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We discuss conditions under which it would be possible for a modest fault-tolerant quantum
computer to realize a runtime advantage by executing a quantum algorithm with only a small
polynomial speedup over the best classical alternative. The challenge is that the computation must
finish within a reasonable amount of time while being difficult enough that the small quantum scaling
advantage would compensate for the large constant factor overheads associated with error-correction.
We compute several examples of such runtimes using state-of-the-art surface code constructions for
superconducting qubits under a variety of assumptions. We conclude that quadratic speedups will
not enable quantum advantage on early generations of such fault-tolerant devices unless there is a
significant improvement in how we would realize quantum error-correction. While this conclusion
persists even if we were to increase the rate of logical gates in the surface code by more than an
order of magnitude, we also repeat this analysis for speedups by other polynomial degrees and find
that quartic speedups look significantly more practical.

Introduction

One of the most important goals of the field of quantum
computing is to eventually build a fault-tolerant quantum
computer. But what valuable and classically challeng-
ing problems could we actually solve on such a device?
Among the most compelling applications are quantum
simulation [1, 2] and prime factoring [3]. Quantum al-
gorithms for these tasks give exponential speedups over
known classical alternatives but would have limited im-
pact compared to significant improvements in our ability
to address problems in broad areas of industrial relevance
such as optimization and machine learning. However,
while quantum algorithms exist for these applications,
the most rigorous results have only been able to show a
large speedup in contrived settings or a smaller speedup
across a broad range of problems. For example, many
quantum algorithms (often based on amplitude amplifica-
tion [4]) give quadratic speedups for tasks such as search
[5], optimization [5–7], Monte Carlo [4, 8, 9] various ar-
eas of machine learning [10, 11] and more. However, at-
tempts [7, 12] to assess the overheads of some such appli-
cations within fault-tolerance have come up with discour-
aging predictions for what would be required to achieve
practical advantage against classical algorithms.

The central issue is that quantum error-correction
and device operation time introduce significant constant
factor slowdowns to the algorithm runtime (see Fig-
ure 1). These large overheads present many challenges for
the practical realization of useful fault-tolerant devices.
However, for applications that benefit from an exponen-
tial speedup relative to classical algorithms, the exponen-
tial scaling of the classical approach quickly catches up
to the large constant factors of the quantum approach so
that one can achieve a practical runtime advantage for
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(a) “Quantum nand”
> 10 qubitseconds

(b) “Classical nand”
< 10−9 transistorseconds

FIG. 1. The primary obstacle in realizing a runtime advan-
tage for low degree quantum speedups is the enormous slow-
down when performing basic logic operations within quantum
error-correction. (a) A surface code Toffoli factory for distill-
ing Toffoli gates (which act as the nand gate when the target
bit is on) requires spacetime volume greater than ten qubit-
seconds under reasonable assumptions on the capabilities of
an error-corrected superconducting qubit platform [13]. (b)
A nand circuit realized in CMOS can be executed with just
a few transistors in well under a nanosecond. Thus, there
is roughly a ten order of magnitude difference between the
spacetime volume required for comparable operations on an
error-corrected quantum computer and a classical computer.

even modest problem sizes. This is borne out through
numerous studies on the cost of error-correcting applica-
tions with exponential scaling advantage in areas such as
quantum chemistry [14–16], quantum simulation of lat-
tice models [17, 18] and prime factoring [19].

In this perspective we discuss when it would be prac-
tical for a modest fault-tolerant quantum computer to
realize a quantum advantage with quantum algorithms
giving only a small polynomial speedup over their classi-
cal competition. We will see that with only a low order
(e.g., quadratic) speedup, exorbitantly long runtimes are
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sometimes required in order for the slightly worse scaling
of the classical algorithm to catch up to the slightly bet-
ter scaling (but worse constant factors) of the quantum
algorithm. We will argue that the problem is especially
pronounced when the best classical algorithms for a prob-
lem can also be easily parallelized.

Our analysis will emphasize current projections within
the surface code [20] since it has the highest threshold
error rate for a two-dimensional quantum computing ar-
chitecture and is generally regarded as the most practical
quantum error-correcting code [21]. We will focus on a
modest realization of the surface code that would involve
enough resources to perform classically intractable calcu-
lations but only support a few state distillation factories.
Our analysis differs from results such as [7, 12] by ad-
dressing the prospects for achieving quantum advantage
via polynomial speedup for a broad class of algorithms,
rather than for specific problems. We will assume that
there is some problem which can be solved by a classical
computer that makes Md calls to a “classical primitive”
circuit or by a quantum computer which makes M calls
to a “quantum primitive” circuit (which is often, but not
always, related to the classical primitive circuit). This
corresponds to an order d polynomial quantum speedup
in the number of queries to these subroutines. For d = 2,
this is especially evocative of a common class of quantum
algorithms leveraging amplitude amplification. This gen-
erously assumes no prefactor overhead in a quantum im-
plementation of an algorithm with respect to the number
of calls required and along with other crude assumptions,
allows us to bound the crossover time.

Our back-of-the-envelope analysis makes many as-
sumptions which are overly optimistic towards the quan-
tum computer and yet we still conclude that the
prospects look poor for quadratic speedups with cur-
rent error-correcting codes and architectures to outper-
form classical computers in time-to-solution. It seems
that to realize a quantum advantage with reasonable
fault-tolerant resources, one must either focus beyond
quadratic speedups, dramatically improve techniques for
error-correction, or do both. An encouraging finding is
that the prospects for error-corrected quantum advan-
tage look significantly better with quartic speedups. Of
course, there might exist use cases involving quadratic
speedups that defy the framework of this analysis. Either
way, we hope this perspective will encourage the field to
critically examine the prospects for quantum advantage
with error-corrected quadratic speedups and either pro-
duce examples where it is feasible, or focus more effort
on algorithms with larger speedups.

Relationship between primitive times and runtime

Many quantum algorithms are built on coherent access
to primitives implemented with classical logic. For exam-
ple, this classical logic might be required to compute the
value of a classical cost function for optimization [12], to

evaluate a function of a trajectory of some security that
one is pricing with Monte Carlo [9], or to compute some
classical criteria that flags a marked state for which one
might be searching [5]. We will define the runtime of the
quantum and classical algorithms as

TQ = M tQ TC = Md tC (1)

where T gives the total runtime of the algorithm, M is
the number of primitive calls required, d is the order of
the polynomial speedup the quantum computer achieves
and t is the time required to perform a call. Through-
out this perspective the subscripts Q and C will denote
“quantum” and “classical” implementations.

The condition for quantum advantage is

TQ < TC and thus, M >

(
tQ
tC

) 1
d−1

. (2)

We see then that whenever a problem will require enough
calls M that a quantum advantage is possible,

TQ > T ? ≡ tQ
(
tQ
tC

) 1
d−1

(3)

where T ? is the “breakeven time” which occurs when
TQ = TC , corresponding to onset of quantum advantage.
As emphasized in Figure 1, we will see that the fun-
damental challenge in realizing this runtime advantage
against classical computers (for small d) is that tQ � tC
in error-corrected contexts, making T ? very large.

Rather than use a single CPU for the classical ap-
proach, one might instead parallelize the algorithm us-
ing P classical CPUs. This will reduce the total classical
runtime to

TC =
Md tC
S

S =

(
α+

1− α
P

)−1
(4)

where α is the fraction of the algorithm which must be
executed in serial and S is the speedup factor due to
parallelization consistent with the “Amdahl’s law” [22].
Note that Amdahl’s law scaling is considered somewhat
pessimistic as one can often adjust the size of prob-
lems to fully exploit the computing power that becomes
available with more parallelism (e.g., see “Gustafson’s
law” [23] for a more optimistic formula for S). But it
also seems that in most situations where one might hope
to find a quadratic speedup with a quantum computer
(e.g. applications such as search, optimization, Monte
Carlo, regression, etc.) the corresponding classical ap-
proach is embarrassingly parallel (suggesting that α is
small enough that S ≈ P for reasonable values of P ).
Regardless of the form of S, classical parallelism leads to
the following revised conditions for quantum advantage:

M >

(
tQS

tC

) 1
d−1

and T ? = tQ

(
tQS

tC

) 1
d−1

. (5)
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While parallel efficiency might be limited for some
applications, any implementation of an error-correcting
code will also require substantial classical co-processing
in order to perform decoding, and this is likely to require
thousands of classical cores. Although many quantum
algorithms can also benefit from various forms of par-
allelism, we are considering an early fault tolerance set-
ting where there is likely an insufficient number of logical
qubits to exploit a space-time tradeoff to the same extent.

Implementing error-corrected quantum primitives

We will now explain the principle overheads believed
to be required for the best candidate for quantum error-
correction on a two-dimensional lattice: the surface code.
Toffoli gates are required to implement classical logic
on a quantum computer but cannot be implemented
transversely within practical implementations of the sur-
face code. Instead, one must implement these gates by
first distilling resource states. In particular, to imple-
ment a Toffoli gate one requires a CCZ state (|CCZ〉 =
CCZ |+ + +〉) and these states are consumed during the
implementation of the gate. Distilling CCZ states re-
quires a substantial amount of both time and hardware
and thus, they are usually the bottleneck in realizing
quantum algorithms within the surface code.

Here, we will focus on the state-of-the-art Toffoli fac-
tory constructions of [13] which are based on applying the
lattice surgery constructions of [24] to the fault-tolerant
Toffoli protocols of [25, 26]. Using that approach one
Toffoli gate requires 5.5× d surface code cycles, where d
is the code distance. The time per round of the surface
code, including decoding time is expected to be around
1µs in superconducting qubits. Our analysis will assume
a code distance in the vicinity of d = 30. This would be
sufficient for an algorithm with billions of gates and phys-
ical gate error rates on the order of 10−3 (as our analysis
will reveal, even more than a billion gates would likely
be required to obtain quantum advantage with a mod-
est polynomial speedup). With these assumptions, our
model predicts a Toffoli gate time of

tG = 30× 5.5× 1µs ≈ 170µs . (6)

This rough approximation matches the more detailed re-
source estimate of Ref. [13]. We discuss these estimates
in more detail in Appendix A. Note that a potential ion
trap physical gates are at least 100× slower than super-
conducting qubits. Therefore, even assuming that they
operate physical gates in parallel with high fidelity, an
ion trap surface code implementation of a Toffoli gate
would take time on the order of tG ' 17 ms.

Under the aforementioned assumptions which are spe-
cific to contemporary realizations of the surface code us-
ing superconducting qubits we could express the quan-
tum primitive runtime as

tQ = tG ·G = 170µs ·G , (7)

where G is the number of Toffoli gates required to im-
plement the quantum primitive. On a very large surface
code quantum computer one could instead use multiple
Toffoli factories (at a high cost in the number of physical
qubits required) in order to reduce tQ by performing state
distillation in parallel. However, the Toffoli gates are
only about two orders of magnitude slower than the Clif-
ford gates and when using multiple factories one needs
to account for routing overhead. Thus, while tQ can be
reduced at the cost of using many more qubits, only by
a factor that is between about ten and one-hundred.

If N is the number of qubits on which this problem
is defined then a sensible lower bound would seem to
be G ≥ N and thus, tQ ≥ 170µs · N . For example,
in Grover’s algorithm [5] one must perform a reflection
that requires O(N) Toffoli gates. In order to achieve a
quantum advantage we would need to focus on problem
sizes that are sufficiently large that enough calls can be
made so that Eq. (2) is satisfied. We find it difficult to
imagine satisfying this condition for problem sizes less
than one-hundred qubits. Thus, an approximate “lower
bound” (using N = 100) would be

tQ ≥ 17 ms . (8)

In addition to this lower bound, we will also con-
sider a specific, realistic example to keep our estimates
grounded. We will focus on the quantum accelerated sim-
ulated annealing by qubitized quantum walk algorithm
studied in [27, 28], which appears to provide a quadratic
speedup over classical simulated annealing (at least in
terms of the best known bounds) in terms of the mixing
time of the Markov chain under certain assumptions [29].
This is among the most efficient algorithms compiled in
[12] and for the Sherrington-Kirkpatrick model [30], the
implementation complexity is 5N +O(logN) (neglecting
some subdominant scalings that depend on precision),
which is only worse than the scaling of our lower bound
by a factor of five. For example, for an N = 512 qubit
instance, the work of [12] shows that only about 2.6×103

Toffoli gates are required to make an update. Thus, for
that problem size (which we choose to facilitate a com-
parison to classical algorithms that we will discuss later)
we have that

tQ = 440 ms . (9)

Implementing classical primitives

Classical computers are very fast; a typical 3 GHz CPU
can perform several billion 64 bit operations (e.g., float-
ing point multiplications) per second. We might crudely
write that the classical primitive time is tC = 330 ps · L
where L is the number of classical clock cycles required
to implement the classical primitive. For our first exam-
ple comparison of quantum and classical primitives we
will assume that any classical logic operation that would
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require one Toffoli in the quantum primitive can be ex-
ecuted during one classical clock cycle in the classical
primitive. This seems generous to the quantum computer
since many operations that would take a single clock cycle
on a classical computer would actually require thousands
of Toffolis. (Note that we are not assuming any scaling
advantage for the quantum computer in the primitive im-
plementations.) One might worry about memory-bound
classical primitives (since calls to main memory can take
hundreds of clock cycles) but since problems defined on
more than thousands of logical bits would be infeasible to
process on a small fault-tolerant quantum computer we
expect that the memory required for the corresponding
classical primitives can be held in cache.

Thus, a corresponding bound on the time to realize a
classical primitive for a problem where a quantum com-
puter could realize a quantum primitive with anywhere
near the lower bound time given in the prior section
(tQ ≥ 170µs ·N) is tC ≤ 330 ps ·N , and for N = 100,

tC ≤ 33 ns . (10)

Even though the equivalence we make between Toffolis
and classical compute cycles is seemingly generous to the
quantum computer, the assumption of such a cheap prim-
itive on the quantum side (only 100 Toffolis) results in
what appears to be a fairly cheap primitive on the clas-
sical side. However, because Eq. (5) scales worse with
tQ than with tC , this assumption is ultimately optimistic
towards the overall crossover time.

Consistent with the prior section, we will also discuss
the classical primitive time required to apply simulated
annealing to an instance of the Sherrington-Kirkpatrick
model. Using the techniques developed in [31], a per-
formant implementation of classical simulated anneal-
ing code for an N = 512 instance of the Sherrington-
Kirkpatrick model can perform a simulated annealing
step in roughly 7 CPU-nanoseconds [12] (this accounts
for the fact that most updates for the Sherrington-
Kirkpatrick model are rejected); thus in that case,

tC = 7 ns. (11)

But given the high costs of quantum computing it is un-
clear that we should compare to a single classical core.

Minimum runtime for quadratic quantum advantage

Here we discuss the ramifications that the primitive
runtimes discussed in the prior two sections have for the
minimum time to achieve advantage according to Eq. (3)
in the case of a quadratic quantum speedup. Quadratic
speedups are ubiquitous in quantum computing and ap-
pear in many contexts such as Grover’s algorithm [5]
(e.g., used for search) and its generalization, amplitude
amplification [4] (e.g., used in Monte Carlo), as well as
many other contexts such as optimization.

First, we will compare the example of a quantum prim-
itive requiring only N = 100 Toffolis and tQ = 17 ms.

We argued that any such primitive could likely be com-
puted in tC = 33 ns on a single core. For this exam-
ple, T ? = t2Q/tC = 2.4 hours. One might object to this
minimal example on the grounds that it seems unlikely
any interesting primitive would require only 100 Toffolis.
While this is true, we point out that because quantum
runtime is quadratic in the quantum primitive time and
only inversely proportional the classical primitive time,
the overall crossover time can only get worse by assuming
that more than 100 Toffolis would be required.

Next, we will compare to the example of quantum ac-
celerated simulated annealing. We focus on this example
because the steps of the quantum algorithm have been
concretely compiled, appear quite efficient, and have a
clear classical analogue. Here, for an N = 512 qubit in-
stance we have that t2Q/tC = 320 days, reproducing the

finding in [12]. We note that quantum advantage in this
case would occur when M > tQ/tC = 6.3 × 107. This
means that 4.0 × 1015 calls would need to be required
for the classical algorithm. However, most N = 512
Sherrington-Kirkpatrick model instances would require
many fewer calls to solve with classical simulated an-
nealing and so one would need to focus on an even bigger
system for which the numbers will look yet worse for the
quantum computer. Notice that our simulated annealing
example gave a quantum runtime that is much longer
than the resources required for the quantum primitive
with N = 100 Toffolis. This is because the notion that it
would take a classical computer an entire clock cycle to
do what a quantum computer could accomplish with a
single Toffoli is very generous to the quantum computer.

At first glance, the quantum runtime of 2.4 hours to
achieve advantage for the primitive with just 100 Tof-
folis seems encouraging. Unfortunately, this was just
for a single classical core. Even most laptops have on
the order of ten cores these days and again, most of the
problems where quantum computers display a quadratic
advantage are classically embarrassingly parallel prob-
lems. Furthermore, error-corrected quantum computers
are likely to use thousands of classical CPUs just for de-
coding. When using P different classical CPUs in par-
allel then the breakeven time is given by Eq. (5). Using
that equation, if we take P = 3,000 CPUs for the clas-
sical task (rather than using them for error-correction),
and if the classical algorithm is sufficiently parallelizable
(α−1 � P so S ≈ P ), we see that the breakeven time
even in this still quantum-generous example becomes one
year. As we discuss in the next section there are also ways
of parallelizing the quantum computations; e.g., by using
multiple quantum computers or distillation factories.

The viability of higher polynomial speedups
and the impact of faster error-correction

We report values of both M and T ? assuming quantum
speedups by different polynomial degrees under different
amounts of classical parallelism in Table I. While the vi-
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polynomial degree d
parallelism resource “lower bound” simulated annealing

speedup S iterations M runtime T ? iterations M runtime T ?

Quadratic, d = 2

1 5.2× 105 2.4 hours 6.3× 107 320 days

103 5.2× 108 100 days 6.3× 1010 880 years

106 5.2× 1011 280 years 6.3× 1013 880 millennia

Cubic, d = 3

1 7.2× 102 12 seconds 7.9× 103 58 minutes

103 2.3× 104 6.4 minutes 2.5× 105 1.3 days

106 7.2× 105 3.4 hours 7.9× 106 40 days

Quartic, d = 4

1 8.0× 101 1.4 seconds 4.0× 102 2.9 minutes

103 8.0× 102 14 seconds 4.0× 103 29 minutes

106 8.0× 103 2.3 minutes 4.0× 105 4.9 hours

TABLE I. Resources required to achieve quantum advantage assuming speedups of various polynomial degrees, d. We make this
comparison against an adversary using distributed classical computing resources that achieve a speedup factor S and report the
number of algorithm steps M and total runtime T ? before a quantum speedup is possible. We make this comparison for both
the informal resource “lower bound” we argued for in the text (using tQ ≥ 17 ms and tC ≤ 33 ns), and for the specific example of
quantum simulated annealing applied to the Sherrington-Kirkpatrick model using the quantum and classical implementations
discussed in [12, 31] (giving tQ = 440 ms and tC = 7 ns).

ability of quantum advantage with cubic speedups is still
a bit ambiguous, the prospects of achieving quantum ad-
vantage given a quartic speedup are promising. Even the
simulated annealing example run with a classical adver-
sary with S = 106 parallelism would give quantum ad-
vantage after five hours of runtime if we assume a quartic
speedup (while we do not expect a quartic speedup in
that case, the comparison is still instructive).

It is rather surprising just how much of a difference
there is for this example between assuming a quadratic
speedup (requiring 880 millennia of runtime for advan-
tage) and a quartic speedup (requiring just 4.9 hours of
runtime for advantage). There are not as many exam-
ples of quartic speedups in quantum computing; how-
ever, perhaps if one can find a practical situation in which
the quartic query complexity reductions of Ambainis et
al. [32] and Aaronson et al. [33] can be realized, those
could lead to a practical advantage in the surface code.
We also expect that certain applications of quantum algo-
rithms for linear systems [34] (such as for solving linear
differential equations in high dimension) might lead to
modest polynomial speedups higher than quadratic. It is
also possible that some heuristic quantum algorithms for
optimization might give larger than quadratic improve-
ments, although this is still speculative.

Another question we might ask is, what happens if
we were somehow able to implement Toffoli gates much
faster in the surface code? For example, we might achieve
this by fanning out and using more physical qubits per
factory, more Toffoli factories, by inventing significantly
more efficient protocols for Toffoli state distillation, or
even by switching to a different technology with an in-
trinsically faster cycle time. We will perform this analysis
for the case of quadratic speedups; there, the quantum
runtime is reduced to TQ = M tQ/R where R ≥ 1 is a
speedup factor corresponding to performing Toffoli distil-
lation in time 170µs/R. In analogy to Eq. (5) this leads

to the equations for a quadratic quantum speedup

M >
tQS

tCR
and T ? =

t2QS

tCR2
. (12)

In Table II we compute Eq. (12) for our example prob-
lems with R = 10, R = 102 and R = 103, assuming
a classical adversary capable of achieving an S = 103

parallelism. We restrict ourselves to S = 103 due to
the general difficulty in achieving high parallel efficiency
described by Amdahl’s law. However, note that for sim-
ulated annealing we can achieve S = 106 in practice (and
so these numbers are overly optimistic for that case).

Unfortunately, even if Toffoli distillation rates improve
by an order of magnitude it would not be enough to make
quantum advantage with a quadratic speedup viable. If
Toffoli distillation rates improve by two orders magni-
tude (making them essentially as cheap as Clifford gates)
then it would still be challenging to obtain quantum ad-
vantage with a quadratic speedup (it would take more
than a month for the simulated annealing example de-
spite limiting the classical parallelism to S = 103) but
we cannot categorically rule it out for all algorithms. At

speedup resource “lower bound” simulated annealing

factor iterations M runtime T ? iterations M runtime T ?

R = 101 5.2× 107 1.0 day 6.3× 109 8.8 years

R = 102 5.2× 106 15 minutes 6.3× 108 32 days

R = 103 5.2× 105 8.8 seconds 6.3× 107 7.7 hours

TABLE II. Resources required to achieve quantum advantage
under a quadratic speedup assuming Toffoli distillation time
of 170µs/R and a classical adversary making use of classical
parallelism with S = 103. The speedup factor R can account
for improvements in error-correction implementations or in
our estimates of their overheads. For example, R = 10 could
be reached by using ten Toffoli factories if routing were very
efficient (at the cost of requiring many more qubits).
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three orders of magnitude speedup the story would be
materially different but this would likely require a signif-
icant breakthrough. Even if classical processing and sig-
nal propagation were instantaneous, and we could adapt
measurements to take advantage feedforward single-qubit
gates only being applied half the time, a single layer of
non-Clifford gates would still take a hard limit of the
measurement time plus half the single qubit gate time.

Conclusion

We have investigated simple conditions that must be
satisfied to realize a quantum advantage through poly-
nomial speedups on a small fault-tolerant quantum com-
puter. Our ultimate finding is that the prospects are
generally poor for a quadratic speedup, consistent with
folk knowledge in the error-correction community and re-
cent work such as [7, 12]. The comparison to parallel
classical resources is particularly damning for quantum
computing and unfortunately, many quadratic quantum
speedups (especially those leveraging amplitude amplifi-
cation) apply to problems that are highly parallelizeable.
The strongest conclusions in this work assume that one
can achieve classical parallelism speedups on the order of
103 or more. But if one can produce a quadratic speedup
for a problem where that is not the case, the prospects
of quantum advantage would be improved.

These findings do not apply to all polynomial
speedups. We found that while one would need to very

significantly improving the rate of an error-corrected pro-
cessor to help the case of quadratic speedups, having a
quartic speedup rather than a quadratic speedup is often
sufficient to restore the viability of achieving quantum
advantage on a modest processor. Thus, we believe that
these results suggest that the field should focus beyond
quadratic speedups to find viable applications that might
produce a quantum advantage on the first several gener-
ations of fault-tolerant quantum computers.

We expect this conclusion will persist under a variety
of different cost models (e.g., were we to focus on the
energy consumption of a computation rather than the
runtime). However, we also expect that the community
will make progress on some of the challenges described
here, or perhaps identify circumstances under which the
assumptions of this analysis do not apply. Either way,
we hope that these arguments will foster further discus-
sion about how we might develop broadly applicable al-
gorithms that can achieve quantum advantage on small
error-corrected quantum computers.
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Appendix A: Accounting for error-correction costs

In the main text, we provide an estimate for the time
that it takes to perform a single Toffoli gate with op-
timized factories within the surface code. The crux of
the argument in the main text, is that this time is so
much slower than the classical equivalent, there is a mas-
sive overhead which must be first overcome. We believe
that it is valuable in directing future research in error-
correction and algorithms to break down the origin of
this overhead into its contributions from quantum error-
correction and the physical device speed itself. Here we
do so in some detail for the case of the surface code in
superconducting qubits, and in passing for ion traps. We
hope that this discussion will elucidate several avenues
through which breakthroughs in error-correction might
materially change the analysis of the main text.

To begin, we will assume that there is a physical two-
qubit operation and syndrome measurement speed, τ and
τs, where τs > τ as τ is used to build measurement
circuits along with a base physical measurement time

τm. Modern fault-tolerant error-correction proceeds via
rounds of syndrome extraction, processing, and correc-
tion in order to implement gates. The core physical op-
eration of these rounds on the device is measurement
of syndromes, and we are hence lower bounded by the
measurement time τs in realistic settings. For context,
estimates of these times for high fidelity superconduct-
ing qubits that would be realistic upon improvement are
roughly τ ≈ 10 ns and τm ≈ 100 ns. In comparison, for
ion traps these numbers would be closer to τ ≈ 100µs
and τm ≈ 10µs [35, 36]. Furthermore, at present, parallel
operation is restricted in many-ion traps so a time com-
plexity in the distance of the code is also required making
a code cycle dramatically longer than this for large codes.
For optimistic comparisons, we will assume that parallel
operation at high fidelities has been achieved near the
current gate rates of 100µs in the near future. If one had
perfect operations, but still performed gates via a syn-
thesized and fault-tolerant protocol, this represents the
achievable runtime for a gate.

As our operations are not perfect, however, we will
need to encode in an error-correcting code with some
distance d which is chosen based on the error rate in our
device, threshold of the code, and total number of oper-
ations we expect to perform. If one is allowed to use nu-
merous ancilla qubits, this need not expand the runtime
of individual operations by exploiting parallelism through
teleportation and spacetime optimization [37, 38]. How-
ever, more qubit spartan implementations must use d
rounds of measurement and correction to protect against
measurement errors in the time direction, adding a factor
of O(d) in the time cost. Research into one-shot correc-
tion techniques hopes to alleviate this time dependence
on d without excessive space overhead [39], but current
code constructions are not readily implementable.

On top of each round of these measurements, we must
account for the time for this information to leave the
device, be processed via decoding, and in some cases,
implement active recovery after a gate, where this time
depends on the hardware and complexity of the decod-
ing. In order for error-correction to be efficient, it must
be possible to process the syndrome data without an ac-
cumulation of rounds that grows in time. If we denote
this processing latency as lr, then the time for processing
d rounds is lower bounded approximately by the time it
takes to produce those syndrome measurements on the
physical device plus this latency, or (dτs + lr). Note that
depending on the implementation details, lr is likely to
depend on d, but with sufficient classical parallelization
it may be possible to make it effectively d independent.

On top of these costs, each gate has some associated
prefactor in number of rounds that depends on the type
of gate and its logical locality, CG. For easy, or Clifford,
gates in most codes, CG can be made near 1. Unfortu-
nately, in order to perform universal computation, one
requires a gate which is not easy to implement [40], and
common proposals center around state distillation where
the prefactor CG is often on the order of 10. Moreover, if
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one considers synthesis of arbitrary rotations into multi-
ple of these hard gates, CG can multiply by a factor of 10
or more depending on the precision, leaving CG on the
order of 100. Putting these together, we can approximate
a lower bound on the quantum gate time scaling in terms
of error-correction parameters as

tG ∝ CG (dτs + lr) (A1)

Now that we have a general picture of how the time
overhead enters for quantum error-correction, we exam-
ine it in a specific gate and context. In particular, we
focus on superconducting qubits with feasible error rates
and operation times within the surface code. Toffoli gates
are required to implement classical logic on a quantum
computer but cannot be implemented transversely within
practical implementations of the surface code. Instead,
one must implement these gates by first distilling resource
states. To implement a Toffoli gate one requires a CCZ
state (|CCZ〉 = CCZ |+ + +〉) and these states are con-
sumed during the implementation of the gate. Distilling
CCZ states requires a substantial amount of both time
and hardware and thus, they are usually the bottleneck
in realizing quantum algorithms within the surface code.

Here, we will focus on the state-of-the-art Toffoli fac-
tory constructions of [13] which are based on applying the
lattice surgery constructions of [24] to the fault-tolerant
Toffoli protocols of [26, 41]. Using that approach one can
distill one CCZ state using two levels of state distillation
with 5.5 d+O(1) surface code cycles and a factory with
a data qubit footprint of about 12 d× 6 d where d is the
code distance (the total footprint includes measurement
qubits as well, and is thus roughly double this number).
Hence for the Toffoli gate, we take CG ≈ 5.5.

We will assume a correlated-error minimum weight
perfect matching decoder capable of keeping pace with
1 µs rounds of surface code error detection [42], and
capable of performing with a similar latency of feedfor-
ward in about 1 µs for d around 30, and conservatively
lower bound the overall time for d rounds to then be
(dτs + lr) ≤ 30µs. We will also assume physical gate
error rates in the vicinity of 10−3, which we hope will
be achievable at scale in the next decade. Since we ex-
pect to require on the order of billions of Toffoli gates
to achieve quantum advantage for practical applications
(we will see this is actually a significant underestimate

for the case of quadratic speedups) we will assume that
a code distance in the vicinity of d = 30 will be suffi-
cient (since errors are suppressed exponentially in code
distance this number will be approximately correct).

With these assumptions, our model predicts a Toffoli
gate time of tG = CG(dτs + lr) ≈ 5.5 × 30µs ≈ 170µs.
This rough approximation matches the more detailed re-
source estimate which shows the spacetime volume re-
quired to implement one Toffoli gate is approximately 23
qubit seconds [13]. We discuss the resources required
for distillation in terms of qubitseconds because it is
generally possible to make tradeoffs between space and
time but the critical resource to minimize is actually the
product of the two. Under these assumptions we would
be able to distill a Toffoli gate in about 170 µs using
around 130,000 physical qubits (see the resource estima-
tion spreadsheet in [13] for detailed assumptions). Due
to this large overhead we focus on estimates assuming
we distill CCZ states in series, which is likely how we
would operate early fault-tolerant surface code comput-
ers. For comparison, if ion trap implementations used a
similar surface code implementation and error rates while
dramatically improving syndrome measurement time to
τs = 100µs in parallel, the gate time assuming CG ≈ 5.5
is tG ≈ 17,000µs, or roughly a factor of 100 slower.

To make this more concrete, we can convert this to
a unitless error-correction overhead for a particular gate
of CG(dτs + lr)/τs. If we keep the 30µs overall bound
for (dτs + lr), and make a reasonable estimate for the
improvement of physical syndrome measurement times
for superconducting qubits to 100 ns, then the error-
correction overhead at this distance is 1,700.

This suggests that at present for superconducting
qubits, the most fruitful improvements with regards to
algorithmic speed are the reduction of decoding time,
the minimization of time overheads in distillation facto-
ries, and then the reduction of number of measurement
rounds required to protect in the time direction, perhaps
through improved gate fidelities for equivalent operation
times to result in lower required distances or through
single shot protocols. If this can be achieved, the next
milestones would be the reduction of physical syndrome
extraction time. However, even such advances would al-
ready make prospects for realizing a quantum advantage
with quadratic speedups considerably more enticing.
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