(ACRES) =
                               PEAK FLOW RATE(CFS) =
                                                      52.82
**************************
 FLOW PROCESS FROM NODE 310.00 TO NODE 311.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
 ELEVATION DATA: UPSTREAM(FEET) =
                               45.00 DOWNSTREAM(FEET) =
                                                        44.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.751
 SUBAREA TC AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                    SCS SOIL
                              AREA
                                      Fp
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
                                                          (MIN.)
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                       C
                               1.40
                                       0.25
                                               0.500
                                                      69
                                                          12.62
 COMMERCIAL
                       C
                               0.70
                                       0.25
                                               0.100
                                                      69
                                                           9.86
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.367
 SUBAREA RUNOFF(CFS) =
                      5.03
 TOTAL AREA(ACRES) =
                      2.10 PEAK FLOW RATE(CFS) =
                                                  5.03
**************************
 FLOW PROCESS FROM NODE
                      311.00 TO NODE 312.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 44.00 DOWNSTREAM ELEVATION(FEET) = 42.00
 STREET LENGTH(FEET) = 587.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                 11.90
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.47
```

```
HALFSTREET FLOOD WIDTH(FEET) = 17.62
   AVERAGE FLOW VELOCITY(FEET/SEC.) =
                                           0.86
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 5.35 Tc(MIN.) =
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.146
 SUBAREA LOSS RATE DATA(AMC II):
                       SCS SOIL
  DEVELOPMENT TYPE/
                                 AREA
                                           Fp
      LAND USE
                        GROUP
                              (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                          C
                                   5.40
                                            0.25
                                                    0.500
                                                             69
 COMMERCIAL
                          C
                                   2.00
                                            0.25
                                                    0.100
                                                             69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.392
 SUBAREA AREA(ACRES) = 7.40
                                SUBAREA RUNOFF(CFS) =
 EFFECTIVE AREA(ACRES) = 9.50
                                  AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.39
 TOTAL AREA(ACRES) =
                          9.5
                                    PEAK FLOW RATE(CFS) =
                                                             17.52
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.52 HALFSTREET FLOOD WIDTH(FEET) = 21.21
 FLOW VELOCITY(FEET/SEC.) = 2.03 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
        AND L = 587.0 FT WITH ELEVATION-DROP = 2.0 FT, IS
                                                          15.6 CFS,
        WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 312.00
 LONGEST FLOWPATH FROM NODE 310.00 TO NODE 312.00 =
                                                         917.00 FEET.
****************************
 FLOW PROCESS FROM NODE
                         312.00 TO NODE
                                          313.00 \text{ IS CODE} = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 42.00 DOWNSTREAM ELEVATION(FEET) = 40.00
 STREET LENGTH(FEET) = 1008.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                       28.35
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.64
   HALFSTREET FLOOD WIDTH(FEET) = 27.13
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.97
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
                                           1.27
 STREET FLOW TRAVEL TIME(MIN.) = 8.51 Tc(MIN.) =
                                                   23.72
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.664
 SUBAREA LOSS RATE DATA(AMC II):
                     SCS SOIL
  DEVELOPMENT TYPE/
                                 AREA
                                           Fp
                                                     Ap
                                                            SCS
                               (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
                        GROUP
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         C
                                  7.90
                                            0.25
                                                    0.500
                                                            69
 RESIDENTIAL
```

```
GC10EX
 "5-7 DWELLINGS/ACRE"
                         D
                                 1.80
                                           0.20
                                                   0.500
                                                           75
 COMMERCIAL
                         C
                                 2.30
                                           0.25
                                                   0.100
                                                           69
                                                           75
 COMMERCIAL
                         D
                                 0.60
                                           0.20
                                                   0.100
 SCHOOL
                         D
                                 2.70
                                           0.20
                                                   0.600
                                                           75
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.23
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.442
 SUBAREA AREA(ACRES) = 15.30 SUBAREA RUNOFF(CFS) = 21.50
 EFFECTIVE AREA(ACRES) = 24.80 AREA-AVERAGED Fm(INCH/HR) =
 AREA-AVERAGED Fp(INCH/HR) = 0.24 AREA-AVERAGED Ap = 0.42
 TOTAL AREA(ACRES) =
                        24.8
                                  PEAK FLOW RATE(CFS) =
                                                            34.90
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.68 HALFSTREET FLOOD WIDTH(FEET) = 29.21
 FLOW VELOCITY(FEET/SEC.) = 2.09 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 1008.0 FT WITH ELEVATION-DROP = 2.0 FT, IS
                                                         26.5 CFS,
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 313.00
 LONGEST FLOWPATH FROM NODE 310.00 TO NODE 313.00 =
                                                      1925.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 313.00 TO NODE 314.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 40.00 DOWNSTREAM ELEVATION(FEET) = 38.00
 STREET LENGTH(FEET) = 265.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                     46.87
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.61
   HALFSTREET FLOOD WIDTH(FEET) = 25.60
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.67
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 2.25
 STREET FLOW TRAVEL TIME(MIN.) = 1.20 Tc(MIN.) =
                                                  24.92
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.617
 SUBAREA LOSS RATE DATA(AMC II):
                      SCS SOIL
  DEVELOPMENT TYPE/
                                AREA
                                          Fp
                       GROUP
      LAND USE
                             (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         C
                                 7.60
                                                   0.500
                                           0.25
                                                           69
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         D
                                 1.80
                                           0.20
                                                   0.500
                                                           75
 COMMERCIAL
                         D
                                 3.80
                                           0.20
                                                   0.100
                                                           75
 URBAN POOR COVER
 "TURF"
                         D
                                 1.70
                                           0.20
                                                   1.000
                                                           87
 SCH00L
                         D
                                 2.70
                                           0.20
                                                   0.600
                                                           75
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.22
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.477
```

```
SUBAREA AREA(ACRES) = 17.60 SUBAREA RUNOFF(CFS) = 23.93
 EFFECTIVE AREA(ACRES) = 42.40 AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.23 AREA-AVERAGED Ap = 0.44
 TOTAL AREA(ACRES) = 42.4
                             PEAK FLOW RATE(CFS) =
                                                   57.80
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.65 HALFSTREET FLOOD WIDTH(FEET) = 27.56
 FLOW VELOCITY(FEET/SEC.) = 3.90 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
      AND L = 265.0 FT WITH ELEVATION-DROP = 2.0 FT, IS
                                               49.2 CFS,
      WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 314.00
 LONGEST FLOWPATH FROM NODE 310.00 TO NODE 314.00 = 2190.00 FEET.
****************************
 FLOW PROCESS FROM NODE 314.00 TO NODE 315.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 38.00 DOWNSTREAM(FEET) = 37.00
 FLOW LENGTH(FEET) = 195.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 42.0 INCH PIPE IS 29.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 7.97
 ESTIMATED PIPE DIAMETER(INCH) = 42.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 57.80
 PIPE TRAVEL TIME(MIN.) = 0.41 Tc(MIN.) = 25.33
 LONGEST FLOWPATH FROM NODE 310.00 TO NODE
                                     315.00 = 2385.00 FEET.
*********************************
 FLOW PROCESS FROM NODE 316.00 TO NODE 317.00 IS CODE = 21
......
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
 ELEVATION DATA: UPSTREAM(FEET) =
                            46.00 DOWNSTREAM(FEET) =
                                                   44.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.586
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.978
 SUBAREA TC AND LOSS RATE DATA(AMC II):
 DEVELOPMENT TYPE/ SCS SOIL AREA
                                  Fp
                                                SCS
                   GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                     C
                            3.10
                                    0.25
                                           0.500
                                                  69
                                                     10.99
                                                     8.59
 COMMERCIAL
                     C
                            6.20
                                    0.25
                                           0.100
                                                  69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.233
 SUBAREA RUNOFF(CFS) = 24.44
                    9.30 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
****************************
 FLOW PROCESS FROM NODE 317.00 TO NODE 318.00 IS CODE = 62
------
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 3 USED)<
______
 UPSTREAM ELEVATION(FEET) = 44.00 DOWNSTREAM ELEVATION(FEET) = 42.00
 STREET LENGTH(FEET) = 913.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 51.00
```

```
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 25.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0150
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                     44.52
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.79
   HALFSTREET FLOOD WIDTH(FEET) = 38.01
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.09
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
                                       1.66
 STREET FLOW TRAVEL TIME(MIN.) = 7.28 Tc(MIN.) = 15.86
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.095
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                         Fp
                                                   Aр
                                                          SCS
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         C
                                 0.20
                                          0.25
                                                  0.500
                                                           69
 COMMERCIAL
                         C
                                21.20
                                          0.25
                                                  0.100
                                                           69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.104
 SUBAREA AREA(ACRES) = 21.40 SUBAREA RUNOFF(CFS) = 39.85
 EFFECTIVE AREA(ACRES) = 30.70
                                AREA-AVERAGED Fm(INCH/HR) =
                                                            0.04
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.14
 TOTAL AREA(ACRES) =
                        30.7
                                   PEAK FLOW RATE(CFS) =
                                                           56.90
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.85 HALFSTREET FLOOD WIDTH(FEET) = 43.67
 FLOW VELOCITY(FEET/SEC.) = 2.20 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 913.0 FT WITH ELEVATION-DROP = 2.0 FT, IS
                                                         39.9 CFS,
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE
                                                         318.00
 LONGEST FLOWPATH FROM NODE 316.00 TO NODE 318.00 =
                                                      1243.00 FEET.
****************************
 FLOW PROCESS FROM NODE 318.00 TO NODE 319.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 3 USED)<
______
 UPSTREAM ELEVATION(FEET) = 42.00 DOWNSTREAM ELEVATION(FEET) = 39.00
 STREET LENGTH(FEET) = 1068.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 51.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 25.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0150
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                     74.20
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
```

```
STREET FLOW DEPTH(FEET) = 0.88
   HALFSTREET FLOOD WIDTH(FEET) = 47.19
   AVERAGE FLOW VELOCITY(FEET/SEC.) =
                                    2.55
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
                                           2.25
 STREET FLOW TRAVEL TIME(MIN.) = 6.98 Tc(MIN.) =
                                                   22.84
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.700
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                      SCS SOIL
                                 AREA
                                           Fp
                                                     Ap
                                                            SCS
                        GROUP
                               (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                          C
                                  1.30
                                            0.25
                                                    0.500
                                                             69
 COMMERCIAL
                          C
                                  20.90
                                            0.25
                                                    0.100
                                                             69
 COMMERCIAL
                          D
                                  0.80
                                            0.20
                                                    0.100
                                                            75
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.123
 SUBAREA AREA(ACRES) = 23.00
                                 SUBAREA RUNOFF(CFS) = 34.56
 EFFECTIVE AREA(ACRES) = 53.70
                                  AREA-AVERAGED Fm(INCH/HR) =
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.13
 TOTAL AREA(ACRES) =
                         53.7
                                    PEAK FLOW RATE(CFS) =
                                                             80.54
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.91 HALFSTREET FLOOD WIDTH(FEET) = 49.33
 FLOW VELOCITY(FEET/SEC.) = 2.58 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
        AND L = 1068.0 FT WITH ELEVATION-DROP = 3.0 FT, IS
                                                          42.5 CFS,
        WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 319.00
 LONGEST FLOWPATH FROM NODE 316.00 TO NODE 319.00 = 2311.00 FEET.
*********************************
 FLOW PROCESS FROM NODE
                         319.00 TO NODE
                                          320.00 \text{ IS CODE} = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 3 USED)<<<<<
UPSTREAM ELEVATION(FEET) = 39.00 DOWNSTREAM ELEVATION(FEET) = 34.00
 STREET LENGTH(FEET) = 1732.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 51.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 25.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0150
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                      100.45
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.96
   HALFSTREET FLOOD WIDTH(FEET) = 54.80
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.72
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 2.62
 STREET FLOW TRAVEL TIME(MIN.) = 10.60 Tc(MIN.) =
                                                   33.44
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.366
 SUBAREA LOSS RATE DATA(AMC II):
                       SCS SOIL
  DEVELOPMENT TYPE/
                                 AREA
                                           Fp
      LAND USE
                        GROUP
                                (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                          C
                                  1.70
                                                    0.500
                                            0.25
                                                             69
```

```
RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                    D
                            5.90
                                     0.20
                                            0.500
 COMMERCIAL
                     C
                             2.10
                                     0.25
                                           0.100
                                                   69
 COMMERCIAL
                      D
                            23.60
                                     0.20
                                            0.100
                                                  75
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.21
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.191
 SUBAREA AREA(ACRES) = 33.30 SUBAREA RUNOFF(CFS) = 39.76 EFFECTIVE AREA(ACRES) = 87.00 AREA-AVERAGED Fm(INCH/HR) = 0.04
 AREA-AVERAGED Fp(INCH/HR) = 0.23 AREA-AVERAGED Ap = 0.16
 TOTAL AREA(ACRES) = 87.0
                             PEAK FLOW RATE(CFS) =
                                                  104.18
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.97 HALFSTREET FLOOD WIDTH(FEET) = 55.78
 FLOW VELOCITY(FEET/SEC.) = 2.74 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
      AND L = 1732.0 FT WITH ELEVATION-DROP = 5.0 FT, IS
      WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 320.00
 LONGEST FLOWPATH FROM NODE 316.00 TO NODE 320.00 = 4043.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 320.00 TO NODE 321.00 IS CODE = 31
------
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 34.00 DOWNSTREAM(FEET) = 33.00
 FLOW LENGTH(FEET) = 545.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 60.0 INCH PIPE IS 48.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 6.14
 ESTIMATED PIPE DIAMETER(INCH) = 60.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 104.18
 PIPE TRAVEL TIME(MIN.) = 1.48 Tc(MIN.) = 34.92
 LONGEST FLOWPATH FROM NODE 316.00 TO NODE 321.00 = 4588.00 FEET.
**************************
 FLOW PROCESS FROM NODE 321.00 TO NODE 321.00 IS CODE = 1
-----
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 34.92
 RAINFALL INTENSITY(INCH/HR) =
 AREA-AVERAGED Fm(INCH/HR) = 0.04
 AREA-AVERAGED Fp(INCH/HR) = 0.23
 AREA-AVERAGED Ap = 0.16
 EFFECTIVE STREAM AREA(ACRES) =
 TOTAL STREAM AREA(ACRES) = 87.00
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                               104.18
****************************
 FLOW PROCESS FROM NODE 321.00 TO NODE 322.00 IS CODE = 21
>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
 ELEVATION DATA: UPSTREAM(FEET) =
                             42.00 DOWNSTREAM(FEET) =
                                                    40.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
```

```
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
                                         10.986
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.586
 SUBAREA TC AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                      SCS SOIL
                                 AREA
                                           Fp
                                                     Aр
                                                           SCS
                                                                 Tc
                              (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
                        GROUP
                                                                (MIN.)
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                          C
                                  3.70
                                            0.25
                                                    0.500
                                                            69
                                                                 10.99
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                                  0.10
                                                            75
                         D
                                            0.20
                                                    0.500
                                                                 10.99
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.500
 SUBAREA RUNOFF(CFS) =
                        8.42
                        3.80 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                                                        8.42
****************************
 FLOW PROCESS FROM NODE
                         322.00 TO NODE
                                          323.00 \text{ IS CODE} = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 40.00 DOWNSTREAM ELEVATION(FEET) = 38.00
 STREET LENGTH(FEET) = 1467.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                       18.38
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.60
   HALFSTREET FLOOD WIDTH(FEET) = 24.93
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.52
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 16.07 Tc(MIN.) =
                                                   27.06
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.543
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                     SCS SOIL
                                 AREA
                                           Fp
                                                     Aр
                                                            SCS
                              (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
                        GROUP
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                          C
                                  3.20
                                            0.25
                                                    0.500
                                                             69
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                          D
                                  7.60
                                            0.20
                                                    0.500
                                                            75
 COMMERCIAL
                          C
                                   1.00
                                            0.25
                                                    0.100
                                                             69
 COMMERCIAL
                          D
                                   2.90
                                            0.20
                                                    0.100
                                                            75
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.21
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.394
 SUBAREA AREA(ACRES) = 14.70
                                SUBAREA RUNOFF(CFS) = 19.29
 EFFECTIVE AREA(ACRES) = 18.50
                                  AREA-AVERAGED Fm(INCH/HR) =
 AREA-AVERAGED Fp(INCH/HR) = 0.22 AREA-AVERAGED Ap = 0.42
 TOTAL AREA(ACRES) =
                         18.5
                                    PEAK FLOW RATE(CFS) =
                                                             24.14
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.65 HALFSTREET FLOOD WIDTH(FEET) = 27.37
```

```
FLOW VELOCITY(FEET/SEC.) = 1.65 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 1467.0 FT WITH ELEVATION-DROP = 2.0 FT, IS
                                                        22.5 CFS,
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 323.00
 LONGEST FLOWPATH FROM NODE 321.00 TO NODE 323.00 =
                                                     1797.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 323.00 TO NODE 324.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 38.00 DOWNSTREAM ELEVATION(FEET) = 33.00
 STREET LENGTH(FEET) = 1382.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                    37.97
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.64
   HALFSTREET FLOOD WIDTH(FEET) = 27.01
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.67
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
                                        1.71
 STREET FLOW TRAVEL TIME(MIN.) = 8.63 Tc(MIN.) =
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.316
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                    SCS SOIL
                                AREA
                                         Fp
                                                  Αp
                                                         SCS
                             (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
                       GROUP
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                                12.70
                                          0.20
                         D
                                                  0.500
                                                          75
                                 5.90
 COMMERCIAL
                         D
                                          0.20
                                                  0.100
                                                          75
 URBAN POOR COVER
 "TURF"
                         D
                                 1.30
                                          0.20
                                                  1.000
                                                          87
 SCH00L
                         D
                                 5.10
                                          0.20
                                                  0.600
                                                         75
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.452
 SUBAREA AREA(ACRES) = 25.00
                              SUBAREA RUNOFF(CFS) = 27.58
 EFFECTIVE AREA(ACRES) = 43.50
                                AREA-AVERAGED fm(INCH/HR) = 0.09
 AREA-AVERAGED Fp(INCH/HR) = 0.21 AREA-AVERAGED Ap = 0.44
 TOTAL AREA(ACRES) =
                        43.5
                                  PEAK FLOW RATE(CFS) =
                                                          47.96
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.69 HALFSTREET FLOOD WIDTH(FEET) = 29.39
 FLOW VELOCITY(FEET/SEC.) = 2.83 DEPTH*VELOCITY(FT*FT/SEC.) =
                                                           1.95
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 1382.0 FT WITH ELEVATION-DROP = 5.0 FT, IS
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 324.00
 LONGEST FLOWPATH FROM NODE 321.00 TO NODE 324.00 = 3179.00 FEET.
**************************
```

FLOW PROCESS FROM NODE 324.00 TO NODE 324.00 IS CODE = 1

```
>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
-----
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 35.69
 RAINFALL INTENSITY(INCH/HR) = 1.32
 AREA-AVERAGED Fm(INCH/HR) = 0.09
 AREA-AVERAGED Fp(INCH/HR) = 0.21
 AREA-AVERAGED Ap = 0.44
 EFFECTIVE STREAM AREA(ACRES) =
 TOTAL STREAM AREA(ACRES) =
                         43.50
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                   47.96
 ** CONFLUENCE DATA **
  STREAM
                  Tc Intensity Fp(Fm)
                                               Ae
                                                     HEADWATER
            0
                 (MIN.) (INCH/HR) (INCH/HR)
                                              (ACRES)
  NUMBER
           (CFS)
                                                       NODE
                         1.333 0.23(0.04)0.16
    1
          104.18
                 34.92
                                                87.0
                                                        316.00
                         1.316 0.21( 0.09) 0.44
    2
           47.96 35.69
                                                 43.5
                                                        321.00
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
  STREAM
            Q
                 Tc Intensity Fp(Fm)
                                               Аe
                                                     HEADWATER
           (CFS) (MIN.) (INCH/HR) (INCH/HR)
  NUMBER
                                              (ACRES)
                                                       NODE
                         1.333 0.22( 0.05) 0.25
    1
          151.73
                 34.92
                                                129.6
                                                        316.00
          150.80 35.69
                         1.316 0.22( 0.05) 0.25
    2
                                                130.5
                                                        321.00
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 151.73 Tc(MIN.) = 34.92
EFFECTIVE AREA(ACRES) = 129.56 AREA-AVERAGED Fm(INCH/HR) = 0.05
 AREA-AVERAGED Fp(INCH/HR) = 0.22 AREA-AVERAGED Ap = 0.25
 TOTAL AREA(ACRES) = 130.5
 LONGEST FLOWPATH FROM NODE
                          316.00 TO NODE
                                         324.00 =
                                                  4588.00 FEET.
****************************
 FLOW PROCESS FROM NODE 324.00 TO NODE 325.00 IS CODE = 31
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 33.00 DOWNSTREAM(FEET) = 32.50
 FLOW LENGTH(FEET) = 167.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 63.0 INCH PIPE IS 50.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 8.11
 ESTIMATED PIPE DIAMETER(INCH) = 63.00
                                    NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 151.73
 PIPE TRAVEL TIME(MIN.) = 0.34 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 316.00 TO NODE
                                        325.00 = 4755.00 FEET.
**********************************
 FLOW PROCESS FROM NODE
                      326.00 TO NODE
                                     327.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
                              38.00 DOWNSTREAM(FEET) =
 ELEVATION DATA: UPSTREAM(FEET) =
                                                        36.00
```

```
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.978
 SUBAREA TC AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                       SCS SOIL
                                 AREA
                                          Fp
                                                    Aр
                                                          SCS
                                                                Tc
                              (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
                        GROUP
                                                               (MIN.)
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                                  1.60
                                                           75
                          D
                                           0.20
                                                   0.500
                                                                10.99
 COMMERCIAL
                          D
                                  0.50
                                           0.20
                                                   0.100
                                                           75
                                                                8.59
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.405
 SUBAREA RUNOFF(CFS) =
                        5.48
                        2.10 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                                                       5.48
****************************
 FLOW PROCESS FROM NODE
                        327.00 TO NODE
                                         328.00 \text{ IS CODE} = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 36.00 DOWNSTREAM ELEVATION(FEET) = 34.00
 STREET LENGTH(FEET) = 607.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                      11.13
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.46
   HALFSTREET FLOOD WIDTH(FEET) = 17.23
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.79
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
                                          0.82
 STREET FLOW TRAVEL TIME(MIN.) = 5.67 Tc(MIN.) =
                                                  14.25
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.228
 SUBAREA LOSS RATE DATA(AMC II):
                      SCS SOIL
  DEVELOPMENT TYPE/
                                 AREA
                                          Fp
                                                    Ap
                                                          SCS
      LAND USE
                        GROUP
                              (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         D
                                  3.70
                                                           75
                                           0.20
                                                   0.500
 COMMERCIAL
                          D
                                  1.70
                                           0.20
                                                   0.100
                                                           75
 URBAN POOR COVER
 "TURF"
                          D
                                  0.40
                                           0.20
                                                   1.000
                                                           87
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.417
 SUBAREA AREA(ACRES) = 5.80
                             SUBAREA RUNOFF(CFS) = 11.19
 EFFECTIVE AREA(ACRES) =
                        7.90
                                  AREA-AVERAGED Fm(INCH/HR) =
                                                             0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.41
                         7.9
 TOTAL AREA(ACRES) =
                                   PEAK FLOW RATE(CFS) =
                                                            15.25
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.51 HALFSTREET FLOOD WIDTH(FEET) = 19.80
 FLOW VELOCITY(FEET/SEC.) = 1.93 DEPTH*VELOCITY(FT*FT/SEC.) =
                                                             0.98
```

```
LONGEST FLOWPATH FROM NODE
                        326.00 TO NODE 328.00 =
                                                937.00 FEET.
************************************
 FLOW PROCESS FROM NODE 328.00 TO NODE 329.00 IS CODE = 31
.....
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 34.00 DOWNSTREAM(FEET) = 33.00
 FLOW LENGTH(FEET) = 190.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 19.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.65
 ESTIMATED PIPE DIAMETER(INCH) = 24.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 15.25
 PIPE TRAVEL TIME(MIN.) = 0.56 Tc(MIN.) =
                                      14.81
 LONGEST FLOWPATH FROM NODE 326.00 TO NODE
                                      329.00 =
                                               1127.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 330.00 TO NODE 331.00 IS CODE = 21
------
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
 ELEVATION DATA: UPSTREAM(FEET) =
                            34.00 DOWNSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.862
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.751
 SUBAREA TC AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                  SCS SOIL AREA
                                    Fp
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                     D
                             1.40
                                    0.20
                                           0.500
                                                  75
                                                      12.62
                             0.50
                                    0.20
                                           0.100
                                                     9.86
 COMMERCIAL
                      D
                                                  75
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.395
 SUBAREA RUNOFF(CFS) = 4.57
                   1.90 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
*********************************
 FLOW PROCESS FROM NODE 331.00 TO NODE 332.00 IS CODE = 62
......
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<
______
 UPSTREAM ELEVATION(FEET) = 33.00 DOWNSTREAM ELEVATION(FEET) = 32.50
 STREET LENGTH(FEET) = 80.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
```

```
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.42
   HALFSTREET FLOOD WIDTH(FEET) = 15.04
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.27
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 0.59 Tc(MIN.) =
                                             10.45
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.661
 SUBAREA LOSS RATE DATA(AMC II):
                    SCS SOIL
  DEVELOPMENT TYPE/
                             AREA
                                      Fp
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                               4.20
                                                      75
                       D
                                       0.20
                                              0.500
 COMMERCIAL
                       D
                               1.30
                                       0.20
                                              0.100
                                                      75
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.405
 SUBAREA AREA(ACRES) = 5.50 SUBAREA RUNOFF(CFS) = 12.77
 EFFECTIVE AREA(ACRES) = 7.40
                              AREA-AVERAGED fm(INCH/HR) = 0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.40
                       7.4
 TOTAL AREA(ACRES) =
                                PEAK FLOW RATE(CFS) =
                                                       17.19
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.48 HALFSTREET FLOOD WIDTH(FEET) = 18.01
 FLOW VELOCITY(FEET/SEC.) = 2.53 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE 330.00 TO NODE 332.00 = 410.00 FEET.
****************************
 FLOW PROCESS FROM NODE 332.00 TO NODE 333.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 32.50 DOWNSTREAM(FEET) = 32.00
 FLOW LENGTH(FEET) = 451.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 36.0 INCH PIPE IS 24.7 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.32
 ESTIMATED PIPE DIAMETER(INCH) = 36.00
                                    NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                17.19
                             Tc(MIN.) =
 PIPE TRAVEL TIME(MIN.) = 2.26
 LONGEST FLOWPATH FROM NODE 330.00 TO NODE
                                        333.00 =
                                                   861.00 FEET.
*************************************
 FLOW PROCESS FROM NODE 333.00 TO NODE 333.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 12.71
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.378
 SUBAREA LOSS RATE DATA(AMC II):
                    SCS SOIL
  DEVELOPMENT TYPE/
                              AREA
                                      Fp
     LAND USE
                      GROUP
                           (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                               2.90
                       D
                                       0.20
                                              0.500
                                                      75
 COMMERCIAL
                       D
                               0.90
                                       0.20
                                              0.100
                                                      75
 URBAN POOR COVER
 "TURF"
                       D
                               0.50
                                       0.20
                                              1.000
                                                      87
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.474
 SUBAREA AREA(ACRES) = 4.30 SUBAREA RUNOFF(CFS) =
 EFFECTIVE AREA(ACRES) = 11.70 AREA-AVERAGED Fm(INCH/HR) = 0.09
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.43
```

```
TOTAL AREA(ACRES) =
                      11.7
                               PEAK FLOW RATE(CFS) =
                                                      24.14
************************
 FLOW PROCESS FROM NODE
                      334.00 TO NODE
                                     335.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
                              38.00 DOWNSTREAM(FEET) =
 ELEVATION DATA: UPSTREAM(FEET) =
                                                        36.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.978
 SUBAREA TC AND LOSS RATE DATA(AMC II):
                   SCS SOIL AREA
  DEVELOPMENT TYPE/
                                      Fp
                                               Aр
                                                     SCS
                                                          Tc
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                               0.90
                                                      75
                       D
                                       0.20
                                              0.500
                                                          10.99
 COMMERCIAL
                       D
                               0.50
                                       0.20
                                              0.100
                                                      75
                                                         8.59
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.357
 SUBAREA RUNOFF(CFS) =
                      3.66
                     1.40 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                                                  3.66
****************************
 FLOW PROCESS FROM NODE 335.00 TO NODE 336.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<
______
 UPSTREAM ELEVATION(FEET) = 36.00 DOWNSTREAM ELEVATION(FEET) = 34.00
 STREET LENGTH(FEET) = 715.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                  6.71
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.41
   HALFSTREET FLOOD WIDTH(FEET) = 14.57
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.48
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.60
 STREET FLOW TRAVEL TIME(MIN.) = 8.06 Tc(MIN.) = 16.65
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.038
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                             AREA
                                      Fp
                                                     SCS
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                       D
                               2.30
                                       0.20
                                              0.500
                                                      75
 COMMERCIAL
                       D
                               1.10
                                       0.20
                                              0.100
                                                      75
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.371
```

```
SUBAREA AREA(ACRES) = 3.40 SUBAREA RUNOFF(CFS) = EFFECTIVE AREA(ACRES) = 4.80 AREA-AVERAGED Fm(INCH/H
                                 AREA-AVERAGED Fm(INCH/HR) =
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.37
 TOTAL AREA(ACRES) =
                         4.8
                                   PEAK FLOW RATE(CFS) =
                                                             8.49
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.44 HALFSTREET FLOOD WIDTH(FEET) = 15.98
 FLOW VELOCITY(FEET/SEC.) = 1.57 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE 334.00 TO NODE 336.00 = 1045.00 FEET.
****************************
 FLOW PROCESS FROM NODE 336.00 TO NODE 337.00 IS CODE = 62
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 34.00 DOWNSTREAM ELEVATION(FEET) = 33.00
 STREET LENGTH(FEET) = 277.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                     11.06
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.45
   HALFSTREET FLOOD WIDTH(FEET) = 16.91
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.84
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.84
 STREET FLOW TRAVEL TIME(MIN.) = 2.51 Tc(MIN.) = 19.16
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.880
 SUBAREA LOSS RATE DATA(AMC II):
                     SCS SOIL
  DEVELOPMENT TYPE/
                                AREA
                                          Fp
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         D
                                 2.40
                                           0.20
                                                   0.500
                                                           75
 COMMERCIAL
                         D
                                 0.60
                                           0.20
                                                   0.100
                                                           75
 URBAN POOR COVER
 "TURF"
                         D
                                 0.20
                                           0.20
                                                   1.000
                                                           87
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.456
 SUBAREA AREA(ACRES) = 3.20 SUBAREA RUNOFF(CFS) = 5.15
EFFECTIVE AREA(ACRES) = 8.00 AREA-AVERAGED Fm(INCH/HR) = 0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.40
 TOTAL AREA(ACRES) =
                         8.0
                                  PEAK FLOW RATE(CFS) =
                                                            12.96
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.48 HALFSTREET FLOOD WIDTH(FEET) = 18.01
 FLOW VELOCITY(FEET/SEC.) = 1.91 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE 334.00 TO NODE 337.00 = 1322.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 337.00 TO NODE 338.00 IS CODE = 31
```

157

```
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 33.00 DOWNSTREAM(FEET) = 32.50
 FLOW LENGTH(FEET) = 119.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 18.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.03
 ESTIMATED PIPE DIAMETER(INCH) = 24.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
               12.96
 PIPE TRAVEL TIME(MIN.) = 0.39 Tc(MIN.) = 19.55
 LONGEST FLOWPATH FROM NODE 334.00 TO NODE
                                       338.00 =
                                                1441.00 FEET.
****************************
 FLOW PROCESS FROM NODE 339.00 TO NODE 340.00 IS CODE = 21
>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
 ELEVATION DATA: UPSTREAM(FEET) =
                             39.00 DOWNSTREAM(FEET) =
                                                      38.50
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.329
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.541
 SUBAREA TC AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                   SCS SOIL
                             AREA
                                     Fp
                                                   SCS
                                                        Tc
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 APARTMENTS
                      D
                              2.80
                                     0.20
                                             0.200
                                                    75
                                                        12.07
                                                    75 11.33
 COMMERCIAL
                      D
                              4.00
                                      0.20
                                             0.100
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.141
 SUBAREA RUNOFF(CFS) = 15.38
                   6.80 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                                               15.38
**************************
 FLOW PROCESS FROM NODE 340.00 TO NODE 341.00 IS CODE = 62
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 2 USED)<
______
 UPSTREAM ELEVATION(FEET) = 38.50 DOWNSTREAM ELEVATION(FEET) = 38.00
 STREET LENGTH(FEET) = 337.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 42.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 21.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                               21.81
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.68
   HALFSTREET FLOOD WIDTH(FEET) = 26.83
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.55
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.06
 STREET FLOW TRAVEL TIME(MIN.) = 3.62 Tc(MIN.) =
                                            14.94
```

```
* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.168
 SUBAREA LOSS RATE DATA(AMC II):
 DEVELOPMENT TYPE/ SCS SOIL
                           AREA
                                   Fp
     LAND USE
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 APARTMENTS
                     D
                            5.80
                                    0.20
                                           0.200
                                                  75
 COMMERCIAL
                     D
                            0.90
                                    0.20
                                           0.100
                                                  75
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.187
 SUBAREA AREA(ACRES) = 6.70 SUBAREA RUNOFF(CFS) = 12.85
 EFFECTIVE AREA(ACRES) = 13.50 AREA-AVERAGED Fm(INCH/HR) = 0.03
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.16
 TOTAL AREA(ACRES) =
                    13.5
                             PEAK FLOW RATE(CFS) =
                                                   25.94
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.72 HALFSTREET FLOOD WIDTH(FEET) = 30.28
 FLOW VELOCITY(FEET/SEC.) = 1.62 DEPTH*VELOCITY(FT*FT/SEC.) = 1.16
 LONGEST FLOWPATH FROM NODE 339.00 TO NODE 341.00 = 667.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 341.00 TO NODE 346.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 38.00 DOWNSTREAM(FEET) = 37.50
 FLOW LENGTH(FEET) = 637.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 42.0 INCH PIPE IS 33.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.17
 ESTIMATED PIPE DIAMETER(INCH) = 42.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                 25.94
 PIPE TRAVEL TIME(MIN.) = 3.35 Tc(MIN.) =
                                     18.30
 LONGEST FLOWPATH FROM NODE 339.00 TO NODE
                                     346.00 =
                                              1304.00 FEET.
**************************
 FLOW PROCESS FROM NODE 346.00 TO NODE 346.00 IS CODE = 1
-----
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 18.30
 RAINFALL INTENSITY(INCH/HR) =
 AREA-AVERAGED Fm(INCH/HR) = 0.03
 AREA-AVERAGED Fp(INCH/HR) = 0.20
 AREA-AVERAGED Ap = 0.16
 EFFECTIVE STREAM AREA(ACRES) =
                           13.50
 TOTAL STREAM AREA(ACRES) = 13.50
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                25.94
****************************
 FLOW PROCESS FROM NODE 342.00 TO NODE 343.00 IS CODE = 21
.....
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
-----
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
                            39.00 DOWNSTREAM(FEET) =
 ELEVATION DATA: UPSTREAM(FEET) =
                                                    38.50
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.329
```

```
* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.541
 SUBAREA TC AND LOSS RATE DATA(AMC II):
                     SCS SOIL AREA
  DEVELOPMENT TYPE/
                                        Fp
                                                  Aр
                                                        SCS
     LAND USE
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
                                                            (MIN.)
 RESIDENTIAL
                                1.50
                                                         75
 "5-7 DWELLINGS/ACRE"
                        D
                                         0.20
                                                 0.500
                                                             14.50
 COMMERCIAL
                        D
                                0.60
                                         0.20
                                                 0.100
                                                         75
                                                             11.33
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.386
 SUBAREA RUNOFF(CFS) = 4.66
                       2.10 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
****************************
 FLOW PROCESS FROM NODE 343.00 TO NODE 344.00 IS CODE = 62
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 38.50 DOWNSTREAM ELEVATION(FEET) = 38.00
 STREET LENGTH(FEET) = 502.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                    7.91
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.50
   HALFSTREET FLOOD WIDTH(FEET) = 19.10
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.04
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.52
 STREET FLOW TRAVEL TIME(MIN.) = 8.03 Tc(MIN.) =
                                                19.36
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.869
 SUBAREA LOSS RATE DATA(AMC II):
                     SCS SOIL
  DEVELOPMENT TYPE/
                               AREA
                                        Fp
     LAND USE
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
                                3.00
                                                         75
 "5-7 DWELLINGS/ACRE"
                        D
                                         0.20
                                                 0.500
 COMMERCIAL
                        D
                                1.00
                                         0.20
                                                 0.100
                                                         75
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.400
 SUBAREA AREA(ACRES) = 4.00 SUBAREA RUNOFF(CFS) =
 EFFECTIVE AREA(ACRES) = 6.10
                               AREA-AVERAGED Fm(INCH/HR) = 0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.40
 TOTAL AREA(ACRES) =
                        6.1
                                  PEAK FLOW RATE(CFS) =
                                                           9.83
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.53 HALFSTREET FLOOD WIDTH(FEET) = 21.45
 FLOW VELOCITY(FEET/SEC.) = 1.11 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE 342.00 TO NODE
                                         344.00 = 832.00 FEET.
******************************
 FLOW PROCESS FROM NODE 344.00 TO NODE 345.00 IS CODE = 62
```

160

```
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 38.00 DOWNSTREAM ELEVATION(FEET) = 37.70
 STREET LENGTH(FEET) = 533.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                     18.96
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.69
   HALFSTREET FLOOD WIDTH(FEET) = 29.39
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.12
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.77
 STREET FLOW TRAVEL TIME(MIN.) = 7.93 Tc(MIN.) =
                                                 27.29
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.535
 SUBAREA LOSS RATE DATA(AMC II):
                      SCS SOIL
  DEVELOPMENT TYPE/
                                AREA
                                         Fp
                             (ACRES) (INCH/HR) (DECIMAL) CN
                       GROUP
      LAND USE
 RESIDENTIAL
                                                          75
 "5-7 DWELLINGS/ACRE"
                         D
                                10.70
                                          0.20
                                                  0.500
 COMMERCIAL
                         D
                                 3.20
                                          0.20
                                                  0.100
                                                          75
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.408
 SUBAREA AREA(ACRES) = 13.90 SUBAREA RUNOFF(CFS) = 18.19
 EFFECTIVE AREA(ACRES) = 20.00
                                AREA-AVERAGED Fm(INCH/HR) = 0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.40
 TOTAL AREA(ACRES) =
                        20.0
                                   PEAK FLOW RATE(CFS) =
                                                           26.18
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.76 HALFSTREET FLOOD WIDTH(FEET) = 33.05
 FLOW VELOCITY(FEET/SEC.) = 1.22 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 533.0 FT WITH ELEVATION-DROP = 0.3 FT, IS
                                                        24.4 CFS,
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 345.00
 LONGEST FLOWPATH FROM NODE 342.00 TO NODE 345.00 = 1365.00 FEET.
**************************
 FLOW PROCESS FROM NODE 345.00 TO NODE
                                        346.00 \text{ IS CODE} = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 37.70 DOWNSTREAM(FEET) = 37.50
 FLOW LENGTH(FEET) = 813.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 54.0 INCH PIPE IS 39.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) =
                              2.08
 ESTIMATED PIPE DIAMETER(INCH) = 54.00
                                       NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                     26.18
 PIPE TRAVEL TIME(MIN.) = 6.51 Tc(MIN.) =
                                            33.80
 LONGEST FLOWPATH FROM NODE 342.00 TO NODE
                                            346.00 =
                                                       2178.00 FEET.
```

```
****************************
 FLOW PROCESS FROM NODE
                     346.00 TO NODE 346.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 33.80
 RAINFALL INTENSITY(INCH/HR) = 1.36
 AREA-AVERAGED Fm(INCH/HR) = 0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.20
 AREA-AVERAGED Ap = 0.40
 EFFECTIVE STREAM AREA(ACRES) =
                            20.00
 TOTAL STREAM AREA(ACRES) = 20.00
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
  STREAM
         Q
                 Tc Intensity Fp(Fm)
                                            Ae
                                                 HEADWATER
          (CFS) (MIN.) (INCH/HR) (INCH/HR)
  NUMBER
                                           (ACRES)
                                                   NODE
          25.94 18.30 1.930 0.20(0.03) 0.16
                                            13.5
    1
                                                    339.00
          26.18 33.80
                       1.358 0.20( 0.08) 0.40
    2
                                              20.0
                                                     342.00
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
                Tc Intensity Fp(Fm)
  STREAM
           Q
                                            Ae
                                                 HEADWATER
          (CFS) (MIN.) (INCH/HR) (INCH/HR)
  NUMBER
                                           (ACRES)
                                                  NODE
                      1.930 0.20( 0.05) 0.27
    1
          46.46 18.30
                                             24.3
                                                     339.00
          44.30 33.80
                       1.358 0.20( 0.06) 0.31
    2
                                              33.5
                                                     342.00
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 46.46 Tc(MIN.) = 18.30
EFFECTIVE AREA(ACRES) = 24.33 AREA-AVERAGED Fm(INCH/HR) = 0.05
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.27
 TOTAL AREA(ACRES) = 33.5
 LONGEST FLOWPATH FROM NODE 342.00 TO NODE
                                    346.00 = 2178.00 FEET.
*************************************
 FLOW PROCESS FROM NODE 346.00 TO NODE 347.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<><
______
 ELEVATION DATA: UPSTREAM(FEET) = 37.50 DOWNSTREAM(FEET) = 37.00
 FLOW LENGTH(FEET) = 1007.75 MANNING'S N = 0.013
 DEPTH OF FLOW IN 57.0 INCH PIPE IS 45.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.09
 ESTIMATED PIPE DIAMETER(INCH) = 57.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
               46.46
 PIPE TRAVEL TIME(MIN.) = 5.44 Tc(MIN.) =
                                      23.74
 LONGEST FLOWPATH FROM NODE 342.00 TO NODE
                                      347.00 =
                                               3185.75 FEET.
*******************************
 FLOW PROCESS FROM NODE 347.00 TO NODE 347.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
```

```
MAINLINE Tc(MIN.) = 23.74
  10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.663
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                              AREA
                                       Fp
                                                Aр
                                                      SCS
                           (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
                      GROUP
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                               0.40
                                                       75
                       D
                                        0.20
                                               0.500
 APARTMENTS
                       D
                               4.70
                                        0.20
                                               0.200
                                                       75
                               8.50
 COMMERCIAL
                       D
                                        0.20
                                               0.100
                                                       75
 URBAN POOR COVER
 "TURF"
                        D
                               5.10
                                        0.20
                                               1.000
                                                       87
 SCHOOL
                        D
                              10.20
                                        0.20
                                               0.600
                                                       75
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.457
 SUBAREA AREA(ACRES) = 28.90 SUBAREA RUNOFF(CFS) = 40.87
 EFFECTIVE AREA(ACRES) = 53.23 AREA-AVERAGED Fm(INCH/HR) = 0.07
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.37
 TOTAL AREA(ACRES) =
                      62.4
                               PEAK FLOW RATE(CFS) =
                                                       76.09
*******************************
 FLOW PROCESS FROM NODE 348.00 TO NODE 349.00 IS CODE = 21
------
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
 ELEVATION DATA: UPSTREAM(FEET) =
                                36.00 DOWNSTREAM(FEET) =
                                                         35.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.751
 SUBAREA TC AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                    SCS SOIL
                              AREA
                                       Fp
                                                Aр
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
                                                          (MIN.)
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                       D
                               0.70
                                        0.20
                                               0.500
                                                       75
                                                           12.62
 COMMERCIAL
                       D
                               0.40
                                        0.20
                                               0.100
                                                       75
                                                           9.86
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.355
 SUBAREA RUNOFF(CFS) =
                      2.65
                      1.10 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                                                  2.65
*******************************
 FLOW PROCESS FROM NODE
                      349.00 TO NODE
                                      350.00 \text{ IS CODE} = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 35.00 DOWNSTREAM ELEVATION(FEET) = 34.00
 STREET LENGTH(FEET) = 487.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
```

```
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                      5.25
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.40
   HALFSTREET FLOOD WIDTH(FEET) = 14.02
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.24
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 6.53 Tc(MIN.) =
                                                 16.40
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.056
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                       SCS SOIL
                                AREA
                       GROUP
                              (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                                                           75
                         D
                                 2.20
                                          0.20
                                                  0.500
 COMMERCIAL
                         D
                                 0.70
                                          0.20
                                                  0.100
                                                           75
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.403
 SUBAREA AREA(ACRES) = 2.90
                                SUBAREA RUNOFF(CFS) =
 EFFECTIVE AREA(ACRES) =
                         4.00
                                 AREA-AVERAGED Fm(INCH/HR) =
                                                            0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.39
 TOTAL AREA(ACRES) =
                         4.0
                                   PEAK FLOW RATE(CFS) =
                                                            7.12
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.43 HALFSTREET FLOOD WIDTH(FEET) = 15.82
 FLOW VELOCITY(FEET/SEC.) = 1.34 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE
                           348.00 TO NODE
                                          350.00 =
                                                       817.00 FEET.
***************************
 FLOW PROCESS FROM NODE 350.00 TO NODE 351.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 34.00 DOWNSTREAM ELEVATION(FEET) = 33.00
 STREET LENGTH(FEET) = 841.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                     10.84
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.53
   HALFSTREET FLOOD WIDTH(FEET) = 21.51
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.22
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 11.52 Tc(MIN.) =
                                                 27.91
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.515
 SUBAREA LOSS RATE DATA(AMC II):
                      SCS SOIL
  DEVELOPMENT TYPE/
                                AREA
                                          Fp
      LAND USE
                       GROUP
                               (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         D
                                 4.40
                                                  0.500
                                                           75
                                          0.20
```

```
1.30
                      D
                                     0.20
                                            0.100
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.409
 SUBAREA AREA(ACRES) = 5.70 SUBAREA RUNOFF(CFS) = 7.35 EFFECTIVE AREA(ACRES) = 9.70 AREA-AVERAGED FM(INCH/HR) =
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.40
                     9.7
                              PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                                                    12.53
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.55 HALFSTREET FLOOD WIDTH(FEET) = 22.49
 FLOW VELOCITY(FEET/SEC.) = 1.28 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
      AND L = 841.0 FT WITH ELEVATION-DROP = 1.0 FT, IS
                                                  9.8 CFS,
      WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE
                                                 351.00
 LONGEST FLOWPATH FROM NODE 348.00 TO NODE 351.00 = 1658.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 351.00 TO NODE 364.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
ELEVATION DATA: UPSTREAM(FEET) = 33.00 DOWNSTREAM(FEET) = 32.50
 FLOW LENGTH(FEET) = 329.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 30.0 INCH PIPE IS 20.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.45
 ESTIMATED PIPE DIAMETER(INCH) = 30.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 12.53
 PIPE TRAVEL TIME(MIN.) = 1.59 Tc(MIN.) =
                                       29.50
 LONGEST FLOWPATH FROM NODE 348.00 TO NODE
                                       364.00 =
                                                1987.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 364.00 TO NODE 364.00 IS CODE = 10
------
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<<
______
****************************
 FLOW PROCESS FROM NODE 352.00 TO NODE 353.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
 ELEVATION DATA: UPSTREAM(FEET) =
                             34.00 DOWNSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.329
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.541
 SUBAREA TC AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                   SCS SOIL AREA
                                    Fp
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
                                                      (MIN.)
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                             1.90
                                                   75
                      D
                                     0.20
                                            0.500
                                                       14.50
 COMMERCIAL
                      D
                             0.50
                                     0.20
                                            0.100
                                                   75
                                                      11.33
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.417
 SUBAREA RUNOFF(CFS) = 5.31
                   2.40 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                                               5.31
```

```
****************************
 FLOW PROCESS FROM NODE 353.00 TO NODE 354.00 IS CODE = 62
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 33.50 DOWNSTREAM ELEVATION(FEET) = 33.00
 STREET LENGTH(FEET) = 320.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                 7.31
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.45
   HALFSTREET FLOOD WIDTH(FEET) = 16.91
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.22
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.55
 STREET FLOW TRAVEL TIME(MIN.) = 4.39 Tc(MIN.) = 15.72
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.106
 SUBAREA LOSS RATE DATA(AMC II):
                    SCS SOIL AREA
  DEVELOPMENT TYPE/
                                      Fp
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                               1.80
                                                      75
                       D
                                       0.20
                                              0.500
 COMMERCIAL
                       D
                               0.40
                                       0.20
                                              0.100
                                                     75
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.427
 SUBAREA AREA(ACRES) = 2.20 SUBAREA RUNOFF(CFS) =
 EFFECTIVE AREA(ACRES) = 4.60 AREA-AVERAGED Fm(INCH/HR) = 0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.42
 TOTAL AREA(ACRES) =
                       4.6
                                PEAK FLOW RATE(CFS) =
                                                       8.37
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.47 HALFSTREET FLOOD WIDTH(FEET) = 17.85
 FLOW VELOCITY(FEET/SEC.) = 1.26 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE 352.00 TO NODE 354.00 = 650.00 FEET.
***************************
 FLOW PROCESS FROM NODE 354.00 TO NODE 363.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 33.00 DOWNSTREAM(FEET) = 32.70
 FLOW LENGTH(FEET) = 477.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 30.0 INCH PIPE IS 21.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 2.23
 ESTIMATED PIPE DIAMETER(INCH) = 30.00
                                   NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                  8.37
 PIPE TRAVEL TIME(MIN.) = 3.56 Tc(MIN.) = 19.27
 LONGEST FLOWPATH FROM NODE 352.00 TO NODE 363.00 = 1127.00 FEET.
```

```
****************************
 FLOW PROCESS FROM NODE 363.00 TO NODE 363.00 IS CODE = 1
>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) =
                         19.27
 RAINFALL INTENSITY(INCH/HR) =
 AREA-AVERAGED Fm(INCH/HR) = 0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.20
 AREA-AVERAGED Ap = 0.42
 EFFECTIVE STREAM AREA(ACRES) =
 TOTAL STREAM AREA(ACRES) = 4.60
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                8.37
*******************************
 FLOW PROCESS FROM NODE 355.00 TO NODE 356.00 IS CODE = 21
......
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
                           35.00 DOWNSTREAM(FEET) =
 ELEVATION DATA: UPSTREAM(FEET) =
                                                   34.50
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.329
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.541
 SUBAREA TC AND LOSS RATE DATA(AMC II):
 DEVELOPMENT TYPE/ SCS SOIL AREA
                                  Fр
                                                SCS
                                                     Tc
                   GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                    D
                            1.60
                                    0.20
                                          0.500
                                                 75
                                                     14.50
                                                 75 11.33
                            0.50
 COMMERCIAL
                     D
                                    0.20
                                          0.100
 URBAN POOR COVER
 "TURF"
                     D
                            0.10
                                    0.20
                                          1.000
                                                 87 19.56
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.432
 SUBAREA RUNOFF(CFS) = 4.86
                    2.20 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                                             4.86
*******************************
 FLOW PROCESS FROM NODE 356.00 TO NODE 357.00 IS CODE = 62
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
UPSTREAM ELEVATION(FEET) = 34.50 DOWNSTREAM ELEVATION(FEET) = 34.00
 STREET LENGTH(FEET) = 351.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
```

```
GC10EX
```

```
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                      8.99
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.49
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.23
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 4.75 Tc(MIN.) =
                                                 16.08
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.079
 SUBAREA LOSS RATE DATA(AMC II):
                    SCS SOIL
  DEVELOPMENT TYPE/
                                AREA
                                         Fp
                                                   Aр
                                                          SCS
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                                 3.00
                         D
                                          0.20
                                                  0.500
                                                          75
 COMMERCIAL
                         D
                                 1.10
                                          0.20
                                                  0.100
                                                          75
 URBAN POOR COVER
 "TURF"
                                 0.50
                                          0.20
                                                  1.000
                         D
                                                          87
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.459
 SUBAREA AREA(ACRES) = 4.60 SUBAREA RUNOFF(CFS) =
 EFFECTIVE AREA(ACRES) = 6.80
                                AREA-AVERAGED Fm(INCH/HR) =
                                                            0.09
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.45
                                   PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                         6.8
                                                           12.17
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.53 HALFSTREET FLOOD WIDTH(FEET) = 21.64
 FLOW VELOCITY(FEET/SEC.) = 1.35 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 351.0 FT WITH ELEVATION-DROP = 0.5 FT, IS
                                                         9.9 CFS,
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE
                                                          357.00
 LONGEST FLOWPATH FROM NODE 355.00 TO NODE
                                          357.00 =
                                                        681.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 357.00 TO NODE 358.00 IS CODE = 62
-----
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<
______
 UPSTREAM ELEVATION(FEET) = 34.00 DOWNSTREAM ELEVATION(FEET) = 33.50
 STREET LENGTH(FEET) = 586.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                     14.79
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.60
   HALFSTREET FLOOD WIDTH(FEET) = 25.05
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.21
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 8.06 Tc(MIN.) =
                                                 24.13
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.647
 SUBAREA LOSS RATE DATA(AMC II):
```

```
DEVELOPMENT TYPE/
                   SCS SOIL AREA
                                    Fp
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                      D
                             2.90
                                     0.20
                                            0.500
                                                   75
 COMMERCIAL
                      D
                             0.80
                                     0.20
                                            0.100
                                                   75
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.414
 SUBAREA AREA(ACRES) = 3.70 SUBAREA RUNOFF(CFS) = 5.21 EFFECTIVE AREA(ACRES) = 10.50 AREA-AVERAGED Fm(INCH/HR) = 0.09
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.44
 TOTAL AREA(ACRES) =
                    10.5
                              PEAK FLOW RATE(CFS) =
                                                    14.74
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.60 HALFSTREET FLOOD WIDTH(FEET) = 25.05
 FLOW VELOCITY(FEET/SEC.) = 1.21 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE 355.00 TO NODE 358.00 = 1267.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 358.00 TO NODE 363.00 IS CODE = 31
------
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 33.50 DOWNSTREAM(FEET) = 32.70
 FLOW LENGTH(FEET) = 739.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 33.0 INCH PIPE IS 24.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.14
 ESTIMATED PIPE DIAMETER(INCH) = 33.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
               14.74
 PIPE TRAVEL TIME(MIN.) = 3.92 Tc(MIN.) = 28.05
 LONGEST FLOWPATH FROM NODE 355.00 TO NODE
                                      363.00 =
                                               2006.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 363.00 TO NODE 363.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) =
                          28.05
 RAINFALL INTENSITY(INCH/HR) =
 AREA-AVERAGED Fm(INCH/HR) = 0.09
 AREA-AVERAGED Fp(INCH/HR) = 0.20
 AREA-AVERAGED Ap = 0.44
 EFFECTIVE STREAM AREA(ACRES) =
                            10.50
 TOTAL STREAM AREA(ACRES) = 10.50
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                14.74
****************************
 FLOW PROCESS FROM NODE 359.00 TO NODE 360.00 IS CODE = 21
-----
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
                             36.00 DOWNSTREAM(FEET) =
 ELEVATION DATA: UPSTREAM(FEET) =
                                                     35.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.862
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.751
```

```
SUBAREA TC AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                      SCS SOIL
                                 AREA
                                          Fp
                                                    Aр
                                                          SCS
                                                               Tc
                              (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
                        GROUP
                                                               (MIN.)
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                                                           75
                          D
                                  2.40
                                           0.20
                                                   0.500
                                                                12.62
 COMMERCIAL
                         D
                                  0.50
                                           0.20
                                                   0.100
                                                           75
                                                                9.86
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.431
 SUBAREA RUNOFF(CFS) =
                         6.95
 TOTAL AREA(ACRES) =
                        2.90 PEAK FLOW RATE(CFS) =
                                                       6.95
****************************
 FLOW PROCESS FROM NODE 360.00 TO NODE 361.00 IS CODE = 62
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 35.00 DOWNSTREAM ELEVATION(FEET) = 34.00
 STREET LENGTH(FEET) = 1191.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                      12.29
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.57
   HALFSTREET FLOOD WIDTH(FEET) = 23.65
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.13
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 17.49 Tc(MIN.) =
                                                  27.36
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.533
 SUBAREA LOSS RATE DATA(AMC II):
                       SCS SOIL
  DEVELOPMENT TYPE/
                                 AREA
                                          Fp
                                                          SCS
      LAND USE
                        GROUP
                               (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
                                  5.60
                                                           75
 "5-7 DWELLINGS/ACRE"
                          D
                                           0.20
                                                   0.500
 COMMERCIAL
                          D
                                  2.00
                                           0.20
                                                   0.100
                                                           75
 URBAN POOR COVER
 "TURF"
                                  0.30
                         D
                                           0.20
                                                   1.000
                                                           87
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.418
 SUBAREA AREA(ACRES) = 7.90
                                 SUBAREA RUNOFF(CFS) = 10.31
 EFFECTIVE AREA(ACRES) =
                         10.80
                                  AREA-AVERAGED Fm(INCH/HR) =
                                                             0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.42
 TOTAL AREA(ACRES) =
                         10.8
                                   PEAK FLOW RATE(CFS) =
                                                            14.08
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.59 HALFSTREET FLOOD WIDTH(FEET) = 24.69
 FLOW VELOCITY(FEET/SEC.) = 1.19 DEPTH*VELOCITY(FT*FT/SEC.) =
                                                             0.71
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
        AND L = 1191.0 FT WITH ELEVATION-DROP = 1.0 FT, IS
                                                         12.0 CFS,
        WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE
```

```
GC10EX
 LONGEST FLOWPATH FROM NODE 359.00 TO NODE 361.00 = 1521.00 FEET.
*************************************
 FLOW PROCESS FROM NODE 361.00 TO NODE 363.00 IS CODE = 31
.....
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 34.00 DOWNSTREAM(FEET) = 32.70
 FLOW LENGTH(FEET) = 743.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 30.0 INCH PIPE IS 21.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.73
 ESTIMATED PIPE DIAMETER(INCH) = 30.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 14.08
 PIPE TRAVEL TIME(MIN.) = 3.32 Tc(MIN.) = 30.67
 LONGEST FLOWPATH FROM NODE 359.00 TO NODE
                                       363.00 =
                                                2264.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 363.00 TO NODE 363.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE:
 TIME OF CONCENTRATION(MIN.) = 30.67
 RAINFALL INTENSITY(INCH/HR) = 1.44
 AREA-AVERAGED Fm(INCH/HR) = 0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.20
 AREA-AVERAGED Ap = 0.42
 EFFECTIVE STREAM AREA(ACRES) =
 TOTAL STREAM AREA(ACRES) = 10.80
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                14.08
 ** CONFLUENCE DATA **
                 Tc Intensity Fp(Fm)
                                             Ae
                                                  HEADWATER
  STREAM Q
           (CFS) (MIN.) (INCH/HR) (INCH/HR)
  NUMBER
                                            (ACRES)
                                                    NODE
                      1.874 0.20( 0.08) 0.42
                                            4.6
    1
           8.37 19.27
                                                      352.00
          14.74 28.05
                        1.511 0.20( 0.09) 0.44
    2
                                               10.5
                                                      355.00
          14.08 30.67 1.436 0.20(0.08) 0.42
                                               10.8
    3
                                                      359.00
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 3 STREAMS.
 ** PEAK FLOW RATE TABLE **
          Q Tc Intensity Fp(Fm)
                                                 HEADWATER
  STREAM
                                             Ae
           (CFS) (MIN.) (INCH/HR) (INCH/HR)
  NUMBER
                                            (ACRES)
                                                   NODE
                                            18.6
    1
          32.79 19.27
                       1.874 0.20(0.09) 0.43
                                                     352.00
          35.01 28.05
                        1.511 0.20( 0.09) 0.43
    2
                                               25.0
                                                      355.00
          34.36 30.67 1.436 0.20(0.09) 0.43
                                               25.9
    3
                                                      359.00
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 35.01 Tc(MIN.) = 28.05
EFFECTIVE AREA(ACRES) = 24.98 AREA-AVERAGED Fm(INCH/HR) = 0.09
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.43
 TOTAL AREA(ACRES) = 25.9
 LONGEST FLOWPATH FROM NODE 359.00 TO NODE 363.00 = 2264.00 FEET.
***************************
```

FLOW PROCESS FROM NODE 363.00 TO NODE 364.00 IS CODE = 31

```
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<
-----
 ELEVATION DATA: UPSTREAM(FEET) = 32.70 DOWNSTREAM(FEET) = 32.50
 FLOW LENGTH(FEET) = 170.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 45.0 INCH PIPE IS 33.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.03
 ESTIMATED PIPE DIAMETER(INCH) = 45.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 35.01
 PIPE TRAVEL TIME(MIN.) = 0.70 Tc(MIN.) =
                                    28.76
 LONGEST FLOWPATH FROM NODE 359.00 TO NODE
                                    364.00 =
                                             2434.00 FEET.
****************************
 FLOW PROCESS FROM NODE 364.00 TO NODE 364.00 IS CODE = 11
>>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
_____
 ** MAIN STREAM CONFLUENCE DATA **
  STREAM
          Q
               Tc Intensity Fp(Fm)
                                          Ae
                                               HEADWATER
          (CFS) (MIN.) (INCH/HR) (INCH/HR)
 NUMBER
                                         (ACRES)
                                                 NODE
                     1.835 0.20(0.09)0.43
    1
          32.79
               19.99
                                          18.6
                      1.490 0.20(0.09)0.43
    2
          35.01
               28.76
                                            25.0
                      1.417 0.20( 0.09) 0.43
          34.36
                                            25.9
    3
               31.38
                                                   359.00
 LONGEST FLOWPATH FROM NODE 359.00 TO NODE
                                   364.00 = 2434.00 FEET.
 ** MEMORY BANK # 1 CONFLUENCE DATA **
                Tc Intensity Fp(Fm)
  STREAM
          Q
                                          Ae
                                               HEADWATER
          (CFS) (MIN.) (INCH/HR) (INCH/HR)
                                         (ACRES)
 NUMBER
                                                 NODE
                     1.468 0.20( 0.08) 0.40
          12.53 29.50
                                          9.7
 LONGEST FLOWPATH FROM NODE
                     348.00 TO NODE
                                   364.00 = 1987.00 FEET.
 ** PEAK FLOW RATE TABLE **
               Tc Intensity Fp(Fm)
                                              HEADWATER
  STREAM
          Q
                                          Ae
          (CFS) (MIN.) (INCH/HR) (INCH/HR)
 NUMBER
                                         (ACRES)
                                                 NODE
                     1.835 0.20(0.08)0.42
   1
          43.53 19.99
                                          25.2
                                                   352.00
          47.42 28.76
                      1.490 0.20(0.08) 0.42
                                            34.4
    2
                                                   355.00
          47.36 29.50
                      1.468 0.20(0.08) 0.42
                                            34.9
    3
                                                   348.00
                      1.417 0.20( 0.08) 0.42
          46.43 31.38
                                            35.6
                                                  359.00
  TOTAL AREA(ACRES) =
                      35.6
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 47.42 Tc(MIN.) =
                                   28.757
                    34.43 AREA-AVERAGED Fm(INCH/HR) = 0.08
 EFFECTIVE AREA(ACRES) =
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.42
 TOTAL AREA(ACRES) = 35.6
 LONGEST FLOWPATH FROM NODE 359.00 TO NODE
                                    364.00 =
                                             2434.00 FEET.
****************************
 FLOW PROCESS FROM NODE 364.00 TO NODE 364.00 IS CODE = 12
______
 >>>> CLEAR MEMORY BANK # 1 <<<<<
______
*******************************
 FLOW PROCESS FROM NODE 364.00 TO NODE 368.00 IS CODE = 31
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<
```

```
______
 ELEVATION DATA: UPSTREAM(FEET) = 32.50 DOWNSTREAM(FEET) = 32.00
 FLOW LENGTH(FEET) = 483.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 51.0 INCH PIPE IS 38.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.12
 ESTIMATED PIPE DIAMETER(INCH) = 51.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
               47.42
 PIPE TRAVEL TIME(MIN.) = 1.95 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 359.00 TO NODE
                                    368.00 =
                                             2917.00 FEET.
****************************
 FLOW PROCESS FROM NODE 368.00 TO NODE 368.00 IS CODE = 1
>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) =
                        30.71
 RAINFALL INTENSITY(INCH/HR) =
 AREA-AVERAGED Fm(INCH/HR) = 0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.20
 AREA-AVERAGED Ap = 0.42
 EFFECTIVE STREAM AREA(ACRES) =
 TOTAL STREAM AREA(ACRES) = 35.60
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                              47.42
****************************
 FLOW PROCESS FROM NODE 365.00 TO NODE 366.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
                           36.00 DOWNSTREAM(FEET) =
 ELEVATION DATA: UPSTREAM(FEET) =
                                                  35.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.751
 SUBAREA TC AND LOSS RATE DATA(AMC II):
                 SCS SOIL AREA
 DEVELOPMENT TYPE/
                                  Fp
                                         Aр
                                              SCS
                   GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
    LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                                                75
                    D
                           2.00
                                   0.20
                                         0.500
                                                  12.62
                                                   9.86
 COMMERCIAL
                    D
                           0.30
                                   0.20
                                         0.100
                                                75
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.448
 SUBAREA RUNOFF(CFS) = 5.51
 TOTAL AREA(ACRES) =
                   2.30 PEAK FLOW RATE(CFS) =
****************************
 FLOW PROCESS FROM NODE 366.00 TO NODE 367.00 IS CODE = 62
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 35.00 DOWNSTREAM ELEVATION(FEET) = 33.00
 STREET LENGTH(FEET) = 765.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
```

```
INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                     13.84
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.51
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.73
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 7.39 Tc(MIN.) = 17.25
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.996
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                                AREA
                                         Fp
                                                   Aр
                                                         SCS
                       GROUP
                             (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         D
                                 7.10
                                          0.20
                                                  0.500
                                                          75
 COMMERCIAL
                         D
                                 2.40
                                          0.20
                                                  0.100
                                                          75
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.399
 SUBAREA AREA(ACRES) = 9.50 SUBAREA RUNOFF(CFS) = 16.39
 EFFECTIVE AREA(ACRES) = 11.80
                                AREA-AVERAGED Fm(INCH/HR) =
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.41
 TOTAL AREA(ACRES) =
                        11.8
                                  PEAK FLOW RATE(CFS) =
                                                           20.34
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.56 HALFSTREET FLOOD WIDTH(FEET) = 23.16
 FLOW VELOCITY(FEET/SEC.) = 1.96 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 765.0 FT WITH ELEVATION-DROP = 2.0 FT, IS
                                                        18.4 CFS,
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 367.00
 LONGEST FLOWPATH FROM NODE 365.00 TO NODE 367.00 =
                                                      1095.00 FEET.
****************************
 FLOW PROCESS FROM NODE 367.00 TO NODE 368.00 IS CODE = 62
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<
______
 UPSTREAM ELEVATION(FEET) = 33.00 DOWNSTREAM ELEVATION(FEET) = 32.00
 STREET LENGTH(FEET) = 649.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                     25.74
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.65
```

```
HALFSTREET FLOOD WIDTH(FEET) = 27.37
   AVERAGE FLOW VELOCITY(FEET/SEC.) =
                                      1.76
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
                                          1.14
 STREET FLOW TRAVEL TIME(MIN.) = 6.15 Tc(MIN.) =
                                                   23.40
    10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.677
 SUBAREA LOSS RATE DATA(AMC II):
                       SCS SOIL
  DEVELOPMENT TYPE/
                                  AREA
                                           Fp
      LAND USE
                        GROUP
                                (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                          D
                                   5.30
                                            0.20
                                                    0.500
                                                             75
 COMMERCIAL
                          D
                                   2.20
                                            0.20
                                                    0.100
                                                             75
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.383
 SUBAREA AREA(ACRES) = 7.50
                                  SUBAREA RUNOFF(CFS) =
 EFFECTIVE AREA(ACRES) =
                          19.30
                                   AREA-AVERAGED Fm(INCH/HR) =
                                                              0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.40
 TOTAL AREA(ACRES) =
                         19.3
                                     PEAK FLOW RATE(CFS) =
                                                              27.74
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.66 HALFSTREET FLOOD WIDTH(FEET) = 28.11
 FLOW VELOCITY(FEET/SEC.) = 1.80 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
        AND L = 649.0 FT WITH ELEVATION-DROP = 1.0 FT, IS
                                                           14.2 CFS,
        WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 368.00
 LONGEST FLOWPATH FROM NODE
                           365.00 TO NODE 368.00 =
                                                        1744.00 FEET.
*************************************
 FLOW PROCESS FROM NODE
                         368.00 TO NODE
                                          368.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
_____
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) =
                               23.40
 RAINFALL INTENSITY(INCH/HR) =
 AREA-AVERAGED Fm(INCH/HR) = 0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.20
 AREA-AVERAGED Ap = 0.40
 EFFECTIVE STREAM AREA(ACRES) =
                               19.30
 TOTAL STREAM AREA(ACRES) =
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                        27.74
 ** CONFLUENCE DATA **
  STREAM
                     Tc Intensity Fp(Fm)
                                                     Ae
                                                            HEADWATER
              0
                   (MIN.) (INCH/HR) (INCH/HR)
  NUMBER
             (CFS)
                                                    (ACRES)
                                                              NODE
                            1.736 0.20(0.08)0.42
     1
            43.53
                    22.01
                                                       25.2
                                                                352.00
                            1.435 0.20( 0.08) 0.42
     1
            47.42
                    30.71
                                                       34.4
                                                                355.00
                            1.415 0.20( 0.08) 0.42
     1
            47.36
                    31.45
                                                       34.9
                                                                348.00
     1
            46.43
                    33.34
                            1.369 0.20(0.08)0.42
                                                       35.6
                                                                359.00
                            1.677 0.20(0.08)0.40
     2
            27.74
                    23.40
                                                       19.3
                                                                365.00
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
  STREAM
                     Tc
                        Intensity Fp(Fm)
                                                     Ae
                                                            HEADWATER
              0
  NUMBER
             (CFS)
                   (MIN.) (INCH/HR) (INCH/HR)
                                                    (ACRES)
                                                              NODE
                            1.736 0.20(0.08)0.41
     1
            70.59
                    22.01
                                                       43.3
                                                                352.00
                            1.677 0.20( 0.08) 0.41
     2
            71.89
                    23.40
                                                       46.0
                                                                365.00
```

```
GC10EX
                       1.435 0.20( 0.08) 0.41
    3
          70.95 30.71
                                             53.7
                                                    355.00
          70.56
                       1.415 0.20( 0.08) 0.41
    4
                31.45
                                             54.2
                                                    348.00
          68.82 33.34 1.369 0.20(0.08) 0.41
    5
                                             54.9
                                                    359.00
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 71.89 Tc(MIN.) = 23.40
EFFECTIVE AREA(ACRES) = 45.95 AREA-AVERAGED Fm(INCH/HR) = 0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.41
 TOTAL AREA(ACRES) = 54.9
 LONGEST FLOWPATH FROM NODE 359.00 TO NODE 368.00 =
                                             2917.00 FEET.
****************************
 FLOW PROCESS FROM NODE 368.00 TO NODE 374.00 IS CODE = 31
------
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 32.00 DOWNSTREAM(FEET) = 31.00
 FLOW LENGTH(FEET) = 1208.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 63.0 INCH PIPE IS 46.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.23
 ESTIMATED PIPE DIAMETER(INCH) = 63.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 71.89
 PIPE TRAVEL TIME(MIN.) = 4.77 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 359.00 TO NODE
                                     374.00 = 4125.00 FEET.
****************************
 FLOW PROCESS FROM NODE 374.00 TO NODE 374.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) =
                         28.17
 RAINFALL INTENSITY(INCH/HR) =
 AREA-AVERAGED Fm(INCH/HR) = 0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.20
 AREA-AVERAGED Ap = 0.41
 EFFECTIVE STREAM AREA(ACRES) =
                           45.95
 TOTAL STREAM AREA(ACRES) = 54.90
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                               71.89
*******************************
 FLOW PROCESS FROM NODE 369.00 TO NODE 370.00 IS CODE = 21
------
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
                            32.50 DOWNSTREAM(FEET) =
 ELEVATION DATA: UPSTREAM(FEET) =
                                                    32.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.329
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.541
 SUBAREA TC AND LOSS RATE DATA(AMC II):
 DEVELOPMENT TYPE/
                  SCS SOIL AREA
                                   Fp
                                            Aр
                                                 SCS
                                                      Tc
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 COMMERCIAL
                     D
                            0.50
                                    0.20
                                           0.100
                                                  75
                                                      11.33
 URBAN POOR COVER
```

1.000

87 19.56

0.30

"TURF"

```
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.438
 SUBAREA RUNOFF(CFS) =
                       1.77
 TOTAL AREA(ACRES) =
                      0.80 PEAK FLOW RATE(CFS) =
                                                   1.77
*******************************
 FLOW PROCESS FROM NODE 370.00 TO NODE 371.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 2 USED)<
______
 UPSTREAM ELEVATION(FEET) = 32.00 DOWNSTREAM ELEVATION(FEET) = 31.80
 STREET LENGTH(FEET) = 149.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 42.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 21.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                   7.11
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.50
   HALFSTREET FLOOD WIDTH(FEET) = 17.10
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.14
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.57
 STREET FLOW TRAVEL TIME(MIN.) = 2.17 Tc(MIN.) = 13.50
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.297
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                       Fp
                                                 Aр
                                                       SCS
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                        D
                                5.20
                                        0.20
                                                0.500
 COMMERCIAL
                        D
                                0.10
                                        0.20
                                                0.100
                                                       75
 URBAN POOR COVER
 "TURF"
                                0.10
                                        0.20
                                                1.000
                        D
                                                       87
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.502
 SUBAREA AREA(ACRES) = 5.40 SUBAREA RUNOFF(CFS) = 10.68 EFFECTIVE AREA(ACRES) = 6.20 AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.49
 TOTAL AREA(ACRES) =
                       6.2
                                 PEAK FLOW RATE(CFS) =
                                                        12.27
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.58 HALFSTREET FLOOD WIDTH(FEET) = 21.29
 FLOW VELOCITY(FEET/SEC.) = 1.30 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE 369.00 TO NODE 371.00 =
                                                    479.00 FEET.
*************************************
 FLOW PROCESS FROM NODE 371.00 TO NODE 372.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 2 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 31.80 DOWNSTREAM ELEVATION(FEET) = 31.60
 STREET LENGTH(FEET) = 294.00 CURB HEIGHT(INCHES) = 8.0
```

```
STREET HALFWIDTH(FEET) = 42.00
```

```
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 21.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                      20.79
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.75
   HALFSTREET FLOOD WIDTH(FEET) = 34.05
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.13
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 4.35 Tc(MIN.) =
                                                  17.85
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.958
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                      SCS SOIL
                                 AREA
                                          Fp
                               (ACRES) (INCH/HR) (DECIMAL) CN
                        GROUP
      LAND USE
 RESIDENTIAL
                                                           75
 "5-7 DWELLINGS/ACRE"
                         D
                                  8.50
                                           0.20
                                                   0.500
 COMMERCIAL
                         D
                                  1.60
                                           0.20
                                                   0.100
                                                           75
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.437
 SUBAREA AREA(ACRES) = 10.10
                                SUBAREA RUNOFF(CFS) =
 EFFECTIVE AREA(ACRES) = 16.30
                                 AREA-AVERAGED Fm(INCH/HR) = 0.09
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.46
 TOTAL AREA(ACRES) =
                         16.3
                                   PEAK FLOW RATE(CFS) =
                                                            27.38
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.82 HALFSTREET FLOOD WIDTH(FEET) = 40.29
 FLOW VELOCITY(FEET/SEC.) = 1.19 DEPTH*VELOCITY(FT*FT/SEC.) =
                                                             0.97
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
        AND L = 294.0 FT WITH ELEVATION-DROP = 0.2 FT, IS
                                                         20.8 CFS,
        WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 372.00
 LONGEST FLOWPATH FROM NODE 369.00 TO NODE 372.00 =
                                                        773.00 FEET.
************************************
 FLOW PROCESS FROM NODE
                        372.00 TO NODE
                                         373.00 \text{ IS CODE} = 62
......
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 2 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 31.60 DOWNSTREAM ELEVATION(FEET) = 31.40
 STREET LENGTH(FEET) = 285.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 42.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 21.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
```

```
GC10EX
```

```
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.87
   HALFSTREET FLOOD WIDTH(FEET) = 45.86
   AVERAGE FLOW VELOCITY(FEET/SEC.) =
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 3.81 Tc(MIN.) =
                                                   21.66
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.752
 SUBAREA LOSS RATE DATA(AMC II):
                       SCS SOIL
  DEVELOPMENT TYPE/
                                 AREA
                                           Fp
                                                            SCS
                                (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
                        GROUP
 RESIDENTIAL
                                                             75
 "5-7 DWELLINGS/ACRE"
                          D
                                   8.00
                                            0.20
                                                    0.500
 COMMERCIAL
                          D
                                   1.80
                                            0.20
                                                    0.100
                                                             75
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.427
 SUBAREA AREA(ACRES) = 9.80
                                 SUBAREA RUNOFF(CFS) =
 EFFECTIVE AREA(ACRES) =
                         26.10
                                   AREA-AVERAGED Fm(INCH/HR) =
                                                              0.09
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.45
 TOTAL AREA(ACRES) =
                         26.1
                                    PEAK FLOW RATE(CFS) =
                                                              39.07
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.90 HALFSTREET FLOOD WIDTH(FEET) = 48.82
 FLOW VELOCITY(FEET/SEC.) = 1.27 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
        AND L = 285.0 FT WITH ELEVATION-DROP = 0.2 FT, IS
                                                           20.5 CFS,
        WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE
                                                          373.00
 LONGEST FLOWPATH FROM NODE 369.00 TO NODE 373.00 =
                                                       1058.00 FEET.
*********************************
 FLOW PROCESS FROM NODE
                         373.00 TO NODE
                                          374.00 \text{ IS CODE} = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 2 USED)<<<<<
UPSTREAM ELEVATION(FEET) = 31.40 DOWNSTREAM ELEVATION(FEET) = 31.00
 STREET LENGTH(FEET) = 369.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 42.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 21.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                       53.89
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.93
   HALFSTREET FLOOD WIDTH(FEET) = 51.61
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.61
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
                                         1.49
 STREET FLOW TRAVEL TIME(MIN.) = 3.82 Tc(MIN.) =
                                                   25.48
    10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.597
 SUBAREA LOSS RATE DATA(AMC II):
                       SCS SOIL
  DEVELOPMENT TYPE/
                                  AREA
                                           Fp
      LAND USE
                        GROUP
                                (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                          D
                                  10.00
                                                    0.500
                                                             75
                                            0.20
```

GC10EX 0.20

0.100

75

D

11.40

```
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.287
 SUBAREA AREA(ACRES) = 21.40 SUBAREA RUNOFF(CFS) = 29.65
 EFFECTIVE AREA(ACRES) = 47.50
                                 AREA-AVERAGED Fm(INCH/HR) =
                                                             0.07
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.37
                        47.5
 TOTAL AREA(ACRES) =
                                   PEAK FLOW RATE(CFS) =
                                                             65.06
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.98 HALFSTREET FLOOD WIDTH(FEET) = 56.86
 FLOW VELOCITY(FEET/SEC.) = 1.66 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
        AND L = 369.0 FT WITH ELEVATION-DROP = 0.4 FT, IS
                                                         44.8 CFS,
        WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 374.00
 LONGEST FLOWPATH FROM NODE 369.00 TO NODE 374.00 = 1427.00 FEET.
********************************
 FLOW PROCESS FROM NODE
                        374.00 TO NODE
                                         374.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) =
                              25.48
 RAINFALL INTENSITY(INCH/HR) =
 AREA-AVERAGED Fm(INCH/HR) = 0.07
 AREA-AVERAGED Fp(INCH/HR) = 0.20
 AREA-AVERAGED Ap = 0.37
 EFFECTIVE STREAM AREA(ACRES) =
 TOTAL STREAM AREA(ACRES) =
                            47.50
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                       65.06
 ** CONFLUENCE DATA **
                    Tc Intensity Fp(Fm)
  STREAM
              Q
                                                    Ae
                                                          HEADWATER
                  (MIN.) (INCH/HR) (INCH/HR)
  NUMBER
            (CFS)
                                                   (ACRES)
                                                            NODE
     1
            70.59
                   26.89
                            1.548 0.20(0.08)0.41
                                                      43.3
                                                              352.00
                            1.508 0.20(0.08)0.41
     1
            71.89
                   28.17
                                                      46.0
                                                              365.00
                            1.319 0.20( 0.08) 0.41
     1
            70.95
                   35.59
                                                      53.7
                                                              355.00
                            1.303 0.20(0.08) 0.41
     1
            70.56
                   36.33
                                                      54.2
                                                              348.00
                            1.266 0.20(0.08)0.41
                                                      54.9
     1
            68.82
                   38.22
                                                              359.00
     2
            65.06 25.48
                            1.597 0.20( 0.07) 0.37
                                                      47.5
                                                              369.00
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
  STREAM
                    Tc Intensity Fp(Fm)
                                                    Ae
                                                           HEADWATER
                  (MIN.) (INCH/HR) (INCH/HR)
                                                   (ACRES)
  NUMBER
            (CFS)
                                                            NODE
                            1.597 0.20(0.08)0.39
     1
           134.17
                   25.48
                                                      88.6
                                                              369.00
                            1.548 0.20( 0.08) 0.39
     2
           133.58
                   26.89
                                                      90.8
                                                              352.00
                            1.508 0.20(0.08)0.39
     3
           133.13
                   28.17
                                                      93.5
                                                              365.00
     4
           124.12
                   35.59
                            1.319 0.20(0.08)0.39
                                                     101.2
                                                              355.00
                            1.303 0.20(0.08)0.39
     5
           123.06
                   36.33
                                                     101.7
                                                              348.00
           119.73 38.22
                            1.266 0.20(0.08)0.40
                                                     102.4
                                                              359.00
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 134.17 Tc(MIN.) =
                                               25.48
 EFFECTIVE AREA(ACRES) = 88.56 AREA-AVERAGED FM(INCH/HR) = 0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.39
```

COMMERCIAL

```
TOTAL AREA(ACRES) =
                    102.4
 LONGEST FLOWPATH FROM NODE 359.00 TO NODE
                                     374.00 = 4125.00 FEET.
*********************************
 FLOW PROCESS FROM NODE 374.00 TO NODE 375.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
ELEVATION DATA: UPSTREAM(FEET) = 31.00 DOWNSTREAM(FEET) = 30.00
 FLOW LENGTH(FEET) = 807.12 MANNING'S N = 0.013
 DEPTH OF FLOW IN 72.0 INCH PIPE IS 55.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.69
 ESTIMATED PIPE DIAMETER(INCH) = 72.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 134.17
 PIPE TRAVEL TIME(MIN.) = 2.36 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 359.00 TO NODE
                                     375.00 =
                                               4932.12 FEET.
********************************
 FLOW PROCESS FROM NODE 376.00 TO NODE 377.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
                            38.00 DOWNSTREAM(FEET) =
 ELEVATION DATA: UPSTREAM(FEET) =
                                                    37.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.751
 SUBAREA TC AND LOSS RATE DATA(AMC II):
                  SCS SOIL AREA
 DEVELOPMENT TYPE/
                                   Fp
                                                 SCS
                                                     Tc
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 COMMERCIAL
                            8.50
                     D
                                   0.20
                                           0.100
                                                  75
                                                      9.86
 URBAN POOR COVER
 "TURF"
                                                  87 17.03
                     D
                            0.40
                                    0.20
                                           1.000
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.140
 SUBAREA RUNOFF(CFS) = 21.81
                    8.90 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
*******************************
 FLOW PROCESS FROM NODE 377.00 TO NODE 378.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 3 USED)<<<<<
UPSTREAM ELEVATION(FEET) = 37.00 DOWNSTREAM ELEVATION(FEET) = 36.00
 STREET LENGTH(FEET) = 398.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 51.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 25.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0150
```

```
GC10EX
```

```
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                       31.83
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.70
   HALFSTREET FLOOD WIDTH(FEET) =
                                 29.02
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.09
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
                                          1.47
 STREET FLOW TRAVEL TIME(MIN.) = 3.18 Tc(MIN.) =
                                                   13.04
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.344
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                       SCS SOIL
                                 AREA
                                           Fp
                                                     Aр
                                                           SCS
                        GROUP (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
 COMMERCIAL
                          D
                                  9.30
                                            0.20
                                                    0.100
 URBAN POOR COVER
 "TURF"
                          D
                                  0.30
                                            0.20
                                                    1.000
                                                            87
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.128
 SUBAREA AREA(ACRES) = 9.60
                                 SUBAREA RUNOFF(CFS) =
 EFFECTIVE AREA(ACRES) = 18.50
                                  AREA-AVERAGED Fm(INCH/HR) =
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.13
 TOTAL AREA(ACRES) =
                         18.5
                                    PEAK FLOW RATE(CFS) =
                                                             38.57
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.74 HALFSTREET FLOOD WIDTH(FEET) = 33.12
 FLOW VELOCITY(FEET/SEC.) = 2.17 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE
                            376.00 TO NODE
                                           378.00 =
                                                         728.00 FEET.
**************************
 FLOW PROCESS FROM NODE
                         378.00 TO NODE
                                          379.00 \text{ IS CODE} = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 3 USED)<
______
 UPSTREAM ELEVATION(FEET) = 36.00 DOWNSTREAM ELEVATION(FEET) = 34.00
 STREET LENGTH(FEET) = 537.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 51.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 25.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0150
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                       50.86
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.76
   HALFSTREET FLOOD WIDTH(FEET) = 34.88
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.68
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 2.04
 STREET FLOW TRAVEL TIME(MIN.) = 3.34 Tc(MIN.) =
                                                   16.39
    10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.056
 SUBAREA LOSS RATE DATA(AMC II):
                       SCS SOIL
  DEVELOPMENT TYPE/
                                 AREA
                                           Fp
                                                           SCS
                                                     Aρ
      LAND USE
                        GROUP
                                (ACRES)
                                        (INCH/HR)
                                                  (DECIMAL)
                                                           CN
 COMMERCIAL
                          D
                                 12.40
                                            0.20
                                                    0.100
                                                            75
 URBAN POOR COVER
 "TURF"
                          D
                                  1.10
                                            0.20
                                                    1.000
                                                            87
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
```

```
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.173
 SUBAREA AREA(ACRES) = 13.50 SUBAREA RUNOFF(CFS) = 24.56
 EFFECTIVE AREA(ACRES) = 32.00 AREA-AVERAGED Fm(INCH/HR) = 0.03
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.15
 TOTAL AREA(ACRES) =
                    32.0
                             PEAK FLOW RATE(CFS) =
                                                  58.35
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.79 HALFSTREET FLOOD WIDTH(FEET) = 38.01
 FLOW VELOCITY(FEET/SEC.) = 2.74 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE 376.00 TO NODE 379.00 = 1265.00 FEET.
**************************
 FLOW PROCESS FROM NODE 379.00 TO NODE 380.00 IS CODE = 31
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 34.00 DOWNSTREAM(FEET) = 33.00
 FLOW LENGTH(FEET) = 236.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 42.0 INCH PIPE IS 32.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 7.34
 ESTIMATED PIPE DIAMETER(INCH) = 42.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 58.35
 PIPE TRAVEL TIME(MIN.) = 0.54 Tc(MIN.) =
 LONGEST FLOWPATH FROM NODE 376.00 TO NODE
                                     380.00 = 1501.00 FEET.
**************************
 FLOW PROCESS FROM NODE 381.00 TO NODE 382.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
                            38.00 DOWNSTREAM(FEET) =
 ELEVATION DATA: UPSTREAM(FEET) =
                                                    37.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.751
 SUBAREA TC AND LOSS RATE DATA(AMC II):
 DEVELOPMENT TYPE/ SCS SOIL AREA
                                   Fp
                                           Aр
                                                 SCS
                                                     Tc
                   GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                            4.90
                                                 75
                     D
                                    0.20
                                           0.500
                                                     12.62
 COMMERCIAL
                     D
                            0.60
                                    0.20
                                           0.100
                                                 75
                                                     9.86
 URBAN POOR COVER
                                                 87 17.03
 "TURF"
                     D
                            1.60
                                    0.20
                                          1.000
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.579
 SUBAREA RUNOFF(CFS) = 16.84
                    7.10 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
**************************
 FLOW PROCESS FROM NODE 382.00 TO NODE 383.00 IS CODE = 62
------
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 2 USED)<
______
 UPSTREAM ELEVATION(FEET) = 37.00 DOWNSTREAM ELEVATION(FEET) = 36.50
 STREET LENGTH(FEET) = 994.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 42.00
```

```
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 21.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                     28.89
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.87
   HALFSTREET FLOOD WIDTH(FEET) = 45.37
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.05
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 15.73 Tc(MIN.) =
                                                 25.59
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.593
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                    SCS SOIL
                                AREA
                                          Fp
                                                   Aр
                                                          SCS
                             (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
                       GROUP
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         D
                                 6.80
                                          0.20
                                                   0.500
                                                           75
 APARTMENTS
                         D
                                 6.10
                                          0.20
                                                   0.200
                                                           75
 COMMERCIAL
                         D
                                 4.10
                                          0.20
                                                   0.100
                                                           75
 URBAN POOR COVER
 "TURF"
                                 0.20
                         D
                                          0.20
                                                   1.000
                                                           87
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.304
 SUBAREA AREA(ACRES) = 17.20 SUBAREA RUNOFF(CFS) =
 EFFECTIVE AREA(ACRES) = 24.30
                                AREA-AVERAGED Fm(INCH/HR) = 0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.38
 TOTAL AREA(ACRES) =
                        24.3
                                   PEAK FLOW RATE(CFS) =
                                                            33.15
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.90 HALFSTREET FLOOD WIDTH(FEET) = 48.98
 FLOW VELOCITY(FEET/SEC.) = 1.08 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 994.0 FT WITH ELEVATION-DROP = 0.5 FT, IS
                                                         26.0 CFS,
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 383.00
 LONGEST FLOWPATH FROM NODE 381.00 TO NODE 383.00 =
                                                     1324.00 FEET.
********************************
 FLOW PROCESS FROM NODE 383.00 TO NODE 383.50 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 2 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 36.50 DOWNSTREAM ELEVATION(FEET) = 36.00
 STREET LENGTH(FEET) = 1026.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 42.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 21.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
```

```
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                  40.22
    STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
    STREET FLOW DEPTH(FEET) = 0.96
    HALFSTREET FLOOD WIDTH(FEET) = 54.56
    AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.10
    PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.05
  STREET FLOW TRAVEL TIME(MIN.) = 15.57 Tc(MIN.) =
                                              41.16
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.213
  SUBAREA LOSS RATE DATA(AMC II):
   DEVELOPMENT TYPE/
                     SCS SOIL
                               AREA
                                       Fp
                      GROUP
      LAND USE
                             (ACRES) (INCH/HR) (DECIMAL) CN
  RESIDENTIAL
  "5-7 DWELLINGS/ACRE"
                        C
                               0.10
                                               0.500
                                        0.25
                                                       69
  RESIDENTIAL
  "5-7 DWELLINGS/ACRE"
                        D
                               6.00
                                        0.20
                                               0.500
                                                       75
  APARTMENTS
                        D
                               6.80
                                        0.20
                                               0.200
                                                       75
  COMMERCIAL
                        D
                               0.60
                                        0.20
                                               0.100
                                                       75
  URBAN POOR COVER
  "TURF"
                        D
                               0.20
                                        0.20
                                               1.000
                                                       87
  SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.341
  SUBAREA AREA(ACRES) = 13.70 SUBAREA RUNOFF(CFS) = 14.11
  EFFECTIVE AREA(ACRES) = 38.00
                               AREA-AVERAGED Fm(INCH/HR) =
  AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.37
  TOTAL AREA(ACRES) =
                       38.0
                                PEAK FLOW RATE(CFS) =
                                                        38.96
  END OF SUBAREA STREET FLOW HYDRAULICS:
  DEPTH(FEET) = 0.95 HALFSTREET FLOOD WIDTH(FEET) = 53.74
  FLOW VELOCITY(FEET/SEC.) = 1.09 DEPTH*VELOCITY(FT*FT/SEC.) =
  *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
        AND L = 1026.0 FT WITH ELEVATION-DROP = 0.5 FT, IS
                                                     20.4 CFS,
        WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE
                                                     383.50
  LONGEST FLOWPATH FROM NODE 381.00 TO NODE 383.50 =
                                                   2350.00 FEET.
**************************
  FLOW PROCESS FROM NODE 383.50 TO NODE 384.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
  >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<
______
  ELEVATION DATA: UPSTREAM(FEET) = 36.00 DOWNSTREAM(FEET) =
  FLOW LENGTH(FEET) = 87.00 MANNING'S N = 0.013
  DEPTH OF FLOW IN 36.0 INCH PIPE IS 24.6 INCHES
  PIPE-FLOW VELOCITY(FEET/SEC.) = 7.56
  ESTIMATED PIPE DIAMETER(INCH) = 36.00
                                    NUMBER OF PIPES = 1
  PIPE-FLOW(CFS) = 38.96
  PIPE TRAVEL TIME(MIN.) = 0.19
                              Tc(MIN.) = 41.35
  LONGEST FLOWPATH FROM NODE 381.00 TO NODE
                                         384.00 =
                                                   2437.00 FEET.
**************************
  FLOW PROCESS FROM NODE 385.00 TO NODE 386.00 IS CODE = 21
 _____
  >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
  >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
  INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
  ELEVATION DATA: UPSTREAM(FEET) = 37.00 DOWNSTREAM(FEET) = 36.50
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
```

```
SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.329
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.541
 SUBAREA TC AND LOSS RATE DATA(AMC II):
                                    Fp Ap SCS Tc
  DEVELOPMENT TYPE/ SCS SOIL AREA
     LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
 APARTMENTS D 4.40 0.20 0.200 75 12.07
                      D
 COMMERCIAL
                             0.80
                                     0.20 0.100 75 11.33
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.185
 SUBAREA RUNOFF(CFS) = 11.72
 TOTAL AREA(ACRES) = 5.20 PEAK FLOW RATE(CFS) = 11.72
*******************************
 FLOW PROCESS FROM NODE 386.00 TO NODE 387.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 2 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 36.00
 STREET LENGTH(FEET) = 284.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 42.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 21.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
  **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 16.13
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.61
  HALFSTREET FLOOD WIDTH(FEET) = 22.44
AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.54
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.94
 STREET FLOW TRAVEL TIME(MIN.) = 3.06 Tc(MIN.) = 14.39
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.215
 SUBAREA LOSS RATE DATA(AMC II):
                                            Ар
  DEVELOPMENT TYPE/ SCS SOIL AREA Fp
   LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 APARTMENTS D 3.80 0.20 0.200
 COMMERCIAL
                      D
                              0.70
                                     0.20
                                            0.100 75
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.184
 SUBAREA AREA(ACRES) = 4.50 SUBAREA RUNOFF(CFS) = 8.82

EFFECTIVE AREA(ACRES) = 9.70 AREA-AVERAGED Fm(INCH/HR) = 0.04

AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.18
 TOTAL AREA(ACRES) = 9.7 PEAK FLOW RATE(CFS) = 19.01
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.64 HALFSTREET FLOOD WIDTH(FEET) = 23.91
 FLOW VELOCITY(FEET/SEC.) = 1.61 DEPTH*VELOCITY(FT*FT/SEC.) = 1.02
 LONGEST FLOWPATH FROM NODE 385.00 TO NODE 387.00 = 614.00 FEET.
****************************
 FLOW PROCESS FROM NODE 387.00 TO NODE 388.00 IS CODE = 41
.....
```

>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA

```
>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 24.72 DOWNSTREAM(FEET) = 24.29
 FLOW LENGTH(FEET) = 432.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 42.0 INCH PIPE IS 24.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.31
 GIVEN PIPE DIAMETER(INCH) = 42.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 19.01
 PIPE TRAVEL TIME(MIN.) = 2.17 Tc(MIN.) = 16.57
 LONGEST FLOWPATH FROM NODE 385.00 TO NODE 388.00 = 1046.00 FEET.
*************************
 FLOW PROCESS FROM NODE 388.00 TO NODE 388.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>>>
_____
 MAINLINE Tc(MIN.) = 16.57
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.043
 SUBAREA LOSS RATE DATA(AMC II):
                                       Ар
 DEVELOPMENT TYPE/ SCS SOIL AREA
                               Fp
   LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 APARTMENTS D 5.50 0.20 0.200
                         1.40
 COMMERCIAL
                   D
                                 0.20
                                       0.100 75
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.180
 SUBAREA AREA(ACRES) = 6.90 SUBAREA RUNOFF(CFS) = 12.47
 EFFECTIVE AREA(ACRES) = 16.60 AREA-AVERAGED Fm(INCH/HR) = 0.04
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.18
 TOTAL AREA(ACRES) = 16.6 PEAK FLOW RATE(CFS) = 29.98
***************************
 FLOW PROCESS FROM NODE 388.00 TO NODE 388.10 IS CODE = 41
_____
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 24.29 DOWNSTREAM(FEET) = 23.19
 FLOW LENGTH(FEET) = 1100.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 54.0 INCH PIPE IS 27.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.72
 GIVEN PIPE DIAMETER(INCH) = 54.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 29.98
 PIPE TRAVEL TIME(MIN.) = 4.92 Tc(MIN.) = 21.49
 LONGEST FLOWPATH FROM NODE 385.00 TO NODE 388.10 = 2146.00 FEET.
*************************
 FLOW PROCESS FROM NODE 388.10 TO NODE 388.10 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>>>
_____
 MAINLINE Tc(MIN.) = 21.49
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.760
 SUBAREA LOSS RATE DATA(AMC II):
 DEVELOPMENT TYPE/ SCS SOIL AREA
                               Fp
   LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
                   C 10.13 0.25
 COMMERCIAL
                                      0.100 69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 10.13 SUBAREA RUNOFF(CFS) = 15.82
 EFFECTIVE AREA(ACRES) = 26.73 AREA-AVERAGED Fm(INCH/HR) = 0.03
```

AREA-AVERAGED Fp(INCH/HR) = 0.21 AREA-AVERAGED Ap = 0.15

```
TOTAL AREA(ACRES) = 26.7 PEAK FLOW RATE(CFS) = 41.58
*************************
 FLOW PROCESS FROM NODE 388.10 TO NODE 388.10 IS CODE = 81
_____
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>>>
_____
 MAINLINE Tc(MIN.) = 21.49
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.760
 SUBAREA LOSS RATE DATA(AMC II):
 DEVELOPMENT TYPE/ SCS SOIL AREA
                              Fp
   LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
             C 3.87 0.25 0.100 69
 COMMERCIAL
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 3.87 SUBAREA RUNOFF(CFS) = 6.04
EFFECTIVE AREA(ACRES) = 30.60 AREA-AVERAGED Fm(INCH/HR) = 0.03
 AREA-AVERAGED Fp(INCH/HR) = 0.22 AREA-AVERAGED Ap = 0.14
 TOTAL AREA(ACRES) = 30.6 PEAK FLOW RATE(CFS) =
***********************
 FLOW PROCESS FROM NODE 388.10 TO NODE 388.20 IS CODE = 41
_____
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<<
_____
 ELEVATION DATA: UPSTREAM(FEET) = 23.19 DOWNSTREAM(FEET) = 22.48
 FLOW LENGTH(FEET) = 225.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 63.0 INCH PIPE IS 23.7 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 6.39
 GIVEN PIPE DIAMETER(INCH) = 63.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 47.62
 PIPE TRAVEL TIME(MIN.) = 0.59 Tc(MIN.) = 22.08
 LONGEST FLOWPATH FROM NODE 385.00 TO NODE 388.20 = 2371.00 FEET.
****************************
 FLOW PROCESS FROM NODE 388.20 TO NODE 388.20 IS CODE = 81
_____
>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 22.08
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.733
 SUBAREA LOSS RATE DATA(AMC II):
 DEVELOPMENT TYPE/ SCS SOIL AREA Fp
                                      Ар
    LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
                  C 10.24 0.25
 COMMERCIAL
                                      0.100 69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 10.24 SUBAREA RUNOFF(CFS) = 15.74
 EFFECTIVE AREA(ACRES) = 40.84 AREA-AVERAGED Fm(INCH/HR) = 0.03
 AREA-AVERAGED Fp(INCH/HR) = 0.22 AREA-AVERAGED Ap = 0.13
 TOTAL AREA(ACRES) = 40.8 PEAK FLOW RATE(CFS) = 62.62
***************************
 FLOW PROCESS FROM NODE 388.20 TO NODE 389.00 IS CODE = 41
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<<
_____
```

```
ELEVATION DATA: UPSTREAM(FEET) = 22.48 DOWNSTREAM(FEET) = 22.04
 FLOW LENGTH(FEET) = 438.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 63.0 INCH PIPE IS 38.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.46
 GIVEN PIPE DIAMETER(INCH) = 63.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 62.62
 PIPE TRAVEL TIME(MIN.) = 1.64 Tc(MIN.) = 23.71
 LONGEST FLOWPATH FROM NODE 385.00 TO NODE 389.00 = 2809.00 FEET.
*************************
 FLOW PROCESS FROM NODE 389.00 TO NODE 389.00 IS CODE = 81
______
>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>>>
_____
 MAINLINE Tc(MIN.) = 23.71
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.664
 SUBAREA LOSS RATE DATA(AMC II):
 DEVELOPMENT TYPE/ SCS SOIL AREA
                                 Fp
                                        Ар
  LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 COMMERCIAL
              C 32.76 0.25
                                        0.100
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 32.76 SUBAREA RUNOFF(CFS) = 48.32

EFFECTIVE AREA(ACRES) = 73.60 AREA-AVERAGED Fm(INCH/HR) = 0.03

AREA-AVERAGED Fp(INCH/HR) = 0.23 AREA-AVERAGED Ap = 0.12
 TOTAL AREA(ACRES) = 73.6 PEAK FLOW RATE(CFS) = 108.38
*************************
 FLOW PROCESS FROM NODE 389.20 TO NODE 389.20 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>>>
_____
 MAINLINE Tc(MIN.) = 23.71
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.664
 SUBAREA LOSS RATE DATA(AMC II):
 DEVELOPMENT TYPE/ SCS SOIL AREA Fp
                                       Ap SCS
    LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 MOBILE HOME PARK C 23.64 0.25 0.250 69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.250
 SUBAREA AREA(ACRES) = 23.64 SUBAREA RUNOFF(CFS) = 34.07
 EFFECTIVE AREA(ACRES) = 97.24 AREA-AVERAGED Fm(INCH/HR) = 0.04
 AREA-AVERAGED Fp(INCH/HR) = 0.24 AREA-AVERAGED Ap = 0.15
 TOTAL AREA(ACRES) = 97.2 PEAK FLOW RATE(CFS) = 142.45
************************
 FLOW PROCESS FROM NODE 389.10 TO NODE 389.10 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>>>
______
 MAINLINE Tc(MIN.) = 23.71
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.664
 SUBAREA LOSS RATE DATA(AMC II):
 DEVELOPMENT TYPE/ SCS SOIL AREA Fp
                                       Ap SCS
  LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 COMMERCIAL
               C 21.01 0.25
                                        0.100 69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 21.01 SUBAREA RUNOFF(CFS) = 30.99
 EFFECTIVE AREA(ACRES) = 118.25 AREA-AVERAGED Fm(INCH/HR) = 0.03
```

```
TOTAL AREA(ACRES) = 118.2 PEAK FLOW RATE(CFS) = 173.44
*************************
 FLOW PROCESS FROM NODE 390.00 TO NODE 391.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
 ELEVATION DATA: UPSTREAM(FEET) = 35.00 DOWNSTREAM(FEET) = 34.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.862
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.751
 SUBAREA TC AND LOSS RATE DATA(AMC II):
                                  Fp
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                           Ap SCS Tc
   LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
 APARTMENTS C 0.10 0.25 0.200
                                                  69
                                                     10.51
                                    0.20
                 D 3.00
D 0.20
 APARTMENTS
                                           0.200
                                                  75 10.51
 COMMERCIAL
                                   0.20
                                          0.100 75 9.86
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.194
 SUBAREA RUNOFF(CFS) = 8.05
 TOTAL AREA(ACRES) = 3.30 PEAK FLOW RATE(CFS) = 8.05
*****************************
 FLOW PROCESS FROM NODE 391.00 TO NODE 392.00 IS CODE = 62
______
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 34.00 DOWNSTREAM ELEVATION(FEET) = 33.50
 STREET LENGTH(FEET) = 595.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
  **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 15.73
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.61
  HALFSTREET FLOOD WIDTH(FEET) = 25.66
AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.23
  PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.75
 STREET FLOW TRAVEL TIME(MIN.) = 8.08 Tc(MIN.) = 17.94
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.952
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA Fp
     LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 APARTMENTS D 8.60 0.20 0.200
                      D
                             0.20
                                    0.20
                                           0.100
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
```

AREA-AVERAGED Fp(INCH/HR) = 0.24 AREA-AVERAGED Ap = 0.14

```
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.198
 SUBAREA AREA(ACRES) = 8.80 SUBAREA RUNOFF(CFS) = 15.15
 EFFECTIVE AREA(ACRES) = 12.10 AREA-AVERAGED Fm(INCH/HR) = 0.04
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.20
 TOTAL AREA(ACRES) = 12.1 PEAK FLOW RATE(CFS) = 20.83
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.67 HALFSTREET FLOOD WIDTH(FEET) = 28.29
 FLOW VELOCITY(FEET/SEC.) = 1.33 DEPTH*VELOCITY(FT*FT/SEC.) = 0.89
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 595.0 FT WITH ELEVATION-DROP = 0.5 FT, IS 16.1 CFS,
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 392.00
 LONGEST FLOWPATH FROM NODE 390.00 TO NODE 392.00 = 925.00 FEET.
*****************************
 FLOW PROCESS FROM NODE 392.00 TO NODE 393.00 IS CODE = 62
______
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
_____
 UPSTREAM ELEVATION(FEET) = 33.50 DOWNSTREAM ELEVATION(FEET) = 33.00
 STREET LENGTH(FEET) = 723.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
  **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 32.42
   ***STREET FLOWING FULL***
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.79
HALFSTREET FLOOD WIDTH(FEET) = 34.45
AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.39
  PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.09
 STREET FLOW TRAVEL TIME(MIN.) = 8.69 Tc(MIN.) = 26.63
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.557
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA Fp
                                                Ар
     LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 APARTMENTS D 16.20 0.20 0.200
 COMMERCIAL
                        D
                               0.70
                                         0.20
                                                0.100
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.196
 SUBAREA AREA(ACRES) = 16.90 SUBAREA RUNOFF(CFS) = 23.08
 EFFECTIVE AREA(ACRES) = 29.00 AREA-AVERAGED Fm(INCH/HR) = 0.04
 AREA-AVERAGED Fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.20
 TOTAL AREA(ACRES) = 29.0 PEAK FLOW RATE(CFS) = 39.60
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.84 HALFSTREET FLOOD WIDTH(FEET) = 37.20
 FLOW VELOCITY(FEET/SEC.) = 1.45 DEPTH*VELOCITY(FT*FT/SEC.) = 1.22
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 723.0 FT WITH ELEVATION-DROP = 0.5 FT, IS 28.9 CFS,
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 393.00
```

```
LONGEST FLOWPATH FROM NODE 390.00 TO NODE 393.00 = 1648.00 FEET.
****************************
 FLOW PROCESS FROM NODE 393.00 TO NODE 397.00 IS CODE = 31
______
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<
_____
 ELEVATION DATA: UPSTREAM(FEET) = 33.00 DOWNSTREAM(FEET) = 32.50
 FLOW LENGTH(FEET) = 1865.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 60.0 INCH PIPE IS 48.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 2.35
 ESTIMATED PIPE DIAMETER(INCH) = 60.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 39.60
 PIPE TRAVEL TIME(MIN.) = 13.24 Tc(MIN.) = 39.87
 LONGEST FLOWPATH FROM NODE 390.00 TO NODE 397.00 = 3513.00 FEET.
***************************
 FLOW PROCESS FROM NODE 397.00 TO NODE 397.00 IS CODE = 1
_____
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 39.87
 RAINFALL INTENSITY(INCH/HR) = 1.24
 AREA-AVERAGED Fm(INCH/HR) = 0.04
 AREA-AVERAGED fp(INCH/HR) = 0.20
 AREA-AVERAGED Ap = 0.20
 EFFECTIVE STREAM AREA(ACRES) = 29.00
 TOTAL STREAM AREA(ACRES) = 29.00
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 39.60
*************************
 FLOW PROCESS FROM NODE 395.00 TO NODE 396.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
 ELEVATION DATA: UPSTREAM(FEET) = 396.00 DOWNSTREAM(FEET) = 395.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.862
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.751
 SUBAREA TC AND LOSS RATE DATA(AMC II):
 DEVELOPMENT TYPE/ SCS SOIL AREA FP
                                     Ap SCS Tc
    LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
                  C 0.46 0.25
                                     0.100 69 9.86
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA RUNOFF(CFS) = 1.13
 TOTAL AREA(ACRES) = 0.46 PEAK FLOW RATE(CFS) = 1.13
***************************
 FLOW PROCESS FROM NODE 396.00 TO NODE 396.00 IS CODE = 81
>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 9.86
```

```
* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.751
 SUBAREA LOSS RATE DATA(AMC II):
 DEVELOPMENT TYPE/ SCS SOIL AREA Fp
                                           Ар
  LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
                    C 1.16 0.25
                                          0.100 69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 1.16 SUBAREA RUNOFF(CFS) = 2.85

EFFECTIVE AREA(ACRES) = 1.62 AREA-AVERAGED Fm(INCH/HR) = 0.03

AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) = 1.6 PEAK FLOW RATE(CFS) = 3.97
*****************************
 FLOW PROCESS FROM NODE 396.00 TO NODE 396.10 IS CODE = 41
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<<
_____
 ELEVATION DATA: UPSTREAM(FEET) = 25.62 DOWNSTREAM(FEET) = 25.41
 FLOW LENGTH(FEET) = 205.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 36.0 INCH PIPE IS 10.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 2.23
 GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 3.97
 PIPE TRAVEL TIME(MIN.) = 1.54 Tc(MIN.) = 11.40
 LONGEST FLOWPATH FROM NODE 395.00 TO NODE 396.10 = 535.00 FEET.
*************************
 FLOW PROCESS FROM NODE 396.10 TO NODE 396.10 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>>>
______
 MAINLINE Tc(MIN.) = 11.40
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.532
 SUBAREA LOSS RATE DATA(AMC II):
 DEVELOPMENT TYPE/ SCS SOIL AREA Fp
  LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
               C 7.89 0.25
 COMMERCIAL
                                          0.100 69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 7.89 SUBAREA RUNOFF(CFS) = 17.80
 EFFECTIVE AREA(ACRES) = 9.51 AREA-AVERAGED Fm(INCH/HR) = 0.02
AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) = 9.5 PEAK FLOW RATE(CFS) =
************************
 FLOW PROCESS FROM NODE 396.10 TO NODE 396.20 IS CODE = 41
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 25.41 DOWNSTREAM(FEET) = 24.94
 FLOW LENGTH(FEET) = 385.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 36.0 INCH PIPE IS 28.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.56
 GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 21.46
 PIPE TRAVEL TIME(MIN.) = 1.80 Tc(MIN.) = 13.20
 LONGEST FLOWPATH FROM NODE 395.00 TO NODE 396.20 = 920.00 FEET.
```

```
*******************************
 FLOW PROCESS FROM NODE 396.20 TO NODE 396.20 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>>>
______
 MAINLINE Tc(MIN.) = 13.20
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.328
 SUBAREA LOSS RATE DATA(AMC II):
 DEVELOPMENT TYPE/ SCS SOIL AREA Fp
                                        Ap
   LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
                   C 7.80 0.25
 COMMERCIAL
                                       0.100 69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 7.80 SUBAREA RUNOFF(CFS) = 16.16
 EFFECTIVE AREA(ACRES) = 17.31 AREA-AVERAGED Fm(INCH/HR) = 0.02
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) = 17.3 PEAK FLOW RATE(CFS) = 35.87
**************************
 FLOW PROCESS FROM NODE 396.20 TO NODE 396.30 IS CODE = 41
_____
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 24.94 DOWNSTREAM(FEET) = 24.72
 FLOW LENGTH(FEET) = 150.33 MANNING'S N = 0.013
 ASSUME FULL-FLOWING PIPELINE
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.32
 PIPE FLOW VELOCITY = (TOTAL FLOW)/(PIPE CROSS SECTION AREA)
 GIVEN PIPE DIAMETER(INCH) = 39.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 35.87
 PIPE TRAVEL TIME(MIN.) = 0.58 Tc(MIN.) = 13.78
 LONGEST FLOWPATH FROM NODE 395.00 TO NODE 396.30 = 1070.33 FEET.
**************************
 FLOW PROCESS FROM NODE 396.30 TO NODE 396.30 IS CODE = 81
_____
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>>>
_____
 MAINLINE Tc(MIN.) = 13.78
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.271
 SUBAREA LOSS RATE DATA(AMC II):
 DEVELOPMENT TYPE/ SCS SOIL AREA Fp
                                       Ар
    LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
                              0.25
 COMMERCIAL
                   С
                        13.06
                                       0.100
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 13.06 SUBAREA RUNOFF(CFS) = 26.40
EFFECTIVE AREA(ACRES) = 30.37 AREA-AVERAGED Fm(INCH/HR) = 0.02
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) = 30.4 PEAK FLOW RATE(CFS) = 61.39
*************************
 FLOW PROCESS FROM NODE 396.30 TO NODE 397.00 IS CODE = 41
_____
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<<
_____
 ELEVATION DATA: UPSTREAM(FEET) = 24.72 DOWNSTREAM(FEET) = 24.65
 FLOW LENGTH(FEET) = 285.00 MANNING'S N = 0.013
```

```
ASSUME FULL-FLOWING PIPELINE
 PIPE-FLOW VELOCITY(FEET/SEC.) = 6.38
 PIPE FLOW VELOCITY = (TOTAL FLOW)/(PIPE CROSS SECTION AREA)
 GIVEN PIPE DIAMETER(INCH) = 42.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 61.39
 PIPE TRAVEL TIME(MIN.) = 0.74 Tc(MIN.) = 14.52
 LONGEST FLOWPATH FROM NODE 395.00 TO NODE 397.00 = 1355.33 FEET.
**************************
 FLOW PROCESS FROM NODE 397.00 TO NODE 397.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
_____
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 14.52
 RAINFALL INTENSITY(INCH/HR) = 2.20
 AREA-AVERAGED Fm(INCH/HR) = 0.02
 AREA-AVERAGED Fp(INCH/HR) = 0.25
 AREA-AVERAGED Ap = 0.10
 EFFECTIVE STREAM AREA(ACRES) = 30.37
 TOTAL STREAM AREA(ACRES) = 30.37
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 61.39
** CONFLUENCE DATA **
  STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE
STREAM Q
           39.60 39.87 1.235 0.20( 0.04) 0.20 29.0 390.00
2 61.39 14.52 2.204 0.25( 0.02) 0.10 30.4
                                                       395.00
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE TABLE **
 STREAM Q TC Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE
1 87.49 14.52 2.204 0.23( 0.03) 0.12 40.9 395.00
2 73.71 39.87 1.235 0.22(0.03) 0.15 59.4 390.00
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 87.49 Tc(MIN.) = 14.52
EFFECTIVE AREA(ACRES) = 40.93 AREA-AVERAGED Fm(INCH/HR) = 0.03
 AREA-AVERAGED Fp(INCH/HR) = 0.23 AREA-AVERAGED Ap = 0.12
 TOTAL AREA(ACRES) = 59.4
 LONGEST FLOWPATH FROM NODE 390.00 TO NODE 397.00 = 3513.00 FEET.
*************************
 FLOW PROCESS FROM NODE 397.00 TO NODE 397.10 IS CODE = 41
_____
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<<
_____
 ELEVATION DATA: UPSTREAM(FEET) = 24.65 DOWNSTREAM(FEET) = 24.32
 FLOW LENGTH(FEET) = 332.00 MANNING'S N = 0.013
 ASSUME FULL-FLOWING PIPELINE
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.50
 PIPE FLOW VELOCITY = (TOTAL FLOW)/(PIPE CROSS SECTION AREA)
 GIVEN PIPE DIAMETER(INCH) = 54.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                  87.49
```

```
PIPE TRAVEL TIME(MIN.) = 1.01 Tc(MIN.) = 15.53
 LONGEST FLOWPATH FROM NODE 390.00 TO NODE 397.10 = 3845.00 FEET.
**************************
 FLOW PROCESS FROM NODE 397.10 TO NODE 397.10 IS CODE = 81
_____
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>>>
_____
 MAINLINE Tc(MIN.) = 15.53
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.121
 SUBAREA LOSS RATE DATA(AMC II):
 DEVELOPMENT TYPE/ SCS SOIL AREA
                                Fp
    LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 MOBILE HOME PARK C 19.02 0.25 0.250 69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.250
 SUBAREA AREA(ACRES) = 19.02 SUBAREA RUNOFF(CFS) = 35.23
EFFECTIVE AREA(ACRES) = 59.95 AREA-AVERAGED Fm(INCH/HR) = 0.04
 AREA-AVERAGED Fp(INCH/HR) = 0.24 AREA-AVERAGED Ap = 0.16
 TOTAL AREA(ACRES) = 78.4 PEAK FLOW RATE(CFS) =
**********************
 FLOW PROCESS FROM NODE 397.10 TO NODE 397.20 IS CODE = 41
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<<
_____
 ELEVATION DATA: UPSTREAM(FEET) = 24.32 DOWNSTREAM(FEET) = 24.02
 FLOW LENGTH(FEET) = 299.00 MANNING'S N = 0.013
 ASSUME FULL-FLOWING PIPELINE
 PIPE-FLOW VELOCITY(FEET/SEC.) = 7.06
 PIPE FLOW VELOCITY = (TOTAL FLOW)/(PIPE CROSS SECTION AREA)
 GIVEN PIPE DIAMETER(INCH) = 54.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 112.30
 PIPE TRAVEL TIME(MIN.) = 0.71 Tc(MIN.) = 16.23
 LONGEST FLOWPATH FROM NODE 390.00 TO NODE 397.20 = 4144.00 FEET.
*************************
 FLOW PROCESS FROM NODE 397.20 TO NODE 397.20 IS CODE = 81
______
>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 16.23
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.067
 SUBAREA LOSS RATE DATA(AMC II):
 DEVELOPMENT TYPE/ SCS SOIL AREA FP
                                       Ap SCS
 LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
MOBILE HOME PARK C 0.76 0.25 0.250 69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.250
 SUBAREA AREA(ACRES) = 0.76 SUBAREA RUNOFF(CFS) = 1.37
 EFFECTIVE AREA(ACRES) = 60.71 AREA-AVERAGED Fm(INCH/HR) = 0.04
 AREA-AVERAGED Fp(INCH/HR) = 0.24 AREA-AVERAGED Ap = 0.17
 TOTAL AREA(ACRES) = 79.2 PEAK FLOW RATE(CFS) = 112.30
 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
**************************
 FLOW PROCESS FROM NODE 397.20 TO NODE 397.30 IS CODE = 41
_____
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
```

>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<< ______ ELEVATION DATA: UPSTREAM(FEET) = 24.02 DOWNSTREAM(FEET) = 23.40 FLOW LENGTH(FEET) = 615.00 MANNING'S N = 0.013 ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY(FEET/SEC.) = 7.06 PIPE FLOW VELOCITY = (TOTAL FLOW)/(PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 54.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 112.30PIPE TRAVEL TIME(MIN.) = 1.45 Tc(MIN.) = 17.69LONGEST FLOWPATH FROM NODE 390.00 TO NODE 397.30 = 4759.00 FEET. ************************* FLOW PROCESS FROM NODE 397.30 TO NODE 397.30 IS CODE = 81 ______ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW< ______ MAINLINE Tc(MIN.) = 17.69* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.968 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN MOBILE HOME PARK C 7.41 0.25 0.250 69 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.250 SUBAREA AREA(ACRES) = 7.41 SUBAREA RUNOFF(CFS) = 12.71 EFFECTIVE AREA(ACRES) = 68.12 AREA-AVERAGED Fm(INCH/HR) = 0.04 AREA-AVERAGED Fp(INCH/HR) = 0.24 AREA-AVERAGED Ap = 0.17 TOTAL AREA(ACRES) = 86.6 PEAK FLOW RATE(CFS) = 118.09 *************************** FLOW PROCESS FROM NODE 397.30 TO NODE 398.00 IS CODE = 41 ----- >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA< >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<< ______ ELEVATION DATA: UPSTREAM(FEET) = 23.35 DOWNSTREAM(FEET) = 20.20 FLOW LENGTH(FEET) = 833.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 60.0 INCH PIPE IS 39.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.55 GIVEN PIPE DIAMETER(INCH) = 60.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 118.09PIPE TRAVEL TIME(MIN.) = 1.62 Tc(MIN.) = 19.31 LONGEST FLOWPATH FROM NODE 390.00 TO NODE 398.00 = 5592.00 FEET. ************************** FLOW PROCESS FROM NODE 399.10 TO NODE 399.20 IS CODE = 21 ----->>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< ______ INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00 ELEVATION DATA: UPSTREAM(FEET) = 110.00 DOWNSTREAM(FEET) = 108.00 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.978 SUBAREA TC AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Aр GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) LAND USE

```
GC10EX
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                                 2.60
                                          0.30
                                                  0.500
                                                              10.99
                                                          56
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         C
                                 3.60
                                          0.25
                                                  0.500
                                                          69
                                                              10.99
 NATURAL FAIR COVER
                         C
                                 0.90
                                          0.25
                                                  1.000
                                                          77
                                                              19.94
 "OPEN BRUSH"
 COMMERCIAL
                         В
                                 0.80
                                          0.30
                                                  0.100
                                                          56
                                                               8.59
 COMMERCIAL
                         C
                                 1.40
                                          0.25
                                                  0.100
                                                          69
                                                               8.59
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.27
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.454
 SUBAREA RUNOFF(CFS) =
                       23.91
                       9.30 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                                                     23.91
**************************
 FLOW PROCESS FROM NODE 399.20 TO NODE 399.30 IS CODE = 62
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 3 USED)<
______
 UPSTREAM ELEVATION(FEET) = 108.00 DOWNSTREAM ELEVATION(FEET) = 105.00
 STREET LENGTH(FEET) = 510.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 51.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 25.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0150
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                     40.31
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.81
   HALFSTREET FLOOD WIDTH(FEET) = 40.15
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.51
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
                                         2.86
 STREET FLOW TRAVEL TIME(MIN.) = 2.42 Tc(MIN.) = 11.01
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.583
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                                AREA
                                         Fp
                                                   Aр
                                                         SCS
                             (ACRES) (INCH/HR) (DECIMAL) CN
                       GROUP
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         В
                                 4.30
                                          0.30
                                                  0.500
                                                          56
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         C
                                 5.90
                                          0.25
                                                  0.500
                                                          69
 NATURAL FAIR COVER
 "OPEN BRUSH"
                         C
                                 1.50
                                          0.25
                                                  1.000
                                                          77
 COMMERCIAL
                         В
                                 1.10
                                          0.30
                                                  0.100
                                                          56
 COMMERCIAL
                         C
                                 2.00
                                          0.25
                                                  0.100
                                                          69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.27
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.467
                            SUBAREA RUNOFF(CFS) = 32.75
 SUBAREA AREA(ACRES) = 14.80
 EFFECTIVE AREA(ACRES) = 24.10
                                AREA-AVERAGED Fm(INCH/HR) = 0.12
 AREA-AVERAGED Fp(INCH/HR) = 0.27 AREA-AVERAGED Ap = 0.46
```

END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) = 0.88 HALFSTREET FLOOD WIDTH(FEET) = 46.99

24.1

TOTAL AREA(ACRES) =

PEAK FLOW RATE(CFS) =

53.35

```
FLOW VELOCITY(FEET/SEC.) = 3.69 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 510.0 FT WITH ELEVATION-DROP = 3.0 FT, IS
                                                         34.1 CFS,
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 399.30
 LONGEST FLOWPATH FROM NODE 399.10 TO NODE 399.30 =
                                                        840.00 FEET.
********************************
 FLOW PROCESS FROM NODE 399.30 TO NODE 399.40 IS CODE = 62
------
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 3 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 105.00 DOWNSTREAM ELEVATION(FEET) = 104.00
 STREET LENGTH(FEET) = 698.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 51.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 25.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0150
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                     69.95
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.96
   HALFSTREET FLOOD WIDTH(FEET) = 54.61
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.91
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
                                        1.83
 STREET FLOW TRAVEL TIME(MIN.) = 6.10 Tc(MIN.) =
                                                  17.10
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.006
 SUBAREA LOSS RATE DATA(AMC II):
                      SCS SOIL
  DEVELOPMENT TYPE/
                                AREA
                                          Fp
                                                          SCS
                        GROUP
      LAND USE
                               (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                                 1.30
                         В
                                           0.30
                                                   0.500
                                                           56
 COMMERCIAL
                         В
                                 0.90
                                           0.30
                                                   0.100
                                                           56
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         C
                                 8.60
                                           0.25
                                                   0.500
                                                           69
 COMMERCIAL
                         C
                                 3.90
                                           0.25
                                                   0.100
                                                           69
 NATURAL FAIR COVER
                         C
                                 1.10
 "OPEN BRUSH"
                                           0.25
                                                   1.000
                                                           77
 COMMERCIAL
                         C
                                 3.40
                                           0.25
                                                   0.100
                                                           69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.26
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.358
 SUBAREA AREA(ACRES) = 19.20
                             SUBAREA RUNOFF(CFS) =
 EFFECTIVE AREA(ACRES) = 43.30
                                 AREA-AVERAGED Fm(INCH/HR) = 0.11
 AREA-AVERAGED Fp(INCH/HR) = 0.26 AREA-AVERAGED Ap = 0.42
 TOTAL AREA(ACRES) =
                        43.3
                                   PEAK FLOW RATE(CFS) =
                                                            73.94
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.97 HALFSTREET FLOOD WIDTH(FEET) = 55.97
 FLOW VELOCITY(FEET/SEC.) = 1.94 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 698.0 FT WITH ELEVATION-DROP = 1.0 FT, IS
                                                         35.2 CFS,
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 399.40
 LONGEST FLOWPATH FROM NODE 399.10 TO NODE 399.40 = 1538.00 FEET.
```

```
**************************
 FLOW PROCESS FROM NODE 399.40 TO NODE 399.80 IS CODE = 31
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<><
______
 ELEVATION DATA: UPSTREAM(FEET) = 104.00 DOWNSTREAM(FEET) = 100.00
 FLOW LENGTH(FEET) = 653.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 42.0 INCH PIPE IS 34.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 8.85
 ESTIMATED PIPE DIAMETER(INCH) = 42.00
                               NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 73.94
 PIPE TRAVEL TIME(MIN.) = 1.23 Tc(MIN.) =
                                   18.33
 LONGEST FLOWPATH FROM NODE 399.10 TO NODE
                                   399.80 =
                                           2191.00 FEET.
***************************
 FLOW PROCESS FROM NODE 399.80 TO NODE 399.80 IS CODE = 1
.....
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
_____
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 18.33
 RAINFALL INTENSITY(INCH/HR) = 1.93
 AREA-AVERAGED Fm(INCH/HR) = 0.11
 AREA-AVERAGED Fp(INCH/HR) = 0.26
 AREA-AVERAGED Ap = 0.42
 EFFECTIVE STREAM AREA(ACRES) =
 TOTAL STREAM AREA(ACRES) = 43.30
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                              73.94
********************************
 FLOW PROCESS FROM NODE 399.50 TO NODE 399.60 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 246.00
 ELEVATION DATA: UPSTREAM(FEET) = 108.00 DOWNSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.269
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.043
 SUBAREA TC AND LOSS RATE DATA(AMC II):
 DEVELOPMENT TYPE/
                 SCS SOIL AREA
                                 Fp
                                        Aр
                  GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
    LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                    C
                          0.10
                                  0.25
                                        0.500
                                              69
                                                  10.58
                                                 8.27
 COMMERCIAL
                    C
                          0.80
                                  0.25
                                        0.100
                                              69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.144
 SUBAREA RUNOFF(CFS) = 2.44
 TOTAL AREA(ACRES) =
                 0.90 PEAK FLOW RATE(CFS) =
                                           2.44
********************************
 FLOW PROCESS FROM NODE 399.60 TO NODE
                                399.70 \text{ IS CODE} = 62
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
_______
```

```
UPSTREAM ELEVATION(FEET) = 107.00 DOWNSTREAM ELEVATION(FEET) = 102.00
 STREET LENGTH(FEET) = 775.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                     10.16
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.41
   HALFSTREET FLOOD WIDTH(FEET) = 14.49
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.26
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 5.71 Tc(MIN.) =
                                                 13.98
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.252
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                      SCS SOIL
                                AREA
                             (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
                       GROUP
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         C
                                 6.40
                                          0.25
                                                  0.500
                                                          69
 COMMERCIAL
                         C
                                 1.50
                                          0.25
                                                  0.100
                                                          69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.424
 SUBAREA AREA(ACRES) = 7.90 SUBAREA RUNOFF(CFS) = 15.26
 EFFECTIVE AREA(ACRES) = 8.80
                                AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.40
 TOTAL AREA(ACRES) =
                        8.8
                                   PEAK FLOW RATE(CFS) =
                                                           17.05
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.47 HALFSTREET FLOOD WIDTH(FEET) = 17.85
 FLOW VELOCITY(FEET/SEC.) = 2.56 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE 399.50 TO NODE
                                          399.70 = 1021.00 FEET.
**************************
 FLOW PROCESS FROM NODE 399.70 TO NODE 399.80 IS CODE = 62
-----
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<
______
 UPSTREAM ELEVATION(FEET) = 102.00 DOWNSTREAM ELEVATION(FEET) = 100.00
 STREET LENGTH(FEET) = 672.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                     23.97
   ***STREET FLOWING FULL***
```

```
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.58
   HALFSTREET FLOOD WIDTH(FEET) = 23.89
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.17
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
                                         1.25
 STREET FLOW TRAVEL TIME(MIN.) = 5.17 Tc(MIN.) =
                                                   19.15
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.881
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                       SCS SOIL
                                 AREA
                                           Fp
                                                            SCS
                                (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
                        GROUP
 RESIDENTIAL
                          C
 "5-7 DWELLINGS/ACRE"
                                   2.40
                                            0.25
                                                    0.500
                                                             69
 COMMERCIAL
                          C
                                   6.00
                                            0.25
                                                    0.100
                                                             69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.214
 SUBAREA AREA(ACRES) = 8.40
                                 SUBAREA RUNOFF(CFS) =
 EFFECTIVE AREA(ACRES) = 17.20
                                   AREA-AVERAGED Fm(INCH/HR) = 0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.31
                         17.2
 TOTAL AREA(ACRES) =
                                    PEAK FLOW RATE(CFS) =
                                                              27.92
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.60 HALFSTREET FLOOD WIDTH(FEET) = 25.18
 FLOW VELOCITY(FEET/SEC.) = 2.27 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
        AND L = 672.0 FT WITH ELEVATION-DROP = 2.0 FT, IS
                                                           17.2 CFS,
        WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE
                                                           399.80
 LONGEST FLOWPATH FROM NODE 399.50 TO NODE 399.80 = 1693.00 FEET.
**********************************
 FLOW PROCESS FROM NODE
                         399.80 TO NODE
                                          399.80 IS CODE =
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 19.15
 RAINFALL INTENSITY(INCH/HR) =
 AREA-AVERAGED Fm(INCH/HR) = 0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.25
 AREA-AVERAGED Ap = 0.31
 EFFECTIVE STREAM AREA(ACRES) =
                               17.20
 TOTAL STREAM AREA(ACRES) =
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                       27.92
 ** CONFLUENCE DATA **
  STREAM
              Q
                     Tc Intensity Fp(Fm)
                                                     Αe
                                                            HEADWATER
  NUMBER
             (CFS)
                   (MIN.) (INCH/HR) (INCH/HR)
                                                    (ACRES)
                                                              NODE
                            1.928 0.26( 0.11) 0.42
     1
            73.94
                    18.33
                                                       43.3
                                                               399.10
                            1.881 0.25(0.08)0.31
     2
            27.92
                    19.15
                                                       17.2
                                                               399.50
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
  STREAM
                     Tc
                        Intensity Fp(Fm)
                                                     Ae
                                                            HEADWATER
  NUMBER
                   (MIN.) (INCH/HR) (INCH/HR)
                                                    (ACRES)
             (CFS)
                                                              NODE
     1
           101.38
                    18.33
                            1.928 0.26( 0.10) 0.39
                                                       59.8
                                                               399.10
                            1.881 0.26( 0.10) 0.38
     2
            99.93
                    19.15
                                                       60.5
                                                               399.50
```

```
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 101.38 Tc(MIN.) = 18.33
EFFECTIVE AREA(ACRES) = 59.77 AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.26 AREA-AVERAGED Ap = 0.39
 TOTAL AREA(ACRES) = 60.5
 LONGEST FLOWPATH FROM NODE
                        399.10 TO NODE
                                              2191.00 FEET.
                                      399.80 =
********************************
 FLOW PROCESS FROM NODE 399.80 TO NODE 400.10 IS CODE = 31
------
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 100.00 DOWNSTREAM(FEET) = 98.00
 FLOW LENGTH(FEET) = 310.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 48.0 INCH PIPE IS 36.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 9.89
 ESTIMATED PIPE DIAMETER(INCH) = 48.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 101.38
 PIPE TRAVEL TIME(MIN.) = 0.52 Tc(MIN.) = 18.86
 LONGEST FLOWPATH FROM NODE 399.10 TO NODE
                                      400.10 =
                                               2501.00 FEET.
**************************
 FLOW PROCESS FROM NODE 400.10 TO NODE 400.10 IS CODE = 1
............
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) =
                         18.86
 RAINFALL INTENSITY(INCH/HR) =
 AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.26
 AREA-AVERAGED Ap = 0.39
 EFFECTIVE STREAM AREA(ACRES) =
                           59.77
 TOTAL STREAM AREA(ACRES) = 60.50
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                101.38
**************************
 FLOW PROCESS FROM NODE 399.90 TO NODE 400.00 IS CODE = 21
>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
 ELEVATION DATA: UPSTREAM(FEET) = 104.00 DOWNSTREAM(FEET) =
                                                    102.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.586
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.978
 SUBAREA TC AND LOSS RATE DATA(AMC II):
                  SCS SOIL AREA
  DEVELOPMENT TYPE/
                                    Fр
                                            Aр
                                                  SCS
                                                      Tc
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                      C
                             1.30
                                     0.25
                                            0.500
                                                   69
                                                      10.99
 COMMERCIAL
                      C
                             0.30
                                     0.25
                                            0.100
                                                   69
                                                       8.59
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.425
 SUBAREA RUNOFF(CFS) = 4.14
                    1.60 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                                               4.14
```

```
**************************
 FLOW PROCESS FROM NODE 400.00 TO NODE 400.10 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<
______
 UPSTREAM ELEVATION(FEET) = 102.00 DOWNSTREAM ELEVATION(FEET) = 98.00
 STREET LENGTH(FEET) = 970.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                   10.43
   ***STREET FLOW SPLITS OVER STREET-CROWN***
   FULL DEPTH(FEET) = 0.52 FLOOD WIDTH(FEET) =
   FULL HALF-STREET VELOCITY(FEET/SEC.) = 2.19
   SPLIT DEPTH(FEET) = 0.30 SPLIT FLOOD WIDTH(FEET) =
                                                      9.03
   SPLIT FLOW(CFS) = 1.35 SPLIT VELOCITY(FEET/SEC.) =
                                                      1.40
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.52
   HALFSTREET FLOOD WIDTH(FEET) = 20.81
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.19
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.13
 STREET FLOW TRAVEL TIME(MIN.) = 7.39 Tc(MIN.) = 15.98
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.086
 SUBAREA LOSS RATE DATA(AMC II):
                    SCS SOIL AREA
  DEVELOPMENT TYPE/
                                        Fp
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                        C
                                4.30
                                         0.25
                                                 0.500
                                                         69
 COMMERCIAL
                        C
                                2.70
                                         0.25
                                                 0.100
                                                         69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.346
 SUBAREA AREA(ACRES) = 7.00 SUBAREA RUNOFF(CFS) = 12.60 EFFECTIVE AREA(ACRES) = 8.60 AREA-AVERAGED Fm(INCH/HR) = 0.09
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.36
 TOTAL AREA(ACRES) =
                        8.6
                                 PEAK FLOW RATE(CFS) =
                                                          15.45
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.52 HALFSTREET FLOOD WIDTH(FEET) = 20.81
 FLOW VELOCITY(FEET/SEC.) = 2.19 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 970.0 FT WITH ELEVATION-DROP = 4.0 FT, IS
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 400.10
 LONGEST FLOWPATH FROM NODE 399.90 TO NODE 400.10 = 1300.00 FEET.
**********************************
 FLOW PROCESS FROM NODE 400.10 TO NODE 400.10 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
```

```
TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) =
                           15.98
 RAINFALL INTENSITY(INCH/HR) =
 AREA-AVERAGED Fm(INCH/HR) = 0.09
 AREA-AVERAGED Fp(INCH/HR) = 0.25
 AREA-AVERAGED Ap = 0.36
 EFFECTIVE STREAM AREA(ACRES) =
 TOTAL STREAM AREA(ACRES) =
                           8.60
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                   15.45
 ** CONFLUENCE DATA **
  STREAM
                  Tc Intensity Fp(Fm)
                                               Ae
                                                     HEADWATER
            Q
  NUMBER
                 (MIN.) (INCH/HR) (INCH/HR)
                                              (ACRES)
           (CFS)
                                                       NODE
                         1.897 0.26( 0.10) 0.39
    1
          101.38
                 18.86
                                                59.8
                                                         399.10
                         1.852 0.26( 0.10) 0.38
    1
           99.93
                 19.67
                                                 60.5
                                                         399.50
           15.45 15.98
                         2.086 0.25(0.09)0.36
    2
                                                 8.6
                                                         399.90
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
                  Tc Intensity Fp(Fm)
  STREAM
                                               Ae
                                                     HEADWATER
            Q
           (CFS) (MIN.) (INCH/HR) (INCH/HR)
                                              (ACRES)
  NUMBER
                                                       NODE
                         2.086 0.26( 0.10) 0.38
1.897 0.26( 0.10) 0.38
    1
          110.39
                 15.98
                                                 59.2
                                                         399.90
    2
          115.37
                 18.86
                                                 68.4
                                                         399.10
                         1.852 0.26( 0.10) 0.38
          113.57 19.67
    3
                                                 69.1
                                                         399.50
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 115.37 Tc(MIN.) = 18.86
EFFECTIVE AREA(ACRES) = 68.37 AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.26 AREA-AVERAGED Ap = 0.38
 TOTAL AREA(ACRES) = 69.1
 LONGEST FLOWPATH FROM NODE 399.10 TO NODE
                                                   2501.00 FEET.
                                         400.10 =
**************************
 FLOW PROCESS FROM NODE 400.10 TO NODE 400.40 IS CODE = 31
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 98.00 DOWNSTREAM(FEET) = 97.00
 FLOW LENGTH(FEET) = 315.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 57.0 INCH PIPE IS 44.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 7.80
 ESTIMATED PIPE DIAMETER(INCH) = 57.00
                                    NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 115.37
 PIPE TRAVEL TIME(MIN.) = 0.67 Tc(MIN.) = 19.53
 LONGEST FLOWPATH FROM NODE 399.10 TO NODE
                                         400.40 =
                                                   2816.00 FEET.
**************************
 FLOW PROCESS FROM NODE 400.40 TO NODE 400.40 IS CODE = 1
>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) =
                           19.53
 RAINFALL INTENSITY(INCH/HR) = 1.86
```

AREA-AVERAGED Fm(INCH/HR) = 0.10

AREA-AVERAGED fp(INCH/HR) = 0.26

```
AREA-AVERAGED Ap = 0.38
 EFFECTIVE STREAM AREA(ACRES) =
                              68.37
 TOTAL STREAM AREA(ACRES) = 69.10
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
********************************
 FLOW PROCESS FROM NODE 400.20 TO NODE 400.30 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 272.00
 ELEVATION DATA: UPSTREAM(FEET) = 104.00 DOWNSTREAM(FEET) =
                                                       102.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.183
 SUBAREA TC AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                   SCS SOIL AREA
                                      Fp
                                                     SCS
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                       C
                               0.60
                                       0.25
                                              0.500
                                                      69
                                                           9.78
 COMMERCIAL
                       C
                               0.30
                                       0.25
                                              0.100
                                                      69
                                                           7.65
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.367
 SUBAREA RUNOFF(CFS) =
                     2.50
                     0.90 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                                                 2.50
*******************************
 FLOW PROCESS FROM NODE 400.30 TO NODE 400.40 IS CODE = 62
-----
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<
UPSTREAM ELEVATION(FEET) = 102.00 DOWNSTREAM ELEVATION(FEET) = 97.00
 STREET LENGTH(FEET) = 1199.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                  9.45
   ***STREET FLOW SPLITS OVER STREET-CROWN***
   FULL DEPTH(FEET) = 0.52 FLOOD WIDTH(FEET) =
   FULL HALF-STREET VELOCITY(FEET/SEC.) = 2.20
   SPLIT DEPTH(FEET) = 0.19 SPLIT FLOOD WIDTH(FEET) =
                                                   3.72
   SPLIT FLOW(CFS) = 0.32 SPLIT VELOCITY(FEET/SEC.) =
                                                   1.12
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.52
   HALFSTREET FLOOD WIDTH(FEET) = 20.81
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.20
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.14
 STREET FLOW TRAVEL TIME(MIN.) = 9.09 Tc(MIN.) =
```

```
* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.032
 SUBAREA LOSS RATE DATA(AMC II):
                    SCS SOIL
  DEVELOPMENT TYPE/
                              AREA
                                      Fp
     LAND USE
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
                               2.10
 "5-7 DWELLINGS/ACRE"
                       C
                                       0.25
                                              0.500
                                                      69
                               5.70
 COMMERCIAL
                       C
                                       0.25
                                              0.100
                                                      69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.208
 SUBAREA AREA(ACRES) = 7.80 SUBAREA RUNOFF(CFS) = 13.90
 EFFECTIVE AREA(ACRES) = 8.70
                              AREA-AVERAGED Fm(INCH/HR) = 0.06
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.22
 TOTAL AREA(ACRES) =
                       8.7
                                PEAK FLOW RATE(CFS) =
                                                       15.47
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.52 HALFSTREET FLOOD WIDTH(FEET) = 20.81
 FLOW VELOCITY(FEET/SEC.) = 2.20 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 1199.0 FT WITH ELEVATION-DROP = 5.0 FT, IS
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 400.40
 LONGEST FLOWPATH FROM NODE 400.20 TO NODE 400.40 = 1471.00 FEET.
**************************
 FLOW PROCESS FROM NODE 400.40 TO NODE 400.40 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 16.73
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.032
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                    SCS SOIL
                              AREA
                                      Fp
                                                     SCS
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 COMMERCIAL
                       C
                               1.00
                                       0.25
                                              0.100
 NATURAL FAIR COVER
 "OPEN BRUSH"
                       C
                               0.30
                                              1.000
                                                      77
                                       0.25
 SCHOOL
                       C
                               0.40
                                       0.25
                                              0.600
                                                      69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.376
 SUBAREA AREA(ACRES) = 1.70 SUBAREA RUNOFF(CFS) =
 EFFECTIVE AREA(ACRES) = 10.40 AREA-AVERAGED Fm(INCH/HR) = 0.06
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.25
 TOTAL AREA(ACRES) =
                      10.4
                               PEAK FLOW RATE(CFS) =
                                                      18.43
********************************
 FLOW PROCESS FROM NODE 400.40 TO NODE 400.40 IS CODE = 1
>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) =
                           16.73
 RAINFALL INTENSITY(INCH/HR) =
 AREA-AVERAGED Fm(INCH/HR) = 0.06
 AREA-AVERAGED Fp(INCH/HR) = 0.25
 AREA-AVERAGED Ap = 0.25
 EFFECTIVE STREAM AREA(ACRES) =
                               10.40
 TOTAL STREAM AREA(ACRES) =
                           10.40
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                   18.43
```

```
** CONFLUENCE DATA **
                 Tc Intensity Fp(Fm)
                                                 HEADWATER
  STREAM
        Q
                                       Aр
                                            Ae
          (CFS) (MIN.) (INCH/HR) (INCH/HR)
  NUMBER
                                            (ACRES)
                                                    NODE
                      2.037 0.26( 0.10) 0.38
                                            59.2
          110.39 16.66
    1
                                                     399.90
         115.37 19.53
113.57 20.35
                        1.860 0.26( 0.10) 0.38
                                               68.4
    1
                                                      399.10
                        1.816 0.26( 0.10) 0.38
                                               69.1
    1
                                                     399.50
          18.43 16.73 2.032 0.25( 0.06) 0.25
                                               10.4
    2
                                                     400.20
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
                Tc Intensity Fp(Fm)
  STREAM
           Q
                                            Ae
                                                  HEADWATER
          (CFS) (MIN.) (INCH/HR) (INCH/HR)
  NUMBER
                                            (ACRES)
                                                    NODE
         1
                                            69.6
                                                     399.90
                                               69.9
    2
                                                      400.20
                                              78.8
    3
                                                      399.10
    4
                                              79.5
                                                     399.50
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 132.19 Tc(MIN.) = 19.53
EFFECTIVE AREA(ACRES) = 78.77 AREA-AVERAGED Fm(INCH/HR) = 0.09
 AREA-AVERAGED Fp(INCH/HR) = 0.26 AREA-AVERAGED Ap = 0.36
 TOTAL AREA(ACRES) = 79.5
 LONGEST FLOWPATH FROM NODE 399.10 TO NODE
                                     400.40 = 2816.00 FEET.
***************************
 FLOW PROCESS FROM NODE 400.40 TO NODE 401.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 97.00 DOWNSTREAM(FEET) = 94.00
 FLOW LENGTH(FEET) = 476.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 54.0 INCH PIPE IS 39.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 10.53
 ESTIMATED PIPE DIAMETER(INCH) = 54.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 132.19
 PIPE TRAVEL TIME(MIN.) = 0.75 Tc(MIN.) =
                                      20.28
 LONGEST FLOWPATH FROM NODE 399.10 TO NODE
                                       401.00 =
                                              3292.00 FEET.
********************************
 FLOW PROCESS FROM NODE 401.00 TO NODE 401.00 IS CODE = 1
_____
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 20.28
 RAINFALL INTENSITY(INCH/HR) = 1.82
 AREA-AVERAGED Fm(INCH/HR) = 0.09
 AREA-AVERAGED Fp(INCH/HR) = 0.26
 AREA-AVERAGED Ap = 0.36
 EFFECTIVE STREAM AREA(ACRES) =
 TOTAL STREAM AREA(ACRES) = 79.50
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                132.19
*******************************
 FLOW PROCESS FROM NODE 401.10 TO NODE 401.20 IS CODE = 21
```

```
>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 327.00
 ELEVATION DATA: UPSTREAM(FEET) = 103.00 DOWNSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.987
 SUBAREA TC AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                      SCS SOIL
                                AREA
                                         Fp
                                                        SCS
      LAND USE
                       GROUP
                              (ACRES) (INCH/HR) (DECIMAL) CN
                                                             (MIN.)
 COMMERCIAL
                         C
                                 1.40
                                         0.25
                                                 0.100
                                                         69
                                                              8.54
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA RUNOFF(CFS) =
                        3.73
 TOTAL AREA(ACRES) =
                       1.40 PEAK FLOW RATE(CFS) =
                                                     3.73
********************************
 FLOW PROCESS FROM NODE
                       401.20 TO NODE 401.00 IS CODE = 62
------
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<
______
 UPSTREAM ELEVATION(FEET) = 101.00 DOWNSTREAM ELEVATION(FEET) = 94.00
 STREET LENGTH(FEET) = 1286.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                    14.35
   ***STREET FLOW SPLITS OVER STREET-CROWN***
   FULL DEPTH(FEET) = 0.52 FLOOD WIDTH(FEET) =
   FULL HALF-STREET VELOCITY(FEET/SEC.) =
   SPLIT DEPTH(FEET) = 0.39 SPLIT FLOOD WIDTH(FEET) =
                     3.91 SPLIT VELOCITY(FEET/SEC.) =
   SPLIT FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.52
   HALFSTREET FLOOD WIDTH(FEET) =
                               20.81
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.51
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 8.53 Tc(MIN.) =
  10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.009
 SUBAREA LOSS RATE DATA(AMC II):
                     SCS SOIL
  DEVELOPMENT TYPE/
                                AREA
                                         Fp
                                                  Aр
                                                        SCS
     LAND USE
                       GROUP
                             (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         C
                                 5.70
                                         0.25
                                                 0.500
                                                         69
 COMMERCIAL
                         C
                                 6.30
                                         0.25
                                                 0.100
                                                         69
 NATURAL FAIR COVER
 "OPEN BRUSH"
                         C
                                 0.20
                                         0.25
                                                 1.000
                                                         77
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.302
```

```
SUBAREA AREA(ACRES) = 12.20
                             SUBAREA RUNOFF(CFS) = 21.23
 EFFECTIVE AREA(ACRES) = 13.60
                             AREA-AVERAGED Fm(INCH/HR) = 0.07
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.28
 TOTAL AREA(ACRES) =
                  13.6
                               PEAK FLOW RATE(CFS) =
                                                      23.73
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.53 HALFSTREET FLOOD WIDTH(FEET) = 21.64
 FLOW VELOCITY(FEET/SEC.) = 2.63 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 1286.0 FT WITH ELEVATION-DROP = 7.0 FT, IS
                                                   22.8 CFS.
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 401.00
 LONGEST FLOWPATH FROM NODE 401.10 TO NODE 401.00 = 1613.00 FEET.
**************************
 FLOW PROCESS FROM NODE 401.00 TO NODE 401.00 IS CODE = 81
>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
MAINLINE Tc(MIN.) = 17.07
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.009
 SUBAREA LOSS RATE DATA(AMC II):
                  SCS SOIL AREA
  DEVELOPMENT TYPE/
                                     Fр
                                              Aр
                                                    SCS
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                       C
                              2.50
                                      0.25
                                              0.500
                                                     69
 COMMERCIAL
                       C
                              2.90
                                      0.25
                                              0.100
                                                     69
 NATURAL FAIR COVER
 "OPEN BRUSH"
                              0.30
                                      0.25
                                              1.000
                       C
                                                     77
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.323
 SUBAREA AREA(ACRES) = 5.70 SUBAREA RUNOFF(CFS) =
 EFFECTIVE AREA(ACRES) = 19.30 AREA-AVERAGED Fm(INCH/HR) = 0.07
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.29
 TOTAL AREA(ACRES) =
                              PEAK FLOW RATE(CFS) =
                     19.3
                                                     33.62
**************************
 FLOW PROCESS FROM NODE 401.00 TO NODE 401.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) =
                           17.07
 RAINFALL INTENSITY(INCH/HR) =
 AREA-AVERAGED Fm(INCH/HR) = 0.07
 AREA-AVERAGED Fp(INCH/HR) = 0.25
 AREA-AVERAGED Ap = 0.29
 EFFECTIVE STREAM AREA(ACRES) =
 TOTAL STREAM AREA(ACRES) = 19.30
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                  33.62
 ** CONFLUENCE DATA **
  STREAM
                  Tc Intensity Fp(Fm)
                                              Ae
                                                    HEADWATER
           (CFS) (MIN.) (INCH/HR) (INCH/HR)
  NUMBER
                                             (ACRES)
                                                      NODE
                        1.986 0.26(0.09)0.36
    1
          128.78
                 17.41
                                               69.6
                                                       399.90
                        1.981 0.26( 0.09) 0.36
          128.96 17.49
    1
                                                69.9
                                                       400.20
          132.19
                 20.28
    1
                        1.820 0.26(0.09)0.36
                                                78.8
                                                       399.10
          129.99
                        1.779 0.26( 0.09) 0.36
    1
                 21.10
                                                79.5
                                                       399.50
          33.62 17.07
                        2.009 0.25(0.07)0.29
                                                19.3
    2
                                                       401.10
```

RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS.

```
** PEAK FLOW RATE TABLE **
               Tc Intensity Fp(Fm)
  STREAM
          Q
                                    Ap
                                          Ae
                                               HEADWATER
 NUMBER
          (CFS) (MIN.) (INCH/HR) (INCH/HR)
                                         (ACRES)
                                                 NODE
         161.39 17.07
                     2.009 0.26( 0.09) 0.35
                                          87.5
    1
                                                   401.10
                     1.986 0.26( 0.09) 0.35
         162.01 17.41
    2
                                            88.9
                                                   399.90
        162.09 17.49
                     1.981 0.26( 0.09) 0.35
    3
                                           89.2
                                                   400.20
         162.52 20.28 1.820 0.26( 0.09) 0.35
    4
                                            98.1
                                                   399.10
         159.61 21.10 1.779 0.26( 0.09) 0.35
    5
                                            98.8
                                                   399.50
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 162.52 Tc(MIN.) = 20.28
EFFECTIVE AREA(ACRES) = 98.07 AREA-AVERAGED Fm(INCH/HR) = 0.09
 AREA-AVERAGED Fp(INCH/HR) = 0.26 AREA-AVERAGED Ap = 0.35
 TOTAL AREA(ACRES) = 98.8
 LONGEST FLOWPATH FROM NODE 399.10 TO NODE 401.00 = 3292.00 FEET.
**************************
 FLOW PROCESS FROM NODE 401.00 TO NODE 403.00 IS CODE = 31
>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 94.00 DOWNSTREAM(FEET) = 88.00
 FLOW LENGTH(FEET) = 1124.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 60.0 INCH PIPE IS 44.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 10.40
 ESTIMATED PIPE DIAMETER(INCH) = 60.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 162.52
 PIPE TRAVEL TIME(MIN.) = 1.80 Tc(MIN.) =
                                    22.08
 LONGEST FLOWPATH FROM NODE 399.10 TO NODE
                                     403.00 =
                                             4416.00 FEET.
**************************
 FLOW PROCESS FROM NODE 403.00 TO NODE 403.00 IS CODE = 1
-----
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 22.08
 RAINFALL INTENSITY(INCH/HR) = 1.73
 AREA-AVERAGED Fm(INCH/HR) = 0.09
 AREA-AVERAGED fp(INCH/HR) = 0.26
 AREA-AVERAGED Ap = 0.35
 EFFECTIVE STREAM AREA(ACRES) =
 TOTAL STREAM AREA(ACRES) = 98.80
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                              162.52
**************************
 FLOW PROCESS FROM NODE 402.10 TO NODE 402.20 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 256.00
 ELEVATION DATA: UPSTREAM(FEET) = 100.00 DOWNSTREAM(FEET) =
                                                   99.00
```

```
GC10EX
```

```
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.002
 SUBAREA Tc AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                       SCS SOIL
                                 AREA
                                           Fp
                                                           SCS
                        GROUP (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
                                                                (MIN.)
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                          C
                                  1.40
                                            0.25
                                                    0.500
                                                            69
                                                                 10.84
 COMMERCIAL
                          C
                                  1.00
                                            0.25
                                                    0.100
                                                            69
                                                                 8.47
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.333
 SUBAREA RUNOFF(CFS) =
                        6.30
                        2.40 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
                                                        6.30
**************************
                        402.20 TO NODE 402.30 IS CODE = 62
 FLOW PROCESS FROM NODE
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 1 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 99.00 DOWNSTREAM ELEVATION(FEET) = 95.00
 STREET LENGTH(FEET) = 817.00 CURB HEIGHT(INCHES) = 6.0
 STREET HALFWIDTH(FEET) = 20.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                       13.46
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.46
   HALFSTREET FLOOD WIDTH(FEET) = 17.15
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.18
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
                                         1.00
 STREET FLOW TRAVEL TIME(MIN.) = 6.25 Tc(MIN.) =
                                                   14.72
    10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.187
 SUBAREA LOSS RATE DATA(AMC II):
                       SCS SOIL
  DEVELOPMENT TYPE/
                                 AREA
                                           Fp
                        GROUP
      LAND USE
                                (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                          C
                                  4.50
                                            0.25
                                                    0.500
                                                            69
 COMMERCIAL
                          C
                                  2.90
                                            0.25
                                                    0.100
                                                            69
 NATURAL FAIR COVER
 "OPEN BRUSH"
                          C
                                  0.10
                                            0.25
                                                    1.000
                                                            77
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.352
 SUBAREA AREA(ACRES) = 7.50
                              SUBAREA RUNOFF(CFS) =
 EFFECTIVE AREA(ACRES) =
                        9.90
                                  AREA-AVERAGED Fm(INCH/HR) =
                                                              0.09
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.35
 TOTAL AREA(ACRES) =
                          9.9
                                    PEAK FLOW RATE(CFS) =
                                                             18.71
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.51 HALFSTREET FLOOD WIDTH(FEET) = 19.95
 FLOW VELOCITY(FET/SEC.) = 2.35 DEPTH*VELOCITY(FT*FT/SEC.) = 1.19
 LONGEST FLOWPATH FROM NODE 402.10 TO NODE
                                            402.30 = 1073.00 FEET.
```

```
**************************
 FLOW PROCESS FROM NODE 402.30 TO NODE 402.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 3 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 95.00 DOWNSTREAM ELEVATION(FEET) = 92.00
 STREET LENGTH(FEET) = 434.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 51.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 25.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0150
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.56
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.86
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 2.53 Tc(MIN.) = 17.25
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.997
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                             AREA
                                      Fp
                                               Aр
                                                     SCS
     LAND USE
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                      C
                              2.10
                                       0.25
                                              0.500
                                                     69
 APARTMENTS
                       C
                              0.30
                                       0.25
                                              0.200
                                                     69
                              3.50
                                       0.25
 COMMERCIAL
                       C
                                              0.100
                                                     69
 NATURAL FAIR COVER
 "OPEN BRUSH"
                       C
                              0.80
                                       0.25
                                              1.000
                                                     77
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.337
 SUBAREA AREA(ACRES) = 6.70 SUBAREA RUNOFF(CFS) = 11.53
 EFFECTIVE AREA(ACRES) = 16.60 AREA-AVERAGED Fm(INCH/HR) = 0.09
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.34
 TOTAL AREA(ACRES) =
                      16.6
                               PEAK FLOW RATE(CFS) =
                                                      28.55
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.59 HALFSTREET FLOOD WIDTH(FEET) = 21.45
 FLOW VELOCITY(FEET/SEC.) = 2.98 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE
                        402.10 TO NODE
                                       402.00 = 1507.00 FEET.
**************************
 FLOW PROCESS FROM NODE 402.00 TO NODE 403.00 IS CODE = 62
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 3 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 92.00 DOWNSTREAM ELEVATION(FEET) = 88.00
 STREET LENGTH(FEET) = 727.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 51.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 25.00
```

```
INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0150
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                     49.58
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.71
   HALFSTREET FLOOD WIDTH(FEET) = 30.19
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.11
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
                                         2.22
 STREET FLOW TRAVEL TIME(MIN.) = 3.90 Tc(MIN.) =
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.777
 SUBAREA LOSS RATE DATA(AMC II):
                     SCS SOIL
  DEVELOPMENT TYPE/
                                AREA
                                         Fp
                                                   Aр
                                                         SCS
                       GROUP
                             (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         C
                                10.50
                                          0.25
                                                  0.500
                                                          69
                                15.70
 COMMERCIAL
                         C
                                          0.25
                                                  0.100
                                                          69
 NATURAL FAIR COVER
 "OPEN BRUSH"
                         C
                                 1.20
                                          0.25
                                                  1.000
                                                          77
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.293
 SUBAREA AREA(ACRES) = 27.40 SUBAREA RUNOFF(CFS) = 42.01
 EFFECTIVE AREA(ACRES) = 44.00
                                AREA-AVERAGED Fm(INCH/HR) =
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.31
 TOTAL AREA(ACRES) =
                        44.0
                                  PEAK FLOW RATE(CFS) =
                                                           67.27
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.78 HALFSTREET FLOOD WIDTH(FEET) = 36.83
 FLOW VELOCITY(FEET/SEC.) = 3.30 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 727.0 FT WITH ELEVATION-DROP = 4.0 FT, IS
                                                        58.8 CFS,
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 403.00
 LONGEST FLOWPATH FROM NODE
                          402.10 TO NODE
                                          403.00 =
                                                      2234.00 FEET.
**************************
 FLOW PROCESS FROM NODE 403.00 TO NODE 403.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) =
                             21.15
 RAINFALL INTENSITY(INCH/HR) =
 AREA-AVERAGED Fm(INCH/HR) = 0.08
 AREA-AVERAGED fp(INCH/HR) = 0.25
 AREA-AVERAGED Ap = 0.31
 EFFECTIVE STREAM AREA(ACRES) =
 TOTAL STREAM AREA(ACRES) =
                             44.00
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                     67.27
 ** CONFLUENCE DATA **
  STREAM
                    Tc Intensity Fp(Fm)
                                                   Ae
                                                         HEADWATER
            (CFS) (MIN.) (INCH/HR) (INCH/HR)
  NUMBER
                                                 (ACRES)
                                                           NODE
                           1.896 0.26(0.09)0.35
     1
           161.39 18.87
                                                   87.5
                                                             401.10
```

```
162.09 19.29
                        1.873 0.26( 0.09) 0.35
    1
                                                89.2
                                                       400.20
          162.52 22.08
                        1.733 0.26( 0.09) 0.35
                                               98.1
    1
                                                       399.10
                        1.697 0.26( 0.09) 0.35
          159.61 22.91
    1
                                               98.8
                                                       399.50
           67.27 21.15 1.777 0.25( 0.08) 0.31
                                               44.0
                                                      402.10
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
                 Tc Intensity Fp(Fm)
  STREAM
           Q
                                              Ae
                                                   HEADWATER
           (CFS) (MIN.) (INCH/HR) (INCH/HR)
  NUMBER
                                             (ACRES)
                                                     NODE
          225.65 18.87 1.896 0.25( 0.09) 0.34
226.73 19.21 1.877 0.25( 0.09) 0.34
226.92 19.29 1.873 0.25( 0.09) 0.34
    1
                                              126.8
                                                       401.10
                                               128.9
    2
                                                       399.90
    3
                                               129.3
                                                       400.20
          229.64 21.15 1.777 0.25( 0.09) 0.34 139.1
228.07 22.08 1.733 0.25( 0.09) 0.34 142.1
    4
                                                       402.10
    5
                                                       399.10
          223.73 22.91 1.697 0.25(0.09) 0.34
                                              142.8
    6
                                                       399.50
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 229.64 Tc(MIN.) = 21.15
EFFECTIVE AREA(ACRES) = 139.10 AREA-AVERAGED Fm(INCH/HR) = 0.09
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.34
 TOTAL AREA(ACRES) = 142.8
 LONGEST FLOWPATH FROM NODE 399.10 TO NODE 403.00 = 4416.00 FEET.
**************************
 FLOW PROCESS FROM NODE 403.00 TO NODE 408.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 88.00 DOWNSTREAM(FEET) = 76.00
 FLOW LENGTH(FEET) = 3339.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 72.0 INCH PIPE IS 56.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 9.70
 ESTIMATED PIPE DIAMETER(INCH) = 72.00
                                   NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 229.64
 PIPE TRAVEL TIME(MIN.) = 5.74 Tc(MIN.) = 26.89
 LONGEST FLOWPATH FROM NODE 399.10 TO NODE
                                        408.00 = 7755.00 FEET.
********************************
 FLOW PROCESS FROM NODE 408.00 TO NODE 408.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 26.89
 RAINFALL INTENSITY(INCH/HR) = 1.55
 AREA-AVERAGED Fm(INCH/HR) = 0.09
 AREA-AVERAGED Fp(INCH/HR) = 0.25
 AREA-AVERAGED Ap = 0.34
 EFFECTIVE STREAM AREA(ACRES) = 139.10
 TOTAL STREAM AREA(ACRES) = 142.80
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                 229.64
*******************************
 FLOW PROCESS FROM NODE 404.00 TO NODE 405.00 IS CODE = 21
```

88.9

399.90

1.877 0.26(0.09) 0.35

162.01 19.21

```
>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
 ELEVATION DATA: UPSTREAM(FEET) =
                                  88.00 DOWNSTREAM(FEET) =
                                                              87.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.751
 SUBAREA TC AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                       SCS SOIL
                                 AREA
                                          Fp
                              (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
                        GROUP
                                                               (MIN.)
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         C
                                 6.70
                                           0.25
                                                   0.500
                                                           69
                                                               12.62
 COMMERCIAL
                         C
                                  2.50
                                           0.25
                                                   0.100
                                                           69
                                                                9.86
 URBAN POOR COVER
 "TURF"
                         C
                                 0.80
                                           0.25
                                                   1.000
                                                           83
                                                               17.03
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.440
 SUBAREA RUNOFF(CFS) =
                       23.77
 TOTAL AREA(ACRES) =
                       10.00 PEAK FLOW RATE(CFS) =
                                                     23.77
**************************
 FLOW PROCESS FROM NODE
                        405.00 TO NODE 406.00 IS CODE = 62
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 2 USED)<
______
 UPSTREAM ELEVATION(FEET) = 87.00 DOWNSTREAM ELEVATION(FEET) = 86.50
 STREET LENGTH(FEET) = 352.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 42.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 21.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                     34.50
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.78
   HALFSTREET FLOOD WIDTH(FEET) = 37.17
   AVERAGE FLOW VELOCITY(FEET/SEC.) =
                                   1.67
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.31
 STREET FLOW TRAVEL TIME(MIN.) = 3.51 Tc(MIN.) =
   10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.310
 SUBAREA LOSS RATE DATA(AMC II):
                       SCS SOIL
  DEVELOPMENT TYPE/
                                 AREA
                                          Fp
                        GROUP
                               (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
 RESIDENTIAL
                         C
                                 6.80
 "5-7 DWELLINGS/ACRE"
                                           0.25
                                                   0.500
                                                           69
 COMMERCIAL
                         C
                                 3.20
                                           0.25
                                                   0.100
                                                           69
 URBAN POOR COVER
 "TURF"
                         C
                                 0.80
                                           0.25
                                                   1.000
                                                           83
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.419
 SUBAREA AREA(ACRES) = 10.80
                                SUBAREA RUNOFF(CFS) =
```

```
AREA-AVERAGED Fm(INCH/HR) = 0.11
 EFFECTIVE AREA(ACRES) =
                          20.80
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.43
 TOTAL AREA(ACRES) =
                        20.8
                                  PEAK FLOW RATE(CFS) =
                                                           41.24
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.83 HALFSTREET FLOOD WIDTH(FEET) = 41.27
 FLOW VELOCITY(FEET/SEC.) = 1.73 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 352.0 FT WITH ELEVATION-DROP = 0.5 FT, IS
                                                        23.1 CFS,
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 406.00
 LONGEST FLOWPATH FROM NODE 404.00 TO NODE 406.00 =
                                                       682.00 FEET.
**************************
 FLOW PROCESS FROM NODE 406.00 TO NODE 407.00 IS CODE = 62
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 2 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 86.50 DOWNSTREAM ELEVATION(FEET) = 84.00
 STREET LENGTH(FEET) = 1031.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 42.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 21.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                     46.31
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.79
   HALFSTREET FLOOD WIDTH(FEET) = 37.66
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.20
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 1.74
 STREET FLOW TRAVEL TIME(MIN.) = 7.80 Tc(MIN.) =
                                                 21.18
  10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.775
 SUBAREA LOSS RATE DATA(AMC II):
                      SCS SOIL
  DEVELOPMENT TYPE/
                                AREA
                                         Fp
     LAND USE
                       GROUP
                             (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
                                 1.60
 "5-7 DWELLINGS/ACRE"
                         C
                                          0.25
                                                  0.500
                                                          69
 COMMERCIAL
                         C
                                 3.10
                                          0.25
                                                  0.100
                                                          69
 URBAN POOR COVER
 "TURF"
                                 2.10
                         C
                                          0.25
                                                  1.000
                                                          83
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.472
 SUBAREA AREA(ACRES) = 6.80
                              SUBAREA RUNOFF(CFS) = 10.14
 EFFECTIVE AREA(ACRES) = 27.60
                                AREA-AVERAGED Fm(INCH/HR) = 0.11
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.44
 TOTAL AREA(ACRES) =
                        27.6
                                  PEAK FLOW RATE(CFS) =
                                                           41.37
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.76 HALFSTREET FLOOD WIDTH(FEET) = 35.20
 FLOW VELOCITY(FEET/SEC.) = 2.15 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE 404.00 TO NODE 407.00 = 1713.00 FEET.
```

```
FLOW PROCESS FROM NODE 407.00 TO NODE
                                      408.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 2 USED)<
______
 UPSTREAM ELEVATION(FEET) = 84.00 DOWNSTREAM ELEVATION(FEET) = 76.00
 STREET LENGTH(FEET) = 1632.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 42.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 21.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                  63.19
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.78
   HALFSTREET FLOOD WIDTH(FEET) = 36.84
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.10
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
                                       2.42
 STREET FLOW TRAVEL TIME(MIN.) = 8.79 Tc(MIN.) =
                                              29.96
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.455
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                              AREA
                                       Fp
                                                Aр
                                                      SCS
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                       C
                              22.30
                                        0.25
                                               0.500
                                                       69
 COMMERCIAL
                        C
                              12.40
                                        0.25
                                               0.100
                                                       69
 URBAN POOR COVER
 "TURF"
                               0.80
                                               1.000
                        C
                                        0.25
                                                       83
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.372
 SUBAREA AREA(ACRES) = 35.50 SUBAREA RUNOFF(CFS) = 43.52
 EFFECTIVE AREA(ACRES) = 63.10
                              AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.40
 TOTAL AREA(ACRES) =
                      63.1
                                PEAK FLOW RATE(CFS) =
                                                        76.94
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.83 HALFSTREET FLOOD WIDTH(FEET) = 41.44
 FLOW VELOCITY(FEET/SEC.) = 3.20 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 1632.0 FT WITH ELEVATION-DROP = 8.0 FT, IS
                                                     61.4 CFS,
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 408.00
 LONGEST FLOWPATH FROM NODE 404.00 TO NODE 408.00 =
                                                   3345.00 FEET.
**************************
 FLOW PROCESS FROM NODE 408.00 TO NODE 408.00 IS CODE = 1
>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) =
                            29.96
 RAINFALL INTENSITY(INCH/HR) =
                            1.46
 AREA-AVERAGED Fm(INCH/HR) = 0.10
```

AREA-AVERAGED fp(INCH/HR) = 0.25AREA-AVERAGED Ap = 0.40EFFECTIVE STREAM AREA(ACRES) = 63.10 TOTAL STREAM AREA(ACRES) = 63.10 PEAK FLOW RATE(CFS) AT CONFLUENCE = 76.94

** CONFLUENCE DATA **

STREAM NUMBER	Q (CFS)		Intensity (TNCH/HR)	<pre>Fp(Fm) (INCH/HR)</pre>	Ар	Ae (ACRES)	HEADWATER NODE
1	225.65	24.62		0.25(0.09)	0.34	126.8	401.10
1	226.73	24.96		0.25(0.09)		128.9	399.90
1	226.92	25.04		0.25(0.09)		129.3	400.20
1	229.64	26.89		0.25(0.09)		139.1	402.10
1	228.07	27.83		0.25(0.09)		142.1	399.10
1	223.73	28.66		0.25(0.09)		142.8	399.50
2	76.94	29.96		0.25(0.10)		63.1	404.00

RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS.

** PEAK FLOW RATE TABLE **

,		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
STREAM	Q	Tc	Intensity	Fp(Fm)	Аp	Ae	HEADWATER
NUMBER	(CFS)	(MIN.)	(INCH/HR)	(INCH/HR)		(ACRES)	NODE
1	296.95	24.62	1.628	0.25(0.09)	0.36	178.6	401.10
2	298.42	24.96	1.616	0.25(0.09)	0.36	181.4	399.90
3	298.69	25.04	1.613	0.25(0.09)	0.36	182.1	400.20
4	303.43	26.89	1.548	0.25(0.09)	0.36	195.7	402.10
5	302.84	27.83	1.518	0.25(0.09)	0.36	200.7	399.10
6	299.36	28.66	1.493	0.25(0.09)	0.36	203.2	399.50
7	294.69	29.96	1.455	0.25(0.09)	0.36	205.9	404.00

COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:

PEAK FLOW RATE(CFS) = 303.43 Tc(MIN.) = 26.89 EFFECTIVE AREA(ACRES) = 195.72 AREA-AVERAGED Fm(INCH/HR) = 0.09

AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.36

TOTAL AREA(ACRES) = 205.9

LONGEST FLOWPATH FROM NODE 399.10 TO NODE 408.00 = 7755.00 FEET.

FLOW PROCESS FROM NODE 408.00 TO NODE 415.00 IS CODE = 31

>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<

______ ELEVATION DATA: UPSTREAM(FEET) = 76.00 DOWNSTREAM(FEET) = 54.00

FLOW LENGTH(FEET) = 4095.00 MANNING'S N = 0.013

DEPTH OF FLOW IN 75.0 INCH PIPE IS 56.9 INCHES

PIPE-FLOW VELOCITY(FEET/SEC.) = 12.15

ESTIMATED PIPE DIAMETER(INCH) = 75.00 NUMBER OF PIPES = 1

PIPE-FLOW(CFS) = 303.43

PIPE TRAVEL TIME(MIN.) = 5.62 Tc(MIN.) = 32.51

LONGEST FLOWPATH FROM NODE 399.10 TO NODE 415.00 = 11850.00 FEET.

FLOW PROCESS FROM NODE 415.00 TO NODE 415.00 IS CODE = 1

>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<

TOTAL NUMBER OF STREAMS = 2

CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:

```
TIME OF CONCENTRATION(MIN.) =
                           32.51
 RAINFALL INTENSITY(INCH/HR) =
 AREA-AVERAGED Fm(INCH/HR) = 0.09
 AREA-AVERAGED Fp(INCH/HR) = 0.25
 AREA-AVERAGED Ap = 0.36
 EFFECTIVE STREAM AREA(ACRES) =
                          205.90
 TOTAL STREAM AREA(ACRES) =
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                  303.43
**************************
 FLOW PROCESS FROM NODE 409.00 TO NODE 410.00 IS CODE = 21
>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 330.00
                               76.00 DOWNSTREAM(FEET) =
 ELEVATION DATA: UPSTREAM(FEET) =
                                                        74.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 8.586
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.978
 SUBAREA TC AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                   SCS SOIL AREA
                                      Fp
                                                     SCS
                                               Αp
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
                                                          (MIN.)
 COMMERCIAL
                       C
                               0.60
                                       0.25
                                               0.100
                                                      69
                                                           8.59
 URBAN POOR COVER
 "TURF"
                       C
                               0.20
                                       0.25
                                               1.000
                                                      83
                                                          14.83
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.325
 SUBAREA RUNOFF(CFS) = 2.09
 TOTAL AREA(ACRES) =
                      0.80 PEAK FLOW RATE(CFS) =
                                                  2.09
********************************
 FLOW PROCESS FROM NODE 410.00 TO NODE 411.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 2 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 74.00 DOWNSTREAM ELEVATION(FEET) = 71.00
 STREET LENGTH(FEET) = 452.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 42.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 21.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                  3.11
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.33
   HALFSTREET FLOOD WIDTH(FEET) =
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.75
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.57
 STREET FLOW TRAVEL TIME(MIN.) = 4.29 Tc(MIN.) =
                                              12.88
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.361
 SUBAREA LOSS RATE DATA(AMC II):
```

```
SCS SOIL
  DEVELOPMENT TYPE/
                                AREA
                                                          SCS
                                          Fp
                                                    Αp
      LAND USE
                        GROUP (ACRES)
                                       (INCH/HR) (DECIMAL) CN
 COMMERCIAL
                         C
                                 0.70
                                          0.25
                                                   0.100
                                                           69
 URBAN POOR COVER
 "TURF"
                         C
                                 0.30
                                          0.25
                                                   1.000
                                                           83
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.370
 SUBAREA AREA(ACRES) = 1.00
                                SUBAREA RUNOFF(CFS) =
 EFFECTIVE AREA(ACRES) =
                         1.80
                                  AREA-AVERAGED Fm(INCH/HR) =
                                                            0.09
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.35
 TOTAL AREA(ACRES) =
                         1.8
                                   PEAK FLOW RATE(CFS) =
                                                            3.68
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.34 HALFSTREET FLOOD WIDTH(FEET) = 9.09
 FLOW VELOCITY(FEET/SEC.) = 1.81 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE
                          409.00 TO NODE
                                          411.00 =
                                                       782.00 FEET.
********************************
 FLOW PROCESS FROM NODE 411.00 TO NODE 412.00 IS CODE = 62
------
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 2 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 71.00 DOWNSTREAM ELEVATION(FEET) = 61.00
 STREET LENGTH(FEET) = 1897.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 42.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 21.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                      5.95
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.40
   HALFSTREET FLOOD WIDTH(FEET) = 11.91
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.85
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 17.09 Tc(MIN.) =
                                                  29.97
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.455
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                      SCS SOIL
                                AREA
                                          Fp
                                                    Ap
                                                          SCS
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
 COMMERCIAL
                         C
                                 2.20
                                          0.25
                                                   0.100
 URBAN POOR COVER
 "TURF"
                         C
                                  1.50
                                          0.25
                                                   1.000
                                                           83
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.465
 SUBAREA AREA(ACRES) = 3.70 SUBAREA RUNOFF(CFS) =
 EFFECTIVE AREA(ACRES) =
                        5.50
                                 AREA-AVERAGED Fm(INCH/HR) =
                                                            0.11
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.43
 TOTAL AREA(ACRES) =
                         5.5
                                   PEAK FLOW RATE(CFS) =
                                                             6.67
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.41 HALFSTREET FLOOD WIDTH(FEET) = 12.50
 FLOW VELOCITY(FEET/SEC.) = 1.90 DEPTH*VELOCITY(FT*FT/SEC.) =
                                                            0.78
```

```
LONGEST FLOWPATH FROM NODE 409.00 TO NODE 412.00 =
                                                   2679.00 FEET.
***************************
 FLOW PROCESS FROM NODE 412.00 TO NODE 413.00 IS CODE = 62
-----
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 2 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 61.00 DOWNSTREAM ELEVATION(FEET) = 60.00
 STREET LENGTH(FEET) = 413.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 42.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 21.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                 10.09
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.51
   HALFSTREET FLOOD WIDTH(FEET) = 17.47
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.56
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.79
 STREET FLOW TRAVEL TIME(MIN.) = 4.43 Tc(MIN.) = 34.39
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.345
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                              AREA
                                      Fp
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 COMMERCIAL
                       C
                               3.30
                                     0.25
                                               0.100
                                                       69
 SCHOOL
                               2.70
                                               0.600
                       C
                                       0.25
                                                      69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.325
 SUBAREA AREA(ACRES) = 6.00 SUBAREA RUNOFF(CFS) = 6.82 EFFECTIVE AREA(ACRES) = 11.50 AREA-AVERAGED Fm(INCH/HR) = 0.09
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.37
 TOTAL AREA(ACRES) =
                      11.5
                                PEAK FLOW RATE(CFS) =
                                                       12.95
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.54 HALFSTREET FLOOD WIDTH(FEET) = 19.33
 FLOW VELOCITY(FEET/SEC.) = 1.65 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE 409.00 TO NODE 413.00 = 3092.00 FEET.
**************************
 FLOW PROCESS FROM NODE 413.00 TO NODE 414.00 IS CODE = 62
>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 2 USED)<<<<<
______
 UPSTREAM ELEVATION(FEET) = 60.00 DOWNSTREAM ELEVATION(FEET) = 57.00
 STREET LENGTH(FEET) = 463.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 42.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 21.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
```

```
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                     22.20
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.55
   HALFSTREET FLOOD WIDTH(FEET) = 19.70
   AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.73
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
 STREET FLOW TRAVEL TIME(MIN.) = 2.83 Tc(MIN.) =
                                                 37.22
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.285
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                      SCS SOIL
                                AREA
                                                          SCS
                        GROUP
                              (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         C
                                 0.60
                                          0.25
                                                   0.500
                                                           69
 COMMERCIAL
                         C
                                 9.90
                                          0.25
                                                   0.100
                                                           69
 SCHOOL
                         C
                                 6.50
                                          0.25
                                                   0.600
                                                           69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.305
 SUBAREA AREA(ACRES) = 17.00 SUBAREA RUNOFF(CFS) = 18.49
 EFFECTIVE AREA(ACRES) = 28.50
                                 AREA-AVERAGED Fm(INCH/HR) =
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.33
 TOTAL AREA(ACRES) =
                        28.5
                                   PEAK FLOW RATE(CFS) =
                                                            30.83
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.61 HALFSTREET FLOOD WIDTH(FEET) = 22.44
 FLOW VELOCITY(FEET/SEC.) = 2.95 DEPTH*VELOCITY(FT*FT/SEC.) =
 LONGEST FLOWPATH FROM NODE
                           409.00 TO NODE
                                          414.00 = 3555.00 FEET.
********************************
 FLOW PROCESS FROM NODE 414.00 TO NODE 415.00 IS CODE = 62
______
 >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<
 >>>>(STREET TABLE SECTION # 2 USED)<
______
 UPSTREAM ELEVATION(FEET) = 57.00 DOWNSTREAM ELEVATION(FEET) = 54.00
 STREET LENGTH(FEET) = 819.00 CURB HEIGHT(INCHES) = 8.0
 STREET HALFWIDTH(FEET) = 42.00
 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 21.00
 INSIDE STREET CROSSFALL(DECIMAL) = 0.020
 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020
 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2
 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150
 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200
   **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
                                                     51.38
   STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
   STREET FLOW DEPTH(FEET) = 0.77
   HALFSTREET FLOOD WIDTH(FEET) = 35.36
   AVERAGE FLOW VELOCITY(FEET/SEC.) =
                                   2.66
   PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) =
                                       2.03
 STREET FLOW TRAVEL TIME(MIN.) = 5.14 Tc(MIN.) =
                                                 42.36
  * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 1.193
 SUBAREA LOSS RATE DATA(AMC II):
```

```
GC10EX
                      SCS SOIL
  DEVELOPMENT TYPE/
                                AREA
                                                         SCS
                                         Fp
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                         C
                                21.30
                                          0.25
                                                  0.500
                                                          69
 COMMERCIAL
                         C
                                10.80
                                          0.25
                                                  0.100
                                                          69
 URBAN POOR COVER
 "TURF"
                                 0.40
                         C
                                          0.25
                                                  1.000
                                                          83
 SCH00L
                         C
                                 9.50
                                          0.25
                                                  0.600
                                                          69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.25
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.425
 SUBAREA AREA(ACRES) = 42.00 SUBAREA RUNOFF(CFS) = 41.09
 EFFECTIVE AREA(ACRES) = 70.50
                                AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.39
 TOTAL AREA(ACRES) =
                        70.5
                                  PEAK FLOW RATE(CFS) =
                                                           69.56
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.84 HALFSTREET FLOOD WIDTH(FEET) = 42.58
 FLOW VELOCITY(FEET/SEC.) = 2.79 DEPTH*VELOCITY(FT*FT/SEC.) =
 *NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
       AND L = 819.0 FT WITH ELEVATION-DROP = 3.0 FT, IS
                                                        82.3 CFS,
       WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 415.00
 LONGEST FLOWPATH FROM NODE 409.00 TO NODE 415.00 = 4374.00 FEET.
**************************
 FLOW PROCESS FROM NODE 415.00 TO NODE 415.00 IS CODE = 1
>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 42.36
 RAINFALL INTENSITY(INCH/HR) =
 AREA-AVERAGED Fm(INCH/HR) = 0.10
 AREA-AVERAGED Fp(INCH/HR) = 0.25
 AREA-AVERAGED Ap = 0.39
 EFFECTIVE STREAM AREA(ACRES) =
 TOTAL STREAM AREA(ACRES) =
                             70.50
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                     69.56
 ** CONFLUENCE DATA **
  STREAM
                    Tc Intensity Fp(Fm)
                                                   Ae
                                                         HEADWATER
            (CFS) (MIN.) (INCH/HR) (INCH/HR)
  NUMBER
                                                  (ACRES)
                                                           NODE
                           1.447 0.25( 0.09) 0.36
     1
           296.95
                   30.25
                                                    178.6
                                                             401.10
                           1.438 0.25(0.09)0.36
     1
           298.42
                   30.59
                                                    181.4
                                                             399.90
                           1.436 0.25(0.09)0.36
     1
           298.69
                   30.66
                                                    182.1
                                                             400.20
           303.43 32.51
                           1.389 0.25(0.09)0.36
     1
                                                    195.7
                                                             402.10
                           1.366 0.25(0.09)0.36
     1
           302.84
                   33.45
                                                    200.7
                                                             399.10
                           1.347 0.25( 0.09) 0.36
     1
           299.36
                   34.29
                                                    203.2
                                                             399.50
                           1.318 0.25(0.09)0.36
     1
           294.69
                   35.60
                                                    205.9
                                                             404.00
     2
            69.56
                   42.36
                           1.193 0.25( 0.10) 0.39
                                                    70.5
                                                             409.00
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
                       Intensity Fp(Fm)
  STREAM
             Q
                   Tc
                                                   Ae
                                                         HEADWATER
  NUMBER
            (CFS)
                  (MIN.) (INCH/HR) (INCH/HR)
                                                  (ACRES)
                                                           NODE
                           1.447 0.25( 0.09) 0.36
     1
           358.14
                   30.25
                                                    229.0
                                                             401.10
                           1.438 0.25( 0.09) 0.36
     2
           359.86
                   30.59
                                                    232.3
                                                             399.90
```

```
GC10EX
                          1.436 0.25( 0.09) 0.36
     3
          360.19
                  30.66
                                                 233.1
                                                          400.20
                          1.389 0.25( 0.09) 0.36
          366.33
     4
                  32.51
                                                 249.8
                                                          402.10
                          1.366 0.25(0.09)0.36
     5
          366.43 33.45
                                                 256.3
                                                          399.10
                          1.347 0.25( 0.09) 0.36
          363.56
     6
                  34.29
                                                 260.2
                                                          399.50
                          1.318 0.25(0.09)0.36
     7
          359.82
                  35.60
                                                 265.1
                                                          404.00
          334.25 42.36
                          1.193 0.25( 0.09) 0.37
     8
                                                 276.4
                                                          409.00
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 366.43 Tc(MIN.) = 33.45
EFFECTIVE AREA(ACRES) = 256.33 AREA-AVERAGED Fm(INCH/HR) = 0.09
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.36
 TOTAL AREA(ACRES) = 276.4
 LONGEST FLOWPATH FROM NODE 399.10 TO NODE 415.00 = 11850.00 FEET.
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES)
                        276.4 TC(MIN.) =
                                            33.45
 EFFECTIVE AREA(ACRES) = 256.33 AREA-AVERAGED Fm(INCH/HR)= 0.09
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.364
 PEAK FLOW RATE(CFS) =
                        366.43
 ** PEAK FLOW RATE TABLE **
                  Tc Intensity Fp(Fm)
                                                      HEADWATER
  STREAM
            Q
                                          Aр
                                                Ae
  NUMBER
           (CFS) (MIN.) (INCH/HR) (INCH/HR)
                                               (ACRES)
                                                        NODE
                         1.447 0.25(0.09)0.36
     1
          358.14
                  30.25
                                                 229.0
                                                          401.10
                          1.438 0.25(0.09) 0.36
          359.86
     2
                  30.59
                                                 232.3
                                                          399.90
                          1.436 0.25( 0.09) 0.36
          360.19 30.66
     3
                                                 233.1
                                                          400.20
          366.33 32.51
                          1.389 0.25( 0.09) 0.36
     4
                                                 249.8
                                                          402.10
          366.43 33.45
                          1.366 0.25(0.09)0.36
     5
                                                 256.3
                                                          399.10
          363.56 34.29
                          1.347 0.25( 0.09) 0.36
     6
                                                 260.2
                                                          399.50
                 35.60
                         1.318 0.25(0.09)0.36
     7
          359.82
                                                 265.1
                                                          404.00
          334.25 42.36
     8
                        1.193 0.25( 0.09) 0.37
                                                 276.4
                                                          409.00
______
_____
```

END OF RATIONAL METHOD ANALYSIS

•