
Security Assessment

PRYZM
CertiK Assessed on Jul 1st, 2024

Executive Summary

Vulnerability Summary

1 Critical 1 Resolved

Critical risks are those that impact the safe functioning

of a platform and must be addressed before launch.

Users should not invest in any project with outstanding

critical risks.

9 Major 8 Resolved, 1 Acknowledged
Major risks can include centralization issues and logical

errors. Under specific circumstances, these major risks

can lead to loss of funds and/or control of the project.

9 Medium 9 Resolved Medium risks may not pose a direct risk to users’ funds,

but they can affect the overall functioning of a platform.

20 Minor 17 Resolved, 3 Acknowledged

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient

than other solutions.

17 Informational 15 Resolved, 2 Acknowledged

Informational errors are often recommendations to

improve the style of the code or certain operations to

fall within industry best practices. They usually do not

affect the overall functioning of the code.

SUMMARY PRYZM

CertiK Assessed on Jul 1st, 2024

PRYZM

The security assessment was prepared by CertiK, the leader in Web3.0 security.

TYPES

Chain, DeFi

ECOSYSTEM

Cosmos (ATOM)

METHODS

Manual Review, Static Analysis

LANGUAGE

Golang

TIMELINE

Delivered on 07/01/2024

KEY COMPONENTS

N/A

CODEBASE
e4ec75671e829702236a1c70a1773e7d7d3d0c15

930876154d4296a366ba2ca179c227c6663cc55b

1971f429ccc868ebf3a0a428c2d6bfb7fc7b1ec6

View All in Codebase Page

COMMITS
e4ec75671e829702236a1c70a1773e7d7d3d0c15

930876154d4296a366ba2ca179c227c6663cc55b

1971f429ccc868ebf3a0a428c2d6bfb7fc7b1ec6

View All in Codebase Page

56
Total Findings

50
Resolved

0
Mitigated

0
Partially Resolved

6
Acknowledged

0
Declined

https://github.com/refractedlabs/oracle/tree/e4ec75671e829702236a1c70a1773e7d7d3d0c15
https://github.com/refractedlabs/flowtrade/tree/930876154d4296a366ba2ca179c227c6663cc55b
https://github.com/refractedlabs/cosmos-utils/tree/1971f429ccc868ebf3a0a428c2d6bfb7fc7b1ec6
https://github.com/refractedlabs/oracle/tree/e4ec75671e829702236a1c70a1773e7d7d3d0c15
https://github.com/refractedlabs/flowtrade/tree/930876154d4296a366ba2ca179c227c6663cc55b
https://github.com/refractedlabs/cosmos-utils/tree/1971f429ccc868ebf3a0a428c2d6bfb7fc7b1ec6

TABLE OF CONTENTS PRYZM

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Overview

Icstaking

BeginBlocker

Oracle Callback

FlowTrade

AMM

Pools

The Vault

Batch Swap

Weighted AMM Pool

Virtual Adjustment Balance

Yield AMM Pool

Order System

Incentives

Pool Management

Bond

Mint

Oracle

Assets

Initialize Genesis State

BeginBlocker

Listeners

Pgov

Refractor

Implemented

Staking

TABLE OF CONTENTS PRYZM

Implemented Listeners

Treasury

Findings

YAM-01 : YAMM Design Flaw

BRI-02 : Failure of `HandleIBCTransferRecv()` Due to Incorrect IBC Denom

GEN-01 : Unexported Expiring Token List May Lead to Users' Asset Loss

KEA-02 : Potential Failure to Zero Impact Join the Yamm Pool due to The Expiring Or Expired PAsset

KEE-04 : PendingCAmount, PendingAmount, And ReceivedAmount Are Not Updated After Handling
Undelegation Reception

KEE-05 : Potential Panics When Fetching nil Validator from `weightDiff`

KEE-06 : Incorrect Distribution of Delegation and Undelegation Amount As The Last Validator Gets Entire
`remainingUndelegation` and `remainingDelegation`

KEP-02 : Potentially Unable To Exit the Flow Successfully Due to The Flow Being Stopped by the Flow
Creator

KER-02 : Centralization Related Risks

X0C-03 : Potential Consensus Failure By Non-determinism of Map Iteration

APP-01 : Potential DoS Attack As Custom Module Accounts Are Not Initialized

BRD-03 : Incorrect Calculation Logic On `totalDelegation`

BRG-01 : Incorrect Update of `hostChainState.AmountToBeCompounded`

CLC-01 : Misconfigured Transaction Commands Are Blocked In icstaking Module

CLI-01 : Misconfiguration of Expected Arguments Blocks The Commands
`CmdIntroduceYammLpToWeightedPool()` and `CmdSetJoinExitProtocolFee()`

CLI-02 : Missing FeeRatio Flag in The Commands `CmdSetJoinExitProtocolFee()` and
`CmdSetSwapProtocolFee()`

EXP-01 : Failure of Exporting Genesis File Caused by Fetching Validator Address Incorrectly

MSG-01 : Fee Is Collected From User's Address Instead of Redeem Account

ORA-02 : Variable `hostChainState.AmountToBeCompounded` Used to Compute The Exchange Rate
Includes Protocol Fee

ABC-01 : Heavy Computation in Icstaking's BeginBlocker Could Slow Down Block Production

ASS-01 : Validation of Genesis State in `assets` Module

BRE-01 : Discussion on The Delegation Rebalance Logic

BRG-02 : Non-Guaranteed Host Chain State

CRE-01 : Possible Overwrite of Denom Metadata in Genesis

CRE-02 : Missing Display Denom Will Fail Denom Metadata Validation

FLO-03 : The Claimable Purchased Token Amount Does Not Consider `PendingPurchase`

HOO-01 : Mint PRYZM Each Epoch

HOS-02 : Return Value of `GetChannel()` Is Not Handled

TABLE OF CONTENTS PRYZM

KEE-03 : Lack of Validation for `transferChannel`

KEE-07 : Potential Division by Zero

KEK-01 : Incorrect Account Number of `tokenfactory` Module Account

KER-03 : Lack of State Validation for `WhitelistedRoute`

POS-02 : Potential Unable to acquire `token-in` tokens that have not been exchanged

QUE-01 : Incomplete Inputs of Undelegation Query

REF-01 : Lack of Validation of The `RefractableAsset.FeeRatios` Field

TYP-02 : Missing Stateless Check of `TransferChannel` in Messages

VAU-01 : Lack of Minimum Liquidity Restriction in Pool Initialization

WEI-02 : Lack of Check for Weight Update Period

X0C-02 : Potential Key Collision Because Denom Could Contain "/"

ASS-02 : Unnecessary Arg in The `QueryGetMaturityLevelRequest`

BAS-01 : No Validation Of The Expiring Or Expired pAsset In Function `JoinAllTokensGivenExactLptOut`

FLO-01 : The Purpose of the Deposit `creationDeposit`

GEE-01 : Missing Validation of `ChannelUndelegationList` in icstaking Module's Genesis State

GLOBAL-02 : Cosmos Messages Need to Extend `cosmos.msg.v1.signer` Option

GO3-01 : Insecure Cosmos SDK Version

ICS-01 : Typo in Message and Function Name `RedeemInterchainAccount`

KED-01 : Discussion On `ExchangeRate` Updating And `YAsset` Yield Distribution

KEE-08 : Inconsistent Function Name `NewRedelegateMessageBridge()`

KEP-01 : Discussion On Prices Of `token-in` And `token-out`

MES-01 : Missing Validation of `epoch` in Message `MsgRedeemUnstaked`

MIN-01 : Discussion On The Calculation Of The Minted Token

MSG-02 : Equality Could Possibly Not Be Satisfied Due to Rounding Issue

ORA-01 : Possible Increase of Exchange Rate

PAR-01 : Typo in Error Messages

PRY-01 : Gas Is Not Consumed If An Error Occurs Beforehand

TOK-01 : Incorrect Error Message in The Validation of `CircuitBreakerSettings`

Appendix

Disclaimer

TABLE OF CONTENTS PRYZM

CODEBASE PRYZM

Repository

e4ec75671e829702236a1c70a1773e7d7d3d0c15 930876154d4296a366ba2ca179c227c6663cc55b

1971f429ccc868ebf3a0a428c2d6bfb7fc7b1ec6 374cad8c0f54b4f98efb6248cf434524bf2b7f65

Commit

e4ec75671e829702236a1c70a1773e7d7d3d0c15 930876154d4296a366ba2ca179c227c6663cc55b

1971f429ccc868ebf3a0a428c2d6bfb7fc7b1ec6 374cad8c0f54b4f98efb6248cf434524bf2b7f65

CODEBASE PRYZM

https://github.com/refractedlabs/oracle/tree/e4ec75671e829702236a1c70a1773e7d7d3d0c15
https://github.com/refractedlabs/flowtrade/tree/930876154d4296a366ba2ca179c227c6663cc55b
https://github.com/refractedlabs/cosmos-utils/tree/1971f429ccc868ebf3a0a428c2d6bfb7fc7b1ec6
https://github.com/pryzm-finance/pryzm-core/tree/374cad8c0f54b4f98efb6248cf434524bf2b7f65
https://github.com/refractedlabs/oracle/tree/e4ec75671e829702236a1c70a1773e7d7d3d0c15
https://github.com/refractedlabs/flowtrade/tree/930876154d4296a366ba2ca179c227c6663cc55b
https://github.com/refractedlabs/cosmos-utils/tree/1971f429ccc868ebf3a0a428c2d6bfb7fc7b1ec6
https://github.com/pryzm-finance/pryzm-core/tree/374cad8c0f54b4f98efb6248cf434524bf2b7f65

AUDIT SCOPE PRYZM

376 files audited 3 files with Acknowledged findings 2 files with Resolved findings 371 files without findings

ID Repo File SHA256 Checksum

CLA refractedlabs/flowtrade x/flowtrade/keeper/claim.go
6eb0278fd4d8ac67b79f0aea2055004455

22645b49ca3371c52a195f9733d6d6

POI refractedlabs/flowtrade x/flowtrade/types/position.go
d6ad56110752ee6f19061e0359a52af558

10f05c8eb5157f998578f8838ba31a

ORD
pryzm-finance/pryzm-

core
x/amm/keeper/order.go

537a3029fcbedb852a8f8581c34802447d

0369605bcb209cfff1eb8c3a3c9ef0

FLO refractedlabs/flowtrade x/flowtrade/keeper/flow.go
800470134d6347da1540dbffce5359116b

a7eeb5b1f2cffdc24882ce594f51b4

POS refractedlabs/flowtrade x/flowtrade/keeper/position.go
940455c702606de63f59ce2d0e21beecb1

7fc8637adc0341f977d50e822b6760

ABI refractedlabs/flowtrade x/flowtrade/keeper/abci.go
2bc4d630fca8b82badcb1aeff7a19b68299

ae93dc3df860afb8987f549ad6dd8

FEE refractedlabs/flowtrade
x/flowtrade/keeper/fee_collector.

go

6ced3e5d539ed24d67c55764ed5a6199e

832b6cd468d737a76d7606e9737a8ae

GEI refractedlabs/flowtrade x/flowtrade/keeper/genesis.go
dd34ac5f7d62170aa67eccec222ed6d515

646b515463931b9462e7b8504df7a1

KEK refractedlabs/flowtrade x/flowtrade/keeper/keeper.go
2e92b3cfd346804d9f54516649705aa06c

6bb0f574cda30e4ba5a79ecec2afda

MSK refractedlabs/flowtrade
x/flowtrade/keeper/msg_server.

go

815dac4dddf1892cd926329a0d599b315

078b11a1d080fd4929285a9defd400c

MSC refractedlabs/flowtrade
x/flowtrade/keeper/msg_server_

claim_token_in.go

ab784481234dab8b691fdeda883385fe84

88f1bd40a3877e3afa80a7f4b93941

MSL refractedlabs/flowtrade
x/flowtrade/keeper/msg_server_

claim_token_out.go

442671c9ca42a2a7190a8f7aae29ec9f59

8fe2f3040aab78d72302d49b833420

MSA refractedlabs/flowtrade
x/flowtrade/keeper/msg_server_

create_flow.go

834c0d2c23de289ac522f6e076fd081b04

5c0f6d5eccacbc7c960d1d2e7dfb79

MSX refractedlabs/flowtrade
x/flowtrade/keeper/msg_server_

exit_flow.go

84e8a52f9c09dc7a48a76bf2efc04dbf7c7

0375cf39c85ecc601a7277c18f381

AUDIT SCOPE PRYZM

ID Repo File SHA256 Checksum

MSJ refractedlabs/flowtrade
x/flowtrade/keeper/msg_server_

join_flow.go

69a81c65f06055827ba057aad70aacb0a

7b49c2cf668f165e8337889c7559721

MSO refractedlabs/flowtrade
x/flowtrade/keeper/msg_server_

set_operator.go

b69dc80c571c5bf4069aac9964455b69c3

1f6e29081d48dcf3a857b6cfc0a484

MSF refractedlabs/flowtrade
x/flowtrade/keeper/msg_server_

stop_flow.go

d419f8eb55111907a1789d9df5e31dea88

9e19745114c1d7a41b201391973a70

MSM refractedlabs/flowtrade
x/flowtrade/keeper/msg_server_

update_params.go

88b4e1aca1f325d7f3416e4adc985be357

167c948df939e0f32e8c638a702a28

PAS refractedlabs/flowtrade x/flowtrade/keeper/params.go
0f8a17106dfe29568bc45b0d55ee0803c6

b3773fc1178a35dc035b0627288c72

QUY refractedlabs/flowtrade x/flowtrade/keeper/query.go
1da9ff9f864ae3391e0abf30a15b72ef87b

729bc5a6dd30d65295ee8aceeb15f

QUF refractedlabs/flowtrade
x/flowtrade/keeper/query_flow.g

o

1f60989b62c9264df547358c39acab888e

24386f1b48bcb7a91dd82986bb220f

QUP refractedlabs/flowtrade
x/flowtrade/keeper/query_param

s.go

a85935414935e83f627de6e46471b2cb6

92ebbebe63039e255c51834a390f257

QUO refractedlabs/flowtrade
x/flowtrade/keeper/query_positi

on.go

7ebd815ee57e0b5bfba622116b2fe8f410

7c7e6c10460460db7c37bf6af03cfe

COE refractedlabs/flowtrade x/flowtrade/types/codec.go
3c4081129527dbbac7a23308a02198575

0c7cf3702a48b4777d4317a89534c08

ERO refractedlabs/flowtrade x/flowtrade/types/errors.go
7c07a65cff0c11bd38fe00666cb58f23edb

9cc2ceac0d8728ee451e37adb3d11

EXT refractedlabs/flowtrade
x/flowtrade/types/expected_kee

pers.go

64052d816b47d70feb9f1e33a820db623e

424cbbfc33c101c29d092cfaf4d5d2

FLW refractedlabs/flowtrade x/flowtrade/types/flow.go
3d3c4b43bb13e5af6565e7128605365f06

25a647c5f1cce3f12425328ee186da

GET refractedlabs/flowtrade x/flowtrade/types/genesis.go
013afe064abf6f918cc3f93872acbab2965

0d8695f58ef49e45eaeb3291d3606

KEF refractedlabs/flowtrade x/flowtrade/types/key_flow.go
290d1e58d37ffd695e202a96f7999b993b

5219abeb5a88ca85fc4159ad137c3a

KEO refractedlabs/flowtrade
x/flowtrade/types/key_position.g

o

1da0e9fcd8e4800aefd4f3316d5e2215ea

d5248eae76f53ab5a76cfedf95dff6

AUDIT SCOPE PRYZM

ID Repo File SHA256 Checksum

KET refractedlabs/flowtrade x/flowtrade/types/keys.go
e08fc68be8eedb5c396ca047b6c24dae5f

bd1cd13d711570ce4895bf053b6617

MEC refractedlabs/flowtrade
x/flowtrade/types/message_clai

m_token_in.go

455c506bbefda9f3c22b2b8116e3af38c57

c1479a3ea6df06610fc1fc03ccf60

MEL refractedlabs/flowtrade
x/flowtrade/types/message_clai

m_token_out.go

b49812165d4736d9ba68d6167d9047cad

ab4c66b33f3be5f136cb9d8d43bd48f

MEF refractedlabs/flowtrade
x/flowtrade/types/message_crea

te_flow.go

3795d857134a778e81dce03664ac632f9

781188a316e728d9d2d74e806b32033

MEX refractedlabs/flowtrade
x/flowtrade/types/message_exit

_flow.go

e90a41c1d22d5a77b4bc63252c20042b7

260c05610126c88e9764ae295e03c72

MEJ refractedlabs/flowtrade
x/flowtrade/types/message_join

_flow.go

5de705230bcdb52f4d3baf3ac1db24bee0

d9eb71452bee6aaf613b4e4ad6025a

MEO refractedlabs/flowtrade
x/flowtrade/types/message_set_

operator.go

cd2c14f71de166fd7946a9cde5304ddc6c

8792cfc74e9be1c82772bbd767b3e6

MEW refractedlabs/flowtrade
x/flowtrade/types/message_stop

_flow.go

9e2dd6d48f6d185278ba4e8011861e5fff7

2aab58dce7e5136ab990e3de408b0

MEM refractedlabs/flowtrade
x/flowtrade/types/message_upd

ate_params.go

4dbec3faed13f0b6fc046d4af020e5438cb

de612ba0edc0f12a1eb16700adc9b

PAT refractedlabs/flowtrade x/flowtrade/types/params.go
b277c03fe6ce6875ada90e057acb1e3d54

4ee14b05065e5e3fa1ab1f5bbd8fb6

TYE refractedlabs/flowtrade x/flowtrade/types/types.go
7c347886dbeed39a02f9f23d860ffb46fa1

da70151c2268a6289325c55acf415

MOE refractedlabs/flowtrade x/flowtrade/module.go
739658ebc5fdfe54fe3c4cf6f7fc1928dcbf5

76b050f5dc97220eeaa1fe137b0

ABP refractedlabs/oracle x/oracle/keeper/abci.go
9730c8aba4881a614c1f3ab0390368e30

348a1ff1a0433f01cfbb756c137b5ec

BAL refractedlabs/oracle x/oracle/keeper/ballot.go
5893b53af3a4b9947c8eb8d0cbfe1b6609

0410e5dc52af02f6a0f40f9b0e5af7

CAL refractedlabs/oracle x/oracle/keeper/callbacks.go
a457bc0dd37cb22ca4072d352ebc886a3

a1f7e6294d170111971ddff8d36699c

FED refractedlabs/oracle
x/oracle/keeper/feeder_delegati

on.go

6fad95bea1b892af8f87cd344518c54d22

3fbcebedebff611427300f93e1cca0

AUDIT SCOPE PRYZM

ID Repo File SHA256 Checksum

GEO refractedlabs/oracle x/oracle/keeper/genesis.go
b93d146709e7d2ea0d45893d84329a14e

497102f79dc417d5ae8c0760f896df9

GRL refractedlabs/oracle x/oracle/keeper/grpc_query.go
c7dd3e27628a7e2086c05a01b9597fb75

4427ca684bec508e14430756c70a708

GRF refractedlabs/oracle
x/oracle/keeper/grpc_query_fee

der_delegation.go

f60900bc260712206bd88ab881217e587

8639bd94065fa8ae76c825fd3163031

GRT refractedlabs/oracle
x/oracle/keeper/grpc_query_mis

s_counter.go

eeeebe4ab49d6d9b9718ede15e4a9ee09

d4441889c9da0b09c805e3ef00e0f7a

GRV refractedlabs/oracle
x/oracle/keeper/grpc_query_ora

cle_pre_vote.go

0e7b577637b7ae65218d5fb55ebad6228

19120a13e92afcc6742665f0151fcb5

GRX refractedlabs/oracle
x/oracle/keeper/grpc_query_ora

cle_vote.go

363c8f6bfdba8360725c0a7fe26e7bd5eb

1d3fa859f4e50b68382fd94840395e

GR4 refractedlabs/oracle
x/oracle/keeper/grpc_query_par

ams.go

599e655e3fc0ed3cf2069cfd5cfe323b6d9

3e6dc398ead27c60d03e0b4065db7

KE5 refractedlabs/oracle x/oracle/keeper/keeper.go
608df0790b3b52d3151a94e3eddd0c729

9e47221addebdad90dbe649308e214e

MIC refractedlabs/oracle
x/oracle/keeper/miss_counter.g

o

1307c812d0ee52ffba92f8991dce9ac1c8b

7acb8a5d52e295ee60400b743178a

MS6 refractedlabs/oracle x/oracle/keeper/msg_server.go
7132025645a73d9cc7e2e50b3eff592203

47a967e10f8406fe7b4eeda51569d4

MS1 refractedlabs/oracle
x/oracle/keeper/msg_server_del

egate_feed_consent.go

f0a2f031ecb01c7182b98a48afceb426d53

cad4d1f119b98a5365f0eb5e77cc0

MS2 refractedlabs/oracle
x/oracle/keeper/msg_server_ora

cle_combined_vote.go

0ef17a89c7c89df220ab9c8058a67fc2d19

80b8f56e5edaefd7e666a6db190db

MSH refractedlabs/oracle
x/oracle/keeper/msg_server_ora

cle_pre_vote.go

73ce51015286890811c2db52788a9047c

20c8803cfe903468836f0e48cebb411

MGS refractedlabs/oracle
x/oracle/keeper/msg_server_ora

cle_vote.go

c245eb17db19e15beefb8e9bbc5ad9329

8f2d92ea50e5be21c0843c4950e3cae

MGE refractedlabs/oracle
x/oracle/keeper/msg_server_up

date_params.go

738192bbb4382d863d47f8e8a60aa6ee6

7c5c594af66b64fce8c72b3039cde14

AUDIT SCOPE PRYZM

ID Repo File SHA256 Checksum

ORL refractedlabs/oracle
x/oracle/keeper/oracle_pre_vot

e.go

65510d7c946b8552dfa1c82e1930d07ff20

38a5f1198bc08355157311178eb3c

ORE refractedlabs/oracle x/oracle/keeper/oracle_vote.go
8ab5d4a19509c582e5e977c2c74986dc4

8cec86cb19b0f1ca84bf73d7c14cf5c

PAO refractedlabs/oracle x/oracle/keeper/params.go
92e46d246bac778edb6e672498d41054d

ca71cd19699378c7d5e6bf723646ccd

REW refractedlabs/oracle x/oracle/keeper/reward.go
ad63b97aabd76c95c827aab7e2a0f5df73

b88e0c55723b045cb870157ff8f857

SLA refractedlabs/oracle x/oracle/keeper/slash.go
9242475b6b37e07ea752b2851622681f1

c5a56f9ff029c600fe688edcb2cab48

TAL refractedlabs/oracle x/oracle/keeper/tally.go
802e986443a91e3fb0a379e729b10bb32

8b78653d62fe7edd811720de1931402

VOT refractedlabs/oracle x/oracle/keeper/vote.go
940c7a7ce5db2a79d4a96733d4eee6b4e

a18da1daa59115032c22ec031187cce

VOI refractedlabs/oracle
x/oracle/keeper/voting_period_ti

me.go

bf2ddf106975b1270b5dbd523f0e277ada

05c40f3ad69a5be4d551d64dd7c52d

MOR refractedlabs/oracle x/oracle/module.go
45f95a533bb3e45b5af23750b431af5c27f

e12d19f0fbf2ed9ebcaea9321c6b8

TYO refractedlabs/oracle x/oracle/types/types.go
7c347886dbeed39a02f9f23d860ffb46fa1

da70151c2268a6289325c55acf415

PAC refractedlabs/oracle x/oracle/types/params.go
4a4f0708fee19412829f4a61ed45a93f5dd

96af76e5ba81598e5465b1def10e3

ME5 refractedlabs/oracle
x/oracle/types/message_update

_params.go

ca2bff9bf149fb5b99d9c1394988dcd96fc6

d5bbc14089269c3f14d4de5dfc91

ME6 refractedlabs/oracle
x/oracle/types/message_oracle_

vote.go

02dd86989d90a607f10572a4b0fe7d8ab3

be29c419d4fd32207dfb89705422c6

ME1 refractedlabs/oracle
x/oracle/types/message_oracle_

pre_vote.go

fe6b3cb0e6daa89a3493fe1afc632953ba

617c6b19631502a1f923d8ca9dc69b

ME2 refractedlabs/oracle
x/oracle/types/message_oracle_

combined_vote.go

1aefdfa4d3987de94a7c1eb7f5c63ff773d8

ec465457ef057306194cb2081276

ME9 refractedlabs/oracle
x/oracle/types/message_delegat

e_feed_consent.go

110df189dd108488f0a255e8e67f8be698

2dbcd2c6026378ee486d2bd783ca49

AUDIT SCOPE PRYZM

ID Repo File SHA256 Checksum

KE6 refractedlabs/oracle x/oracle/types/keys.go
ffb17a9c6eba9f34c01521d7098de8bb768

9a34895311234b8d3a2dd996300c0

KE1 refractedlabs/oracle
x/oracle/types/key_oracle_vote.

go

d80cfc2066f1e0cead8018a5dd5e80ab13

b471f6289fdeac0df4ea2a812e5ebc

KE8 refractedlabs/oracle
x/oracle/types/key_oracle_pre_v

ote.go

99b53a228e69e248362cac9f01096ad22

8a233f222fa882aada62b75c9b1b32e

KE2 refractedlabs/oracle
x/oracle/types/key_miss_counte

r.go

474f8fd1890c75b0eac608fea486c428789

60726315ecb0faf882012a8df6775

KEG refractedlabs/oracle
x/oracle/types/key_feeder_dele

gation.go

0cee6223661659ce38c7dda14022af1049

f33290b19c37695a7d7ee0a3af1f14

HAS refractedlabs/oracle x/oracle/types/hash.go
6cdc92fa0aa9029f68563d0e863a72e4ab

cd059fc4784fd35ab4da2e3da5bfcb

GEL refractedlabs/oracle x/oracle/types/genesis.go
a2a7325be5423e650d7f0a751d6237248

38953715e2eac7b6e23d36233a67c91

EXS refractedlabs/oracle
x/oracle/types/expected_keeper

s.go

99336170c9fde5d38a62ad19485e77d6a

c0ccaa5dfbbed67b41cf745931a017c

ERP refractedlabs/oracle x/oracle/types/errors.go
b4cf4ca83a9144ba7c8a5dc94cf7dd355e

4852044f12982f34ef845d7ef8cc6d

COP refractedlabs/oracle x/oracle/types/codec.go
7aea64dbaa4abb8785f8a9f0bbc9c6920a

511b5860896c7acda5e50c7b2383cd

BAO refractedlabs/oracle x/oracle/types/ballot.go
3ce17e906867e0b65f397a45fba40f7d29

6930f8f15643ee947d036cb9d2e29e

ORV refractedlabs/oracle
x/oracle/types/oracle_vote_callb

ack.go

b1e5d65a74bfe088b802d77232adb024c

da8052b64109b3f17b91a6da621b058

ORO refractedlabs/oracle
x/oracle/types/oracle_pre_vote.

pb.go

f2608c170e84e6557692d850f8e53cb4b6

ec7c3d9e15aeef3c9475989c24fe98

PAL refractedlabs/oracle x/oracle/types/params.pb.go
85dec1ba41acdcde7ea2be6d53e7c3fbc8

f9e1fc5e34a962a80f7ccbfbfe1f5a

QUS refractedlabs/oracle x/oracle/types/query.pb.go
0fc30619519546fcb99332fa4f5f75608a8c

6350627d50a6f460b5f68bda37a1

QUW refractedlabs/oracle x/oracle/types/query.pb.gw.go
d1b03e4fe07d1a7bb5cf8065f0bbe20d50f

e93bca8aab45a7db8c72a442429e3

AUDIT SCOPE PRYZM

ID Repo File SHA256 Checksum

TXY refractedlabs/oracle x/oracle/types/tx.pb.go
7d1bfb4d0c729d0c8e7c5967c1dc924446

3621682e2431bf748edb227476abe9

ORT refractedlabs/oracle
x/oracle/types/oracle_vote.pb.g

o

f47180e704ef3beb035f07edaee225e5c2

7b0137f1b704582a074a7c31b6496e

MIO refractedlabs/oracle
x/oracle/types/miss_counter.pb.

go

277c960ccd2f6a650b2fae3f016e35ad04f

2771ea1db6df409012cc93d6b217b

GOE refractedlabs/oracle go.mod
7e3f48e8350f81941225704f2ddba01030

eda7d902fceca280870607bd42a715

ENC
refractedlabs/cosmos-

utils
app/encoding.go

5e3679c70393a83f61a63ab50bce3b80b

7f382e5a770690899f3e8eb063fac43

ANE
pryzm-finance/pryzm-

core
ante/ante.go

91b10ca8346fd94a4f8142f2618269bfc80

7c8a4c9c7e2626a281fc53ae129ab

END
pryzm-finance/pryzm-

core
app/params/encoding.go

e1b66751bc0c2fad0ab27432d0815223dc

5dfc1207ad2e28259df6141f769f82

APA
pryzm-finance/pryzm-

core
app/app.go

238b688d5ba06689af3b0178eb98323bd

0afab109536e78a59efa325c29c03ce

AST
pryzm-finance/pryzm-

core
app/asset_manager.go

b8943515b22df0284de2c687018255650

7ca3927e13c550d303f8febdc75ae65

ENO
pryzm-finance/pryzm-

core
app/encoding.go

2ef97bd4eaa6a7e68042f246252baec6a5

ab1ab45864d4ee8c90e69bdeb0a8ae

EXO
pryzm-finance/pryzm-

core
app/export.go

f0ca42dea27987807240aa2d1fbe94c341

12e52a7b4e4de1241bef70b9f67e24

FEC
pryzm-finance/pryzm-

core
app/fee_collector.go

366ebcdd8ad014c1e4f5623a2816fc1fb30

151a287cbfcbad10db613652894b5

GE0
pryzm-finance/pryzm-

core
app/genesis.go

fa720055e77331d79edf6ea877ea4cc3ab

4cbee282681b10f77143e77f82b2c4

SIM
pryzm-finance/pryzm-

core
app/simulation_test.go

fe1c99d512c57fcb55777b2139bd7b33f8a

6696be895c96a94bd6cc31ae41a95

WAS
pryzm-finance/pryzm-

core
app/wasm.go

5d9441817db99b89adc34e7347cff6f353d

08b8f137394eea1e2bbce9d2e3413

AUDIT SCOPE PRYZM

ID Repo File SHA256 Checksum

ABS
pryzm-finance/pryzm-

core
x/assets/keeper/abci.go

41b7b501a8873bd873179748e8976699f

e0439efdde41ccd4be5cec6883efc7f

EXN
pryzm-finance/pryzm-

core

x/assets/keeper/exchange_rate.

go

4ad13c420cab020bc782b0754f3bb58678

a115b7988c00e8ee2a98d6ecd4ed44

FET
pryzm-finance/pryzm-

core
x/assets/keeper/fee_ratios.go

5a196f8d948eb0ddcdd617e4f066b9aa54

757faf305d9a90e10cc1fe92491f7b

GE5
pryzm-finance/pryzm-

core
x/assets/keeper/genesis.go

4e302d93d90834670187cfb4bbb354f51b

7bb3364f66d5a66e439b1b95cc5669

GP5
pryzm-finance/pryzm-

core
x/assets/keeper/grpc_query.go

1ac9fdce2c3fc78a457c0465988b8f75997

2107f28917036d6cd7c6d133b6cab

GPN
pryzm-finance/pryzm-

core

x/assets/keeper/grpc_query_ex

change_rate.go

6a968c6dc0d6654f06df14c92c56833bb2

962c45c2cb1a1f00535044296ba3c5

GP9
pryzm-finance/pryzm-

core

x/assets/keeper/grpc_query_ma

turity_level.go

49b0c2adb1b1daa5068483f290213954a

80f84f96cc5be0cb1272d20d0081268

GP6
pryzm-finance/pryzm-

core

x/assets/keeper/grpc_query_par

ams.go

1d8cc8c79747e2f233a31e230166da88e8

0da2ddc94ad50e7fb3e656d16a4913

GP2
pryzm-finance/pryzm-

core

x/assets/keeper/grpc_query_refr

actable_asset.go

16510e92f13c89af90b4921fd0c689a85fd

cbaa5e26c06e16e0740e564107cd3

ICT
pryzm-finance/pryzm-

core

x/assets/keeper/icstaking_listen

er.go

57578af0bca466b0cf79fb48fdd54591054

e107ee537c3f9cdffb4ba345b2ac9

KEZ
pryzm-finance/pryzm-

core
x/assets/keeper/keeper.go

cdb65110dd4efe00ae00ffb3572381121d

21fde95d04c57908a394c694c996cc

MTU
pryzm-finance/pryzm-

core

x/assets/keeper/maturity_level.g

o

b8f064e295d525acf0230f713bcad4b5f97

72ca8a4955a3bea1f9ca2f52d2a0f

MR4
pryzm-finance/pryzm-

core
x/assets/keeper/msg_server.go

d85043aa23e13109014111a4e40d92b43

9d947f287052a5f6ee7b161425bfd26

MRI
pryzm-finance/pryzm-

core

x/assets/keeper/msg_server_dis

able_asset.go

f6b9c0a635cb50d2e2f4fb8a3a1bfe238e8

28237c0d1333c181d007d48815835

MR8
pryzm-finance/pryzm-

core

x/assets/keeper/msg_server_re

gister_asset.go

6366bda318e436de414806d40ccda95ab

4c56fad1fd57ccb9d61f30e9d7d70fa

AUDIT SCOPE PRYZM

ID Repo File SHA256 Checksum

MR0
pryzm-finance/pryzm-

core

x/assets/keeper/msg_server_up

date_fee_ratios.go

fddccdf5701eedf14af1124d2cbae87e2b4

7e8ad5882def82e1680d944de6f6d

MR5
pryzm-finance/pryzm-

core

x/assets/keeper/msg_server_up

date_maturity_params.go

8c59d0aec2c03288359b4718e15124d47

31707fa17bcbeb1b010dc1f3cf2cef2

ORS
pryzm-finance/pryzm-

core

x/assets/keeper/oracle_callbac

k.go

d3a7eb59b89e7502ed9d2f7789a2268a6

92b55c3d1e10b9ab5150d1bef7a1b4f

PA8
pryzm-finance/pryzm-

core
x/assets/keeper/params.go

63a961bf89368c77da10f3366e32f14382

cc127e269e9735a0969eec74d4da21

REA
pryzm-finance/pryzm-

core

x/assets/keeper/refractable_ass

et.go

1aa61dab494dbced6ee8e0695db66fe0f2

eab9dfd8f9ce25216c4a073144b6f0

MOL
pryzm-finance/pryzm-

core
x/assets/module.go

6cdf95593d6a397f77b817101fba92a1d8

d086b21e48d249cbab2b5e9f68fe67

ABT
pryzm-finance/pryzm-

core
x/icstaking/keeper/abci.go

555cccdbaf46f96006215f082cbf6fd1b0d5

4712a39af8acbf27e97416b6ff9a

BRK
pryzm-finance/pryzm-

core
x/icstaking/keeper/bridge.go

d45820548e93f86dc91787976ed87af29a

bc0533188698be8d2c4614dba00ae4

BRO
pryzm-finance/pryzm-

core

x/icstaking/keeper/bridge_comp

ound.go

5eb196f4237d047b545b0babbc029874b

52973ae5b8d452017c88b56ccbda76b

BRL
pryzm-finance/pryzm-

core

x/icstaking/keeper/bridge_deleg

ate.go

a4cc9514a91423db2469a17a40088c1c5

64e94d16e8fa21a5bd615b66c3b5c2b

BRA
pryzm-finance/pryzm-

core

x/icstaking/keeper/bridge_deleg

ate_transfer.go

e6fa4bf7be129f0d06b1656f429cc94cc76

3a72b8822a2caff8c7620238574ea

BRP
pryzm-finance/pryzm-

core
x/icstaking/keeper/bridge_ica.go

1a9b6d488b6752655a794a6c73c929ec1

97e5e51e06be36f14f80f4dfaaf27c7

BRN
pryzm-finance/pryzm-

core

x/icstaking/keeper/bridge_redel

egate.go

cc750b843f9b07d493afa750b23812c2b1

d2f4459be3e1687552f6a110fabe79

BRH
pryzm-finance/pryzm-

core

x/icstaking/keeper/bridge_set_w

ithdraw_address.go

f3747294c13f7cbd3bf219bd82f12d41c71

5ddf74811627d4df10e778bba7dec

BRX
pryzm-finance/pryzm-

core

x/icstaking/keeper/bridge_swee

p.go

443d1f13dee50063de51252364fd49467e

568f6b9a37079129c70e93896c655b

AUDIT SCOPE PRYZM

ID Repo File SHA256 Checksum

BRF
pryzm-finance/pryzm-

core

x/icstaking/keeper/bridge_transf

er.go

1033efc7855ea9dd7f122279f93de2f11c9

e817e0bfcc4568353f26f58c0b0c3

BR3
pryzm-finance/pryzm-

core

x/icstaking/keeper/bridge_undel

egate.go

7bcf1634ed19f516bd2376a40af1e1d9b6

df71095c470e1fed8b71b745ce15e6

DEE
pryzm-finance/pryzm-

core
x/icstaking/keeper/delegation.go

6c5dc4412495c645d244a19331ec6b8d3

d5cdc76c715ae85698ef0a120c03ffc

EPC
pryzm-finance/pryzm-

core

x/icstaking/keeper/epoch_count

er.go

989aabb700d37934fdb65783e69632e43

173a266b87c53578b00daf7b3c4448d

GE9
pryzm-finance/pryzm-

core
x/icstaking/keeper/genesis.go

32ed8ee98eecc396dbf79835bb960b35ce

e60e13200bd990d919502a70c5d0e0

GE6
pryzm-finance/pryzm-

core

x/icstaking/keeper/genesis_test.

go

07dfbee408390c99567684b803464afbc3

2e6e862085051a4e68e91a2fce9e34

GPZ
pryzm-finance/pryzm-

core

x/icstaking/keeper/grpc_query.g

o

134ad99eaf8c0f59c387fb223b07eb2c08b

4e45f2c45ff243412fd200bf8e9b2

GCQ
pryzm-finance/pryzm-

core

x/icstaking/keeper/grpc_query_

host_chain.go

4afdaf5a48392d4880e295214bd301ee42

53a87c47d2a41dbee89831b607a5d3

GCU
pryzm-finance/pryzm-

core

x/icstaking/keeper/grpc_query_

params.go

7fd1a798fe065f7516af62f45935b6be943

bf74dbff14d2d4cb3cda2259c93ea

GCE
pryzm-finance/pryzm-

core

x/icstaking/keeper/grpc_query_

undelegation.go

23c87628f302afe8fe7b01047fb3c39ff964

db27e5b113da3eb1dfbad10ff51c

HOH
pryzm-finance/pryzm-

core

x/icstaking/keeper/host_chain.g

o

ba1549a9442c706621eb44be3be043a82

b3706490bc4a9d615e3b6ab8b372c2f

KPI
pryzm-finance/pryzm-

core
x/icstaking/keeper/keeper.go

2ab7b3a930be1b5f373b1167aea781ee7

ad19c86f10b19b7fbf210158d97ad1b

KPC
pryzm-finance/pryzm-

core

x/icstaking/keeper/keeper_ica.g

o

a622a9ff4a952c722e785f129ece18fed0a

83b4aeb71732089e4d711285011ff

KPN
pryzm-finance/pryzm-

core

x/icstaking/keeper/keeper_test.g

o

50a462b01bfcbca61b66660c6e73acf386

d3b0c439a3b53744e7d1633d236fad

MR9
pryzm-finance/pryzm-

core

x/icstaking/keeper/msg_server.g

o

7728999f07aa251e4831b52325131b0be

7992096114077a3eeb13bda2ffee82e

AUDIT SCOPE PRYZM

ID Repo File SHA256 Checksum

MR6
pryzm-finance/pryzm-

core

x/icstaking/keeper/msg_server_i

nstant_unstake.go

9dfd0be4fdc673412351b5e5836931fa84

639f66994c05b3298450b338e4c290

MRL
pryzm-finance/pryzm-

core

x/icstaking/keeper/msg_server_

rebalance_delegations.go

e717bd120a90a01ea3a0eaa5cf59bfa2bf

a77acb8a25a5fc374cdfe8cf0a90a7

MRH
pryzm-finance/pryzm-

core

x/icstaking/keeper/msg_server_

redeem_interchain_account.go

dc3632aae3fd87217ffae5d3d0ed797b33

09f5af3ab5805fa0ce3651e64c8ccd

MR2
pryzm-finance/pryzm-

core

x/icstaking/keeper/msg_server_

redeem_unstaked.go

41e61f74bd5de4136d4b4547726e7819e

9c34bd920cc2f232dc6b9a9ba134de3

MRZ
pryzm-finance/pryzm-

core

x/icstaking/keeper/msg_server_

register_host_chain.go

68a12fab80627e7a07454e3797e3b743fb

5421869a5d97c7675df7c302ef7902

MVE
pryzm-finance/pryzm-

core

x/icstaking/keeper/msg_server_

stake.go

86e021597d777806b197e5b2982b852e8

363b43e7282398b45155c1c1fc01bf6

MVR
pryzm-finance/pryzm-

core

x/icstaking/keeper/msg_server_

unstake.go

1eb429e3f1509a974ccbf6796add23c729

34012e4b492b10bb786a2a15eda597

MVU
pryzm-finance/pryzm-

core

x/icstaking/keeper/msg_server_

update_host_chain.go

0cc3951f9c72dd79962dae68c6ce575e52

28a3b87da6749c550d1efad5054910

MVP
pryzm-finance/pryzm-

core

x/icstaking/keeper/msg_server_

update_params.go

3793833565e4e3980d50ca155b9de884f

dc0b48ccc86029c200771240fe5fac1

ORN
pryzm-finance/pryzm-

core

x/icstaking/keeper/oracle_callba

ck.go

e59442d082d91fa99bb0888a21dea0166

64a717c52608fd6982333cd71b73b14

PAN
pryzm-finance/pryzm-

core
x/icstaking/keeper/params.go

12281fbba26984d87117943bbc98e0f4c0

a9528bede2237d529a8e85389d4c40

REK
pryzm-finance/pryzm-

core
x/icstaking/keeper/reply.go

68c7c8711a46ce1fb9d941b4f4c5aef8ee2

622dfaf5dcdf4b9d0f89a3fd079cd

UNL
pryzm-finance/pryzm-

core

x/icstaking/keeper/undelegation.

go

774d6d1ebfbdb9b76517731a5b2669617

303b17ee44e481802b99f13fee2150a

ABN
pryzm-finance/pryzm-

core
x/incentives/keeper/abci.go

5dff37b0fdf330b3b8e392b31d16dfae3c2

82581eef2045220553f9f57ca3fe6

BOK
pryzm-finance/pryzm-

core
x/incentives/keeper/bond.go

8a909b962af5bf897d2e800bf40d325452

8f7aa8ca73f59d104898ae81ff9e1e

AUDIT SCOPE PRYZM

ID Repo File SHA256 Checksum

GE2
pryzm-finance/pryzm-

core
x/incentives/keeper/genesis.go

feb278aecb619ec18b29e252c93a041dd0

19517fc0b4d0738e0a632c23221bdf

GCR
pryzm-finance/pryzm-

core

x/incentives/keeper/grpc_query.

go

62126e436840433a7ba5a8adf3b1f2eb27

e2d5cbc0962ccd633b3805fe096124

GCY
pryzm-finance/pryzm-

core

x/incentives/keeper/grpc_query

_bond.go

29cabc72fc88a184e6efa0a29e77e8a9c5

602812d9e12a8498c234e0eed6fbe4

GCP
pryzm-finance/pryzm-

core

x/incentives/keeper/grpc_query

_params.go

76f3b949c3687ae93408c9bbd1677fb298

66f83c57ad81d197ecd2f87234bffe

GCO
pryzm-finance/pryzm-

core

x/incentives/keeper/grpc_query

_pool.go

056aaa1a8f3f6ef418d10b43a2e36d8c06

6f53d9aedec316b43bc3ccdd718b9d

GCN
pryzm-finance/pryzm-

core

x/incentives/keeper/grpc_query

_unbonding.go

b0bf52b52fd46a4831b055a215ac623b31

3be8d1385bfb3388efd9ff6c6c1216

INE
pryzm-finance/pryzm-

core

x/incentives/keeper/incentivize_

pool.go

058de9acc6f8db5ae4f7047166abfc6923e

bf6e851a5c5bc19a2b156d55a0424

KPV
pryzm-finance/pryzm-

core
x/incentives/keeper/keeper.go

657ad75262bde9ac7f7d79951af42aec15

4adc6e33135fc44e60aaaac64452dc

MIH
pryzm-finance/pryzm-

core

x/incentives/keeper/mint_hooks.

go

b346588b357c1d13dccbb7035cd0059a2

0073e4444c02a6c55391d0ad5413cc1

MVK
pryzm-finance/pryzm-

core

x/incentives/keeper/msg_server.

go

f6f79b7b32d85cff070b38a1b1dc091d0c5

6bc010e87b24cf7096d97f1095957

MVB
pryzm-finance/pryzm-

core

x/incentives/keeper/msg_server

_bond.go

c8e54fd2f7a4676155db040f458c0a296b

077cda537f6ee3bd3c26009afd6665

MVI
pryzm-finance/pryzm-

core

x/incentives/keeper/msg_server

_incentivize_pool.go

5652ed64d791407eedaa95dfa97fe9f86f1

32a33393c63b7592617effb6edff7

MVO
pryzm-finance/pryzm-

core

x/incentives/keeper/msg_server

_pool.go

231266ffa6512461b5df0c60c9bd0f02ea9

65477cc10063b9590c75e5c566463

MVL
pryzm-finance/pryzm-

core

x/incentives/keeper/msg_server

_pool_test.go

bdb6fc6e5faf0d48b9eb27bf929aec5b000

8d02b6b63954db6a0b6ff35e2a1c2

MVN
pryzm-finance/pryzm-

core

x/incentives/keeper/msg_server

_unbonding.go

cf01cce73105e0fa2a95e4946e8de93ba8

a0f561604db0d55aae0ef6d0825e55

AUDIT SCOPE PRYZM

ID Repo File SHA256 Checksum

MVD
pryzm-finance/pryzm-

core

x/incentives/keeper/msg_server

_update_params.go

3d0873e83770b88efa58ec6b1d150921f5

4f1f1684673dd8e26666d38148336d

PA0
pryzm-finance/pryzm-

core
x/incentives/keeper/params.go

f5e2a6fe76356ef793fb7672442e5a48836

16296744fa25e0e89d1f67997c894

POP
pryzm-finance/pryzm-

core
x/incentives/keeper/pool.go

e6e4a156c5711dfeb011afb612f2da4c9a

64c08a9c527a15ec1b43ddb6b940c4

UNI
pryzm-finance/pryzm-

core

x/incentives/keeper/unbonding.g

o

1735a0dac6c2de2318f8affc520c893f093

8a70afdc0326e3c10cf6e25d59955

ACN
pryzm-finance/pryzm-

core
x/refractor/keeper/action.go

edb8a553b008300641da1a26209f21a0af

2446d460e047784e9d7fa80fa4d965

GEZ
pryzm-finance/pryzm-

core
x/refractor/keeper/genesis.go

60bd2f7f42aa65a18bca1d3450e262d840

d3f7bcb349882f6bfc8267e0d7c8bd

GCK
pryzm-finance/pryzm-

core

x/refractor/keeper/grpc_query.g

o

c3c2e44c59401a3b2288b6b05d469fa27a

02620f5914cf61ddd9ce520f054c7e

KPO
pryzm-finance/pryzm-

core
x/refractor/keeper/keeper.go

9e0472792c6a31b327304f761c08efc25d

af7ca86c837f4b5898a00160b36281

KPX
pryzm-finance/pryzm-

core

x/refractor/keeper/keeper_actio

n.go

38a15b25aa74b5080299188c59779e7cc

b709bca0bba7798e076d511d62e6787

KP3
pryzm-finance/pryzm-

core

x/refractor/keeper/keeper_asset

_state.go

aaabf2dbab976b17a2f433becfb77a278c

eb6f9deaec59bb2f3a6db92b32f456

KPB
pryzm-finance/pryzm-

core

x/refractor/keeper/keeper_distri

bution.go

d9d6bacaccce2b33910e7f2dca452b8fe2

9923d61706e817ff8dba5f4d4f0b7b

KP7
pryzm-finance/pryzm-

core

x/refractor/keeper/keeper_redee

m.go

79caead7dd2f812f753fbca1329380903e

0145a446b80b648ede06e4f0be9369

KP4
pryzm-finance/pryzm-

core

x/refractor/keeper/keeper_refrac

t.go

640c271f9eac804479f3a2c4c1983cb4c8

9bbbd12f60788d7fa4f0a0488bd645

KP8
pryzm-finance/pryzm-

core

x/refractor/keeper/keeper_test.g

o

0de7578571cb0182d3350c999e5aec241

791a5c128c6f81074fe66a8b0b2edb5

MVF
pryzm-finance/pryzm-

core

x/refractor/keeper/msg_server.g

o

dfbe3785f430cfa0deb3c5188bcfc361be5

24aef990cb166786702bfa1a83f46

AUDIT SCOPE PRYZM

ID Repo File SHA256 Checksum

MVM
pryzm-finance/pryzm-

core

x/refractor/keeper/msg_server_r

edeem.go

6596dfd4d3c6f058e0447931d3d28ae43b

f8ac423ef791a806e817c2bd4bf643

MVA
pryzm-finance/pryzm-

core

x/refractor/keeper/msg_server_r

efract.go

44e3f02f4fdd08a04f005ecb40ab34d6aa5

ad4d117efd916710a8c57b2b1e22c

ORF
pryzm-finance/pryzm-

core

x/refractor/keeper/oracle_listene

r.go

6c497218b7d47927b19a613b1805ec4d0

cb3ce6990d5b8b4bb3167bc784cc245

DAS
pryzm-finance/pryzm-

core
x/mint/keeper/dapp_spend.go

148706c28cfe6eb96e2cd424650cf61953

5bddb10bdf0459bac6ace00ccb7c2c

DIT
pryzm-finance/pryzm-

core
x/mint/keeper/distribution.go

e3efc0117b5e9e86420b2cb4cb5240dbe3

fea8a2832144e3412082e0263a2017

GEH
pryzm-finance/pryzm-

core
x/mint/keeper/genesis.go

4536686c6b2e5ed39a85cda12e12d456d

b9a7aabc353a1bae50f526918c64775

GCM
pryzm-finance/pryzm-

core
x/mint/keeper/grpc_query.go

92194ead5251df946af7a1912cbc890c0e

c669a60beec8a3521c9579dbfab9a9

GCI
pryzm-finance/pryzm-

core

x/mint/keeper/grpc_query_minte

r.go

acf7c648d72b3483e14c3f510ce0a519c4

132d28f7d4ac6315187f4c16f403a2

GCA
pryzm-finance/pryzm-

core

x/mint/keeper/grpc_query_para

ms.go

bae752253bacba415bea62ccc8edd2020

0034d66ea5a92dbd3a82659c88446da

HOE
pryzm-finance/pryzm-

core
x/mint/keeper/hooks.go

2bda3e41b06d073d2fb5a15a8975b0752

d3dba52bc9618fed29508ed91b66250

KP0
pryzm-finance/pryzm-

core
x/mint/keeper/keeper.go

810f6dc822accf88b3b232055827ca4b04

8619d038937c59397dc183e84bf130

MIK
pryzm-finance/pryzm-

core
x/mint/keeper/mint.go

06450b0da9887326d82991fe55ead7373

0b992b59102d77340619dfe49d89b1c

MIP
pryzm-finance/pryzm-

core
x/mint/keeper/minter.go

5229976196ac5418d81400d09c612bc90

39fde44467895defaaad06641648a7f

MVT
pryzm-finance/pryzm-

core
x/mint/keeper/msg_server.go

765e928b476a3a39b932f7c9828c568d5

926e8313a15de5360c9483380421af8

MVC
pryzm-finance/pryzm-

core

x/mint/keeper/msg_server_dapp

_account_spend.go

67148df8d52b73328523cd023eb721d4f6

478e63798f6cce3b28fb353ac88bff

AUDIT SCOPE PRYZM

ID Repo File SHA256 Checksum

MVS
pryzm-finance/pryzm-

core

x/mint/keeper/msg_server_upda

te_params.go

023f01b71ae533b8e1006e77f24c10556d

dffeece7978d8db8da4995ce7fa7bc

PAF
pryzm-finance/pryzm-

core
x/mint/keeper/params.go

08467295814efa03dc779e0eee97cd205

6a6928853ee7b2ab7bb3de2b1d539db

ABO
pryzm-finance/pryzm-

core
x/pgov/keeper/abci.go

6a95ae32965c6ef32a31e1d6c589e5eb5

9354b15b88d9fd94ec8c23d1ed8ee94

BR7
pryzm-finance/pryzm-

core
x/pgov/keeper/bridge_vote.go

53a322e5025956edbc84083e4cfd359aa

0ea84bb065e9c5daf97082128f41a17

GEU
pryzm-finance/pryzm-

core
x/pgov/keeper/genesis.go

3d91149eda5704c44e9d73e58e3091104

8d57ac285796d292cb9618b21f2399c

GCG
pryzm-finance/pryzm-

core
x/pgov/keeper/grpc_query.go

ac3981909d7050d995e8ff645b9c87bf85a

9d7cd72f99d5482ed9474d8e83ab7

GCS
pryzm-finance/pryzm-

core

x/pgov/keeper/grpc_query_para

ms.go

5c20dd436fe612a851969c10a9bd54fb15

3d7bafe01d137c36c934ae3e198de9

GCL
pryzm-finance/pryzm-

core

x/pgov/keeper/grpc_query_prop

osal.go

24d1bcce030435304f2aba61aeb623e54f

6d4d47eb8f5953c3bb4e4f8150dbb3

GCT
pryzm-finance/pryzm-

core

x/pgov/keeper/grpc_query_stak

ed_p_asset.go

d89f066dbd757bfad04720b1f260845e43

9619eeb0617f2a6a01c916371bdffa

GCV
pryzm-finance/pryzm-

core

x/pgov/keeper/grpc_query_vote.

go

36a254dfde51a50a5f5ce2907f03351122

58d832d2bc7075f7ca4db65b181ec4

KPG
pryzm-finance/pryzm-

core
x/pgov/keeper/keeper.go

ec82244ce7c7e0c3b51e8634bbe347aed

3ae78ad741a9e855f7d9b294edfbb59

KPL
pryzm-finance/pryzm-

core

x/pgov/keeper/keeper_proposal.

go

4563920b089ff95d3c57bc6f63b31c3b30ff

43bd9c0ffbece140734b60cbfaff

KP5
pryzm-finance/pryzm-

core
x/pgov/keeper/keeper_stake.go

d42be4a30c9e75a3301aa892807a69a1e

63305ea26c6f9365d6c4febc14f4d5d

KP9
pryzm-finance/pryzm-

core
x/pgov/keeper/keeper_test.go

81aed6193434ddf636d05d312f6cedd3a4

4a4176ac4d97dcd844357fd5174366

MVG
pryzm-finance/pryzm-

core
x/pgov/keeper/msg_server.go

b4484533632cebd1b2787daa4116fa937

be9e8c68975550a058f3e8443900034

AUDIT SCOPE PRYZM

ID Repo File SHA256 Checksum

MVY
pryzm-finance/pryzm-

core

x/pgov/keeper/msg_server_retry

_vote_transmit.go

4270d74969aae0c282337b2722177a9f0

113313580e444e49f7b3df93a2f6e75

MVV
pryzm-finance/pryzm-

core

x/pgov/keeper/msg_server_stak

e_p_assets.go

afded72e6cc6664a04523c5e20c4d0e7d4

2e98227e273f1e28b28ce4bc1a0e4a

MVX
pryzm-finance/pryzm-

core

x/pgov/keeper/msg_server_sub

mit_proposal.go

4471379ae8f807667d261bffc253c1846c6

b1c82677104f77974230d2b0cbc0f

MV3
pryzm-finance/pryzm-

core

x/pgov/keeper/msg_server_sub

mit_vote.go

649e90208182b0614eb996ea08a6615be

129072f73e4911883d7de8a2307b69f

MV7
pryzm-finance/pryzm-

core

x/pgov/keeper/msg_server_unst

ake_p_assets.go

2659bf6ba5b921e8c329e1404b9264ca1

42b178a21b0c2b1bf91045b8b8907cf

MV4
pryzm-finance/pryzm-

core

x/pgov/keeper/msg_server_upd

ate_params.go

d063cc4d2b457d5b9f9e263b25da252c10

86942478e1dab7267c193f8b7e8d53

PA5
pryzm-finance/pryzm-

core
x/pgov/keeper/params.go

2d1eed85b8bce15b9323e1760685e7aa9

37432ab1eb921ec8a485b0b13d9c0f9

PA9
pryzm-finance/pryzm-

core
x/pgov/keeper/params_test.go

5367f9ef4f0de649bdbb0064075063adfc7

e9832073f81900a8e93733690263e

PRP
pryzm-finance/pryzm-

core
x/pgov/keeper/proposal.go

4dbe2ab547bba5cacfe6ebb1f9f77b62ae

5de4ca12474ab56f0e11c925389f9c

STK
pryzm-finance/pryzm-

core

x/pgov/keeper/staked_p_asset.

go

c1ef85df11dc4424543da2753c424176f61

4e3de517a437a9e58f7b43de90abc

TAK
pryzm-finance/pryzm-

core
x/pgov/keeper/tally.go

bcddef659d2050ae9a7ce990320196cc4a

d231734b61a2f3a4ecde5c2a4e853c

VOK
pryzm-finance/pryzm-

core
x/pgov/keeper/vote.go

3a80eba8303448161ead7c68026b376e0

4efac800fd7c65cec0ed9aaad5b51d3

ABC
pryzm-finance/pryzm-

core
x/treasury/keeper/abci.go

8720fb7db5ed42dcfba2fdaca757e84dbd

1f0bebc753b60431bde99074538420

ACT
pryzm-finance/pryzm-

core
x/treasury/keeper/action.go

431e1445eb723a332c595601cc6d89158

6f184013405be4f472469ab762a22af

FLT
pryzm-finance/pryzm-

core
x/treasury/keeper/flow_trade.go

11feee56bbcdf28c25628ee03771532538

0af949b8ede232594105b13fdf396a

AUDIT SCOPE PRYZM

ID Repo File SHA256 Checksum

GEN
pryzm-finance/pryzm-

core
x/treasury/keeper/genesis.go

0185deb89dca0e3e92195c0a0ef6cbcb03

58f69ce0f0232db11a753b679b4b36

GRP
pryzm-finance/pryzm-

core
x/treasury/keeper/grpc_query.go

7a22725a570b48f3de41fd605898d4c284

f5788b54b7eb931426d880c3c403bb

GRC
pryzm-finance/pryzm-

core

x/treasury/keeper/grpc_query_a

ction.go

7400ea9bef5a341f85aaeec398721b697c

e03f488d514c6fe711edb9ff22e611

GRQ
pryzm-finance/pryzm-

core

x/treasury/keeper/grpc_query_fl

ow_trade.go

12b7b4aa7970418ff99ebefbf3f1c314c471

b35281a4969f976683b33e1e9e60

KEE
pryzm-finance/pryzm-

core
x/treasury/keeper/keeper.go

625a2e82060094a3fce8d95ce5bfe0b58c

b3fd26767e2f5b39b200f978d90a97

KEP
pryzm-finance/pryzm-

core

x/treasury/keeper/keeper_fee_p

ayment.go

f8c912d110b17432ee6db7cb09732fe868

296221cfc55f4e707a8531cc6d0950

KER
pryzm-finance/pryzm-

core

x/treasury/keeper/keeper_test.g

o

77acc4c5e5c7360ba0b4a477f1d673e737

a0fa2c431222e82b351d5d9ab42657

MSG
pryzm-finance/pryzm-

core

x/treasury/keeper/msg_server.g

o

0578ef9162cb28ba25c29c742ba2eeb01e

d35af082a17c5cebbe501b37c5935a

MSS
pryzm-finance/pryzm-

core

x/treasury/keeper/msg_server_s

et_action.go

c03b05171f0936263b8c37c434d4ad5321

362c571a438d65216da13cdbbb2683

MSE
pryzm-finance/pryzm-

core

x/treasury/keeper/msg_server_t

est.go

83deb016addea6bd984cd7c3aca5d4699

3164cd2622db9a999d51cf674be58d1

GEE
pryzm-finance/pryzm-

core
x/ystaking/keeper/genesis.go

1aa1f4260d84afd4b624d94c4f2aafae73c

41beaef0d8470b4e2861aff44d3d7

GRU
pryzm-finance/pryzm-

core
x/ystaking/keeper/grpc_query.go

52ba420d5069ef33225532db16665e465

9a8c675cb1d09ce95227c67869653ea

GRE
pryzm-finance/pryzm-

core

x/ystaking/keeper/grpc_query_b

onded_amount.go

8a8f47b57162a3b3c4f312dae91f510bc2

5cb442cee8a5ea298f549c2b30c8b0

GRR
pryzm-finance/pryzm-

core

x/ystaking/keeper/grpc_query_r

eward.go

9dc33356d7a4901b46dcd7aeb05e963c6

d19334fc3d13428eb739181704eacbe

KEY
pryzm-finance/pryzm-

core
x/ystaking/keeper/keeper.go

4f122867e06d65e039f16808d480c4a227

f7a166df5769c986b051645af8ec43

AUDIT SCOPE PRYZM

ID Repo File SHA256 Checksum

KEB
pryzm-finance/pryzm-

core

x/ystaking/keeper/keeper_bondi

ng.go

d1bf2f9bf51a9c1b4d99dd4a7944901059

b5826388831ec438b4a1f5decc85d4

KES
pryzm-finance/pryzm-

core

x/ystaking/keeper/keeper_test.g

o

497776ca8225b914efb7ceee0bedf330d2

c8462508e843fa8a2a73a734e2816a

MSR
pryzm-finance/pryzm-

core

x/ystaking/keeper/msg_server.g

o

30f2b31b08e6d12c812e0fc39cca489982

835c05173b607bc50849a79e0cc8f6

MSV
pryzm-finance/pryzm-

core

x/ystaking/keeper/msg_server_

bond.go

cd4ee7c35319eaf6f150d0bb3923c99467

5aa45b529112e6a2361654e573a90e

MSI
pryzm-finance/pryzm-

core

x/ystaking/keeper/msg_server_c

laim_reward.go

4b32eec327d9ff7e80157b88520fe0929df

829cfc04c821be3b4f2ef394878b1

MST
pryzm-finance/pryzm-

core

x/ystaking/keeper/msg_server_

exit_pool.go

fbefc74ec8be517c057d86aeb9f2876e176

69abd286e2235a884f7d08cec4bd8

MSU
pryzm-finance/pryzm-

core

x/ystaking/keeper/msg_server_

unbond.go

0bb598dfde14655ac4a7a4bebaa0088c1

81b28ac7aea897f94816d708f5358a4

YIE
pryzm-finance/pryzm-

core

x/ystaking/keeper/yield_listener.

go

870e1dafce77eb86ea13801f213bf999c6

a682f13ef455deee11911f625e8342

MAT
pryzm-finance/pryzm-

core

x/ystaking/keeper/assetpool/mat

urity_yasset_pool.go

e6f381d4b2cd5c4f19e2106719edd65a79

dbdbf655aab3abe5876f82751db9be

POO
pryzm-finance/pryzm-

core

x/ystaking/keeper/assetpool/poo

l_store.go

03547886365d680ed0fd8288913ef643b5

826d4c5d3731b21e15b727879ad1d8

YAE
pryzm-finance/pryzm-

core

x/ystaking/keeper/assetpool/yas

set_pool.go

f7b138f17345e8421a0dbc6df1e74790ea

40b0c939ad971c902702bb5dd66c62

YAT
pryzm-finance/pryzm-

core

x/ystaking/keeper/assetpool/yas

set_pool_base.go

3f006cb635978d3b82bb141a0afb5e617d

417e595a840a244e1edfd622034d7b

ABK
pryzm-finance/pryzm-

core
x/amm/keeper/abci.go

30afb51c6dda5f315daf05796e95c1c6768

e12eb960f9321cb38a9a6f7d64025

EXE
pryzm-finance/pryzm-

core

x/amm/keeper/executable_orde

r.go

821309f53c170a2209f3e4b43be3684300

88d47f9d8f6fb20379644a73bd668b

EXP
pryzm-finance/pryzm-

core

x/amm/keeper/expiring_pool_to

ken.go

ce607696d640f82b9cd49a5105f6689f1e

b5a94bfa72cca6a1e95ee3eb61414a

AUDIT SCOPE PRYZM

ID Repo File SHA256 Checksum

GES
pryzm-finance/pryzm-

core
x/amm/keeper/genesis.go

eec84f62b86f3d8ec3ad75566a31e4db38

628e2025979604e88ddb6d88b2b626

GRY
pryzm-finance/pryzm-

core
x/amm/keeper/grpc_query.go

10a5632aa5bf4b50fd13e9919728027358

86f878eb5a45a729f65e9216ee53f8

GRA
pryzm-finance/pryzm-

core

x/amm/keeper/grpc_query_exec

utable_order.go

b54db48d4ac608bc97d681b15c3359de1

9ab4c32d4abd8c5a1ab127287e7bd4d

GRI
pryzm-finance/pryzm-

core

x/amm/keeper/grpc_query_expir

ing_pool_token.go

14a8dce9a3debb149664fe9ca0e0f897d7

5d92e30df6c933559fd05b678c8c24

GRN
pryzm-finance/pryzm-

core

x/amm/keeper/grpc_query_intro

ducing_pool_token.go

cb67942ade794a0500a0bba8fc31cfc893

9e03b93038815b1e55f39320bdd724

GRO
pryzm-finance/pryzm-

core

x/amm/keeper/grpc_query_lp_to

ken.go

a409ac22ae0b4a8c2fcec2805e03e26430

0e16a88fd81d8d28165d240931df22

GRK
pryzm-finance/pryzm-

core

x/amm/keeper/grpc_query_oracl

e_price_pair.go

63ad9113edb1b9c6f770696a49043a4d5

4a70170724f3c480ffd238b3dddcf1c

GRD
pryzm-finance/pryzm-

core

x/amm/keeper/grpc_query_orde

r.go

c4cce15c9e3783d63283692b0cf8e88f33

a2135bf405d9d15e6bf3e202cc21e6

GRM
pryzm-finance/pryzm-

core

x/amm/keeper/grpc_query_para

ms.go

8679c5877bf1c5f3c836bc78628f57e0d86

07f41ca74de443e66507741bfcc8a

GRG
pryzm-finance/pryzm-

core

x/amm/keeper/grpc_query_pen

ding_token_introduction.go

252585475626f8a095a11ee32e783cbb3

e37cf66982a5caf30b153e7431a60ef

GR3
pryzm-finance/pryzm-

core

x/amm/keeper/grpc_query_pool.

go

1bccc79e7e8172ebdb66f658a463f4abc2

1a67f65870f52a193e51751d8292e7

GR7
pryzm-finance/pryzm-

core

x/amm/keeper/grpc_query_pool

_token.go

f21b3677b09a4b7e2ff4da3b8a3cb514a4

b90e316d75896aafe92f5f2e6c3e44

GRS
pryzm-finance/pryzm-

core

x/amm/keeper/grpc_query_sche

dule_order.go

879b0ad559c8a073d4c3e944e8135ce08

7c91f927004402ae67208a65c653401

GRB
pryzm-finance/pryzm-

core

x/amm/keeper/grpc_query_simu

late_batch_swap.go

64ec64850a2daa6eeb0aa0767162b717f

42ff8c6e91782f91cf180c1a0824266

GR8
pryzm-finance/pryzm-

core

x/amm/keeper/grpc_query_simu

late_exit_all_tokens_exact_lpt.g

o

d88868e4732550c384cfca9a5069f83917

ea430448708b667ec5dc21e533499b

AUDIT SCOPE PRYZM

ID Repo File SHA256 Checksum

GR0
pryzm-finance/pryzm-

core

x/amm/keeper/grpc_query_simu

late_exit_exact_tokens.go

4de335362d6c38c73ede02264677f7588

0b866618ecfcb3ba5060f841672b7a1

GR5
pryzm-finance/pryzm-

core

x/amm/keeper/grpc_query_simu

late_exit_token_exact_lpt.go

df3704aa8ae07179dfd4d6a821207c700b

d631a3a307b48ce31886594efad0ae

GRZ
pryzm-finance/pryzm-

core

x/amm/keeper/grpc_query_simu

late_initialize_pool.go

39c743b1e8d21cd950044d20f8ee213c46

68d63341ddee650157af704a419ed4

GRJ
pryzm-finance/pryzm-

core

x/amm/keeper/grpc_query_simu

late_join_all_tokens_exact_lpt.g

o

81688a36562303ad7d52897b433158793

1afa24717ac7ebb2c60d9bd57540a70

GR9
pryzm-finance/pryzm-

core

x/amm/keeper/grpc_query_simu

late_join_exact_tokens.go

866ebb197903ed94f346e6b5242a366ed

0c7d7a51940c1127a847ff970db0c17

GR6
pryzm-finance/pryzm-

core

x/amm/keeper/grpc_query_simu

late_join_token_exact_lpt.go

382dfef395fc30f89cdb982b8dd4581222e

0dd542387a22084e8a3f5ab52c23c

GRW
pryzm-finance/pryzm-

core

x/amm/keeper/grpc_query_simu

late_single_swap.go

c9a8f80122161887035332786ed920c51

d22d532ae8648acdc6c06337787e11b

GR2
pryzm-finance/pryzm-

core

x/amm/keeper/grpc_query_spot

_price.go

b95270184b02cc646e90bffd15477fca37b

c43907d3e6c0a09b5ef08a8978564

GRH
pryzm-finance/pryzm-

core

x/amm/keeper/grpc_query_vault

_pause_mode.go

c9cb079277b399af08921378aad9557f51

9310878cf0b18d7d98d14c0c39e650

GPC
pryzm-finance/pryzm-

core

x/amm/keeper/grpc_query_weig

ht_update_timing.go

12873a7232ecd4635ffc38c8874e27f39ac

8c8bbfdb1fbdc3854f28f2bf5630b

GPQ
pryzm-finance/pryzm-

core

x/amm/keeper/grpc_query_weig

hted_token.go

68a5078e37151a60d78904557785ba82c

5d2376dd8db3db11a1a1b53501a4ae3

GPU
pryzm-finance/pryzm-

core

x/amm/keeper/grpc_query_whit

elisted_route.go

10503543cb6644b5380e59df9ac3beea4c

49d21d5867a78b99a153bf0e40d4db

GPE
pryzm-finance/pryzm-

core

x/amm/keeper/grpc_query_yam

m_configuration.go

e2c5002dc8731a5519933ad4cdd085d79f

86f744f4c28c4462ead18948a972fa

GPR
pryzm-finance/pryzm-

core

x/amm/keeper/grpc_query_yam

m_pool_id.go

334e6811d0f3eceea30d18ae8fc6aa3b00

d05165e6fb9fc0ba77adf0d601c232

INT
pryzm-finance/pryzm-

core

x/amm/keeper/introducing_pool

_token.go

1ce9d3ae50dbb53517e0445b6fd4a4db3

8319b7c9ed221435604bfc0cb73e119

AUDIT SCOPE PRYZM

ID Repo File SHA256 Checksum

KEA
pryzm-finance/pryzm-

core
x/amm/keeper/keeper.go

f964769a74a6ad60f517e056dc12d896a5

caa46d4866b47c128a09f566722dc1

KEM
pryzm-finance/pryzm-

core
x/amm/keeper/keeper_test.go

28b5f02fb019ae01897f95995a77bc9e29

8226fe5e8f8bcac27d487469fa083f

MAU
pryzm-finance/pryzm-

core

x/amm/keeper/maturity_level_lis

tener.go

144e3dd09d92e7c59b6696593b8f7efae6

d951b7339905010f6cc66949419648

MSP
pryzm-finance/pryzm-

core
x/amm/keeper/msg_server.go

7157f14586a2f566da29a717acaab22f67

7129c194ce64950e8998ea93054c78

MSD
pryzm-finance/pryzm-

core

x/amm/keeper/msg_server_add

_maturity_to_yamm.go

b00b2e8023bec8a0861cb8e90974fbf71cf

633fdd4df0b1a938b4212fb28b765

MSB
pryzm-finance/pryzm-

core

x/amm/keeper/msg_server_batc

h_swap.go

13f82f9a71cf742c49185330d1f0a12906e

ff6c054f1762f4960320290cb8c0a

MSN
pryzm-finance/pryzm-

core

x/amm/keeper/msg_server_can

cel_order.go

93221b54531b8700d20c62a974eb48d43

5015efadc39b02e167a23ebd2ba9a1c

MS3
pryzm-finance/pryzm-

core

x/amm/keeper/msg_server_can

cel_pending_token_introductio

n.go

977cd4ab3d026d08b6038a43fdd6c960ca

37ec24a900219d3541ddb7be8a6939

MSW
pryzm-finance/pryzm-

core

x/amm/keeper/msg_server_crea

te_weighted_pool.go

2c74073def03d95d1419814f30158919fc

97a5aef7ad198de2e6124e34e3d47b

MS7
pryzm-finance/pryzm-

core

x/amm/keeper/msg_server_exit

_all_tokens_exact_lpt.go

424c0856e0cacb9224a70cdd58ec4afca2

6a41b313b35b8bd1d50e6d0003d8c5

MS4
pryzm-finance/pryzm-

core

x/amm/keeper/msg_server_exit

_exact_tokens.go

09bb7f134b18718f59a604dcdaa2c6c7d1

602e9f650ae3671198182d4d5df279

MS8
pryzm-finance/pryzm-

core

x/amm/keeper/msg_server_exit

_token_exact_lpt.go

9fae67137b21653e5dd6e6a206210d124

c807dd6c4b7f3e38a50bab9fb4ad1b1

MSZ
pryzm-finance/pryzm-

core

x/amm/keeper/msg_server_initi

alize_pool.go

31c7dff5e28153efdb60b3dd2c1fd023158

3e3ab34bc87ad850c8de7297ac0ce

MSY
pryzm-finance/pryzm-

core

x/amm/keeper/msg_server_intro

duce_yamm_lp_to_weighted_p

ool.go

9ebca3ac12b6b767cdfe03eb79877f2381

3003fc6b2769b386b508301531e599

AUDIT SCOPE PRYZM

ID Repo File SHA256 Checksum

MS0
pryzm-finance/pryzm-

core

x/amm/keeper/msg_server_join

_all_tokens_exact_lpt.go

8f58168b1c59a9a27d456b3743d3fe1058

f57831f7ba4ab64a94827ec7445a5d

MS5
pryzm-finance/pryzm-

core

x/amm/keeper/msg_server_join

_all_tokens_exact_lpt_test.go

23b23428f749bb02f2ebbcbdb162cfbad3

2618a20e62cad9dab5cb96dd9d2040

MS9
pryzm-finance/pryzm-

core

x/amm/keeper/msg_server_join

_exact_tokens.go

d8250e7573021b76bbc4dee58bc21ebe5

14533b5aa2b29a9d579e3d313f8179f

MGR
pryzm-finance/pryzm-

core

x/amm/keeper/msg_server_join

_token_exact_lpt.go

51b7d88ece271888e6409422519d6ceb1

b5b5774d98322f3b1ff5826f1611070

MGV
pryzm-finance/pryzm-

core

x/amm/keeper/msg_server_orac

le_price_pair.go

533856b9732c6fbdf99594d63a4ca0c232

a7a1b8ccb07ad53f39af33012eeffd

MGP
pryzm-finance/pryzm-

core

x/amm/keeper/msg_server_pro

pose_match.go

6ce45203203cb503906b9a8b1893c74b2

0cc838f4e02b749aea0a57811a3d7e6

MGC
pryzm-finance/pryzm-

core

x/amm/keeper/msg_server_reco

very_exit.go

f1d93e603372a9b3cfb1f18dde5d630352

2c89894ac6c42f6a5ea9e3d5018aed

MGM
pryzm-finance/pryzm-

core

x/amm/keeper/msg_server_rem

ove_token_from_weighted_poo

l.go

7b7f93c3163edcd00062ec219040ce5c3a

03abec3c53cb78500dfd15152ef1a4

MGT
pryzm-finance/pryzm-

core

x/amm/keeper/msg_server_set_

circuit_breakers.go

9eed7a289c10690618f3f60f3bf87abb1b5

becb959aed650258f67550af36228

MGI
pryzm-finance/pryzm-

core

x/amm/keeper/msg_server_set_

initialization_allow_list.go

1da170563b076b40c4d0a51a9cef3fd9ef

890310c05c5172b28f0058422d4a73

MGJ
pryzm-finance/pryzm-

core

x/amm/keeper/msg_server_set_

join_exit_protocol_fee.go

e3478372298df1aaab8fb015f8130786ba

202bc38a6a02d1f3b51549f92c738e

MGA
pryzm-finance/pryzm-

core

x/amm/keeper/msg_server_set_

pause_mode.go

5a2e957c85f4e7e3978a65ea92ee49b1e

970d425f51c24b692642ecac94e63c6

MGO
pryzm-finance/pryzm-

core

x/amm/keeper/msg_server_set_

recovery_mode.go

03b3326e3aa2942937ad21c6ecb7b78fc1

a763d8c95dc80ea28cda4d2aa95a76

MGW
pryzm-finance/pryzm-

core

x/amm/keeper/msg_server_set_

swap_protocol_fee.go

9b299f4f71bd4c1dd8bce726af9dff705b91

af3f921164cf87f0228209f909ec

MGU
pryzm-finance/pryzm-

core

x/amm/keeper/msg_server_set_

vault_pause_mode.go

fb7c074fe99142c7497b3a2e5bc79d913c

76e74bbbad10e4dce998b1ed1baa89

AUDIT SCOPE PRYZM

ID Repo File SHA256 Checksum

MGH
pryzm-finance/pryzm-

core

x/amm/keeper/msg_server_set_

whitelisted_route_enabled.go

6885c7aec8e93281f5d8fa9c469f41b63c7

14074fad56965317ca1b65b5940f7

MGY
pryzm-finance/pryzm-

core

x/amm/keeper/msg_server_set_

yamm_configuration.go

201054662c72440a1e2e4cbb8ad2f9a89

613899f180fcc2aaff47bf6cbcb3d9b

MGN
pryzm-finance/pryzm-

core

x/amm/keeper/msg_server_sing

le_swap.go

2e5fc719d950a01e747df389188287e059

2024c73720b85cbba19a187511c41a

MGB
pryzm-finance/pryzm-

core

x/amm/keeper/msg_server_sub

mit_order.go

38dcb38a8ede5ece940937546b65cdd45

c6d417d4010488bc0b2bf86e21eb54d

MGD
pryzm-finance/pryzm-

core

x/amm/keeper/msg_server_upd

ate_params.go

d06f1c995f12f0c97f51cf4cae67794617f7

ad70245ed3069bcf5b3b58c6beb9

MGF
pryzm-finance/pryzm-

core

x/amm/keeper/msg_server_upd

ate_swap_fee.go

ad92349bb1840078e1f9f81c4cf4f107cde

21c8de7173b4f33862adc65947496

MGG
pryzm-finance/pryzm-

core

x/amm/keeper/msg_server_upd

ate_weights.go

30420b65696772f5b1044f861fa22bebcf1

d7a04ab6f502c1e637edbee352926

MGL
pryzm-finance/pryzm-

core

x/amm/keeper/msg_server_whit

elist_route.go

0be9c11ed0db607242de5b5a6a274d87b

e470f280142cb6e2d562763348dfc67

ORA
pryzm-finance/pryzm-

core

x/amm/keeper/oracle_callback.g

o

2bc2499f5f0c6541d5f1bcaba61730d9c6b

5ffb5d2fd52248df7c224379664be

ORC
pryzm-finance/pryzm-

core

x/amm/keeper/oracle_price_pai

r.go

03aeb3ae8ba5431d8181775ce037823dc

2d6ebc3f87228b9f1088964d112d2e8

ORR
pryzm-finance/pryzm-

core

x/amm/keeper/order_execution.

go

39c1ad5273361a7279b0569af8e1d1b3a

0cb9ac8dc1e615834e64f29318b8619

ORM
pryzm-finance/pryzm-

core

x/amm/keeper/order_matching.

go

a32f289570ad45d01a9a2ded4667b7aab

ee8821f0f7dfb19138bc25c21f3ca73

PAR
pryzm-finance/pryzm-

core
x/amm/keeper/params.go

81bf2c5e4a2e1bd019296a56417d8b7e7

406c30c3ef671d43aba20d42455e0ce

PAA
pryzm-finance/pryzm-

core
x/amm/keeper/params_test.go

99c8dff6d19d243cb7d60d0b1fd617f7e1e

1d875fb632b5bcb5e7dfc2b392293

PEN
pryzm-finance/pryzm-

core

x/amm/keeper/pending_token_i

ntroduction.go

8c55a01770005229994fc7ebb6ebd4317

a19af00e0b538a1ce599f3e12d10809

AUDIT SCOPE PRYZM

ID Repo File SHA256 Checksum

POL
pryzm-finance/pryzm-

core
x/amm/keeper/pool.go

20ea7f0c12a546c487be8cfa8b1c5b04d2

15ce0e4c3d2cbd2a26a4709c136e1f

POT
pryzm-finance/pryzm-

core
x/amm/keeper/pool_test.go

3352511b711ced00c4a2382a25afd1184

8104637c178712fdc53fa995a45ef20

POK
pryzm-finance/pryzm-

core
x/amm/keeper/pool_token.go

8eb0698bf7542eff02ab485cda0f7a2447a

3c668c1e126380731f15cae381763

SCH
pryzm-finance/pryzm-

core

x/amm/keeper/schedule_order.g

o

3252eb5492afe3da255debfbef02de4b0d

ba454e804b1182c6046e07ce7eb5aa

UTI
pryzm-finance/pryzm-

core
x/amm/keeper/utils.go

c8b39ddc70395c3af6fddc1c5a9321dd8b

e0fa50e832dec80894a330cd055eb1

VAU
pryzm-finance/pryzm-

core
x/amm/keeper/vault.go

ac4a09163e5efb10670912e97115f13f1cf

dcd531b486deb9bb8aadd64ed25da

VAL
pryzm-finance/pryzm-

core

x/amm/keeper/vault_batch_swa

p.go

b432220cf95d1e21e9692ab8872e01886

bd535b53c9d3fd8c6d7d7b9837de046

VAT
pryzm-finance/pryzm-

core
x/amm/keeper/vault_exit.go

4e243f36206e255625164dc53473b2a97

ab6d411468b9ec55e05aa7f079992d0

VAJ
pryzm-finance/pryzm-

core
x/amm/keeper/vault_join.go

76c40102cf1276be2b10edd1e01a42d6f6

356ad0b587be4169711bd98eba7b84

VAS
pryzm-finance/pryzm-

core
x/amm/keeper/vault_swap.go

fccf261eff41f13ed2b12c6e459e95d85fe1

88879f6625c6e004539bafe266ab

VAY
pryzm-finance/pryzm-

core

x/amm/keeper/vault_y_asset_b

uy_swap.go

0662f584b8b9716c1293e47d879465661

74bbb04214d4651fb3f75200a49e632

VAA
pryzm-finance/pryzm-

core

x/amm/keeper/vault_y_asset_se

ll_swap.go

5cbd99a52a0aed8003fd07b44bbc5a5cb5

428f3ad075eaf6fc679cc686e1119b

WEI
pryzm-finance/pryzm-

core

x/amm/keeper/weight_update_ti

ming.go

5a89e7a3b35e29d9d12a043f60ffdee6de

28f0e43c6aa7946fcb18d91c904154

WEG
pryzm-finance/pryzm-

core

x/amm/keeper/weighted_token.

go

9efa3f1e3078ee446453fb16b9d2fc439cc

77d52afd5617bbc26e95f6cb31ca5

WHI
pryzm-finance/pryzm-

core

x/amm/keeper/whitelisted_rout

e.go

378c102788bf55de863145e0808e8f8654

3d5e0294e2376bb13b35bf6cc4ab44

AUDIT SCOPE PRYZM

ID Repo File SHA256 Checksum

YAM
pryzm-finance/pryzm-

core

x/amm/keeper/yamm_configurat

ion.go

feee96169c2156672f76f80861148a428b

262be79d4e236eee9d1ebbc3b65750

YAP
pryzm-finance/pryzm-

core
x/amm/keeper/yamm_pool.go

4add294d4923123dfedc70f018acffd5737

0874d2a67464c2e36e76a59ca4b7f

BUY
pryzm-finance/pryzm-

core

x/amm/keeper/pools/yassetmat

h/buy_y_asset.go

b87739cba53e131545d7b8e0daf6358bcf

c278d6736c1eef9c9554fb1f126711

SEL
pryzm-finance/pryzm-

core

x/amm/keeper/pools/yassetmat

h/sell_y_asset.go

069157eaf1803fb112da3c778c557d25a6

71e1c53a5d324503c9ce6228f9a768

BAS
pryzm-finance/pryzm-

core

x/amm/keeper/pools/base_weig

hted_pool.go

547418f11bfcf1484526f2c1d4bcb76ad96

a8b28ba34f29dcdc670140e0638a6

BAE
pryzm-finance/pryzm-

core

x/amm/keeper/pools/base_weig

hted_pool_controller.go

8483c0647adf1a90670f6e802c6e09e124

bcb9c94361427df158a9543771596e

POA
pryzm-finance/pryzm-

core

x/amm/keeper/pools/pool_api.g

o

6705124e8a896dade379af1b7663d3ad8

ebb765f088b07fc698b6ca3f4580ed9

POE
pryzm-finance/pryzm-

core

x/amm/keeper/pools/pools_test.

go

90af7f38a8e5ef558d1bb0015c16006cdfe

f95f925333e70e535aa10bce7b3eb

WEH
pryzm-finance/pryzm-

core

x/amm/keeper/pools/weighted_

pool.go

11c1cd620b0ff47593f3f4ab5d0b6196e97

82b6bd82d660e9a8f7696cb3d659a

YAO
pryzm-finance/pryzm-

core

x/amm/keeper/pools/yamm_poo

l.go

40378838253b7856fd17df7aa9a9952de5

cc7b061d8d400142bb8c7f423e84e5

CIR
pryzm-finance/pryzm-

core

x/amm/keeper/pools/circuitbrea

ker/circuitbreaker.go

89edb4404bda2bdf206ab839199ed545fe

0baac219c81030a8efb920b00308cb

WET
pryzm-finance/pryzm-

core

x/amm/keeper/pools/weightedm

ath/weighted_math_exit.go

6d46a5437833abc1b7e14dfb069f2ce21c

43e60dd360a4d626b42fccf97b80f9

WEE
pryzm-finance/pryzm-

core

x/amm/keeper/pools/weightedm

ath/weighted_math_join.go

dd0232dfa56680120d9b1246d8eefb0282

22513b17d388d9def2d74b38a8aeae

WED
pryzm-finance/pryzm-

core

x/amm/keeper/pools/weightedm

ath/weighted_math_swap.go

00e387cd3360c6c2296ed70e3e6a162c3

eef87478d45ea04835bbc994d2f16e9

AUDIT SCOPE PRYZM

APPROACH & METHODS PRYZM

This report has been prepared for PRYZM to discover issues and vulnerabilities in the source code of the PRYZM project as

well as any contract dependencies that were not part of an officially recognized library. A comprehensive examination has

been performed, utilizing Manual Review and Static Analysis techniques.

The auditing process pays special attention to the following considerations:

Testing the project against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar projects produced by industry leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend addressing these

findings to ensure a high level of security standards and industry practices. We suggest recommendations that could better

serve the project from the security perspective:

Testing the project against both common and uncommon attack vectors;

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially functions that are verified in public;

Provide more transparency on privileged activities once the protocol is live.

APPROACH & METHODS PRYZM

OVERVIEW PRYZM

Icstaking

The Icstaking module allows users to stake the IBC tokens (from a host chain) from Pryzm to a list of validators on the host

chain via IBC. These validators are registered on Pryzm such that each is assigned an expected weight with a total weight

equal to 1, which can be thought of as a portfolio

The users interact with the Icstaking module with the operations:

Stake

Instant unstake

Unstake

Redeem unstake

Rebalance delegation

To facilitate the interchain staking, Pryzm creates the following accounts on the Icstaking accounts:

Icstaking module account to mint/burn cCoins (wrapped token of IBC coins), mint/burn uCoins(accounting of

undelegation with cCoins).

Delegation queue account to accept/return the IBC coins from users.

Undelegation queue account to accept the cCoins from users.

Redeem account to receive the IBC coins from the host chain and send them to users.

Transfer account to handle the IBC transfer between Pryzm and host chain.

The tokenflow in these operations on Pryzm is illustrated as follows:

OVERVIEW PRYZM

OVERVIEW PRYZM

On the host chain, the following interchain accounts have been registered with Pryzm:

Delegation interchain account to accept the host chain’s native coins (convert from the IBC coins) from the transfer

account on Pryzm and delegate them to the validators on the host chain, undelegate the delegation, and receive the

native coins from validators, and redelegate the delegation among the validators.

Reward interchain account receives the staking reward from the validator, some of which will be sent to the

delegation interchain for compounds, and the remaining part will be counted as the protocol fee and sent to the

sweep interchain account.

Sweep interchain account to receive the undelegated staking from the delegation interchain account and fee from

the reward interchain account, then send them back to the transfer account. Then, the transfer account sends the

IBC coins to the redeem account for the users' redeem.

BeginBlocker

In the begin block ABCI call of Icstaking module, the delegate and undelegate will be executed for each host chain. It

fetches each host chain’s state and checks the host chain’s state and if the delegation time and undelegation time have

passed. If the next delegate or undelegate is ready, it attempts to net off the delegate amount with the undelegate amount for

each channel on the host chain, which invokes the following 3 bridges to connect with the delegation interchain account on

the host chain to complete the process:

Delegate transfer bridge

Delegate bridge

Undelegate bridge

OVERVIEW PRYZM

Oracle Callback

The state update of the host chain is reflected on Pryzm via the Oracle Callback.

OVERVIEW PRYZM

FlowTrade

The FlowTrade is a module developed for swapping tokens during a defined period of time. Any user can create a flow of

tokens by locking a deposit, distributed over a specific period of time, in exchange for another token. The tokens can be

swapped continuously or discretely at a defined interval during the swap time. The price of the token is calculated based on

the total amount of each token, and the time that has passed since the start of the flow. The token being sold, which is

provided by the flow creator, is called token-out . The token provided by buyers is called token-in .

The users can interact with the FlowTrade module with the following operations:

Create a Flow: Users can create a flow, by locking a deposit and providing some amount of tokens to sell.

Join a Flow: Users can participate in a flow by providing any amount of token-in to the flow. Their share of each

distribution interval depends on the time at which they provide the amount. When a user increases their position

balance for a flow.

Exit a Flow: Users can withdraw their remaining un-swapped token-in to exit a flow. When a user decreases their

position balance for a flow.

OVERVIEW PRYZM

AMM

The AMM is a module that supports various types of automated market makers(AMMs) and provides the ability to create,

manage and interact with multiple types of pools. The amm module uses the vault to interact with all these pools. The vault

holds all the tokens of all the liquidity pools and keeps track of the liquidity share of these pools by itself, users can do token

swap operations via the vault, and the vault also provides batch swap operations to enable efficient pool interactions.

Another feature of the AMM module is the ability for users to leave long-term trade orders with price limits. These orders can

be executed step-by-step to provide time-weighted pricing with lower price impacts. In addition to step-by-step order

executions, the AMM module provides an order-matching system where proposers can propose to match a set of orders

against the current price of the AMM.

Pools

Liquidity pools are the core building block in the AMM module, although the AMM module allows for various types of pools, all

these pools share some common data and interfaces in the module. Pools can be established and overseen either by the

government or, if permitted by the government, by an Externally Owned Account (EOA).

The Vault

There are multiple types of pools in the system and any number of pools of these types. However, the AMM module offers a

unified method to interact with all these pools through a concept known as the Vault. The Vault serves as a unifying

mechanism for this interaction. The vault holds all tokens of all the liquidity pools and keeps track of the liquidity share of

these pools by itself.

Batch Swap

The AMM Vault offers a functionality known as batch swaps. A batch swap, as implied by its name, is a collection of swap

operations that can be submitted to the AMM module to execute all at once. In the event that any of these steps encounters

an issue, the entire procedure is rolled back, allowing the user to revert to their initial state.

There are two special types of pools implemented in the AMM module:

Weighted AMM Pool

A weighted pool is a special type of pool implemented in the AMM module, which uses a constant product equation and

supports special operations such as updating weights of tokens, token swap, token introduction, and token removal. The

implementation of the AMM introduces a concept called virtual balance for the token to control the price of the token.

WeightedPool provides the main functionalities of an Automated Market Maker (AMM):

1. Users can provide liquidity to the Pool through the "join" function and earn a portion of the transaction fees generated

during the Pool's daily operations.

2. Users can swap one token for another within the Pool. The Pool supports the exchange of these two specific tokens.

OVERVIEW PRYZM

The WeightedPool allows users to participate in liquidity provision and token swaps, enabling efficient and decentralized

trading within the Pool.

Virtual Adjustment Balance

To facilitate seamless transitions during the addition of new tokens to the pool and the removal of expired tokens, the concept

of virtual adjustment balances is introduced. These amounts are added to the virtual balances of the AMM pool and are

functions dependent on time. These virtual adjustment balances will typically be zero and only deviate from zero when there

is a need to add a new token to the pool or remove an existing one. In such cases, the corresponding virtual adjustment

balance will gradually increase or decrease.

Liquidity Deposit

Proportional all asset-deposit: All-asset deposits are executed proportionally, following the standard procedure. In this

process, a user deposits an amount of each asset into the pool, and the deposited amounts must be proportionate to

the actual balances in the pool. In return, the user receives a corresponding amount of LP tokens. The spot prices

will not change after this operation.

Single-asset deposits given LP amount: In this scenario, the user aims to make a deposit with a single asset token

and desires to receive a specific quantity of LP tokens. To achieve this, the process involves conducting multiple

trades of the token against each of the other tokens present in the pool, followed by a proportional all-asset deposit.

Non-proportional multi-asset deposit: In this situation, the user intends to deposit variable amounts of one or more

assets into the pool. To execute a proportional all-asset deposit, the user needs to engage in trades, exchanging

appropriate amounts of some assets to acquire more of others. This ensures that the resulting asset amounts held

by the user, post-trades, are proportionate to the actual balance of the pool. This operation involves a swapping step,

and a certain swap fee will be charged.

Liquidity Withdrawal

Proportional all-asset withdrawals: Proportional all-asset withdrawals follow the standard procedure, where users

redeeming a specific amount of LP tokens receive proportional amounts of all the assets in the pool, corresponding

to their share of the pool. As these withdrawals are proportional to all-asset withdrawals, the spot price remains

unchanged after the liquidity is withdrawn for all assets.

Single-asset withdrawals given LP amount: In this situation, the user intends to redeem a specific amount of LP

tokens and, rather than receiving a proportional amount of all the assets in the pool, desires to receive only the token.

Non-proportional multi-asset withdrawal: To perform this operation, the user can employ the deposit equations; they

only need to input negative amounts for the specified values, and all other aspects of the process remain unchanged.

Token Introduction

If a weighted pool has been established and initialized, adding a new token with a zero balance directly is not feasible. To

incorporate a new token into the pool, a virtual adjustment balance for the new token will be utilized, gradually decreasing

over time. This approach initiates arbitrage opportunities, leading to a gradual increase in the actual balance of the added

token.

OVERVIEW PRYZM

Upon introducing the new token, it establishes its weight and adjust the weights of the other tokens in the Balancer-type pool

accordingly. This adjustment is made in a manner that ensures the sum of the weights for all tokens in the pool remains

equal to 1.

Token Removal

In the process of introducing new tokens into the pool, there may also be a need to remove existing tokens. To remove a

specific token from the pool, virtual adjustment balances will be utilized once again. The impact of the virtual adjustment

balance will cause the price of the token to gradually decrease, incentivizing arbitrageurs to buy the token from the pool. It is

crucial to prevent traders from selling token to the pool, as doing so could potentially delay the removal of the token.

When the token removal function is invoked, the weights of the other tokens in the pool will be updated. This adjustment is

made to maintain the sum of the weights for the remaining tokens in the pool, ensuring it remains equal to 1.

Yield AMM Pool

Another type of AMM implemented in the AMM module is a type of weighted pools specially designed for yield trading. With

these pools the AMM module allows users to trade cASSET, pASSET, and yASSET of a specific asset per pool.

Yield AMM pools are specifically crafted to accommodate the unique characteristics of trading principal and yield tokens.

Each refractable asset has its dedicated pool, comprising cAsset and active pAsset tokens as liquidity. Over time, as new

maturity levels are introduced and old ones expire for the asset, the AMM module autonomously includes and removes the

corresponding pAssets in the relevant pools.

Since the YAMM pools are based on the weighted pool designs, normal operations including swap, liquidity deposit, and

liquidity withdrawal all can work the same as described in weighted pools.

YAMM mainly provides a way to exchange between YToken and CToken and has the following major exchange methods:

doBuyYAssetGivenIn: The user is exchanging a specified amount of CToken for YToken. The Pool first borrows a

portion of CToken, and then converts that portion of CToken and the CToken provided by the user into PToken and

YToken using the refractor module. The Pool then converts the PToken back into CToken and uses that portion of

CToken to repay the previously borrowed amount. Finally, the Pool transfers the YToken to the user.

doBuyYAssetGivenOut: doBuyYAssetGivenIn and doBuyYAssetGivenOut are similar in that they both involve

exchanging CToken for YToken. The difference is that doBuyYAssetGivenIn specifies the quantity of CToken input,

while doBuyYAssetGivenOut specifies the quantity of YToken output.

doSellYAssetGivenIn: The user is exchanging YToken for CToken. The Pool first borrows a portion of CToken and

then uses that portion of CToken to exchange for PToken. The PToken and YToken are then exchanged back into

CToken using the Refractor module. The Pool will use this CToken to repay the previously borrowed amount, and the

remaining CToken will be transferred to the user.

doSellYAssetGivenOut: doSellYAssetGivenOut and doSellYAssetGivenIn are similar in that they both involve

exchanging YToken for CToken. The difference is that doSellYAssetGivenOut specifies the desired quantity of

CToken to be exchanged, while doSellYAssetGivenIn specifies the input quantity of YToken.

Zero Impact Join

OVERVIEW PRYZM

When a user intends to participate in a pool using only cASSETs, it is crucial to employ non-proportional join methods that

involve underlying swaps. However, executing swaps during the join process may lead to undesirable high-price impacts for

the user. To address this concern, a zero-impact join feature has been introduced. This feature enables users to join a YAMM

pool exclusively with cASSETs, minimizing the price impact associated with the process.

The zero-impact join consists of two consecutive steps:

Refracting a portion of the cASSET into the maturities present in the pool.

Using the remaining cASSET and pASSETs to join the pool. As a result of these steps, the user receives LP tokens

and yASSETs from the initial refracting process.

Order System

The order module provides a way to match trades. Users can submit their desired price as order data on the chain. At the

end of a block, Pryzm matches all orders within the same trading pair (those wishing to exchange A for B and those wishing

to exchange B for A). When the price and trade quantity are suitable, Pryzm processes these orders for a unified trade.

Incentives

The Incentive module can be divided into two parts: Pool management and Bond.

Pool Management

CreatePool: Create a pool with the denomination and reward tokens array.

UpdateRewardTokenWeight: Update the specified reward token's weight.

AddRewardTokenToPool: Add a new reward token to a pool.

IncentivizePool: Provide the rewards for the pool.

Bond

bond: Similar to staking, users can send tokens to the module and get shares in some pool (depending on the

denom of the token they bond).

ClaimReward: Claim the rewards from the pool of the user bond tokens.

Unbond: Like the withdraw function in the staking project. Users can redeem the tokens they bonded before. If the

params.UnbondingPeriod is set to positive, the unbonded token will stay in the module for a while.

ClaimUnbonding: Retrieve Unbonding tokens that have exceeded the time limit.

CancelUnbonding: ReBond part of Unboding tokens.

OVERVIEW PRYZM

Mint

Mint tokens and distribute them at the end of the epoch.

The epoch is specified by the params.EpochIdentifier . There are different types of epochs in the Epoch Module. The

AfterEpochEnd() function will be called when every kind of epoch ends. It means that epochs can be measured in weeks,

months, and years. If the code doesn't specify the epoch, the AfterEpochEnd() function may be called repeatedly because

a moment may be the end of multiple epoch tickers.

The number of tokens that will be minted in this module is calculated by the following formula:

mintedAmount = inflation * totalSupply

inflation = inflation + inflationChangeRatePerEpoch * (1- bondedRatio/GoalBonded)

The totalSupply is the staking module bonded token totalSupply.

The minted token will be distributed to 5 addresses:

FeeCollector, Incentives, Oracle, developmentAddress, and DappAccount.

Oracle

Validators vote on the modules that need to call a callback. The system counts the votes at the end of each voting cycle and

tallies the results. If the vote passes, it will call oracle_callback.onMajorityVote() on the corresponding module. If the

validator has voted correctly then it will be rewarded. If the validator does not vote correctly, the system will accumulate a

number of errors, and when the accumulated number exceeds a certain threshold, the validator will be slashed. If the

validator does not vote correctly, the system will accumulate a number of incorrect votes. When the accumulated number of

times exceeds a certain threshold, the validator will be slashed.

Assets

The assets module is designed to manage refractable assets, their maturity levels, and the exchange rates between

each base asset and its refractable form.

The refractable assets are CToken (Liquid Staking Derivative) which can be refracted to PToken(Principal Token) and

YToken(Yield Token) in the Refractor module. Besides the identifiers like unique asset id, token denom, and the host

chain id of an external token, a refractable asset also manages its own MaturityParams and FeeRatios .

The MaturityParams contains parameters to control the generation of MaturityLevel s for the asset. The first

parameter levels_per_year decides how many MaturityLevel s a refractable asset has per year; the second

parameter years decides how many years ahead of time the module will generate MaturityLevel s.

The FeeRatios is used for managing the fee ratio of each operation, like protocol fee, fee for refracting operation,

fee for staking YAssets, and so on.

OVERVIEW PRYZM

The MaturityLevels are auto-generated maturities for refractable assets. A MaturityLevel contains an active flag and

the asset-id of the related refractable asset. Besides that, a MaturityLevel also manages the symbol , the

introduction_time, and the expiration_time of a level.

For example, suppose the levels_per_year of a refractable asset is 2. In that case, the module can create a MaturityLevel

whose symbol is "30Jun2023", the expiration_time is "20230701", and the introduction_time is the timestamp

when the module creates this level automatically.

The exchange rates between each base asset and its refractable form. There are two ways to update the ExchangeRate :

the first one is updating by the callback method of the Oracle module, and the second one is implementing the listener of

the Icstaking module; the exchange rate will be updated as soon as the exchange rate updating occurs in the

Icstaking module.

Only the gov module can interact with the assets module with the operations:

Register new refractable assets.

Disable a refractable asset. Please notice that once a refractable asset is disabled, there is no way to enable it.

Update MaturityParams of a refractable asset.

Update FeeRatios of a refractable asset.

Initialize Genesis State

In the genesis initialization, the default fee ratios will be set as the parameter of this module, if a refractable asset's fee ratios

are nil, the protocol will use default fee ratios to collect fees.

The protocol also allows registering refractable assets and their MaturityLevels and Exchange Rates in the genesis

initialization.

BeginBlocker

There are two processes at the beginning of a block:

The protocol will iterate all active MaturityLevel s and deactivate the expired levels(by setting the flag active to

"FALSE").

The protocol will iterate all enabled RefractableAsset s, create new MaturityLevel s for them and store the new

MaturityLevel s. Please notice that the maturity generation for the current month will be skipped.

Listeners

There are two listeners declared in the assets module:

1. MaturityLevelListener : When MaturityLevel s are deactivated, or new MaturityLevel s are added, the

listeners implemented in amm and ystaking modules will be called.

2. ExchangeRateListener : When ExchangeRate is updated in the assets module, the listener implemented in the

refractor module will be called.

OVERVIEW PRYZM

Pgov

ICStaked asset holders can participate in the governance of the asset's native chain. When users stake their assets in

Pryzm's Icstaking module, their voting power is delegated to the delegation interchain account. The purpose of the pgov

module is to enable users to participate in the governance of the asset's native chain by voting on proposals using their

cAssets and pAssets on the Pryzm chain. To this end, proposals from supported asset chains are mirrored on Pryzm and

voted on with a shorter voting period. The results are then submitted by an interchain message on the native chain.

The users can interact with the pgov module with the operations:

Staking pAsset s. Holders of cAsset s can refract their assets to y & p assets and then stake pAsset s in pgov

module to participate in native chain voting. The staked pAsset s are escrowed in pgov module account. The

amount of staked assets is stored as a part of voting power for the holder. The assets can be redeemed anytime by

the owner. But the amount of staked pAsset s at the time of tallying vote (After the end of the voting period) is

calculated in the voting power.

Mirroring Proposals from the host chain on the Pryzm network. The process of submitting the proposal on Pryzm is a

customized type of interchain query. Anyone can submit a proposal from the target host chain to Pryzm, proof of

proposal existence, and the height at which the proof is retrieved. Pryzm uses IBC light client state to verify the proof

and stores the verified proposals with a proper voting end time.

Voting proposals. Users can participate in voting as long as they hold cAsset s or stake pAsset s.

Submitting voting results. After the end of the voting period (in EndBlocker), the protocol sends the voting results

using icstaking bridges.

Refractor

The refractor module implements two functions：

1. Refracts a certain amount of cAsset s into pAsset s and yAsset s, and to redeem cAsset s.

2. Computes and distributes the yield to cAsset s held in the vault. The yield corresponds to the underlying assets of

these cAsset s.

The users can interact with the refractor module with the operations, users may need to pay some fee for their

operations:

Specify a valid Symbol of maturity level, refract a certain amount of cAsset s into pAsset s and yAsset s. About

the exchange rate between cAsset s and pAsset s(yAsset s), there are two cases:

1. The specified cAsset is refracted for the first time in this module, the exchange rate will be the latest

ExchangeRate which is updated by the listener of assets module.

2. If there are refracted cAsset s in the module, the exchange rate will be calculated as

.

Burn a certain amount of pAsset s to redeem cAsset s. According to the maturity level, there are 2 cases:

OVERVIEW PRYZM

​total cAsset in module’s vault
total amount of pAsset

1. If the specified pAsset maturity level is not expired, the users must merge pAsset s and the same

amount of yAsset s to redeem the cAsset s.

2. If the maturity level of the specified pAsset is expired, the users need to burn a certain amount of

pAsset s and any amount of yAsset s to redeem the cAsset s.

Implemented ExchangeRate Listener

Once the ExchangeRate of a refractable asset is updated in the asset module and the new ExchangeRate value is

higher than the old one, this listener's methods will be called to distribute yield corresponding to the underlying assets. The

yield will be split into 3 parts:

1. Protocol fee.

2. Yield of staked yAsset s which have active maturity level.

3. The yield of unstaked yAsset s and the yAsset s which have expired maturity level, this part of yield belongs to the

community.

Staking

The ystaking allows users to stake their yASSET and earn rewards through staked assets. The main functionalities are to

enable users to participate in the staking process, withdraw their stake, and claim their earned rewards by yAsset s.

The users can interact with the ystaking module with the operations:

Bond. Bonding is the process of staking an amount of a yAsset of a specific maturity by a specific user. Bond

API is provided by MaturityYAssetPool , which can be obtained from the related YAssetPool by passing the

maturity symbol .

Unbond. Unbonding is the process of unstaking an amount of a yAsset of a specific maturity by a specific user.

Unbond API is provided by MaturityYAssetPool , which can be obtained from the related YAssetPool by passing

the maturity symbol . It is worth mentioning that unbonding is only available for active maturities and you must use

ExitPool for expired maturities. When a user unbonds a value from a MaturityYAssetPool , an amount of

unclaimed reward will be paid to the user.

ClaimReward. Claiming reward is the process in which a user can claim all the accrued rewards for the bonded

amount of a specific asset and a specific maturity. ClaimReward API is also provided by MaturityYAssetPool ,

which can be obtained from the related YAssetPool by passing the maturity symbol . It is worth mentioning that

claiming reward is only available for active maturities and you have to use ExitPool for expired maturities.

Implemented Listeners

1. MaturityLevelListener

For the YStaking module to deactivate maturity yAsset pools as the maturities are expired, this module implements

OVERVIEW PRYZM

the MaturityLevelListener of the Assets Module.

2. YieldListener

For the YStaking module to keep track of yield and compute rewards, as soon as any yield is accrued, this module

implements the YieldListener of the Refractor module.

Treasury

The treasury module serves the purpose of fee collection, and it also introduces a scheduling system that facilitates the

allocation of the accumulated fees to specific tasks or purposes as required.

Within the Pryzm framework, every individual module possesses the capability to levy a protocol fee on its respective

operations. These accrued fee amounts are consolidated within the treasury module's account.

The treasury module allows the governance to schedule the execution of certain actions on the collected fees. These

actions can be one of the following:

Hold: Do nothing and hold the collected fees.

Burn: Burn Pryzm tokens, effectively removing them from circulation, and providing deflation on the native token.

Distribute To Stakers: Send the Pryzm tokens to the feeCollector account, which is then used to reward delegators

and validators.

OVERVIEW PRYZM

FINDINGS PRYZM

This report has been prepared to discover issues and vulnerabilities for PRYZM. Through this audit, we have uncovered 56

issues ranging from different severity levels. Utilizing the techniques of Manual Review & Static Analysis to complement

rigorous manual code reviews, we discovered the following findings:

ID Title Category Severity Status

YAM-01 YAMM Design Flaw Logical Issue Critical Resolved

BRI-02
Failure Of HandleIBCTransferRecv()

Due To Incorrect IBC Denom
Logical Issue Major Resolved

GEN-01
Unexported Expiring Token List May

Lead To Users' Asset Loss
Coding Issue Major Resolved

KEA-02

Potential Failure To Zero Impact Join

The Yamm Pool Due To The Expiring

Or Expired PAsset

Logical Issue Major Resolved

KEE-04

PendingCAmount, PendingAmount,

And ReceivedAmount Are Not Updated

After Handling Undelegation Reception

Logical Issue Major Resolved

KEE-05
Potential Panics When Fetching Nil

Validator From weightDiff
Volatile Code Major Resolved

KEE-06

Incorrect Distribution Of Delegation And

Undelegation Amount As The Last

Validator Gets Entire

remainingUndelegation And

remainingDelegation

Incorrect

Calculation
Major Resolved

KEP-02

Potentially Unable To Exit The Flow

Successfully Due To The Flow Being

Stopped By The Flow Creator

Logical Issue Major Resolved

FINDINGS PRYZM

56
Total Findings

1
Critical

9
Major

9
Medium

20
Minor

17
Informational

ID Title Category Severity Status

KER-02 Centralization Related Risks Centralization Major Acknowledged

X0C-03
Potential Consensus Failure By Non-

Determinism Of Map Iteration

Volatile Code,

Denial of Service
Major Resolved

APP-01
Potential DoS Attack As Custom

Module Accounts Are Not Initialized
Denial of Service Medium Resolved

BRD-03
Incorrect Calculation Logic On

totalDelegation
Logical Issue Medium Resolved

BRG-01

Incorrect Update Of

hostChainState.AmountToBeCompound

ed

Incorrect

Calculation
Medium Resolved

CLC-01
Misconfigured Transaction Commands

Are Blocked In Icstaking Module
Volatile Code Medium Resolved

CLI-01

Misconfiguration Of Expected

Arguments Blocks The Commands

CmdIntroduceYammLpToWeightedPool(

) And

CmdSetJoinExitProtocolFee()

Volatile Code Medium Resolved

CLI-02

Missing FeeRatio Flag In The

Commands

CmdSetJoinExitProtocolFee() And

CmdSetSwapProtocolFee()

Volatile Code Medium Resolved

EXP-01

Failure Of Exporting Genesis File

Caused By Fetching Validator Address

Incorrectly

Volatile Code Medium Resolved

MSG-01
Fee Is Collected From User's Address

Instead Of Redeem Account
Logical Issue Medium Resolved

ORA-02

Variable

hostChainState.AmountToBeCompound

ed Used To Compute The Exchange

Rate Includes Protocol Fee

Logical Issue Medium Resolved

FINDINGS PRYZM

ID Title Category Severity Status

ABC-01

Heavy Computation In Icstaking's

BeginBlocker Could Slow Down Block

Production

Volatile Code,

Denial of Service
Minor Resolved

ASS-01
Validation Of Genesis State In assets

Module
Volatile Code Minor Resolved

BRE-01
Discussion On The Delegation

Rebalance Logic
Logical Issue Minor Resolved

BRG-02 Non-Guaranteed Host Chain State Logical Issue Minor Resolved

CRE-01
Possible Overwrite Of Denom Metadata

In Genesis
Volatile Code Minor Resolved

CRE-02
Missing Display Denom Will Fail Denom

Metadata Validation
Volatile Code Minor Resolved

FLO-03

The Claimable Purchased Token

Amount Does Not Consider

PendingPurchase

Logical Issue Minor Acknowledged

HOO-01 Mint PRYZM Each Epoch Logical Issue Minor Acknowledged

HOS-02
Return Value Of GetChannel() Is Not

Handled
Volatile Code Minor Resolved

KEE-03
Lack Of Validation For

transferChannel
Logical Issue Minor Resolved

KEE-07 Potential Division By Zero Volatile Code Minor Resolved

KEK-01
Incorrect Account Number Of

tokenfactory Module Account
Inconsistency Minor Resolved

KER-03
Lack Of State Validation For

WhitelistedRoute
Logical Issue Minor Resolved

POS-02

Potential Unable To Acquire token-in

Tokens That Have Not Been

Exchanged

Logical Issue Minor Resolved

FINDINGS PRYZM

ID Title Category Severity Status

QUE-01
Incomplete Inputs Of Undelegation

Query
Volatile Code Minor Resolved

REF-01
Lack Of Validation Of The

RefractableAsset.FeeRatios Field
Volatile Code Minor Resolved

TYP-02
Missing Stateless Check Of

TransferChannel In Messages
Volatile Code Minor Resolved

VAU-01
Lack Of Minimum Liquidity Restriction

In Pool Initialization
Logical Issue Minor Acknowledged

WEI-02
Lack Of Check For Weight Update

Period
Logical Issue Minor Resolved

X0C-02
Potential Key Collision Because Denom

Could Contain "/"
Volatile Code Minor Resolved

ASS-02
Unnecessary Arg In The

QueryGetMaturityLevelRequest
Coding Style Informational Resolved

BAS-01

No Validation Of The Expiring Or

Expired PAsset In Function

JoinAllTokensGivenExactLptOut

Logical Issue Informational Resolved

FLO-01
The Purpose Of The Deposit

creationDeposit
Logical Issue Informational Resolved

GEE-01

Missing Validation Of

ChannelUndelegationList In

Icstaking Module's Genesis State

Volatile Code Informational Resolved

GLOBAL-02
Cosmos Messages Need To Extend

cosmos.msg.v1.signer Option
Volatile Code Informational Resolved

GO3-01 Insecure Cosmos SDK Version Logical Issue Informational Resolved

ICS-01
Typo In Message And Function Name

RedeemInterchainAccount
Coding Style Informational Resolved

KED-01

Discussion On ExchangeRate

Updating And YAsset Yield

Distribution

Volatile Code Informational Resolved

FINDINGS PRYZM

ID Title Category Severity Status

KEE-08
Inconsistent Function Name

NewRedelegateMessageBridge()
Coding Style Informational Resolved

KEP-01
Discussion On Prices Of token-in

And token-out
Logical Issue Informational Resolved

MES-01
Missing Validation Of epoch In

Message MsgRedeemUnstaked
Volatile Code Informational Resolved

MIN-01
Discussion On The Calculation Of The

Minted Token

Incorrect

Calculation
Informational Resolved

MSG-02
Equality Could Possibly Not Be

Satisfied Due To Rounding Issue
Volatile Code Informational Resolved

ORA-01 Possible Increase Of Exchange Rate Logical Issue Informational Acknowledged

PAR-01 Typo In Error Messages Coding Style Informational Resolved

PRY-01
Gas Is Not Consumed If An Error

Occurs Beforehand
Logical Issue Informational Acknowledged

TOK-01

Incorrect Error Message In The

Validation Of

CircuitBreakerSettings

Coding Style Informational Resolved

FINDINGS PRYZM

YAM-01 YAMM DESIGN FLAW

Category Severity Location Status

Logical Issue Critical yamm_pool.go (374cad8) Resolved

Description

Files:

x/amm/keeper/pools/yamm_pool.go

Commit:

374cad8c0f54b4f98efb6248cf434524bf2b7f65

The design of YAMM uses the same mechanism as weighted pools but uses token weights depending on token balances.

This change is conflict with the original weighted pool design and may lead to users' asset loss.

The weighted pools use a constant product equation:

where and are the balance and weight of the th token in the pool. The weights depend on the time when there are

weight updates or token introduction/removal. Otherwise, the weights are constants.

Meanwhile, the YAMM pools use the same constant product equation with a different token weight definition:

Since the weight of the th token depends on the token balance, users will have different strategies to add/remove liquidity or

swap tokens, and different strategies will have different outcomes.

For example, if a user wants to swap tokenA () for tokenB () in a YAMM pool, he/she might consider two

strategies:

Strategy 1: Swap tokenA directly for tokenB . In this case, the swap amount calculation uses as

tokenB 's weight.

Strategy 2: Swap part () of tokenA for tokenB and then swap the rest () tokenA for tokenB . This is

a two-step swap:

YAM-01 PRYZM

Π ​B ​ =i i
w ​i C,

B ​i w ​i i w ​i

w ​i

w ​ =1 ρ(t),

w ​ =i (​) for i >
B ​1

B ​i
α ​(t)i

1

i

x i = 1 i = 2

x (B ​/B ​)2 1
α ​(t)2

x~ ​y~ x − x~

https://github.com/pryzm-finance/pryzm-core/tree/374cad8c0f54b4f98efb6248cf434524bf2b7f65

In the first swap, the swap amount calculation still uses as tokenB 's weight.

In the second swap, tokenB 's weight is changed to , which is different

from the weight in the direct swap. Since the weight is smaller, the user can receive more tokenB than

that in Strategy 1.

Therefore, users can choose their strategies to get different swap results or even drain funds from the pool.

Scenario

In the following scenario, a user swaps a token for another and then swaps back to drain funds from the YAMM pool.

1. Create and initialize a YAMM pool using the parameters in x/amm/keeper/yamm_pool_test.go .

2. Swap 2,000,000 cAsset00 for 2,661,848 p:Asset00:30Jun2024 .

3. Swap half (1,330,924) of received p:Asset00:30Jun2024 for 1,063,442 cAsset00 .

4. Swap another half (1,330,924) of received p:Asset00:30Jun2024 for 939,855 cAsset00 .

5. The total amount of received cAsset00 is 2,003,297, which is more than the initial cAsset00 amount 2,000,000.

Proof of Concept

The following unit test implements the aforementioned scenario. It works in x/amm/keeper/yamm_pool_test.go :

YAM-01 PRYZM

(B ​/B ​)2 1
α ​(t)2

((B ​ −2 ​)/(B ​ +y~ 1))x~ α ​(t)2

1 func (s *keeperTestSuite) TestYammPoolSwapABA() {

2 s.setZeroProtocolFeeParams()

3 // maturities: [cAsset, "2024/12/27", "2024/6/30", "2023/12/31"]

4

// weights: ['1.500000000000000000', '1.001950944029203516',

'1.000000000000000000', '178.802575041768663606']

5

// normWeights ['0.008227991005099100', '0.005496028903348559',

'0.005485327336732734', '0.980790652754819688']

6 pool, _, tokens, _ := s.createAndInitializeYamm(0)

7

8 tokenA := tokens[0]

9 tokenB := tokens[2]

10

11 // Swap 2_000_000 tokenA for 2_661_848 tokenB.

12 tokenASpent := sdk.NewInt(2000000)

13 swapResponse, err := s.msgServer.SingleSwap(s.ctx, &types.MsgSingleSwap{

14 Swap: types.Swap{

15 PoolId: pool.Id,

16 Amount: tokenASpent,

17 SwapType: types.SWAP_GIVEN_IN,

18 TokenIn: tokenA.Denom,

19 TokenOut: tokenB.Denom,

20 },

21 Creator: s.authority,

22 })

23 s.Require().NoError(err)

24 s.Require().Equal(sdk.NewCoin(tokenB.Denom, sdk.NewInt(2661848)),

 swapResponse.AmountOut)

25 tokenBReceived := swapResponse.AmountOut.Amount

26

27 // Swap 1_330_924 tokenB (half of received tokenB) for 1_063_442 tokenA.

28 tokenAReceived := sdk.ZeroInt()

29 swapResponse, err = s.msgServer.SingleSwap(s.ctx, &types.MsgSingleSwap{

30 Swap: types.Swap{

31 PoolId: pool.Id,

32 Amount: tokenBReceived.QuoRaw(2),

33 SwapType: types.SWAP_GIVEN_IN,

34 TokenIn: tokenB.Denom,

35 TokenOut: tokenA.Denom,

36 },

37 Creator: s.authority,

38 })

39 s.Require().NoError(err)

40 s.Require().Equal(sdk.NewCoin(tokenA.Denom, sdk.NewInt(1063442)),

 swapResponse.AmountOut)

41 tokenAReceived = tokenAReceived.Add(swapResponse.AmountOut.Amount)

42

43

// Swap 1_330_924 tokenB (another half of received tokenB) for 939_855 tokenA.

YAM-01 PRYZM

44 swapResponse, err = s.msgServer.SingleSwap(s.ctx, &types.MsgSingleSwap{

45 Swap: types.Swap{

46 PoolId: pool.Id,

47 Amount: tokenBReceived.QuoRaw(2),

48 SwapType: types.SWAP_GIVEN_IN,

49 TokenIn: tokenB.Denom,

50 TokenOut: tokenA.Denom,

51 },

52 Creator: s.authority,

53 })

54 s.Require().NoError(err)

55 s.Require().Equal(sdk.NewCoin(tokenA.Denom, sdk.NewInt(939855)),

 swapResponse.AmountOut)

56 tokenAReceived = tokenAReceived.Add(swapResponse.AmountOut.Amount)

57

58

// After swapping tokenA for tokenB, and tokenB back for tokenA, we will receive

more tokenA than spent.

59 s.Require().Greater(tokenAReceived.Int64(), tokenASpent.Int64())

60 }

Result:

Running tool: /usr/local/go/bin/go test -timeout 30s -testify.m

^(TestYammPoolSwapABA)$ github.com/pryzm-finance/pryzm-core/x/amm/keeper

WARNING: proto: file name query.proto does not start with expected testdata/; please

make sure your folder structure matches the proto files fully-qualified names

WARNING: proto: file name testdata.proto does not start with expected testdata/;

please make sure your folder structure matches the proto files fully-qualified names

WARNING: proto: file name tx.proto does not start with expected testdata/; please

make sure your folder structure matches the proto files fully-qualified names

WARNING: proto: file name unknonwnproto.proto does not start with expected

testdata/; please make sure your folder structure matches the proto files fully-

qualified names

PASS

ok github.com/pryzm-finance/pryzm-core/x/amm/keeper 1.231s

Recommendation

Recommend revisiting the design of the YAMM pool to avoid aforementioned situations.

Alleviation

[Pryzm Team - 09/15/2023]:

The team heeded the advice and resolved this issue in the commit 9de92bdfe6faf613480ccbba409ec89d87860cd9 .

[CertiK - 12/06/2023]:

YAM-01 PRYZM

https://github.com/pryzm-finance/pryzm-core/tree/9de92bdfe6faf613480ccbba409ec89d87860cd9

In the new design, the token weight for (i.e., pAssets), with

so the token weights depend on time instead of asset balances.

In the new implementation, the model for YAMM has been changed in multiple aspects. For example,

in the original implementation, weights for assets other than cAsset is (Balance/cBalance)**alpha :

// GetNonNormalizedWeight returns non-normalized weight for asset

// weight for cAsset is equal to exchangeRate

// weight for other assets is (Balance/cBalance)**alpha

func (yc *yammPoolController) GetNonNormalizedWeight(ctx sdk.Context, token

types.PoolToken) (weight sdk.Dec, err error) {

 return yc.computeNonNormalizedWeight(ctx, token, nil, true)

}

// computeNonNormalizedWeight returns non-normalized weight for asset given the

CBalance.

// If you want the CBalance to be read from context use GetNonNormalizedWeight

or pass nil as balance.

// weight for cAsset is equal to exchangeRate

// weight for other assets is (Balance/cBalance)**alpha

func (yc *yammPoolController) computeNonNormalizedWeight(ctx sdk.Context, token

types.PoolToken, cBalancePtr *sdk.Dec,

 ...

 assetBalance := actualBalance.Add(virtualBalance)

 base := assetBalance.Quo(cBalance)

 alpha, err := yc.computeAlpha(ctx, token)

 if err != nil {

 return sdk.Dec{}, err

 }

 return types.PowNonNegUp(base, alpha)

}

in the new implementation, weights for assets other than cAsset is calculated by K , which depends on time instead

of asset balances:

YAM-01 PRYZM

w ​ =j k ​(t)j j ∈ 1, 2, ...,n

k ​(t) =j ​ ​{
​,1−α ​(t)j

1

50,

if α ​(t) ≤ 0.98j

if α ​(t) ≥ 0.98j

α ​(t) =j min ​, 1 .{
b ​ − a ​j j

t − a ​j }

// GetNonNormalizedWeight returns non-normalized weight for asset

// weight for cAsset is equal to exchangeRate*lambda

// weight for other assets is K

func (yc *yammPoolController) GetNonNormalizedWeight(ctx sdk.Context, token

types.PoolToken) (weight sdk.Dec, err error) {

 if yc.isCAsset(token) {

 exchangeRate, err := yc.pool.GetExchangeRate(ctx)

 if err != nil {

 return sdk.Dec{}, err

 }

 lambda := yc.pool.keeper.YammLambda(ctx, yc.pool.data.Id)

 return exchangeRate.Mul(lambda), nil

 }

 return yc.computeK(ctx, token.Denom)

}

// computeK computes the K scaler for the pool.

// k = 1/(1-alpha)

func (yc *yammPoolController) computeK(ctx sdk.Context, denom string) (sdk.Dec,

error) {

 alpha, err := yc.computeAlpha(ctx, denom)

 if err != nil {

 return sdk.Dec{}, err

 }

 return sdk.OneDec().Quo(sdk.OneDec().Sub(alpha)), nil

}

// computeAlpha computes alpha for an asset

//

// _ _

// | blockTime - maturityStart |

// alpha = min | ----------------------------------- , maxAlpha |

// |_ maturityExpiry - maturityStart _|

func (yc *yammPoolController) computeAlpha(ctx sdk.Context, denom string)

(sdk.Dec, error) {

 ...

As a result, the described scenario will not take place.

YAM-01 PRYZM

BRI-02 FAILURE OF HandleIBCTransferRecv() DUE TO

INCORRECT IBC DENOM

Category Severity Location Status

Logical Issue Major bridge_sweep.go (374cad8): 169 Resolved

Description

Files:

x/icstaking/keeper/bridge_sweep.go

x/icstaking/types/host_chain.go

Commit:

374cad8c0f54b4f98efb6248cf434524bf2b7f65

Incorrect construction of the IBC denom will lead to the failure to sweep process.

The function HandleIBCTransferRecv() is intended to handle received IBC messages for sweep memos and handles

undelegation reception, in which the IBC denom will be checked:

x/icstaking/keeper/bridge_sweep.go

168

// ignore the transfer if the token denom is not equal to the expected denom

169 if data.Denom != hostChain.IbcDenom(transferAccount) {

170 return nil

171 }

However, the creation of the IBC denom is based on the transferAccount , which is supposed to be the

transferChannel (i.e., packet.DestinationChannel).

x/icstaking/types/host_chain.go

BRI-02 PRYZM

https://github.com/pryzm-finance/pryzm-core/tree/374cad8c0f54b4f98efb6248cf434524bf2b7f65

17 // IbcDenom returns the ibc denomination of the host chain base denom

18 func (hostChain HostChain) IbcDenom(channel string) string {

19 // FIXME store map in host chain?

20 var c TransferChannel

21 for _, transferChannel := range hostChain.TransferChannels {

22 if transferChannel.Id == channel {

23 c = transferChannel

24 break

25 }

26 }

27

28 denom := hostChain.BaseDenom

29 if strings.TrimSpace(c.WrappedDenom) != "" {

30 denom = c.WrappedDenom

31 }

32

33 return transfertypes.DenomTrace{

34 Path: fmt.Sprintf("%s/%s", transfertypes.PortID, channel),

35 BaseDenom: denom,

36 }.IBCDenom()

37 }

In this case, it never matches the data.Denom . As a result, the sweep process could never be executed successfully.

Recommendation

Recommend using packet.DestinationChannel to create the IBC denom.

Alleviation

[Pryzm Team - 09/13/2023] :

The team resolved the finding by correcting the denom to the host chain's base denom since the packet data contains the

token's raw denom.

// ignore the transfer if the token denom is not equal to the expected denom

if data.Denom != hostChain.BaseDenom {

return nil

}

The change is reflected in the commit dd5ae09121af41bc745ab8ce6d4c8a27624fb230 .

BRI-02 PRYZM

https://github.com/pryzm-finance/pryzm-core/commit/dd5ae09121af41bc745ab8ce6d4c8a27624fb230

GEN-01 UNEXPORTED EXPIRING TOKEN LIST MAY LEAD TO
USERS' ASSET LOSS

Category Severity Location Status

Coding Issue Major genesis.go (374cad8): 130 Resolved

Description

Files:

x/amm/keeper/genesis.go

Commit:

374cad8c0f54b4f98efb6248cf434524bf2b7f65

In the AMM module, ExportGenesis does not export the expiring pool token list to the genesis state. It will remove all virtual

balances after restarting the chain from an exported genesis state and thus lead to liquidity providers' asset loss.

For example, suppose there is an expiring pool token, a virtual balance will be introduced to incentive people to purchase this

token. However, if the chain restarts from a genesis state missing the expiring pool token information, the virtual balance will

become zero. As a result, the exchange rate of the token will be changed a lot after importing the incorrect genesis state, and

people will use this imbalanced exchange rate to purchase tokens with low costs.

Proof of Concept

In the following unit test, the original genesis state has one expiring pool token, while the exported genesis state has zero

expiring pool token.

GEN-01 PRYZM

https://github.com/pryzm-finance/pryzm-core/tree/374cad8c0f54b4f98efb6248cf434524bf2b7f65

func (s *keeperTestSuite) TestGenesisInconsistency() {

genesisState := types.GenesisState{

Params: types.DefaultParams(),

PoolList: []types.GenesisPoolData{

{

Pool: types.Pool{

Id: 0,

Creator: sample.AccAddress(),

PoolType: types.WeightedPoolType,

SwapFeeRatio: sdk.MustNewDecFromStr("0.1"),

Name: "abcd",

},

TotalLpTokenSupply: sdk.ZeroInt(),

PoolTokenList: []types.PoolToken{

{

PoolId: 0,

Denom: "denom0",

Balance: sdk.ZeroInt(),

},

{

PoolId: 0,

Denom: "denom1",

Balance: sdk.ZeroInt(),

},

{

PoolId: 0,

Denom: "denom2",

Balance: sdk.ZeroInt(),

},

},

},

},

WeightedPoolPropertiesList: []types.WeightedPoolProperties{

{

PoolId: 0,

WeightUpdateTiming: types.WeightUpdateTiming{

StartUnixMillis: time.Now().UTC().UnixMilli(),

EndUnixMillis: time.Now().UTC().UnixMilli(),

},

TokenList: []types.WeightedToken{

{

PoolId: 0,

Denom: "denom0",

NormalizedStartWeight: sdk.MustNewDecFromStr("0.1"),

NormalizedEndWeight: sdk.MustNewDecFromStr("0.1"),

},

{

PoolId: 0,

GEN-01 PRYZM

Denom: "denom1",

NormalizedStartWeight: sdk.MustNewDecFromStr("0.2"),

NormalizedEndWeight: sdk.MustNewDecFromStr("0.2"),

},

{

PoolId: 0,

Denom: "denom2",

NormalizedStartWeight: sdk.MustNewDecFromStr("0.7"),

NormalizedEndWeight: sdk.MustNewDecFromStr("0.7"),

},

},

},

},

ExpiringPoolTokenList: []types.VirtualBalancePoolToken{

{

PoolId: 0,

Denom: "denom2",

TargetVirtualBalance: sdk.NewInt(int64(100)),

StartUnixMillis: time.Now().Add(-1 * time.Hour).UnixMilli(),

EndUnixMillis: time.Now().Add(24 * 7 *

time.Hour).UnixMilli(),

},

},

}

s.Require().NoError(genesisState.Validate())

keeper.InitGenesis(s.ctx, *s.ammKeeper, genesisState)

got := keeper.ExportGenesis(s.ctx, *s.ammKeeper)

s.Require().NotNil(got)

// original expiring pool token list has 1 element, while the exported one has 0

element

s.Require().Len(genesisState.ExpiringPoolTokenList, 1)

s.Require().Len(got.ExpiringPoolTokenList, 0)

}

Results:

GEN-01 PRYZM

Running tool: /usr/local/go/bin/go test -timeout 30s -testify.m

^(TestGenesisInconsistency)$ github.com/pryzm-finance/pryzm-core/x/amm/keeper

WARNING: proto: file name query.proto does not start with expected testdata/; please

make sure your folder structure matches the proto files fully-qualified names

WARNING: proto: file name testdata.proto does not start with expected testdata/;

please make sure your folder structure matches the proto files fully-qualified names

WARNING: proto: file name tx.proto does not start with expected testdata/; please

make sure your folder structure matches the proto files fully-qualified names

WARNING: proto: file name unknonwnproto.proto does not start with expected

testdata/; please make sure your folder structure matches the proto files fully-

qualified names

PASS

ok github.com/pryzm-finance/pryzm-core/x/amm/keeper 1.310s

Recommendation

Recommend exporting the expiring pool token list to the genesis state.

Alleviation

[Pryzm Team - 09/18/2023] :

The team heeded the advice and resolved the issue in the commit 1067960446fef41b4729ad1e0fd0269ec517f98a .

GEN-01 PRYZM

https://github.com/pryzm-finance/pryzm-core/commit/1067960446fef41b4729ad1e0fd0269ec517f98a

KEA-02 POTENTIAL FAILURE TO ZERO IMPACT JOIN THE YAMM
POOL DUE TO THE EXPIRING OR EXPIRED PASSET

Category Severity Location Status

Logical

Issue
Major

x/amm/keeper/pools/base_weighted_pool.go (pryzm-core-17e20c2): 367;

x/amm/keeper/zero_impact_join_yamm.go (pryzm-core-17e20c2): 34, 96
Resolved

Description

Files:

x/amm/keeper/zero_impact_join_yamm.go

x/amm/keeper/pools/base_weighted_pool.go

Commit:

17e20c2b046a1b389630270bfc10a1079ea0a177

The function executeOrQueryZeroImpactJoinYamm implemented a zero-impact join feature that enables users to join a

YAMM pool solely with cASSETs, while minimizing the price impact. So a portion of the cASSET will be refactored to

pASSET for each maturity, and then using the remaining cASSET and pASSETs to join the pool. However, there is a

validation in the function JoinGivenExactTokensIn to prevent the expiring or expired asset from joining the pool,

365 func (bw *baseWeightedPool) JoinGivenExactTokensIn(ctx sdk.Context,

 tokensSortedByDenom []types.TokenAmount, lptSupply sdkmath.Int) (lpOut sdkmath.Int,

366 protocolFees, swapFees []sdkmath.Int, lpSwapFee sdkmath.Int, err error) {

367 err = bw.controller.ValidateJoinExactTokens(ctx, tokensSortedByDenom)

368 if err != nil {

369 return lpOut, protocolFees, swapFees, lpSwapFee, err

370 }

KEA-02 PRYZM

https://github.com/pryzm-finance/pryzm-core/tree/17e20c2b046a1b389630270bfc10a1079ea0a177

413

// ValidateJoinExactTokens prevents joins if amount for expiring/introducing tokens

is not zero

414 func (yc *yammPoolController) ValidateJoinExactTokens(ctx sdk.Context, tokens [

]types.TokenAmount) error {

415 for _, ta := range tokens {

416 // only check for non-zero amounts

417 if ta.Amount.IsZero() {

418 continue

419 }

420

421 if yc.isTokenExpiringOrExpired(ctx, ta.Token) {

422 return sdkerrors.Wrapf(types.ErrInvalidJoin,

"cannot join exact amount for expiring token %s", ta.Token.Denom)

423 }

424 }

425 return nil

426 }

Hence, if any pASSET of all refactored pASSETs is expiring or expired, the zero-impact join will eventually fail.

Proof of Concept

KEA-02 PRYZM

func (s *keeperTestSuite) TestMsgServerZeroImpactJoinYammWithExpirePAsset() {

s.setZeroProtocolFeeParams()

pool, asset, _, maturities := s.createAndInitializeTwoPAssetYamm(0)

// set time after expiration of the expiring token(pAsset1 : expire time

2024.1.1)

s.ctx = s.ctx.WithBlockTime(time.Date(2024, 1, 2, 0, 0, 0, 0, time.UTC))

keeper.BeginBlocker(s.ctx, *s.ammKeeper)

s.assetsKeeper.EXPECT().

GetRefractableAssetByTokenDenom(s.ctx, asset.TokenDenom).

Return(asset, true).AnyTimes()

// . c | p1 | p2

// token balances: 70000e6 | 80000e6 | 82000e6

// exchange rate = 1.2

// refract fee = 0.01

// effective exchange rate = 1.2 * (1 - 0.01) = 1.188

// c*effective er = 70000e6 * 1.188 = 83160e6

// total p = 83160e6 + 80000e6 + 82000e6 = 245160e6

// refract for each maturity = 326317, 334475

s.assetsKeeper.EXPECT().

RefractorRefractFeeRatio(s.ctx, asset.Id).

Return(sdk.MustNewDecFromStr("0.01")).

AnyTimes()

refractorAction1 :=

refractormodulekeeper.NewRefractorAction(refractormodulekeeper.RefractActionType,

asset, maturities[0], sdk.NewInt(3265), sdk.NewInt(323053),

sdk.NewInt(326318), sdk.NewInt(387663), sdk.NewInt(387663))

s.refractorKeeper.EXPECT().

ComputeRefract(s.ctx, sdk.NewCoin(asset.TokenDenom, sdk.NewInt(326318)),

maturities[0].Symbol).

Return(refractorAction1, nil).

Times(1)

refractorAction2 :=

refractormodulekeeper.NewRefractorAction(refractormodulekeeper.RefractActionType,

asset, maturities[1], sdk.NewInt(3345), sdk.NewInt(331130),

sdk.NewInt(334475), sdk.NewInt(397356), sdk.NewInt(397356))

s.refractorKeeper.EXPECT().

ComputeRefract(s.ctx, sdk.NewCoin(asset.TokenDenom, sdk.NewInt(334475)),

maturities[1].Symbol).

Return(refractorAction2, nil).

Times(1)

addrStr := sample.AccAddress()

addr := sdk.MustAccAddressFromBech32(addrStr)

agg := refractormodulekeeper.NewAggregatedRefractorAction(addr)

KEA-02 PRYZM

s.Require().NoError(agg.Append(refractorAction1))

s.Require().NoError(agg.Append(refractorAction2))

s.refractorKeeper.EXPECT().

ExecuteAggregatedAction(s.MatchContext(), agg).

Return(nil).Times(1)

// execute message to make sure the message changes the db

// and simulation responses are equal to actual message responses

s.bankKeeper.EXPECT().

BlockedAddr(addr).

Return(false)

s.setupMocksAllowAnyTransferMintAndBurn()

messageResponse, err := s.msgServer.ZeroImpactJoinYamm(s.ctx,

&types.MsgZeroImpactJoinYamm{

Creator: addrStr,

CAmountIn: sdk.NewInt64Coin(asset.TokenDenom, 1000000),

})

s.Require().NoError(err)

// simulation output should be equal to actual message execution outputs

s.Require().Equal(&types.MsgZeroImpactJoinYammResponse{

LptOut: sdk.NewInt64Coin(pool.GetLpDenom(), 339205),

YOut: sdk.NewCoins(sdk.NewInt64Coin(assets.YDenom(asset.Id,

maturities[0].Symbol), 387663),

sdk.NewInt64Coin(assets.YDenom(asset.Id, maturities[1].Symbol),

397356)),

RefractFee: sdk.NewInt64Coin(asset.TokenDenom, 6610),

JoinProtocolFee: sdk.NewCoins(),

SwapFee: sdk.NewCoins(),

}, messageResponse)

}

Output:

=== RUN TestKeeperTestSuite

=== RUN TestKeeperTestSuite/TestMsgServerZeroImpactJoinYammWithExpirePAsset

 msg_server_zero_impact_join_yamm_test.go:164:

 Error Trace: /Users/certik/go_audit_project/pryzm-finance/pryzm-core-

1004/x/amm/keeper/msg_server_zero_impact_join_yamm_test.go:164

 Error: Received unexpected error:

 github.com/pryzm-finance/pryzm-core/x/amm/keeper/pools.

(*yammPoolController).ValidateJoinExactTokens

Recommendation

We recommend considering the scenario where the pASSET is either expiring or has already expired.

KEA-02 PRYZM

Alleviation

[Pryzm Team - 10/16/2023] :

The team resolved the finding by excluding the expiring or expired PAsset to fix the issue in the commit

07d035e82c02369585f33b0d69cdfbc6c98ecb17 .

KEA-02 PRYZM

https://github.com/pryzm-finance/pryzm-core/commit/07d035e82c02369585f33b0d69cdfbc6c98ecb17

KEE-04 PENDINGCAMOUNT, PENDINGAMOUNT, AND
RECEIVEDAMOUNT ARE NOT UPDATED AFTER HANDLING
UNDELEGATION RECEPTION

Category Severity Location Status

Logical

Issue
Major

bridge_sweep.go (374cad8): 122, 180; msg_server_redeem_unstaked.g

o (374cad8): 45~46
Resolved

Description

Files:

x/icstaking/keeper/bridge_sweep.go

x/icstaking/keeper/msg_server_redeem_unstaked.go

Commit:

374cad8c0f54b4f98efb6248cf434524bf2b7f65

The properties of ChannelUndelegation mentioned below have a direct impact on the undelegation state and should be

updated accordingly after the undelegation reception:

PendingCAmount

PendingAmount

ReceivedAmount

Swept

Among them, the value of ReceivedAmount plays a crucial role in calculating the redemption rate of the undelegation, and

eventually affects the asset amount that will be redeemed to users.

x/icstaking/keeper/msg_server_redeem_unstaked.go

45

// calculate the amount to be redeemed to user, based on the redemption rate of the

undelegation

46 redemptionRate := sdk.NewDecFromInt(undelegation.ReceivedAmount).QuoInt(

undelegation.TotalCAmount)

Hence, users are unable to get any undelegated underlying assets even if they provided all amounts of uAsset.

KEE-04 PRYZM

https://github.com/pryzm-finance/pryzm-core/tree/374cad8c0f54b4f98efb6248cf434524bf2b7f65

Scenario

To reproduce the error, please follow the steps:

1. Take a specific quantity of underlying assets from a user's account, generating an equivalent amount of cAsset for

the user

2. Wait for the delegation operation to be executed at the start of the subsequent block

3. The user initiates an unstaking of their cAsset .

4. Wait for the undelegation operation to be executed at the start of the next block

5. PRYZM updates the host chain state upon receiving information from the Oracle, modifying channel undelegations,

and marking received as true.

6. However, in Step 5, the value of undelegation.ReceivedAmount does not undergo any modification

7. Since the undelegation.ReceivedAmount remains stagnant at zero without any updates, users face an inability to

redeem the underlying asset

Recommendation

It is important to ensure that these properties are correctly updated and reflect the relevant state changes after the

undelegation reception. We recommend reviewing the logic again and updating these properties accordingly after handling

undelegation reception.

Alleviation

[Pryzm Team - 09/15/2023] :

The team heeded the advice and resolved this issue in the commit cc4da59bae539c2a5c15090491aa7fda4da4987c .

102 for channel, sweep := range data.ChannelSweeps {

103 for _, epoch := range sweep.Epochs {

104 channelUndelegation, found := b.keeper.GetChannelUndelegation(ctx,

 replyData.HostChainId, epoch, channel)

105 if !found {

106 continue

107 }

108 channelUndelegation.Swept = true

109 b.keeper.setChannelUndelegation(ctx, channelUndelegation)

110 }

111 }

187 channelUndelegation.ReceivedAmount = channelUndelegation.ReceivedAmount.Add

(amount)

188 channelUndelegation.PendingAmount = sdk.ZeroInt()

189 channelUndelegation.PendingCAmount = sdk.ZeroInt()

KEE-04 PRYZM

https://github.com/pryzm-finance/pryzm-core/commit/cc4da59bae539c2a5c15090491aa7fda4da4987c

KEE-05 POTENTIAL PANICS WHEN FETCHING NIL VALIDATOR
FROM weightDiff

Category Severity Location Status

Volatile

Code
Major

bridge_delegate.go (374cad8): 155~167; bridge_redelegate.go (374cad

8): 124~134; bridge_undelegate.go (374cad8): 188~198
Resolved

Description

Files:

x/icstaking/keeper/bridge_delegate.go

x/icstaking/keeper/bridge_redelegate.go

x/icstaking/keeper/bridge_undelegate.go

x/icstaking/keeper/host_chain.go

Commit:

374cad8c0f54b4f98efb6248cf434524bf2b7f65

The nil validator dereference will be triggered to block the operations of delegation, undelegation, and redelegation if there

are any missing validators from the host chain that are registered on Pryzm, for example, if a new validator has been

registered but the host chain state has not been updated. More precisely, the function UpdateHostChain() is intended to

update the host chain registration information via governance, either with the new parameters or new validators.

x/icstaking/keeper/host_chain.go

KEE-05 PRYZM

https://github.com/pryzm-finance/pryzm-core/tree/374cad8c0f54b4f98efb6248cf434524bf2b7f65

98 func (k Keeper) UpdateHostChain(ctx sdk.Context, hostChainID string,

 validators types.Validators, params *types.StakingParams) error {

99 hostChain, found := k.GetHostChain(ctx, hostChainID)

100 if !found {

101 return sdkerrors.Wrapf(types.ErrHostChainNotFound, hostChainID)

102 }

103

104 if params != nil {

105 hostChain.Params = *params

106 }

107

108 if len(validators) != 0 {

109 // descending sort of validators by their weight

110 validators.SortByWeight(true)

111

112 // create a map of new validators list

113 newValMap := make(map[string]bool)

114 for _, v := range validators {

115 newValMap[v.Address] = true

116 }

117

118

// add the old validators which are not included in the new validator set with

weight 0

119 for _, oldVal := range hostChain.Validators {

120 if !newValMap[oldVal.Address] {

121 validators = append(validators, types.Validator{Address: oldVal

.Address, Weight: sdk.ZeroDec()})

122 }

123 }

124 hostChain.Validators = validators

125 }

126

127 k.setHostChain(ctx, hostChain)

128 return nil

129 }

However, the validators in the host chain state has not been updated. In case that new validator is introduced in host chain,

then it can not be found in the host chains state.

According to the construction of slice weightDiff , if some validator is not found in the hostChainState from the host

chain, the corresponding position in the slice will be nil.

KEE-05 PRYZM

// create a mapping of validators to the diff of their current weight to their

expected weight

weightDiff := make([]types.Validator, len(hostChain.Validators))

for i, validator := range hostChain.Validators {

valInfo, found := hostChainState.Validators[validator.Address]

if !found {

continue

}

actualWeight :=

sdk.NewDecFromInt(valInfo.DelegatedAmount).QuoInt(totalDelegation)

weightDiff[i] = types.Validator{

Address: validator.Address,

Weight: actualWeight.Sub(expectedWeights[validator.Address]),

}

}

In this case, fetching the nil validator with the invocation of methods LT() , GT() , or Abs() could possibly lead to panic.

// ascending sort

sort.SliceStable(weightDiff, func(i, j int) bool {

return weightDiff[i].Weight.LT(weightDiff[j].Weight)

})

// create a mapping of validator to their share of current delegation

delegationMap := make(map[string]math.Int)

remainingDelegation := totalDeposit

for i := 0; i < len(weightDiff) && !remainingDelegation.IsZero(); i++ {

diffAmount :=

weightDiff[i].Weight.Abs().MulInt(totalDelegation).TruncateInt()

delegationAmount := sdk.MinInt(diffAmount, remainingDelegation)

delegationMap[weightDiff[i].Address] = delegationAmount

remainingDelegation = remainingDelegation.Sub(delegationAmount)

}

Proof of Concept

The following unit test is used to reproduce the panics:

func Test_nilValidator(t *testing.T) {

weightDiff := make([]types.Validator, 2)

absWeight := weightDiff[0].Weight.Abs()

fmt.Printf("The absolute weight is %f\n", absWeight)

}

Result:

KEE-05 PRYZM

=== RUN Test_nilValidator

--- FAIL: Test_nilValidator (0.00s)

panic: runtime error: invalid memory address or nil pointer dereference [recovered]

panic: runtime error: invalid memory address or nil pointer dereference

Recommendation

Recommend sanitizing the validator that can not be found in the host chain state.

Alleviation

[Pryzm Team - 09/13/2023] :

The team heeded the advice and refactored the logic of calculating the amount of delegation and undelegation to fix the

issue in the commit 074a272bb61adb89b9a040ff9dadbc2634e572a8 .

KEE-05 PRYZM

https://github.com/pryzm-finance/pryzm-core/commit/074a272bb61adb89b9a040ff9dadbc2634e572a8

KEE-06 INCORRECT DISTRIBUTION OF DELEGATION AND
UNDELEGATION AMOUNT AS THE LAST VALIDATOR GETS
ENTIRE remainingUndelegation AND remainingDelegation

Category Severity Location Status

Incorrect

Calculation
Major

bridge_delegate.go (374cad8): 192~199; bridge_undelegate.go (3

74cad8): 223~230
Resolved

Description

Files:

x/icstaking/keeper/bridge_delegate.go

x/icstaking/keeper/bridge_undelegate.go

Commit:

374cad8c0f54b4f98efb6248cf434524bf2b7f65

The incorrect distribution of the remaining delegation and undelegation amount among the validators would possibly cause

more delegation and undelegation amount to be executed, respectively.

In functions CreateDelegationMsgs() and createUndelegationMsgs() , the remaining delegation and undelegation

amount will be distributed to the validators based on their expected weights.

x/icstaking/keeper/bridge_delegate.go

KEE-06 PRYZM

https://github.com/pryzm-finance/pryzm-core/tree/374cad8c0f54b4f98efb6248cf434524bf2b7f65

185 // distribute the remaining uniformly based on each validator weight

186 if !remainingDelegation.IsZero() {

187 w := sdk.ZeroDec()

188 for val := range delegationMap {

189 w = w.Add(expectedWeights[val])

190 }

191 i := 0

192 for val := range delegationMap {

193 if i == len(delegationMap)-1 {

194 delegationMap[val] = delegationMap[val].Add(remainingDelegation

)

195 } else {

196 delegationMap[val] = delegationMap[val].Add(expectedWeights[val

].Quo(w).MulInt(remainingDelegation).TruncateInt())

197 }

198 i++

199 }

200 }

x/icstaking/keeper/bridge_undelegate.go

217 if !remainingUndelegation.IsZero() {

218 w := sdk.ZeroDec()

219 for val := range undelegationMap {

220 w = w.Add(expectedWeights[val])

221 }

222 i := 0

223 for val := range undelegationMap {

224 if i == len(undelegationMap)-1 {

225 undelegationMap[val] = undelegationMap[val].Add(

remainingUndelegation)

226 } else {

227 undelegationMap[val] = undelegationMap[val].Add(expectedWeights

[val].Quo(w).MulInt(remainingUndelegation).TruncateInt())

228 }

229 i++

230 }

231 }

As shown in the above implementation, the previous n-1 validators get the delegation and undelegation amount proportional

to their expected weights. However, the last validator in the map gets the entire remainingDelegation and

remainingUndelegation , which are supposed to be the amount left over. As a result, more delegation and undelegation

amount will be produced.

Proof of Concept

To demonstrate the scenario, we use the following unit test.

1. set the remaining delegation as 100;

KEE-06 PRYZM

2. set two validators 1 and 2 with expected weights, 0.9 and 0.1;

3. Validator 1 will get 100 * 0.9 = 90, and validator 2 will get 100.

func Test_remainingDelegationDistribution(t *testing.T) {

remainingDelegation := math.NewInt(100)

val1Address := "1"

val2Address := "2"

delegationMap := map[string]math.Int{

val1Address: sdk.NewInt(0),

val2Address: sdk.NewInt(0),

}

expectedWeights := map[string]sdk.Dec{

val1Address: sdk.MustNewDecFromStr("0.9"),

val2Address: sdk.MustNewDecFromStr("0.1"),

}

// distribute the remaining uniformly based on each validator weight

if !remainingDelegation.IsZero() {

w := sdk.ZeroDec()

for val := range delegationMap {

w = w.Add(expectedWeights[val])

}

i := 0

for val := range delegationMap {

if i == len(delegationMap)-1 {

delegationMap[val] = delegationMap[val].Add(remainingDelegation)

} else {

delegationMap[val] =

delegationMap[val].Add(expectedWeights[val].Quo(w).MulInt(remainingDelegation).Trunc

ateInt())

}

i++

}

}

// calculate the total delegation that has been distributed

totalDelegation := math.NewInt(0)

for val := range delegationMap {

totalDelegation = totalDelegation.Add(delegationMap[val])

}

require.NotEqual(t, totalDelegation, remainingDelegation)

fmt.Printf("The total delegation is %s, not %s!\n", totalDelegation,

remainingDelegation)

}

Result:

KEE-06 PRYZM

=== RUN Test_remainingDelegationDistribution

The total delegation is 190, not 100!

--- PASS: Test_remainingDelegationDistribution (0.00s)

PASS

Recommendation

Recommend correcting the distribution logic so that the last validator gets the left over.

Alleviation

[Pryzm Team - 09/15/2023] :

The team heeded the advice and resolved this issue in the commit 074a272bb61adb89b9a040ff9dadbc2634e572a8 .

KEE-06 PRYZM

https://github.com/pryzm-finance/pryzm-core/commit/074a272bb61adb89b9a040ff9dadbc2634e572a8

KEP-02 POTENTIALLY UNABLE TO EXIT THE FLOW
SUCCESSFULLY DUE TO THE FLOW BEING STOPPED BY
THE FLOW CREATOR

Category Severity Location Status

Logical

Issue
Major

x/flowtrade/keeper/flow.go (flowtrade): 102; x/flowtrade/keeper/position.g

o (flowtrade): 104
Resolved

Description

Files:

x/flowtrade/keeper/flow.go

x/flowtrade/keeper/position.go

Commit:

930876154d4296a366ba2ca179c227c6663cc55b

In the flowtrade module, a user can offer token-out tokens and lock deposits to establish a flow. Meanwhile, other

users can participate in an active flow by contributing a certain amount of token-in tokens to purchase token-out tokens.

The participants can also choose to exit and retrieve their unexchanged token-in tokens if the flow is not ended or

stopped:

x/flowtrade/keeper/position.go

KEP-02 PRYZM

https://github.com/refractedlabs/flowtrade/tree/930876154d4296a366ba2ca179c227c6663cc55b

func (k Keeper) ExitFlow(ctx sdk.Context, flowId uint64, address sdk.AccAddress,

amount sdk.Coin) error {

...

// return error if flow is not active

switch flow.Status {

case types.FlowStatus_ENDED:

return types.ErrFlowEnded

case types.FlowStatus_STOPPED:

return types.ErrFlowStopped

}

 ...

// transfer the amount to the user account

err := k.sendCoinsFromModuleToAccount(ctx, address, sdk.NewCoins(amount))

if err != nil {

return err

}

return ctx.EventManager().EmitTypedEvent(&types.EventExitFlow{

FlowId: flowId,

Address: address.String(),

Amount: amount,

})

}

However, it should be noted that the StopFlow() function grants the creator of the flow the authority to stop the flow at their

discretion:

x/flowtrade/keeper/flow.go

// StopFlow stops flow and update it in the store

func (k Keeper) StopFlow(ctx sdk.Context, flowId uint64) error {

...

// update to sync indices with the stopping time

flow.UpdateDistIndex(ctx.BlockTime())

flow.Status = types.FlowStatus_STOPPED

...

}

This action could potentially result in the loss of token-in tokens for users who have joined the flow and have not exited

and withdrawn their unexchanged token-in tokens before the flow is stopped.

KEP-02 PRYZM

Proof of Concept

KEP-02 PRYZM

func (s *keeperTestSuite) TestJoinExitFlow() {

tokenOutDenom := "token-out"

tokenInDenom := "token-in"

address := sdk.MustAccAddressFromBech32(sample.AccAddress())

joiner1 := sdk.MustAccAddressFromBech32(sample.AccAddress())

now := time.Now()

params := types.DefaultParams()

params.MinFlowDuration = time.Hour

params.MinDurationToFlowStart = 0

err := s.flowtradeKeeper.SetParams(s.ctx, params)

s.Require().NoError(err)

// create a flow with 0 dist interval

start := now

end := now.Add(4 * time.Hour)

request := types.NewFlowCreationRequest(

types.NewFlowInfo("", "", ""),

start, end, 0,

address,

sdk.NewInt64Coin(tokenOutDenom, 1_000_000),

tokenInDenom,

end, end,

true, false, false,

)

ctx := s.ctx.WithBlockTime(now.Add(-4 * time.Hour))

s.bankKeeper.EXPECT().SendCoins(gomock.Any(), address, s.moduleAddress,

sdk.NewCoins(request.TokensOut)).Return(nil).Times(1)

flowId, err := s.flowtradeKeeper.CreateFlow(ctx, address, request, false, nil,

sdk.ZeroDec(), sdk.ZeroDec())

s.Require().NoError(err)

ctx = ctx.WithBlockTime(start.Add(4 *

time.Hour)).WithEventManager(sdk.NewEventManager())

amount := sdk.NewInt64Coin(tokenInDenom, 1_000_000)

s.bankKeeper.EXPECT().SendCoins(gomock.Any(), joiner1, s.moduleAddress,

sdk.NewCoins(amount)).Return(nil).Times(1)

err = s.flowtradeKeeper.JoinFlow(ctx, flowId, joiner1, amount)

s.Require().NoError(err)

flow, _ := s.flowtradeKeeper.GetFlow(ctx, flowId)

flow.Status = types.FlowStatus_STOPPED // Stop the flow

s.flowtradeKeeper.SetFlow(ctx, flow)

amount = sdk.NewInt64Coin(tokenInDenom, 1_000_000)

err = s.flowtradeKeeper.ExitFlow(ctx, flowId, joiner1, amount)

s.Require().Error(err)

position, _ := s.flowtradeKeeper.GetPosition(ctx, flowId, joiner1.String())

KEP-02 PRYZM

s.Require().Equal(position.TokenInBalance, sdk.NewInt(1_000_000))

}

Recommendation

It is important to consider the scenario mentioned and ensure that all users who have joined the flows can successfully exit

the flows and withdraw their unexchanged tokens. This will help to promote fairness and provide a smooth user experience

within the system.

Alleviation

[Pryzm Team - 09/15/2023] :

The team heeded the advice and removed final state validation from exit flow method to resolve this issue in the commit

1f3f76d316391b34131f6c7cb5178a349e61ade8 .

KEP-02 PRYZM

https://github.com/refractedlabs/flowtrade/commit/1f3f76d316391b34131f6c7cb5178a349e61ade8

KER-02 CENTRALIZATION RELATED RISKS

Category Severity Location Status

Centralization Major

msg_server_remove_token_from_weighted_pool.go (374c

ad8): 20; msg_server_set_circuit_breakers.go (374cad8): 2

0; msg_server_set_initialization_allow_list.go (374cad8): 2

0; msg_server_set_pause_mode.go (374cad8): 13, 24; msg

_server_set_yamm_configuration.go (374cad8): 20; msg_s

erver_update_swap_fee.go (374cad8): 19; msg_server_upd

ate_weights.go (374cad8): 20

Acknowledged

Description

Files:

x/amm/keeper/*

Commit:

374cad8c0f54b4f98efb6248cf434524bf2b7f65

In the AMM module, a pool's creator has authority over the following functionalities:

Remove a token from the pool.

Set Circuit Breakers, which are used to prevent extreme price movements of tokens, for the pool.

Set the list of accounts that can initialize the pool.

Set pause mode for the pool.

Set configuration for the pool if it is a YAMM pool.

Update the swap fee ratio for the pool.

Update weights of tokens in the pool.

A weighted pool can be created by the authority account or any account if public pool creations are allowed:

12 func (k msgServer) CreateWeightedPool(goCtx context.Context, msg *types.

MsgCreateWeightedPool) (*types.MsgCreateWeightedPoolResponse, error) {

13 ctx := sdk.UnwrapSDKContext(goCtx)

14 if !k.AllowPublicPoolCreation(ctx) && k.authority != msg.Creator {

15 return nil, sdkerrors.Wrapf(govtypes.ErrInvalidSigner,

"invalid creator; expected %s, got %s", k.authority, msg.Creator)

16 }

KER-02 PRYZM

https://github.com/pryzm-finance/pryzm-core/tree/374cad8c0f54b4f98efb6248cf434524bf2b7f65

The authority account is set to govModuleAddress (the last argument) in app.go:

905 app.AmmKeeper = *ammmodulekeeper.NewKeeper(

906 appCodec,

907 keys[ammmoduletypes.StoreKey],

908 keys[ammmoduletypes.MemStoreKey],

909

910 app.AccountKeeper,

911 app.BankKeeper,

912 app.AssetsKeeper,

913 app.RefractorKeeper,

914 app.TreasuryKeeper,

915 govModuleAddress,

916)

And AllowPublicPoolCreation as a parameter can only be updated by gov , which allows staking token holders to vote

on proposals. Therefore, the creation of weighted pools is restricted by gov .

However, it should be noted that anyone can create weighted pools when AllowPublicPoolCreation is set true by gov

and perform the aforementioned privileged operations.

Meanwhile, even though people can create weighted pools when AllowPublicPoolCreation is true , gov would still be

able to pause the pools:

11 func (k msgServer) SetPauseMode(goCtx context.Context, msg *types.

MsgSetPauseMode) (*types.MsgSetPauseModeResponse, error) {

12 ctx := sdk.UnwrapSDKContext(goCtx)

13 if k.authority == msg.Creator {

14 err := k.SetGovPauseMode(ctx, msg.PoolId, msg.PauseMode)

15 if err != nil {

16 return nil, err

17 }

In conclusion, pools' creations and operations are subject to regulation by gov , while normal users can create pools and

affect pool operations only when granted permission by gov .

Any compromise to pools' creator accounts may allow a hacker to take advantage of this authority and manipulate the pools.

Scenario

Scenario 1

The pool creator role can update the swap fee rate without seeking consensus from users or providing them with

notifications, which might lead to users paying unexpected swap fees.

Imagine a scenario where a user intends to swap a large amount of TokenA for TokenB in a pool. If the pool creator, noticing

this transaction, preemptively alters the swap fee from 1% to 10% (the maximum allowed ratio), the user would incur

unexpectedly high fees. Such an action by a pool creator not only undermines trust but also poses a significant financial risk

to users, albeit indirectly.

KER-02 PRYZM

Scenario 2

The pool creator role can update token weights in the pool without seeking consensus from users or providing them with

notifications.

These token weights play a crucial role in the pool's constant product equation, represented as . Adjusting these

weights alters the value of tokens in the pool. Consequently, this can impact the outcomes of token swaps, as well as the

addition or removal of liquidity. As a result, changes to the token weights can indirectly influence the value of users' funds in

the pool.

[Note - 11/29/2023]: This scenario is connected to the finding WEI-02, which has been resolved in PR#236. As a result, the

token weights will always be updated gradually.

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of

decentralization, which in most cases cannot be resolved entirely at the present stage. We advise the client to carefully

manage the privileged account's private key to avoid any potential risks of being hacked. In general, we strongly recommend

centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-contract-based accounts

with enhanced security practices, e.g., multisignature wallets.

Indicatively, here are some feasible suggestions that would also mitigate the potential risk at a different level in terms of short-

term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a single point of key

management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key

compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public

audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

KER-02 PRYZM

Π ​B ​ =i i
w ​i C

https://github.com/pryzm-finance/pryzm-core/pull/236

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviation

[Pryzm Team - 09/15/2023]: Currently, we have two types of pools: YAMM pools and normal weighted pools (balancer

pools). The first kind of pool is not allowed to be created by non-gov addresses. The weighted pools can be created by non-

gov address only if gov has decided to allow that. Therefore the core functionality and main pools are always created by

governance and we are not relying on user-created pools for core functionalities. However, if gov decide to allow public

creation and some non-gov creates a pool, they are in charge of configuring the pool, e.g. changing the weights any time

they want to. even in this situation, we still have a gov feature to pause a pool and set the pool to recovery mode so liquidity

providers can withdraw their liquidity in an emergency. Please note that the pool configurations can change the prices in the

pool but they do not allow for taking liquidity out of the pool through the owner account. It is up to users to decide which pools

they can rely on and which pools are owned by suspicious accounts. For example, you can only trust pools created by gov or

multi-sig accounts.

[CertiK - 10/18/2023]: The team agrees that users should be careful about pool creators when interacting with AMM pools.

The described centralization risk is not eliminated. CertiK encourages the project team to introduce proper mechanisms to

mitigate this risk in the future.

[CertiK - 11/29/2023]: In PR#236, a minimum period for updating token weights is established, necessitating a gradual

approach to the token weight update process.

KER-02 PRYZM

https://github.com/pryzm-finance/pryzm-core/pull/236

X0C-03 POTENTIAL CONSENSUS FAILURE BY NON-DETERMINISM
OF MAP ITERATION

Category Severity Location Status

Volatile

Code,

Denial of

Service

Major

x/amm/keeper/order_execution.go (pryzm-core-0c34472): 387; x/amm/ke

eper/vault_batch_swap.go (pryzm-core-0c34472): 366, 379, 452, 464, 47

9, 493; x/icstaking/keeper/bridge_delegate.go (pryzm-core-0c34472): 15

5, 173; x/icstaking/keeper/bridge_redelegate.go (pryzm-core-0c34472): 1

65, 180; x/icstaking/keeper/bridge_sweep.go (pryzm-core-0c34472): 47, 1

01; x/icstaking/keeper/bridge_undelegate.go (pryzm-core-0c34472): 44, 1

96, 213, 223; x/incentives/types/bond.go (pryzm-core-0c34472): 33, 55; x/

incentives/types/pool.go (pryzm-core-0c34472): 38, 102, 187; x/pgov/kee

per/tally.go (pryzm-core-0c34472): 66; x/refractor/keeper/keeper_action.g

o (pryzm-core-0c34472): 16

Resolved

Description

Files:

x/amm/keeper/order_execution.go

x/amm/keeper/vault_batch_swap.go

x/icstaking/keeper/bridge_delegate.go

x/icstaking/keeper/bridge_redelegate.go

x/icstaking/keeper/bridge_sweep.go

x/icstaking/keeper/bridge_undelegate.go

x/incentives/types/bond.go

x/incentives/types/pool.go

x/pgov/keeper/tally.go

x/refractor/keeper/keeper_action.go

Commit:

0c34472f03010ddc4048ba0727c33c6418d69c2a

The map iteration of Go is non-deterministic that each iteration of the same map will create a different order in an

unpredictable manner. To ensure that the results of chain state updates are consistent among validators, it's important to

always keep the iteration in the same order, which could be achieved via sorting of the keys.

In particular, the following scenarios could lead to inconsistent results of execution:

X0C-03 PRYZM

https://github.com/pryzm-finance/pryzm-core/tree/0c34472f03010ddc4048ba0727c33c6418d69c2a

early exit from the map iteration via break or return

the result of each key-value pair is appended to a slice

In both cases, the result after every execution could possibly be different. If the execution result impacts the consensus or

storage, then the validators may not be able to agree on the chain state, which could cause the consensus failure and chain

halt.

Reference:

https://go.dev/blog/maps

https://github.com/cosmos/cosmos-sdk/issues/13039

Proof of Concept

To demonstrate the non-determinism of the map iteration in Go, we provide the simple test case:

package main

import (

"fmt"

)

func main() {

myMap := map[int]string{

1: "One",

2: "Two",

3: "Three",

4: "Four",

5: "Five",

}

fmt.Println("Original map:")

printMap(myMap)

fmt.Println("\nIterating over the map again:")

printMap(myMap)

}

func printMap(m map[int]string) {

for key, value := range m {

fmt.Printf("%d: %s\n", key, value)

}

}

Result:

X0C-03 PRYZM

https://go.dev/blog/maps
https://github.com/cosmos/cosmos-sdk/issues/13039

Original map:

3: Three

4: Four

5: Five

1: One

2: Two

Iterating over the map again:

5: Five

1: One

2: Two

3: Three

4: Four

Recommendation

Recommend utilizing the sorted keys for the map iteration to ensure the determinism of every execution among the

validators.

Alleviation

[Pryzm Team - 10/16/2023] :

The team heeded the advice and resolved this issue in the commit 5d65b265ab2eded4acd760f3c766c2059b24784a .

X0C-03 PRYZM

https://github.com/pryzm-finance/pryzm-core/commit/5d65b265ab2eded4acd760f3c766c2059b24784a

APP-01 POTENTIAL DOS ATTACK AS CUSTOM MODULE
ACCOUNTS ARE NOT INITIALIZED

Category Severity Location Status

Denial of Service Medium app/app.go (pryzm-core-17e20c2): 274 Resolved

Description

Files:

app.go

Commits:

17e20c2b046a1b389630270bfc10a1079ea0a177

Most custom module accounts in Pryzm are not initialized during the genesis stage, which could allow malicious users to

initialize the these address as base accounts beforehand. It leads to the failure of operations in these modules because the

assertion of these module address as module accounts will fail.

For example, in the incentives module, the tx_bond invokes the Bond() :

x/incentives/keeper/msg_server_bond.go

12 func (k msgServer) Bond(goCtx context.Context, msg *types.MsgBond) (*types.

MsgBondResponse, error) {

13 ctx := sdk.UnwrapSDKContext(goCtx)

14

15 creator, err := sdk.AccAddressFromBech32(msg.Creator)

16 if err != nil {

17 return nil, err

18 }

19

20 bond, err := k.Keeper.BondAmount(ctx, creator, msg.Amount)

21 if err != nil {

22 return nil, err

23 }

24

25 return &types.MsgBondResponse{

26 Bond: bond,

27 }, nil

28 }

which calls the function BondAmount() from the keeper (in line 20):

APP-01 PRYZM

https://github.com/pryzm-finance/pryzm-core/tree/17e20c2b046a1b389630270bfc10a1079ea0a177

x/incentives/keeper/bond.go

74 func (k Keeper) BondAmount(ctx sdk.Context, address sdk.AccAddress, amount sdk.

Coin) (bond typesv1.Bond, err error) {

75 addressStr := address.String()

76 bond, err = k.bondAmountWithoutTransfer(ctx, addressStr, amount)

77 if err != nil {

78 return bond, err

79 }

80

81 err = k.bankKeeper.SendCoinsFromAccountToModule(ctx, address, types.

ModuleName,

82 sdk.NewCoins(amount))

83 if err != nil {

84 return typesv1.Bond{}, err

85 }

86

87 return bond, ctx.EventManager().EmitTypedEvent(&typesv1.EventBond{

88 Address: addressStr,

89 Amount: amount,

90 })

91 }

The function BondAmount() will invoke the SendCoinsFromAccountToModule() from bank module to transfer the token

from the creator of the bond to the incentives module account.

x/bank/keeper/keeper.go

351 func (k BaseKeeper) SendCoinsFromAccountToModule(

352 ctx sdk.Context, senderAddr sdk.AccAddress, recipientModule string, amt sdk

.Coins,

353) error {

354 recipientAcc := k.ak.GetModuleAccount(ctx, recipientModule)

355 if recipientAcc == nil {

356 panic(sdkerrors.Wrapf(sdkerrors.ErrUnknownAddress,

"module account %s does not exist", recipientModule))

357 }

358

359 return k.SendCoins(ctx, senderAddr, recipientAcc.GetAddress(), amt)

360 }

However, the function GetModuleAccount() checks if the account is indeed a module account:

x/auth/keeper/keeper.go

221 func (ak AccountKeeper) GetModuleAccount(ctx sdk.Context, moduleName string)

 types.ModuleAccountI {

222 acc, _ := ak.GetModuleAccountAndPermissions(ctx, moduleName)

223 return acc

224 }

APP-01 PRYZM

Otherwise, it panics if it is a base account in the function GetModuleAccountAndPermissions() :

x/auth/keeper/keeper.go

196 func (ak AccountKeeper) GetModuleAccountAndPermissions(ctx sdk.Context,

 moduleName string) (types.ModuleAccountI, []string) {

197 addr, perms := ak.GetModuleAddressAndPermissions(moduleName)

198 if addr == nil {

199 return nil, []string{}

200 }

201

202 acc := ak.GetAccount(ctx, addr)

203 if acc != nil {

204 macc, ok := acc.(types.ModuleAccountI)

205 if !ok {

206 panic("account is not a module account")

207 }

208 return macc, perms

209 }

210

211 // create a new module account

212 macc := types.NewEmptyModuleAccount(moduleName, perms...)

213 maccI := (ak.NewAccount(ctx, macc)).(types.ModuleAccountI)

// set the account number

214 ak.SetModuleAccount(ctx, maccI)

215

216 return maccI, perms

217 }

Since the incentives has not been initialized as a module account during the launch, a malicious user could generates the

incentives address deterministically with function NewModuleAddress() :

x/auth/types/account.go

164 func NewModuleAddress(name string) sdk.AccAddress {

165 return sdk.AccAddress(crypto.AddressHash([]byte(name)))

166 }

After that, the malicious user initializes the incentives as a base account by creating a periodic vesting for it (Notice that a

direct bank send could also create a base account for the incentives address, but it will fail by the configuration that these

modules are not allowed to receive external coins).

Once the bond operation is performed, it asserts that the passed account is a module account. As a result, it will lead to

panics, which basically disables the bond operations as well as other operations that involve the module account assertion.

Scenario

Considering the following scenario to the bond operation in incentives module:

APP-01 PRYZM

1. Suppose that any operations in the incentives module has not been utilized so that the incentives module

account has not been created;

2. A malicious user, Bob generates the incentives address with the above function NewModuleAddress() ;

3. Bob creates a periodic vesting account with this incentives address so that the incentives becomes a base

account;

4. Any bond operations will be disabled as the incentives has already been initialized as base account that leads to

the assertion failure.

5. The similar scenario also applies to other modules.

Recommendation

Recommend initializing all custom module addresses as the module accounts in function InitGenesis() .

Alleviation

[Pryzm Team - 03/28/2024]: The team heeded the advice and resolved the finding by initializing the module accounts in the

commits 4cdb204d459cd28ae1942a86fc795debae5b7ec3 and 91ca8a06ff9ace5691aa1f4c5c267b68870dcadc .

APP-01 PRYZM

https://github.com/pryzm-finance/pryzm-core/commit/4cdb204d459cd28ae1942a86fc795debae5b7ec3
https://github.com/pryzm-finance/pryzm-core/commit/91ca8a06ff9ace5691aa1f4c5c267b68870dcadc

BRD-03 INCORRECT CALCULATION LOGIC ON totalDelegation

Category Severity Location Status

Logical Issue Medium bridge_undelegate.go (374cad8): 185, 209~215 Resolved

Description

Files:

x/icstaking/keeper/bridge_undelegate.go

Commit:

374cad8c0f54b4f98efb6248cf434524bf2b7f65

In the createUndelegationMsgs function, the calculation of the undelegation amount for each validator is performed, and

the corresponding undelegation messages are generated. However, there is an issue at line 185 where the

totalUndelegation value is mistakenly added to the totalDelegation instead of being subtracted from it. As a result, a

negative difference weight is generated at line 196, and this can potentially trigger redundant calculation logic from lines 217

to 230.

The auditing team understands that regardless of whether totalUndelegation is added to totalDelegation or

subtracted from it, each validator will ultimately have nearly the same amount of undelegation .

BRD-03 PRYZM

https://github.com/pryzm-finance/pryzm-core/tree/374cad8c0f54b4f98efb6248cf434524bf2b7f65

172 func (k Keeper) createUndelegationMsgs(ctx sdk.Context, hostChain types.

HostChain, hostChainState types.HostChainState, totalUndelegation math.Int) ([]*

stakingtypes.MsgUndelegate, error) {

173 totalDelegation := sdk.ZeroInt()

174 expectedWeights := make(map[string]sdk.Dec, len(hostChain.Validators))

175 for _, v := range hostChain.Validators {

176 expectedWeights[v.Address] = v.Weight

177 valInfo, found := hostChainState.Validators[v.Address]

178 if !found {

179 continue

180 }

181 totalDelegation = totalDelegation.Add(valInfo.DelegatedAmount)

182 }

183

184

// Subtract undelegating amount from total delegation so the weight diffs are

calculated considering new undelegation

185 totalDelegation = totalDelegation.Add(totalUndelegation)

186

187 weightDiff := make([]types.Validator, len(hostChain.Validators))

188 for i, v := range hostChain.Validators {

189 valInfo, found := hostChainState.Validators[v.Address]

190 if !found {

191 continue

192 }

193 actualWeight := sdk.NewDecFromInt(valInfo.DelegatedAmount).QuoInt(

totalDelegation)

194 weightDiff[i] = types.Validator{

195 Address: v.Address,

196 Weight: actualWeight.Sub(expectedWeights[v.Address]),

197 }

198 }

199

200 // descending sort

201 sort.SliceStable(weightDiff, func(i, j int) bool {

202 return weightDiff[i].Weight.GT(weightDiff[j].Weight)

203 })

204

205 maxUndelegateMsgs := k.MaxUndelegationMsgs(ctx, hostChain.GetID())

206

207 undelegationMap := make(map[string]math.Int)

208 remainingUndelegation := totalUndelegation

209 for i := int32(0); i < maxUndelegateMsgs && i < int32(len(weightDiff)) && !

remainingUndelegation.IsZero(); i++ {

210 diffAmount := weightDiff[i].Weight.MulInt(totalDelegation).TruncateInt(

)

211 delegationAmount := sdk.MinInt(diffAmount, remainingUndelegation)

212

213 undelegationMap[weightDiff[i].Address] = delegationAmount

214 remainingUndelegation = remainingUndelegation.Sub(delegationAmount)

215 }

BRD-03 PRYZM

216

217 if !remainingUndelegation.IsZero() {

218 w := sdk.ZeroDec()

219 for val := range undelegationMap {

220 w = w.Add(expectedWeights[val])

221 }

222 i := 0

223 for val := range undelegationMap {

224 if i == len(undelegationMap)-1 {

225 undelegationMap[val] = undelegationMap[val].Add(

remainingUndelegation)

226 } else {

227 undelegationMap[val] = undelegationMap[val].Add(expectedWeights

[val].Quo(w).MulInt(remainingUndelegation).TruncateInt())

228 }

229 i++

230 }

231 }

232

233 var msgs []*stakingtypes.MsgUndelegate

234 for val, amount := range undelegationMap {

235 msgs = append(msgs, &stakingtypes.MsgUndelegate{

236 DelegatorAddress: hostChainState.HostAccounts.Delegation.Address,

237 ValidatorAddress: val,

238 Amount: sdk.NewCoin(hostChain.BaseDenom, amount),

239 })

240 }

241

242 return msgs, nil

243 }

However, it impacts the undelegation distribution, the issue is mentioned in another finding.

217 if !remainingUndelegation.IsZero() {

218 w := sdk.ZeroDec()

219 for val := range undelegationMap {

220 w = w.Add(expectedWeights[val])

221 }

222 i := 0

223 for val := range undelegationMap {

224 if i == len(undelegationMap)-1 {

225 undelegationMap[val] = undelegationMap[val].Add(

remainingUndelegation)

226 } else {

227 undelegationMap[val] = undelegationMap[val].Add(expectedWeights

[val].Quo(w).MulInt(remainingUndelegation).TruncateInt())

228 }

229 i++

230 }

231 }

BRD-03 PRYZM

Recommendation

We advise conducting a thorough review of the logic and rectifying the calculation by subtracting the totalUndelegation

from the totalDelegation variable.

185 totalDelegation = totalDelegation.Sub(totalUndelegation)

We also advise applying an absolute value to the weight in order to ensure that the diffAmount always remains positive.

210 diffAmount := weightDiff[i].Weight.Abs().MulInt(totalDelegation).TruncateInt(

)

Alleviation

[Pryzm Team - 09/15/2023] :

The team heeded the advice and resolved this issue in the commit 074a272bb61adb89b9a040ff9dadbc2634e572a8 .

195 totalDelegation = totalDelegation.Sub(totalUndelegation)

BRD-03 PRYZM

https://github.com/pryzm-finance/pryzm-core/commit/074a272bb61adb89b9a040ff9dadbc2634e572a8

BRG-01 INCORRECT UPDATE OF
hostChainState.AmountToBeCompounded

Category Severity Location Status

Incorrect Calculation Medium bridge_compound.go (374cad8): 81 Resolved

Description

Files:

x/icstaking/keeper/bridge_compound.go

Commit:

374cad8c0f54b4f98efb6248cf434524bf2b7f65

The MsgReply() is invoked during the handle of CompoundBridge's acknowledgment, in which the hostChainState will

be updated accordingly.

BRG-01 PRYZM

https://github.com/pryzm-finance/pryzm-core/tree/374cad8c0f54b4f98efb6248cf434524bf2b7f65

67 func (b CompoundBridge) MsgReply(ctx sdk.Context, replyData types.ReplyData, _

*sdk.TxMsgData) error {

68 var data types.CompoundData

69 err := data.Unmarshal(replyData.Data)

70 if err != nil {

71 return err

72 }

73

74 hostChainState, found := b.keeper.GetHostChainState(ctx, replyData.

HostChainId)

75 if !found {

76 return types.ErrHostChainNotFound

77 }

78

79

// update AmountToBeDelegated with the accrued rewards and subtract them from

AmountToBeCompounded

80 hostChainState.AmountToBeDelegated = hostChainState.AmountToBeDelegated.Add

(data.CompoundAmount)

81 hostChainState.AmountToBeCompounded = hostChainState.AmountToBeCompounded.

Sub(data.CompoundAmount)

82 hostChainState.HostAccounts.Sweep.Balance = hostChainState.HostAccounts.

Sweep.Balance.Add(data.FeeAmount)

83 b.keeper.setHostChainState(ctx, hostChainState)

84

85 return b.keeper.SetHostChainIdle(ctx, replyData.HostChainId)

86 }

However, the hostChainState.AmountToBeCompounded only subtracts the CompoundAmount , which should also subtract

the FeeAmount because both CompoundAmount and FeeAmount come from the AmountToBeCompounded .

36

// add a bank send message to transfer fee amount from rewards to the sweep account

37 fee := b.keeper.YieldFeeRatio(ctx, hostChain.GetID()).MulInt(rewardAmount).

Ceil().TruncateInt()

38 if fee.IsPositive() {

39 msgs = append(msgs, &banktypes.MsgSend{

40 FromAddress: hostChainState.HostAccounts.Reward.Address,

41 ToAddress: hostChainState.HostAccounts.Sweep.Address,

42 Amount: sdk.NewCoins(sdk.NewCoin(hostChain.BaseDenom, fee)),

43 })

44 }

45

46

// add a bank send message to transfer (reward - fee) from rewards to the delegation

account to be delegated in the next epoch

47 compound := rewardAmount.Sub(fee)

BRG-01 PRYZM

Recommendation

Recommend subtracting the hostChainState.AmountToBeCompounded with both data.CompoundAmount and

data.FeeAmount .

Alleviation

[Pryzm Team - 09/13/2023] :

The team resolved the finding by removing the unused AmountToBeCompounded from the host chain state in the commit

dfdad10e973e4a9f954017608763bc70b32ac896 .

BRG-01 PRYZM

https://github.com/pryzm-finance/pryzm-core/commit/dfdad10e973e4a9f954017608763bc70b32ac896

CLC-01 MISCONFIGURED TRANSACTION COMMANDS ARE
BLOCKED IN ICSTAKING MODULE

Category Severity Location Status

Volatile

Code
Medium

tx_instant_unstake.go (374cad8): 17, 25; tx_redeem_unstaked.go (374

cad8): 19, 27; tx_stake.go (374cad8): 17; tx_unstake.go (374cad8): 17
Resolved

Description

Files:

x/icstaking/client/cli/tx_instant_unstake.go

x/icstaking/client/cli/tx_redeem_unstaked.go

x/icstaking/client/cli/tx_stake.go

x/icstaking/client/cli/tx_unstake.go

Commit:

374cad8c0f54b4f98efb6248cf434524bf2b7f65

In the icstaking module, the following 4 commands will be disabled due to the misconfiguration of the arguments and

incorrect parse of these arguments.

1. The command CmdInstantUnstake() is intended to perform instant unstaking with 4 arguments, while it only

requires 3 and the args[2] has been used for both argMinCAmount and argMaxCAmount .

13 func CmdInstantUnstake() *cobra.Command {

14 cmd := &cobra.Command{

15 Use:

"instant-unstake [host-chain] [transfer-channel] [min-c-amount] [max-c-amount]",

16 Short: "Broadcast message instant-unstake",

17 Args: cobra.ExactArgs(3),

18 RunE: func(cmd *cobra.Command, args []string) (err error) {

19 argHostChain := args[0]

20 argTransferChannel := args[1]

21 argMinCAmount, ok := sdk.NewIntFromString(args[2])

22 if !ok {

23 return sdkerrors.Wrapf(types.ErrInvalidAmount,

"MinCAmount %s cannot be converted to int", args[1])

24 }

25 argMaxCAmount, ok := sdk.NewIntFromString(args[2])

26 ...

CLC-01 PRYZM

https://github.com/pryzm-finance/pryzm-core/tree/374cad8c0f54b4f98efb6248cf434524bf2b7f65

2. Similarly, the command CmdRedeemUnstaked() needs 4 arguments but it only requires 2. Moreover, the argEpoch

is parsed from the input u-amount , which should be the argument epoch .

15 func CmdRedeemUnstaked() *cobra.Command {

16 cmd := &cobra.Command{

17 Use:

"redeem-unstaked [host-chain] [transferChannel] [u-amount] [epoch]",

18 Short: "Broadcast message redeem-unstaked",

19 Args: cobra.ExactArgs(2),

20 RunE: func(cmd *cobra.Command, args []string) (err error) {

21 argHostChain := args[0]

22 argTransferChannel := args[1]

23 argUAmount, ok := sdk.NewIntFromString(args[2])

24 if !ok {

25 return sdkerrors.Wrapf(types.ErrInvalidAmount,

"amount %s cannot be converted to int", args[1])

26 }

27 argEpoch, err := strconv.ParseUint(args[2], 10, 64)

28 ...

3. The command CmdStake() requires 3 arguments, but it only accepts 2.

13 func CmdStake() *cobra.Command {

14 cmd := &cobra.Command{

15 Use: "stake [host-chain] [transfer-channel] [amount]",

16 Short: "Broadcast message stake",

17 Args: cobra.ExactArgs(2),

18 ...

4. Same as above, the command CmdUnstake() needs 3 arguments, but it only accepts 2.

13 func CmdUnstake() *cobra.Command {

14 cmd := &cobra.Command{

15 Use: "unstake [host-chain] [transfer-channel] [amount]",

16 Short: "Broadcast message unstake",

17 Args: cobra.ExactArgs(2),

18 ...

Additionally, the arguments passed in the error messages are incorrect.

Proof of Concept

To reproduce the error, we take the command instant-unstake as an example :

1. run the tx command instant-unstake with the following inputs:

CLC-01 PRYZM

prismd tx icstaking instant-unstake 1 2 100 110 --from=prism1vw2jqkgcs4phugu4g29glu3mhvp8yzagzyesdl -y --

gas=200000 --fees=10000uprism

2. it returns an error:

Error: accepts 3 arg(s), received 4

Recommendation

Recommend configuring the correct arguments and parsing the corresponding arguments correctly. In addition, recommend

correcting the error messages in the aforementioned commands.

Alleviation

[Pryzm Team - 09/13/2023] :

The team heeded the advice and resolved this issue in the commit c7a8bf26f5bc8841889f5f28d707a3920bf49997 .

CLC-01 PRYZM

https://github.com/pryzm-finance/pryzm-core/commit/c7a8bf26f5bc8841889f5f28d707a3920bf49997

CLI-01 MISCONFIGURATION OF EXPECTED ARGUMENTS BLOCKS
THE COMMANDS CmdIntroduceYammLpToWeightedPool()

AND CmdSetJoinExitProtocolFee()

Category Severity Location Status

Volatile

Code
Medium

tx_introduce_yamm_lp_to_weighted_pool.go (374cad8): 18; tx_set_joi

n_exit_protocol_fee.go (374cad8): 20
Resolved

Description

Files:

x/amm/client/cli/tx_introduce_yamm_lp_to_weighted_pool.go

x/amm/client/cli/tx_set_join_exit_protocol_fee.go

Commit:

374cad8c0f54b4f98efb6248cf434524bf2b7f65

Misconfiguration of the expected arguments in the tx commands CmdIntroduceYammLpToWeightedPool() and

CmdSetJoinExitProtocolFee() will disable the execution of these commands.

The tx command CmdIntroduceYammLpToWeightedPool() is used to submit a tx to introduce a yamm lp to the the weighted

pool, which requires 3 arguments, weighted-pool-id , yamm-pool-id , token-normalized-weight .

However, it expects only 2 arguments in line 18 of the function CmdIntroduceYammLpToWeightedPool() :

x/amm/client/cli/tx_introduce_yamm_lp_to_weighted_pool.go

14 func CmdIntroduceYammLpToWeightedPool() *cobra.Command {

15 cmd := &cobra.Command{

16 Use:

"introduce-yamm-lp-to-weighted-pool [weighted-pool-id] [yamm-pool-id] [token-

normalized-weight]"

,

17 Short: "Broadcast message introduce-yamm-lp-to-weighted-pool",

18 Args: cobra.ExactArgs(2),

19 RunE: func(cmd *cobra.Command, args []string) (err error) {

20 ...

Similarly, the tx command CmdSetJoinExitProtocolFee() is intended to set the join exit protocol fee, which only needs one

argument pool-id , but it expects 2 arguments as shown in line 20 of the function CmdSetJoinExitProtocolFee() :

CLI-01 PRYZM

https://github.com/pryzm-finance/pryzm-core/tree/374cad8c0f54b4f98efb6248cf434524bf2b7f65

x/amm/client/cli/tx_set_join_exit_protocol_fee.go

16 func CmdSetJoinExitProtocolFee() *cobra.Command {

17 cmd := &cobra.Command{

18 Use: "set-join-exit-protocol-fee [pool-id]",

19 Short: "Broadcast message set-join-exit-protocol-fee",

20 Args: cobra.ExactArgs(2),

21 ...

As a result, both commands will never be executed successfully.

Proof of Concept

To reproduce the error, please follow the steps:

1. run the tx command introduce-yamm-lp-to-weighted-pool with the following inputs:

prismd tx amm introduce-yamm-lp-to-weighted-pool 1 2 1.0 --from=prism1vw2jqkgcs4phugu4g29glu3mhvp8yzagzyesdl -

y --gas=200000 --fees=10000uprism

2. it returns an error:

Error: accepts 2 arg(s), received 3

Recommendation

Recommend changing the number of expected arguments as follows:

x/amm/client/cli/tx_introduce_yamm_lp_to_weighted_pool.go

18 Args: cobra.ExactArgs(3),

x/amm/client/cli/tx_set_join_exit_protocol_fee.go

20 Args: cobra.ExactArgs(1),

Alleviation

[Pryzm Team - 09/15/2023] :

The team removed the two commands to resolve this issue in the commit 96f8395e248f6870647e3a1a52e08acb85d08293 .

CLI-01 PRYZM

https://github.com/pryzm-finance/pryzm-core/commit/96f8395e248f6870647e3a1a52e08acb85d08293

CLI-02 MISSING FEERATIO FLAG IN THE COMMANDS
CmdSetJoinExitProtocolFee() AND

CmdSetSwapProtocolFee()

Category Severity Location Status

Volatile

Code
Medium

tx_set_join_exit_protocol_fee.go (374cad8): 58; tx_set_swap_protocol

_fee.go (374cad8): 58
Resolved

Description

Files:

x/amm/client/cli/tx_set_join_exit_protocol_fee.go

x/amm/client/cli/tx_set_swap_protocol_fee.go

Commit:

374cad8c0f54b4f98efb6248cf434524bf2b7f65

The tx command CmdSetJoinExitProtocolFee() is used to set the join exit protocol fee, which requires user's input of

FeeRatio as the flag. However, this flag has not been added to the command, which disables the execution of the tx

command.

x/amm/client/cli/tx_set_join_exit_protocol_fee.go

58 flags.AddTxFlagsToCmd(cmd)

Similarly, the tx command CmdSetSwapProtocolFee() is used to set the swap protocol fee that needs the FeeRatio from

the flag, but there is no such flag set in the command.

x/amm/client/cli/tx_set_swap_protocol_fee.go

58 flags.AddTxFlagsToCmd(cmd)

Proof of Concept

To reproduce the error, please follow the steps:

1. submit tx set-join-exit-protocol-fee via the command:

CLI-02 PRYZM

https://github.com/pryzm-finance/pryzm-core/tree/374cad8c0f54b4f98efb6248cf434524bf2b7f65

prismd tx amm set-join-exit-protocol-fee 1 --fee-ratio=0.01 --from=prism1vw2jqkgcs4phugu4g29glu3mhvp8yzagzyesdl -y

--gas=200000 --fees=10000uprism

2. it returns an error:

Error: unknown flag: --fee-ratio

Recommendation

Recommend adding the flag to the aforementioned commands.

Alleviation

[Pryzm Team - 09/15/2023] :

The team removed the two commands to resolve this issue in the commit 96f8395e248f6870647e3a1a52e08acb85d08293 .

CLI-02 PRYZM

https://github.com/pryzm-finance/pryzm-core/commit/96f8395e248f6870647e3a1a52e08acb85d08293

EXP-01 FAILURE OF EXPORTING GENESIS FILE CAUSED BY
FETCHING VALIDATOR ADDRESS INCORRECTLY

Category Severity Location Status

Volatile Code Medium export.go (374cad8): 163 Resolved

Description

Files:

app/export.go

Commit:

374cad8c0f54b4f98efb6248cf434524bf2b7f65

According to the current implementation, the function prepForZeroHeightGenesis() retrieves an invalid validator address

from the KV store, which may be causing the failure to export the genesis file.

The function prepForZeroHeightGenesis() is intended to export the genesis state from the Pryzm chain, which includes

getting and exporting the validator information from the KV store.

156 // Iterate through validators by power descending, reset bond heights, and

157 // update bond intra-tx counters.

158 store := ctx.KVStore(app.keys[stakingtypes.StoreKey])

159 iter := sdk.KVStoreReversePrefixIterator(store, stakingtypes.ValidatorsKey)

160 counter := int16(0)

161

162 for ; iter.Valid(); iter.Next() {

163 addr := sdk.ValAddress(iter.Key()[1:])

164 validator, found := app.StakingKeeper.GetValidator(ctx, addr)

165 if !found {

166 panic("expected validator, not found")

167 }

168

169 validator.UnbondingHeight = 0

170 if applyAllowedAddrs && !allowedAddrsMap[addr.String()] {

171 validator.Jailed = true

172 }

173

174 app.StakingKeeper.SetValidator(ctx, validator)

175 counter++

176 }

177 ...

EXP-01 PRYZM

https://github.com/pryzm-finance/pryzm-core/tree/374cad8c0f54b4f98efb6248cf434524bf2b7f65

In line 163, the validator address is fetched via iter.Key()[1:] , which excludes the ValidatorsKey , but it still includes

the prefix, the length of the address. This can be demonstrated in the function GetValidatorKey() in Cosmos SDK:

x/staking/types/keys.go

83 // GetValidatorKey creates the key for the validator with address

84 // VALUE: staking/Validator

85 func GetValidatorKey(operatorAddr sdk.ValAddress) []byte {

86 return append(ValidatorsKey, address.MustLengthPrefix(operatorAddr)...)

87 }

Therefore, the iter.Key()[1:] returns the bytes of the length of the address plus the address, and it cannot be correctly

converted to the validator address via the function sdk.ValAddress() . In this case, it will cause panic because it cannot be

found in the staking keeper.

Proof of Concept

To reproduce the panics error, please follow the steps:

1. Start a local node:

pryzmd start

2. Stop the node;

3. Export the genesis file:

pryzmd export --for-zero-height > test_genesis.json

Test result:

EXP-01 PRYZM

panic: expected validator, not found

goroutine 1 [running]:

github.com/pryzm-finance/pryzm-core/app.(*App).prepForZeroHeightGenesis(_,

{{0x103877518, 0xc0002fa0a0}, {0x103890fd0, 0xc001a05e80}, {{0x0, 0x0}, {0x0, 0x0},

0x22, ...}, ...}, ...)

 github.com/pryzm-finance/pryzm-core/app/export.go:166 +0xf85

github.com/pryzm-finance/pryzm-core/app.

(*App).ExportAppStateAndValidators(0xc000df8a00, 0x1, {0x1050b7090, 0x0, 0x0},

{0x1050b7090, 0x0, 0x0})

 github.com/pryzm-finance/pryzm-core/app/export.go:30 +0x17f

github.com/pryzm-finance/pryzm-

core/cmd/pryzmd/cmd.appCreator.appExport({{{0x1038848e0, 0xc0008cae20},

{0x10389d0c0, 0xc000e199c0}, {0x10388d100, 0xc0005cbcc0}, 0xc0005d8748}},

{0x1038777f0, 0xc001879860}, {0x1038918d0, ...}, ...)

 github.com/pryzm-finance/pryzm-core/cmd/pryzmd/cmd/root.go:293 +0x2ce

github.com/cosmos/cosmos-sdk/server.ExportCmd.func1(0xc0015af800, {0xc0017bf050?,

0x0?, 0x1?})

 github.com/cosmos/cosmos-sdk@v0.47.2/server/export.go:73 +0x435

github.com/spf13/cobra.(*Command).execute(0xc0015af800, {0xc0017bf030, 0x1, 0x1})

 github.com/spf13/cobra@v1.7.0/command.go:940 +0x862

github.com/spf13/cobra.(*Command).ExecuteC(0xc001549500)

 github.com/spf13/cobra@v1.7.0/command.go:1068 +0x3bd

github.com/spf13/cobra.(*Command).Execute(...)

 github.com/spf13/cobra@v1.7.0/command.go:992

github.com/spf13/cobra.(*Command).ExecuteContext(...)

 github.com/spf13/cobra@v1.7.0/command.go:985

github.com/cosmos/cosmos-sdk/server/cmd.Execute(0x1022a0c30?, {0x0, 0x0},

{0xc0012730b0, 0x14})

 github.com/cosmos/cosmos-sdk@v0.47.2/server/cmd/execute.go:32 +0x179

main.main()

 github.com/pryzm-finance/pryzm-core/cmd/pryzmd/main.go:14 +0x30

The result outputs the error message: panic: expected validator, not found , which means the validator address has

not been found.

Recommendation

Recommend using the following function from CosmosSDK/x/staking/types/keys.go instead of iter.Key()[1:] :

95

// AddressFromValidatorsKey creates the validator operator address from

ValidatorsKey

96 func AddressFromValidatorsKey(key []byte) []byte {

97 kv.AssertKeyAtLeastLength(key, 3)

98 return key[2:] // remove prefix bytes and address length

99 }

EXP-01 PRYZM

Alleviation

[Pryzm Team - 09/13/2023] :

The team heeded the advice and resolved the finding by using the recommended function in the commit

3d9393ccaf745d0996bc2ad1adc69815cd4cd8a6 .

EXP-01 PRYZM

https://github.com/pryzm-finance/pryzm-core/commit/3d9393ccaf745d0996bc2ad1adc69815cd4cd8a6

MSG-01 FEE IS COLLECTED FROM USER'S ADDRESS INSTEAD
OF REDEEM ACCOUNT

Category Severity Location Status

Logical Issue Medium msg_server_redeem_unstaked.go (374cad8): 61 Resolved

Description

Files:

x/icstaking/keeper/msg_server_redeem_unstaked.go

Commit:

374cad8c0f54b4f98efb6248cf434524bf2b7f65

The function RedeemUnstaked() is used to redeem user's uAsset to the equivalent amount of underlying asset, during

which the unstaking fee will be charged.

58 // take the unstaking fee

59 amountCoin := sdk.NewCoin(hostChain.IbcDenom(transferChannel), amount)

60 feeRatio := k.UnstakingFeeRatio(ctx, hostChainId)

61 fee, amountCoin, err := k.treasuryKeeper.CollectFeeByRatio(ctx, address,

 feeRatio, amountCoin, types.UnstakeFeeType)

62 if err != nil {

63 return nil, err

64 }

65

66 // send the remaining amount to user's account

67 err = k.bankKeeper.SendCoinsFromModuleToAccount(ctx, types.

RedeemAccountName, address, sdk.NewCoins(amountCoin))

68 if err != nil {

69 return nil, err

70 }

71 ...

The fee is charged via the function k.treasuryKeeper.CollectFeeByRatio() :

x/treasury/keeper/keeper_fee_payment.go

MSG-01 PRYZM

https://github.com/pryzm-finance/pryzm-core/tree/374cad8c0f54b4f98efb6248cf434524bf2b7f65

10 func (k Keeper) CollectFeeByRatio(ctx sdk.Context, from sdk.AccAddress,

 ratio sdk.Dec, amount sdk.Coin, feeType string) (feeCollected sdk.Coin,

 remaining sdk.Coin, err error) {

11 feeCoin, remCoin, err := k.ComputeFeeByRatio(amount, ratio)

12 if err != nil {

13 return sdk.Coin{}, sdk.Coin{}, err

14 }

15

16 err = k.CollectFee(ctx, from, feeCoin, feeType)

17 if err != nil {

18 return feeCollected, remaining, err

19 }

20

21 return feeCoin, remCoin, nil

22 }

However, the fee is incorrectly deducted from the user's address, which should be from the redeem account. Since the user's

address could possibly do not have such fee, then this operation fails.

Recommendation

Recommend charging the unstaking fee from the redeem account.

Alleviation

[Pryzm Team - 09/13/2023] :

The team heeded the advice and resolved the finding by collecting the redeem fee from the redeem account in the commit

beed73d18d1c0d8b76013ed88d62260597a59925 .

 redeemAccountAddress :=

k.accountKeeper.GetModuleAddress(types.RedeemAccountName)

fee, amountCoin, err := k.treasuryKeeper.CollectFeeByRatio(ctx,

redeemAccountAddress, feeRatio, amountCoin, types.UnstakeFeeType)

MSG-01 PRYZM

https://github.com/pryzm-finance/pryzm-core/commit/beed73d18d1c0d8b76013ed88d62260597a59925

ORA-02 VARIABLE hostChainState.AmountToBeCompounded USED

TO COMPUTE THE EXCHANGE RATE INCLUDES
PROTOCOL FEE

Category Severity Location Status

Logical Issue Medium oracle_callback.go (374cad8): 92 Resolved

Description

Files:

x/icstaking/keeper/oracle_callback.go

x/icstaking/keeper/bridge_compound.go

Commit:

374cad8c0f54b4f98efb6248cf434524bf2b7f65

The exchange rate is updated in the function OnMajorityVote() according to the following formula:

x/icstaking/keeper/oracle_callback.go

86 totalCTokenSupply := c.k.bankKeeper.GetSupply(ctx, hostChain.CDenom()).

Amount

87 if !totalCTokenSupply.IsZero() {

88 oldER := hostChainState.ExchangeRate

89 hostChainState.ExchangeRate = sdk.NewDecFromInt(

90 totalDelegation.

91 Add(delegationQueueAmount).

92 Add(hostChainState.AmountToBeCompounded).

93 Add(hostChainState.AmountToBeDelegated)).

94 QuoInt(totalCTokenSupply)

95 err := c.k.exchangeRateListeners.ExchangeRateUpdated(ctx, hostChainId,

&oldER, hostChainState.ExchangeRate)

96 if err != nil {

97 return err

98 }

99 }

in which the term hostChainState.AmountToBeCompounded includes both the protocol fee and the amount to be

ORA-02 PRYZM

hostChainState.ExchangeRate =

​totalCTokenSupply
total delegation+delegation queue+hostChainState.AmountToBeCompounded+hostChainState.AmountToBeDelegated

https://github.com/pryzm-finance/pryzm-core/tree/374cad8c0f54b4f98efb6248cf434524bf2b7f65

compounded. It will be deducted in the function c.k.compoundBridge.compoundRewards() :

x/icstaking/keeper/oracle_callback.go

104 if !payload.RewardAccountBalance.IsZero() {

105 return c.k.compoundBridge.compoundRewards(ctx, hostChain,

 hostChainState.AmountToBeCompounded)

106 }

That means the amount will be deducted as the protocol fee contributes to the delegation.

x/icstaking/keeper/bridge_compound.go

25 func (b CompoundBridge) compoundRewards(ctx sdk.Context, hostChain types.

HostChain, rewardAmount math.Int) error {

26 hostChainState, found := b.keeper.GetHostChainState(ctx, hostChain.GetID())

27 if !found {

28 return types.ErrHostChainNotFound

29 }

30

31 hostChainState.State = types.State_COMPOUNDING

32 b.keeper.setHostChainState(ctx, hostChainState)

33

34 var msgs []sdk.Msg

35

36

// add a bank send message to transfer fee amount from rewards to the sweep account

37 fee := b.keeper.YieldFeeRatio(ctx, hostChain.GetID()).MulInt(rewardAmount).

Ceil().TruncateInt()

38 if fee.IsPositive() {

39 msgs = append(msgs, &banktypes.MsgSend{

40 FromAddress: hostChainState.HostAccounts.Reward.Address,

41 ToAddress: hostChainState.HostAccounts.Sweep.Address,

42 Amount: sdk.NewCoins(sdk.NewCoin(hostChain.BaseDenom, fee)),

43 })

44 }

45

46

// add a bank send message to transfer (reward - fee) from rewards to the delegation

account to be delegated in the next epoch

47 compound := rewardAmount.Sub(fee)

48 if compound.IsPositive() {

49 msgs = append(msgs, &banktypes.MsgSend{

50 FromAddress: hostChainState.HostAccounts.Reward.Address,

51 ToAddress: hostChainState.HostAccounts.Delegation.Address,

52 Amount: sdk.NewCoins(sdk.NewCoin(hostChain.BaseDenom, compound

)),

53 })

54 }

ORA-02 PRYZM

Recommendation

The auditing team would like to check with the PRYZM team if the calculation of the exchange rate should exclude the

protocol fee.

Alleviation

[Pryzm Team - 09/13/2023] :

The team resolved the finding by excluding the protocol fee from the exchange rate calculation in the commit

f67a16421f3b1479deff1d57189dbfd1f33bebe1 .

ORA-02 PRYZM

https://github.com/pryzm-finance/pryzm-core/commit/f67a16421f3b1479deff1d57189dbfd1f33bebe1

ABC-01 HEAVY COMPUTATION IN ICSTAKING'S BEGINBLOCKER
COULD SLOW DOWN BLOCK PRODUCTION

Category Severity Location Status

Volatile Code, Denial of

Service
Minor

x/icstaking/keeper/abci.go (pryzm-core-0c34472): 10~

13
Resolved

Description

Files:

x/icstaking/keeper/abci.go

Commit:

0c34472f03010ddc4048ba0727c33c6418d69c2a

The function BeginBlocker() is executed at the beginning of each block, which is supposed to have light or constant

computation load in order to not impact the block production. If the BeginBlocker() contains too heavy computation, it will

lead to slow block production or even exceed the block propose timeout. In this case, it is possible to halt the chain.

The icstaking BeginBlocker() iterate all the host chains to execute the batched delegation and undelegation. Though the

registration of host chain is performed via governance, the loop is unbonded and could lead to unexpected block production

slow down.

10 func (k Keeper) BeginBlocker(ctx sdk.Context) {

11 // iterate all host chains and manage delegation and undelegation

12 hostChains := k.GetAllHostChain(ctx)

13 for _, hostChain := range hostChains {

14 ...

Recommendation

Recommend limiting the number of host chains registered on Pryzm.

Alleviation

[Pryzm Team - 10/25/2023] :

The team resolved the finding by limiting the number of host chains to a maximum of 100 to resolve this issue.

The change is reflected in the commit 31518a6e6342a9b1880feedf94d53bda2bf11581 .

ABC-01 PRYZM

https://github.com/pryzm-finance/pryzm-core/tree/0c34472f03010ddc4048ba0727c33c6418d69c2a
https://github.com/pryzm-finance/pryzm-core/tree/31518a6e6342a9b1880feedf94d53bda2bf11581

ASS-01 VALIDATION OF GENESIS STATE IN assets MODULE

Category Severity Location Status

Volatile Code Minor module.go (374cad8): 126~134; genesis.go (374cad8): 35~48 Resolved

Description

Commit:

374cad8c0f54b4f98efb6248cf434524bf2b7f65

Lack of Validation When Initializing Genesis State

Files:

x/assets/module.go

x/assets/types/genesis.go

x/assets/keeper/genesis.go

The method GenesisState.Validate() is used to validate the genesis state for the module; it will be called by the method

AppModuleBasic.ValidateGenesis() when using the commands validate-genesis and gentx .

However, this method is not called when initializing the module by calling the method AppModule.InitGenesis() or the

function InitGenesis() in the file x/assets/keeper/genesis.go , which will import an incorrect genesis state and may

cause a potential failure.

e.g., the RefractableAsset whose id is "c:token" can be set in the genesis.json file and imported into the genesis state

into the module(A RefractableAsset's id can not contain a ":").

Lack of Validation for ExchangeRate

Files:

x/assets/types/genesis.go

The list of ExchangeRate can be passed via the genesis.json file. In the GenesisState.Validate() method, there is a

validation for ensuring the AssetId of all elements is not duplicated. But the value of ExchangeRate.Rate is not validated,

which means the command validate-genesis can't find the error even if a rate is invalid.

Validation for RefractableAsset.TokenDenom

ASS-01 PRYZM

https://github.com/pryzm-finance/pryzm-core/tree/374cad8c0f54b4f98efb6248cf434524bf2b7f65

File: x/assets/types/refractable_asset.go

For a RefractableAsset, if the HostChainId of it is not empty, the TokenDenom of it must be empty. Otherwise, the method

RefractableAsset.Validate() will return an error.

79 icstaked := strings.TrimSpace(a.HostChainId) != ""

80 if icstaked && a.TokenDenom != "" {

81 return sdkerrors.Wrapf(ErrInvalidTokenDenom,

"token denom must be empty if the asset is icstaked by PRISM")

82 } else if !icstaked {

83 if err := sdk.ValidateDenom(a.TokenDenom); err != nil {

84 return sdkerrors.Wrapf(ErrInvalidTokenDenom, err.Error(

))

85 }

86 }

If this method is called when registering new assets by the message RegisterAsset , this validation will make sense

because the value of TokenDenom field will be set by the CDenom which is queried from the host chain:

x/assets/keeper/msg_server_register_asset.go

31 if asset.IsICStaked() {

32 hostChain, found := k.icstakingKeeper.GetHostChain(ctx, asset.

HostChainId)

33 if !found {

34 return nil, sdkerrors.Wrapf(icstakingtypes.

ErrHostChainNotFound, "host chain not found for icstaked asset %s", asset.GetID())

35 }

36 asset.TokenDenom = hostChain.CDenom()

37 } else {

38 // check that the token denom is valid

39 err := sdk.ValidateDenom(asset.TokenDenom)

40 if err != nil {

41 return nil, sdkerrors.Wrapf(types.ErrInvalidTokenDenom,

 "token denom is not valid: %s", err.Error())

42 }

43 }

But if this validation is used in the module genesis, it will cause an unreasonable error. If the module allows users to add

external tokens since the module doesn't allow us to update the registered tokens, we must set both the TokenDenom and

HostChainId fields in the genesis state, and this will cause the error "token denom must be empty if the asset is

icstaked by PRYZM" when we validate the genesis state by commands validate-genesis and gentx .

Recommendation

We recommend adding the validation for the genesis state when initializing the genesis state and the validation for

ExchangeRate when validating the genesis state to ensure the value of ExchangeRate is in a valid range.

Also, we recommend the client consider whether an external token can be registered when initializing the genesis state. If

the protocol allows registering, since both the TokenDenom and HostChainId fields in the genesis state must be set, a

ASS-01 PRYZM

genesis state which contains an external token can't pass the validation by the commands validate-genesis and gentx .

Alleviation

[Pryzm Team - 09/18/2023]: The team heeded the advice and resolved this issue in the commit

0c34472f03010ddc4048ba0727c33c6418d69c2a.

ASS-01 PRYZM

https://github.com/pryzm-finance/pryzm-core/tree/0c34472f03010ddc4048ba0727c33c6418d69c2a

BRE-01 DISCUSSION ON THE DELEGATION REBALANCE LOGIC

Category Severity Location Status

Logical Issue Minor bridge_redelegate.go (374cad8): 161~168 Resolved

Description

Files:

x/icstaking/keeper/bridge_redelegate.go

Commit:

374cad8c0f54b4f98efb6248cf434524bf2b7f65

The function createRedelegationMsgs() is used to create the redelegation messages, which contain the rebalance of

delegation that works as follows:

1. calculate the total delegation from PRYZM to the validators on the host chain;

2. compute the actual weight via the validator's delegated amount / total delegation;

3. take the weight difference with their respective expected weights;

4. sort the weight difference in ascending order;

5. use two pointers from the lowest and highest indices of the slice, weight difference;

6. take the absolute value of the weight difference with a low index (as it's negative);

7. if the difference between the weight difference of low and high indices is larger than the rebalance threshold, move to

the next one.

BRE-01 PRYZM

https://github.com/pryzm-finance/pryzm-core/tree/374cad8c0f54b4f98efb6248cf434524bf2b7f65

126 totalDelegation := sdk.ZeroInt()

127 expectedWeights := make(map[string]sdk.Dec, len(hostChain.Validators))

128 for _, v := range hostChain.Validators {

129 expectedWeights[v.Address] = v.Weight

130 valInfo, found := hostChainState.Validators[v.Address]

131 if !found {

132 continue

133 }

134 totalDelegation = totalDelegation.Add(valInfo.DelegatedAmount)

135 }

136

137 weightDiff := make([]types.Validator, len(hostChain.Validators))

138 for i, v := range hostChain.Validators {

139 valInfo, found := hostChainState.Validators[v.Address]

140 if !found {

141 continue

142 }

143 actualWeight := sdk.NewDecFromInt(valInfo.DelegatedAmount).QuoInt(

totalDelegation)

144 weightDiff[i] = types.Validator{

145 Address: v.Address,

146 Weight: actualWeight.Sub(expectedWeights[v.Address]),

147 }

148 }

149

150 // ascending sort

151 sort.SliceStable(weightDiff, func(i, j int) bool {

152 return weightDiff[i].Weight.LT(weightDiff[j].Weight)

153 })

154

155 rebalanceThreshold := k.RebalanceThreshold(ctx, hostChain.GetID())

156 minRebalanceAmount := k.MinRebalanceAmount(ctx, hostChain.GetID())

157 maxRedelegateMsgs := k.MaxRedelegationMsgs(ctx, hostChain.GetID())

158

159 // FIXME change var names

160 var redelegateMsgs []sdk.Msg

161 underIndex := 0

162 overIndex := len(weightDiff) - 1

163

164 for i := int32(0); i < maxRedelegateMsgs; i++ {

165 if underIndex == overIndex {

166 break

167 }

168

169 underWeight := weightDiff[underIndex].Weight.Abs()

170 underValidator := weightDiff[underIndex].Address

171

172 overWeight := weightDiff[overIndex].Weight

173 overValidator := weightDiff[overIndex].Address

174

175 var diff sdk.Dec

176 if underWeight.LT(overWeight) {

BRE-01 PRYZM

177 diff = overWeight.Sub(underWeight)

178 underIndex++

179 } else {

180 diff = underWeight.Sub(overWeight)

181 overIndex--

182 }

183

184

// check that the re-delegation amount is more than the rebalance threshold

185 if diff.LT(rebalanceThreshold) {

186 break

187 }

188 redelegationAmount := diff.MulInt(totalDelegation).TruncateInt()

189 if redelegationAmount.LT(minRebalanceAmount) {

190 break

191 }

192

193 redelegateMsgs = append(redelegateMsgs, &stakingtypes.

MsgBeginRedelegate{

194 DelegatorAddress: hostChainState.HostAccounts.Delegation.Address

,

195 ValidatorSrcAddress: overValidator,

196 ValidatorDstAddress: underValidator,

197 Amount: sdk.NewCoin(hostChain.BaseDenom,

 redelegationAmount),

198 })

199 }

However, the condition that the difference between weight differences should be larger than the rebalance threshold does not

align with the documentation:

This message allows any permissionless users to request rebalancing of delegations for host chain validators. This

message executes the process of rebalancing only if a specific time has passed from the last rebalancing and the

divergence of delegations from validators expected weights is more than a specific threshold.

Recommendation

The auditing team thinks this condition should be both weight differences are larger than the rebalance threshold to perform

the redelegation, not the difference being larger than the rebalance threshold.

Alleviation

[Pryzm Team - 09/13/2023] :

The team resolved the finding by refactoring the delegation rebalance logic to align with the design in the commit

21b11ae1fab27b1befa9d6017de2ed6ffc499a31 .

[CertiK - 09/13/2023] :

The refactored logic in the commit could lead to the following scenario that the updated weight diff is less than the

rebalanceThreshold . As a result, it exits the for loop earlier.

BRE-01 PRYZM

https://github.com/pryzm-finance/pryzm-core/commit/21b11ae1fab27b1befa9d6017de2ed6ffc499a31

1. For example, suppose the weight diffs in the ascending order are: -0.21, -0.11, ..., 0.11, 0.2, and the

rebalanceThreshold is 0.1.

2. After the first update of weight diff, the the overweight index is decremented, and the underweight index is still 0 with

updated weight diff -0.21 + 0.2 = -0.01, of which the absolute value is less than rebalanceThreshold .

3. In this case, it exits earlier from the for loop though the second one with -0.11 is legit for rebalance.

BRE-01 PRYZM

// create a mapping of validators to the diff of their current weight to their

expected weight

weightDiff := make([]types.Validator, len(expectedWeights))

i := 0

for valAddress, expectedWeight := range expectedWeights {

actualWeight := sdk.ZeroDec()

valInfo, found := hostChainState.Validators[valAddress]

if found {

actualWeight =

sdk.NewDecFromInt(valInfo.DelegatedAmount).QuoInt(totalDelegation)

}

weightDiff[i] = types.Validator{

Address: valAddress,

Weight: actualWeight.Sub(expectedWeight),

}

i++

}

// ascending sort, so validators with less delegation than expected are first

sort.SliceStable(weightDiff, func(i, j int) bool {

return weightDiff[i].Weight.LT(weightDiff[j].Weight)

})

underWeightIndex := 0

overWeightIndex := len(weightDiff) - 1

for i := int32(0); i < maxRedelegateMsgs; i++ {

if underWeightIndex == overWeightIndex {

break

}

underWeightDiff := weightDiff[underWeightIndex].Weight.Abs()

underWeightValidator := weightDiff[underWeightIndex].Address

overWeightDiff := weightDiff[overWeightIndex].Weight

overWeightValidator := weightDiff[overWeightIndex].Address

// calculate the weight that can be re-delegated to make one side reach

balance

var dw sdk.Dec

if underWeightDiff.LT(overWeightDiff) {

dw = underWeightDiff

underWeightIndex++

// subtract dw from the over weight index for the next iteration

weightDiff[overWeightIndex] = types.Validator{

Address: overWeightValidator,

Weight: overWeightDiff.Sub(dw),

}

} else {

BRE-01 PRYZM

dw = overWeightDiff

overWeightIndex--

// subtract dw from the under weight index for the next iteration

weightDiff[underWeightIndex] = types.Validator{

Address: underWeightValidator,

Weight: underWeightDiff.Sub(dw).Neg(),

}

}

// check that the re-delegation amount is more than the rebalance threshold

if dw.LT(rebalanceThreshold) {

break

}

redelegationAmount := dw.MulInt(totalDelegation).TruncateInt()

if redelegationAmount.LT(minRebalanceAmount) {

break

}

[Pryzm Team - 09/22/2023] :

The team resolved the issue of early exit from the for loop by proceeding to the next one if the updated weight is less than

rebalanceThreshold in the commit ee6472deee9fe6b7e653fef747de7c4c7a94feb6 .

BRE-01 PRYZM

https://github.com/pryzm-finance/pryzm-core/commit/ee6472deee9fe6b7e653fef747de7c4c7a94feb6

BRG-02 NON-GUARANTEED HOST CHAIN STATE

Category Severity Location Status

Logical Issue Minor bridge_compound.go (374cad8): 25 Resolved

Description

Files:

x/icstaking/keeper/bridge_compound.go

Commit:

374cad8c0f54b4f98efb6248cf434524bf2b7f65

There is no guarantee that the state of the host chain is idle before the function compoundRewards is invoked.

Recommendation

We recommend adding the validation to ensure the host chain is idle before calling the function compoundRewards .

if hostChainState.State != types.State_IDLE {

return nil, sdkerrors.Wrap(types.ErrRebalanceNotNeeded, "host chain state is

not IDLE")

}

Alleviation

[Pryzm Team - 09/15/2023] :

The team heeded the advice and applied the host chain state validation to the functions listed below to resolve this issue in

the commit 00059106c257e880205cfc6c603e928def058247 .

x/icstaking/keeper/bridge_compound.go

x/icstaking/keeper/bridge_delegate.go

x/icstaking/keeper/bridge_sweep.go

x/icstaking/keeper/bridge_undelegate.go

BRG-02 PRYZM

https://github.com/pryzm-finance/pryzm-core/tree/374cad8c0f54b4f98efb6248cf434524bf2b7f65
https://github.com/pryzm-finance/pryzm-core/commit/00059106c257e880205cfc6c603e928def058247

CRE-01 POSSIBLE OVERWRITE OF DENOM METADATA IN
GENESIS

Category Severity Location Status

Volatile Code Minor createdenom.go (374cad8): 30 Resolved

Description

Files:

x/tokenfactory/keeper/createdenom.go

app/app.go

x/tokenfactory/keeper/genesis.go

Commit:

374cad8c0f54b4f98efb6248cf434524bf2b7f65

The current implementation does not check if the denom metadata has been set in the bank module, which could lead to the

denom metadata overwrite in the genesis.

The init of module genesis follows the order defined in the app.go , in which the tokenfactory is performed after bank

module:

app/app.go

1068 app.mm.SetOrderInitGenesis(

1069 capabilitytypes.ModuleName

1070 authtypes.ModuleName,

1071 banktypes.ModuleName,

1072 ...

1073 tokenfactorytypes.ModuleName,

In the init of tokenfactory genesis, it invokes the function createDenomAfterValidation() to set the denom metadata:

x/tokenfactory/keeper/genesis.go

CRE-01 PRYZM

https://github.com/pryzm-finance/pryzm-core/tree/374cad8c0f54b4f98efb6248cf434524bf2b7f65

11 func (k Keeper) InitGenesis(ctx sdk.Context, genState types.GenesisState) {

12 k.CreateModuleAccount(ctx)

13

14 if genState.Params.DenomCreationFee == nil {

15 genState.Params.DenomCreationFee = sdk.NewCoins()

16 }

17 k.SetParams(ctx, genState.Params)

18

19 for _, genDenom := range genState.GetFactoryDenoms() {

20 creator, _, err := types.DeconstructDenom(genDenom.GetDenom())

21 if err != nil {

22 panic(err)

23 }

24 err = k.createDenomAfterValidation(ctx, creator, genDenom.GetDenom())

25 if err != nil {

26 panic(err)

27 }

28 err = k.setAuthorityMetadata(ctx, genDenom.GetDenom(), genDenom.

GetAuthorityMetadata())

29 if err != nil {

30 panic(err)

31 }

32 }

33 }

However, the function createDenomAfterValidation() does not check if the denom metadata has already been set in the

bank module:

x/tokenfactory/keeper/createdenom.go

30 func (k Keeper) createDenomAfterValidation(ctx sdk.Context, creatorAddr string,

 denom string) (err error) {

31 denomMetaData := banktypes.Metadata{

32 DenomUnits: []*banktypes.DenomUnit{{

33 Denom: denom,

34 Exponent: 0,

35 }},

36 Base: denom,

37 }

38

39 k.bankKeeper.SetDenomMetaData(ctx, denomMetaData)

40 ...

In case that the same denom has been used as the key in the bank, it will overwrite it.

Reference:

https://github.com/osmosis-labs/osmosis/pull/5532

CRE-01 PRYZM

https://github.com/osmosis-labs/osmosis/pull/5532

Recommendation

Recommend adding an extra check to ensure the denom metadata has not been set in the bank.

Alleviation

[Pryzm Team - 09/13/2023] :

The team heeded the advice and resolved the finding with the fix from Osmosis in the commit

2768e3012759eeacc53896d293ac29614acc8a02 .

CRE-01 PRYZM

https://github.com/pryzm-finance/pryzm-core/commit/2768e3012759eeacc53896d293ac29614acc8a02

CRE-02 MISSING DISPLAY DENOM WILL FAIL DENOM METADATA
VALIDATION

Category Severity Location Status

Volatile Code Minor createdenom.go (374cad8): 31~37 Resolved

Description

Files:

x/tokenfactory/keeper/createdenom.go

Commit:

374cad8c0f54b4f98efb6248cf434524bf2b7f65

The denomMetaData created in the function createDenomAfterValidation() does not match the metadata defined in the

bank module, which will lead to the failure of validation in the genesis state.

The function createDenomAfterValidation() creates a denom metadata with the following format:

x/tokenfactory/keeper/createdenom.go

31 denomMetaData := banktypes.Metadata{

32 DenomUnits: []*banktypes.DenomUnit{{

33 Denom: denom,

34 Exponent: 0,

35 }},

36 Base: denom,

37 }

in which the Display is not defined and the DenomUnit only contains the base denom, which does not align with the

Metadata struct. The denom metadata will be set in the bank keeper and validated against the following function

Validate() from the Cosmos SDK in the genesis state.

x/bank/types/metadata.go

CRE-02 PRYZM

https://github.com/pryzm-finance/pryzm-core/tree/374cad8c0f54b4f98efb6248cf434524bf2b7f65

func (m Metadata) Validate() error {

if strings.TrimSpace(m.Name) == "" {

return errors.New("name field cannot be blank")

}

if strings.TrimSpace(m.Symbol) == "" {

return errors.New("symbol field cannot be blank")

}

if err := sdk.ValidateDenom(m.Base); err != nil {

return fmt.Errorf("invalid metadata base denom: %w", err)

}

if err := sdk.ValidateDenom(m.Display); err != nil {

return fmt.Errorf("invalid metadata display denom: %w", err)

}

var (

hasDisplay bool

currentExponent uint32 // check that the exponents are increasing

)

seenUnits := make(map[string]bool)

for i, denomUnit := range m.DenomUnits {

// The first denomination unit MUST be the base

if i == 0 {

// validate denomination and exponent

if denomUnit.Denom != m.Base {

return fmt.Errorf("metadata's first denomination unit must be the

one with base denom '%s'", m.Base)

}

if denomUnit.Exponent != 0 {

return fmt.Errorf("the exponent for base denomination unit %s must

be 0", m.Base)

}

} else if currentExponent >= denomUnit.Exponent {

return errors.New("denom units should be sorted asc by exponent")

}

currentExponent = denomUnit.Exponent

if seenUnits[denomUnit.Denom] {

return fmt.Errorf("duplicate denomination unit %s", denomUnit.Denom)

}

if denomUnit.Denom == m.Display {

hasDisplay = true

}

CRE-02 PRYZM

if err := denomUnit.Validate(); err != nil {

return err

}

seenUnits[denomUnit.Denom] = true

}

if !hasDisplay {

return fmt.Errorf("metadata must contain a denomination unit with display

denom '%s'", m.Display)

}

return nil

}

As a result, missing Display in the Metadata and DenomUnit will cause the the failure of genesis state validation.

Recommendation

Recommend properly setting the Display in Metadata and DenomUnit.

Alleviation

[Pryzm Team - 09/13/2023] :

The team resolved the finding by setting the display denom same as the base denom in the commit

2768e3012759eeacc53896d293ac29614acc8a02 .

CRE-02 PRYZM

https://github.com/pryzm-finance/pryzm-core/commit/2768e3012759eeacc53896d293ac29614acc8a02

FLO-03 THE CLAIMABLE PURCHASED TOKEN AMOUNT DOES
NOT CONSIDER PendingPurchase

Category Severity Location Status

Logical

Issue
Minor

x/flowtrade/keeper/claim.go (flowtrade): 147; x/flowtrade/types/positi

on.go (flowtrade): 26
Acknowledged

Description

Files:

x/flowtrade/keeper/claim.go

x/flowtrade/types/position.go

Commit:

930876154d4296a366ba2ca179c227c6663cc55b

The owner of a position has the ability to utilize the ClaimTokenOut function in order to retrieve the currently purchased

tokens associated with that position. However, it's important to note that the calculation for the claimable token amount does

not take into account the PendingPurchase value, this includes the amount of purchased tokens that have been paid for but

are not included in the calculation due to rounding errors. As a result, the owner of the position may not receive the complete

purchased tokens and could potentially experience a loss.

x/flowtrade/keeper/claim.go

120 func (k Keeper) ClaimTokenOut(ctx sdk.Context, flowId uint64, address sdk.

AccAddress) (claimed sdk.Coin, fee sdk.Coin, err error) {

121 ...

122

// subtract the already claimed tokens from the purchased token out and calculate

the claimable amount and check that's not zero

123 claimable := position.PurchasedTokenOut.Sub(position.ClaimedAmount)

124 if claimable.IsZero() {

125 return claimed, fee, sdkerrors.Wrap(types.ErrZeroClaimable,

"flow has no claimable amount")

126 }

127 ...

128 }

x/flowtrade/types/position.go

FLO-03 PRYZM

https://github.com/refractedlabs/flowtrade/tree/930876154d4296a366ba2ca179c227c6663cc55b

5 func (p *Position) UpdateDistIndex(flow Flow) (updated bool) {

6 indexDiff := flow.DistIndex.Sub(p.DistIndex)

7

8 // return if diff is negative or zero

9 if !indexDiff.IsPositive() {

10 return

11 }

12

13 p.DistIndex = flow.DistIndex

14 updated = true

15

16

// return without updating other fields if no shares are available (flow is empty)

17 if flow.TotalShares.IsZero() {

18 return

19 }

20

21 purchased := indexDiff.MulInt(p.Shares).Add(p.PendingPurchase)

22 purchasedTruncated := purchased.TruncateInt()

23 purchasedRemainder := purchased.Sub(sdk.NewDecFromInt(purchasedTruncated))

24

25 p.PurchasedTokenOut = p.PurchasedTokenOut.Add(purchasedTruncated)

26 p.PendingPurchase = purchasedRemainder

27

28 newInBalance := flow.TokenInBalance.Mul(p.Shares).Quo(flow.TotalShares)

29 p.SpentTokenIn = p.SpentTokenIn.Add(p.TokenInBalance.Sub(newInBalance))

30 p.TokenInBalance = newInBalance

31 return

32 }

Recommendation

It is recommended to take into account the PendingPurchase when calculating the claimable purchased tokens and ensure

that users are not at risk of suffering losses.

Alleviation

[Pryzm Team - 08/18/2023] :

In position.UpdateDistIndex method, the PendingPurchase field of the position is set to the truncated decimals of the

actual purchased amount and is added to the purchased amount in the next dist index update. The value of this field always

remains lower than 1. When a user is claiming their purchased tokens, this decimal value cannot be transferred to the user's

account as it's a <1 decimal.

[CertiK - 11/18/2023] :

Upon the review, the severity level of this issue has been reassessed and the severity has been downgraded from Medium

to Minor.

FLO-03 PRYZM

HOO-01 MINT PRYZM EACH EPOCH

Category Severity Location Status

Logical Issue Minor hooks.go (374cad8): 27 Acknowledged

Description

Files:

x/mint/keeper/hooks.go

x/mint/types/minter.go

Commit:

0c34472f03010ddc4048ba0727c33c6418d69c2a

The Mint module is responsible for minting PRYZM tokens and distributing them to different destinations. A portion of the

tokens will be allocated to the FeeCollector and will be calculated and distributed to the stakers (the bonded validators in the

staking module) by the distribution module at the beginning of the next block. The Inflation calculation formula is almost the

same as the cosmos/sdk/mint module, with the only difference being that in Cosmos, the rewards are minted in every block,

while in Pryzm, they are minted at the end of each epoch. This difference may cause the original incentive mechanism to be

ineffective.

x/mint/keeper/hooks.go

27 func (k Keeper) AfterEpochEnd(ctx sdk.Context, epochIdentifier string,

 epochNumber int64) error {

28 params := k.GetParams(ctx)

29 if epochIdentifier != params.EpochIdentifier {

30 return nil

31 }

32 // not distribute rewards if it's not time yet for rewards distribution

33 if epochNumber < params.MintingRewardsDistributionStartEpoch {

34 return nil

35 }

36

37 epochsPerYear := int64(yearSeconds / k.epochsKeeper.GetEpochInfo(ctx,

 epochIdentifier).Duration.Seconds())

38

39 }

x/mint/types/minter.go

HOO-01 PRYZM

https://github.com/pryzm-finance/pryzm-core/tree/0c34472f03010ddc4048ba0727c33c6418d69c2a

30 func (m Minter) NextInflationRate(params Params, bondedRatio sdk.Dec,

 epochsPerYear int64) sdk.Dec {

31

// The target annual inflation rate is recalculated for each previsions cycle. The

32

// inflation is also subject to a rate change (positive or negative) depending on

33

// the distance from the desired ratio (67%). The maximum rate change possible is

34

// defined to be 13% per year, however the annual inflation is capped as between

35 // 7% and 20%.

36

37 // (1 - bondedRatio/GoalBonded) * InflationRateChange

38 inflationRateChangePerYear := sdk.OneDec().

39 Sub(bondedRatio.Quo(params.GoalBonded)).

40 Mul(params.InflationRateChange)

41

42 inflationRateChange := inflationRateChangePerYear.Quo(sdk.NewDec(

epochsPerYear)) // This is different from the sdk. It uses the epochs.

43

44 }

Due to inflation, the rewards minted will be fully distributed in the next block after the end of the epoch. In non-epoch start or

end blocks, to the stakers, there are almost no inflation rewards, only some transaction fees. This is unfair and may

encourage validators to participate in the committee before the end of the epoch and then exit the committee after the start of

the next epoch. This is not conducive to block generation and may result in the ineffectiveness of the incentive mechanism.

Recommendation

We recommend the team reconsider the design.

Alleviation

[Pryzm Team - 10/25/2023] :

We recognize the concern, but in practice, we intend to use brief time periods such as an hour or even half an hour.

HOO-01 PRYZM

HOS-02 RETURN VALUE OF GetChannel() IS NOT HANDLED

Category Severity Location Status

Volatile Code Minor x/icstaking/types/host_chain.go (pryzm-core-0c34472): 29 Resolved

Description

Files:

x/icstaking/types/host_chain.go

Commit:

0c34472f03010ddc4048ba0727c33c6418d69c2a

The function GetChannel() checks if a channel id exists on the host chain.

18 func (hostChain HostChain) GetChannel(channelId string) (channel TransferChannel

, found bool) {

19 for _, c := range hostChain.TransferChannels {

20 if c.Id == channelId {

21 return c, true

22 }

23 }

24 return

25 }

which is called by the function IbcDenom() to create the ibc denom based on the channel id:

28 func (hostChain HostChain) IbcDenom(channelId string) string {

29 channel, _ := hostChain.GetChannel(channelId)

30 denom := hostChain.BaseDenom

31 if strings.TrimSpace(channel.WrappedDenom) != "" {

32 denom = channel.WrappedDenom

33 }

34

35 return transfertypes.DenomTrace{

36 Path: fmt.Sprintf("%s/%s", transfertypes.PortID, channelId),

37 BaseDenom: denom,

38 }.IBCDenom()

39 }

However, in line 29, it does not check return value of hostChain.GetChannel(channelId) to ensure the channel id exists.

HOS-02 PRYZM

https://github.com/pryzm-finance/pryzm-core/tree/0c34472f03010ddc4048ba0727c33c6418d69c2a

Recommendation

Recommend handling the return value of hostChain.GetChannel(channelId) to ensure the ibc denom is created if it does

exist.

Alleviation

[Pryzm Team - 10/16/2023]:

The IbcDenom method on HostChain is a utility method for calculating the ibc denom considering the channel name and is

not meant to check the existence of the channel; it only does the calculation and returns the ibc denom. The GetChannel

method is only called for getting wrapped channels in case of existence. We enhanced the existence checking in the commit

1296f44f3efc6aa605d29eab1ed19dfeb1813850 .

HOS-02 PRYZM

https://github.com/pryzm-finance/pryzm-core/commit/1296f44f3efc6aa605d29eab1ed19dfeb1813850

KEE-03 LACK OF VALIDATION FOR transferChannel

Category Severity Location Status

Logical

Issue
Minor

msg_server_instant_unstake.go (374cad8): 45; msg_server_redeem_unst

aked.go (374cad8): 33; msg_server_stake.go (374cad8): 36
Resolved

Description

Files:

x/icstaking/keeper/msg_server_redeem_unstaked.go

x/icstaking/keeper/msg_server_stake.go

x/icstaking/keeper/msg_server_instant_unstake.go

Commit:

374cad8c0f54b4f98efb6248cf434524bf2b7f65

There is no guarantee that the transfer channel is the supported transfer channel for transferring the base_denom tokens

between the host chain and Pryzm.

And the validation of the transfer channel is missing in the ValidateBasic() of messages.

Recommendation

We recommend adding the validation to ensure the transfer channel is the supported transfer channel, adding the validation

of the transfer channel in the ValidateBasic() of messages.

Alleviation

[Pryzm Team - 09/15/2023] :

The team heeded the advice and resolved this issue in the commit aa9d594b97347afb07de9e5d283c8581683cc3af .

KEE-03 PRYZM

https://github.com/pryzm-finance/pryzm-core/tree/374cad8c0f54b4f98efb6248cf434524bf2b7f65
https://github.com/pryzm-finance/pryzm-core/commit/aa9d594b97347afb07de9e5d283c8581683cc3af

KEE-07 POTENTIAL DIVISION BY ZERO

Category Severity Location Status

Volatile

Code
Minor

bridge_redelegate.go (374cad8): 129; bridge_undelegate.go (374cad8): 1

93; msg_server_redeem_unstaked.go (374cad8): 46; oracle_callback.go

(374cad8): 120

Resolved

Description

Files:

x/icstaking/keeper/oracle_callback.go

x/icstaking/keeper/msg_server_redeem_unstaked.go

x/icstaking/keeper/bridge_redelegate.go

x/icstaking/keeper/bridge_undelegate.go

Commit:

374cad8c0f54b4f98efb6248cf434524bf2b7f65

The linked code does not check the denominator is nonzero when performing the division, which could lead to division by

zero panics. Note that there is a check in the function CreateDelegationMsgs() :

x/icstaking/keeper/bridge_delegate.go

136 if totalDeposit.IsZero() {

137 return []*stakingtypes.MsgDelegate{}

138 }

In this case, the division by zero will not occur.

Proof of Concept

To reproduce the error, we take the redelegate as an example:

1. submit a rebalance-delegations transaction:

pryzmd tx icstaking rebalance-delegations inj --from=pryzm1vw2jqkgcs4phugu4g29glu3mhvp8yzagzyesdl -y --

gas=200000 --fees=10000upryzm

KEE-07 PRYZM

https://github.com/pryzm-finance/pryzm-core/tree/374cad8c0f54b4f98efb6248cf434524bf2b7f65

2. query the transaction, 78A3FB92CFC06ED78CAC9B423048D8FC09A0D4365B7F1AF4D1CCD9AFBAFDFC66:

pryzmd q tx 78A3FB92CFC06ED78CAC9B423048D8FC09A0D4365B7F1AF4D1CCD9AFBAFDFC66

Result:

KEE-07 PRYZM

raw_log: "recovered: division by zero\nstack:\ngoroutine 89

[running]:\nruntime/debug.Stack()\n\truntime/debug/stack.go:24

 +0x65\ngithub.com/cosmos/cosmos-

sdk/baseapp.newDefaultRecoveryMiddleware.func1({0x1023e0c20,

 0x103843b90})\n\tgithub.com/cosmos/cosmos-sdk@v0.47.2/baseapp/recovery.go:71

+0x27\ngithub.com/cosmos/cosmos-

sdk/baseapp.newRecoveryMiddleware.func1({0x1023e0c20?,

 0x103843b90?})\n\tgithub.com/cosmos/cosmos-sdk@v0.47.2/baseapp/recovery.go:39

+0x30\ngithub.com/cosmos/cosmos-sdk/baseapp.processRecovery({0x1023e0c20,

 0x103843b90}, 0xc00f4bc000?)\n\tgithub.com/cosmos/cosmos-

sdk@v0.47.2/baseapp/recovery.go:28

 +0x37\ngithub.com/cosmos/cosmos-sdk/baseapp.processRecovery({0x1023e0c20,

0x103843b90},

 0x103890fd0?)\n\tgithub.com/cosmos/cosmos-sdk@v0.47.2/baseapp/recovery.go:33

+0x5e\ngithub.com/cosmos/cosmos-sdk/baseapp.

(*BaseApp).runTx.func1()\n\tgithub.com/cosmos/cosmos-

sdk@v0.47.2/baseapp/baseapp.go:632

 +0xf0\npanic({0x1023e0c20, 0x103843b90})\n\truntime/panic.go:890

+0x262\nmath/big.nat.div({0x0?,

 0x100017e05?, 0x0?}, {0x0?, 0x135bf9e18?, 0x10?}, {0x0?, 0x100010f5f?, 0x0?},

{0x0,

 ...})\n\tmath/big/natdiv.go:507 +0x34b\nmath/big.(*Int).Quo(0xc01dfc6840,

0xc01dfc6840,

 0xc017523800)\n\tmath/big/int.go:211

+0x78\ncosmossdk.io/math.LegacyDec.QuoIntMut({0x100016bf5?},

 {0x105b3bf18?})\n\tcosmossdk.io/math@v1.0.1/dec.go:410

+0x15b\ncosmossdk.io/math.LegacyDec.ImmutOpInt({0x10249dd80?},

 0x1032c54c8, {0xc01727e980?})\n\tcosmossdk.io/math@v1.0.1/dec.go:242

+0x162\ncosmossdk.io/math.LegacyDec.QuoInt(...)\n\tcosmossdk.io/math@v1.0.1/dec.go:4

06\ngithub.com/pryzm-finance/pryzm-

core/x/icstaking/keeper.Keeper.createRedelegationMsgs({{0x103890400,

 0xc0008d0fa0}, {0x103851688, 0xc001a9e630}, {0x103851688, 0x0}, {0xc0016cd350,

0x2c},

 {0x103878cf0, 0xc000df7960}, ...}, ...)\n\tgithub.com/pryzm-finance/pryzm-

core/x/icstaking/keeper/bridge_redelegate.go:129

 +0xb45\ngithub.com/pryzm-finance/pryzm-

core/x/icstaking/keeper.RedelegateBridge.redelegate({{{{_,

 }, {, _}}}, _}, {{0x103877588, 0xc016dc71d0}, {0x103890fd0, 0xc00d9fba00},

{{0xb,

 ...}, ...}, ...}, ...)\n\tgithub.com/pryzm-finance/pryzm-

core/x/icstaking/keeper/bridge_redelegate.go:32

 +0x118\ngithub.com/pryzm-finance/pryzm-

core/x/icstaking/keeper.msgServer.RebalanceDelegations({{{0x103890400,

 0xc0008d0fa0}, {0x103851688, 0xc001a9e630}, {0x103851688, 0x0}, {0xc0016cd350,

0x2c},

 {0x103878cf0, 0xc000df7960}, ...}}, ...)\n\tgithub.com/pryzm-finance/pryzm-

core/x/icstaking/keeper/msg_server_rebalance_delegations.go:27

 +0x61e\ngithub.com/pryzm-finance/pryzm-

core/x/icstaking/types._Msg_RebalanceDelegations_Handler.func1({0x103877588,

 0xc01a77eff0}, {0x1027f6d40?, 0xc0159dfb80})\n\tgithub.com/pryzm-finance/pryzm-

core/x/icstaking/types/tx.pb.go:1372

KEE-07 PRYZM

 +0x78\ngithub.com/cosmos/cosmos-sdk/baseapp.

(*MsgServiceRouter).RegisterService.func2.1({0x103878af8,

 0xc00d5cb8c0}, {0xc017527778?, 0x10000e80b?}, 0x102878800?,

0xc009d02348)\n\tgithub.com/cosmos/cosmos-

sdk@v0.47.2/baseapp/msg_service_router.go:113

 +0xd2\ngithub.com/pryzm-finance/pryzm-

core/x/icstaking/types._Msg_RebalanceDelegations_Handler({0x10287f640?,

 0xc0010f46c0}, {0x103878af8, 0xc00d5cb8c0}, 0x1032c65a8,

0xc01dfc62c0)\n\tgithub.com/pryzm-finance/pryzm-core/x/icstaking/types/tx.pb.go:1374

 +0x138\ngithub.com/cosmos/cosmos-sdk/baseapp.

(*MsgServiceRouter).RegisterService.func2({{0x103877588,

 0xc016dc71d0}, {0x103890fd0, 0xc00d9fba00}, {{0xb, 0x0}, {0xc01165d710, 0xa},

0x332d,

 {0x35f4fd0, ...}, ...}, ...}, ...)\n\tgithub.com/cosmos/cosmos-

sdk@v0.47.2/baseapp/msg_service_router.go:121

 +0x2e4\ngithub.com/cosmos/cosmos-sdk/baseapp.(*BaseApp).runMsgs(_, {{0x103877588,

 0xc016dc71d0}, {0x103890fd0, 0xc00d9fba00}, {{0xb, 0x0}, {0xc01165d710, 0xa},

0x332d,

 ...}, ...}, ...)\n\tgithub.com/cosmos/cosmos-sdk@v0.47.2/baseapp/baseapp.go:791

 +0x606\ngithub.com/cosmos/cosmos-sdk/baseapp.(*BaseApp).runTx(0xc000e474a0, 0x3,

 {0xc0045dad80, 0x110, 0x110})\n\tgithub.com/cosmos/cosmos-

sdk@v0.47.2/baseapp/baseapp.go:734

 +0xe25\ngithub.com/cosmos/cosmos-sdk/baseapp.(*BaseApp).DeliverTx(0xc000e474a0,

 {{0xc0045dad80?, 0x203003?, 0x203003?}})\n\tgithub.com/cosmos/cosmos-

sdk@v0.47.2/baseapp/abci.go:409

 +0x17a\ngithub.com/cometbft/cometbft/abci/client.

(*localClient).DeliverTxAsync(0xc0005b4360,

 {{0xc0045dad80?, 0x0?,

0x0?}})\n\tgithub.com/cometbft/cometbft@v0.37.1/abci/client/local_client.go:82

 +0x105\ngithub.com/cometbft/cometbft/proxy.

(*appConnConsensus).DeliverTxAsync(0xc0005c83c0,

 {{0xc0045dad80?, 0x20?,

0xb?}})\n\tgithub.com/cometbft/cometbft@v0.37.1/proxy/app_conn.go:106

 +0x102\ngithub.com/cometbft/cometbft/state.execBlockOnProxyApp({0x1038777f0?,

0xc0015548e0},

 {0x10388cd40, 0xc0005c83c0}, 0xc0005fd0e0, {0x103891d08, 0xc0005c8000},

0x332c?)\n\tgithub.com/cometbft/cometbft@v0.37.1/state/execution.go:376

 +0x812\ngithub.com/cometbft/cometbft/state.(*BlockExecutor).ApplyBlock(_, {{{0xb,

 0x0}, {0xc00154dee8, 0x6}}, {0xc00154df10, 0xa}, 0x1, 0x332c, {{0xc01a9997e0,

...},

 ...}, ...}, ...)\n\tgithub.com/cometbft/cometbft@v0.37.1/state/execution.go:197

 +0x151\ngithub.com/cometbft/cometbft/consensus.

(*State).finalizeCommit(0xc000045c00,

 0x332d)\n\tgithub.com/cometbft/cometbft@v0.37.1/consensus/state.go:1700

+0xaa5\ngithub.com/cometbft/cometbft/consensus.

(*State).tryFinalizeCommit(0xc000045c00,

 0x332d)\n\tgithub.com/cometbft/cometbft@v0.37.1/consensus/state.go:1609

+0x2ff\ngithub.com/cometbft/cometbft/consensus.

(*State).enterCommit.func1()\n\tgithub.com/cometbft/cometbft@v0.37.1/consensus/state

.go:1544

 +0xaa\ngithub.com/cometbft/cometbft/consensus.(*State).enterCommit(0xc000045c00,

KEE-07 PRYZM

 0x332d, 0x0)\n\tgithub.com/cometbft/cometbft@v0.37.1/consensus/state.go:1582

+0xccf\ngithub.com/cometbft/cometbft/consensus.(*State).addVote(0xc000045c00,

 0xc00d68c960, {0x0,

0x0})\n\tgithub.com/cometbft/cometbft@v0.37.1/consensus/state.go:2212

 +0x1a30\ngithub.com/cometbft/cometbft/consensus.(*State).tryAddVote(0xc000045c00,

 0xc00d68c960, {0x0?,

0x1000b8826?})\n\tgithub.com/cometbft/cometbft@v0.37.1/consensus/state.go:2001

 +0x2c\ngithub.com/cometbft/cometbft/consensus.(*State).handleMsg(0xc000045c00,

{{0x103848240?,

 0xc016263b78?}, {0x0?,

0x0?}})\n\tgithub.com/cometbft/cometbft@v0.37.1/consensus/state.go:861

 +0x40b\ngithub.com/cometbft/cometbft/consensus.

(*State).receiveRoutine(0xc000045c00,

 0x0)\n\tgithub.com/cometbft/cometbft@v0.37.1/consensus/state.go:788

+0x505\ncreated

 by github.com/cometbft/cometbft/consensus.

(*State).OnStart\n\tgithub.com/cometbft/cometbft@v0.37.1/consensus/state.go:379

 +0x12d\n: panic"

The log shows a division by zero occurs because the total delegation amount is 0 at this moment.

Recommendation

Recommend adding an extra check to ensure the denominator is nonzero before performing division.

Alleviation

[Pryzm Team - 09/13/2023] :

The team heeded the advice and resolved the finding by adding the check to ensure the denominator is nonzero in the

following commits:

a3f003be4dd0ede1e84ab49688f30d3d04e813af

074a272bb61adb89b9a040ff9dadbc2634e572a8

21b11ae1fab27b1befa9d6017de2ed6ffc499a31

ca8db9e820e18435efaa9a98e3411d0fb7b38d5e

KEE-07 PRYZM

https://github.com/pryzm-finance/pryzm-core/commit/a3f003be4dd0ede1e84ab49688f30d3d04e813af
https://github.com/pryzm-finance/pryzm-core/commit/074a272bb61adb89b9a040ff9dadbc2634e572a8
https://github.com/pryzm-finance/pryzm-core/commit/21b11ae1fab27b1befa9d6017de2ed6ffc499a31
https://github.com/pryzm-finance/pryzm-core/commit/ca8db9e820e18435efaa9a98e3411d0fb7b38d5e

KEK-01 INCORRECT ACCOUNT NUMBER OF tokenfactory

MODULE ACCOUNT

Category Severity Location Status

Inconsistency Minor keeper.go (374cad8): 79 Resolved

Description

Files:

x/tokenfactory/keeper/keeper.go

x/tokenfactory/keeper/genesis.go

Commit:

374cad8c0f54b4f98efb6248cf434524bf2b7f65

The tokenfactory module account is set in the InitGenesis() using the function CreateModuleAccount() :

x/tokenfactory/keeper/genesis.go

11 func (k Keeper) InitGenesis(ctx sdk.Context, genState types.GenesisState) {

12 k.CreateModuleAccount(ctx)

13 ...

x/tokenfactory/keeper/keeper.go

79 func (k Keeper) CreateModuleAccount(ctx sdk.Context) {

80 moduleAcc := authtypes.NewEmptyModuleAccount(types.ModuleName, authtypes.

Minter, authtypes.Burner)

81 k.accountKeeper.SetModuleAccount(ctx, moduleAcc)

82 }

However, the function SetModuleAccount() only sets the module account with the default account number 0, which creates

an account with duplicated account number.

Reference:

https://github.com/osmosis-labs/osmosis/pull/5534

Proof of Concept

KEK-01 PRYZM

https://github.com/pryzm-finance/pryzm-core/tree/374cad8c0f54b4f98efb6248cf434524bf2b7f65
https://github.com/osmosis-labs/osmosis/pull/5534

To demonstrate the scenario, we fetch all the accounts via the command:

prismd q auth accounts

Result:

- '@type': /cosmos.auth.v1beta1.BaseAccount

 account_number: "0"

 address: prism1y7zj229j9vvr99y4gcvjap8rmch6xvmdc0fgcn

 pub_key:

 '@type': /cosmos.crypto.secp256k1.PubKey

 key: AoQm+XrAaXGmDm9nh4wDAlVSz2HwalEH0QHKR6QeCzcD

 sequence: "1"

- '@type': /cosmos.auth.v1beta1.ModuleAccount

 base_account:

 account_number: "0"

 address: prism19ejy8n9qsectrf4semdp9cpknflld0j6na9j0y

 pub_key: null

 sequence: "0"

 name: tokenfactory

 permissions:

 - minter

 - burner

...

The result shows the tokenfactory module account has account number 0 and there is another account with 0 account

number.

Recommendation

Recommend adopting the fix in this PR from Osmosis.

Alleviation

[Pryzm Team - 09/13/2023] :

The team heeded the advice and resolved the finding with the fix from Osmosis in the commit

2768e3012759eeacc53896d293ac29614acc8a02 .

KEK-01 PRYZM

https://github.com/osmosis-labs/osmosis/pull/5534
https://github.com/pryzm-finance/pryzm-core/commit/2768e3012759eeacc53896d293ac29614acc8a02

KER-03 LACK OF STATE VALIDATION FOR WhitelistedRoute

Category Severity Location Status

Logical

Issue
Minor

order_execution.go (374cad8): 429~433; whitelisted_route.go (374cad

8): 63
Resolved

Description

Files:

x/amm/keeper/order_execution.go

x/amm/keeper/whitelisted_route.go

Commit:

374cad8c0f54b4f98efb6248cf434524bf2b7f65

There is no validation to ensure that the whitelistedRoute is enabled since the whitelistedRoute is possibly paused by

calling the function SetWhitelistedRouteEnabled .

x/amm/keeper/order_execution.go

429 route, found := k.GetWhitelistedRoute(ctx, tokenIn, tokenOut)

430 if !found {

431 err = fmt.Errorf("whitelisted route not found for pair %s-%s", tokenIn,

 tokenOut)

432 return nil, err

433 }

x/amm/keeper/whitelisted_route.go

KER-03 PRYZM

https://github.com/pryzm-finance/pryzm-core/tree/374cad8c0f54b4f98efb6248cf434524bf2b7f65

62 // SetWhitelistedRouteEnabled sets a whitelistedRoute.Enabled

63 func (k Keeper) SetWhitelistedRouteEnabled(

64 ctx sdk.Context,

65 tokenIn string,

66 tokenOut string,

67 enable bool,

68) error {

69 route, found := k.GetWhitelistedRoute(ctx, tokenIn, tokenOut)

70 if !found {

71 return sdkerrors.Wrapf(types.ErrWhitelistedRouteNotFound,

"whitelisted route not found for pair: %s, %s", tokenIn, tokenOut)

72 }

73

74 route.Enabled = enable

75 return k.SetWhitelistedRoute(ctx, route)

76 }

Recommendation

Consider adding an validation to ensure the whitelistedRoute is enabled.

Alleviation

[Pryzm Team - 09/15/2023] :

The team heeded the advice and resolved this issue in the commit bf475653a4d3122e893ddc7c584562a086759bb1 .

KER-03 PRYZM

https://github.com/pryzm-finance/pryzm-core/commit/bf475653a4d3122e893ddc7c584562a086759bb1

POS-02 POTENTIAL UNABLE TO ACQUIRE token-in TOKENS

THAT HAVE NOT BEEN EXCHANGED

Category Severity Location Status

Logical Issue Minor x/flowtrade/keeper/position.go (flowtrade): 119, 135~137 Resolved

Description

Files:

x/flowtrade/keeper/flow.go

Commit:

930876154d4296a366ba2ca179c227c6663cc55b

The function ExitFlow enables the owners of positions to exit the flow and retrieve the token-in tokens that haven't been

exchanged. Nevertheless, if the flow has ended or the specified end time has elapsed, these position owners will no longer

be able to recover these tokens that were not exchanged.

118 // return error if flow is not active

119 switch flow.Status {

120 case types.FlowStatus_ENDED:

121 return types.ErrFlowEnded

122 case types.FlowStatus_STOPPED:

123 return types.ErrFlowStopped

124 }

135 if flow.EndTime.Before(ctx.BlockTime()) {

136 return types.ErrFlowEnded

137 }

Recommendation

Considering the implementation of a function that would allow position owners to reclaim their un-exchanged tokens even

after the flow has ended.

Alleviation

[Pryzm Team - 09/15/2023] :

The team heeded the advice and removed final state validation from exit flow method to resolve this issue in the commit

POS-02 PRYZM

https://github.com/refractedlabs/flowtrade/tree/930876154d4296a366ba2ca179c227c6663cc55b
https://github.com/refractedlabs/flowtrade/commit/1f3f76d316391b34131f6c7cb5178a349e61ade8

1f3f76d316391b34131f6c7cb5178a349e61ade8 .

POS-02 PRYZM

https://github.com/refractedlabs/flowtrade/commit/1f3f76d316391b34131f6c7cb5178a349e61ade8

QUE-01 INCOMPLETE INPUTS OF UNDELEGATION QUERY

Category Severity Location Status

Volatile

Code
Minor

x/icstaking/client/cli/query_undelegation.go (pryzm-core-0c34472): 45~4

9, 57~59, 87~89
Resolved

Description

Files:

x/icstaking/client/cli/query_undelegation.go

Commit:

0c34472f03010ddc4048ba0727c33c6418d69c2a

The query command CmdShowUndelegation() is used to query the undelegation of a host chain at a specific epoch, in

which only the HostChain is specified.

55 argHostChain := args[0]

56

57 params := &types.QueryGetUndelegationRequest{

58 HostChain: argHostChain,

59 }

However, the QueryGetUndelegationRequest also accepts the epoch.

type QueryGetUndelegationRequest struct {

HostChain string `protobuf:"bytes,1,opt,name=host_chain,json=hostChain,proto3"

json:"host_chain,omitempty"`

Epoch uint64 `protobuf:"varint,2,opt,name=epoch,proto3"

json:"epoch,omitempty"`

}

Similarly, the query command CmdListIncompleteUndelegation() does not specify the Pagination .

87 params := &types.QueryIncompleteUndelegationRequest{

88 HostChain: argHostChain,

89 }

Recommendation

QUE-01 PRYZM

https://github.com/pryzm-finance/pryzm-core/tree/0c34472f03010ddc4048ba0727c33c6418d69c2a

Recommend adding the inputs of the aforementioned query commands.

Alleviation

[Pryzm Team - 10/16/2023] :

The team heeded the advice and resolved the finding by adding the inputs in the query commands in the commit

2071270e0da84d91c6cc88ab226f0580b7785128 .

QUE-01 PRYZM

https://github.com/pryzm-finance/pryzm-core/commit/2071270e0da84d91c6cc88ab226f0580b7785128

REF-01 LACK OF VALIDATION OF THE
RefractableAsset.FeeRatios FIELD

Category Severity Location Status

Volatile Code Minor refractable_asset.go (374cad8): 70 Resolved

Description

Files

x/assets/types/refractable_asset.go

Commit:

374cad8c0f54b4f98efb6248cf434524bf2b7f65

The field FeeRatios in the RefractableAsset is not validated, which causes a new RefractableAsset whose FeeRatios

are negative value or nil can be registered.

Recommendation

We recommend adding validation to ensure the FeeRatios filed has a valid value.

Alleviation

[Pryzm Team - 09/18/2023]: The team heeded the advice and resolved this issue in the commit

0c34472f03010ddc4048ba0727c33c6418d69c2a .

REF-01 PRYZM

https://github.com/pryzm-finance/pryzm-core/tree/374cad8c0f54b4f98efb6248cf434524bf2b7f65
https://github.com/pryzm-finance/pryzm-core/tree/0c34472f03010ddc4048ba0727c33c6418d69c2a

TYP-02 MISSING STATELESS CHECK OF TransferChannel IN

MESSAGES

Category Severity Location Status

Volatile

Code
Minor

message_instant_unstake.go (374cad8): 45; message_redeem_unstaked.

go (374cad8): 45; message_stake.go (374cad8): 44; message_unstake.g

o (374cad8): 44

Resolved

Description

Files:

x/icstaking/types/message_instant_unstake.go

x/icstaking/types/message_redeem_unstaked.go

x/icstaking/types/message_stake.go

x/icstaking/types/message_unstake.go

Commit:

374cad8c0f54b4f98efb6248cf434524bf2b7f65

The stateless check of the linked messages are performed in the function ValidateBasic() , which misses the validation of

the field TransferChannel .

Recommendation

Recommend adding an extra check to reject malformed messages.

Alleviation

[Pryzm Team - 09/13/2023] :

The team headed the advice and resolved the finding by adding the check of TransferChannel in the commit

aa9d594b97347afb07de9e5d283c8581683cc3af .

TYP-02 PRYZM

https://github.com/pryzm-finance/pryzm-core/tree/374cad8c0f54b4f98efb6248cf434524bf2b7f65
https://github.com/pryzm-finance/pryzm-core/commit/aa9d594b97347afb07de9e5d283c8581683cc3af

VAU-01 LACK OF MINIMUM LIQUIDITY RESTRICTION IN POOL
INITIALIZATION

Category Severity Location Status

Logical Issue Minor vault_join.go (374cad8): 106 Acknowledged

Description

Files:

x/amm/keeper/vault_join.go

x/amm/keeper/pools/weightedmath/weighted_math_join.go

Commit:

374cad8c0f54b4f98efb6248cf434524bf2b7f65

In the amm module, a pool is initialized with initial liquidity after creation. The initial liquidity is checked to ensure it is positive:

106 if !lpOut.IsPositive() {

107 return summary,

108 sdkerrors.Wrap(types.ErrInvalidAmount,

"lpOut should be positive after initialization")

109 }

However, a small liquidity value such as 1e-18 may lead to big numerical errors in further calculations. Therefore, the initial

liquidity should be bounded by a minimum liquidity value.

The comment in weighted_math_join.go also indicates there should be a minimum liquidity value:

32 // and, because there is a minimum LPT, we round down the invariant.

It is also worth noting that the function CheckSufficientLiquidity() is applied to check minimum liquidity when users add

liquidity to the pool:

8 // CheckSufficientLiquidity checks if balance is not less than one

9 func CheckSufficientLiquidity(balance sdk.Dec) error {

10 if balance.LT(sdk.OneDec()) {

11 return ErrInsufficientLiquidity

12 }

13 return nil

14 }

VAU-01 PRYZM

https://github.com/pryzm-finance/pryzm-core/tree/374cad8c0f54b4f98efb6248cf434524bf2b7f65

Proof of Concept

VAU-01 PRYZM

func (s *keeperTestSuite) TestInitializationWithLowLiquidity() {

_, err := s.msgServer.CreateWeightedPool(s.ctx, &types.MsgCreateWeightedPool{

SwapFeeRatio: sdk.MustNewDecFromStr("0.0001"),

Creator: s.authority,

Tokens: []types.CreateWeightedPoolToken{

{

Denom: "token1",

NormalizedWeight: sdk.MustNewDecFromStr("0.5"),

},

{

Denom: "token2",

NormalizedWeight: sdk.MustNewDecFromStr("0.5"),

},

},

Name: "pool",

})

s.Require().NoError(err)

tokens := s.ammKeeper.GetAllTokensForPool(s.ctx, 0)

coin1 := sdk.NewCoin(tokens[0].Denom,

sdk.MustNewDecFromStr("10000000000000000").TruncateInt()) // 0.01

coin2 := sdk.NewCoin(tokens[1].Denom,

sdk.MustNewDecFromStr("10000000000000000").TruncateInt()) // 0.01

creatorStr := sample.AccAddress()

creator := sdk.MustAccAddressFromBech32(creatorStr)

s.bankKeeper.EXPECT().

BlockedAddr(creator).

Return(false)

lpCoins := sdk.NewCoins(sdk.NewCoin("LP:0:pool",

sdk.MustNewDecFromStr("19999999999999599").TruncateInt())) // 0.02

s.setupInitPoolMocks(creator, sdk.NewCoins(coin1, coin2), lpCoins)

fmt.Println("Before msgServer.InitializePool.")

_, err = s.msgServer.InitializePool(s.ctx, &types.MsgInitializePool{

Creator: creatorStr,

PoolId: 0,

AmountsIn: sdk.NewCoins(coin1, coin2),

})

s.Require().NoError(err)

supply := s.ammKeeper.GetLpTokenSupplyOrZero(s.ctx, 0)

s.Require().Equal(lpCoins[0].Amount, supply) // Supply is smaller than minimum

LPT.

}

VAU-01 PRYZM

Recommendation

Recommend checking the initial liquidity to ensure it is greater than one or another reasonable minimum liquidity value.

Alleviation

[Pryzm Team - 09/13/2023] :

We have a feature initialization_allow_list to limit the users that can initialize a pool, any pool sensitive to initialization

can use this feature.

[CertiK - 11/20/2023] :

This finding describes the issue that the initial liquidity amount is not restricted by a lower boundary and it could lead to

precision losses in further calculations.

Meanwhile, initialization_allow_list in the pool initialization is used to restrict accounts that can initialize (add liquidity to) the

pool, but it does not restrict the initial liquidity amount.

VAU-01 PRYZM

WEI-02 LACK OF CHECK FOR WEIGHT UPDATE PERIOD

Category Severity Location Status

Logical Issue Minor weighted_token.go (374cad8): 43 Resolved

Description

Files:

x/amm/keeper/weighted_token.go

Commit:

374cad8c0f54b4f98efb6248cf434524bf2b7f65

In the AMM module, pool creators are allowed to update the weights of tokens in pools gradually. The pool creators need to

provide startTimeUnixMillis and endTimeUnixMillis so that the updates would happen within this time priod.

42

// UpdateWeightsGradually sets weights to update from current value to the given

values in the given time range

43 func (k Keeper) UpdateWeightsGradually(ctx sdk.Context, poolId uint64,

 startTimeUnixMillis int64,

44 endTimeUnixMillis int64, normalizedWeights map[string]sdk.Dec) error {

However, there is no check to ensure the minimum difference between startTimeUnixMillis and endTimeUnixMillis ,

which means the weight updates could be done within a short time period or even immediately instead of "gradually".

Proof of Concept

In the following test, weights are updated immediately.

WEI-02 PRYZM

https://github.com/pryzm-finance/pryzm-core/tree/374cad8c0f54b4f98efb6248cf434524bf2b7f65

func (s *keeperTestSuite) TestWeightUpdateImmediately() {

s.setZeroProtocolFeeParams()

s.createAndInitThreeTokenPool(0)

poolData, found := s.ammKeeper.GetPool(s.ctx, 0)

s.Require().True(found)

api, err := pools.GetPoolApi(s.ctx, poolData, s.ammKeeper, nil, nil, nil)

s.Require().NoError(err)

weighted := api.(*pools.WeightedPool)

weights, err := weighted.GetNormalizedWeights(s.ctx)

s.Require().NoError(err)

// weights should be as described in method s.createAndInitThreeTokenPool()

s.Require().Equal([]types.TokenWeight{

{

Denom: "token1",

NormalizedWeight: sdk.MustNewDecFromStr("0.3"),

}, {

Denom: "token2",

NormalizedWeight: sdk.MustNewDecFromStr("0.2"),

}, {

Denom: "token3",

NormalizedWeight: sdk.MustNewDecFromStr("0.5"),

},

}, weights)

// update weights again

// current time is 11_500_000, which is used as StartTimeUnixMillis and

EndTimeUnixMillis so that the weights are updated immediately

_, err = s.msgServer.UpdateWeights(s.ctx, &types.MsgUpdateWeights{

Creator: s.authority,

PoolId: 0,

StartTimeUnixMillis: 11_500_000,

EndTimeUnixMillis: 11_500_000,

TokenWeights: []types.TokenWeight{

{

Denom: "token1",

NormalizedWeight: sdk.MustNewDecFromStr("0.5"),

},

{

Denom: "token2",

NormalizedWeight: sdk.MustNewDecFromStr("0.3"),

},

{

Denom: "token3",

NormalizedWeight: sdk.MustNewDecFromStr("0.2"),

},

},

WEI-02 PRYZM

})

s.Require().NoError(err)

timing, found := s.ammKeeper.GetWeightUpdateTiming(s.ctx, 0)

s.Require().True(found)

s.Require().Equal(types.WeightUpdateTiming{

PoolId: 0,

StartUnixMillis: 11_500_000,

EndUnixMillis: 11_500_000,

}, timing)

tokens := s.ammKeeper.GetAllWeightedTokensForPool(s.ctx, 0)

s.Require().Equal([]types.WeightedToken{

{

Denom: "token1",

PoolId: 0,

NormalizedStartWeight: sdk.MustNewDecFromStr("0.3"),

NormalizedEndWeight: sdk.MustNewDecFromStr("0.5"),

},

{

Denom: "token2",

PoolId: 0,

NormalizedStartWeight: sdk.MustNewDecFromStr("0.2"),

NormalizedEndWeight: sdk.MustNewDecFromStr("0.3"),

},

{

Denom: "token3",

PoolId: 0,

NormalizedStartWeight: sdk.MustNewDecFromStr("0.5"),

NormalizedEndWeight: sdk.MustNewDecFromStr("0.2"),

},

}, tokens)

weights, err = weighted.GetNormalizedWeights(s.ctx)

s.Require().NoError(err)

// weights have been updated to new values

s.Require().Equal([]types.TokenWeight{

{

Denom: "token1",

NormalizedWeight: sdk.MustNewDecFromStr("0.5"),

}, {

Denom: "token2",

NormalizedWeight: sdk.MustNewDecFromStr("0.3"),

}, {

Denom: "token3",

NormalizedWeight: sdk.MustNewDecFromStr("0.2"),

},

WEI-02 PRYZM

}, weights)

}

Results:

Running tool: /usr/local/go/bin/go test -timeout 30s -testify.m

^(TestWeightUpdateImmediately)$ github.com/pryzm-finance/pryzm-core/x/amm/keeper

WARNING: proto: file name query.proto does not start with expected testdata/; please

make sure your folder structure matches the proto files fully-qualified names

WARNING: proto: file name testdata.proto does not start with expected testdata/;

please make sure your folder structure matches the proto files fully-qualified names

WARNING: proto: file name tx.proto does not start with expected testdata/; please

make sure your folder structure matches the proto files fully-qualified names

WARNING: proto: file name unknonwnproto.proto does not start with expected

testdata/; please make sure your folder structure matches the proto files fully-

qualified names

PASS

ok github.com/pryzm-finance/pryzm-core/x/amm/keeper 1.659s

Recommendation

Recommend adding a check for startTimeUnixMillis and endTimeUnixMillis to ensure the token weights are updated

gradually.

Alleviation

[Pryzm Team - 09/13/2023] :

This works the same as the Balancer protocol and allows for immediate updating of weights. It allows for immediate weight

update, which is also used in the token introduction process.

[CertiK - 11/20/2023] :

The function's name, "UpdateWeightsGradually", could potentially mislead users, given that it implies a gradual process,

whereas weights might be updated instantly.

Furthermore, such immediate updates could influence the outcomes of user swaps. While the impact is mitigated since users

can set minimum amounts to limit slippage, it would be more prudent for users to be informed about potential changes in the

pool during their swap transactions

[Pryzm Team - 11/29/2023] :

The team heeded the advice and resolved the finding by implementing a minimum 7-day period for weight updates in the

commit b7003e637c1dba2370597ea5c71e721996636767 .

WEI-02 PRYZM

https://github.com/pryzm-finance/pryzm-core/commit/b7003e637c1dba2370597ea5c71e721996636767

X0C-02 POTENTIAL KEY COLLISION BECAUSE DENOM COULD
CONTAIN "/"

Category Severity Location Status

Volatile

Code
Minor

x/amm/types/key_expiring_pool_token.go (pryzm-core-0c34472): 30~32; x/

amm/types/key_pool_token.go (pryzm-core-0c34472): 30~32; x/amm/type

s/key_weighted_token.go (pryzm-core-0c34472): 19~21; x/assets/types/ke

y_refractable_asset.go (pryzm-core-0c34472): 31~33; x/incentives/types/ke

y_bond.go (pryzm-core-0c34472): 28~30; x/incentives/types/key_pool.go

(pryzm-core-0c34472): 18~20

Resolved

Description

Files:

x/amm/types/key_expiring_pool_token.go

x/amm/types/key_weighted_token.go

x/amm/types/key_pool_token.go

x/assets/types/key_refractable_asset.go

x/incentives/types/key_pool.go

x/incentives/types/key_bond.go

Commit:

0c34472f03010ddc4048ba0727c33c6418d69c2a

The token denom in Cosmos SDK should match the regular expression:

reDnmString = `[a-zA-Z][a-zA-Z0-9/:._-]{2,127}`

which implies the token denom could contain the "/".

In the aforementioned places, the "/" is appended to create the store key:

denomBytes := []byte(denom)

key = append(key, denomBytes...)

key = append(key, []byte("/")...)

As a result, it could possibly lead to key collision in the future development.

X0C-02 PRYZM

https://github.com/pryzm-finance/pryzm-core/tree/0c34472f03010ddc4048ba0727c33c6418d69c2a

Recommendation

Recommend using "|" instead of "/" to avoid potential store key collision.

Alleviation

[Pryzm Team - 10/16/2023] :

All of the mentioned files have "/" at the end of the keys. when a key ends with "/" we always know that the last "/" is a key

separator and is not a part of the denom. Hence, this is not an issue for these methods. However, we found out we are using

addresses as a part of the key for bonds, which might cause issues. Therefore we changed that to a length-prefixed address

in the commit d3ae58151679a2edd70c3d35833a556383956c55 .

[CertiK - 11/18/2023] :

Adding the length prefix of the address used for the bond key resolved the issue of the bond key. However, other keys that

include the denom which ends with the "/" have not been handled. These places are flagged in the files of the description.

Though the current design is not an issue, it could potentially lead to collision issues in future development. For example,

suppose there are two prefixed stores with prefixes, Bond/value/ and Bond/ .

If there are two denoms XYZ and value/XYZ , then it could possibly lead to a key collision because the "/" is a valid

symbol in the denom that could be used in the second denom.

Considering the potential risk, the finding is marked as partially resolved. To fully resolve this issue, recommend using "|"

instead of "/" for the keys containing the denom.

[Pryzm - 11/29/2023] :

The presented example for future implementation is flawed. Using key prefixes like "bond/" that overlap with others such as

"bond/value" is inherently problematic. This should be avoided in all future implementations, independent of the denom issue.

X0C-02 PRYZM

https://github.com/pryzm-finance/pryzm-core/commit/d3ae58151679a2edd70c3d35833a556383956c55

ASS-02 UNNECESSARY ARG IN THE
QueryGetMaturityLevelRequest

Category Severity Location Status

Coding

Style
Informational

query_maturity_level.go (374cad8): 68~70; grpc_query_maturity_l

evel.go (374cad8): 80
Resolved

Description

Commit:

374cad8c0f54b4f98efb6248cf434524bf2b7f65

Files:

x/assets/keeper/grpc_query_maturity_level.go

x/assets/client/cli/query_maturity_level.go

To query the specified MaturityLevel , the query rpc service MaturityLevel and command prismd q assets show-

maturity-level need the users to pass three args: Active , AssetId , and Symbol .

But the arg Active is unnecessary in the query method. The query method will get ACTIVE MaturityLevel s firstly. If any

ACTIVE MaturityLevel exists, this query returns only the ACTIVE elements. If no ACTIVE MaturityLevel exists, the

query method will return existing DEACTIVATE MaturityLevel s.

File: x/assets/keeper/grpc_query_maturity_level.go

ASS-02 PRYZM

https://github.com/pryzm-finance/pryzm-core/tree/374cad8c0f54b4f98efb6248cf434524bf2b7f65

80 func (k Keeper) MaturityLevel(c context.Context, req *types.

QueryGetMaturityLevelRequest) (*types.QueryGetMaturityLevelResponse, error) {

81 if req == nil {

82 return nil, status.Error(codes.InvalidArgument, "invalid request")

83 }

84 ctx := sdk.UnwrapSDKContext(c)

85

86 val, found := k.GetMaturityLevel(

87 ctx,

88 req.AssetId,

89 req.Symbol,

90)

91 if !found {

92 return nil, status.Error(codes.NotFound, "not found")

93 }

94

95 return &types.QueryGetMaturityLevelResponse{MaturityLevel: val}, nil

96 }

File: x/assets/keeper/maturity_level.go

46 func (k Keeper) GetMaturityLevel(ctx sdk.Context, asset string, symbol string)

(val types.MaturityLevel, found bool) {

47 val, found = k.doGetMaturityLevel(ctx, true, asset, symbol)

48 if found {

49 return val, found

50 }

51

52 return k.doGetMaturityLevel(ctx, false, asset, symbol)

53 }

Since arg Active is required to query a specified MaturityLevel , and the actual query result is likely inconsistent with the

input parameters, this can confuse the users.

Recommendation

We recommend removing the arg Active from the QueryGetMaturityLevelRequest OR modifying the logic in method

Keeper.MaturityLevel() .

Alleviation

[Pryzm Team - 09/18/2023]:

The team heeded the advice and resolved this issue in the commit 0c34472f03010ddc4048ba0727c33c6418d69c2a .

ASS-02 PRYZM

https://github.com/pryzm-finance/pryzm-core/tree/0c34472f03010ddc4048ba0727c33c6418d69c2a

BAS-01 NO VALIDATION OF THE EXPIRING OR EXPIRED PASSET
IN FUNCTION JoinAllTokensGivenExactLptOut

Category Severity Location Status

Logical

Issue
Informational

x/amm/keeper/pools/base_weighted_pool.go (pryzm-core-17e20

c2): 385, 443
Resolved

Description

Files:

x/amm/keeper/pools/base_weighted_pool.go

Commit:

17e20c2b046a1b389630270bfc10a1079ea0a177

Users can utilize the JoinTokenGivenExactLptOut function to input a single asset and obtain the LP asset, ensuring that

the expiring or expired pASSET is not permitted. However, when users employ the JoinAllTokensGivenExactLptOut

function and input all assets in the pool to add the LP, the expiring or expired pASSET is allowed.

428 // ValidateJoinSingleToken prevents joins if token is expiring/introducing

429 func (yc *yammPoolController) ValidateJoinSingleToken(ctx sdk.Context,

 token types.PoolToken) error {

430 if yc.isTokenExpiringOrExpired(ctx, token) {

431 return sdkerrors.Wrapf(types.ErrInvalidJoin,

"cannot join single for expiring token %s", token.Denom)

432 }

433 return nil

434 }

We would like to seek clarification from the Pryzm team to confirm if this behavior is as intended.

Recommendation

We recommend reviewing the logic again and ensuring it is as intended.

Alleviation

[Pryzm Team - 10/16/2023] :

When we want to remove a token from the pool, we should not allow increasing its balance, since it is desired to drain the

token ASAP. That is why swaps, joinSingle, and joinExact operations are checked not to increase the balance of removing

BAS-01 PRYZM

https://github.com/pryzm-finance/pryzm-core/tree/17e20c2b046a1b389630270bfc10a1079ea0a177

tokens. However, since we might have a removing token at any time, if we blocked proportional(all token) join/exit operations

then it is likely to disable this feature at all! Keeping in mind that the balance of a removing token is not expected to be large,

a proportional join would not increase it too much, and more importantly, we know that the design is not vulnerable to

proportional increments in balances (since they do not change prices) so it is OK to allow for that.

BAS-01 PRYZM

FLO-01 THE PURPOSE OF THE DEPOSIT creationDeposit

Category Severity Location Status

Logical Issue Informational x/flowtrade/keeper/flow.go (flowtrade): 54~60 Resolved

Description

Files:

x/flowtrade/keeper/flow.go

Commit:

930876154d4296a366ba2ca179c227c6663cc55b

According to the provided logic, a user has the ability to send any amount of creation deposit, which is unrelated to the

token-out amounts, to the module account in order to create a token flow. Additionally, the user can exit the flow and

retrieve the creation deposit without any restrictions. The auditing team is seeking confirmation from the PRYZM team

regarding whether this aligns with the intended design behavior. Furthermore, the team would like to know more details on

the purpose and usage of the creation deposit.

54 // send the creation deposit to the module account

55 if creationDeposit != nil {

56 err := k.sendCoinsFromAccountToModule(ctx, creator, sdk.NewCoins(*

creationDeposit))

57 if err != nil {

58 return 0, err

59 }

60 }

Recommendation

Alleviation

[Pryzm Team - 07/19/2023]:

The creation deposit amount is set in the module params, and the flow creator must provide that amount in order to create a

new flow. The purpose of this amount is to prevent spamming the system by creating too many flows.

The creation deposit is passed to the CreateFlow function, so other modules can create flows with or without this deposit

(e.g. treasury module in prism-core creates flows with zero creation deposit). The deposit is loaded from params and passed

to this method when the flow is created using the message server.

FLO-01 PRYZM

https://github.com/refractedlabs/flowtrade/tree/930876154d4296a366ba2ca179c227c6663cc55b

GEE-01 MISSING VALIDATION OF ChannelUndelegationList IN

ICSTAKING MODULE'S GENESIS STATE

Category Severity Location Status

Volatile Code Informational genesis.go (374cad8): 55 Resolved

Description

Files:

x/icstaking/types/genesis.go

x/icstaking/types/genesis.pb.go

Commit:

374cad8c0f54b4f98efb6248cf434524bf2b7f65

The icstaking module's genesis state is defined as follows:

x/icstaking/types/genesis.pb.go

26 // GenesisState defines the icstaking module's genesis state.

27 type GenesisState struct {

28 Params Params

`protobuf:"bytes,1,opt,name=params,proto3" json:"params"`

29 PortId string

`protobuf:"bytes,2,opt,name=port_id,json=portId,proto3" json:"port_id,omitempty"`

30 HostChainList []HostChain

`protobuf:"bytes,3,rep,name=host_chain_list,json=hostChainList,proto3"

json:"host_chain_list"`

31 HostChainStateList []HostChainState

`protobuf:"bytes,4,rep,name=host_chain_state_list,json=hostChainStateList,proto3"

json:"host_chain_state_list"`

32 UndelegationList []Undelegation

`protobuf:"bytes,5,rep,name=undelegation_list,json=undelegationList,proto3"

json:"undelegation_list"`

33 ChannelUndelegationList []ChannelUndelegation

`protobuf:"bytes,6,rep,name=channel_undelegation_list,json=channelUndelegationList,p

roto3" json:"channel_undelegation_list"`

34 }

GEE-01 PRYZM

https://github.com/pryzm-finance/pryzm-core/tree/374cad8c0f54b4f98efb6248cf434524bf2b7f65

However, the ChannelUndelegationList is missing from both DefaultGenesis() and Validate() :

x/icstaking/types/genesis.go

9 func DefaultGenesis() *GenesisState {

10 return &GenesisState{

11 PortId: PortID,

12 HostChainList: []HostChain{},

13 HostChainStateList: []HostChainState{},

14 UndelegationList: []Undelegation{},

15 // this line is used by starport scaffolding # genesis/types/default

16 Params: DefaultParams(),

17 }

18 }

22 func (gs GenesisState) Validate() error {

23 ...

Recommendation

Recommend adding the ChannelUndelegationList to the DefaultGenesis() and validating it in Validate() .

Alleviation

[Pryzm Team - 09/13/2023] :

The team resolved the finding by adding the ChannelUndelegationList in the commit

61efe6b7eb418efac6de42a5c0d81823586a5dcc .

GEE-01 PRYZM

https://github.com/pryzm-finance/pryzm-core/commit/61efe6b7eb418efac6de42a5c0d81823586a5dcc

GLOBAL-02 COSMOS MESSAGES NEED TO EXTEND
cosmos.msg.v1.signer OPTION

Category Severity Location Status

Volatile Code Informational Resolved

Description

The issue #10933 arises from the implementation of the sdk.Msg.GetSigners() method, which is based on Golang. As a

result, the information this method provides cannot be utilized by multi-chain dynamic clients, requiring manual filling of TX

(transaction) authentication information. This limitation also extends to non-Golang language-based clients.

To address this concern and ensure compatibility, the cosmos sdk introduced a protobuf extension called

google.protobuf.MessageOptions through PR #10977. To benefit from this extension, it is now required that all cosmos

messages extend the cosmos.msg.v1.signer option.

For more detailed information about this change, please refer to the modification log in the following link: CHANGELOG.md.

Recommendation

Recommend making the necessary modifications to cosmos messages by extending the cosmos.msg.v1.signer option.

Alleviation

[Pryzm Team - 09/15/2023] :

The team resolved this issue in the commit 0c34472f03010ddc4048ba0727c33c6418d69c2a .

GLOBAL-02 PRYZM

https://github.com/cosmos/cosmos-sdk/pull/10933
https://github.com/cosmos/cosmos-sdk/pull/10977
https://github.com/cosmos/cosmos-sdk/blob/8aaa776f822392bd506feb16cf454709059265fa/CHANGELOG.md?plain=1#L1025
https://github.com/pryzm-finance/pryzm-core/tree/0c34472f03010ddc4048ba0727c33c6418d69c2a

GO3-01 INSECURE COSMOS SDK VERSION

Category Severity Location Status

Logical Issue Informational go.mod (374cad8): 14 Resolved

Description

The current prism-core implementation depends on Cosmos SDK v0.47.2 :

github.com/cosmos/cosmos-sdk v0.47.2

However, recently, a high-severity issue (barberry security vulnerability) impacting cosmos-sdk was reported to core

developers. This issue impacts chains running on v0.46 and v0.47, and chains on v0.45 may be vulnerable if they backport

features of cosmos-sdk modules to their respective forks.

This issue has been resolved in Cosmos SDK v0.47.3 , whose release notes suggest chains using Cosmos SDK <=

v0.47.2 to upgrade to v0.47.3 immediately.

Recommendation

Recommend using Cosmos SDK v0.47.3 instead of v0.47.2 .

Alleviation

[Pryzm Team - 09/18/2023] :

The team heeded the advice and upgraded the Cosmos SDK to version v0.47.4 to resolve this issue in the commit

8b657530d2b4fb39689e93645a3ac0ae35e8554a .

GO3-01 PRYZM

https://forum.cosmos.network/t/cosmos-sdk-security-advisory-barberry/10825
https://github.com/cosmos/cosmos-sdk/blob/cfc757dc5043fb2758c47c146d2912fd010c1a45/RELEASE_NOTES.md#cosmos-sdk-v0473-release-notes
https://github.com/pryzm-finance/pryzm-core/commit/8b657530d2b4fb39689e93645a3ac0ae35e8554a

ICS-01 TYPO IN MESSAGE AND FUNCTION NAME
RedeemInterchainAccount

Category Severity Location Status

Coding

Style
Informational

msg_server_redeem_interchain_account.go (374cad8): 12; tx.pb.

go (374cad8): 886
Resolved

Description

Files:

x/icstaking/keeper/msg_server_redeem_interchain_account.go

Commit:

374cad8c0f54b4f98efb6248cf434524bf2b7f65

According to the logic, the message MsgRedeemInterchainAccount and function RedeemInterchainAccount() are

intended to register the interchain accounts, which could be changed to MsgRegisterInterchainAccount and

RegisterInterchainAccount() .

Recommendation

Recommend correcting the typo in relevant places.

Alleviation

[Pryzm Team - 09/13/2023] :

The team heeded the advice and resolved the finding by correcting the typo in the commit

f0ddd23ebbe5e19796b58b6af5e1fb7c2ddff7281 .

ICS-01 PRYZM

https://github.com/pryzm-finance/pryzm-core/tree/374cad8c0f54b4f98efb6248cf434524bf2b7f65
https://github.com/pryzm-finance/pryzm-core/commit/f0ddd23ebbe5e19796b58b6af5e1fb7c2ddff728

KED-01 DISCUSSION ON ExchangeRate UPDATING AND YAsset

YIELD DISTRIBUTION

Category Severity Location Status

Volatile

Code
Informational

x/refractor/keeper/keeper_distribution.go (pryzm-core-0c34472):

13
Resolved

Description

Files:

x/refractor/keeper/keeper_distribution.go

Commits:

0c34472f03010ddc4048ba0727c33c6418d69c2a

The auditing team would like to check with the Pryzm team about two questions regarding the asset refractor.

Question 1: Implications of Refracting and Merging Assets in the Refractor Module

The Refractor has three primary functionalities: refracting assets (converting them to other assets), merging assets

(combining assets), and redeeming assets. These operations involve a key data structure called AssetState , which keeps

track of certain details for each refractable asset, including the asset's ID, the total amount of refracted pAsset , and the last

known exchange rate.

// File: x/refractor/types/asset_state.pb.go, line 28

type AssetState struct {

 AssetId string

 TotalPAmount github_com_cosmos_cosmos_sdk_types.Int

 LastSeenExchangeRate github_com_cosmos_cosmos_sdk_types.Dec

}

One important insight is that when a user refracts some cAsset s, the number of cAsset s they can later merge or redeem

from this module will always be less than the number of cAsset s refracted. This is because the conversion ratio is

determined by AssetState.TotalPAmount divided by the related cAsset balance in the Refractor module. This ratio

remains constant for refracting, merging, and redeeming transactions, and it can only change during yield distribution.

Yield distribution occurs when a new ExchangeRate is voted for in the oracle module, which is greater than the

AssetState.LastSeenExchangeRate . The module then distributes cAsset s as rewards and fees, and the distribution

amount is calculated as:

KED-01 PRYZM

https://github.com/pryzm-finance/pryzm-core/tree/0c34472f03010ddc4048ba0727c33c6418d69c2a

To illustrate this, let's consider a scenario:

1. There are 200 cLuna refracted, and the state for cLuna is {cLuna, 500, 2.5}, and 500 yAssets staked.

2. Alice uses 20 cLuna to refract, and Alice will get 50 p:cLuna:31Dec2023 and 50 y:cLuna:31Dec2023 ; Alice stakes

all of the yAssets. The Refractor module owes 220 cLuna, and the state updates to {cLuna, 550, 2.5}.

3. The oracle module gets a new ExchangeRate 2.0, and the state for cLuna updates to {cLuna, 550, 2.0}.

4. The oracle module gets a new ExchangeRate 2.5; 2.5 is greater than 2.0, so yields 44 cLuna will be distributed.

Alice owes 50 yAssets in 550 yAssets, so Alice will receive 4 cLuna. The Refractor module owes 176 cLuna, and

the state for cLuna updates to {cLuna, 550, 2.5}.

5. Alice merged 50 p:cLuna:31Dec2023 and 50 y:cLuna:31Dec2023 ; the p:c ratio now is 550/176, so Alice can

redeem 16 cLuna.

In this scenario, we can observe that even though Alice receives yields, assuming there is no protocol fee, Alice can only get

20 cLuna back. If there are fees or if Alice forgets to stake yAsset s or if Alice's yAsset s are expired, all cAsset s Alice

can receive will be less than what she owned before. This highlights that users cannot profit from the Refractor and

ystaking modules by refracting assets.

Question 2: Handling Unstaked yAssets and Protocol Fees

In the context of the project, if a yAsset is not staked in the ystaking module, all of the yields generated from those

yAssets will be sent as protocol fees. This means that if users provide yAssets to the AMM (Automated Market Maker)

pool and do not stake them, any yield generated from those yAssets will contribute to protocol fees rather than be

distributed to users.

In summary, users must stake their yAssets in the ystaking module to receive yields since users can not get the profit

from unstaked yAssets . Additionally, users should be aware that refracting cAsset s may result in reduced cAsset

holdings over time due to yield distribution dynamics, which are influenced by fluctuations in exchange rates as determined

by the 'oracle' module's voting mechanism.

Recommendation

Alleviation

[Pryzm Team - 10/17/2023]:

Exchange rate discussion

Question 1

The question provides the following scenario which we will discuss in detail:

Let's consider a scenario:

KED-01 PRYZM

cAssetBalance − ​

new ExchangeRate
cAssetBalance × LastSeenExchangeRate

1. There are 200 cLuna refracted, and the state for cLuna is {cLuna, 500, 2.5}, and 500 yAssets staked.

2. Alice uses 20 cLuna to refract, and Alice will get 50 p:cLuna:31Dec2023 and 50 y:cLuna:31Dec2023 ; Alice

stakes all of the yAssets. The Refractor module owes 220 cLuna, and the state updates to {cLuna, 550, 2.5}.

3. The oracle module gets a new ExchangeRate 2.0, and the state for cLuna updates to {cLuna, 550, 2.0}.

4. The oracle module gets a new ExchangeRate 2.5; 2.5 is greater than 2.0, so yields 44 cLuna will be

distributed. Alice owes 50 yAssets in 550 yAssets, so Alice will receive 4 cLuna. The Refractor module owes

176 cLuna, and the state for cLuna updates to {cLuna, 550, 2.5}.

5. Alice merged 50 p:cLuna:31Dec2023 and 50 y:cLuna:31Dec2023 ; the p:c ratio now is 550/176, so Alice can

redeem 16 cLuna.

In this scenario, we can observe that even though Alice receives yields, assuming there is no protocol fee, Alice can only

get 20 cLuna back. If there are fees or if Alice forgets to stake yAsset s or if Alice's yAsset s are expired, all cAsset s

Alice can receive will be less than what she owned before. This highlights that users cannot profit from the Refractor

and ystaking modules by refracting assets.

First of all in order to provide a good context, we need to know how the exchange rate is computed and how it can change.

The exchange rate reported through Oracle feeders or the icStaking module is computed according to the staked amount of

underlying assets and the total supply of cASSET.

Suppose we have 1000 Luna tokens staked on terra, with a cLuna supply of 400 . This means the current exchange rate

is 2.5 . This exchange rate is not changed by staking/unstaking operations. It is changed only if we have rewards or slash

for the staked assets. Hence the only way of changing the exchange rate to 2 is when we get slashed for 200 Luna, then

we would have 800 Luna staked and 400 cLuna resulting in an exchange rate of 2 . This can only get back to 2.5 as a

result of staking rewards!

Our protocol defines yASSET and pASSET as follows:

pASSET represents the principal, which means it represents the underlying assets staked on a staking system.

yASSET represents the yields to be accrued for an amount of staked assets.

Now let's check the changes in the exchange rate again. The exchange rate decreases when we get slashed.

Decreasing exchange rate: In a slash event the staked assets are being affected, meaning the underlying staked

asset is decreased. Given our definitions of pASSET we can understand this event should affect pASSET holders

and not the yASSET holders. This means if we get slashed, a p/y holder should get less out of redeem/merge

actions. PLEASE note that slashing also affects the yield in a sense, when the total staked amount is decreased then

the yield accrued would be less than before which would be automatically reflected to yASSET holders.

Increasing exchange rate: When a reward is accrued, it is obvious that the yASSET holder should benefit from this

reward and not the pASSET holder. Therefore, when the exchange rate increases, we should distribute yield to

yASSET holders (staked yASSET).

Now, let's go over the example from the question again.

Initial state:

KED-01 PRYZM

staking contract (or icStaking): 1000Luna staked, and 400cLuna minted.

refractor: 200cLuna in the vault and 500pLuna minted.

exchange rate: 2.5

Alice is holding 20cLuna, corresponding to 50Luna staked.

Actions:

1. Alice refracts 20cLuna, and gets 50pLuna, 50yLuna

a. This changes the refractor to 220cLuna in the vault and 550pLuna minted.

2. Alice stakes 50yLuna

3. The exchange rate goes to 2 , so we’ve had a 20% slash equivalent to 200Luna.

a. This means the staking contract state is: 800Luna and 400cLuna.

4. The exchange rate is updated to 2.5 , so we’ve had a 25% reward equivalent to 200Luna. a. This results in reward

distribution, and Alice gets 4cLuna as a reward.

At this stage Alice has received 4cLuna (=10Luna) as her exact share of the accrued reward, however, her p/y asset can

only redeem 16cLuna (=40Luna). This means the yASSET holder has gained the rewards as explained earlier, while the

pASSET holder (assuming maturity) has lost 10Luna because of slashing. This is exactly how the protocol needs to work.

In another sense, what PRYZM does is refracting principal from yield and allowing for trading either of these separately.

Therefore, if a user refracts the cASSET and stakes the yASSET while holding the pASSET, they are not going to gain more

compared to not refracting at all. This is the case for the given example, if Alice does not refract her cASSET, she is still being

slashed and rewarded the same as before. NOTE: we do have numerous ways of generating yield in the system like liquidity

pools where you can gain profit by providing the pASSET as liquidity. But here we are only discussing the refractor

functionality in isolation.

It is important to also note that slashing is not a common thing and is always nothing compared to reward amounts, meaning

that in the real world, Alice is always going to gain profit by just holding cASSET or refracting and staking the yASSET.

Conclusion

So far, we have explained how the Refractor module effectively separates the principal from the yield, incorporating a design

that takes into account both slashing and rewards. In this design, the pASSET is subject to slashing due to its inherent nature

as a representation of the principal, while the yASSET is subject to rewards as the yield token. It is important to note that

slashing is not a side-effect of PRYZM and you might be slashed by just staking your assets anywhere (Although in a real-

world scenario, the slashing is not substantial).

The refractor module works like an entry gate to the PRYZM protocol, in the protocol we have various features enabling p/y

and c token holders to gain profit. For example, if you are an active trader you can trade these assets when you think their

value is going to increase/decrease so you gain profit from trades, as well as doing arbitrage in the system. You can also

stake your yASSETs to gain the staking yield and provide p/c tokens in liquidity pools to gain swap fees. We even have the

ability to provide multiple levels of yields by providing liquidity pools for LP tokens or using Incentives and Alliance modules.

Question 2

KED-01 PRYZM

This question is focused on unstaked yASSET:

In the context of the project, if a yAsset is not staked in the ystaking module, all of the yields generated from those

yAssets will be sent as protocol fees. This means that if users provide yAssets to the AMM (Automated Market

Maker) pool and do not stake them, any yield generated from those yAssets will contribute to protocol fees rather than

be distributed to users.

In summary, users must stake their yAssets in the ystaking module to receive yields since users can not get the

profit from unstaked yAssets . Additionally, users should be aware that refracting cAsset s may result in reduced

cAsset holdings over time due to yield distribution dynamics, which are influenced by fluctuations in exchange rates as

determined by the 'oracle' module's voting mechanism.

We have already explained how Refractor and Oracle work, so the only thing to mention here is what happens to unstaked

yASSET. The first thing to mention is: that we do not have yASSET liquidity pools in AMM, so users are not going to provide

yASSET as liquidity in AMM. Hence, a user is either trading a yASSET using amm (which is not supposed to take too long)

or they have staked their yASSET. Other users holding yASSET with no aim, are not gaining profit which makes sense. In

fact, if we want to track all yASSET holders, it would be too complex to implement and would not make sense, since users

can simply stake their yASSET instead of holding it. Note that we do not have unbonding period in yStaking so users can

stake and unstake their yASSET seamlessly.

There is only one feature in AMM that can lock yASSET, which is Pulse-Trade. This is a functionality for trading yASSETs

over a long period of time, however, the Pulse-Trade is designed not to minimize the locked amount. Pulse-Trade only locks

the required amount for executing one single step of the long-term multi-step trade. Therefore this is not a problem again for

our system.

KED-01 PRYZM

KEE-08 INCONSISTENT FUNCTION NAME
NewRedelegateMessageBridge()

Category Severity Location Status

Coding Style Informational bridge_redelegate.go (374cad8): 24; keeper.go (374cad8): 91 Resolved

Description

Files:

x/icstaking/keeper/keeper.go

x/icstaking/keeper/bridge_redelegate.go

Commit:

374cad8c0f54b4f98efb6248cf434524bf2b7f65

In order to be consistent with other bridge function names, the function NewRedelegateMessageBridge() could be changed

to NewRedelegateBridge() .

Recommendation

Recommend changing the aforementioned function name.

Alleviation

[Pryzm Team - 09/13/2023] :

The team heeded the advice and resolved the finding by changing the function name in the commit

21b11ae1fab27b1befa9d6017de2ed6ffc499a31 .

KEE-08 PRYZM

https://github.com/pryzm-finance/pryzm-core/tree/374cad8c0f54b4f98efb6248cf434524bf2b7f65
https://github.com/pryzm-finance/pryzm-core/commit/21b11ae1fab27b1befa9d6017de2ed6ffc499a31

KEP-01 DISCUSSION ON PRICES OF token-in AND token-out

Category Severity Location Status

Logical

Issue
Informational

x/flowtrade/keeper/flow.go (flowtrade): 14; x/flowtrade/keeper/posi

tion.go (flowtrade): 12
Resolved

Description

Files:

x/flowtrade/keeper/flow.go

x/flowtrade/keeper/position.go

Commit:

930876154d4296a366ba2ca179c227c6663cc55b

A User has the ability to create a flow and sell tokens by locking a deposit, while other users can join the flow by providing a

certain amount of tokens. The tokens being sold, which are provided by the flow creator, are referred to as token-out . On

the other hand, the tokens provided by the buyers are called token-in . And there is no restriction on the token amount of

token-in and token-out .

Hence, the price of tokens is determined by considering the overall quantity of each token involved. This means that it is

possible for a user to spend only a small number of tokens while acquiring a significantly larger amount of other tokens.

The auditing team would like to confirm this behavior aligns with the intended design.

Recommendation

Alleviation

[Pryzm Team - 07/19/2023]:

The purpose of flowtrade module is to provide an open market in which the price is determined by the amount of supply

and demand, token-out, and token-in. The module enforces a minimum duration for each flow (set by governance in module

parameters) to make sure that there is enough time for anyone to participate.

[CertiK - 11/18/2023]:

After review, the auditing team confirmed this behavior aligns with the intended design, so the discussion is marked as

Resolved.

[Pryzm Team - 11/29/2023]:

The team introduced the new LimitPrice feature in Flow to mitigate token loss under specific conditions. Additionally,

KEP-01 PRYZM

https://github.com/refractedlabs/flowtrade/tree/930876154d4296a366ba2ca179c227c6663cc55b
https://github.com/refractedlabs/flowtrade/commit/4e7068c78b18e62935ae3718c1b7c53fe00a1674

they incorporated the ExitWindowDuration in Flow to provide enhanced protection for participants joining Flow . The

changes were reflected in the commit 4e7068c78b18e62935ae3718c1b7c53fe00a1674.

KEP-01 PRYZM

https://github.com/refractedlabs/flowtrade/commit/4e7068c78b18e62935ae3718c1b7c53fe00a1674

MES-01 MISSING VALIDATION OF epoch IN MESSAGE

MsgRedeemUnstaked

Category Severity Location Status

Volatile Code Informational message_redeem_unstaked.go (374cad8): 45 Resolved

Description

Files:

x/icstaking/types/message_redeem_unstaked.go

Commit:

374cad8c0f54b4f98efb6248cf434524bf2b7f65

The following ValidateBasic() is used to validate the message MsgRedeemUnstaked , which misses the validation of

epoch .

45 func (msg *MsgRedeemUnstaked) ValidateBasic() error {

46 if _, err := sdk.AccAddressFromBech32(msg.Creator); err != nil {

47 return sdkerrors.Wrapf(errortypes.ErrInvalidAddress,

"invalid creator address (%s)", err)

48 }

49 if len(msg.HostChain) == 0 {

50 return sdkerrors.Wrapf(ErrHostChainNotFound, "host chain key is empty")

51 }

52 if msg.UAmount.IsNil() || msg.UAmount.LTE(sdk.ZeroInt()) {

53 return sdkerrors.Wrapf(ErrInvalidAmount, "u amount %d must be positive"

, msg.UAmount)

54 }

55 return nil

56 }

As a result, a zero epoch can be passed. However, the minimum epoch is 1 according to the implementation:

x/icstaking/keeper/epoch_counter.go

MES-01 PRYZM

https://github.com/pryzm-finance/pryzm-core/tree/374cad8c0f54b4f98efb6248cf434524bf2b7f65

55 func (k Keeper) GetCurrentUndelegationEpoch(ctx sdk.Context, hostChainId string

) uint64 {

56 store := prefix.NewStore(ctx.KVStore(k.storeKey), types.KeyPrefix(types.

UndelegationEpochKeyPrefix))

57 b := store.Get([]byte(hostChainId))

58 if b == nil {

59 return 1

60 }

61 value := &gogotypes.UInt64Value{}

62 k.cdc.MustUnmarshal(b, value)

63 return value.Value

64 }

Note that missing validation of TransferChannel has been pointed out in another finding.

Recommendation

Recommend adding an extra check to ensure the epoch is positive.

Alleviation

[Pryzm Team - 09/13/2023] :

The team heeded the advice and resolved the finding by adding the extra check to ensure epoch is positive in the commit

aa9d594b97347afb07de9e5d283c8581683cc3af1 .

MES-01 PRYZM

https://github.com/pryzm-finance/pryzm-core/commit/aa9d594b97347afb07de9e5d283c8581683cc3af

MIN-01 DISCUSSION ON THE CALCULATION OF THE MINTED
TOKEN

Category Severity Location Status

Incorrect Calculation Informational hooks.go (374cad8): 38; minter.go (374cad8): 37~42 Resolved

Description

Files:

x/mint/keeper/hooks.go

x/mint/keeper/minter.go

Commit:

374cad8c0f54b4f98efb6248cf434524bf2b7f65

The mint module is responsible for minting tokens and distributing them to various modules, including the Incentive

module, at the end of each epoch. The Incentive module receives these rewards and further distributes them to its

associated pools. From this, we can infer that there is a connection between the mint and Incentive modules. When the

mint module calculates the amount of tokens to be minted, it should consider the bondRatio specified in the Incentive

module, rather than the bondRatio in the staking module.

In addition, the auditing team would like to inquire whether the Pryzm team has any whitepaper or document that can provide

an explanation of the inflation formula: (1 - bondedRatio/GoalBonded) * InflationRateChange .

37 inflationRateChangePerYear := sdk.OneDec().

38 Sub(bondedRatio.Quo(params.GoalBonded)).

39 Mul(params.InflationRateChange)

40

41 inflationRateChange := inflationRateChangePerYear.Quo(sdk.NewDec(

epochsPerYear))

Recommendation

Alleviation

[Pryzm Team - 07/05/2023] :

The BondedRatio in the staking module is used to calculate the percentage of PRYZM tokens that are currently being used

to secure the network through the staking process. On the other hand, the incentives module does not use the concept of

BondedRatio. This module is designed to incentivize non-PRYZM token holders who are participating in the PRYZM network

MIN-01 PRYZM

https://github.com/prism-finance/prism-core/tree/374cad8c0f54b4f98efb6248cf434524bf2b7f65

through various means, such as providing liquidity, voting on proposals, or participating in other community-driven initiatives.

In short, the incentives module encourages participation in the PRYZM ecosystem by offering rewards or bonuses to users

who contribute in these ways.

The mentioned formula is an exact copy of the default inflation calculation in cosmos-sdk mint module. Here is a link to the

documentation.

[CertiK - 11/18/2023]:

After review, the auditing team confirmed the implementation meets the intended design, so the discussion is marked as

Resolved.

MIN-01 PRYZM

https://docs.cosmos.network/main/build/modules/mint#inflation-rate-calculation

MSG-02 EQUALITY COULD POSSIBLY NOT BE SATISFIED DUE TO
ROUNDING ISSUE

Category Severity Location Status

Volatile Code Informational msg_server_redeem_unstaked.go (374cad8): 51 Resolved

Description

Files:

x/icstaking/keeper/msg_server_redeem_unstaked.go

Commit:

374cad8c0f54b4f98efb6248cf434524bf2b7f65

According to the calculation of variable redemptionRate :

45

// calculate the amount to be redeemed to user, based on the redemption rate of the

undelegation

46 redemptionRate := sdk.NewDecFromInt(undelegation.ReceivedAmount).QuoInt(

undelegation.TotalCAmount)

47 amount := redemptionRate.MulInt(msg.UAmount).TruncateInt()

The following equality could possibly never be satisfied due to the rounding error.

49 // add the amount to the claimed assets of channel undelegation record

50 undelegation.ClaimedAmount = undelegation.ClaimedAmount.Add(amount)

51 if undelegation.ClaimedAmount.Equal(undelegation.ReceivedAmount) {

Recommendation

The auditing team would like to confirm with the Pryzm team if it is the intended design.

Alleviation

[Pryzm Team - 09/13/2023] :

The team resolved the finding by replacing ClaimedAmount with ClaimedUAmount in the commit

7547eff3d251810c4a8b7757bbf28394bc473bdf .

MSG-02 PRYZM

https://github.com/pryzm-finance/pryzm-core/tree/374cad8c0f54b4f98efb6248cf434524bf2b7f65
https://github.com/pryzm-finance/pryzm-core/commit/7547eff3d251810c4a8b7757bbf28394bc473bdf

ORA-01 POSSIBLE INCREASE OF EXCHANGE RATE

Category Severity Location Status

Logical Issue Informational oracle_callback.go (374cad8): 89~94 Acknowledged

Description

Files:

x/icstaking/keeper/oracle_callback.go

Commit:

374cad8c0f54b4f98efb6248cf434524bf2b7f65

The exchange rate is updated in the function OnMajorityVote() according to the following formula:

86 totalCTokenSupply := c.k.bankKeeper.GetSupply(ctx, hostChain.CDenom()).

Amount

87 if !totalCTokenSupply.IsZero() {

88 oldER := hostChainState.ExchangeRate

89 hostChainState.ExchangeRate = sdk.NewDecFromInt(

90 totalDelegation.

91 Add(delegationQueueAmount).

92 Add(hostChainState.AmountToBeCompounded).

93 Add(hostChainState.AmountToBeDelegated)).

94 QuoInt(totalCTokenSupply)

95 err := c.k.exchangeRateListeners.ExchangeRateUpdated(ctx, hostChainId,

&oldER, hostChainState.ExchangeRate)

96 if err != nil {

97 return err

98 }

99 }

in which the hostChainState.AmountToBeCompounded is assigned to the balance of the reward account:

79 hostChainState.AmountToBeCompounded = payload.RewardAccountBalance

Since the reward account is able to receive coins from users, then the exchange rate could be increased if some users send

coins to the reward account.

ORA-01 PRYZM

hostChainState.ExchangeRate =

​totalCTokenSupply
total delegation+delegation queue+hostChainState.AmountToBeCompounded+hostChainState.AmountToBeDelegated

https://github.com/pryzm-finance/pryzm-core/tree/374cad8c0f54b4f98efb6248cf434524bf2b7f65

Recommendation

The auditing team would like to confirm with the Pryzm team if this scenario has been taken into account.

Alleviation

[Pryzm Team - 08/24/2023] :

The reward account's balance determines the amount of tokens that are rewarded to the stakers. If a user sends tokens to

this account, it is counted as a reward and both stakers and protocol will take profit.

[CertiK - 11/18/2023] :

The issue has been designated as an Informational finding and has been marked as Acknowledged. While not a significant

concern, it is essential to inform the team of the existence of this scenario.

ORA-01 PRYZM

PAR-01 TYPO IN ERROR MESSAGES

Category Severity Location Status

Coding Style Informational params.go (374cad8): 239, 262 Resolved

Description

Files:

x/icstaking/types/params.go

Commit:

374cad8c0f54b4f98efb6248cf434524bf2b7f65

There are some typos in the error message:

x/icstaking/types/params.go

in line 239, DelegationInterval %d is not in range [0, 24] hours should be UndelegationInterval %d is

not in range [0, 120] hours

in line 262, max messages %d is not in range [1, 10] hours should be max messages %d is not in range

[1, 10]

Recommendation

Recommend correcting the typos to improve the code readability.

Alleviation

[Pryzm Team - 09/13/2023] :

The team heeded the advice and resolved the finding by correcting the typos in the commit

e64eec01b7059ce37542afbf72d3e26644e329b0 .

PAR-01 PRYZM

https://github.com/pryzm-finance/pryzm-core/tree/374cad8c0f54b4f98efb6248cf434524bf2b7f65
https://github.com/pryzm-finance/pryzm-core/commit/e64eec01b7059ce37542afbf72d3e26644e329b0

PRY-01 GAS IS NOT CONSUMED IF AN ERROR OCCURS
BEFOREHAND

Category Severity Location Status

Logical

Issue
Informational

x/amm/keeper/pool.go (pryzm-core-0c34472): 24; x/amm/keep

er/vault_batch_swap.go (pryzm-core-0c34472): 129; x/amm/ke

eper/vault_exit.go (pryzm-core-0c34472): 47, 119, 194, 253; x/

amm/keeper/vault_join.go (pryzm-core-0c34472): 34, 224, 30

1, 363; x/amm/keeper/vault_swap.go (pryzm-core-0c34472): 4

1; x/amm/keeper/order.go (pryzm-core-374cad8): 51

Acknowledged

Description

Files:

x/amm/keeper/pool.go

x/amm/keeper/vault_batch_swap.go

x/amm/keeper/vault_exit.go

x/amm/keeper/vault_join.go

x/amm/keeper/vault_swap.go

x/amm/keeper/order.go

Commit:

0c34472f03010ddc4048ba0727c33c6418d69c2a

The ConsumeGas() function is used in the Pryzm's amm module to increase the GasMeter’s consumed gas by a predefined

fixed amount, which varies to different message execution. This approach could be inappropriate as gas is only consumed

after a successful execution or in the middle of these functions. In the case that the function returns an error before the

execution of ConsumeGas() , the GasMeter will not be increased so the gas will not be consumed. However, the

computation has already been performed and gas is supposed to be consumed accordingly.

The function ConsumeGas() that consumes the flat gas is called in the following functions and lines:

x/amm/keeper/order.go:30

x/amm/keeper/pool.go:24

x/amm/keeper/vault_batch_swap.go:129

x/amm/keeper/vault_exit.go:47

x/amm/keeper/vault_exit.go:119

x/amm/keeper/vault_exit.go:194

PRY-01 PRYZM

https://github.com/pryzm-finance/pryzm-core/tree/0c34472f03010ddc4048ba0727c33c6418d69c2a

x/amm/keeper/vault_exit.go:253

x/amm/keeper/vault_join.go:34

x/amm/keeper/vault_join.go:224

x/amm/keeper/vault_join.go:301

x/amm/keeper/vault_join.go:363

x/amm/keeper/vault_swap.go:41

Recommendation

The auditing team would like to confirm with the Pryzm team if the aforementioned scenario has been taken into

consideration. Otherwise, recommend moving the aforementioned ConsumeGas() calls to the beginning of the functions to

ensure sufficient gas is consumed.

Alleviation

[Pryzm Team - 10/16/2023] :

Order, Pool, join, exit, swap: a set of read operations are called, and the store implementation consumes sufficient gas for

these operations. Then the constant gas is consumed exactly before doing heavy math computations. This is in fact like all

other methods where a tx fails before doing a read/write on a store, so gas for the store access is not consumed if input is not

valid. Batch swap: for each step we consume gas and then execute the step, so if the first step fails, there is no need to

consume gas for other steps of a batch.

[CertiK - 11/20/2023] :

Following the confirmation from the Pryzm team that this is an intended design choice, the finding has been classified as

Informational and updated to Acknowledged status.

PRY-01 PRYZM

TOK-01 INCORRECT ERROR MESSAGE IN THE VALIDATION OF
CircuitBreakerSettings

Category Severity Location Status

Coding Style Informational token_circuit_breaker_settings.go (374cad8): 49 Resolved

Description

Files:

x/amm/types/token_circuit_breaker_settings.go

Commit:

374cad8c0f54b4f98efb6248cf434524bf2b7f65

The function Validate() is used to validate the CircuitBreakerSettings , in which the field UpperBound is validated as

follows:

47 if !m.UpperBound.IsZero() &&

48 (m.UpperBound.GT(sdk.MustNewDecFromStr(maxNonZeroBound)) || m.

UpperBound.LT(m.LowerBound)) {

49 return sdkerrors.Wrapf(ErrInvalidCircuitBreakerSettings,

"circuit-breaker UpperBound should be less than or equal to %s, and not less than

LowerBound"

, minNonZeroBound)

50 }

This check ensures the UpperBound does not exceed maxNonZeroBound , which means the minNonZeroBound should be

maxNonZeroBound in the error message.

Recommendation

Recommend changing minNonZeroBound to maxNonZeroBound in the aforementioned error message.

Alleviation

[Pryzm Team - 09/18/2023] :

The team heeded the advice and resolved this issue in the commit 200135e692be2fe9d15bbeab5c1437df53e38f1f .

TOK-01 PRYZM

https://github.com/pryzm-finance/pryzm-core/tree/374cad8c0f54b4f98efb6248cf434524bf2b7f65
https://github.com/pryzm-finance/pryzm-core/commit/200135e692be2fe9d15bbeab5c1437df53e38f1f

APPENDIX PRYZM

Finding Categories

Categories Description

Coding Style
Coding Style findings may not affect code behavior, but indicate areas where coding practices can

be improved to make the code more understandable and maintainable.

Coding Issue
Coding Issue findings are about general code quality including, but not limited to, coding mistakes,

compile errors, and performance issues.

Incorrect

Calculation

Incorrect Calculation findings are about issues in numeric computation such as rounding errors,

overflows, out-of-bounds and any computation that is not intended.

Denial of Service
Denial of Service findings indicate that an attacker may prevent the program from operating

correctly or responding to legitimate requests.

Inconsistency
Inconsistency findings refer to different parts of code that are not consistent or code that does not

behave according to its specification.

Volatile Code
Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases

and may result in vulnerabilities.

Logical Issue Logical Issue findings indicate general implementation issues related to the program logic.

Centralization
Centralization findings detail the design choices of designating privileged roles or other centralized

controls over the code.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of

256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command against the target file.

APPENDIX PRYZM

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, confidentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with the

Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report

is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report

represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company

and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that

your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,

where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL

FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER

APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,

OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT

LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK MAKES NO

WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR

OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF, WILL MEET CUSTOMER’S OR ANY

OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT, BE COMPATIBLE OR WORK WITH ANY

SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL

CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR

DISCLAIMER PRYZM

UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S

REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR

RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE

CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR

CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME NO

LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND

MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY

CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING

FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR

CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY

OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO

CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT

CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER

BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE

BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,

SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION

UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,

REGULATORY, OR OTHER ADVICE.

DISCLAIMER PRYZM

CertiK Securing the Web3 World

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a

leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

PRYZM Security Assessment CertiK Assessed on Jul 1st, 2024 Copyright © CertiK

https://www.certik.com/
https://www.twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

