APPENDIX H ONSITE HYDROLOGY AND HYDRAULIC REPORT

McDonalds Santa Ana

Onsite Hydrology and Hydraulics Report

2109 E Santa Clara Avenue, Santa Ana, CA 92705

APN: 396-261-26, 396-261-33, 396-261-38

Prepared for:

Michael Gregg

Director of Construction and Entitlements Stream Realty

3161 Michaelson Drive, Suite 100

Irvine, CA 92612

Ph: (805) 215-6453

Prepared By:

Hannah Luevano, P.E.

Kimley-Horn and Associate, Inc.

1100 Town and Country Road, Suite 700

Orange, CA 92868

CEQA Analysis Submittal: August 2023

INTRODUCTION

The proposed project consists of the construction of a new McDonald's Restaurant in APN 396-261-26, 396-261-33, and 396-261-38 (2109 E Santa Clara Avenue, Santa Ana, CA 92705). The project is located north of E Santa Clara Avenue and is surrounded by commercial developments to the north, east and west side of the property. The site currently has existing residential buildings with three (3) driveway approaches and is surrounded by an existing wall. All existing items will be demolished and replaced with a new McDonald's restaurant, trash enclosure, drive through and associated parking lot.

The proposed project disturbs approximately 0.82 acres and will include improvements to the adjacent shared access aisle, east of the project. The existing drainage patterns shows runoff flowing from the northwest and northeast corner of the property and sheet flowing south (see Appendix B). With no existing stormdrain system within the parcel or any stormdrain lines adjacent to the right-of-way, the existing site's runoff sheet flows from the existing driveway approaches onto the existing curb and gutter on E Santa Clara Ave and flows east to the curb inlet on the intersection of E Santa Clara Ave and Tustin Ave to the public stormwater system.

The proposed development will include the construction of the new restaurant building of approximately 3,975 square feet and a drive-thru west of the building. New landscaped area will be added throughout the project area as shown on the proposed conditions hydrology map (see Appendix B). The site will have one overall drainage area with three sub drainage areas.

Drainage management area 1 (DMA 1) will follow similar existing drainage patterns conditions and flow from the northeast and northwest corners to the south of the site. Roof drains will discharge at the surface and the stormwater will flow through curb and gutters and valley gutters to be captured and convey stormwater runoff towards one of three catch basins strategically placed throughout the site. The proposed catch basins will all be piped to a proposed BMP in the center southern portion of the project area. Stormwater runoff will discharge into a proposed underground detention system and will be pumped and discharged at an attenuated rated onto the curb and gutter off E Santa Clara Ave to match existing conditions. The stormwater will continue to flow east to the curb inlet on the intersection of E Santa Clara Ave and Tustin Ave to the public stormwater system.

DMA 1 has a ridgeline separating the proposed restaurant area and the adjacent shared access. The access aisle will match existing conditions and will sheet flow from the northeast corner of the property to the southeast driveway approach off E Santa Clara Ave. Per the ALTA survey and utility locate, there is no existing public stormwater lines adjacent to the property. There will be driveway improvements on the existing road and public right-of-way will all match existing conditions. All existing drainage patterns will remain the same and runoff will flow from the curb and gutter off E Santa Clara Ave and east to the curb inlet on the intersection of E Santa Clara Ave and Tustin Ave to the public stormwater system.

DMA 1 consists of three (3) inlets that direct stormwater to a single biofiltration BMP. Drainage area 3 (DA 3) consists of discharge coming from the roof drains, parking spaces and drive aisles into the proposed catch basin south of the site. This catch basin will be piped to the proposed biofiltration BMP and eventually into a proposed underground detention system, where the water will be pumped and

McDonald's Santa Ana Onsite Hydrology and Hydraulics Report

attenuated to the curb and gutter off E Santa Clara Ave to match existing conditions. Drainage area 2 (DA 2) contains flows from the northern drive-thru area. From this catch basin, the discharge will be piped into the proposed BMP south of the site. Drainage area 4 (DA 4) consists of flows on the western and southern portions of the drive-thru. Like the other catchment areas, the discharge from these areas will pipe to the proposed biofiltration BMP south of the site, enter the underground detention system and be pumped to the existing curb and gutter on Santa Clara Avenue at an attenuated rate.

HYDROLOGY

The hydrology and hydraulic analysis was prepared in accordance with the Orange County Hydrology Manual (OC Hydrology Manual, 1986) and OC Local Drainage Manual 2020. Per the drainage manuals, minimum recurrence intervals for the design of new local drainage facilities shall be:

- Habitable structures shall have 100-year flood protection
- A 25-year storm event for all open and underground channels and storm drains with drainage areas less than 640 acres, and watershed tributary the Santa Ana River. (Chapter 4, Section II)
- Analysis of all storm events shall be based on "high confidence level"

In the existing condition, storm water runoff from the existing building, driveways, and parking surface flow from the northeast and northwest corners of the site, south towards the E. Santa Clara Ave. All stormwater runoff is being contained within the property limits because of the existing surrounding wall. There is no stormdrain system in existing conditions and no public stormdrain main off E. Santa Clara. All drainage is sheet flowing off site and to the public street.

In the proposed condition, during low flow storm events, a series of curb and gutter and valley gutters will be installed along the north, east and southern ends of the site to capture and convey storm water runoff. The stormwater runoff will be diverted towards one of three (3) new on-site catch basins, which will be located on the southwest of the development. Storm water will then be conveyed to an underground detention system sized to retain the design capture storm. Stormwater will be pumped from the proposed underground retention tank to the existing curb and gutter on Santa Clara Ave. The proposed 2-year flow will be less than the existing 2-year flow.

During large storm events (25 & 100-year storm) storm water runoff will enter the proposed underground retention system and be pumped out and onto the curb and gutter off E Santa Clara Ave and flow east to the curb inlet on the intersection of E Santa Clara Ave and Tustin Ave to the public stormwater system. In storm events larger than the 100-year storm, the water will overflow from the detention basin into a curb cut leading to landscaping, and eventually into the public valley gutter along E. Santa Clara Ave. The stormdrain pipes have also been sized for the 100-year storm. Refer to Appendix C for more information on proposed large storm event hydrology conditions.

The goal of the project is to keep flowrates for the proposed project conditions from exceeding existing conditions peak flows discharging directly to the on-site storm drain system for 100-year and 25-year storm events. A rational method analysis in accordance with the Orange County Hydrology Manual was completed to calculate the peak discharges for existing conditions and proposed project conditions

(Refer to Appendices D-E for calculations). A review of soil maps from the Hydrology Manual showed that the existing soils consisted of hydrologic group B as shown in the Soils Map in Appendix A. Soil group B is defined as soils having moderate infiltration rates and was used to calculate the soil loss rates. In addition, antecedent moisture condition (AMC) of 2 was used to calculate the 25-year peak flows and 100-year storm event. The land use for each subarea was selected based on the percent pervious for existing and proposed project conditions.

The Orange County Hydrology Manual was used to complete the rational method analysis. In accordance with the Orange County WQMP TGD the project is not hydromod exempt and must also detain the difference in volume and attenuate the discharge created during the 2-year, 24-hour storm event. The additional peak flow from existing to proposed conditions, as well as the 2-year, 24-hour storm event, will be accounted for in the underground detention system and will pump onto the right-of-way to match existing conditions and attenuate the peak flow. The underground detention area will capture the additional storage required to attenuate peak flows. Please refer to Appendices for more information and calculation outputs.

Hydrology results for existing and proposed conditions are included in Appendix B and Appendix C, respectively, and shown in Tables 1 -3 below.

Table 1: Existing Conditions Rational Method Results

Drainage	Area (acres)	Time of	25-year Peak	100-year
Area		Concentration	Flow (cfs)	Peak Flow
		(min)		(cfs)
1	0.82	10.63	2.39	3.11

Table 2: Proposed Conditions Rational Method Results

Drainage	Area (acres)	Time of	25-year Peak	100-year
Area		Concentration	Flow (cfs)	Peak Flow
		(min)		(cfs)
1	0.82	5.2	3.00	3.90

Table 3: Summary of Results

Drainage	Area	50-year	Proposed	25-year & 100-	25-year Peak	100-year Peak
Area	(acres)	Required	Detention	year Peak pump	Flow Reduction	Flow Reduction
		Detention	Volume (CF)	discharge rate	(cfs)	(cfs)
		Volume (CF)				
1	0.82	1638	3845	0.87 cfs	-0.61 cfs	-0.79 cfs

Figure 1: McDonald's Santa Ana Project Location Map

APPENDIX A: SOILS MAP

APPENDIX B: EXISTING CONDITIONS HYDROLOGY MAP

~~~

──> ──> ──

CENTER LINE

PROPERTY LINE

DEDICATION LINE EASEMENT LINE

PROPOSED FLOW LINE PROPOSED STORM DRAIN LINE

EXISTING FLOW DIRECTION

DRAINAGE MAP AREA (DMA) BOUNDARY

LONGEST HYDROLOGIC PATH NODE

EXISTING CONDITIONS (DMA 1)

	` ,
TOTAL AREA, SF (ACRES)	35531 (0.82)
IMPERVIOUS AREA, SF (ACRES)	16275 (0.38)
PERVIOUS AREA, SF (ACRES)	19256 (0.44)
IMPERVIOUS FRACTION (IMP)	0.46
С	0.50
2-YEAR DEPTH, INCHES	2.05

EXISTING CONDITIONS (DA 1)			
TOTAL AREA, SF (ACRES)	23078 (0.54)		
IMPERVIOUS AREA, SF (ACRES)	9724 (0.22)		
PERVIOUS AREA, SF (ACRES)	13354 (0.31)		
IMPERVIOUS FRACTION (IMP)	0.42		
С	0.50		
2-YEAR DEPTH, INCHES	2.05		

EXISTING CONDITIONS (DA 2)			
TOTAL AREA, SF (ACRES)	12453 (0.29)		
IMPERVIOUS AREA, SF (ACRES)	6936 (0.16)		
PERVIOUS AREA, SF (ACRES)	5517 (0.13)		
IMPERVIOUS FRACTION (IMP)	0.56		
С	0.50		
2-YEAR DEPTH, INCHES	2.05		

Underground Service Alert of Southern California CALL: **TOLL FREE 1-800-422-4133** TWO WORKING DAYS BEFORE YOU DIG

NOTICE TO CONTRACTOR PURSUANT TO ASSEMBLY BILL 3019 NO EXCAVATION
PERMIT IS VALID UNLESS THE CONTRACTOR CONTACTS
AND OBTAINS AN INQUIRY I.D. NUMBER FROM "UNDERGROUND SERVICE ALERT" (1-800-422-4133) AT LEAST
TWO WORKING DAYS PRIOR TO COMMENCING EXCAVATION.

	REVISIONS		REFERENCES		ENCES	
NUMBER	DATE INITIALS	DESCRIPTION	APPROVED INST	STALLED	BENCHMARK NO.: 3C-26-06	ELEV.: 173.744' NAVD88
					THE ON-SITE BENCHMARK IS BASED ON NAVD	1988 DATUM, AND IS A SET MAG NAIL AND
					SHINER AT THE NORTHEAST CORNER OF PARCE	L 2. ELEVATION = 193.65 FEET.
					THE BASIS OF BEARING IS THE CENTERLINE OF	SANTA CLARA AVENUE PER TRACT MAP
					NO. 14568, BOOK 695, PAGE 47, COUNTY OF C	DRANGE, A BEARING OF N89°59'50"E.
					CONSTRUCTION COMPLETED:	

\ \ \ \ \ \	PREPARED UNDER THE SUPERVISION	^	DATE
PROFESS/ONAL	OF: HANNAH LUEVANO, P.E. KIMLEY—HORN 100 TOWN & COUNTRY RD	Hheraro	7 <u>/</u> 11/20
" \S\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	SUITE 700	SENIOR CIVIL ENGINEER RCE NO.: 90371	
CE NO. 90371 (20)	(213) 261-4040	DESIGNED: HL DRAWN: MH CHECKED: HL	
*	REVIEWED FOR CONSTRUCTABILITY AND RECOMMENDED FOR CONSTRUCTION:		
OF CALLES			XX/YYY
	JASON GABRIEL	PRINCIPAL CIVIL ENGINEER RCE NO.: 62968	

1" = 20' WHEN PRINTED AT FULL SIZE (24"X36")	PERMIT IS VALID UNLESS THE CONTRACTOR AND OBTAINS AN INQUIRY I.D. NUMBER FRO GROUND SERVICE ALERT" (1-800-422-413 TWO WORKING DAYS PRIOR TO COMMENCING
PROPOSED DRIVE-	THRU RESTAURANT
2109 E SANTA (CLARA AVENUE
CANTA ANIA	CA 00705

SANTA ANA, CA 92705 **PUBLIC WORKS AGENCY** CITY OF SANTA ANA

EXISTING HYDROLOGY MAP

SHEET NO.

APPENDIX C: PROPOSED CONDITIONS HYDROLOGY MAP

PROPOSED CONDITIONS (DMA 1)				
TOTAL AREA, SF (ACRES)	35531 (0.82)			
IMPERVIOUS AREA, SF (ACRES)	26973 (0.63)			
PERVIOUS AREA, SF (ACRES)	8558 (0.18)			
IMPERVIOUS FRACTION (IMP)	0.78			
С	0.72			
2-YEAR DEPTH, INCHES	2.05			
2-YEAR FLOW	1.62			

PROPOSED CONDITIONS (DA 2)				
TOTAL AREA, SF (ACRES)	5879 (0.14)			
IMPERVIOUS AREA, SF (ACRES)	4229 (0.10)			
PERVIOUS AREA, SF (ACRES)	1650 (0.04)			
IMPERVIOUS FRACTION (IMP)	0.72			
С	0.72			
2-YEAR DEPTH, INCHES	2.05			
2-YEAR FLOW	0.28			

PROPOSED CONDITIONS (DA 3)			
TOTAL AREA, SF (ACRES)	21784 (0.50)		
IMPERVIOUS AREA, SF (ACRES)	18513 (0.43)		
PERVIOUS AREA, SF (ACRES)	3271 (0.08)		
IMPERVIOUS FRACTION (IMP)	0.85		
С	0.72		
2-YEAR DEPTH, INCHES	2.05		
2-YEAR FLOW	0.99		

PROPOSED CONDITIONS (DA 4)					
TOTAL AREA, SF (ACRES)	7868 (0.18)				
IMPERVIOUS AREA, SF (ACRES)	4231 (0.10)				
PERVIOUS AREA, SF (ACRES)	3637 (0.08)				
IMPERVIOUS FRACTION (IMP)	0.54				
С	0.72				
2-YEAR DEPTH, INCHES	2.05				
2-YEAR FLOW	0.36				

Underground Service Alert
of Southern California

CALL: TOLL FREE 1-800-422-4133

TWO WORKING DAYS
BEFORE YOU DIG

SCALE

1" = 20'
WHEN PRINTED AT FULL SIZE
(24"X36")

NOTICE TO CONTRACTOR

PURSUANT TO ASSEMBLY BILL 3019 NO EXCAVATION
PERMIT IS VALID UNLESS THE CONTRACTOR CONTACTS
AND OBTAINS AN INQUIRY I.D. NUMBER FROM "UNDERGROUND SERVICE ALERT" (1-800-422-4133) AT LEAST
TWO WORKING DAYS PRIOR TO COMMENCING EXCAVATION.

REVISIONS			REFERENCES			
NUMBER DATE	INITIALS	DESCRIPTION	APPROVED INST	ALLED	BENCHMARK NO.: 3C-26-06	ELEV.: 173.744' NAVD88
					THE ON-SITE BENCHMARK IS BASED ON NAVD 1988	DATUM, AND IS A SET MAG NAIL AND
					SHINER AT THE NORTHEAST CORNER OF PARCEL 2.	ELEVATION = 193.65 FEET.
					THE BASIS OF BEARING IS THE CENTERLINE OF SANT	TA CLARA AVENUE PER TRACT MAP
					NO. 14568, BOOK 695, PAGE 47, COUNTY OF ORANG	GE, A BEARING OF N89°59'50"E.
					CONSTRUCTION COMPLETED:	

PREPARED UNDER THE SUPERVISION	^	DATE	
OF: HANNAH LUEVANO, P.E. KIMLEY-HORN 1100 TOWN & COUNTRY RD SUITE 700 (213) 261-4040	SENIOR CIVIL ENGINEER RCE NO.: 90371 DESIGNED: HL DRAWN: MH CHECKED: HL	7 <u>/11/202</u> 3	
REVIEWED FOR CONSTRUCTABILITY AND RECOMMENDED FOR CONSTRUCTION:			
JASON GABRIEL	PRINCIPAL CIVIL ENGINEER RCE NO.: 62968	XX/YYYY	

PROPOSED DRIVE-THRU RESTAURANT 2109 E SANTA CLARA AVENUE

SANTA ANA, CA 92705
PUBLIC WORKS AGENCY

PROPOSED HYDROLOGY MAP

SHEET NO.

NNNN: PROJECT TITLE PROJECT L

APPENDIX D: 25-YEAR STORM ANALYSIS FOR EXISTING CONDITIONS AND PROPOSED CONDITIONS

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2011 Advanced Engineering Software (aes) Ver. 18.0 Release Date: 07/01/2011 License ID 1499

```
* MCDONALDS SANTA ANA
* 25-YEAR EXISTING
* KIMLEY-HORN
 FILE NAME: MCD100E. DAT
 TIME/DATE OF STUDY: 11:25 06/27/2023
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
              --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) =
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 8.00
 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO
                STREET-CROSSFALL: CURB GUTTER-GEOMETRIES:
                                                  MANNI NG
   WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
                SIDE / SIDE/ WAY (FT)
                                    (FT) (FT) (FT)
NO.
    (FT)
        (FT)
                                                    (n)
30 0
          20 0
                1
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
  1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
  2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE. *
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
****************
 FLOW PROCESS FROM NODE 100.00 TO NODE
                                101.00 IS CODE = 21
```

```
>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 ELEVATION DATA: UPSTREAM(FEET) = 193.49 DOWNSTREAM(FEET) = 192.52
 Tc = K^*[(LENGTH^{**} 3.00)/(ELEVATION CHANGE)]^{**}0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
    25 YEAR RAINFALL INTENSITY(INCH/HR) = 4.270
 SUBAREA To AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                               AREA
                                                        SCS Tc
                                       Fp
                                                  ДA
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
      LAND USE
 RESI DENTI AL
 "5-7 DWELLINGS/ACRE" B
                             0. 16 0. 30
                                                          56 6.20
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.500
 SUBAREA RUNOFF (CFS) = 0.59
 TOTAL AREA(ACRÈS) = 0.16 PEAK FLOW RATE(CFS) = 0.59
*******************
 FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 192.52 DOWNSTREAM(FEET) = 191.59 CHANNEL LENGTH THRU SUBAREA(FEET) = 79.00 CHANNEL SLOPE = 0.0118
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.990
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
    25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.916
 SUBAREA LOSS RATE DATA(AMC 11):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                                         SCS
                                        Fp
      LAND USE
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
 "2 DWELLINGS/ACRE"
                         В
                                 0.06
                                         0.30
                                                  0.700
                                                          56
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.700
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.29
 AVERAGE FLOW DEPTH(FEET) = 0.07 TRAVEL TIME(MIN.) = 1.02
 Tc(MIN.) =
              7.23
 SUBAREA AREA(ACRES) = 0.06 SUBAREA RUNOFF(CFS) = 0.20 EFFECTIVE AREA(ACRES) = 0.22 AREA-AVERAGED Fm(INCH/HR) =
                                  AREA-AVERAGED Fm(INCH/HR) = 0.17
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.55
 TOTAL AREA(ACRES) = 0.2 PEAK FLOW RATE(CFS) = 0.74
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.08 FLOW VELOCITY(FEET/SEC.) = 1.19
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 102.00 = 179.00 FEET.
```

```
FLOW PROCESS FROM NODE 102.00 TO NODE 102.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 7.23
   25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.916
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                   SCS SOIL
                                   Fp
                                                 SCS
                           AREA
                                           Дp
                    GROUP
                          (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESI DENTI AL
 "2 DWELLINGS/ACRE"
                            0.06
                                0.30
                                          0.700
                                                 56
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.700
 SUBAREA AREA(ACRES) = 0.06
                           SUBAREA RUNOFF(CFS) = 0.20
 EFFECTIVE AREA(ACRES) = 0.28 AREA-AVERAGED Fm(INCH/HR) = 0.18
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.59
 TOTAL AREA(ACRES) = 0.3 PEAK FLOW RATE(CFS) =
******************
                    200.00 TO NODE 201.00 IS CODE = 21
 FLOW PROCESS FROM NODE
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 ELEVATION DATA: UPSTREAM(FEET) = 193.76 DOWNSTREAM(FEET) = 191.97
 Tc = K^*[(LENGTH^{**} 3.00)/(ELEVATION CHANGE)]^{**}0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
   25 YEAR RAINFALL INTENSITY(INCH/HR) = 4.049
 SUBAREA To AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                   SCS SOLL
                           ARFA
                                                 SCS
                                   Fp
                                           Aр
                                                     Tc
     LAND USE
                    GROUP
                          (ACRES)
                                 (INCH/HR)
                                         (DECIMAL) CN
                                                    (MIN.)
 PUBLIC PARK
                     В
                            0.04
                                           0.850
                                                 56
                                                      6.81
                                    0.30
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
 SUBAREA RUNOFF (CFS) = 0.14
 TOTAL AREA(ACRES) = 0.04
                         PEAK FLOW RATE(CFS) = 0.14
*******************
 FLOW PROCESS FROM NODE 201.00 TO NODE 202.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 191.97 DOWNSTREAM(FEET) =
 CHANNEL LENGTH THRU SUBAREA(FEET) = 173.00 CHANNEL SLOPE = 0.0042
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.990
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.147
 SUBAREA LOSS RATE DATA(AMC II):
```

```
DEVELOPMENT TYPE/ SCS SOIL AREA Fp
                                                     SCS
                                               Aр
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESI DENTI AL
 "5-7 DWELLINGS/ACRE"
                      В
                               0. 25 0. 30
                                             0.500
                                                      56
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.500
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 0.76
 AVERAGE FLOW DEPTH(FEET) = 0.08 TRAVEL TIME(MIN.) =
 Tc(MIN.) =
            10.63
 SUBAREA AREA(ACRES) = 0.25 SUBAREA RUNOFF(CFS) = 0.67

EFFECTIVE AREA(ACRES) = 0.29 AREA-AVERAGED Fm(INCH/HR) = 0.16
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.55
 TOTAL AREA(ACRES) = 0.3 PEAK FLOW RATE(CFS) = 0.78
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.10 FLOW VELOCITY(FEET/SEC.) = 0.84
 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 202.00 = 273.00 FEET.
*******************
 FLOW PROCESS FROM NODE 202.00 TO NODE 202.00 LS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 10.63
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.147
 SUBAREA LOSS RATE DATA(AMC 11):
  DEVELOPMENT TYPE/
                   SCS SOLL AREA
                                    Fp
                                              Ар
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESI DENTI AL
 "5-7 DWELLINGS/ACRE" B
                              0. 25 0. 30
                                             0.500
                                                      56
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.500
 SUBAREA AREA(ACRES) = 0.25 SUBAREA RUNOFF(CFS) = 0.67
EFFECTIVE AREA(ACRES) = 0.54 AREA-AVERAGED Fm(INCH/HR) = 0.16
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.53
 TOTAL AREA(ACRES) = 0.5 PEAK FLOW RATE(CFS) = 1.45
_____
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 0.5 TC(MIN.) = 10.63
EFFECTIVE AREA(ACRES) = 0.54 AREA-AVERAGED Fm(INCH/HR) = 0.16
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.526
 PEAK FLOW RATE(CFS) = 1.45
______
_____
```

END OF RATIONAL METHOD ANALYSIS

^

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2011 Advanced Engineering Software (aes) Ver. 18.0 Release Date: 07/01/2011 License ID 1499

```
* MCDONALD'S SANTA ANA
* PROPOSED 25 YEAR
* KIMLEY-HORN & ASSOCIATES
 FILE NAME: MCD25PR. DAT
 TIME/DATE OF STUDY: 11:33 06/29/2023
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
              --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) =
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 8.00
 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO
                STREET-CROSSFALL:
                              CURB GUTTER-GEOMETRIES:
                                                  MANNI NG
   WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
                SIDE / SIDE/ WAY (FT)
                                    (FT) (FT) (FT)
NO.
    (FT)
        (FT)
                                                    (n)
30 0
          20 0
                1
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
  1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
  2. (Depth)*(Velocity) Constraint = 0.5 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE. *
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
**************
 FLOW PROCESS FROM NODE
                    200.00 TO NODE
                                 201.00 IS CODE = 21
```

```
>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 ELEVATION DATA: UPSTREAM(FEET) = 194.10 DOWNSTREAM(FEET) = 192.33
 Tc = K^*[(LENGTH^{**} 3.00)/(ELEVATION CHANGE)]^{**}0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
    25 YEAR RAINFALL INTENSITY(INCH/HR) = 4.775
 SUBAREA To AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                    SCS SOLL
                              AREA
                                                     SCS Tc
                                      Fр
                             (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
                      GROUP
                               0.09
 CONDOMI NI UMS
                        В
                                       0.30
                                              0.350 56 5.09
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.350
 SUBAREA RUNOFF (CFS) = 0.38
 TOTAL AREA(ACRES) = 0.09 PEAK FLOW RATE(CFS) = 0.38
******************
FLOW PROCESS FROM NODE 201.00 TO NODE 202.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 192.33 DOWNSTREAM(FEET) = 192.24
 CHANNEL LENGTH THRU SUBAREA(FEET) = 20.00 CHANNEL SLOPE = 0.0045
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.990
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
    25 YEAR RAINFALL INTENSITY(INCH/HR) = 4.566
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                                       SCS
                                       Fp
                                                 Aр
     LAND USE
                      GROUP
                             (ACRES)
                                     (INCH/HR) (DECIMAL) CN
 CONDOMI NI UMS
                        В
                               0.03
                                     0.30
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.350
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 0.79
 AVERAGE FLOW DEPTH(FEET) = 0.07 TRAVEL TIME(MIN.) = 0.42
             5.51
 Tc(MIN.) =
 SUBAREA AREA(ACRES) = 0.03 SUBAREA RUNOFF(CFS) = 0.10 EFFECTIVE AREA(ACRES) = 0.12 AREA-AVERAGED Fm(INCH/HR) =
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.35
 TOTAL AREA(ACRES) = 0.1 PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.08 FLOW VELOCITY(FEET/SEC.) = 0.74
 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 202.00 = 120.00 FEET.
****************
 FLOW PROCESS FROM NODE 202.00 TO NODE 202.00 IS CODE = 81
```

```
>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) =
                   5.51
   25 YEAR RAINFALL INTENSITY(INCH/HR) = 4.566
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                    Fp
                                           Аp
                                                  SCS
     LAND USE
                    GROUP
                          (ACRES) (INCH/HR)
                                          (DECIMAL) CN
 CONDOMI NI UMS
                            0. 03 0. 30
                                          0.350
                      В
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.350
 SUBAREA AREA(ACRES) = 0.03 SUBAREA RUNOFF(CFS) = 0.10
 EFFECTIVE AREA(ACRÉS) = 0.14 AREA-AVERAGED Fm(INCH/HR) = 0.11 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.35
 TOTAL AREA(ACRES) = 0.1 PEAK FLOW RATE(CFS) =
****************
 FLOW PROCESS FROM NODE 202.00 TO NODE 302.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 189.46 DOWNSTREAM(FEET) = 187.98
 FLOW LENGTH(FEET) = 137.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 8.000
 DEPTH OF FLOW IN 8.0 INCH PIPE IS 3.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.44
 ESTIMATED PIPE DIAMETER(INCH) = 8.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                  0. 56
 PIPE TRAVEL TIME(MIN.) = 0.66 Tc(MIN.) = 6.17
 LONGEST FLOWPATH FROM NODE 200.00 TO NODE
                                      302.00 =
                                                257.00 FEET.
*******************
 FLOW PROCESS FROM NODE 302.00 \text{ TO NODE} 302.00 \text{ IS CODE} = 1
   ______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 6.17
 RAINFALL INTENSITY(INCH/HR) = 4.28
 AREA-AVERAGED Fm(INCH/HR) = 0.11
 AREA-AVERAGED Fp(INCH/HR) = 0.30
 AREA-AVERAGED Ap = 0.35
 EFFECTIVE STREAM AREA(ACRES) = 0.14
 TOTAL STREAM AREA(ACRES) = 0.14
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
 FLOW PROCESS FROM NODE 400.00 TO NODE 401.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
```

```
>>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 ELEVATION DATA: UPSTREAM(FEET) = 193.37 DOWNSTREAM(FEET) = 191.94
 Tc = K^*[(LENGTH^{**} 3.00)/(ELEVATION CHANGE)]^{**}0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
    25 YEAR RAINFALL INTENSITY(INCH/HR) = 4.461
 SUBAREA To AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                     SCS SOLL
                              ARFA
                                      Fp
                                               Aр
                                                     SCS
                                                         Tc
     LAND USE
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                       В
                               0.08
                                      0.30
                                              0.500
                                                      56
                                                           5.74
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.500
 SUBAREA RUNOFF (CFS) = 0.31
 TOTAL AREA(ACRES) = 0.08 PEAK FLOW RATE(CFS) = 0.31
******************
FLOW PROCESS FROM NODE 401.00 TO NODE 402.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 191.94 DOWNSTREAM(FEET) = 191.63
 CHANNEL LENGTH THRU SUBAREA(FEET) = 35.00 CHANNEL SLOPE = 0.0089
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.990
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
    25 YEAR RAINFALL INTENSITY(INCH/HR) = 4.207
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                      Fp
                                                     SCS
                                               Дp
     LAND USE
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 RESI DENTI AL
 "5-7 DWELLINGS/ACRE"
                               0.05 0.30
                       В
                                              0.500
                                                      56
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.500
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 0.93
 AVERAGE FLOW DEPTH(FEET) = 0.07 TRAVEL TIME(MIN.) = 0.63
 Tc(MIN.) =
            6. 37
 SUBAREA AREA(ACRES) = 0.05 SUBAREA RUNOFF(CFS) = 0.18
 EFFECTIVE AREA(ACRES) = 0.13
                               AREA-AVERAGED Fm(INCH/HR) =
                                                         0.15
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.50
 TOTAL AREA(ACRES) = 0.1 PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.07 FLOW VELOCITY(FEET/SEC.) = 0.93
 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 402.00 = 135.00 FEET.
*******************
 FLOW PROCESS FROM NODE 402.00 TO NODE 402.00 IS CODE = 81
```

```
>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
_____
 MAINLINE Tc(MIN.) = 6.37
 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 4.207
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                 Fρ
                                           ДÞ
                                                SCS
     LAND USE
                  GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 RESI DENTI AL
 "5-7 DWELLINGS/ACRE"
                    В
                          0.05
                                  0.30
                                        0.500
                                                 56
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.500
 SUBAREA AREA(ACRES) = 0.05
                          SUBAREA RUNOFF(CFS) =
 EFFECTIVE AREA(ACRES) = 0.18 AREA-AVERAGED Fm(INCH/HR) = 0.15
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.50
 TOTAL AREA(ACRES) = 0.2 PEAK FLOW RATE(CFS) =
**********************
 FLOW PROCESS FROM NODE 402.00 TO NODE 302.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 189.32 DOWNSTREAM(FEET) = 187.98
 FLOW LENGTH(FEET) = 134.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 9.0 INCH PIPE IS 4.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) =
                          3.46
 ESTIMATED PIPE DIAMETER(INCH) = 9.00
                                NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 0.66
 PIPE TRAVEL TIME(MIN.) = 0.64 Tc(MIN.) =
                                     7.01
 LONGEST FLOWPATH FROM NODE 400.00 TO NODE
                                     302.00 =
                                              269, 00 FEET.
******************
 FLOW PROCESS FROM NODE 302.00 TO NODE 302.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION (MIN.) = 7.01
 RAINFALL INTENSITY(INCH/HR) = 3.98
 AREA-AVERAGED Fm(INCH/HR) = 0.15
 AREA-AVERAGED Fp(INCH/HR) = 0.30
 AREA-AVERAGED Ap = 0.50
 EFFECTIVE STREAM AREA(ACRES) = 0.18
 TOTAL STREAM AREA(ACRES) = 0.18
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
                    Intensity Fp(Fm) Ap Ae HEADWATER
  STREAM Q TC
```

```
(CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES)
  NUMBER
                                                    NODE
           0. 56 6. 17 4. 281 0. 30 (0. 11) 0. 35
                                           0. 1
    1
                                                     200.00
    2
           0.66
                 7.01
                                               0.2
                        3. 983 0. 30(0. 15) 0. 50
                                                     400.00
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
                                     αA
  STREAM
           Q Tc Intensity Fp(Fm)
                                            Аe
                                                 HEADWATER
           (CFS) (MIN.) (INCH/HR) (INCH/HR)
                                           (ACRES)
  NUMBER
                                                   NODE
    1
           1. 19 6. 17
                     4. 281 0. 30(0. 13) 0. 43 0. 3
                                                     200.00
                        3. 983 0. 30(0. 13) 0. 43
    2
           1. 18
                 7. 01
                                            0. 3
                                                     400.00
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 1.19 Tc(MIN.) = 6.17
 EFFECTIVE AREA(ACRES) = 0.30 AREA-AVERAGED Fm(INCH/HR) = 0.13
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.43
 TOTAL AREA(ACRES) = 0.3
 LONGEST FLOWPATH FROM NODE 400.00 TO NODE
                                      302.00 = 269.00 FEET.
 FLOW PROCESS FROM NODE 302.00 TO NODE 304.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)
______
 ELEVATION DATA: UPSTREAM(FEET) = 187.98 DOWNSTREAM(FEET) = 187.64
 FLOW LENGTH(FEET) = 33.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 9.0 INCH PIPE IS 5.7 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.04
 ESTIMATED PIPE DIAMETER(INCH) =
                                  NUMBER OF PIPES = 1
                           9.00
 PIPE-FLOW(CFS) = 1.19
 PIPE TRAVEL TIME(MIN.) = 0.14 Tc(MIN.) = 6.31
 LONGEST FLOWPATH FROM NODE 400.00 TO NODE
                                      304.00 = 302.00 \text{ FEET}.
******************
 FLOW PROCESS FROM NODE 304.00 TO NODE 304.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 6.31
 RAINFALL INTENSITY(INCH/HR) = 4.23
 AREA-AVERAGED Fm(INCH/HR) = 0.13
 AREA-AVERAGED Fp(INCH/HR) = 0.30
 AREA-AVERAGED Ap = 0.43
 EFFECTIVE STREAM AREA(ACRES) = 0.30
 TOTAL STREAM AREA(ACRES) = 0.32
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.19
```

```
301.00 IS CODE = 22
 FLOW PROCESS FROM NODE 300.00 TO NODE
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>>>USE SPECIFIED TC VALUE FOR INITIAL SUBAREA<<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) =
                                33.00
 USER SPECIFIED Tc(MIN.) = 5.000
   25 YEAR RAINFALL INTENSITY(INCH/HR) = 4.824
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                    SCS SOIL AREA
                                                    SCS
                                     Fp
                     GROUP
                            (ACRES)
                                   (INCH/HR)
                                            (DECIMAL) CN
     LAND USE
 COMMERCI AL
                       В
                              0.09
                                     0.30
                                             0.100
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA RUNOFF (CFS) = 0.39
 TOTAL AREA(ACRES) = 0.09 PEAK FLOW RATE(CFS) =
******************
 FLOW PROCESS FROM NODE 301.00 TO NODE 304.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 193.00 DOWNSTREAM(FEET) = 191.16
 CHANNEL LENGTH THRU SUBAREA(FEET) = 156.00 CHANNEL SLOPE = 0.0118
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.990
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
   25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.940
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                                                    SCS
                             AREA
                                     Fp
                                              Αp
     LAND USE
                     GROUP
                            (ACRES)
                                   (INCH/HR) (DECIMAL) CN
 APARTMENTS
                                     0.30
                       В
                              0. 21
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.21
 AVERAGE FLOW DEPTH(FEET) = 0.08 TRAVEL TIME(MIN.) = 2.15
 Tc(MIN.) =
            7. 15
 SUBAREA AREA(ACRES) = 0.21 SUBAREA RUNOFF(CFS) = 0.73 EFFECTIVE AREA(ACRES) = 0.30 AREA-AVERAGED Fm(INCH/HR) =
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.17
 TOTAL AREA(ACRES) = 0.3
                          PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.09 FLOW VELOCITY(FEET/SEC.) = 1.34
 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 304.00 = 189.00 FEET.
****************
 FLOW PROCESS FROM NODE 304.00 TO NODE 304.00 IS CODE = 81
```

```
>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 7.15
    25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.940
 SUBAREA LOSS RATE DATA(AMC II):
                                                     SCS
  DEVELOPMENT TYPE/
                     SCS SOIL AREA
                                      Fp
                                               Дp
     LAND USE
                      GROUP
                            (ACRES) (INCH/HR)
                                             (DECIMAL) CN
 APARTMENTS
                              0. 21
                                      0.30
                                             0. 200
                                                      56
                       В
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 0.21
                             SUBAREA RUNOFF (CFS) = 0.73
 EFFECTIVE AREA(ACRES) = 0.51 AREA-AVERAGED Fm(INCH/HR) = 0.05
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.18
 TOTAL AREA(ACRES) = 0.5 PEAK FLOW RATE(CFS) =
                                                      1. 78
****************
 FLOW PROCESS FROM NODE 304.00 TO NODE 304.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<< <
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.15
 RAINFALL INTENSITY(INCH/HR) =
 AREA-AVERAGED Fm(INCH/HR) = 0.05
 AREA-AVERAGED Fp(INCH/HR) = 0.30
 AREA-AVERAGED Ap = 0.18
 EFFECTIVE STREAM AREA(ACRES) = 0.51
 TOTAL STREAM AREA(ACRES) = 0.51
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                    1.78
 ** CONFLUENCE DATA **
           Q
                      Intensity
  STREAM
                  Tc
                               Fp(Fm)
                                          Aр
                                              Аe
                                                     HEADWATER
  NUMBER
           (CFS)
                 (MIN.) (INCH/HR) (INCH/HR)
                                              (ACRES)
                                                       NODF
                  6. 31
                                                0.3
    1
            1. 19
                         4. 228 0. 30(0. 13) 0. 43
                                                         200.00
    1
            1.18
                  7.15
                         3.940 0.30(0.13) 0.43
                                                 0.3
                                                         400.00
            1.78
    2
                  7. 15
                         3.940 0.30(0.05) 0.18
                                                  0.5
                                                         300.00
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
  STREAM
           Q
                 Tc Intensity Fp(Fm)
                                          Дp
                                               Аe
                                                     HEADWATER
           (CFS)
                 (MIN.) (INCH/HR) (INCH/HR)
                                              (ACRES)
  NUMBER
                                                       NODE
                6. 31
                         4. 228 0. 30(0.08) 0. 28
                                               0. 7
    1
            2.88
                                                         200.00
    2
            2.96
                  7.15
                         3.940 0.30(0.08) 0.28
                                                  0.8
                                                         300.00
            2.96
                  7.15
                         3.940 0.30(0.08) 0.28
                                                  0.8
                                                        400.00
```

COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:

PEAK FLOW RATE(CFS) = 2.96 Tc(MIN.) = 7.15

```
EFFECTIVE AREA(ACRES) = 0.83 AREA-AVERAGED Fm(INCH/HR) = 0.08 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.28
 TOTAL AREA(ACRES) = 0.8
 LONGEST FLOWPATH FROM NODE 400.00 TO NODE
                                            304.00 =
                                                        302.00 FEET.
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 0.8 TC(MIN.) = 7.15
EFFECTIVE AREA(ACRES) = 0.83 AREA-AVERAGED Fm(INCH/HR) = 0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.280
                          2.96
 PEAK FLOW RATE(CFS) =
 ** PEAK FLOW RATE TABLE **
  STREAM
            0
                    Tc Intensity Fp(Fm)
                                            Ар
                                                   Ae
                                                          HEADWATER
            (CFS)
                  (MIN.) (INCH/HR) (INCH/HR)
                                                  (ACRES)
  NUMBER
                                                            NODE
                           4. 228 0. 30(0.08) 0. 28
3. 940 0. 30(0.08) 0. 28
                  6. 31
     1
             2.88
                                                    0.7
                                                              200.00
     2
             2.96
                    7.15
                                                      0.8
                                                              300.00
             2.96
                    7. 15
                           3.940 0.30(0.08) 0.28
                                                      0.8
                                                              400.00
______
```

END OF RATIONAL METHOD ANALYSIS

♠

APPENDIX E: 100-YEAR STORM ANALYSIS FOR EXISTING CONDITIONS AND PROPOSED CONDITIONS

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2011 Advanced Engineering Software (aes) Ver. 18.0 Release Date: 07/01/2011 License ID 1499

```
* MCDONALDS SANTA ANA
* 100-YEAR EXISTING
* KIMLEY-HORN
 FILE NAME: MCD100E. DAT
 TIME/DATE OF STUDY: 13:51 06/27/2023
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
              --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 100.00
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 8.00
 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO
                STREET-CROSSFALL: CURB GUTTER-GEOMETRIES:
                                                  MANNI NG
   WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
                SIDE / SIDE/ WAY (FT)
                                    (FT) (FT) (FT)
NO.
    (FT)
        (FT)
                                                    (n)
30 0
          20 0
                1
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
  1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
  2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE. *
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
****************
 FLOW PROCESS FROM NODE 100.00 TO NODE
                                 101.00 IS CODE = 21
```

```
>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 ELEVATION DATA: UPSTREAM(FEET) = 193.49 DOWNSTREAM(FEET) = 192.52
 Tc = K^*[(LENGTH^{**} 3.00)/(ELEVATION CHANGE)]^{**}0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 6.203
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 5.468
 SUBAREA To AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                               AREA
                                                        SCS Tc
                                        Fp
                                                  ДA
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
      LAND USE
 RESI DENTI AL
 "5-7 DWELLINGS/ACRE" B
                             0. 16 0. 30
                                                          56
                                                               6.20
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.500
 SUBAREA RUNOFF(CFS) = 0.77
 TOTAL AREA(ACRÈS) = 0.16 PEAK FLOW RATE(CFS) = 0.77
*******************
 FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 192.52 DOWNSTREAM(FEET) = 191.59 CHANNEL LENGTH THRU SUBAREA(FEET) = 79.00 CHANNEL SLOPE = 0.0118
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.990
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 5.033
 SUBAREA LOSS RATE DATA(AMC 11):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                                         SCS
                                        Fp
                                                   αA
      LAND USE
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
 "2 DWELLINGS/ACRE"
                         В
                                 0.06
                                         0.30
                                                  0.700
                                                          56
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.700
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.36
 AVERAGE FLOW DEPTH(FEET) = 0.08 TRAVEL TIME(MIN.) = 0.97
 Tc(MIN.) =
             7. 17
 SUBAREA AREA(ACRES) = 0.06 SUBAREA RUNOFF(CFS) = 0.26 EFFECTIVE AREA(ACRES) = 0.22 AREA-AVERAGED Fm(INCH/HR) =
                                  AREA-AVERAGED Fm(INCH/HR) =
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.55
 TOTAL AREA(ACRES) = 0.2 PEAK FLOW RATE(CFS) = 0.96
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.09 FLOW VELOCITY(FEET/SEC.) = 1.28
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 102.00 = 179.00 FEET.
```

```
FLOW PROCESS FROM NODE 102.00 TO NODE 102.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 7.17
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 5.033
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                   SCS SOIL
                                   Fp
                                                 SCS
                            AREA
                                            Aр
                    GROUP
                          (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESI DENTI AL
 "2 DWELLINGS/ACRE"
                            0.06
                                 0.30
                                           0.700
                                                  56
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.700
 SUBAREA AREA(ACRES) = 0.06
                           SUBAREA RUNOFF(CFS) = 0.26
 EFFECTIVE AREA(ACRES) = 0.28 AREA-AVERAGED Fm(INCH/HR) = 0.18
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.59
 TOTAL AREA(ACRES) = 0.3 PEAK FLOW RATE(CFS) =
                                                  1. 22
******************
 FLOW PROCESS FROM NODE
                    200.00 TO NODE 201.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 ELEVATION DATA: UPSTREAM(FEET) = 193.76 DOWNSTREAM(FEET) = 191.97
 Tc = K^*[(LENGTH^{**} 3.00)/(ELEVATION CHANGE)]^{**}0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 6.814
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 5.182
 SUBAREA To AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                   SCS SOLL
                            ARFA
                                                 SCS
                                   Fp
                                           Aр
                                                     Tc
     LAND USE
                    GROUP
                          (ACRES)
                                 (INCH/HR)
                                         (DECIMAL) CN
                                                     (MIN.)
 PUBLIC PARK
                     В
                            0.04
                                           0.850
                                                  56
                                                      6.81
                                    0.30
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
 SUBAREA RUNOFF(CFS) = 0.18
 TOTAL AREA(ACRES) =
                    0.04
                         PEAK FLOW RATE(CFS) = 0.18
*******************
 FLOW PROCESS FROM NODE 201.00 TO NODE 202.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 191.97 DOWNSTREAM(FEET) =
 CHANNEL LENGTH THRU SUBAREA(FEET) = 173.00 CHANNEL SLOPE = 0.0042
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.990
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.051
 SUBAREA LOSS RATE DATA(AMC II):
```

```
DEVELOPMENT TYPE/ SCS SOIL AREA Fp
                                                     SCS
                                               Aр
                     GROUP
                            (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESI DENTI AL
 "5-7 DWELLINGS/ACRE"
                      В
                               0. 25 0. 30
                                             0.500
                                                      56
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.500
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 0.79
 AVERAGE FLOW DEPTH(FEET) = 0.09 TRAVEL TIME(MIN.) = 3.66
 Tc(MIN.) =
            10.47
 SUBAREA AREA(ACRES) = 0.25 SUBAREA RUNOFF(CFS) = 0.88

EFFECTIVE AREA(ACRES) = 0.29 AREA-AVERAGED Fm(INCH/HR) = 0.16
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.55
 TOTAL AREA(ACRES) = 0.3 PEAK FLOW RATE(CFS) =
                                                         1.01
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.10 FLOW VELOCITY(FEET/SEC.) = 0.94
 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 202.00 = 273.00 FEET.
*******************
 FLOW PROCESS FROM NODE 202.00 TO NODE 202.00 LS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 10.47
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.051
 SUBAREA LOSS RATE DATA(AMC 11):
  DEVELOPMENT TYPE/
                   SCS SOLL AREA
                                    Fp
                                               Ар
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESI DENTI AL
 "5-7 DWELLINGS/ACRE" B
                               0. 25 0. 30
                                             0.500
                                                      56
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.500
 SUBAREA AREA(ACRES) = 0.25 SUBAREA RUNOFF(CFS) = 0.88 EFFECTIVE AREA(ACRES) = 0.54 AREA-AVERAGED Fm(INCH/HR) = 0.16
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.53
 TOTAL AREA(ACRES) = 0.5 PEAK FLOW RATE(CFS) = 1.89
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 0.5 TC(MIN.) = 10.47
EFFECTIVE AREA(ACRES) = 0.54 AREA-AVERAGED Fm(INCH/HR) = 0.16
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.526
 PEAK FLOW RATE(CFS) = 1.89
______
_____
```

END OF RATIONAL METHOD ANALYSIS

_

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2011 Advanced Engineering Software (aes) Ver. 18.0 Release Date: 07/01/2011 License ID 1499

```
******************** DESCRIPTION OF STUDY **************
* MCDONALD'S SANTA ANA
* PROPOSED 100 YEAR
* KIMLEY-HORN & ASSOCIATES
 FILE NAME: MCD100PR. DAT
 TIME/DATE OF STUDY: 11:42 06/29/2023
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
               --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 100.00
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 8.00
 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO
                 STREET-CROSSFALL:
                                CURB GUTTER-GEOMETRIES:
                                                     MANNI NG
   WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP
                                                HIKE FACTOR
                 SIDE / SIDE/ WAY (FT)
                                      (FT) (FT) (FT)
NO.
    (FT)
        (FT)
                                                      (n)
30 0
           20 0
                 1
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 0.5 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE. *
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
**************
 FLOW PROCESS FROM NODE
                     200.00 TO NODE
                                   201.00 IS CODE = 21
```

```
>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 ELEVATION DATA: UPSTREAM(FEET) = 194.10 DOWNSTREAM(FEET) = 192.33
 Tc = K^*[(LENGTH^{**} 3.00)/(ELEVATION CHANGE)]^{**}0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 6.124
 SUBAREA To AND LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL
                                                     SCS Tc
                                       Fp
                             (ACRES) (INCH/HR)
                                              (DECIMAL) CN (MIN.)
     LAND USE
                      GROUP
                                0.09
 CONDOMI NI UMS
                        В
                                       0.30
                                                0.350 76 5.09
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.350
 SUBAREA RUNOFF (CFS) = 0.49
 TOTAL AREA(ACRES) = 0.09 PEAK FLOW RATE(CFS) = 0.49
******************
FLOW PROCESS FROM NODE 201.00 TO NODE 202.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 192.33 DOWNSTREAM(FEET) = 192.24
 CHANNEL LENGTH THRU SUBAREA(FEET) = 20.00 CHANNEL SLOPE = 0.0045
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.990
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 5.867
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                       Fp
                                                       SCS
                                                 Aр
     LAND USE
                      GROUP
                             (ACRES)
                                     (INCH/HR) (DECIMAL) CN
 CONDOMI NI UMS
                        В
                               0.03
                                     0.30
                                                        76
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.350
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 0.84
 AVERAGE FLOW DEPTH(FEET) = 0.08 TRAVEL TIME(MIN.) = 0.40
 Tc(MIN.) =
            5.49
 SUBAREA AREA(ACRES) = 0.03 SUBAREA RUNOFF(CFS) = 0.13 EFFECTIVE AREA(ACRES) = 0.12 AREA-AVERAGED Fm(INCH/HR) =
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.35
 TOTAL AREA(ACRES) = 0.1 PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.09 FLOW VELOCITY(FEET/SEC.) = 0.79
 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 202.00 = 120.00 FEET.
****************
 FLOW PROCESS FROM NODE 202.00 TO NODE 202.00 IS CODE = 81
```

```
>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) =
                  5.49
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 5.867
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/
                 SCS SOLL AREA
                                   Fp
                                          qА
                                                SCS
     LAND USE
                    GROUP
                          (ACRES) (INCH/HR)
                                         (DECIMAL) CN
 CONDOMI NI UMS
                           0.03
                                 0.30
                                         0.350
                     В
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.350
 SUBAREA AREA(ACRES) = 0.03
                          SUBAREA RUNOFF (CFS) = 0.13
 EFFECTIVE AREA(ACRÉS) = 0.14 AREA-AVERAGED Fm(INCH/HR) = 0.11 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.35
 TOTAL AREA(ACRES) = 0.1 PEAK FLOW RATE(CFS) =
****************
 FLOW PROCESS FROM NODE 202.00 TO NODE 302.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 189.46 DOWNSTREAM(FEET) = 187.98
 FLOW LENGTH(FEET) = 137.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 9.0 INCH PIPE IS 4.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.66
 ESTIMATED PIPE DIAMETER(INCH) =
                          9.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 0.73
 PIPE TRAVEL TIME(MIN.) = 0.62 Tc(MIN.) =
                                    6. 11
 LONGEST FLOWPATH FROM NODE 200.00 TO NODE
                                     302.00 = 257.00 FEET.
***************
 FLOW PROCESS FROM NODE 302.00 TO NODE 302.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION (MIN.) = 6.11
 RAINFALL INTENSITY(INCH/HR) =
 AREA-AVERAGED Fm(INCH/HR) = 0.11
 AREA-AVERAGED Fp(INCH/HR) = 0.30
 AREA-AVERAGED Ap = 0.35
 EFFECTIVE STREAM AREA(ACRES) = 0.14
 TOTAL STREAM AREA(ACRES) = 0.14
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.73
********************
 FLOW PROCESS FROM NODE 400.00 TO NODE 401.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
```

```
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 ELEVATION DATA: UPSTREAM(FEET) = 193.37 DOWNSTREAM(FEET) = 191.94
 Tc = K^*[(LENGTH^{**} 3.00)/(ELEVATION CHANGE)]^{**}0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 5.717
 SUBAREA To AND LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                     Fp
                                             qА
                                                    SCS
                                                       Tc
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESI DENTI AL
 "5-7 DWELLINGS/ACRE" B
                              0.08 0.30
                                             0.500 76
                                                         5.74
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.500
 SUBAREA RUNOFF (CFS) = 0.40
 TOTAL AREA(ACRES) = 0.08
                           PEAK FLOW RATE(CFS) = 0.40
********************
 FLOW PROCESS FROM NODE 401.00 TO NODE 402.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 191.94 DOWNSTREAM(FEET) =
                                                      191.63
 CHANNEL LENGTH THRU SUBAREA(FEET) = 35.00 CHANNEL SLOPE = 0.0089
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.990
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 5.413
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                                    SCS
                                     Fp
                                              Дp
     LAND USE
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 RESI DENTI AL
 "5-7 DWELLINGS/ACRE"
                              0.05
                                  0.30
                                                    76
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.500
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.02
 AVERAGE FLOW DEPTH(FEET) = 0.07 TRAVEL TIME(MIN.) = 0.57
 Tc(MIN.) =
            6.31
 SUBAREA AREA(ACRES) = 0.05 SUBAREA RUNOFF(CFS) = 0.24 EFFECTIVE AREA(ACRES) = 0.13 AREA-AVERAGED Fm(INCH/HR) = 0.15
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.50
 TOTAL AREA(ACRES) = 0.1 PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.08 FLOW VELOCITY(FEET/SEC.) = 0.98
 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 402.00 = 135.00 FEET.
****************
 FLOW PROCESS FROM NODE 402.00 TO NODE 402.00 IS CODE = 81
______
```

```
>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 6.31
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 5.413
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/
                 SCS SOIL AREA Fp
                                       Ар
                                                  SCS
                   GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESI DENTI AL
 "5-7 DWELLINGS/ACRE" B
                             0.05 0.30
                                          0.500
                                                   76
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.500
 SUBAREA AREA(ACRES) = 0.05 SUBAREA RUNOFF(CFS) = 0.24 EFFECTIVE AREA(ACRES) = 0.18 AREA-AVERAGED Fm(INCH/HR) = 0.15
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.50
 TOTAL AREA(ACRES) = 0.2 PEAK FLOW RATE(CFS) =
********************
 FLOW PROCESS FROM NODE 402.00 TO NODE 302.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 189.32 DOWNSTREAM(FEET) = 187.98
 FLOW LENGTH(FEET) = 134.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 9.0 INCH PIPE IS 4.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.72
 ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                 0.85
 PIPE TRAVEL TIME(MIN.) = 0.60 Tc(MIN.) =
                                      6. 92
 LONGEST FLOWPATH FROM NODE 400.00 TO NODE
                                      302.00 =
                                                269.00 FEET.
*******************
 FLOW PROCESS FROM NODE 302.00 \text{ TO NODE} 302.00 \text{ IS CODE} = 1
   -----
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<< <
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 6.92
 RAINFALL INTENSITY(INCH/HR) =
                          5. 14
 AREA-AVERAGED Fm(INCH/HR) = 0.15
 AREA-AVERAGED Fp(INCH/HR) = 0.30
 AREA-AVERAGED Ap = 0.50
 EFFECTIVE STREAM AREA(ACRES) =
 TOTAL STREAM AREA(ACRES) = 0.18
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.85
 ** CONFLUENCE DATA **
  STREAM
           Q Tc Intensity Fp(Fm)
                                       Aр
                                           Аe
                                                  HEADWATER
  NUMBER
          (CFS) (MIN.) (INCH/HR) (INCH/HR)
                                           (ACRES)
                                                   NODE
```

```
      0. 73
      6. 11
      5. 516
      0. 30( 0. 11) 0. 35
      0. 1
      200. 00

      0. 85
      6. 92
      5. 138
      0. 30( 0. 15) 0. 50
      0. 2
      400. 00

 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
  STREAM Q Tc Intensity Fp(Fm) Ap Ae
                                                        HEADWATER
            (CFS) (MIN.) (INCH/HR) (INCH/HR)
  NUMBER
                                                  (ACRES)
                                                          NODE
            1. 54 6. 11 5. 516 0. 30(0. 13) 0. 43 0. 3
     1
                                                             200.00
                           5. 138 0. 30(0. 13) 0. 43 0. 3
             1.53
                    6. 92
                                                             400.00
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 1.54 Tc(MIN.) = 6.11

EFFECTIVE AREA(ACRES) = 0.30 AREA-AVERAGED Fm(INCH/HR) = 0.13

AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.43
 TOTAL AREA(ACRES) = 0.3
 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 302.00 = 269.00 FEET.
*******************
 FLOW PROCESS FROM NODE 302.00 TO NODE 304.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 187.98 DOWNSTREAM(FEET) = 187.64
 FLOW LENGTH(FEET) = 33.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 9.0 INCH PIPE IS 6.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.21
 ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 1.54
PIPE TRAVEL TIME(MIN.) = 0.13 Tc(MIN.) = 6.24
 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 304.00 = 302.00 FEET.
******************
 FLOW PROCESS FROM NODE 304.00 TO NODE 304.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 6.24
 RAINFALL INTENSITY(INCH/HR) = 5.45
 AREA-AVERAGED Fm(INCH/HR) = 0.13
 AREA-AVERAGED Fp(INCH/HR) = 0.30
 AREA-AVERAGED Ap = 0.43
 EFFECTIVE STREAM AREA(ACRES) = 0.30
 TOTAL STREAM AREA(ACRES) = 0.32
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.54
```

```
FLOW PROCESS FROM NODE 300.00 TO NODE 301.00 IS CODE = 22
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>>>USE SPECIFIED TC VALUE FOR INITIAL SUBAREA<<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 33.00
 USER SPECIFIED Tc(MIN.) = 5.000
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 6.187
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                     Fp
                                              Aр
                                                    SCS
     LAND USE
                     GROUP
                           (ACRES)
                                   (INCH/HR)
                                            (DECIMAL) CN
 COMMERCI AL
                       В
                              0.09
                                            0.100
                                                    76
                                  0.30
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA RUNOFF (CFS) = 0.50
 TOTAL AREA(ACRES) = 0.09 PEAK FLOW RATE(CFS) = 0.50
*******************
 FLOW PROCESS FROM NODE 301.00 TO NODE 304.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 193.00 DOWNSTREAM(FEET) = 191.16
 CHANNEL LENGTH THRU SUBAREA(FEET) = 156.00 CHANNEL SLOPE = 0.0118
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.990
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 5.103
 SUBAREA LOSS RATE DATA(AMC III):
                                                    SCS
  DEVELOPMENT TYPE/ SCS SOIL
                             AREA
                                     Fp
                                              Дp
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 APARTMENTS
                      В
                              0. 21
                                  0.30
                                             0.200
                                                    76
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.30
 AVERAGE FLOW DEPTH(FEET) = 0.09 TRAVEL TIME(MIN.) = 2.00
 Tc(MIN.) =
            7.00
 SUBAREA AREA(ACRES) = 0.21 SUBAREA RUNOFF(CFS) = 0.95
EFFECTIVE AREA(ACRES) = 0.30 AREA-AVERAGED Fm(INCH/HR) = 0.05
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.17
 TOTAL AREA(ACRES) = 0.3 PEAK FLOW RATE(CFS) = 1.36
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.10 FLOW VELOCITY(FEET/SEC.) = 1.47
 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 304.00 = 189.00 FEET.
 ********************
 FLOW PROCESS FROM NODE 304.00 TO NODE 304.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
```

```
______
 MAINLINE Tc(MIN.) =
                     7.00
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 5.103
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/
                      SCS SOIL AREA
                                                        SCS
                                        Fp
                                                  Дþ
                       GROUP
                              (ACRES)
                                      (INCH/HR)
                                               (DECIMAL) CN
      LAND USE
 APARTMENTS
                         В
                                0. 21
                                      0.30
                                                0. 200
                                                         76
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 0.21 SUBAREA RUNOFF(CFS) = 0.95
 EFFECTIVE AREA(ACRES) = 0.51 AREA-AVERAGED Fm(INCH/HR) = 0.05
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.18
 TOTAL AREA(ACRES) = 0.5 PEAK FLOW RATE(CFS) =
******************
 FLOW PROCESS FROM NODE
                        304.00 TO NODE
                                       304.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.00
 RAINFALL INTENSITY(INCH/HR) =
 AREA-AVERAGED Fm(INCH/HR) = 0.05
 AREA-AVERAGED Fp(INCH/HR) = 0.30
 AREA-AVERAGED Ap = 0.18
 EFFECTIVE STREAM AREA(ACRES) =
 TOTAL STREAM AREA(ACRES) = 0.51
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                    2.32
 ** CONFLUENCE DATA **
  STREAM 0
                  Tc Intensity Fp(Fm)
                                            Αp
                                                      HEADWATER
                                                 Аe
            (CFS) (MIN.) (INCH/HR) (INCH/HR)
  NUMBER
                                                (ACRES)
                                                         NODE
                                               0.3
            1. 54 6. 24
     1
                          5. 449 0. 30(0. 13) 0. 43
                                                           200.00
            1.53
                   7.05
                          5.083 0.30(0.13) 0.43
                                                   0.3
     1
                                                           400.00
                                               0.5
     2
            2. 32
                   7. 00 5. 103 0. 30(0.05) 0. 18
                                                           300.00
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
  STRFAM
                   Tc
                      Intensity Fp(Fm)
                                           αA
                                                 Аe
                                                      HEADWATER
            0
  NUMBER
            (CFS) (MIN.) (INCH/HR) (INCH/HR)
                                                (ACRES)
                                                         NODE
                 6. 24
                          5. 449 0. 30(0.08) 0. 28
5. 103 0. 30(0.08) 0. 28
                                                0. 8
0. 8
            3.74
     1
                                                           200.00
            3.85
                   7.00
                                                           300.00
     2
                                                  0.8
            3.84
                   7.05
                          5. 083 0. 30 (0. 08) 0. 28
                                                           400.00
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 3.85 Tc(MIN.) = 7.00 EFFECTIVE AREA(ACRES) = 0.83 AREA-AVERAGED Fm(INCH/HR) = 0.08
```

```
AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.28
 TOTAL AREA(ACRES) =
                   0.8
 LONGEST FLOWPATH FROM NODE
                       400.00 TO NODE
                                     304.00 =
                                              302.00 FEET.
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES)
                      0.8 TC(MIN.) =
                                      7.00
 EFFECTIVE AREA(ACRES) =
                      0.83 AREA-AVERAGED Fm(INCH/HR) = 0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.279
 PEAK FLOW RATE(CFS)
                      3.85
                =
 ** PEAK FLOW RATE TABLE **
                    Intensity
                                          Аe
                                                HEADWATER
  STREAM
           Q
                Tc
                            Fp(Fm)
                                     Aр
  NUMBER
          (CFS)
               (MIN.) (INCH/HR) (INCH/HR)
                                         (ACRES)
                                                 NODE
           3.74
                6. 24
                      5.449 0.30(0.08) 0.28
    1
                                             0.8
                                                   200.00
                      5. 103 0. 30 (0. 08) 0. 28
    2
           3.85
                 7.00
                                             0.8
                                                   300.00
    3
           3.84
                 7.05
                      5.083 0.30(0.08) 0.28
                                             0.8
                                                   400.00
______
______
```

♠

APPENDIX F: 2-YEAR 24-HOUR

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2011 Advanced Engineering Software (aes) Ver. 18.0 Release Date: 07/01/2011 License ID 1499

```
* MCDONALDS SANTA ANA
* 2-YEAR EXISTING
* KIMLEY-HORN
 FILE NAME: MCD2E. DAT
 TIME/DATE OF STUDY: 11:50 06/29/2023
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
              --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) =
 SPECIFIED MINIMUM PIPE SIZE(INCH) =
                             8.00
 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) I ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO
                STREET-CROSSFALL:
                              CURB GUTTER-GEOMETRIES:
                                                  MANNI NG
   WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
                SIDE / SIDE/ WAY (FT)
                                    (FT) (FT) (FT)
NO.
    (FT)
        (FT)
                                                    (n)
30 0
          20 0
                1
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
  1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
  2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE. *
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
****************
 FLOW PROCESS FROM NODE 100.00 TO NODE
                                101.00 IS CODE = 21
```

```
>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 ELEVATION DATA: UPSTREAM(FEET) = 193.49 DOWNSTREAM(FEET) = 192.52
 Tc = K^*[(LENGTH^{**} 3.00)/(ELEVATION CHANGE)]^{**}0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
     2 YEAR RAINFALL INTENSITY(INCH/HR) = 2.000
 SUBAREA To AND LOSS RATE DATA(AMC | ):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                                       SCS Tc
                                       Fp
                                                  ДA
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
      LAND USE
 RESI DENTI AL
 "5-7 DWELLINGS/ACRE" B
                             0. 16 0. 30
                                                          36
                                                               6.20
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.500
 SUBAREA RUNOFF (CFS) = 0.27
 TOTAL AREA(ACRÈS) = 0.16 PEAK FLOW RATE(CFS) = 0.27
*******************
 FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 192.52 DOWNSTREAM(FEET) = 191.59 CHANNEL LENGTH THRU SUBAREA(FEET) = 79.00 CHANNEL SLOPE = 0.0118
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.990
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
     2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.787
 SUBAREA LOSS RATE DATA(AMC | ):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                                         SCS
                                        Fp
      LAND USE
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
 "2 DWELLINGS/ACRE"
                         В
                                 0.06
                                         0.30
                                                  0.700
                                                          36
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.700
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 0.98
 AVERAGE FLOW DEPTH(FEET) = 0.06 TRAVEL TIME(MIN.) = 1.35
 Tc(MIN.) =
             7.55
 SUBAREA AREA(ACRES) = 0.06 SUBAREA RUNOFF(CFS) = 0.09 EFFECTIVE AREA(ACRES) = 0.22 AREA-AVERAGED Fm(INCH/HR) =
                                  AREA-AVERAGED Fm(INCH/HR) = 0.17
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.55
 TOTAL AREA(ACRES) = 0.2 PEAK FLOW RATE(CFS) = 0.32
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.06 FLOW VELOCITY(FEET/SEC.) = 1.01
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 102.00 = 179.00 FEET.
```

```
FLOW PROCESS FROM NODE 102.00 TO NODE 102.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 7.55
    2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.787
 SUBAREA LOSS RATE DATA(AMC | ):
  DEVELOPMENT TYPE/
                  SCS SOIL
                                  Fp
                                               SCS
                           AREA
                   GROUP
                                (INCH/HR)
     LAND USE
                         (ACRES)
                                        (DECIMAL) CN
 RESI DENTI AL
 "2 DWELLINGS/ACRE"
                           0.06
                                0.30
                                         0.700
                                                36
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.700
 SUBAREA AREA(ACRES) = 0.06
                          SUBAREA RUNOFF(CFS) = 0.09
 EFFECTIVE AREA(ACRES) = 0.28 AREA-AVERAGED Fm(INCH/HR) = 0.18
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.59
 TOTAL AREA(ACRES) =
                0.3
                          PEAK FLOW RATE(CFS) =
                                                0.41
******************
 FLOW PROCESS FROM NODE
                    200.00 TO NODE
                                 201.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 ELEVATION DATA: UPSTREAM(FEET) = 193.76 DOWNSTREAM(FEET) = 191.97
 Tc = K^*[(LENGTH^{**} 3.00)/(ELEVATION CHANGE)]^{**}0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
    2 YEAR RAINFALL INTENSITY(INCH/HR) =
 SUBAREA To AND LOSS RATE DATA(AMC | ):
  DEVELOPMENT TYPE/
                  SCS SOLL
                           ARFA
                                               SCS
                                  Fp
                                          Aр
                                                   Tc
     LAND USE
                   GROUP
                         (ACRES)
                                (INCH/HR)
                                        (DECIMAL) CN
                                                   (MIN.)
 PUBLIC PARK
                     В
                                                    6.81
                           0.04
                                  0.30
                                         0.850
                                                36
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
 SUBAREA RUNOFF (CFS) = 0.06
 TOTAL AREA(ACRES) =
                   0.04
                        PEAK FLOW RATE(CFS) = 0.06
*******************
 FLOW PROCESS FROM NODE 201.00 TO NODE 202.00 IS CODE = 51
______
 ** WARNING: Computed Flowrate is less than 0.1 cfs,
           Routing Algorithm is UNAVAILABLE.
*******************
FLOW PROCESS FROM NODE 202.00 TO NODE 202.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 6.81
```

```
2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.895
 SUBAREA LOSS RATE DATA(AMC | ):
  DEVELOPMENT TYPE/
                           AREA
                                  Fp
                  SCS SOLL
                                          Дp
                                               SCS
                   GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESI DENTI AL
 "5-7 DWELLINGS/ACRE"
                     В
                           0. 25 0. 30
                                         0.500
                                                36
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.500
 SUBAREA AREA(ACRES) = 0.25
                       SUBAREA RUNOFF(CFS) = 0.39
 EFFECTIVE AREA(ACRES) = 0.29 AREA-AVERAGED Fm(INCH/HR) = 0.16
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.55
 TOTAL AREA(ACRES) = 0.3 PEAK FLOW RATE(CFS) =
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) =
                      0.3 TC(MIN.) =
                                       6.81
 EFFECTIVE AREA(ACRES) = 0.29 AREA-AVERAGED Fm(INCH/HR) = 0.16
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.548
 PEAK FLOW RATE(CFS) = 0.45
______
______
```

♠

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2011 Advanced Engineering Software (aes) Ver. 18.0 Release Date: 07/01/2011 License ID 1499

```
******************** DESCRIPTION OF STUDY **************
* MCDONALD'S SANTA ANA
* PROPOSED 2 YEAR
* KIMLEY-HORN & ASSOCIATES
 FILE NAME: MCD2PR. DAT
 TIME/DATE OF STUDY: 11:38 06/29/2023
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
               --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) =
 SPECIFIED MINIMUM PIPE SIZE(INCH) =
                               8.00
 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) I ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO
                 STREET-CROSSFALL:
                                CURB GUTTER-GEOMETRIES:
                                                     MANNI NG
   WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
                 SIDE / SIDE/ WAY (FT)
                                      (FT) (FT) (FT)
NO.
    (FT)
        (FT)
                                                       (n)
30 0
           20 0
                 1
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 0.5 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE. *
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
*****************
 FLOW PROCESS FROM NODE
                     200.00 TO NODE
                                   201.00 IS CODE = 21
```

```
>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 ELEVATION DATA: UPSTREAM(FEET) = 194.10 DOWNSTREAM(FEET) = 192.33
 Tc = K^*[(LENGTH^{**} 3.00)/(ELEVATION CHANGE)]^{**}0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
     2 YEAR RAINFALL INTENSITY(INCH/HR) = 2.241
 SUBAREA To AND LOSS RATE DATA(AMC | ):
  DEVELOPMENT TYPE/
                     SCS SOLL
                              AREA
                                                     SCS Tc
                                      Fp
                             (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
                      GROUP
                               0.09
                                              0. 350
 CONDOMI NI UMS
                        В
                                       0.30
                                                       36 5.09
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.350
 SUBAREA RUNOFF (CFS) = 0.17
 TOTAL AREA(ACRES) = 0.09 PEAK FLOW RATE(CFS) = 0.17
******************
FLOW PROCESS FROM NODE 201.00 TO NODE 202.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 192.33 DOWNSTREAM(FEET) = 192.24
 CHANNEL LENGTH THRU SUBAREA(FEET) = 20.00 CHANNEL SLOPE = 0.0045
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.990
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
     2 YEAR RAINFALL INTENSITY(INCH/HR) = 2.115
 SUBAREA LOSS RATE DATA(AMC | ):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                       Fp
                                                       SCS
                                                 Aр
     LAND USE
                      GROUP
                             (ACRES)
                                     (INCH/HR) (DECIMAL) CN
 CONDOMI NI UMS
                        В
                               0.03
                                     0.30
                                                        36
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.350
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 0.62
 AVERAGE FLOW DEPTH(FEET) = 0.06 TRAVEL TIME(MIN.) = 0.54
 Tc(MIN.) =
             5.63
 SUBAREA AREA(ACRES) = 0.03 SUBAREA RUNOFF(CFS) = 0.05
EFFECTIVE AREA(ACRES) = 0.12 AREA-AVERAGED Fm(INCH/HR) =
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.35
 TOTAL AREA(ACRES) = 0.1 PEAK FLOW RATE(CFS) =
                                                          0.21
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.06 FLOW VELOCITY(FEET/SEC.) = 0.61
 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 202.00 = 120.00 FEET.
****************
 FLOW PROCESS FROM NODE 202.00 TO NODE 202.00 IS CODE = 81
```

```
>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) =
                   5.63
    2 YEAR RAINFALL INTENSITY(INCH/HR) = 2.115
 SUBAREA LOSS RATE DATA(AMC | ):
  DEVELOPMENT TYPE/
                 SCS SOIL AREA
                                    Fp
                                           Аp
                                                  SCS
     LAND USE
                    GROUP
                          (ACRES) (INCH/HR)
                                          (DECIMAL) CN
 CONDOMI NI UMS
                           0. 03 0. 30
                                          0.350
                      В
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.350
 SUBAREA AREA(ACRES) = 0.03 SUBAREA RUNOFF(CFS) = 0.05
 EFFECTIVE AREA(ACRÉS) = 0.14 AREA-AVERAGED Fm(INCH/HR) = 0.11 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.35
 TOTAL AREA(ACRES) = 0.1 PEAK FLOW RATE(CFS) =
****************
 FLOW PROCESS FROM NODE 202.00 TO NODE 302.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 189.46 DOWNSTREAM(FEET) = 187.98
 FLOW LENGTH(FEET) = 137.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 8.000
 DEPTH OF FLOW IN 8.0 INCH PIPE IS 2.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 2.77
 ESTIMATED PIPE DIAMETER(INCH) = 8.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                  0. 25
 PIPE TRAVEL TIME(MIN.) = 0.82 Tc(MIN.) = 6.45
 LONGEST FLOWPATH FROM NODE 200.00 TO NODE
                                      302.00 =
                                                257.00 FEET.
******************
 FLOW PROCESS FROM NODE 302.00 \text{ TO NODE} 302.00 \text{ IS CODE} = 1
   _____
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 6.45
 RAINFALL INTENSITY(INCH/HR) = 1.96
 AREA-AVERAGED Fm(INCH/HR) = 0.11
 AREA-AVERAGED Fp(INCH/HR) = 0.30
 AREA-AVERAGED Ap = 0.35
 EFFECTIVE STREAM AREA(ACRES) = 0.14
 TOTAL STREAM AREA(ACRES) = 0.14
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
 FLOW PROCESS FROM NODE 400.00 TO NODE 401.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
```

```
>>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 ELEVATION DATA: UPSTREAM(FEET) = 193.37 DOWNSTREAM(FEET) = 191.94
 Tc = K^*[(LENGTH^{**} 3.00)/(ELEVATION CHANGE)]^{**}0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
     2 YEAR RAINFALL INTENSITY(INCH/HR) = 2.091
 SUBAREA To AND LOSS RATE DATA(AMC | ):
  DEVELOPMENT TYPE/
                     SCS SOLL
                              ARFA
                                      Fp
                                               Aр
                                                     SCS
                                                         Tc
     LAND USE
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
 RESIDENTIAL
 "5-7 DWELLINGS/ACRE"
                       В
                               0.08
                                      0.30
                                              0.500
                                                      36
                                                           5.74
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.500
 SUBAREA RUNOFF (CFS) = 0.14
 TOTAL AREA(ACRES) = 0.08 PEAK FLOW RATE(CFS) = 0.14
******************
FLOW PROCESS FROM NODE 401.00 TO NODE 402.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 191.94 DOWNSTREAM(FEET) = 191.63
 CHANNEL LENGTH THRU SUBAREA(FEET) = 35.00 CHANNEL SLOPE = 0.0089
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.990
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
     2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.946
 SUBAREA LOSS RATE DATA(AMC | ):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                      Fp
                                                     SCS
                                               Дp
     LAND USE
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 RESI DENTI AL
 "5-7 DWELLINGS/ACRE"
                               0.05 0.30
                       В
                                              0.500
                                                      36
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.500
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 0.76
 AVERAGE FLOW DEPTH(FEET) = 0.05 TRAVEL TIME(MIN.) = 0.77
 Tc(MIN.) =
            6. 51
 SUBAREA AREA(ACRES) = 0.05 SUBAREA RUNOFF(CFS) = 0.08
 EFFECTIVE AREA(ACRES) = 0.13
                               AREA-AVERAGED Fm(INCH/HR) =
                                                         0.15
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.50
 TOTAL AREA(ACRES) = 0.1 PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.05 FLOW VELOCITY(FEET/SEC.) = 0.82
 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 402.00 = 135.00 FEET.
*******************
 FLOW PROCESS FROM NODE 402.00 TO NODE 402.00 IS CODE = 81
```

```
>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 6.51
    2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.946
 SUBAREA LOSS RATE DATA(AMC | ):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                           ДÞ
                                                 SCS
     LAND USE
                   GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 RESI DENTI AL
 "5-7 DWELLINGS/ACRE"
                    В
                           0.05 0.30
                                         0.500
                                                  36
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.500
 SUBAREA AREA(ACRES) = 0.05 SUBAREA RUNOFF(CFS) =
 EFFECTIVE AREA(ACRES) = 0.18 AREA-AVERAGED Fm(INCH/HR) = 0.15
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.50
 TOTAL AREA(ACRES) = 0.2 PEAK FLOW RATE(CFS) =
 FLOW PROCESS FROM NODE 402.00 TO NODE 302.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 189.32 DOWNSTREAM(FEET) = 187.98
 FLOW LENGTH(FEET) = 134.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 8.000
 DEPTH OF FLOW IN 8.0 INCH PIPE IS 2.7 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 2.82
                         8.00
 ESTIMATED PIPE DIAMETER(INCH) =
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 0.29
 PIPE TRAVEL TIME(MIN.) = 0.79 Tc(MIN.) =
                                     7.30
 LONGEST FLOWPATH FROM NODE 400.00 TO NODE
                                     302.00 = 269.00 FEET.
*****************
 FLOW PROCESS FROM NODE 302.00 TO NODE 302.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<< <
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.30
 RAINFALL INTENSITY(INCH/HR) = 1.82
 AREA-AVERAGED Fm(INCH/HR) = 0.15
 AREA-AVERAGED Fp(INCH/HR) = 0.30
 AREA-AVERAGED Ap = 0.50
 EFFECTIVE STREAM AREA(ACRES) = 0.18
 TOTAL STREAM AREA(ACRES) = 0.18
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.29
```

** CONFLUENCE DATA **

STREAM NUMBER 1 2	Q (CFS) (0. 25 0. 29	Tc (MIN.) 6.45 7.30	Intensity (INCH/HR) 1.955 1.822	Fp(Fm) (INCH/HR) 0.30(0.11) 0.30(0.15)	Ap 0. 35 0. 50	Ae (ACRES) 0.1 0.2	HEADWATER NODE 200.00 400.00
RAINFALL IN CONFLUENCE				ENTRATION RAG	TIO		
NUMBER 1	Q (CFS) (0.53	Tc (MIN.) 6.45	Intensity (INCH/HR) 1.955	Fp(Fm) (INCH/HR) 0.30(0.13) 0.30(0.13)	0. 43	(ACRES) 0.3	NODE 200. 00
EFFECTIVE A AREA-AVERAG TOTAL AREA(ATE(CFS) REA(ACRES ED Fp(INC ACRES) =	= S) = CH/HR)	0. 53 0. 30 = 0. 30	Tc(MIN.) = AREA-AVERAGE AREA-AVERAGE	GED Fm D Ap =	(INCH/HR) 0.43	
				O TO NODE			
************ FLOW PROCES			302.00 TO	**************************************	. 00 IS	CODE =	31
>>>>USING	COMPUTER-	-ESTIMA	VEL TIME TED PIPES	THRU SUBAREA IZE (NON-PRE	<<<< SSURE I	-LOW)<<<<	<
FLOW LENGTH ESTIMATED P DEPTH OF FL PIPE-FLOW V ESTIMATED P PIPE-FLOW(C PIPE TRAVEL	ATA: UPST (FEET) = IPE DIAME OW IN & ELOCITY(F IPE DIAME FS) = . TIME(MIN	TREAM(F 33. ETER(IN B.O INC FEET/SE ETER(IN O.5	EET) = 00 MANN ICH) INCRE IH PIPE IS IC.) = 3 ICH) = 8 3 0.17	TC (MIN.) = 0 TO NODE	STREAM . 013 00 S R OF PI 6. 62	(FEET) =	187. 64
*****	*****	*****	*****	*****	*****	****	*****
FLOW PROCES	S FROM NO)DE 	304.00 TO	NODE 304	.00 IS	CODE =	1
				OR CONFLUENC			
TOTAL NUMBE CONFLUENCE TIME OF CON RAINFALL IN AREA-AVERAG AREA-AVERAG AREA-AVERAG EFFECTIVE S TOTAL STREA	R OF STRE VALUES US CENTRATIO TENSITY(I ED Fm(INO ED Fp(INO ED Ap = TREAM ARE	EAMS = SED FOR DN (MIN. NCH/HR CH/HR) CH/HR) O. 43 EA (ACRE	2 (1 INDEPENDI (1) = 6.6 (2) = 1.9 (3) = 0.13 (4) = 0.30 (5) =	ENT STREAM 62 3 0.30			

```
PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.53
```

```
******************
 FLOW PROCESS FROM NODE 300.00 TO NODE 301.00 IS CODE = 22
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>>>USE SPECIFIED TC VALUE FOR INITIAL SUBAREA<<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 33.00
 USER SPECIFIED Tc(MIN.) = 5.000
    2 YEAR RAINFALL INTENSITY(INCH/HR) = 2.264
 SUBAREA LOSS RATE DATA(AMC | ):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                      Fρ
                                               αA
                                                     SCS
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
                      B 0.09 0.30
                                             0. 100
 COMMERCIAL
                                                      36
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA RUNOFF(CFS) = 0.18
TOTAL AREA(ACRES) = 0.09
                     0.09 PEAK FLOW RATE(CFS) = 0.18
 FLOW PROCESS FROM NODE 301.00 TO NODE 304.00 IS CODE = 51
     ______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
_____
 ELEVATION DATA: UPSTREAM(FEET) = 193.00 DOWNSTREAM(FEET) = 191.16
 CHANNEL LENGTH THRU SUBAREA(FEET) = 156.00 CHANNEL SLOPE = 0.0118
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.990
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
     2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.784
 SUBAREA LOSS RATE DATA(AMC | ):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                                     SCS
     LAND USE
                     GROUP
                            (ACRES)
                                    (INCH/HR)
                                             (DECIMAL) CN
 APARTMENTS
                       В
                              0.21
                                      0.30
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.01
 AVERAGE FLOW DEPTH(FEET) = 0.06 TRAVEL TIME(MIN.) =
 Tc(MIN.) =
            7.57
 SUBAREA AREA(ACRES) = 0.21 SUBAREA RUNOFF(CFS) = 0.33 EFFECTIVE AREA(ACRES) = 0.30 AREA-AVERAGED Fm(INCH/HR) =
                               AREA-AVERAGED Fm(INCH/HR) =
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.17
 TOTAL AREA(ACRES) = 0.3 PEAK FLOW RATE(CFS) = 0.47
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.07 FLOW VELOCITY(FEET/SEC.) = 1.08
 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 304.00 = 189.00 FEET.
```

```
FLOW PROCESS FROM NODE
                      304.00 TO NODE 304.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 7.57
    2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.784
 SUBAREA LOSS RATE DATA(AMC | ):
  DEVELOPMENT TYPE/
                    SCS SOIL
                                                    SCS
                             AREA
                                     Fp
                           (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
                     GROUP
 APARTMENTS
                       В
                              0. 21
                                   0.30
                                             0.200
                                                     36
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 0.21
                            SUBAREA RUNOFF(CFS) =
 EFFECTIVE AREA(ACRES) = 0.51 AREA-AVERAGED Fm(INCH/HR) = 0.05
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.18
 TOTAL AREA(ACRES) = 0.5 PEAK FLOW RATE(CFS) =
********************
 FLOW PROCESS FROM NODE 304.00 TO NODE
                                    304.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.57
 RAINFALL INTENSITY(INCH/HR) =
                          1.78
 AREA-AVERAGED Fm(INCH/HR) = 0.05
 AREA-AVERAGED Fp(INCH/HR) = 0.30
 AREA-AVERAGED Ap = 0.18
 EFFECTIVE STREAM AREA(ACRES) = 0.51
 TOTAL STREAM AREA(ACRES) = 0.51
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
  STREAM
            0
                  Tc
                      Intensity Fp(Fm)
                                              Аe
                                                    HEADWATER
           (CFS) (MIN.) (INCH/HR) (INCH/HR)
                                             (ACRES)
  NUMBER
                                                     NODE
                        1.927 0.30(0.13) 0.43
                                             0.3
    1
           0.53
                6.62
                                                       200.00
           0.53
                  7.46
                        1. 798 0. 30(0. 13) 0. 43
                                                0.3
                                                       400.00
    1
                  7.57
                        1.784 0.30(0.05) 0.18
    2
           0.79
                                                0.5
                                                       300.00
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
  STREAM
            0
                  Tc
                     Intensity Fp(Fm)
                                        αA
                                              Аe
                                                    HEADWATER
  NUMBER
           (CFS)
                (MIN.) (INCH/HR) (INCH/HR)
                                             (ACRES)
                                                     NODE
                6.62
                        1.927 0.30(0.08) 0.28
                                              0.7
    1
           1. 28
                                                       200.00
                  7.46
                        1.798 0.30(0.08) 0.28
    2
           1.32
                                                0.8
                                                       400.00
           1. 32 7. 57 1. 784 0. 30 (0. 08) 0. 28
    3
                                                0.8
                                                       300.00
```

```
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 1.32
                              Tc(MIN.) =
                                           7.46
                       0.82 AREA-AVERAGED Fm(INCH/HR) = 0.08
 EFFECTIVE AREA(ACRES) =
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.28
 TOTAL AREA(ACRES) = 0.8
 LONGEST FLOWPATH FROM NODE
                         400.00 TO NODE
                                        304.00 =
                                                   302.00 FEET.
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES)
                         0.8 \text{ TC}(MIN.) =
                                          7.46
 EFFECTIVE AREA(ACRES) = 0.82 AREA-AVERAGED Fm(INCH/HR)= 0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.280
 PEAK FLOW RATE(CFS) =
                       1. 32
 ** PEAK FLOW RATE TABLE **
  STREAM
            Q
                  Tc
                     Intensity Fp(Fm)
                                         Aр
                                              Аe
                                                    HEADWATER
           (CFS)
                (MIN.) (INCH/HR) (INCH/HR)
  NUMBER
                                             (ACRES)
                                                      NODE
           1.28
                  6.62
                        1. 927 0. 30(0.08) 0. 28
                                                 0.7
    1
                                                        200.00
                        1.798 0.30(0.08) 0.28
    2
           1.32
                  7.46
                                                 0.8
                                                        400.00
    3
                  7.57
                         1.784 0.30(0.08) 0.28
           1.32
                                                 0.8
                                                        300.00
______
```

END OF RATIONAL METHOD ANALYSIS

1

APPENDIX G: DETENTION ROUTING CALUCULATIONS (100 YR)

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2011 Advanced Engineering Software (aes) Ver. 18.0 Release Date: 07/01/2011 License ID 1499

```
* MCDONALDS SANTA ANA
* 100-YEAR EXISTING
* KIMLEY-HORN
 FILE NAME: MCD100E. DAT
 TIME/DATE OF STUDY: 13:51 06/27/2023
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
              --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 100.00
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 8.00
 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO
                STREET-CROSSFALL: CURB GUTTER-GEOMETRIES:
                                                  MANNI NG
   WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
                SIDE / SIDE/ WAY (FT)
                                    (FT) (FT) (FT)
NO.
    (FT)
        (FT)
                                                    (n)
30 0
          20 0
                1
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
  1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
  2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE. *
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
****************
 FLOW PROCESS FROM NODE 100.00 TO NODE
                                 101.00 IS CODE = 21
```

```
>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 ELEVATION DATA: UPSTREAM(FEET) = 193.49 DOWNSTREAM(FEET) = 192.52
 Tc = K^*[(LENGTH^{**} 3.00)/(ELEVATION CHANGE)]^{**}0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 6.203
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 5.468
 SUBAREA To AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                               AREA
                                                        SCS Tc
                                        Fp
                                                  ДA
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
      LAND USE
 RESI DENTI AL
 "5-7 DWELLINGS/ACRE" B
                             0. 16 0. 30
                                                          56
                                                               6.20
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.500
 SUBAREA RUNOFF(CFS) = 0.77
 TOTAL AREA(ACRÈS) = 0.16 PEAK FLOW RATE(CFS) = 0.77
*******************
 FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 192.52 DOWNSTREAM(FEET) = 191.59 CHANNEL LENGTH THRU SUBAREA(FEET) = 79.00 CHANNEL SLOPE = 0.0118
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.990
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 5.033
 SUBAREA LOSS RATE DATA(AMC 11):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                                         SCS
                                        Fp
                                                   αA
      LAND USE
                      GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 RESIDENTIAL
 "2 DWELLINGS/ACRE"
                         В
                                 0.06
                                         0.30
                                                  0.700
                                                          56
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.700
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.36
 AVERAGE FLOW DEPTH(FEET) = 0.08 TRAVEL TIME(MIN.) = 0.97
 Tc(MIN.) =
             7.17
 SUBAREA AREA(ACRES) = 0.06 SUBAREA RUNOFF(CFS) = 0.26 EFFECTIVE AREA(ACRES) = 0.22 AREA-AVERAGED Fm(INCH/HR) =
                                  AREA-AVERAGED Fm(INCH/HR) =
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.55
 TOTAL AREA(ACRES) = 0.2 PEAK FLOW RATE(CFS) = 0.96
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.09 FLOW VELOCITY(FEET/SEC.) = 1.28
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 102.00 = 179.00 FEET.
```

```
FLOW PROCESS FROM NODE 102.00 TO NODE 102.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 7.17
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 5.033
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                   SCS SOIL
                                   Fp
                                                 SCS
                            AREA
                                            Aр
                    GROUP
                          (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESI DENTI AL
 "2 DWELLINGS/ACRE"
                            0.06
                                 0.30
                                           0.700
                                                  56
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.700
 SUBAREA AREA(ACRES) = 0.06
                           SUBAREA RUNOFF(CFS) = 0.26
 EFFECTIVE AREA(ACRES) = 0.28 AREA-AVERAGED Fm(INCH/HR) = 0.18
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.59
 TOTAL AREA(ACRES) = 0.3 PEAK FLOW RATE(CFS) =
                                                  1. 22
******************
 FLOW PROCESS FROM NODE
                    200.00 TO NODE 201.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 ELEVATION DATA: UPSTREAM(FEET) = 193.76 DOWNSTREAM(FEET) = 191.97
 Tc = K^*[(LENGTH^{**} 3.00)/(ELEVATION CHANGE)]^{**}0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 6.814
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 5.182
 SUBAREA To AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                   SCS SOLL
                            ARFA
                                                 SCS
                                   Fp
                                           Aр
                                                     Tc
     LAND USE
                    GROUP
                          (ACRES)
                                 (INCH/HR)
                                         (DECIMAL) CN
                                                     (MIN.)
 PUBLIC PARK
                     В
                            0.04
                                           0.850
                                                  56
                                                      6.81
                                    0.30
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
 SUBAREA RUNOFF(CFS) = 0.18
 TOTAL AREA(ACRES) =
                    0.04
                         PEAK FLOW RATE(CFS) = 0.18
*******************
 FLOW PROCESS FROM NODE 201.00 TO NODE 202.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 191.97 DOWNSTREAM(FEET) =
 CHANNEL LENGTH THRU SUBAREA(FEET) = 173.00 CHANNEL SLOPE = 0.0042
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.990
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.051
 SUBAREA LOSS RATE DATA(AMC II):
```

```
DEVELOPMENT TYPE/ SCS SOIL AREA Fp
                                                     SCS
                                               Aр
                     GROUP
                            (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESI DENTI AL
 "5-7 DWELLINGS/ACRE"
                      В
                               0. 25 0. 30
                                             0.500
                                                      56
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.500
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 0.79
 AVERAGE FLOW DEPTH(FEET) = 0.09 TRAVEL TIME(MIN.) = 3.66
 Tc(MIN.) =
            10.47
 SUBAREA AREA(ACRES) = 0.25 SUBAREA RUNOFF(CFS) = 0.88

EFFECTIVE AREA(ACRES) = 0.29 AREA-AVERAGED Fm(INCH/HR) = 0.16
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.55
 TOTAL AREA(ACRES) = 0.3 PEAK FLOW RATE(CFS) =
                                                         1.01
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.10 FLOW VELOCITY(FEET/SEC.) = 0.94
 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 202.00 = 273.00 FEET.
*******************
 FLOW PROCESS FROM NODE 202.00 TO NODE 202.00 LS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 10.47
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.051
 SUBAREA LOSS RATE DATA(AMC 11):
  DEVELOPMENT TYPE/
                   SCS SOLL AREA
                                    Fp
                                               Ар
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESI DENTI AL
 "5-7 DWELLINGS/ACRE" B
                               0. 25 0. 30
                                             0.500
                                                      56
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.500
 SUBAREA AREA(ACRES) = 0.25 SUBAREA RUNOFF(CFS) = 0.88 EFFECTIVE AREA(ACRES) = 0.54 AREA-AVERAGED Fm(INCH/HR) = 0.16
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.53
 TOTAL AREA(ACRES) = 0.5 PEAK FLOW RATE(CFS) = 1.89
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 0.5 TC(MIN.) = 10.47
EFFECTIVE AREA(ACRES) = 0.54 AREA-AVERAGED Fm(INCH/HR) = 0.16
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.526
 PEAK FLOW RATE(CFS) = 1.89
______
_____
```

_

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION)

(c) Copyright 1983-2011 Advanced Engineering Software (aes) Ver. 18.0 Release Date: 07/01/2011 License ID 1499

```
******************** DESCRIPTION OF STUDY **************
* MCDONALD'S SANTA ANA
* PROPOSED 100 YEAR
* KIMLEY-HORN & ASSOCIATES
 FILE NAME: MCD100PR. DAT
 TIME/DATE OF STUDY: 11:42 06/29/2023
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
               --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 100.00
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 8.00
 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
 *DATA BANK RAINFALL USED*
 *ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO
                 STREET-CROSSFALL:
                                CURB GUTTER-GEOMETRIES:
                                                     MANNI NG
   WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP
                                                HIKE FACTOR
                 SIDE / SIDE/ WAY (FT)
                                      (FT) (FT) (FT)
NO.
    (FT)
        (FT)
                                                       (n)
30 0
           20 0
                 1
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 0.5 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE. *
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
*****************
 FLOW PROCESS FROM NODE
                     200.00 TO NODE
                                   201.00 IS CODE = 21
```

```
>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 ELEVATION DATA: UPSTREAM(FEET) = 194.10 DOWNSTREAM(FEET) = 192.33
 Tc = K^*[(LENGTH^{**} 3.00)/(ELEVATION CHANGE)]^{**}0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 6.124
 SUBAREA To AND LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL
                                                     SCS Tc
                                       Fp
                             (ACRES) (INCH/HR)
                                              (DECIMAL) CN (MIN.)
     LAND USE
                      GROUP
                                0.09
 CONDOMI NI UMS
                        В
                                       0.30
                                                0.350 76 5.09
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.350
 SUBAREA RUNOFF (CFS) = 0.49
 TOTAL AREA(ACRES) = 0.09 PEAK FLOW RATE(CFS) = 0.49
******************
FLOW PROCESS FROM NODE 201.00 TO NODE 202.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 192.33 DOWNSTREAM(FEET) = 192.24
 CHANNEL LENGTH THRU SUBAREA(FEET) = 20.00 CHANNEL SLOPE = 0.0045
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.990
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 5.867
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                       Fp
                                                       SCS
                                                 Aр
     LAND USE
                      GROUP
                             (ACRES)
                                     (INCH/HR) (DECIMAL) CN
 CONDOMI NI UMS
                        В
                               0.03
                                     0.30
                                                        76
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.350
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 0.84
 AVERAGE FLOW DEPTH(FEET) = 0.08 TRAVEL TIME(MIN.) = 0.40
 Tc(MIN.) =
            5.49
 SUBAREA AREA(ACRES) = 0.03 SUBAREA RUNOFF(CFS) = 0.13 EFFECTIVE AREA(ACRES) = 0.12 AREA-AVERAGED Fm(INCH/HR) =
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.35
 TOTAL AREA(ACRES) = 0.1 PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.09 FLOW VELOCITY(FEET/SEC.) = 0.79
 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 202.00 = 120.00 FEET.
****************
 FLOW PROCESS FROM NODE 202.00 TO NODE 202.00 IS CODE = 81
```

```
>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) =
                  5.49
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 5.867
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/
                 SCS SOLL AREA
                                   Fp
                                          qА
                                                SCS
     LAND USE
                    GROUP
                          (ACRES) (INCH/HR)
                                         (DECIMAL) CN
 CONDOMI NI UMS
                           0.03
                                 0.30
                                         0.350
                     В
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.350
 SUBAREA AREA(ACRES) = 0.03
                          SUBAREA RUNOFF (CFS) = 0.13
 EFFECTIVE AREA(ACRÉS) = 0.14 AREA-AVERAGED Fm(INCH/HR) = 0.11 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.35
 TOTAL AREA(ACRES) = 0.1 PEAK FLOW RATE(CFS) =
****************
 FLOW PROCESS FROM NODE 202.00 TO NODE 302.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 189.46 DOWNSTREAM(FEET) = 187.98
 FLOW LENGTH(FEET) = 137.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 9.0 INCH PIPE IS 4.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.66
 ESTIMATED PIPE DIAMETER(INCH) =
                          9.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 0.73
 PIPE TRAVEL TIME(MIN.) = 0.62 Tc(MIN.) =
                                    6. 11
 LONGEST FLOWPATH FROM NODE 200.00 TO NODE
                                     302.00 = 257.00 FEET.
****************
 FLOW PROCESS FROM NODE 302.00 TO NODE 302.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION (MIN.) = 6.11
 RAINFALL INTENSITY(INCH/HR) =
 AREA-AVERAGED Fm(INCH/HR) = 0.11
 AREA-AVERAGED Fp(INCH/HR) = 0.30
 AREA-AVERAGED Ap = 0.35
 EFFECTIVE STREAM AREA(ACRES) = 0.14
 TOTAL STREAM AREA(ACRES) = 0.14
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.73
********************
 FLOW PROCESS FROM NODE 400.00 TO NODE 401.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
```

```
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00
 ELEVATION DATA: UPSTREAM(FEET) = 193.37 DOWNSTREAM(FEET) = 191.94
 Tc = K^*[(LENGTH^{**} 3.00)/(ELEVATION CHANGE)]^{**}0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 5.717
 SUBAREA To AND LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                     Fp
                                             qА
                                                    SCS
                                                       Tc
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 RESI DENTI AL
 "5-7 DWELLINGS/ACRE" B
                              0.08 0.30
                                             0.500 76
                                                         5.74
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.500
 SUBAREA RUNOFF (CFS) = 0.40
 TOTAL AREA(ACRES) = 0.08
                           PEAK FLOW RATE(CFS) = 0.40
********************
 FLOW PROCESS FROM NODE 401.00 TO NODE 402.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 191.94 DOWNSTREAM(FEET) =
                                                      191.63
 CHANNEL LENGTH THRU SUBAREA(FEET) = 35.00 CHANNEL SLOPE = 0.0089
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.990
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 5.413
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                                    SCS
                                     Fp
                                              Дp
     LAND USE
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 RESI DENTI AL
 "5-7 DWELLINGS/ACRE"
                              0.05
                                  0.30
                                                    76
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.500
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.02
 AVERAGE FLOW DEPTH(FEET) = 0.07 TRAVEL TIME(MIN.) = 0.57
 Tc(MIN.) =
            6.31
 SUBAREA AREA(ACRES) = 0.05 SUBAREA RUNOFF(CFS) = 0.24 EFFECTIVE AREA(ACRES) = 0.13 AREA-AVERAGED Fm(INCH/HR) = 0.15
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.50
 TOTAL AREA(ACRES) = 0.1 PEAK FLOW RATE(CFS) =
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.08 FLOW VELOCITY(FEET/SEC.) = 0.98
 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 402.00 = 135.00 FEET.
****************
 FLOW PROCESS FROM NODE 402.00 TO NODE 402.00 IS CODE = 81
______
```

```
>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 6.31
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 5.413
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/
                 SCS SOIL AREA Fp
                                       Ар
                                                  SCS
                   GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 RESI DENTI AL
 "5-7 DWELLINGS/ACRE" B
                             0.05 0.30
                                          0.500
                                                   76
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.500
 SUBAREA AREA(ACRES) = 0.05 SUBAREA RUNOFF(CFS) = 0.24 EFFECTIVE AREA(ACRES) = 0.18 AREA-AVERAGED Fm(INCH/HR) = 0.15
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.50
 TOTAL AREA(ACRES) = 0.2 PEAK FLOW RATE(CFS) =
*********************
 FLOW PROCESS FROM NODE 402.00 TO NODE 302.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 189.32 DOWNSTREAM(FEET) = 187.98
 FLOW LENGTH(FEET) = 134.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 9.0 INCH PIPE IS 4.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.72
 ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                 0.85
 PIPE TRAVEL TIME(MIN.) = 0.60 Tc(MIN.) =
                                      6. 92
 LONGEST FLOWPATH FROM NODE 400.00 TO NODE
                                      302.00 =
                                                269.00 FEET.
******************
 FLOW PROCESS FROM NODE 302.00 \text{ TO NODE} 302.00 \text{ IS CODE} = 1
   -----
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<< <
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 6.92
 RAINFALL INTENSITY(INCH/HR) =
                          5. 14
 AREA-AVERAGED Fm(INCH/HR) = 0.15
 AREA-AVERAGED Fp(INCH/HR) = 0.30
 AREA-AVERAGED Ap = 0.50
 EFFECTIVE STREAM AREA(ACRES) =
 TOTAL STREAM AREA(ACRES) = 0.18
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.85
 ** CONFLUENCE DATA **
  STREAM
           Q Tc Intensity Fp(Fm)
                                       Aр
                                           Аe
                                                  HEADWATER
  NUMBER
          (CFS) (MIN.) (INCH/HR) (INCH/HR)
                                           (ACRES)
                                                   NODE
```

```
      0. 73
      6. 11
      5. 516
      0. 30( 0. 11) 0. 35
      0. 1
      200. 00

      0. 85
      6. 92
      5. 138
      0. 30( 0. 15) 0. 50
      0. 2
      400. 00

 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
  STREAM Q Tc Intensity Fp(Fm) Ap Ae
                                                        HEADWATER
            (CFS) (MIN.) (INCH/HR) (INCH/HR)
  NUMBER
                                                  (ACRES)
                                                          NODE
            1. 54 6. 11 5. 516 0. 30(0. 13) 0. 43 0. 3
     1
                                                             200.00
                           5. 138 0. 30(0. 13) 0. 43 0. 3
             1.53
                    6. 92
                                                             400.00
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 1.54 Tc(MIN.) = 6.11

EFFECTIVE AREA(ACRES) = 0.30 AREA-AVERAGED Fm(INCH/HR) = 0.13

AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.43
 TOTAL AREA(ACRES) = 0.3
 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 302.00 = 269.00 FEET.
*******************
 FLOW PROCESS FROM NODE 302.00 TO NODE 304.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 187.98 DOWNSTREAM(FEET) = 187.64
 FLOW LENGTH(FEET) = 33.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 9.0 INCH PIPE IS 6.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.21
 ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 1.54
PIPE TRAVEL TIME(MIN.) = 0.13 Tc(MIN.) = 6.24
 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 304.00 = 302.00 FEET.
******************
 FLOW PROCESS FROM NODE 304.00 TO NODE 304.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 6.24
 RAINFALL INTENSITY(INCH/HR) = 5.45
 AREA-AVERAGED Fm(INCH/HR) = 0.13
 AREA-AVERAGED Fp(INCH/HR) = 0.30
 AREA-AVERAGED Ap = 0.43
 EFFECTIVE STREAM AREA(ACRES) = 0.30
 TOTAL STREAM AREA(ACRES) = 0.32
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.54
```

```
FLOW PROCESS FROM NODE 300.00 TO NODE 301.00 IS CODE = 22
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>>>USE SPECIFIED TC VALUE FOR INITIAL SUBAREA<<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 33.00
 USER SPECIFIED Tc(MIN.) = 5.000
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 6.187
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                     Fp
                                              Aр
                                                    SCS
     LAND USE
                     GROUP
                           (ACRES)
                                   (INCH/HR)
                                            (DECIMAL) CN
 COMMERCI AL
                       В
                              0.09
                                            0.100
                                                    76
                                  0.30
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA RUNOFF (CFS) = 0.50
 TOTAL AREA(ACRES) = 0.09 PEAK FLOW RATE(CFS) = 0.50
*******************
 FLOW PROCESS FROM NODE 301.00 TO NODE 304.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 193.00 DOWNSTREAM(FEET) = 191.16
 CHANNEL LENGTH THRU SUBAREA(FEET) = 156.00 CHANNEL SLOPE = 0.0118
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.990
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 5.103
 SUBAREA LOSS RATE DATA(AMC III):
                                                    SCS
  DEVELOPMENT TYPE/ SCS SOIL
                             AREA
                                     Fp
                                              Дp
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
 APARTMENTS
                      В
                              0. 21
                                  0.30
                                             0.200
                                                    76
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.30
 AVERAGE FLOW DEPTH(FEET) = 0.09 TRAVEL TIME(MIN.) = 2.00
 Tc(MIN.) =
            7.00
 SUBAREA AREA(ACRES) = 0.21 SUBAREA RUNOFF(CFS) = 0.95
EFFECTIVE AREA(ACRES) = 0.30 AREA-AVERAGED Fm(INCH/HR) = 0.05
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.17
 TOTAL AREA(ACRES) = 0.3 PEAK FLOW RATE(CFS) = 1.36
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.10 FLOW VELOCITY(FEET/SEC.) = 1.47
 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 304.00 = 189.00 FEET.
 ********************
 FLOW PROCESS FROM NODE 304.00 TO NODE 304.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
```

```
______
 MAINLINE Tc(MIN.) =
                     7.00
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 5.103
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/
                      SCS SOIL AREA
                                                        SCS
                                        Fp
                                                  Дþ
                       GROUP
                              (ACRES)
                                      (INCH/HR)
                                               (DECIMAL) CN
      LAND USE
 APARTMENTS
                         В
                                0. 21
                                      0.30
                                                0. 200
                                                         76
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.200
 SUBAREA AREA(ACRES) = 0.21 SUBAREA RUNOFF(CFS) = 0.95
 EFFECTIVE AREA(ACRES) = 0.51 AREA-AVERAGED Fm(INCH/HR) = 0.05
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.18
 TOTAL AREA(ACRES) = 0.5 PEAK FLOW RATE(CFS) =
******************
 FLOW PROCESS FROM NODE
                        304.00 TO NODE
                                       304.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 7.00
 RAINFALL INTENSITY(INCH/HR) =
 AREA-AVERAGED Fm(INCH/HR) = 0.05
 AREA-AVERAGED Fp(INCH/HR) = 0.30
 AREA-AVERAGED Ap = 0.18
 EFFECTIVE STREAM AREA(ACRES) =
 TOTAL STREAM AREA(ACRES) = 0.51
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                    2.32
 ** CONFLUENCE DATA **
  STREAM 0
                  Tc Intensity Fp(Fm)
                                            Αp
                                                      HEADWATER
                                                 Аe
            (CFS) (MIN.) (INCH/HR) (INCH/HR)
  NUMBER
                                                (ACRES)
                                                         NODE
                                               0.3
            1. 54 6. 24
     1
                          5. 449 0. 30(0. 13) 0. 43
                                                           200.00
            1.53
                   7.05
                          5.083 0.30(0.13) 0.43
                                                   0.3
     1
                                                           400.00
                                               0.5
     2
            2. 32
                   7. 00 5. 103 0. 30(0.05) 0. 18
                                                           300.00
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
  STRFAM
                   Tc
                      Intensity Fp(Fm)
                                           αA
                                                 Аe
                                                      HEADWATER
            0
  NUMBER
            (CFS) (MIN.) (INCH/HR) (INCH/HR)
                                                (ACRES)
                                                         NODE
                 6. 24
                          5. 449 0. 30(0.08) 0. 28
5. 103 0. 30(0.08) 0. 28
                                                0. 8
0. 8
            3.74
     1
                                                           200.00
            3.85
                   7.00
                                                           300.00
     2
                                                  0.8
            3.84
                   7.05
                          5. 083 0. 30 (0. 08) 0. 28
                                                           400.00
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 3.85 Tc(MIN.) = 7.00 EFFECTIVE AREA(ACRES) = 0.83 AREA-AVERAGED Fm(INCH/HR) = 0.08
```

```
AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.28
 TOTAL AREA(ACRES) =
                   0.8
 LONGEST FLOWPATH FROM NODE
                       400.00 TO NODE
                                     304.00 =
                                              302.00 FEET.
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES)
                      0.8 TC(MIN.) =
                                      7.00
 EFFECTIVE AREA(ACRES) =
                      0.83 AREA-AVERAGED Fm(INCH/HR) = 0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.279
 PEAK FLOW RATE(CFS)
                      3.85
                =
 ** PEAK FLOW RATE TABLE **
                    Intensity
                                          Аe
                                                HEADWATER
  STREAM
           Q
                Tc
                            Fp(Fm)
                                     Aр
  NUMBER
          (CFS)
               (MIN.) (INCH/HR) (INCH/HR)
                                         (ACRES)
                                                 NODE
           3.74
                6. 24
                      5.449 0.30(0.08) 0.28
    1
                                             0.8
                                                   200.00
                      5. 103 0. 30 (0. 08) 0. 28
    2
           3.85
                 7.00
                                             0.8
                                                   300.00
    3
           3.84
                 7.05
                      5.083 0.30(0.08) 0.28
                                             0.8
                                                   400.00
______
______
```

♠

APPENDIX I: STORMWATER DESIGN SPECIFICATION SHEETS

PRO	JECT INFORMATION
ENGINEERED PRODUCT MANAGER:	TRAVIS ANTONISSEN 949-237-8866 TRAVIS.ANTONISSEN@ADSPIPE.COM
ADS SALES REP:	MATT NOBLE 951-603-6551 MATT.NOBLE@ADSPIPE.COM
PROJECT NO:	S349547

APPROVED BY:
SIGNED:
DATE:
COMPANY:
PHONE / EMAIL:

MCDONALD'S 4-5088 PROPOSED DRIVE-THRU RESTAURANT

SANTA ANA - CA

CONTRACTOR PROVIDED DELIVERY SCHEDULE & SITE INFORMATION:

SYSTEM DESIGNATION / SIZE							
SYSTEM DELIVERY DATE							
*ACTUAL DATE REQUIRED, AS	SAP IS NOT ACCEPTABLE AN	D A MINIMUM OF 4 WEEKS MU	IST BE PROVIDED UNLESS OT	THERWISE DISCUSSED WITH A	SALES REPRESENTATIVE.		
ACTUAL DATE REQUIRED, A	SAF IS NOT ACCEPTABLE AN	DA MINIMONION OF 4 WEEKS MIC	OF BE PROVIDED UNLESS OF	TILKWISE DISCUSSED WITH A	COALLO REFRESENTATIVE.		

	DELIVERY INFORMATION		
JOB SITE STREET ADDRESS		CITY	
CONTACT		CONTACT PHONE	
ALTERNATE CONTACT		ALTERNATE PHONE	

DIRECTIONS TO JOB SITE FROM NEAREST INTERSTATE:

(PLEASE NO MAPS)

ADS ECOPURE SPECIFICATIONS

PRODUCT

- A. <u>INTERNAL COMPONENTS:</u> SHALL BE SUBSTANTIALLY CONSTRUCTED OF STAINLESS STEEL, RECYCLED POLYETHYLENE OR OTHER THERMOPLASTIC MATERIAL APPROVED BY THE MANUFACTURER
- B. FILTER MEDIA/VEGETATION: FILTER MEDIA SHALL BE BY ADS AND SHALL CONSIST OF A PROPRIETARY BLEND OF FILTER MEDIA.

 VEGETATION IS VARIABLE DEPENDENT ON REGION. ITEMS CHOSEN SHOULD ALIGN WITH CONTROLLING MUNICIPAL, COUNTY, OR STATE REQUIREMENTS.
- C. PRECAST CONCRETE VAULT: DESIGNED FOR H-20 TRAFFIC LOADING AND APPLICABLE SOIL LOADS OR AS OTHERWISE DETERMINED BY A LICENSED PROFESSIONAL ENGINEER. THE MATERIALS AND STRUCTURAL DESIGN OF THE DEVICES SHALL BE PER ASTM C478, ASTM C857 AND ASTM C858.

PERFORMANCE

- A. THE STORMWATER FILTER SYSTEM SHALL BE AN OFFLINE DESIGN CAPABLE OF TREATING 100% OF THE REQUIRED TREATMENT FLOW AT FULL SEDIMENT LOAD CONDITIONS.
- B. THE STORMWATER FILTER SYSTEM SHALL HAVE NO MOVING PARTS.
- C. THE STORMWATER TREATMENT UNIT SHALL BE DESIGNED TO REMOVE AT LEAST 85% OF SUSPENDED SOLIDS AND 70% OF TOTAL PHOSPHORUS.

ECOPURE MAINTENANCE

THE ECOPURE SYSTEM REQUIRES PERIODIC MAINTENANCE TO CONTINUE OPERATING AT ITS PEAK EFFICIENCY DESIGN. THE MAINTENANCE PROCESS COMPRISES THE REMOVAL AND REPLACEMENT OF FILTER MEDIA AND VEGETATION AND THE CLEANING OF THE VAULT WITH A VACUUM TRUCK. FOR BEST RESULTS, ECOPURE MAINTENANCE SHOULD BE PERFORMED BY A CERTIFIED MAINTENANCE CONTRACTOR. A QUICK CALL TO AN ADS ENGINEER OR CUSTOMER SERVICE REPRESENTATIVE WILL PROVIDE YOU WITH A LIST OF RELIABLE CONTRACTORS IN YOUR AREA.

WHEN ECOPURE IS INITIALLY INSTALLED, WE RECOMMEND THAT AN INSPECTION BE PERFORMED ON THE SYSTEM IN THE FIRST SIX (6) MONTHS. AFTER THAT, THE INSPECTION CYCLE TYPICALLY FALLS INTO A BIANNUAL PATTERN GIVEN NORMAL STORM OCCURRENCE AND ACTUAL SOLIDS I OADS

WHEN ECOPURE EXHIBITS FLOWS BELOW DESIGN LEVELS, THE SYSTEM SHOULD BE INSPECTED AND MAINTAINED AS SOON AS PRACTICAL.

MAINTENANCE OF THE STORMWATER TREATMENT UNIT(S) SHALL BE PERFORMED PER MANUFACTURER'S MAINTENANCE INSTRUCTIONS. SUCH INSTRUCTIONS CAN BE OBTAINED BY CALLING ADVANCED DRAINAGE SYSTEMS AT (800) 821-6710 OR BY LOGGING ON TO WWW.ADS-PIPE.COM.

ECOPURE INSTALLATION NOTES

INSTALLATION OF THE STORMWATER TREATMENT UNIT(S) SHALL BE PERFORMED PER MANUFACTURER'S INSTALLATION INSTRUCTIONS. SUCH INSTRUCTIONS CAN BE OBTAINED BY CALLING ADVANCED DRAINAGE SYSTEMS AT (800) 821-6710 OR BY LOGGING ON TO WWW.ADS-PIPE.COM.

MCDONALD'S 4-5088 PROPOSED DRIVE-THRU RESTAURANT

SANTA ANA - CA

SC-740 STORMTECH CHAMBER SPECIFICATIONS

- CHAMBERS SHALL BE STORMTECH SC-740.
- 2. CHAMBERS SHALL BE ARCH-SHAPED AND SHALL BE MANUFACTURED FROM VIRGIN, IMPACT-MODIFIED POLYPROPYLENE COPOLYMERS.
- 3. CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- 4. CHAMBER ROWS SHALL PROVIDE CONTINUOUS, UNOBSTRUCTED INTERNAL SPACE WITH NO INTERNAL SUPPORTS THAT WOULD IMPEDE FLOW OR LIMIT ACCESS FOR INSPECTION.
- 5. THE STRUCTURAL DESIGN OF THE CHAMBERS, THE STRUCTURAL BACKFILL, AND THE INSTALLATION REQUIREMENTS SHALL ENSURE THAT THE LOAD FACTORS SPECIFIED IN THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS, SECTION 12.12, ARE MET FOR: 1) LONG-DURATION DEAD LOADS AND 2) SHORT-DURATION LIVE LOADS, BASED ON THE AASHTO DESIGN TRUCK WITH CONSIDERATION FOR IMPACT AND MULTIPLE VEHICLE PRESENCES.
- 6. CHAMBERS SHALL BE DESIGNED, TESTED AND ALLOWABLE LOAD CONFIGURATIONS DETERMINED IN ACCORDANCE WITH ASTM F2787, "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS". LOAD CONFIGURATIONS SHALL INCLUDE: 1) INSTANTANEOUS (<1 MIN) AASHTO DESIGN TRUCK LIVE LOAD ON MINIMUM COVER 2) MAXIMUM PERMANENT (75-YR) COVER LOAD AND 3) ALLOWABLE COVER WITH PARKED (1-WEEK). AASHTO DESIGN TRUCK.
- 7. REQUIREMENTS FOR HANDLING AND INSTALLATION:
 - TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS.
 - TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 2".
 - TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT SHALL BE GREATER THAN OR EQUAL TO 550 LBS/FT/%. THE ASC IS DEFINED IN SECTION 6.2.8 OF ASTM F2418. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73° F / 23° C), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS.
- 8. ONLY CHAMBERS THAT ARE APPROVED BY THE SITE DESIGN ENGINEER WILL BE ALLOWED. UPON REQUEST BY THE SITE DESIGN ENGINEER OR OWNER, THE CHAMBER MANUFACTURER SHALL SUBMIT A STRUCTURAL EVALUATION FOR APPROVAL BEFORE DELIVERING CHAMBERS TO THE PROJECT SITE AS FOLLOWS:
 - THE STRUCTURAL EVALUATION SHALL BE SEALED BY A REGISTERED PROFESSIONAL ENGINEER.
 - THE STRUCTURAL EVALUATION SHALL DEMONSTRATE THAT THE SAFETY FACTORS ARE GREATER THAN OR EQUAL TO 1.95 FOR DEAD LOAD AND 1.75 FOR LIVE LOAD, THE MINIMUM REQUIRED BY ASTM F2787 AND BY SECTIONS 3 AND 12.12 OF THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS FOR THERMOPLASTIC PIPE.
 - THE TEST DERIVED CREEP MODULUS AS SPECIFIED IN ASTM F2418 SHALL BE USED FOR PERMANENT DEAD LOAD DESIGN EXCEPT THAT IT SHALL BE THE 75-YEAR MODULUS USED FOR DESIGN.
- 9. CHAMBERS AND END CAPS SHALL BE PRODUCED AT AN ISO 9001 CERTIFIED MANUFACTURING FACILITY.

IMPORTANT - NOTES FOR THE BIDDING AND INSTALLATION OF THE SC-740 SYSTEM

- 1. STORMTECH SC-740 CHAMBERS SHALL NOT BE INSTALLED UNTIL THE MANUFACTURER'S REPRESENTATIVE HAS COMPLETED A PRE-CONSTRUCTION MEETING WITH THE INSTALLERS.
- 2. STORMTECH SC-740 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION GUIDE".
- CHAMBERS ARE NOT TO BE BACKFILLED WITH A DOZER OR AN EXCAVATOR SITUATED OVER THE CHAMBERS. STORMTECH RECOMMENDS 3 BACKFILL METHODS:
 - STONESHOOTER LOCATED OFF THE CHAMBER BED.
 - BACKFILL AS ROWS ARE BUILT USING AN EXCAVATOR ON THE FOUNDATION STONE OR SUBGRADE.
 - BACKFILL FROM OUTSIDE THE EXCAVATION USING A LONG BOOM HOE OR EXCAVATOR.
- 4. THE FOUNDATION STONE SHALL BE LEVELED AND COMPACTED PRIOR TO PLACING CHAMBERS.
- 5. JOINTS BETWEEN CHAMBERS SHALL BE PROPERLY SEATED PRIOR TO PLACING STONE.
- 6. MAINTAIN MINIMUM 6" (150 mm) SPACING BETWEEN THE CHAMBER ROWS.
- EMBEDMENT STONE SURROUNDING CHAMBERS MUST BE A CLEAN, CRUSHED, ANGULAR STONE 3/4-2" (20-50 mm).
- 8. THE CONTRACTOR MUST REPORT ANY DISCREPANCIES WITH CHAMBER FOUNDATION MATERIALS BEARING CAPACITIES TO THE SITE DESIGN ENGINEER.
-). ADS RECOMMENDS THE USE OF "FLEXSTORM CATCH IT" INSERTS DURING CONSTRUCTION FOR ALL INLETS TO PROTECT THE SUBSURFACE STORMWATER MANAGEMENT SYSTEM FROM CONSTRUCTION SITE RUNOFF.

NOTES FOR CONSTRUCTION EQUIPMENT

- STORMTECH SC-740 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION GUIDE".
- 2. THE USE OF CONSTRUCTION EQUIPMENT OVER SC-740 CHAMBERS IS LIMITED:
 - NO EQUIPMENT IS ALLOWED ON BARE CHAMBERS.
 - NO RUBBER TIRED LOADERS, DUMP TRUCKS, OR EXCAVATORS ARE ALLOWED UNTIL PROPER FILL DEPTHS ARE REACHED IN ACCORDANCE WITH THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION GUIDE".
 - WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT CAN BE FOUND IN THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION GUIDE"
- 3. FULL 36" (900 mm) OF STABILIZED COVER MATERIALS OVER THE CHAMBERS IS REQUIRED FOR DUMP TRUCK TRAVEL OR DUMPING.

USE OF A DOZER TO PUSH EMBEDMENT STONE BETWEEN THE ROWS OF CHAMBERS MAY CAUSE DAMAGE TO THE CHAMBERS AND IS NOT AN ACCEPTABLE BACKFILL METHOD. ANY CHAMBERS DAMAGED BY THE "DUMP AND PUSH" METHOD ARE NOT COVERED UNDER THE STORMTECH STANDARD WARRANTY.

CONTACT STORMTECH AT 1-888-892-2694 WITH ANY QUESTIONS ON INSTALLATION REQUIREMENTS OR WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT.

THE ECOPURE BIOFILTER™ IS A BIOFILTRATION STORMWATER TREATMENT

LINEAR TREATMENT DESIGN WITH AN UPFRONT PRETREATMENT CHAMBER.

TECHONOLOGY RELIES ON PHYSICAL, CHEMICAL AND BIOLOGICAL MECHANISMS TO

METALS, OIL and GREASE, TRASH AND BACTERIA. THE ECOPURE SYSTEM PROVIDES

REMOVE TOTAL SUSPENDED SOLIDS, TOTAL PHOSPHORUS, TOTAL NITROGEN, HEAVY

ECOPURE BIOFILTER

120

0.27 CFS

1 GPM/SF

WATER QUALITY FLOW RATE

TREATED SEDIMENT CAPACITY

EFFECTIVE LOADING RATE

DRAINAGE AREA

MCDONALD'S 4-5088 PROPOSED
DRIVE-THRU RESTAURANT
SANTA ANA - CA
DATE: 04/17/23 DRAWN: JLM
PROJECT #: \$349547 CHECKED: KLJ/PR EcoPure[™] Biofliter Stormwater Media Filters 4640 TRUEMAN BLVD HILLIARD, OH 43026 SCAL 0 NOT SHEET OF

- 5.00'

PLAN VIEW

NTS

PROPOSI	ED LAYOUT
45	STORMTECH SC-740 CHAMBERS
10	STORMTECH SC-740 END CAPS
6	STONE ABOVE (in)
6	STONE BELOW (in)
40	% STONE VOID
3,845	INSTALLED SYSTEM VOLUME (CF) (PERIMETER STONE INCLUDED)
1860	SYSTEM AREA (ft²)
195	SYSTEM PERIMETER (ft)
PROPOSI	ED ELEVATIONS
196.57	MAXIMUM ALLOWABLE GRADE (TOP OF PAVEMENT/UNPAVED)
190.57	MINIMUM ALLOWABLE GRADE (UNPAVED WITH TRAFFIC)
190.07	MINIMUM ALLOWABLE GRADE (UNPAVED NO TRAFFIC)
190.07	MINIMUM ALLOWABLE GRADE (BASE OF FLEXIBLE PAVEMENT)
190.07	MINIMUM ALLOWABLE GRADE (TOP OF RIGID PAVEMENT)
189.07	TOP OF STONE
188.57	TOP OF SC-740 CHAMBER
187.45	8" TOP MANIFOLD INVERT
186.13	10" BOTTOM MANIFOLD INVERT
186.08	24" ISOLATOR ROW PLUS CONNECTION INVERT
186.07	BOTTOM OF SC-740 CHAMBER
185.57	UNDERDRAIN INVERT
185.57	BOTTOM OF STONE

NOTES

- MANIFOLD SIZE TO BE DETERMINED BY SITE DESIGN ENGINEER. SEE TECHNICAL NOTE 6.32 FOR MANIFOLD SIZING GUIDANCE.
 DUE TO THE ADAPTATION OF THIS CHAMBER SYSTEM TO SPECIFIC SITE AND DESIGN CONSTRAINTS, IT MAY BE NECESSARY TO CUT AND COUPLE ADDITIONAL PIPE TO STANDARD MANIFOLD COMPONENTS IN THE FIELD.
- THIS CHAMBER SYSTEM WAS DESIGNED WITHOUT SITE-SPECIFIC INFORMATION ON SOIL CONDITIONS OR BEARING CAPACITY. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR DETERMINING THE SUITABILITY OF THE SOIL AND PROVIDING THE BEARING CAPACITY OF THE INSITU SOILS. THE BASE STONE DEPTH MAY BE INCREASED OR DECREASED ONCE THIS INFORMATION IS PROVIDED.

MCDONALD'S 4-5088 PROPOSED
DRIVE-THRU RESTAURANT
SANTA ANA - CA
DATE: 04/17/23 DRAWN: JLM
PROJECT #: \$349547 CHECKED: KLJ/PR

JLM KLJ/PR

DATE: PROJECT#

WWW.STORMTECH.COM

ACCEPTABLE FILL MATERIALS: STORMTECH SC-740 CHAMBER SYSTEMS

	MATERIAL LOCATION	DESCRIPTION	AASHTO MATERIAL CLASSIFICATIONS	COMPACTION / DENSITY REQUIREMENT
D	FINAL FILL: FILL MATERIAL FOR LAYER 'D' STARTS FROM THE TOP OF THE 'C' LAYER TO THE BOTTOM OF FLEXIBLE PAVEMENT OR UNPAVED FINISHED GRADE ABOVE. NOTE THAT PAVEMENT SUBBASE MAY BE PART OF THE 'D' LAYER.	ANY SOIL/ROCK MATERIALS, NATIVE SOILS, OR PER ENGINEER'S PLANS. CHECK PLANS FOR PAVEMENT SUBGRADE REQUIREMENTS.	N/A	PREPARE PER SITE DESIGN ENGINEER'S PLANS. PAVED INSTALLATIONS MAY HAVE STRINGENT MATERIAL AND PREPARATION REQUIREMENTS.
С	INITIAL FILL: FILL MATERIAL FOR LAYER 'C' STARTS FROM THE TOP OF THE EMBEDMENT STONE ('B' LAYER) TO 18" (450 mm) ABOVE THE TOP OF THE CHAMBER. NOTE THAT PAVEMENT SUBBASE MAY BE A PART OF THE 'C' LAYER.	GRANULAR WELL-GRADED SOIL/AGGREGATE MIXTURES, <35% FINES OR PROCESSED AGGREGATE. MOST PAVEMENT SUBBASE MATERIALS CAN BE USED IN LIEU OF THIS LAYER.	AASHTO M145 ¹ A-1, A-2-4, A-3 OR AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57, 6, 67, 68, 7, 78, 8, 89, 9, 10	BEGIN COMPACTIONS AFTER 12" (300 mm) OF MATERIAL OVER THE CHAMBERS IS REACHED. COMPACT ADDITIONAL LAYERS IN 6" (150 mm) MAX LIFTS TO A MIN. 95% PROCTOR DENSITY FOR WELL GRADED MATERIAL AND 95% RELATIVE DENSITY FOR PROCESSED AGGREGATE MATERIALS. ROLLER GROSS VEHICLE WEIGHT NOT TO EXCEED 12,000 lbs (53 kN). DYNAMIC FORCE NOT TO EXCEED 20,000 lbs (89 kN).
В	EMBEDMENT STONE: FILL SURROUNDING THE CHAMBERS FROM THE FOUNDATION STONE ('A' LAYER) TO THE 'C' LAYER ABOVE.	CLEAN, CRUSHED, ANGULAR STONE	AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57	NO COMPACTION REQUIRED.
А	FOUNDATION STONE: FILL BELOW CHAMBERS FROM THE SUBGRADE UP TO THE FOOT (BOTTOM) OF THE CHAMBER.	CLEAN, CRUSHED, ANGULAR STONE	AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57	PLATE COMPACT OR ROLL TO ACHIEVE A FLAT SURFACE. ^{2,3}

- THE LISTED AASHTO DESIGNATIONS ARE FOR GRADATIONS ONLY. THE STONE MUST ALSO BE CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE: "CLEAN, CRUSHED, ANGULAR NO. 4 (AASHTO M43) STONE".
- STORMTECH COMPACTION REQUIREMENTS ARE MET FOR 'A' LOCATION MATERIALS WHEN PLACED AND COMPACTED IN 6" (150 mm) (MAX) LIFTS USING TWO FULL COVERAGES WITH A VIBRATORY COMPACTOR.
- WHERE INFILTRATION SURFACES MAY BE COMPROMISED BY COMPACTION, FOR STANDARD DESIGNS, CONTACT STORMTECH FOR COMPACTION REQUIREMENTS.
- ONCE LAYER 'C' IS PLACED, ANY SOIL/MATERIAL CAN BE PLACED IN LAYER 'D' UP TO THE FINISHED GRADE. MOST PAVEMENT SUBBASE SOILS CAN BE USED TO REPLACE THE MATERIAL REQUIREMENTS OF LAYER 'C' OR 'D' AT THE SITE DESIGN ENGINEER'S DISCRETION.

NOTES:

- 1. CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- 2. SC-740 CHAMBERS SHALL BE DESIGNED IN ACCORDANCE WITH ASTM F2787 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- 3. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR ASSESSING THE BEARING RESISTANCE (ALLOWABLE BEARING CAPACITY) OF THE SUBGRADE SOILS AND THE DEPTH OF FOUNDATION STONE WITH CONSIDERATION FOR THE RANGE OF EXPECTED SOIL MOISTURE CONDITIONS.
- 4. PERIMETER STONE MUST BE EXTENDED HORIZONTALLY TO THE EXCAVATION WALL FOR BOTH VERTICAL AND SLOPED EXCAVATION WALLS.
- 5. REQUIREMENTS FOR HANDLING AND INSTALLATION:
 - TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS.
 - TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 2".
 - TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT AS DEFINED IN SECTION 6.2.8 OF ASTM F2418 SHALL BE GREATER THAN OR EQUAL TO 550 LBS/FT/%. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73° F / 23° C), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS.

							N PICTONIAL DIS	MCDONAL D'S 4 5088 DEODOSED	_
5		4640 TRUEMAN BLVD						SOCO LIVOL OSED	
<u> </u>	3	HILLIARD, OH 43026	C+CrmToch®				DRIVE-THRU	DRIVE-THRU RESTAURANT	
SH							SANTA	SANTA ANA - CA	
)F			Chamber System				DATE: 04/17/93	04/17/23 DBAWN: II M	
T								CICAVIA: CLIVI	_
									_
•			888-892-2694 WWW.SIORMIECH.COM	DATE	DATE DRWN CHKD	DESCRIPTION	PROJECT #: S349547 CHECKED: KLJ/PR	CHECKED: KLJ/PR	-
7	THIS DRAWING HAS BEEN PRE	PARED BASED ON INFORMATION PROVI THE SITE DESIGN ENGINEER TO ENSUR	THIS DRAWING HAS BEEN PREPARED BASED ON INFORMATION PROVIDED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN ENGINEER OR OTHER PROJECT REPRESENTATIVE. THE SITE DESIGN ENGINEER TO ENSURE THAT THE PRODUCTIS) DEPICTED AND ALL ASSOCIATED DETAILS MEET ALL APPLICABLE LAWS, REGULATIONS, AND PROJECT REQUIREMENTS.	ER OR OTHEF S MEET ALL A	PROJECT R	REPRESENTATIVE. THE SITE DESIGN ENGINEER S I AWS. REGUI ATIONS. AND PROJECT REQUIREME	HALL REVIEW THIS DRAWING PRIOR TO ENTS.	CONSTRUCTION. IT IS THE	

OF OF

INSPECTION & MAINTENANCE

STEP 1) INSPECT ISOLATOR ROW PLUS FOR SEDIMENT

A. INSPECTION PORTS (IF PRESENT)

- REMOVE/OPEN LID ON NYLOPLAST INLINE DRAIN
- REMOVE AND CLEAN FLEXSTORM FILTER IF INSTALLED
- USING A FLASHLIGHT AND STADIA ROD, MEASURE DEPTH OF SEDIMENT AND RECORD ON MAINTENANCE LOG A.3.
- LOWER A CAMERA INTO ISOLATOR ROW PLUS FOR VISUAL INSPECTION OF SEDIMENT LEVELS (OPTIONAL)
- IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3. A.5.

B. ALL ISOLATOR PLUS ROWS

- REMOVE COVER FROM STRUCTURE AT UPSTREAM END OF ISOLATOR ROW PLUS USING A FLASHLIGHT, INSPECT DOWN THE ISOLATOR ROW PLUS THROUGH OUTLET PIPE
 - i) MIRRORS ON POLES OR CAMERAS MAY BE USED TO AVOID A CONFINED SPACE ENTRY
- ii) FOLLOW OSHA REGULATIONS FOR CONFINED SPACE ENTRY IF ENTERING MANHOLE IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3.
- STEP 2) CLEAN OUT ISOLATOR ROW PLUS USING THE JETVAC PROCESS
 - A. A FIXED CULVERT CLEANING NOZZLE WITH REAR FACING SPREAD OF 45" (1.1 m) OR MORE IS PREFERRED
 - APPLY MULTIPLE PASSES OF JETVAC UNTIL BACKFLUSH WATER IS CLEAN
 - C. VACUUM STRUCTURE SUMP AS REQUIRED
- REPLACE ALL COVERS, GRATES, FILTERS, AND LIDS; RECORD OBSERVATIONS AND ACTIONS.
- INSPECT AND CLEAN BASINS AND MANHOLES UPSTREAM OF THE STORMTECH SYSTEM.

NOTES

- INSPECT EVERY 6 MONTHS DURING THE FIRST YEAR OF OPERATION. ADJUST THE INSPECTION INTERVAL BASED ON PREVIOUS OBSERVATIONS OF SEDIMENT ACCUMULATION AND HIGH WATER ELEVATIONS.
- 2. CONDUCT JETTING AND VACTORING ANNUALLY OR WHEN INSPECTION SHOWS THAT MAINTENANCE IS NECESSARY.

INSPECTION PORTS MAY BE CONNECTED THROUGH ANY CHAMBER CORRUGATION CREST.

4" PVC INSPECTION PORT DETAIL (SC SERIES CHAMBER)

MCDONALD'S 4-5088 PROPOSEI
DRIVE-THRU RESTAURANT
SANTA ANA - CA
DATE: 04/17/23 | DRAWN: JLM
PROJECT #: S349547 | CHECKED: KLJ/PR ORMTECH.COM **StormTech**® Chamber System 4640 TRUEMAN BLVD HILLIARD, OH 43026

> SHEET OF

SC-740 TECHNICAL SPECIFICATION

NTS

NOMINAL CHAMBER SPECIFICATIONS

SIZE (W X H X INSTALLED LENGTH) CHAMBER STORAGE MINIMUM INSTALLED STORAGE* WEIGHT 51.0" X 30.0" X 85.4" 45.9 CUBIC FEET 74.9 CUBIC FEET 75.0 lbs. (1295 mm X 762 mm X 2169 mm) (1.30 m³)

(2.12 m³) (33.6 kg)

*ASSUMES 6" (152 mm) STONE ABOVE, BELOW, AND BETWEEN CHAMBERS

PRE-FAB STUBS AT BOTTOM OF END CAP FOR PART NUMBERS ENDING WITH "B" PRE-FAB STUBS AT TOP OF END CAP FOR PART NUMBERS ENDING WITH "T" PRE-CORED END CAPS END WITH "PC"

PART#	STUB	Α	В	С
SC740EPE06T / SC740EPE06TPC	6" (150 mm)	10.9" (277 mm)	18.5" (470 mm)	
SC740EPE06B / SC740EPE06BPC	0 (13011111)	10.9 (277 111111)		0.5" (13 mm)
SC740EPE08T /SC740EPE08TPC	8" (200 mm)	12.2" (310 mm)	16.5" (419 mm)	
SC740EPE08B / SC740EPE08BPC	(200 11111)	12.2 (310111111)		0.6" (15 mm)
SC740EPE10T / SC740EPE10TPC	10" (250 mm)	13.4" (340 mm)	14.5" (368 mm)	
SC740EPE10B / SC740EPE10BPC	10 (230 11111)	13.4 (340 11111)		0.7" (18 mm)
SC740EPE12T / SC740EPE12TPC	12" (200 mm)	14.7" (373 mm)	12.5" (318 mm)	
SC740EPE12B / SC740EPE12BPC	12" (300 mm)	14.7 (3/3/11111)		1.2" (30 mm)
SC740EPE15T / SC740EPE15TPC	15" (375 mm)	18.4" (467 mm)	9.0" (229 mm)	
SC740EPE15B / SC740EPE15BPC	13 (3/3/11111)	10.4 (407 11111)		1.3" (33 mm)
SC740EPE18T / SC740EPE18TPC	18" (450 mm)	19.7" (500 mm)	5.0" (127 mm)	
SC740EPE18B / SC740EPE18BPC	10 (430 11111)	19.7 (500 11111)		1.6" (41 mm)
SC740ECEZ*	24" (600 mm)	18.5" (470 mm)		0.1" (3 mm)

ALL STUBS, EXCEPT FOR THE SC740ECEZ ARE PLACED AT BOTTOM OF END CAP SUCH THAT THE OUTSIDE DIAMETER OF THE STUB IS FLUSH WITH THE BOTTOM OF THE END CAP. FOR ADDITIONAL INFORMATION CONTACT STORMTECH AT 1-888-892-2694

* FOR THE SC740ECEZ THE 24" (600 mm) STUB LIES BELOW THE BOTTOM OF THE END CAP APPROXIMATELY 1.75" (44 mm). BACKFILL MATERIAL SHOULD BE REMOVED FROM BELOW THE N-12 STUB SO THAT THE FITTING SITS LEVEL.

NOTE: ALL DIMENSIONS ARE NOMINAL

StormTech® Chamber System 888-892-2694 www.stormTech.com	4640 TRUEMAN BLVD HILLIARD, OH 43026
--	---

Ü

, SHEET .