
psychbench
Element type programming manual

Quick element types are custom code for a limited number of experiments where you don’t need
much flexibility or much of an interface for other users. Read sec 1 (≈ 15 pages) if you want to
make a quick type.
Durable element types (optional) are additions to your library for an open range of users and
experiments where the code needs to be more flexible (object properties) and have more of a user
interface (error checking, documentation, etc.). Add reading sec 2 if you want to make a durable
type. Skip otherwise.
Core property reference: Sec 3 is reference for core properties that can be useful in element type
code. Read only as needed.

Contents
 1. Quick element types 3

 1.1. What you need 3
 1.2. Files and folders 4
 1.3. Type-Specific / Core 4
 1.4. Making and managing an element type 5

Making an element type – newPbType 5
Copying/Forking an element type 5
Editing an element type 5
Renaming an element type – renamePbType 5
Removing an element type 6
Sending/Receiving an element type 6

 1.5. Element type code 6
Type scripts 6
Objects/Properties and Variables in type scripts 7
Functions/Commands in type scripts 9
Test using debug mode! 9

 1.6. Setup – open script 10

..
..
...

..
...
..

...
...

..
..

..
...

...
..

..
..

..

 1.7. Running – runFrame script 10
Object start/end 11
Time 11

 1.8. Wrapup – close script 13
Experiment results output 13

 1.9. Cleanup on error – catch script 13
 1.10. Showing a display 14

Recap: Showing a display without PsychBench 14
Core display functionality and rules 14
Distance units – element_deg2px, element_px2deg 17
Drawing a display to the experiment window 17
Direct draw method 18
(Texture method) 18

 2. Durable element types (optional) 20
 2.1. Input properties 20

Default values – typeOptions variable inputPropertyDefs 20
String properties – var2char, var2string 21
Error checking input properties 21

 2.2. Time/Memory in open: open1, 2, 3 type scripts and tools 21
open1, 2, 3 scripts 21
Conserve time – element_doShared 22
Conserve memory in open2 – element_setShared 23

 2.3. Showing a display – Texture method 23
Making textures 23
Drawing textures to the experiment window 24

 2.4. Object sleep/wake 27
 2.5. Staircased properties 27
 2.6. Adjustable properties 27
 2.7. Documentation 31
 2.8. Name conventions 32

 3. Core property reference 33
 3.1. Core properties – Visual element objects (this.<property>) 33
 3.2. Core properties – Trial objects (trial.<property>) 36
 3.3. Core properties – Experiment object (experiment.<property>) 37
 3.4. Core properties – Screen objects (devices.screen.<property>) 38

..
..

..
...

..
..

...
..

..
...

..
...

..
...

..
...

..
...

..
..

...
...

..
...

..
...
...
...

...
...

..
..

..
....................................
...................................

1. Quick element types

Contents Core property reference 3

1. Quick element types

Quick element types are custom code for a limited number of experiments where you don’t need
much flexibility or much of an interface for other users. Read this section (≈ 15 pages) if you want
to make a quick type.

If the element type library doesn’t have the stimuli you need for an experiment, first make sure
PsychBench is up to date using pb_update. You can also email us at contact@psychbench.org to
request an element type.
Otherwise you can write your own code for stimuli in MATLAB + Psychtoolbox. Almost never do you
just need code that runs once in some trial. Generally you want code that repeats across multiple
trials and with parameters you can control (e.g. stimulus features). You also often need part of your
code to do work before or after trials so the part during trials can run fast and not impact frame
rate. And you don’t want to re-invent the wheel when it comes to all the core functionality
PsychBench already handles (timing, visual options, staircasing, results output, etc.).
To make all this easy, the approach is to write your code as an element type in your library. You can
then use it anywhere by making objects of the type, parameterize and get output from it using
object properties, and have it click with all core functionality. All the element types that come with
PsychBench are open source, so you can use them as examples and/or build off them.
To keep this manual simple, we focus on making element types that show visual stimuli.
However, the element type programming framework allows for many other types too: auditory,
response handler, adjuster, etc. For more information please email contact@psychbench.org.

1.1. What you need
You should know the basics of showing a display in Psychtoolbox code without PsychBench:
opening an on-screen window using Screen('OpenWindow'), drawing to its buffer using Screen
draw functions, flipping the buffer using Screen('Flip'), and repeating the process each frame when
the display should change. You won’t use all these commands in PsychBench element type code
but the concepts are important. Psychtoolbox tutorials are available, for example at
https://peterscarfe.com/ptbtutorials.html. Aside from that, the amount of MATLAB programming
knowledge you need just depends on what you want to do.

mailto:contact@psychbench.org
mailto:contact@psychbench.org
https://peterscarfe.com/ptbtutorials.html

1. Quick element types

Contents Core property reference 4

Object-oriented framework

PsychBench uses its own framework for objects, which are just represented by structs.
You don’t need to know anything about MATLAB’s object-oriented framework.

1.2. Files and folders
• Element types that come with PsychBench – /element types

Code for element types that come with PsychBench is in
<PsychBench folder>/element types. Each element type is in a subfolder with name = type
name. Documentation for these types is online at www.psychbench.org/docs. All these
element types are open source, so you can use them as examples and/or build off them.
Don’t edit them directly since your edits would be lost the next time you update (sec 1.4).

• Element types you make – Local element types folder
For custom element types you make or receive, both code and documentation go in your
local element types folder. Again each element type is in a subfolder with name = type
name. You set the location for your local element types folder when you install PsychBench.
You can move it anytime later—if PsychBench can’t find it, it will just ask for a new location.
It’s always outside the main PsychBench folder, so updating or uninstalling PsychBench
doesn’t affect your code.

• Tools – /element type programming
All tools for making element types are in <PsychBench folder>/element type programming.
The root folder contains tools for making/managing element types. Subfolders contain tools
for use in element type code. An overview of files is available through the pb help command.
All functions have help text by typing help <function> at the MATLAB command line.

1.3. Type-Specific / Core
The basic principle in making an element type is the separation between type-specific and core:
Type-specific: Type-specific properties are properties only objects of the type have.
And type-specific functionality is everything new which the element type adds to PsychBench,
typically based on its type-specific properties. If you go to any element type page on the
PsychBench website, everything type-specific about it is documented there (e.g. gabor).
Core: Core properties are properties different element types have in common, or properties of non-
element objects like trial, experiment, etc. And core functionality is everything that is common
across element types or handled in non-element objects, typically based on core properties.
Examples are starting/ending elements based on core properties start/end, experiment results

https://www.psychbench.org/docs/contents
https://www.psychbench.org/elementdocs/gabor
https://www.psychbench.org/docs/element#start

1. Quick element types

Contents Core property reference 5

output based on core properties report/info, etc. Everything core is documented on pages like
All elements, All visual elements, etc. on the PsychBench website.
▷ When you make an element type, you only need to make its type-specific properties and

functionality. PsychBench adds and handles all core properties/functionality automatically, so
you don’t need to.

▷ In some cases element type code needs to call PsychBench functions to tell PsychBench when
to apply core functionality, or to interact with it. See specific sections below.

1.4. Making and managing an element type

Making an element type – newPbType
To make a new element type, start by calling newPbType at the MATLAB command line and input a
name. This makes a subfolder in your local element types folder (sec 1.2), and sets up a
typeOptions script as well as a user documentation text file there. You can then write code for the
element type and save it in the folder. For a quick type you can generally ignore the typeOptions
script and user documentation. For a durable type you need to work with them (secs 2.1, 2.7).

Copying/Forking an element type
Optionally you can make a new element type using an existing type as a starting point. To do this,
input the name of the source type in a second input to newPbType. newPbType sets up the new
type as a copy of the source type. You can then edit the copy independent of the source. You can
build off types that come with PsychBench and local types in this way.

Editing an element type
To edit an element type you have made, just edit its files. PsychBench automatically sees all
additions and edits.
▷ Don’t edit the element types that come with PsychBench in

<PsychBench folder>/element types since your edits would be lost the next time you update.
Instead use newPbType to make a copy in your local element types folder and edit that.

Renaming an element type – renamePbType
If you want to rename an element type you have made, generally all instances of the type name in
its files and folders need to be changed. You can use the tool renamePbType to automate this.

https://www.psychbench.org/docs/object#report
https://www.psychbench.org/docs/element
https://www.psychbench.org/docs/elementwithscreen

1. Quick element types

Contents Core property reference 6

Removing an element type
To remove an element type you have made, just delete its folder or move it out of your local element
types folder.

Sending/Receiving an element type
To share an element type with other people, just zip its folder and email it. Also include any other
files the type needs. To add an element type you have received, just copy its folder into your local
element types folder, then call pb_addPath to refresh PsychBench.
If you would like to contribute an element type to the library that comes with PsychBench, please
email us at contact@psychbench.org. We would be happy to credit you. And thank-you!

1.5. Element type code
Once you have used newPbType to set up a subfolder in your local element types folder, it’s time to
write the code for the element type and save it there. This is the code PsychBench will call during
any experiment to run any object of the type. It runs independently for each object of the type in an
experiment. Generally each object can have different property values and/or run in different
contexts (e.g. at different positions on screen), which means the code needs to be flexible. To do
this, it reads property values of the object it’s running for, and maybe information from other core
objects (e.g. trial, experiment, screen) and functions (e.g. Psychtoolbox GetSecs), and uses it as
instructions or parameters. (For a quick type which will only be used in a limited number of
experiments, you might hard-code more and have less flexibility.)
This section looks at the basic framework for writing element type code. If examples would be
helpful, you can look ahead to Examples 1, 2.

Type scripts
Each element object in an experiment runs in one trial. However, an element type often needs
different code to run at different points in the experiment—for example, code to do any slow
preparation of an object before trials, faster code to run it during its trial when everything has to
happen in real time, etc. So code is structured into different scripts called (element type scripts) ,
each of which runs at a different point. Type scripts have specific names with the form
<element type>_<when to run>, e.g. for the picture type: picture_open, picture_runFrame,
picture_close, etc. Overall type scripts form a workflow that each object passes through during an
experiment. Each type script is optional—if an element type has no code for a given point in
the experiment, you can omit that script.
Following is the big picture. Later sections look at each script specifically.

mailto:contact@psychbench.org

1. Quick element types

Contents Core property reference 7

Figure. Type scripts

Object

Repeats

<element type>_close

After trial object is in

Does wrapup for the object 

<element type>_runFrame

In each frame when object is running  
(e.g. ≈ 17 msec @ 60 frames/sec)

Runs stimulus/functionality for the object

<element type>_open

Before trial object is in  

Does setup for the object

<element type>_catch

When experiment stops on error

Does cleanup for the object on error

<element type>_open1, 2, 3

At experiment startup after window opens 
or Before trial object is in

Do setup for the object

or

Objects/Properties and Variables in type scripts

Element object a type script is running for – this
Element type code runs once for each object of the type in an experiment. Each time a type script
runs, it is in a workspace that PsychBench sets up with objects that the script can read from and
write to. The main one is the object of the type the script is currently running for, which is present in
a variable called this. To read and write properties of this, use standard dot syntax
this.<property name> .
Important in making an element type is the distinction between type-specific and core properties
(sec 1.3):

• Type-specific properties are properties only objects of the type have. The element type
handles these.

• Core properties are properties common across objects of different types. PsychBench
handles these, so the element type doesn’t need to.

1. Quick element types

Contents Core property reference 8

Recall there is also the distinction between input/record properties:

• Input properties can be set by users when building experiments.
• Record properties cannot be set by users. Instead they are set by PsychBench or the

element type during experiments. Users can ask to see them in experiment results output.

So there can be type-specific and core input properties, and type-specific and core record
properties. Here is how this all works when making an element type:

▷ Type scripts can read and write type-specific properties of this.
For a quick type, define type-specific properties just by setting them: The user must set all
type-specific input properties when building the experiment. Type scripts set type-specific
record properties at any point. (For a durable type, you pre-define type-specific input
properties in the typeOptions script to give them default values, sec 2.1.)

▷ Type scripts can only read (not write) core properties.
PsychBench automatically adds all core properties to objects of the type you’re making. The
user can set core input properties or leave them at default —either way they are all present in
type scripts. PsychBench sets all core record properties during the experiment.

▷ Type scripts can make local variables but they are not retained when the script ends.

Taken together, type scripts do three things with the object this:

• Read input properties: Type scripts read input properties of this and uses them as
instructions or parameters. Usually type-specific input properties, but they can also read
core input properties if needed.

• Write to type-specific properties to carry information between type scripts: Local
variables type scripts make are not retained. So the only way to retain information between
type scripts in the workflow is to write to type-specific properties of this. Usually record
properties, but type scripts can also change input property values if convenient.

• Write to type-specific record properties for experiment results output: If type scripts
generate or obtain information that the user might want to see, write it to type-specific
record properties of this. Users can see those properties in experiment results output using
core input property this.report (sec 1.8).

https://www.psychbench.org/docs/gettingstarted#results
https://www.psychbench.org/docs/object#report

1. Quick element types

Contents Core property reference 9

Other objects – trial, experiment, devices.screen, ...
Type scripts can also read properties of non-element objects that are present in the workspace.
These are core objects, so type scripts cannot write to their properties:

• trial contains the trial object for the trial the element is in.
• experiment is the experiment object for the experiment.
• devices is a struct with fields containing device objects the element object uses. Field

names = device type names. The relevant one for a visual element type is devices.screen.

Functions/Commands in type scripts
Generally you can call MATLAB functions, Psychtoolbox functions, and PsychBench tools in type
scripts. The tools in <PsychBench folder>/element type programming subfolders are
type script tools which are specifically for use in type scripts. Note the following MATLAB tools:

• You can throw errors for users at any point using the usual MATLAB error. The most
common example is errors from checking input property values in the open script (sec 2.1).
The experiment will stop and display the error message at the MATLAB command line.

• You can throw warnings using MATLAB warning. The experiment won’t stop but the user will
see them at the MATLAB command line after the experiment window closes.

• The return command works to exit a type script before its end.
• Type scripts can have local functions. You can also use persistent variables in type script

local functions. Note PsychBench automatically clears them when the experiment ends or
stops on error. For a durable type see also element_doShared (sec 2.2).

Test using debug mode!
By default some error information for element type code is disabled. So to test properly, you must
turn debugging on by typing debugPbTypes at the MATLAB command line. You can turn it off by
typing debugPbTypes again. Debugging turns off automatically if you type clear all or end the
MATLAB session.
▷ Before testing element type code, turn debugging on by typing debugPbTypes at the MATLAB

command line. Don’t use debugging during real experiments since it can reduce frame rate.

https://www.mathworks.com/help/matlab/ref/return.html
https://www.mathworks.com/help/matlab/matlab_prog/local-functions-in-scripts.html
https://www.mathworks.com/help/matlab/ref/persistent.html

1. Quick element types

Contents Core property reference 10

1.6. Setup – open script
The <element type>_open script runs once for each object of the type to do any type-specific
setup needed (e.g. loading data from a file, opening textures for a display, etc.). It runs in the inter-
trial interval before the trial the object is in. Object input properties start out as set by the user. The
purpose of open is to keep slow setup work out of the trial where it could cause dropped frames
(runFrame below).
open should at least be fast enough to run in an inter-trial interval (e.g. << 0.5 sec). If you have
setup work that is slower than that, you can optionally split open into three scripts:
open1 – runs at experiment startup
open2 – runs at experiment startup or before the trial, depending on user settings
open3 – runs before the trial
However, If so you need to consider time and memory usage. See sec 2.2 for more information, or if
you want to know more about efficiency in open scripts generally.

1.7. Running – runFrame script

Frames

Time during trials is divided into short increments called frames. Frames are locked to refresh of
the screen the experiment is running on: frame transition is always at screen refresh, and nominal
frame rate = screen refresh rate. If a frame is too short for the processing that needs to run in it, it
extends to multiple refresh intervals—dropped frames. A common screen refresh / frame rate is
60 frames/sec (interval = 1/60 ≈ 17 msec).
Frames are the time basis for most events during trials. e.g. PsychBench checks to
start/end objects once per frame, dynamic displays change on screen up to once per frame at
screen refresh, etc. So, if something causes a frame to drop (like a runFrame script taking too long),
it delays everything else too.
See www.psychbench.org/docs/timingprecision for more information on frames and dropped
frames.

The <element type>_runFrame script repeats once each frame (e.g. at 60 frames/sec) during trials
for each object of the type that it is running. Property values for an object are passed from one
iteration of runFrame to the next. The code in runFrame implements the stimulus/functionality of
the object (e.g. drawing an image to the experiment window to show on screen next frame).

https://www.psychbench.org/docs/timingprecision

1. Quick element types

Contents Core property reference 11

runFrame can do things for the current frame as well as cue things for the next frame. The first
iteration of runFrame runs in the frame before the object starts (object “frame 0”), with object start
time this.startTime marked at that frame end / next frame start. This allows the script to cue things
for object frame 1 if needed. The last iteration of runFrame simply runs in the last object frame, with
object end time this.endTime marked at that frame end. If you need to run different code or exclude
code in frame 0 and/or last frame, you can check core properties this.isStarting and .isEnding,
which = true when the current iteration of runFrame is in frame 0 and last frame respectively, else
= false.
▷ Each iteration of runFrame should run within a frame (e.g. ≈ 17 msec at 60 frames/sec), so it

needs to be fast else dropped frames will occur. So, do as much setup as possible in open
(sec 1.6) and wrapup in close (sec 1.8) to minimize work in runFrame.

Figure. runFrame script during frames

Object start/end
Users set when an element object starts and ends using core input properties this.start/end, and
PsychBench starts and stops calling the runFrame script for the object based on this. Optionally the
runFrame script can cue the object to end earlier by calling element_end. From the perspective of
the user the object ends “on its own”. The object will then end at frame end and the current iteration
of runFrame will be the last. Generally use element_end when the object has nothing left to do,
e.g. it is showing a movie file and the file ends.

Time
The runFrame script often needs to work with time values, e.g. to generate the next image in a
dynamic display based on current time.

https://www.psychbench.org/docs/element#start

1. Quick element types

Contents Core property reference 12

System time
Times that users see in experiment results output are generally relative to trial 1 start. However,
times in element type code are generally in system time (sec) like returned by Psychtoolbox
GetSecs. This makes them easy to use with Psychtoolbox functions.
Absolute system times are not meaningful. However, relative system times are meaningful—for
example:

object start time (system) − trial start time (system) = object start time (relative to trial start)

▷ In element type code all core record properties containing times are in system time
(e.g. this.startTime/endTime, etc.).

Current time
There are different measures of “current time” you can use in runFrame. The difference between
them is small, but can matter if precise timing is important:

• GetSecs (instantaneous time)
Psychtoolbox function GetSecs returns the time when it’s called (system time, sec). Use
GetSecs if you need to know current time within the current frame.

• trial.nextFrameTime
Trial object property nextFrameTime contains expected mid time of next frame
(system time, sec). This is slightly more accurate when cueing functionality that will occur
next frame, including generating the next image in a dynamic display.

Object start and end times
Start and end time of the object a script is running for is available in core properties this.startTime
and .endTime (system time, sec). By default object start time is measured as object frame 1 start
(after the first iteration of runFrame in frame 0), and end time as last object frame end (after the
last iteration of runFrame), and the times are available from those frames through to the close
script. A common example of using object start time is if you need current time relative to object
start, e.g. trial.nextFrameTime-this.startTime. See sec 1.10 Example 2.
* During runFrame these properties contain expected frame transition times. PsychBench replaces
them with actual measured times before the close script. So if your code needs to use these
properties for purposes related to experiment results output, wait until close. See reference
documentation at the link above for more information if needed.

http://psychtoolbox.org/docs/GetSecs

1. Quick element types

Contents Core property reference 13

Other times
Other times are available in core properties which you can access if needed, e.g. other measures
related to current time in trial.nextnextFrameTime, trial.frameStartTimes and .frameTimes, trial start
and end time in trial.startTime and .endTime, and experiment start time in experiment.startTIme.
Nominal frame interval is also available in experiment.frameInterval (e.g. ≈ 17 msec at
60 frames/sec).

1.8. Wrapup – close script
The <element type>_close script runs once for each object of the type to do any type-specific
wrapup needed (e.g. closing textures). It runs in the inter-trial interval after the trial the object is in.
Note close runs even if the object didn’t run (didn’t start) in the trial. If close code needs to know
whether the object ran, it can check core property this.ran (= true if ran).
Like open (sec 1.6), the purpose of close is to keep slow work out of the trial (runFrame above)
where it could cause dropped frames. close should at least be fast enough to run in an inter-trial
interval (e.g. << 0.5 sec). Most commonly use Psychtoolbox Screen('Close') to close textures you
opened (sec 1.10).
Note in cases where memory usage would increase open-endedly as an object runs, some or all
wrapup code can go in runFrame instead. For example, if runFrame repeatedly opens new textures,
it should close them when it is done with them as it runs (see for example element type movie).

Experiment results output
Users tell PsychBench what they want to see for an object in experiment results output using core
input properties this.report and .info. This is core functionality which PsychBench handles
automatically. The only thing to know for quick types is that PsychBench takes any property values
for results after element type code is done. So you have all the way to the end of close to write
record property values users might want to see.

1.9. Cleanup on error – catch script
The <element type>_catch script is like close except it runs once for each object of the type if the
experiment stops on error to do any cleanup needed. It replaces close in that case. catch doesn’t
run for an object if close has already run for it. catch also doesn’t run for an object if the error
occurred before any type scripts ran for it (if no type-specific code ran, no type-specific cleanup is
needed).

http://psychtoolbox.org/docs/Screen-Close
https://www.psychbench.org/docs/object#report

1. Quick element types

Contents Core property reference 14

For convenience PsychBench does a lot of cleanup on error automatically, so often you don’t need
a catch script at all. In particular PsychBench automatically closes all textures on error, so you don’t
need to write catch code for that (sec 1.10).
If the error occurred during the element type’s code, any changes made to this up to that point are
retained for catch. In addition to the usual objects like this, the MATLAB MException object
representing the error is also present for catch in a variable X.

1.10. Showing a display

Recap: Showing a display without PsychBench
The basic approach to showing a display in Psychtoolbox code without PsychBench is:
(1) Use Screen('OpenWindow') to open an on-screen window; (2) Use Psychtoolbox draw functions
to draw a display to the window buffer (Screen('DrawDots'), Screen('DrawTexture'), etc.); (3) Call
Screen('Flip') to move what you drew from the buffer to the screen at next screen refresh. Repeat
(2)–(3) each time the display should change, up to once per screen refresh.

Core display functionality and rules
The main difference between Psychtoolbox code and PsychBench element type code is that
PsychBench handles a lot of things automatically as core functionality so your code doesn’t need
to. However, there are some rules your code needs to follow in order to play well with it. See later
for examples.

Experiment window
PsychBench opens the Psychtoolbox imaging pipeline and on-screen window
(experiment window) at experiment startup. It also closes them at experiment wrapup or if the
experiment stops on error. Every display shows in the experiment window. Experiment window
number (pointer/handle) is available in core property this.n_window (also devices.screen.n_window)
if needed. Window size and center (px) are available in devices.screen.windowSize, .windowCenter
if needed.
▷ Don’t call Psychtoolbox functions like Screen('OpenWindow') or Screen('CloseAll') in element

type code. This is core functionality which PsychBench handles.

Window options
PsychBench sets general options for the experiment window at startup, e.g. alpha blending (see
below).

https://www.mathworks.com/help/matlab/ref/mexception.html

1. Quick element types

Contents Core property reference 15

▷ Generally don’t change options for the experiment window in element type code since that
would also affect other objects. If you do, change the options back before the type script ends.

px units
Object properties users set relating to distance on screen typically use degrees visual angle or
other distance units (deg, deg-, cm, ww, wh, wwh, px). However, core properties as well as
PsychBench tools and Psychtoolbox functions in type scripts always use px units.
▷ Use px units in element type code. You can use element_deg2px in the open script to convert all

type-specific property values in deg or other distance units to px (see below).

RGB units
PsychBench sets all Psychtoolbox functions to use RGB values in the range 0–1: 0 = no intensity,
1 = full intensity. This is also the convention for users when making experiments in PsychBench.
▷ Use RGB values between 0–1 (not 0–255) in element type code.

Transparency
PsychBench enables alpha blending for the experiment window using standard linear blend factors
GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA (and blend equation GL_FUNC_ADD).
▷ Any transparency (RGBA A < 1) in an object display will work.

this.position
When users set core input property this.position, [0 0] = experiment window center and default
units are deg. However, PsychBench tools and Psychtoolbox functions always use [0 0] = top left
and units px.
▷ Before the open script, PsychBench translates this.position to [0 0] = experiment window top

left (px) to facilitate use with Psychtoolbox functions.

1. Quick element types

Contents Core property reference 16

Figure. Display coordinate system in element type code

Core display options for the object
There are a number of core input properties users can set for display options,
e.g. this.position, .nn_eyes, .rotation, etc.
▷ You must use the texture method for showing a display if you want PsychBench to apply core

display options automatically. However, if you use the direct draw method, your element type
code can still read and apply any of them manually. See below.

Experiment window buffer flip
The runFrame script runs once per frame for each running object. Frames are locked to screen
refresh: frame transition is always at screen refresh, and nominal frame rate = screen refresh rate
(sec 1.7). PsychBench automatically flips the experiment window buffer at the end of each frame in
case any visual object has changed its display.
▷ Don’t call Psychtoolbox Screen('Flip'), Screen('DrawingFinished'), or other flip-related functions

in element type code. This is core functionality which PsychBench handles.
▷ To maintain an object display you must draw an image to the experiment window every frame,

even for a static display where the image doesn’t change.

Close textures
▷ Use Psychtoolbox Screen('Close') to close textures you open when done with them. However,

PsychBench automatically closes all textures if the experiment stops on error, so you don’t need
to write catch script code for that.

http://psychtoolbox.org/docs/Screen-Close

1. Quick element types

Contents Core property reference 17

Distance units – element_deg2px, element_px2deg
Core properties as well as PsychBench tools and Psychtoolbox functions in type scripts always use
px units. However, you’ll often want to make object input properties settable using degrees visual
angle or other distance units (deg, deg-, cm, ww, wh, wwh, px). To do this, use element_deg2px at
the top of the open script: Call element_deg2px once for each type-specific property value that
could use deg. It converts all numbers in the property value to px based on screen height and
distance for the experiment. Any other data type it returns unchanged (doesn’t throw an error, so
you can use it before error checking property values, sec 2.1). Then write the px value back to the
property for use in the rest of your code. element_deg2px also handles property values in
{value, "unit"} form specifying other units, and compound units with any exponent on the
distance unit (e.g. cycles/deg, exponent = −1). Type help element_deg2px for usage.
Also on the output side: For record properties that users might want to see in experiment results
output, you can convert them from px to deg or other units in the close script. element_px2deg
does this, with similar usage.
▷ PsychBench converts core properties like this.position to px automatically, so you don’t need to

for them.

Drawing a display to the experiment window
Here’s the general approach: In the runFrame script draw an object display to the experiment
window each frame (each iteration of runFrame) to start or maintain it. Typically this just means put
the general draw code in runFrame to repeat it each frame. Draw different images in some or all
frames for a dynamic display (e.g. movie), or redraw the same image for a static display
(e.g. picture). PsychBench automatically flips the window buffer to show what was drawn at next
frame start (screen refresh). To stop showing a display before the object ends, just stop drawing
(call element_end if the object has nothing more to do).
By default object start time this.startTime is measured as object frame 1 start (after the first
iteration of runFrame in frame 0), and end time this.endTime as last object frame end (after the last
iteration of runFrame). For precise timing you should align display start/end with these times. That
means draw the first image in object frame 0 (first iteration of runFrame) and omit drawing in last
frame (last iteration). The display will then start at frame 1 start and end at last frame end. You can
use a ~this.isEnding check in runFrame to do this (see examples below). If you don’t, you will
just get one frame of display showing after the object end time (≈ 17 msec at 60 frames/sec).
See sec 1.7 on runFrame.
There are two methods to draw a display to the experiment window: the direct draw method and
the texture method...

https://www.psychbench.org/docs/units
https://www.psychbench.org/docs/units

1. Quick element types

Contents Core property reference 18

Direct draw method
In the direct draw method, just draw the display to the window using Psychtoolbox functions.
Experiment window number (pointer/handle) is available for this in core property this.n_window.
Direct draw is simple, so many quick types use it. The disadvantage of direct draw is that it doesn’t
let PsychBench apply any core display options for the object (this.position, .rotation, etc.). Your
code needs to apply the ones you want manually using Psychtoolbox functions. Usually you will
want to apply at least this.position by drawing the display centered at that point.
Direct draw can also be used for any element type (including a durable type) where you want to
override any of the core display options or need full control of drawing to the experiment window.

(Texture method)
In the texture method, make the display in the form of one or more textures and give them to
PsychBench to draw. This is a little more work (not much). However, a big advantage is PsychBench
applies all core display options for the object automatically. The texture method is standard for
durable types, but it can also be useful for quick types that need core display options beyond just
this.position. For information on the texture method, see sec 2.3.

Example 1. Direct draw method – Static display

The object shows a rectangle. The user can set input properties dims [w h] (deg) and color (RGB).

open: The open script runs in the inter-trial interval before the trial the object is in. Here it converts type-
specific input property dims from deg or other distance units to px. It then calculates the rect [tl tr bl br]
on screen for the rectangle based on dims and core input property position, and saves it in record property
rect for use later in runFrame. This is all in coordinates with [0 0] = experiment window top left and units px.
We do this in open to keep work out of frames.

this.dims = element_deg2px(this.dims);

dims = this.dims;
position = this.position;

rect = [0 0 dims]+repmat(-(dims+1)/2+position, 1, 2);

this.rect = rect;

runFrame: runFrame repeats once each frame when the object is running. Here it calls Psychtoolbox
Screen('FillRect') to draw the rectangle to the experiment window to show on screen next frame. For precise
timing we check core property this.isEnding to omit drawing in the last object frame so the display doesn't
show in the frame after the object ends.

1. Quick element types

Contents Core property reference 19

if ~this.isEnding
 rect = this.rect;
 color = this.color;
 n_window = this.n_window;

 Screen('FillRect', n_window, color, rect)
end

Example 2. Direct draw method – Dynamic display

The object shows a dot moving in a circle. The user can set parameters in input properties radius (deg),
velocity (deg/sec), dotSize (deg), and color (RGB).

open: The open script runs in the inter-trial interval before the trial the object is in. Here it converts type-
specific input properties from deg (deg/sec for velocity) or other distance units to px.

this.radius = element_deg2px(this.radius);
this.velocity = element_deg2px(this.velocity);
this.dotSize = element_deg2px(this.dotSize);

runFrame: runFrame repeats once each frame when the object is running. Here we calculate dot position for
next frame using expected time of next frame relative to object start. The display is centered at object
position. We then use Psychtoolbox Screen('DrawDots') to draw the dot to the experiment window to show on
screen next frame (note DrawDots needs position as a column vector). For precise timing we check core
property this.isEnding to omit drawing in the last object frame so the display doesn't show in the frame after
the object ends.

if ~this.isEnding
 r = this.radius;
 v = this.velocity;
 dotSize = this.dotSize;
 color = this.color;
 startTime = this.startTime;
 position = this.position;
 n_window = this.n_window;
 nextFrameTime = trial.nextFrameTime;

 t = nextFrameTime-startTime;
 a = v/r*t;
 p = [r*cos(a) r*sin(a)]+position;
 p = transpose(p);
 Screen('DrawDots', n_window, p, dotSize, color)
end

2. Durable element types (optional)

Contents Core property reference 20

2. Durable element types (optional)

Durable element types are additions to your library for an open range of users and experiments
where the code needs to be more flexible (object properties) and have more of a user interface
(error checking, documentation, etc.). Read this section (2) in addition to sec 1 if you want to make
a durable type. Skip otherwise.

2.1. Input properties

Default values – typeOptions variable inputPropertyDefs
Input properties of objects are properties users can set when making experiments. Your code reads
them as instructions or parameters (sec 1.5). For a quick type the user just sets them all. However,
for a durable type pre-define all type-specific input properties using typeOptions script variable
inputPropertyDefs. This is a cell array with each row listing a property name and default value. This
does three things:

• Users can omit setting type-specific input properties to leave them at default, just like core
input properties. Specifically, If the user doesn’t set a property or leaves it = [], PsychBench
sets it to its default value before the open script.

• PsychBench throws an error if the user sets an input property that is not defined.
• For experiment results output based on core input property this.report set by the user,

PsychBench takes values for defined input properties before the open script runs. This
means your code can change input property values if convenient and in results the user will
still see the value they set. (For record properties in results, PsychBench always takes them
after close, sec 1.8.)

▷ [] means default for an input property defined in typeOptions variable inputPropertyDefs, so if
[] is a possible value then it must also be the property’s default value.

▷ PsychBench adds core properties automatically, so you don’t need to define them in
typeOptions variable inputPropertyDefs.

https://www.psychbench.org/docs/object#report

2. Durable element types (optional)

Contents Core property reference 21

String properties – var2char, var2string
For a durable type it’s a good idea to allow text input properties to accept both 'x' (char / cell array
of char) and "x" string data types. However, in element type code you may want to use 'x' since
many MATLAB functions only output this data type and Psychtoolbox functions only use it.
The tool var2char automates doing this. At the top of the open script, give each input property that
could contain a text value to var2char. If it’s "x", var2char converts it to 'x'. If it’s anything else,
var2char leaves it unchanged. This also works on each cell in a cell array (see function help). Then
write the standardized value back to the property for use in the rest of your code. Note var2char
accepts any data type and size, so you can use it before error checking input property values
(below).
Also on the output side: For record properties that users might want to see in experiment results
output, it’s nice to convert them to "x" strings in the close script. The tool var2string does this, with
similar usage.
▷ PsychBench converts core properties containing text to/from 'x' automatically, so you don’t

need to for them.

Error checking input properties
For a durable type an important part of the user interface is checking that each input property value
is okay and throwing a helpful error message if not. Generally do this near the top of the open script
(you can run input properties through element_deg2px and var2char first). Lots of little tools to help
with error checking are in <PsychBench folder>/element type programming/general. See the open
script for any element type that comes with PsychBench for an example.
▷ PsychBench error checks core properties automatically, so you don’t need to for them.

2.2. Time/Memory in open: open1, 2, 3 type scripts and tools

open1, 2, 3 scripts
The regular open script runs in the inter-trial interval before the trial the object is in. Since close
runs after the trial, the object only uses memory (RAM or VRAM) during its trial. This is the default
in case the objects in an experiment would cause an out-of-memory error if all opened at the same
time at experiment startup, depending on object types used and system.
You can optionally split open into any or all of three scripts open1, open2, open3 which run at
different points ranging from experiment startup to before trial. This may be necessary if some
open code is too slow to run in an inter-trial interval (e.g. << 0.5 sec). open1, 2, 3 run in that order
and property values of this carry between them as usual. How you divide your code between them

2. Durable element types (optional)

Contents Core property reference 22

depends on its time and memory needs. open1 is for code that is not memory-intensive, open3 is
for code that is fast, and open2 is for code that requires a tradeoff between time/memory:

• open1 – Runs at experiment startup after the experiment window opens¹
Time: Code can be slow or fast
Memory: Code cannot be memory-intensive

• open2 – Runs at experiment startup or before the trial, depending on how the user sets
core input property preload (true = experiment startup (default), false = before trial). i.e. it
either works like open1 or open3, though it always runs after any open1 and before any
open3. open2 is for code that requires a trade-off between time and memory. This allows
the user to customize the tradeoff based on their experiment and system.
Time: Code is slow and
Memory: Code is memory-intensive (RAM or VRAM)

• open3 – Runs in the inter-trial interval before the trial the object is in
Time: Code cannot be slow (> 0.5 sec)
Memory: Code can be memory-intensive or not

All the durable element types that come with PsychBench use open1, 2, 3. A common approach is
to put basic formatting and error checking properties in open1, slowish code that uses RAM in
open2 (e.g. generating image matrixes needed for textures), and making textures in open3 (since
making textures is relatively fast if you already have the image data saved in a property from open2
or are just using Psychtoolbox draw commands, and VRAM can be especially limited on some
systems). See element type grating for an example, or cross for an example of a type that needs
some but not all three scripts.

Conserve time – element_doShared
element_doShared is a tool you can use to reduce the time used by multiple runs of a type script
(multiple objects of the type) in an experiment. If you have a slow section of code, you can run it
through element_doShared instead of directly. Then PsychBench will only run that code once
across all objects of the type for the same inputs (or optionally index values—see
element_doShared help). This can save a lot of time, e.g. if there are hundreds of similar objects
across trials. Type help element_doShared for usage. element_doShared has some overhead, so
only use it for code that is slow.
See for example script grating_open2.

1 If the user applies a staircase to any properties of the element, both open1 and open2 wait to run before the trial
the object is in.

https://www.psychbench.org/docs/experiment#preload

2. Durable element types (optional)

Contents Core property reference 23

Conserve memory in open2 – element_setShared
element_setShared is a tool you can use to reduce the memory used by multiple runs of an open2
script (multiple objects of the type) in an experiment. If you want to set a large value to a property
of this, you can set it using element_setShared instead of directly. Then PsychBench will only hold
one copy of the value in memory across all objects of the type with the same index values (see
element_setShared help). This can save a lot of memory, e.g. if there are hundreds of similar
objects across trials. Type help element_setShared for usage. element_setShared has some
overhead, so only use it to set values that are large. You cannot use it for Psychtoolbox
textures since it works on MATLAB values held in properties, and textures are held by
Psychtoolbox elsewhere.
See for example script grating_open2.

2.3. Showing a display – Texture method
The texture method for showing an object display is the usual approach for durable types. It can
also be useful for quick types that need core display options (this.position, .nn_eyes, .rotation, etc.).
In the texture method, make each image for the display centered on a texture (or
off-screen window), and call element_draw or element_redraw in each iteration of runFrame to draw
a texture to the experiment window to show in the next frame. This lets PsychBench apply all core
display options for the object, so you don’t need to. All the general approach and rules for showing
a display still apply—see sec 1.10.

Making textures
The usual way to make a texture for an object display is using element_openTexture. This can make
a blank texture (off-screen window) which you can draw to with any Psychtoolbox draw commands.
It can also make a texture from an image matrix. element_openTexture automatically applies some
core display options this.channelResolution and .backColor, default alpha blending / color mask.
See help text for more information. See also the tool element_setBackColor, especially if you want
to implement a transparent background.
You can also get textures containing images from Psychtoolbox functions like
Screen('GetMovieImage').
For a static display with one image, typically make the texture in the open (or open3) script to keep
work out of frames. For a display with multiple images, you could make texture(s) there or in real
time in runFrame.
Note for a dynamic display that you run by drawing an image to a blank texture in each iteration of
runFrame, you can reuse the same texture. Use an optional input to element_draw to blank the
texture for the next image (see example below).

2. Durable element types (optional)

Contents Core property reference 24

You need to use Psychtoolbox Screen('Close') to close textures you open when done with them,
generally either in runFrame or close. Note PsychBench automatically closes all textures if the
experiment stops on error, so you don’t need to write catch script code for that.

Drawing textures to the experiment window

element_draw/element_redraw
Use element_draw and/or element_redraw in runFrame to draw a texture to the experiment window
to show in the next frame. They have the same usage and do the same thing except _redraw tells
PsychBench that the display to draw is the same as the previous one the object drew. This just lets
PsychBench do it more efficiently. So:

• Use element_redraw for a static display where you draw the same image and with the same
inputs to element_redraw (if any) in most or all frames. You can only use it in frames where
the image and inputs have not changed. However, note you can use it for the first image.

• Use element_draw for a dynamic display where you draw different images or with different
inputs to element_draw in most or all frames. Or use it in frames where a static display
changes.

See element_draw help text for more information, and examples below.

element_predraw
element_predraw is an optional function that lets PsychBench do some processing before the trial
to reduce latency whenever the first call to element_draw/redraw happens for the object during the
trial. If you have the first image for element_draw/redraw ready in the open (or open3) script, you
can call element_predraw for it there. You must still call element_draw/redraw in runFrame as usual.
The image and other inputs should be the same from element_predraw and the first call to
element_draw/redraw. Most commonly use element_predraw for static displays (with
element_redraw in runFrame).

Additive blending
By default element_draw/redraw draws textures to the experiment window using standard linear
blend factors GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA. This means images occlude
whatever is on screen, or blend linearly with it where they have transparency (alpha < 1). Optionally
users can set core input property this.addDisplay = true to switch to additive blending for the
object. Then element_draw/redraw draws textures using factors GL_SRC_ALPHA, GL_ONE. This
means images add pixel-wise with whatever is on screen, weighted by image alpha. Usually this
doesn’t make sense for users to do. However, in cases where it does, your code can support it by
reading this.addDisplay and branching to make images that will work additively. Often that means
RGBA values that can be outside the range 0–1, both positive/negative (will add/subtract) and

http://psychtoolbox.org/docs/Screen-Close

2. Durable element types (optional)

Contents Core property reference 25

centered at 0. To facilitate this, if this.addDisplay = true then element_openTexture makes floating
point textures and pixel values are unclamped from 0–1. See element type noise for an example
where users can specify additive noise.

Example 3. Texture method – Static display, Image from matrix

The object shows a picture from image data the user sets in an input property data (e.g. an m×n px ×3 RGB
matrix). The user can also set display height in height (deg).

open: The open (or open3) script runs in the inter-trial interval before the trial the object is in. Here it converts
type-specific input property height from deg or other distance units to px. It then uses element_openTexture
to load the image matrix onto a texture. We save texture number to a record property for use later in
runFrame. (If we used open1, 2, 3 scripts, we would do at least the texture part in open3 since VRAM can be
especially limited on some systems—sec 2.2.)

this.height = element_deg2px(this.height);

data = this.data;
n_window = this.n_window;

n_texture = element_openTexture([], [], data);

this.n_texture = n_texture;

runFrame: runFrame repeats once each frame when the object is running. Here it draws the texture to the
experiment window to show on screen next frame. It uses element_redraw since the image is the same in each
frame. We apply this.height here by inputting it to element_redraw to scale the image to the specified height
on screen. For precise timing we check core property this.isEnding to omit drawing in the last object frame so
the display doesn't show in the frame after the object ends.

if ~this.isEnding
 height = this.height;
 n_texture = this.n_texture;

 this = element_redraw(this, n_texture, [], height);
end

close: The close script closes the texture using Psychtoolbox Screen('Close').

Screen('Close', this.n_texture)

Example 4. Texture method – Dynamic display, Image from draw commands

This is a texture version of Example 2 in sec 1.10. The object shows a dot moving in a circle. The user can set
parameters in input properties radius (deg), velocity (deg/sec), dotSize (deg), and color (RGB).

2. Durable element types (optional)

Contents Core property reference 26

open: The open (or open3) script runs in the inter-trial interval before the trial the object is in. Here it converts
type-specific input properties from deg (deg/sec for velocity) or other distance units to px. It then uses
element_openTexture to make a blank texture which we will draw images to. We size the texture to fit the
images, adding padding = diameter of the dot at the texture edge. We save texture number and center in
record properties for use later in runFrame. By default element_openTexture fills the texture with an opaque
color settable by the user (user default = experiment background color), and sets texture alpha blending and
color mask appropriate to that. If you want something else you could use further inputs and/or
element_setBackColor. (If we used open1, 2, 3 scripts, we would do at least the texture part in open3 since
VRAM can be especially limited on some systems—sec 2.2.)

this.radius = element_deg2px(this.radius);
this.velocity = element_deg2px(this.velocity);
this.dotSize = element_deg2px(this.dotSize);

r = this.radius;
dotSize = this.dotSize;
n_window = this.n_window;

d = 2*r+2*dotSize;
textureSize = [d d];
n_texture = element_openTexture(textureSize);
textureCenter = (textureSize+1)/2;

this.n_texture = n_texture;
this.textureCenter = textureCenter;

runFrame: runFrame repeats once each frame when the object is running. Here we calculate dot position for
next frame using expected time of next frame relative to object start. This position is relative to texture top
left, with the display centered on the texture. We then use Psychtoolbox Screen('DrawDots') to draw the dot to
our texture (note DrawDots needs position as a column vector). We then call element_draw to draw the texture
to the experiment window to show on screen next frame. The last input to element_draw tells it to re-blank the
texture so it’s ready for the next iteration of runFrame. For precise timing we check core property this.isEnding
to omit drawing in the last object frame so the display doesn't show in the frame after the object ends.

if ~this.isEnding
 r = this.radius;
 v = this.velocity;
 dotSize = this.dotSize;
 color = this.color;
 n_texture = this.n_texture;
 textureCenter = this.textureCenter;
 startTime = this.startTime;
 nextFrameTime = trial.nextFrameTime;

 t = nextFrameTime-startTime;
 a = v/r*t;
 p = [r*cos(a) r*sin(a)]+textureCenter;
 p = transpose(p);
 Screen('DrawDots', n_texture, p, dotSize, color)
 this = element_draw(this, n_texture, [], [], [], '-blank');
end

2. Durable element types (optional)

Contents Core property reference 27

close: The close script just closes the texture using Psychtoolbox Screen('Close').

Screen('Close', this.n_texture)

2.4. Object sleep/wake
typeOptions script variable isSleepable = true/false tells PsychBench whether objects of the type
are “sleepable”. Sleeping/Waking an object means PsychBench stops calling the runFrame script to
stop it without permanently ending it, then later restarts calling runFrame to resume it. isSleepable
just tells PsychBench whether runFrame code can accept this without breaking. If a user tries to set
an object to sleep and isSleepable = false, they will get a helpful error message instead of a crash.
For most visual element types runFrame doesn’t need any special code to be sleepable, so the
default for isSleepable = true. If you need to edit runFrame to make objects sleepable, core
properties this.isStarting and .isEnding are useful since they also apply (= true) in a frame where
the object is about to wake/sleep respectively. If you need to check for wake/sleep specifically, you
can use this.isWaking and .isSleeping instead.

2.5. Staircased properties
If an element is staircased that means the user told PsychBench to set one or more of its input
properties when the trial containing the element runs, based on a staircase value that changes
across trials (core input property this.staircase + a staircase object). Generally you don’t need to do
anything for this in element type code. PsychBench sets staircased properties before the trial, and
runs all open scripts for the object after (footnote in sec 2.2). So in type scripts it looks the same as
if the user set them.

2.6. Adjustable properties
Users can vary input properties of an element when it’s running by listing it in property vary, which
all elements have. Users can also let the subject adjust input properties using an adjuster element
(e.g. Left key → +10). Both cases work the same in terms of element type code for the object being
varied/adjusted:
In order for the user to use vary or adjustment, the target property must be adjustable. To make a
property adjustable, list it in typeOptions script variable adjustable. Any type-specific property can
be adjustable, but only some core properties—see below. Aside from that, whether a property can
be adjustable depends on your code: When a property is adjusted, PsychBench changes its value
between frames (iterations of runFrame). Listing a property in typeOptions variable adjustable just

https://www.psychbench.org/docs/element#staircase
https://www.psychbench.org/docs/staircase
https://www.psychbench.org/docs/element#vary
https://www.psychbench.org/docs/adjuster

2. Durable element types (optional)

Contents Core property reference 28

tells PsychBench that your runFrame script can accept and use such changes to the property at
any time. (Note your runFrame code can change type-specific properties of this anytime. An
“adjustment” is when the change is injected from outside.)
Here is the approach for an adjustable property in runFrame: In each iteration of runFrame, check
this.isAdjusted.<property>. isAdjusted is a struct with a field for each adjustable property. A field
= true if the property received an adjustment since the previous iteration of runFrame, else
= false. If this.isAdjusted.<property> = true, do the following for the property:

(1) Error check the new value: Check the new value is acceptable and throw an error message
for the user if not. e.g. for a property that must be ≥ 0, check it has not been adjusted < 0.
Basically this checks that the user has set vary or the adjuster object to only apply valid
adjustments. Adjustments can’t change data type (always numeric) or size, so you
don’t need to re-check those.

(2) Process the new value: Adjusted property values are always in terms the user would set
the property in (as if the user reset it during the experiment). This may not be the same as
terms in element type code. The main example is a property users can set in deg or other
distance units and the open script converts to px—each time the property is adjusted, its
new value will be in the original units, so runFrame needs to re-convert it (sec 1.10 –
element_deg2px).

(3) Apply the new value: Update the object’s stimulus or functionality based on the change.
Also update any dependent record properties. The previous value of the adjusted property
is available in this.prev.<property> in case helpful.

Some or all of these steps may not be needed, depending on the property. If none is needed, you
don’t even need to check isAdjusted for the property. At the other end, some properties can’t be
made adjustable—for example, a property that is used in open in a way that is too slow to repeat in
runFrame.
Note usually no more than one property is adjusted in a frame, but not necessarily. So generally you
should check this.isAdjusted.<property> for each adjustable property. Also note a property can
only be adjusted when the object is running, so you don’t need to do anything outside runFrame.
See also core property this.propertyAdjustingNames.
See example below.

Making core properties adjustable
You can make any type-specific properties adjustable. However, you can only make some core
properties adjustable. Currently these are:

2. Durable element types (optional)

Contents Core property reference 29

this.position
this.nn_eyes
this.rotation
this.colorMask
this.alpha
this.intensity
this.contrastMult

Handling an adjustable core property is the same as a type-specific property except PsychBench
automatically handles error checking and all core functionality as usual (e.g. for this.position:
converts it to relative to experiment window top left in pixels, applies it to move the object if you use
the texture method for showing a display). Your code just needs to handle any type-specific
functionality that also depends on the property (often nothing). Either way, to make a core
property adjustable you still need to list it in typeOptions script variable adjustable.

Dependent record properties
When you list a property in typeOptions variable adjustable, you can also list “dependent” record
properties. These are record properties that your runFrame script changes when the adjustable
property changes. You don’t need to list them in adjustable for runFrame to change them—it just
affects how PsychBench shows them in experiment results output for users.

Documenting adjustable properties
At least for a durable type, if you make a property adjustable, add it to the list at the top of the user
documentation text file.

Example

This adds to Example 2 in sec 1.10. The object shows a dot that moves in a circle. The user can set parameters
in input properties radius (deg), velocity (deg/sec), dotSize (deg), and color (RGB). Here we add that input
properties velocity, color, and position are adjustable.

typeOptions: In the typeOptions script we mark which input properties are adjustable. There are no
dependent record properties for any of them.

adjustable = {
 'velocity' []
 'color' []
 'position' []
 };

2. Durable element types (optional)

Contents Core property reference 30

open: The open (or open3) script runs in the inter-trial interval before the trial the object is in. Here it converts
type-specific input properties from deg (deg/sec for velocity) or other distance units to px. It also error checks
all type-specific input properties. Adjustable properties are at their initial values here.

this.radius = element_deg2px(this.radius);
this.velocity = element_deg2px(this.velocity);
this.dotSize = element_deg2px(this.dotSize);

r = this.radius;
velocity = this.velocity;
dotSize = this.dotSize;
color = this.color;
n_window = this.n_window;

if ~(isOneNum(r) && r > 0)
 error('Property .radius must be a number > 0.')
end
if ~isOneNum(velocity)
 error('Property .velocity must be a number.')
end
if ~(isOneNum(dotSize) && dotSize > 0)
 error('Property .dotSize must be a number > 0.')
end
if ~isRgb1(color)
 error('Property .color must be a 1x3 vector with numbers between 0-1.')
end

runFrame: runFrame repeats once each frame when the object is running. Here it calculates dot position for
next frame and draws the dot to the experiment window. In this example we add the
this.isAdjusted.<property> blocks. For each adjustable property we check if it has received an
adjustment since the previous frame. If yes, we do anything needed to check and handle the new value:
velocity: We convert the new value to px. No error checking is needed since adjustments can’t change data
type or size and velocity can be any number.
color: We error check the new value. We can check less than in open since adjustments can’t change data
type or size. No additional code is needed since our code just re-uses color in each frame.
position: Nothing is needed since this is a core property and our code just re-uses position in each frame.

2. Durable element types (optional)

Contents Core property reference 31

if this.isAdjusted.velocity
 this.velocity = element_deg2px(this.velocity);
end
if this.isAdjusted.color
 color = this.color;

 if ~all(color >= 0 & color <= 1)
 error('Property .color numbers must be between 0-1.')
 end
end

if ~this.isEnding
 r = this.radius;
 v = this.velocity;
 dotSize = this.dotSize;
 color = this.color;
 startTime = this.startTime;
 position = this.position;
 n_window = this.n_window;
 nextFrameTime = trial.nextFrameTime;

 t = nextFrameTime-startTime;
 a = v/r*t;
 p = [r*cos(a) r*sin(a)]+position;
 p = transpose(p);
 Screen('DrawDots', n_window, p, dotSize, color)
end

2.7. Documentation
For a durable type you generally need to make user documentation. This needs to be a text file²
called <element type>.txt in the type folder in order for the pb help command to find it. When you
use newPbType it sets this up for you based on a template (you can redo this anytime by copying
doc template.txt from <PsychBench folder>/element type programming). Documentation should
include all input properties with their usage and default values, and record properties users might
want to see in experiment results output.
▷ PsychBench documents all core properties at www.psychbench.org/docs, so you don’t need to

document them. The exception is if the element type uses one in a type-specific way.

pb menu heading and description
typeOptions script variables heading and desc are strings that are description and heading for the
element type in the menu users get when they type pb at the command line. You should set a
one-liner description. Leaving heading at automatic [] puts the type under “Visual”, which is
generally what you want.

2 PsychBench handles different line break conventions in Windows/Mac text files automatically.

https://www.psychbench.org/docs/contents

2. Durable element types (optional)

Contents Core property reference 32

2.8. Name conventions
For a durable type it's good to follow a few PsychBench conventions for property/variable names:

• Names are in lower camel case, e.g. linearDotMask, brightness.
• Numeric labels for things (as opposed to the thing itself) start with n_, i_, or similar,

e.g. n_frame, i_file. For multiple, start with nn_ or similar, e.g. nn_frames.
(For numbers that are not labels, no need for this.)

• Text labels for things end with Name or similar, e.g. fileName. For multiple, end with Names
or similar, e.g. fileNames.
(For text that isn’t a label, no need for this.)

• Quantities start with num, e.g. numResponses.

3. Core property reference

Contents Core property reference 33

3. Core property reference

This section highlights core properties that can be useful in element type code. These include both
core input properties which can be set by users, and core record properties which PsychBench sets
during experiments. Read only as needed.

3.1. Core properties – Visual element objects (this.<property>)

position
nn_eyes
rotation
flipHorz
flipVert
colorMask
alpha
intensity
contrastMult
convolution
shader
filterOrder
filterGrayscale
filterResolution
filterGamma
channelResolution
backColor
addDisplay

Core input properties setting options for the object display. See
www.psychbench.org/docs/elementwithscreen. If you use the direct draw method for showing an
object display, your code can read and apply these properties or leave any of them unimplemented
(sec 1.10). If you use the texture method, PsychBench applies all of them, so you don’t have to
(sec 2.3).

https://www.psychbench.org/docs/elementwithscreen

3. Core property reference

Contents Core property reference 34

Specific notes:
position: For users when making experiments, position has [0 0] = experiment window
center and default units deg. However, in element type code it has [0 0] = window top left
and units px to facilitate use with Psychtoolbox functions.
backColor: In element type code this always a 1×4 RGBA vector that is the current object
background color, e,g, including whatever it defaulted to or whatever you have set with
element_setBackColor if the user didn’t set backColor. If you need to know what the user actually
set, that is available in this.user.backColor.
(depth: PsychBench always applies this property (including in direct draw) since it works across
objects, layering them relative to each other.)

n_window

Psychtoolbox window number (pointer/handle) for the on-screen experiment window. You can use
this with Screen draw functions in the direct draw method for showing an object display (sec 1.10).
Also available in devices.screen.n_window.

displayRect

Approximate object display position and size in a 1×4 vector [x_tl y_tl x_br y_br] relative to
experiment window top left (px). Automatic based on texture size in the texture method (sec 2.3).
Not available in the direct draw method (sec 1.10).

isStarting
isEnding
isWaking
isSleeping

isStarting and isEnding = true in the runFrame script if it’s in object frame 0 (first iteration) or last
object frame (last iteration) respectively, else = false. You can check these to branch to different
code or exclude code when the object is starting or ending. See sec 1.7.
isStarting and isEnding also = true in a frame where the object is about to wake/sleep respectively
(sec 2.4). If you need to check for wake/sleep specifically, you can use this.isWaking
and .isSleeping instead.

3. Core property reference

Contents Core property reference 35

startTime
endTime
duration

In experiment results output, startTime and endTime are relative to trial 1 start. However, in
element type code they are in system time to facilitate use with Psychtoolbox functions.
startTime is object start time (system time, sec). By default PsychBench measures start time as
object frame 1 start (after the first iteration of runFrame in frame 0). Available in all iterations of
runFrame and in close.
endTime is object end time (system time, sec) and duration is end time − start time. By default
PsychBench measures end time as last object frame end (after the last iteration of runFrame).
Available in the last iteration of runFrame and in close.
Expected/Actual times: During runFrame, these properties contain expected frame transition
times. i.e. they are times that the frame transition should happen or should have happened, not
precisely when it did happed (e.g. if dropped frames occurred). This allows you to use startTime in
object frame 0 before start has occurred, and then maintain the object’s expected time course in
later frames (for example, to maintain synchronization with other objects the user set to start at the
same time). However, when users see these properties in experiment results output, they want
actual start and end times. PsychBench replaces this.startTime/endTime with actual measured
frame transition times before the close script. So if your code needs to use these properties for
purposes related to experiment results output, wait until close.

isWaiting
ran

true/false: whether the object is still waiting to start (no iterations of the runFrame script have
run), and ran and ended, respectively. These can be useful in close and catch scripts. e.g. you can
check this.ran in close to branch to code if the object ran, or check ~this.isWaiting in catch
to branch to code if the object started in the experiment by the time the error occurred.

isAdjusted.<property>
prev.<property>
user.<property>
propertyAdjustingNames

If you make any input properties adjustable, PsychBench adds core properties isAdjusted, prev, and
user. These are further structs with field names matching adjustable property names:

3. Core property reference

Contents Core property reference 36

isAdjusted.<property> = true in the runFrame script if a property received an adjustment since the
previous frame, else = false.
prev.<property> contains the property’s previous value (or [] if no adjustment yet), in case helpful.
user.<property> contains the current value of the property in terms the user would set (e.g. in deg,
not px), in case helpful. The current value in terms used in element type code is in the property
itself, which generally you will use for all purposes.

Lastly propertyAdjustingNames is a cell array of strings that are names of properties that could
receive adjustments when the object is running.
See sec 2.6.

propertySetNames

A cell array of strings that are names of input properties the user set, as opposed to left at default.
(Maybe useful since properties left at default will have their default values in element type code,
same as if the user set them to those values.)

3.2. Core properties – Trial objects (trial.<property>)

backColor

A 1×3 RGB vector with numbers between 0–1 that is background color for the trial.

nextFrameTime
nextnextFrameTime

trial.nextFrameTime is expected mid time of next frame (system time, sec) in the runFrame script. If
precise timing is important, this is the measure of “current time” to use when cueing functionality
that will occur next frame, including generating the next image in a dynamic display.
trial.nextnextFrameTime is like nextFrameTime except it’s for the frame after next frame, so two
frames forward. Not used as often.

3. Core property reference

Contents Core property reference 37

frameStartTimes
frameMidTimes

If you need frame start or mid times more generally they are available in these properties in the
runFrame script. Each is a 1×5 vector of times (system time, sec) for:
(1) 2 frames backward
(2) 1 frame backward (previous frame)
(3) current frame
(4) 1 frame forward (next frame)
(5) 2 frames forward

startTime
endTime
duration

In experiment results output, startTime and endTime are relative to trial 1 start. However, in
element type code they are in system time to facilitate use with Psychtoolbox functions.
Trial start and end time (system time, sec) and duration (sec). Available in the close script.

3.3. Core properties – Experiment object (experiment.<property>)

frameRate
frameInterval

Nominal frame rate (frames/sec) and interval (sec). Just = the screen’s refresh rate.

startTime

Experiment start time (system time, sec). Available in the close script.

3. Core property reference

Contents Core property reference 38

3.4. Core properties – Screen objects (devices.screen.<property>)

n_window

Psychtoolbox window number (handle/pointer) for the on-screen experiment window. Same as
this.n_window.

windowSize
windowCenter

Experiment window size [width height] and center [x y] relative to its top left (px).

refreshRate
refreshInterval

Screen refresh rate (refreshes/sec) and interval (sec). Also available in
experiment.frameRate, .frameInterval.

px2fontSize

Font size set using Psychtoolbox Screen('TextSize') can be inconsistent across systems, at least if
the system doesn’t use the high quality text renderer. px2fontSize is a scale factor that PsychBench
calibrates to fix this. Multiply the font size you want (px) by px2fontSize to get the font size you
should submit to Screen('TextSize') (also px).

http://psychtoolbox.org/docs/Screen-TextSize

		1.	Quick element types
		1.1.	What you need
		1.2.	Files and folders
		1.3.	Type-Specific / Core
		1.4.	Making and managing an element type
	Making an element type – newPbType
	Copying/Forking an element type
	Editing an element type
	Renaming an element type – renamePbType
	Removing an element type
	Sending/Receiving an element type

		1.5.	Element type code
	Type scripts
	Objects/Properties and Variables in type scripts
	Functions/Commands in type scripts
	Test using debug mode!

		1.6.	Setup – open script
		1.7.	Running – runFrame script
	Object start/end
	Time

		1.8.	Wrapup – close script
	Experiment results output

		1.9.	Cleanup on error – catch script
		1.10.	Showing a display
	Recap: Showing a display without PsychBench
	Core display functionality and rules
	Distance units – element_deg2px, element_px2deg
	Drawing a display to the experiment window
	Direct draw method
	(Texture method)

		2.	Durable element types (optional)
		2.1.	Input properties
	Default values – typeOptions variable inputPropertyDefs
	String properties – var2char, var2string
	Error checking input properties

		2.2.	Time/Memory in open: open1, 2, 3 type scripts and tools
	open1, 2, 3 scripts
	Conserve time – element_doShared
	Conserve memory in open2 – element_setShared

		2.3.	Showing a display – Texture method
	Making textures
	Drawing textures to the experiment window

		2.4.	Object sleep/wake
		2.5.	Staircased properties
		2.6.	Adjustable properties
		2.7.	Documentation
		2.8.	Name conventions

		3.	Core property reference
		3.1.	Core properties – Visual element objects (this.<property>)
		3.2.	Core properties – Trial objects (trial.<property>)
		3.3.	Core properties – Experiment object (experiment.<property>)
		3.4.	Core properties – Screen objects (devices.screen.<property>)

