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Abstract—Radio technologies are appealing for unobtrusive
and remote monitoring of human activities. Radar-based human
activity recognition proves to be a success, for example, Project
Soli developed by Google. However, it is expensive to scale up for
multi-user environments. In this paper, we propose a solution—
the HoloTag system—which circumvents the multi-channel-radar
scaling problem through the use of a quasi-virtual ultra-low-cost
UHF RFID array over which a holographic projection of its
environment is measured and used to both localize and monitor
the health of several targets. The method is first described in
detail, before the image reconstruction process, employing known
beamforming algorithms—Delay & Sum, and Capon—is shown
and its scaling properties simulated. Then, the idiosyncrasies
of the implementation of HoloTag using low-cost Off-The-Shelf
hardware are explained, before its ability to simultaneously
measure the breathing rates and positions of multiple real and
synthetic targets with accuracies of better than 0.8 bpm and
20 cm is demonstrated.

Index Terms—Target Localization, Vital Signs, UHF, RFID,
Holography, Healthcare.

I. INTRODUCTION

A
MBIENT Computing has been gaining momentum to be

one of the most impactful technological developments

for the next decade. At its core, it requires the devices

to interact with the environments and users seamlessly and

ubiquitously. Our era is witnessing a rapid development in the

field of human activity monitoring, indoor localization, and

health care systems. The ability to monitor vital signs in real

time can, to a great extent, help with disease early diagnosis

and prevention [1], [2]. Breathing has been recently used to

encode information, allowing people with severe paralysis to

communicate with others [3]. In addition, combining the vital

signs monitoring systems with localization capabilities can

answer questions about the physical and mental health of a

person. Vital signs monitoring systems can be realized using

either intrusive or contactless approaches [4]. For applications

such as elderly care, intrusive techniques [5], [6] can be

cumbersome, obstructed by clothes, or even sparsely used due

to negligence. Therefore, for continuous long-term monitoring,

contactless techniques constitute the best candidate with the

least interference on the patients’ daily activities [7]. However,

contactless technologies generally rely on the observation of
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signals generated by patients in their immediate environment.

It is, nevertheless, beneficial to scale such systems to large

coverage areas in order to reduce costs. This introduces the

necessity to differentiate between the breathing and heart rates

and to match the measured signals to their associated targets.

Radar systems have demonstrated high accuracy localization

and real time vital signs monitoring in scenarios involving

multiple targets [8], [9]. However, those solutions require

expensive, dedicated systems with performance, costs and

power consumptions scaling quasi-proportionally with the

bandwidth and with the number of transmitters and receivers

and therefore, with angular and radial resolutions. A potential

low-cost and low-complexity alternative to the employment

of such dedicated hardware could lie in the well-established-

and-perfected passive Ultra-High Frequency (UHF) Radio

Frequency IDentification (RFID) technology. RFID readers

are readily available in the market and can be deployed in

indoor environment along with compact, ultra-low-cost and

batteryless tags.

Nevertheless, the limited bandwidth allowable by the Fed-

eral Communications Commission (FCC) (26MHz at UHF

frequencies)–leading to frequency-based ranging resolutions

and accuracies worse than several meters–superficially seem

to spell the doom of UHF wireless devices for the afore-

mentioned applications. An alternative to sampling in the

frequency (and, therefore, radial) domain lies in the potential

ability to sample in the spatial domain, as is commonly

implemented in antenna arrays to determine Angles of Arrival

(AoAs). However, such a design choice is complex, expensive,

and quickly becomes unmanageably large in the UHF band,

thereby defeating the purpose of the use of UHF RFID. In

lieu of such large static systems, Synthetic Aperture Radar

(SAR) schemes–which reduce the complexity of the wireless

system–have been proposed to create large virtual arrays

[10], [11]. Despite their advantages, their itinerant nature

introduces mechanical challenges and is unbecoming in most

environments. An ideal solution to this problem would give

birth to static yet scalable, low-cost, and large-aperture real

or virtual arrays. This is what the proposed solution enables

by employing a groundbreaking method consisting in the

holographic projection of envrionmental targets over ultra-low-

cost UHF RFID tag arrays.

The main contributions of the HoloTag system can be

summarized as follows:

• First UHF RFID implementation utilizing holographic

imaging for combined target localization and breathing

rate extraction.



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3071693, IEEE Internet of
Things Journal

2

• First holography-based system implementing beamform-

ing using a static, passive array of UHF tags. The

implementation relies on a single transmitter antenna and

a single receiver antenna coupled with an array of tags.

The implementation requires no movement of equipment

for area scanning compared to similar approaches such

as SAR.

• The technique relies on cross-circularly-polarized tags-

RX antenna instead of traditional Linearly Polarized (LP)

tags to help suppress the direct communication path

between the tags and the receiver antenna and improve

the Signal-to-Noise Ratio (SNR) of signals reflecting off

the human body.

• This technology relies on a reduced number of tags for

accurate localization and differentiation between at least

two targets. Improving the performance and localization

accuracy of the system comes at a very low-cost and

minor complexity. By solely adding more tags to the

array and upgrading the information in the software, one

can achieve more robust and more accurate localization

measurements.

• The system introduces a ”Synthetic Target” that can be

modulated at any breathing frequency to emulate a real

human without suffering from the inconsistencies and

imperfections of a living target. This addition played a

significant role in the optimization of the hardware setup

and processing of the data before experimenting with real

humans, as well as facilitating multi-users scenarios.

II. RELATED WORK

The literature contains a wide variety of approaches that are

tailored towards specific needs and applications. This could

range from the sole real time monitoring of vital signs to

the precise and accurate localization and to general gestures

extraction.

Multiple radar solutions have been proposed in the literature

using techniques such as frequency modulated continuous

wave (FMCW)[12], [13], ultra-wideband (UWB) [8], [9], [14],

Doppler [15], [16], and WiFi [17], [18]. For example, in

[9], the authors propose MTrack, a system equipped with

2GHz of bandwidth, one transmitter antenna and 16 receiver

antennas that is capable of tracking people’s trajectories and

extracting the breathing and heart rates of static targets under

multi-person scenarios. The paper relies on AoA and ToF

in addition to implementing a path selection algorithm to

suppress interference from dynamic multipaths. [8] for exam-

ple, can track users’ breathing and heart rates with a median

accuracy of 99% up to a distance of 8m away from the device.

The high penetration and range resolution observed in these

systems come at a high cost when compared to commercial

radio systems. Besides the signal being very sensitive to

any motion in the environment, the extraction of vital signs

using radar technologies suffers from increased size, cost and

power consumption with the increase in bandwidth and with

the number of TX/RX channels. The specialized hardware

and array of antennas utilized are not commercially available

and are not practical for deployment in a home or clinical

environment for long term sensing.

On the lower end of the complexity and cost scale lie

UHF systems, with limited bandwidths and, consequently,

radial resolutions. Despite this limitation, researchers have,

seemingly, managed to leverage UHF technology for accurate

target localization and/or breathing and heart rates detection.

In [7], the authors propose a contactless breathing and heart

rate monitoring system based on UHF Commercial off-the-

Shelf (COTS) RFID devices. Although the proposed system is

easy to implement in addition to being low-cost, their multi-

user solution is highly dependent on the LOS and distance

between user and tag. Also, since target localization is not

implemented, it is impossible to match each target to their

Breathing Rate (BR) and Heart Rate (HR). On the other hand,

some efforts have solely focused on target localization using

COTS UHF RFID tags combined in some cases with imaging

techniques without the extraction of any vital signs. In [19],

the authors demonstrate target localization with 0.24m median

error using an impractically-large two TX/RX reader-antennas

system and a set of 50 tags placed on two orthogonal walls.

Unlike [19] that takes advantage of both Received Signal

Strength Indicator (RSSI) and phase information, [20] and

[21] rely solely on the RSSI information to accurately localize

targets in indoor environments. Their hardware consists of

4 reader antennas and 30 RFID tags. While these systems

achieve good indoor localization accuracies, their hardware

is relatively large and complex and their implementation is

limited to localization. In addition, these reported experiments

were conducted in large and empty rooms that suffer from

minimal multipath compared to small rooms and cluttered

environments.

III. THE HOLOTAG SYSTEM

A. Theory of Operation

The principles of holography—practice of making holo-

grams or 3D images—have been applied not only with light

waves but also with microwaves and acoustic waves. Holo-

graphic methods are well known in the area of ultrasonic and

radar imaging [22]–[24] and have found several applications

Fig. 1. Schematic describing the propagation path model

between tags, target and TX, RX antennas.
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at microwave frequencies such as biomedical imaging [25],

concealed weapon detection [26], [27] and RFID tags local-

ization [28]–[32]. The basic concept behind holography is to

correlate a signature measured by multiple radar/reader units

with a reference signature generated at every possible location.

This estimator, ideally, results in a maximum at the position

of the tested target and at a infinitesimal value other wise. All

holography-based target localization implementations at UHF

presented to date in the literature involve the movement of the

hardware (reader antenna or tags) along a known trajectory to

create a virtual array capable of scanning a specific area.

This technique applied in those works on UHF hardware

[28], [29], [32]–[34], is inspired by SAR that leverages the

motion of the radar antenna over a target region to provide

fine range measurement and resolution. Holography-based tag

localization involves two major steps: (1) measurement or sim-

ulation and storage of the backscattered signals (phase and/or

RSSI information) at each possible location, (2) hologram

generation and tag localization.

In this work, we combine holography and beamforming

techniques to localize and monitor the health of real targets

(human beings) in a novel unprecedented way. With a static

array of UHF RFID tags, one transmitter and one receiver

(co-located for compactness) antennas with known locations,

two beamforming techniques–one conventional and the other

adaptive–were applied based on propagation path model to

estimate the positions of one or multiple targets.

Several well-known methods can be used to address the

problem of estimating the Direction of Arrival (DOA) which,

as we will see, can readily be extended to holopgrahic 2D lo-

calization. Beamforming—enabled by an array of antennas—

acts as a spatial filter to transmit and receive signals to and

from a specific direction in the presence of interference and

noise. In order to form a beam in a desired direction, the

signal corresponding to each element in the array is usually

multiplied by a certain weight, then all signals are combined

coherently resulting in a pattern being maximized in the

desired direction and attenuated in all other unwanted di-

rections. Conventional and adaptive beamforming approaches

correspond to different choices of the weighting vector w.

A commonly used beamforming technique is the “Delay &

Sum” in frequency domain. The weights for this method are

found by calculating the delay encountered in each tag due

to path difference, so that the outputs of spatially distributed

tags are coherently summed to improve signal reception in

the presence of noise. Another technique, called ”Capon” and

belonging to the ”adaptive beamforming” class, relies on data-

dependent weights, that will be calculated using a steering

vector and a covariance matrix, defined in the following

equations. The steering vector or array manifold vector used in

both beamforming techniques is based on the path propagation

model presented in Fig. 1. There is a specific propagation

phase associated with each tag defined by the triangle path

starting with the TX antenna to Tag 1 with phase φ
′

1, then from

Tag 1 to Target with phase φ
′′

1 and finally from Target to RX

antenna with phase φ
′′′

1 . Assuming this single significant path

signal, the signal received by the radar, x(t), can be expressed

at any time t as:

x(t) = a(θ)s(t) + n(t) (1)

where a(θ) is the steering vector associated with the path, s(t)
is the desired signal portion of x(t) received by the N tags,

where N is the number of tags, and n(t) is the noise.

A steering vector is formed by calculating the phase shifts

associated with each tag as shown in the following equation:

a(θ) = [e−j(φn)] (2)

where φn is the total phase shift associated with tag n—as

described in the following equation—with n being the tag

number.

φn = φ
′

n + φ
′′

n + φ
′′′

n (3)

with φ
′

n, φ
′′

n, and φ
′′′

n representing the propagation phase from

TX to Tag, Tag to Target and Target to RX, respectively.

The phases are calculated from the distances using the

following equation:

φ =
2πd

λ
(4)

where d and λ are the distance and wavelength, respectively.

In order to estimate s(t), two methods were implemented,

whereby y(t)—an estimator of s(t)—was obtained by multi-

plying the measured signal by the calculated weights.

y(t) = wx(t) (5)

Fig. 2. Flow chart describing the steps leading to target

localization using Delay & Sum and Capon beamforming

algorithms.
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As previously mentioned, the weights associated with the

Delay & Sum method are data-independent and can be cal-

culated by simply finding the conjugate of the steering vector

a(θ) and multiplying it by the signal x(t) as follows:

wDS = a(θ) (6)

where wDS are the weights associated with Delay & Sum. On

the other hand, the weights associated with Capon algorithm

rely on both the calculated steering vector and covariance

matrix obtained based on the measured data.

Rxx =
1

L

L
∑

t=1

x(t)xH(t) (7)

where Rxx, xH(t) and L are the received signal covariance

matrix, the Hermitian (or complex-conjugate transpose) of the

received signal, and the number of samples, respectively.

By solving the constraint optimization problem for the

weight vector, detailed in [35], we obtain:

wC =
R−1

xx a(θ)

aH(θ)R−1
xx a(θ)

(8)

where wC and R−1
xx are the weights associated with Capon

and the inverse covariance matrix, respectively.

It should be noted that the aforementioned methods grew

out of far-field array-based signal processing efforts. However,

the operating context of the technology introduced in this work

presents–and, even, unlocks–the opportunity for positioning in

two (or three) spatial dimensions rather than in a univariate

angular space. For this purpose, it is necessary to adapt these

methods to tackle this two-dimensional problem. This can,

trivially, be done by simply substituting a(x, y) or a(x, y, z)
for a(θ). The generated estimator then seamlessly adopts

the same number of dimensions as the steering vector. The

position of the target can then be calculated based on an

estimator computed using the following process:

1) Using the calculated weights for the position (x, y),
compute y(t) using Eq. (5).

2) Apply a standard Non-Uniform Fast Fourier Transform

(NUFFT) of y(t) to obtain Y(f).
3) Extract the magnitude of the frequency point of Y(f)

corresponding to the breathing signal, which is used

as the value of the position estimator Y (x, y) at that

position.

Repeating these steps for every position results in the 2D

interference patterns presented later in the paper for position

estimation.

B. Implementation

1) Introducing the Hardware: The RFID system used in

this work is composed of the Impinj Speedway R420 reader,

one TX Left Hand Circularly Polarized (LHCP) antenna

(S9028PCL with gain 9 dBi), one RX Right Hand Circularly

Polarized (RHCP) antenna (S9028PCR with gain 9 dBi) and

LHCP tags. Unlike previous implementations [5], [7], [19]

that use COTS LP tags with the CP reader antennas, our

Fig. 3. Schematic describing the difference in propagation path

for a CP tag versus an LP tag.

previous work [36] proposed a solution that attenuates the

direct communication link between the tag and the reader

antennas—a major challenge when indirect links reflecting

on targets carry the needed information—by implementing

a cross-circular polarization between the reader antenna and

the tag. Fig. 3 helps illustrate the difference in the signals’

paths in scenarios using LP tags and CP tags, in a cluttered

environment. With the LP tag, the reader antenna receives

signals predominantly from the tag, in addition to attenuated

reflections from targets and obstacles in the environment. With

a CP tag of opposite polarization from that of the reader,

the direct communication between the tag and the reader

suffers more than 30 dB of attenuation due to polarization

mismatch, while signals passing through the target and car-

rying body movement information will flip polarization and

be received by the reader. The proposed approach in [36]

has demonstrated an improved SNR and spatial sensitivity

compared to conventional LP tags. It is worth mentioning

that the same phenomenon has been exploited to design a

miniaturized radar antenna array [37]. In [36], a spiral antenna

is used for the CP tag, yielding a wide CP bandwidth. For the

purpose of illustrating the underlying methodology, the same

CP tag antenna is chosen in this paper. It should be noted that

there are plenty of choices of miniaturized CP antennas for the

specific use case, for example, from the classic patch antenna

[37] to the metamaterial-loaded one [38].

While one reader antenna is usually used as both TX and

RX with the impinj reader, we have proposed a different

method that reduces the crosstalk between the transmitting

and receiving channels and, thus, increases the receiver’s

sensitivity. To enable two separate TX and RX channels on

the reader, a circulator was used to channel the transmitted

power through an LHCP antenna (same polarization as the

tags), while the received signal from the target (that switched

polarization from LHCP to RHCP through reflection on body)

is received by the RHCP antenna and channeled back to the

reader through the circulator. In this scenario, the tags can
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(a) (b) (c)

Fig. 4. Simulated 2D interference patterns showing the effect of the separation distance d (center to center) between the tags

for a target located at (-0.76m, -1.4m) (marked with the red circle) and a four tags scenario: (a) d = 3λ/4, (b) d = λ, and (c)

d = 3λ/2.

(a) (b) (c)

Fig. 5. Simulated 2D interference patterns showing the effect of the number of tags on the localization accuracy for a target

located at (-0.76m, -1.4m) (marked with the red circle) and a separation d = 3λ/4 : (a) two tags, (b) four tags, and (c) eight

tags.

be turned on at larger distances since they are powered by

antennas of the same polarization while the received signal

of opposite polarization–due to its reflection on the target–is

collected by an antenna of its same polarization. It should be

noted that the interrogation range can be further extended with

the implementation of multiple reader antennas, as shown in

[39], or with the tuning of the current CP tag design to achieve

higher gains.

In order to understand and better visualize the effect of the

number of tags in the array and the separation d between

them, we implemented holographic-based simulations using

the delay and sum algorithm. For this purpose, the code was

fed with the following information: the positions of the tags,

TX/RX reader antenna, target to aim towards, number of tags

and separation d between them. The algorithm then calculated

the paths for every possible position within the grid, that would

translate to a phase, as detailed in the previous section. The

resulting 2D interference pattern, relying on the Delay and

Sum algorithm, maximizes the response in the known direction

of the target and minimizes it in all other directions. Since the

plotted values were normalized by the maximum, the scale

ranges from 0 to 1 and is unitless. It should be noted that the

target location is provided to the code in the simulation only,

to observe the beamforming behavior. Similar to phased arrays

design, the spacing between the elements—in our case tags—

depicts the performance of the array and can introduce cou-

pling and side lobes if not well chosen. It is well known that

the separation between the elements of an array must be less

than λ/2 to eliminate side lobes, however since the center-to-

center distance between our tags is almost λ/2 at 900MHz, it

is impossible to achieve this separation without inducing high

coupling between the elements. Therefore, constrained with

the CP tag’s dimensions, we have simulated three distances:

3λ/4, λ, and 3λ/2. Fig. 4 shows the simulated interference

pattern of four tags for the three aforementioned separations,

where TX, RX, and target’s locations remained unaltered. The

target was set to position (-0.76m, -1.4m) marked with a red

circle on the pattern. It was observed that although the side
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lobes appear in all three cases—expected due to d>λ/2—

their interference with the real target location becomes more

apparent as the distance between the elements increases.

Therefore, the shortest distance (3λ/4 or 25cm) at which

coupling between elements is prevented and side lobes effect

was reduced was chosen to be used in the system. The effect

of the number of tags was studied next. In this simulation,

similar to the previous setup, the target was set to (-0.76m,

-1.4m) and TX/RX and tags locations were unchanged. Three

scenarios were considered: two, four and eight tags. Similar to

antenna arrays where the angular resolution increases (spacing

being equal) as the number of elements increase, the tags

arrays setup demonstrated the same behavior, as shown in

Fig. 5. The simulated 2D interference patterns display the

increased resolution and precision in position estimation as

the number of tags increases. Since the middle implementation

enables a good compromise between a decent accuracy and a

low number of elements, four tags were adopted for the first

measurement campaign.

2) Synthetic Tag Design: As previously mentioned, the goal

from this technology is to be able to localize real human targets

in small indoor environments such as clinics waiting rooms,

offices or any room inside a house. For this purpose, we have

chosen a small, cluttered office space, surrounded by concrete

walls and glass windows, comprised of a large wooden table,

chairs, and a large TV. In order to test the system and isolate

its properties from the errors introduced by imperfect human

targets, a synthetic target—that can mimic the breathing rate

of a real person—was designed. The synthetic target was

realized with a basic tag design that involves an antenna and

a switch capable of receiving, modulating and re-emitting a

synthetic breathing signal. Modulated at any desired BR, the

tag acts like a perfect human target that we define later in the

experiments as “Synthetic Target”. The Times-7 A8060 (LP)

Indoor RFID Antenna with moderate gain of 5 dBi and 110°

of azimuth beamwidth was chosen. A Field Effect Transistor

(FET) CE3520K3 was used as a switch connected to the

antenna to form the tag as shown in Fig. 6, and modulated

by Binary Phase Shift Keying (BPSK) at any chosen synthetic

BR rate. The synthetic tag was used to test and optimize the

system as well as assist in the multi-target scenarios.

C. Data Pre-Processing

The determination of positions from the aggregated signals

backscattered by individual tags of the array relies almost

exclusively on phase information, as is the case for antenna

arrays. Nevertheless, the individual responses received by the

reader combine signals transmitted through the direct LOS

channel, as well as that produced by series of scattering events

over the environment surrounding the system. The proposed

approach employs the dynamic nature of vital signals—for

instance, the periodicity of the breathing cycle—to filter static

interference out of the measured responses. Electromagnetic

theory teaches that the downconverted responses (in terms of

both its magnitude and Phase) received by the reader can be

expressed as a sum of individual waves, each contributed by

a different element in the set of relevant paths connecting the

Fig. 6. Photo of the synthetic tag composed of an LP antenna

and FET switch with layout included.

TX and RX antennas via tag scattering. This wave is thus

defined:

wave =
√
RSSI ejΦ (9)

where RSSI and Φ are the signal strength indicator and the

phase of the signal.

These concepts lead to the understanding that the signals

measured by the reader can be expressed as the complex

sum of a static, clutter-produced component and of a dynamic

component produced by the living target, as depicted in Fig. 7.

It is clear that the extraction of the phase of the dynamic

signal therefore necessitates accurate averaged and instant

estimations of both the RSSI and the Phase.

In order to extract the needed information, the raw

data—collected during measurement—has to undergo one

calibration step. Due to the inherent nature of the Impinj reader

that follows the frequency hopping spread spectrum (FHSS)

method—where the reader hops between 50 channels (from

902.75MHz to 927.25MHz) every 10 s—it is difficult to

extract information from the raw data, as shown in Fig. 8. The

calibrated wave signal per channel i denoted by ”waveCal,i”

was calculated by removing the “median” value of wave for

each channel independently, as follows:

Fig. 7. Expressing the measured wave as the sum of two

complex components: one static and one dynamic.
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waveCal,i =
√

RSSIi e
j(Φi,2+median(Φi,1/2))

−
√

median(RSSIi) e
j(median(Φi,1/2))

(10)

where RSSIi is the RSSI of channel i, Φi,1 and Φi,2 are

defined as:

Φi,1 = unwrap(Φi) (11)

where Φi the phase for channel i.

Φi,2 = unwrap(Φi,1 −median (Φi,1/2)) (12)

These steps were necessary because the raw phase data

outputted by the reader ranges from 0° to 360° and is am-

biguous by 180°. Finally, waveCal is obtained by aggregating

all the individually calibrated data from all channels at their

respective sampling times. This process not only removes. to a

great extent, the variations due to frequency hopping but also

substracts the static response of the environment, thereby only

leaving behind the contributions of dynamic targets.

Fig. 8 shows the importance of RSSI and phase data

calibration and elimination of frequency hopping effect for

target information extraction. The breathing rate of the target

in this specific experiment can be easily calculated from the

plot. The calibrated RSSI data is obtained by computing the

squared magnitude of the calibrated wave as follows:

RSSICal = |waveCal|2 (13)

The calibrated phase data is obtained as follows:

ΦCal = unwrap(∠waveCal) (14)

It should be noted that the sampling times for the time

domain measurements taken by the reader are somewhat

random and non-uniform: each sampling time for a given

tag corresponds to the interrogation time of that particular

tag which, due to the slotted ALOHA time-division process

implemented by the reader, creates a stochastic time series. As

a consequence, all frequency information relied upon in this

work was calculated using a standard NUFFT algorithm.
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Fig. 8. Raw measured vs calibrated data (a) RSSI data in

(dBm) (b) Phase data in (rad).

Fig. 9. Photo of the setup implementing four linear tags array

for target DOA estimation and BR extraction.

IV. EXPERIMENTAL EVALUATION

The testing area shown in Fig. 9 is a small conference

room filled with chairs and surrounded by glass windows and

concrete walls with metal separations. The system was first

tested with four tags placed on the same plane for DOA and

BR estimation. The next step involved the addition of four

extra tags on the orthogonal plane to the first set of tags while

the TX and RX antennas positions remained unaltered.

A. Scenario of a linear four-tags array

For this setup, the TX antenna was placed on a table at

position (1.3m,−1.45m) facing the four tags centered at (0,0)

situated on a wooden table and separated by 3λ/4 (25 cm).

The RX antenna, located at (1.35m,−0.94m) was oriented

towards the space where the target could be located. The

space in which the target was moving is approximately 4m
by 3m. 40 2-minutes experiments were first collected with

this setup where 20 involved a single target and the other 20

included two targets: one real and the other synthetic. During

those experiments, the targets BR was changed between 6 and

30 bpm following a metronome for precision and comparison

with the ground truth. The targets locations’ were changed for

every experiment and positions of targets were often switched

in the two-targets scenario. The BR information was extracted

from the filtered frequency domain data obtained by first

applying the NUFFT, followed by a bandpass filter including

frequencies from 0.08Hz-1Hz (corresponding to 4.5 to 60

bpm to cover abnormal breathing). Finally, a peak search was

used to locate the peak with the maximum amplitude that

corresponds to the breathing frequency. The BR was then

compared to the ground truth set by the metronome resulting

in the Cumulative Distribution Function (CDF) plots shown

in Fig. 10. It can be seen that the maximum error—calculated

in the presence of one target—is 1 bpm while the error

remains less than 0.4 bpm for more 60% of the measurements.

Similarly, in the presence of two targets, the error remains

less than 0.5 bpm for 65% of the times with a real target and

75% for the synthetic target. This is indeed expected since the

synthetic target’s rate is controlled and does not suffer from

the imperfections and irregular breathing that occur with a

real human. The collected data was then processed using both
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Fig. 10. The errors in estimated BR in bpm for (a) one target

and (b) two targets scenarios.
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Fig. 11. The errors in estimated DOA in degrees for (a) one

target and (b) two targets (Real Target (RT) and Synthetic

Target (ST)) scenarios using Delay & Sum (DS) and Capon

algorithms.

Delay & Sum and Capon algorithms to extract the DOA. The

targets’ locations were converted to angular positions using

the following formula:

θActual = tan−1

(

x

y

)

180°/π (15)

where θActual is the actual angular position of the target with

respect to the tags, x and y are the horizontal and vertical

positions.

The calculated actual angle was then compared to the

measured estimated angle extracted from the 2D pattern and

the error was calculated as follows:

Eθ = |θActual − θEstimated| ∗
∣

∣

∣

∣

cos

(

θActual + θEstimated

2

)
∣

∣

∣

∣

(16)

where Eθ is the calculated error in DOA, and θEstimated is the

estimated DOA extracted from the measured data. The cosine

factor allows for the direct comparison of errors measured over

the entire angular space: errors increase as the target moves

away from normal, due to the ∝ sin θ nature of the phase

differences measured by consecutive array elements.

The CDF plots for DOA estimation shown in Fig. 11a

resulting from this system—equipped with only four tags—

show that the proposed technology is capable of estimating

the DOA of one target with an error less than 8° and 11°

using Delay & Sum and Capon, respectively. In the case of

two targets, shown in Fig. 11b, the error remains below 12°

with Delay & Sum and 17° with Capon with a superiority in

angular localization accuracy of the synthetic target.
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Fig. 12. Measured responses for two targets (Real + Synthetic)

scenario: (a) Measured 2D pattern for Real target (RT), (b)

Measured 2D pattern for Synthetic target (ST), (c) Measured

spatially filtered responses for both targets identifying their

breathing rates depending on their location.

As highlighted in the introduction, the main capability of the

proposed approach lies in the ability of localizing two targets

and differentiating their breathing rates using a simple, static

and low-cost system. Fig. 12 and Fig. 13 display two examples

out of many conducted experiments with two targets.

Fig. 12a and Fig. 12b display the measured 2D patterns for a

real target located at (0.45m, −1.4m) and a synthetic target at

(0.2m, −2.1m), respectively. It should be noted that although

the patterns show each target individually, the experiment was

conducted in the presence of both targets. Those patterns

are the results of the two maxima observed in the filtered

frequency domain that are theoretically associated with the

BR of each target. The red circle placed on the plot shows the

known location of the target. In order to determine the DOA

from the measurement, the mean values of all the points in

a given direction were calculated for the entire 2D pattern.

Finally, the mean yielding the highest value was selected as

the measured target direction. As seen in Fig. 12a and Fig. 12b

the exact and predicted angles, i.e. red circle and yellow beam,

coincide, demonstrating the ability to successfully locate the

angular position of the target. Since plotting the patterns using

the two peaks in frequency domain is not enough to correlate

each target with their BR, it is important to plot the frequency

domain response corresponding to each measured location: i.e.

“spatially filtered”.
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Fig. 13. Measured responses for two real targets scenario: (a)

Measured 2D pattern for Real target 1 (RT 1), (b) Measured

2D pattern for Real target 2 (RT 2), (c) Measured spatially

filtered responses for both targets identifying their breathing

rates depending on their location.

Fig. 12c displaying the two spatially filtered responses,

proves the ability to identify each target’s BR based on their lo-

cation. In this scenario, the real target had a BR of around 11.5

bpm while the synthetic target was set at a modulation rate

of 0.5Hz or 30 bpm. Experiments involving two real targets

were also conducted and Fig. 13 is one example displaying the

localization as well as the differentiation in BR based on the

estimated location. In this experiment, the first real target was

located at (0.2m, −1.93m) while the second real target was

Fig. 14. Photo of the setup implementing eight tags divided

into two orthogonal arrays for target 2D localization and BR

extraction.

at (−1.5m, −1.7m). As detailed earlier, the measured target’s

direction was determined by finding the direction of maximum

mean value over the entire pattern. The measured 2D patterns

shown in Fig. 13a and Fig. 13b demonstrate the ability to

correctly localize the two real targets. It should be highlighted

that the localization of targets located at high angles relative

to the tags array is often accompanied with the presence of

side lobes as seen on the edge of Fig. 13b in the direction of

the TX and RX antennas. This is justified by the separation

between of the tags that exceeds λ/2 as previously displayed

in Fig. 4. Followed by the 2D patterns are the spatially filtered

responses reflecting the BR of each target based on their

location, where target 1 had a BR of 9 bpm while target 2

was breathing at a rate of approximately 17 bpm. It should be

noted that the experiments shown in Fig. 12 and Fig. 13 did not

use a metronome to control the real target’s BR, in order to

emulate realistic operating scenarios. Since it is challenging

to maintain a perfect BR over the entire testing period, the

peaks in frequency domain appear disrupted unlike clean peaks

resulting from the controlled synthetic target experiments.

B. Scenario of eight orthogonal tags array

After demonstrating the capabilities of one set of four linear

tags array in achieving a good localization in terms of DOA,

another set, similarly composed of four tags spaced by 3λ/4,

were placed on the plane orthogonal to the first set, as shown

in Fig. 14. Such an implementation results in the combination

of two beams (each coming from one set of four tags), thereby

resulting ideally in a small detection area on the 2D pattern

that would enable high accuracy (x,y) localization. In order to

better illustrate the resulting beam, the setup composed of the

eight tags was simulated using Delay & Sum algorithm and

2D patterns were plotted for different tag separation as shown

in Fig. 15. It should be noted that the simulated tag separation

involved only each set of linear tags. The horizontal and

vertical separation between the two sets of tags was unchanged

in those experiments. Similar to Fig. 4, the simulated center to

center distances were 3λ/4, λ, and 3λ/2. It can be shown from

Fig. 15 that the presence of secondary locations become more

apparent with the increase of the separation between the linear

array elements. Although the formed beam appears to be more

defined in Fig. 15c for a separation d = 3λ/2 (similar to how

the beam was more directive in Fig. 4c), side lobes appear

in the form of secondary positions that could result in false

targets localization. Therefore, the same separation d = 3λ/4,

shown in Fig. 15a, chosen for the four tags experiments was

also picked for the the new setup as a compromise between

good localization accuracy and minimal secondary positions.

In order to validate the operation of the orthogonal setup,

20 2-minutes experiments were conducted with a single real

target, while the BR and the location were changed for every

experiment. The CDF plots shown in Fig. 16 were obtained

by subtracting the actual BR, x and y positions from the

predicted ones, respectively. Fig. 16a shows that a BR error

less than 0.9 bpm is observed in the new orthogonal setup.

The errors in (x,y) localization, presented in Fig. 16b and

Fig. 16c, demonstrate the capabilities of this setup to localize
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(a) (b) (c)

Fig. 15. Simulated 2D interference patterns showing the effect of the separation distance d (center to center) between the tags

for a target located at (0m, -1.4m) (marked with the red circle) and a eight tags scenario: (a) d = 3λ/4, (b) d = λ, and (c) d =

3λ/2.
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Fig. 16. The errors in estimated position and BR of one target for the eight orthogonal tags array scenario (a) Error in BR (in

bpm), (b) Error in localization in x (in cm) with Delay & Sum and Capon, (c) Error in localization in y (in cm) with Delay

& Sum and Capon (d) Error in localization in total distance (in cm) with Delay & Sum and Capon.

a target with an error less than 18 cm and 14 cm in x and

y, respectively using Delay & Sum, and 21 cm and 19 cm in

x and y, respectively using Capon. The localization error in

terms of distance was also calculated resulting in the CDF plot

shown in Fig. 16d, displaying an error less than 18 cm with

Delay & Sum and 21 cm with Capon, over all experiments.

This proposed technology—with only eight tags—outperforms

previously proposed UHF-based localization techniques that

require at least 20 to 30 tags to enable (x,y) localization [19]–

[21]. An example of the results obtained from the conducted

experiments is shown in Fig. 17. In this experiment, the

target was located at (-0.05m, -2.03m), while the TX and

RX were located at (1.3m,−1.45m) and (1.35m,−0.94m),

respectively, with constant positions in all the experiments.

The simulated and measured 2D patterns shown in Fig. 17

validate the proper operation of the system and demonstrate

its ability to accurately localize the target within few cm of

error. It is important to highlight that the secondary position

appearing in the measured 2D pattern in the direction of the

RX antenna is mainly due to secondary side lobes resulting

from the separation between the tags. Some potential solutions

would be to tune the distance d between the tags, window the

data and/or apply different techniques other than Capon or

Delay & Sum.

V. CONCLUSION

The HoloTag system presented in this paper allows the im-

plementation of large-aperture and, therefore, high-resolution

imaging and health-monitoring systems which can scale at vir-

tually no cost using OTS UHF RFID readers and tags. While

only moderate in scale in the experiments presented here, its

scaling and integration into living and clinical environments,

along with its support through the use of Machine Learning

algorithms may set the foundation for the advent of affordable

“smart-room” systems with ultra-high resolution awareness for

the support of patient care and home automation.
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