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ABSTRACT
Google Drive is a cloud storage and collaboration service used
by hundreds of millions of users around the world. Quick
Access is a new feature in Google Drive that surfaces the
most relevant documents when a user visits the home screen.
Our metrics show that users locate their documents in half
the time with this feature compared to previous approaches.
The development of Quick Access illustrates many general
challenges and constraints associated with practical machine
learning such as protecting user privacy, working with data
services that are not designed with machine learning in mind,
and evolving product definitions. We believe that the lessons
learned from this experience will be useful to practitioners
tackling a wide range of applied machine learning problems.
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1 INTRODUCTION
Searching for and gathering information is a common task
that continues to consume a large portion of our daily life.
This is particularly true when it comes to finding relevant
information at work. Recent research [12] shows that time
spent in finding the right documents and information takes
up 19% of a typical work week and is second only to the time
spent managing email (28%).

Hundreds of millions of people use Google Drive to manage
their work-related and personal documents. Users either
navigate through subdirectories or use the search bar to
locate documents. In addition to the typical file-system
metaphor of folders (directories), Drive provides views like
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Figure 1: Quick Access screenshot

“Recent”, “Starred”, and “Shared with me” for convenient
access to files. However, the user still needs to navigate to
a document through many clicks. To alleviate this problem,
we built “Quick Access” – a smart feature in Google Drive
that makes the most relevant documents available on its
home screen. Figure 1 shows the home screen of the Google
Drive app for Android, with the top portion devoted to a
list of documents deemed most likely to be relevant. We use
a machine learning (ML) model trained over past activity
of Drive users to determine which documents to display in
a given context. Our metrics show that Quick Access gets
users to their documents nearly 50% faster than existing
approaches (via navigation or search).

In this paper, we describe the development of this feature as
an applied ML project focusing on aspects that are typically
not discussed in the literature:

(1) Documents selected from private corpora.
(2) Existing data sources not set up for ML applications.
(3) Evolving product definition and user interface (UI).



The document corpora in Drive are private to their owners
and vary in size from a few documents to tens of thousands.
Further, users may choose to share a document either with
specific users or with groups (e.g. an entire company). This
distinguishes the setting from typical recommendation prob-
lems such as Netflix [7] and YouTube [13, 14], which use a
shared public corpus. As a result, we do not use collaborative
filtering and instead draw on other techniques to compute a
ranked list of documents.

Private corpora also introduce additional challenges to
developing ML models while maintaining a commitment to
protect user privacy. As part of this commitment, visual
inspection of raw data is not permitted, making initial data
exploration, a common first step in applied ML, substantially
more difficult. We used k-anonymity based aggregation ap-
proaches (see Section 4.1) and argue that further research in
techniques that allow data cleaning and feature engineering
on data without inspection will be valuable to building ML
models on private datasets.

Setting up an ML pipeline on a data source that had never
previously been used for ML applications required overcom-
ing several non-trivial challenges. Data quality problems
including incomplete logging, inconsistent definitions for cer-
tain event types, and multiple sources of training-serving
skew (see Section 4.2.1) were significant obstacles to launch-
ing the product. These are not frequently discussed in the
literature [23] and may be of much value to practitioners
interested in setting up applied ML pipelines. We advocate
a dark-launch and iterate technique to guard against such
problems.

Finally, in order to maximize the usefulness of our pre-
dictions, we needed to figure out a UI that would be visible
and helpful when predictions were good, but not distract or
obstruct the user when they were not. We considered three
UIs which emphasized completely different metrics. In this
paper, we share the reasoning which led us to choose one
over the other.

In addition to the above aspects, we also describe the
use of deep learning [21] to model and solve this problem.
We discuss how feature engineering tasks usually employed
for more traditional algorithms may still be necessary when
using deep learning in this setting – some classes of tasks
(like modeling interactions) become redundant, while other,
new types emerge that are particular to deep networks. We
hope that some of the lessons we share here will be valuable
to practitioners aiming to apply machine learning techniques
on private corpora either when using more traditional tools
or when using deep networks.

2 SYSTEM OVERVIEW
In this section, we provide a high-level overview of the system
used to build Quick Access, shown diagrammatically in Figure
2. We describe the data sources used, the training and
evaluation pipelines, and the services that apply the model
in response to user requests.
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Figure 2: High-level system overview

2.1 Data Sources
The Activity Service provides access to all recent activity in
Drive. It gathers all requests made to the Drive backend by
any of the clients used to access Drive – including the web,
desktop, and mobile clients, and the many third-party apps
that work through the Drive API. The Activity Service logs
high-level user actions on documents such as create, open,
edit, delete, rename, comment, and upload events.

This data is made available for batch processing by placing
it in Bigtable [10]. The Activity Service also maintains a
Remote Procedure Call (RPC) endpoint for real-time access
to the data for user-facing features.

Additional sources of input for document selection models
include user context such as recent or upcoming meetings on
the calendar, their Drive settings (e.g. personal vs. business
account) and long-term usage statistics (e.g. total number
of collaborators, total files created since joining). Figure 2
shows this as Other Inputs.

2.2 Training and Evaluation
The data extraction pipeline is responsible for scanning the
Activity Service Bigtable and generating a scenario corre-
sponding to each open event. A scenario represents a user
visiting the Drive home screen, and is an implicit request
for document suggestions. The pipeline is responsible for
discarding data from users that should be excluded either for
quality reasons (e.g. robots running crawl jobs and batch up-
dates) or policy reasons (e.g. regulations governing enterprise
users). Raw training data is stored in protocol buffers for
each scenario along with the recent activity from the Activity
Service. The data is split into train, test, and validation sets
by sampling at the user level and the scenarios are converted
into a set of positive and negative examples with suitable
features. This is discussed in Section 3 in greater detail.

The training data generation pipeline is implemented as
a Flume [9] job and runs on Google’s shared infrastructure
over O(2000) cores for a few hours. An illustrative run over
a sample extracted from 14 days of activity data considered
O(30M) scenarios and produced O(900M) examples.



We used a distributed neural network implementation [15]
to train over these examples, typically using O(20) workers
and O(5) parameter servers. Once a model has been trained,
the evaluation pipeline is used to compute various custom
metrics like top-k accuracy for various k.

The Prediction Service responds to user requests by fetch-
ing the latest data from the Activity Service, computing
the current set of features, and applying the model to score
candidate documents. It returns an ordered list of documents
which are displayed by the client. The service is integrated
with an experiment framework that allows us to test multiple
models on live traffic and compare their performance on key
metrics.

3 MODELING
The document selection is modeled as a binary classification
problem. For any given scenario, we generated one positive
example with score 1 (corresponding to the document that
was opened), and a sample from the n− 1 negative examples
with score 0, where n was the total number of candidate
documents from the user’s corpus. Note that this approach
excludes from consideration documents a user has never
visited, regardless of whether they have access to them (such
as public documents). At serving time, scores in the interval
[0, 1] are assigned to candidate documents and used to rank
them. Next, we discuss the candidate selection for training
and inference.

3.1 Candidate Selection
Preliminary analysis showed that while users may have tens
of thousands of documents (especially photos and videos
for consumers who connect their phones to Google Drive
storage), most of the open events are focused on a smaller
working set of documents. We limited the candidates to
documents with activity within the last 60 days. This choice
was a consequence of several factors such as how long users
have allowed Google to retain data, the cost of storing and
retrieving longer user histories, and the diminishing returns
from longer histories. For example, there was a strong re-
cency bias in the open events, with more than 75% being
for documents on which there was some activity within the
last 60 days. This reduction in scope had the benefit of
limiting the number of documents to be scored and sorted
when serving predictions (thus also reducing latency for the
user).

We used the same criterion to limit the pool of negative
example candidates for the training set. Additionally, we
selected from the candidate pool the k most recently viewed
documents (for some k ≤ n) to limit the disproportionate
contribution of examples to the training data from highly
active users.

3.2 Using Deep Networks
Having formulated a pointwise binary classification problem
and a model to score each document, we considered several
algorithms. Although scalable implementations of linear
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Figure 3: Network architecture used for training

and logistic regression have previously been described in the
literature [3, 22] and are commonly used in industry, we chose
instead to use deep neural networks for three reasons:

(1) There has been a significant investment in tooling
and scalability for neural networks at Google [1, 15].

(2) The promise of reduced effort for feature engineering
given the well-known successes for neural networks in
domains like speech, images, video, and even content
recommendation [13].

(3) Informal comparisons showing that deep neural net-
works can learn a competitive model and be used for
real-time inference with a resource footprint compa-
rable to the alternatives.

The choice of deep neural networks for this problem was
not automatic since the input features are heterogeneous
compared to typical applications like images and speech.

3.3 Network Architecture
For convenience, we represented all the data associated with
a given example using a vector of approximately 38K floats,
many of which were zero. We employed a simple architecture
with a stack of fully connected layers of Rectified Linear
Units (ReLU) feeding into a logistic layer, which fed a linear
combination of the activations from the last hidden layer into
a sigmoid unit, to produce an output score in the interval
[0, 1].

Details of the network architecture such as the number of
layers, the width of each layer, the activation function, the
update algorithm, the initialization of the weights and biases
in the layers were all treated as hyperparameters and were
chosen using a grid search. We experimented with differ-
ent activation functions including sigmoid, tanh, and ReLU.
Unsurprisingly, we found ReLUs to work very well for our set-
ting. Both sigmoid and tanh functions were either marginally
worse or neutral when compared with the ReLU layers. We
experimented with varying the widths of the hidden layers
and the number of hidden layers. We tried several different
learning algorithms including simple stochastic gradient de-
scent, AdaGrad [16], and some momentum-based approaches.
We found AdaGrad to be robust and in our setting, it did
no worse than the momentum-based approaches.

The graph in Figure 4 shows the holdout AUCLoss (de-
fined as 1−ROC AUC, the area under the receiver operating



characteristic curve) for a set of hyperparameters after sev-
eral hours of training. We observed improvements from
adding more hidden layers up to four or five layers. Adding
a sixth layer did not help in any of our metrics. While not
shown here, using zero hidden layers produced a substantially
worse AUCLoss, suggesting that logistic regression was not a
competitive option without additional engineering of feature
interactions. The right hyperparameters typically made a
difference of about 2% to 4% in AUCLoss. However, improve-
ments from feature engineering we did yielded substantially
larger benefits, which we discuss next.

3.4 Feature Engineering
Feature engineering is an umbrella term that includes efforts
like making additional input data sources available to the ML
model, experimenting with different representations of the
underlying data, and encoding derived features in addition
to the base features. An interesting aspect of the data in
this project was the heterogeneous nature of the inputs –
these included categorical features with small cardinality
(e.g. event type), large cardinality (e.g. mime type), and
continuous features across different orders of magnitude (e.g.
time of day, time since last open, total bytes stored in the
service).

Data from the Activity Service consisted of several series
of events, such as the history of open, edit, comment, etc.
events for each document. We represented this data as a
sparse, fixed-width vector by considering time intervals of
a fixed-width (say, 30 minutes) over the period for which
we were requesting events (say, 60 days) and encoding the
number of events that fell into each bucket. Using 30-minute
buckets over 60 days, each event type corresponded to a
vector of length 60× 24× 2 = 2880. In addition to this, we
also considered finer-grained buckets (1-minute) for shorter
periods of time. As one would expect, most of the entries in
this vector were zero, since user activity on a given document
does not typically occur in every 30-minute bucket every day.

In a further refinement, we distinguished between events
that originated from various clients – native applications on
Windows, Mac, Android, and iOS and web. This lead to a
sparse vector for each combination of event type and client
platform. We also produced similar vectors for events from
other users on shared documents.

In addition, we computed histograms of the user’s usage
along several dimensions, such as the client type, event type,
and document mime type. We encoded the time-of-day and
day-of-week, to capture periodic behavior by users.

We used one-hot encoding for categorical and ordinal fea-
tures, i.e. encoding with a vector where exactly one of k
values was set to 1, with the rest at 0. These features were
of fairly small cardinality, so using the one-hot encoding
directly seemed a reasonable alternative to learning their
embeddings. This included features like mime type, recency
rank, frequency rank etc.

Table 1 shows a sketch of the relative improvements in
the AUCLoss over the previous models as we added more
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Figure 4: AUCLoss vs. time for networks with different ar-
chitectures

features. Unsurprisingly, the effort had large benefits early,
with diminishing returns later.

3.4.1 Performance Optimization. In addition to improving
accuracy, we found that some additional feature engineering
over the base features significantly improved learning speed.
For example, taking a logarithm of features with very large
values improved convergence speed by nearly an order of
magnitude. We also considered a dense encoding of time-
series data where we encode the logarithm of the time elapsed
since the event for the last k events of a given type. With
this representation, we can represent up to k events using
exactly k floating-point values instead of the much sparser
representation that uses 2880 values as described above. We
observed that this representation produced smaller training
data sets that converged faster to approximately the same
holdout loss as the sparser representation.

3.4.2 Impact of Deep Neural Nets. An exciting aspect of
the recent breakthroughs in deep learning is the dramatic
reduction in the need for feature engineering over existing
data sources [18, 20]. For instance, in computer vision, hidden
layers in the network tend to learn higher-level features like
boundaries and outlines automatically without the need for
these features to be explicitly constructed by experts in
the domain [20]. Historically, several advances in computer
vision and image recognition have relied on creative feature
engineering that transformed the raw pixels into higher-level
concepts. Deep learning models for image recognition [19]
exchange the complexity of feature engineering for a more
complicated network architecture.

Part of the allure of deep learning in other domains is that
the intuition-intensive manual task of feature engineering can
be exchanged for architecture engineering where the deep
network is constructed using suitable building blocks that

Features added Num. of AUCLoss
features improv.

Baseline, using open events 3K N/A
Separate time series by event types 8K 30.1%
Separate by client; adjust granularity 24K 8.2%
Histograms of user events 26K 7.0%
Longer history 35K 5.1%
Document recency and frequency ranks 38K 3.8%

Table 1: AUCLoss improvements over the previous model
from feature engineering.



are known be be useful for specific kinds of data. We found
that in a task with heterogeneous input data such as ours,
spending energy on feature engineering was still necessary,
and provided substantial benefits as is evident from Table 1.
However, the kinds of feature engineering required differed
from what would be relevant when using more conventional
modeling tools like sparse logistic regression. For instance,
we did not need to explicitly materialize interactions between
base features. Transforms such as normalization, denser
representations, and discretization influenced both the model
quality and the training performance.

4 CHALLENGES
The challenges in developing Quick Access arose from three
areas: privacy protection requirements, incomplete or am-
biguous data, and an evolving product definition. We discuss
each of these in turn.

4.1 Privacy
Google’s privacy policy requires that engineers do not inspect
raw user data. Instead, policy only allows them to work with
anonymized and aggregated summary statistics. This was
enforced using techniques that only allowed binaries built
with peer-reviewed code to have access to user data. Further,
all accesses to user data was logged with the source code for
the binary and the parameters with which it was invoked.
The details of the infrastructure used to implement such
policies are beyond the scope of this paper. While these
safeguards slowed down the pace of development, it ensured
data protection with a high degree of confidence.

As a consequence of the above policy, exploratory analysis,
a common first step for any ML pipeline on a new data
source, became extremely difficult. This phase is particularly
important for identifying features to extract from the tens of
thousands of fields that may be stored in the raw log data.
Getting a sense for the data, and understanding how noisy
certain fields were, and if some fields were missing or recorded
in ways that differed from the documentation thus became
more complicated.

In addition to these difficulties with initial exploration,
debugging specific scenarios and predictions was made very
challenging without access to the underlying data. Engineers
were restricted to testing hypotheses on aggregate data for
unexpected results when these happened to arise, rather
than drawing inspiration from their own observations on
the data. For instance, early in the development phase, we
noticed that for a large chunk of users, the mean time between
consecutive open events was under two seconds. We were
not sure if this was an incorrect logging of timestamps, a
double-logging problem for some clients that was bringing
down the average, or a true reflection of the underlying data.
To solve such problems, and enable some exploratory data
analysis, we built additional infrastructure that reported
aggregates while respecting k-anonymity [25]. For debugging,
one of our most useful approaches was to build tools that
allowed team members and colleagues to donate their own

data for inspection. Such donated data was only visible to the
engineers on the team, and only for a limited duration when
we were developing the model. We computed the inter-open
time for different mime types and were able to determine that
the inter-open time was low when people swiped through
consecutive images, leading to the client app pre-loading the
next few images, which were getting logged as open events.
This debugging task would have been much quicker if we
were able to inspect the logs for a user who exhibited this
behavior. Frustratingly, none of the engineers on the team
had much image data in their work accounts, so this pattern
did not appear in any of the donated datasets either. We
believe that additional research on enabling engineers to build
models on structured log data without directly inspecting
the data would be valuable in increasing the adoption of ML
techniques in a wide range of products.

4.2 Data Quality and Semantics
One of the biggest challenges we faced was the fact that our
data sources were not “ML-ready”. We were, for example,
the first machine learning consumers of the Activity Service
described in Figure 2. Since this service was owned by a
different team, who in turn gathered data from logs generated
by components owned by other teams, no data cleaning had
been performed on this data for an ML project before ours.

As discussed in Section 3 the precise meaning of various
fields in the logs was critical to determining if the event ought
to result in a training example as well as the construction of
relevant features. In the early phase, we discovered several
documented fields that were not actually present in the logs,
because existing users of the Activity Service did not need
them. For instance, fields which denoted the mime type of a
document for certain classes of events were missing since they
were only used to display titles and links in the “Activity
Stream” in Drive. Timestamp fields were also a source of
concern since some were generated by the client (e.g. the
Drive app on Android devices) while other timestamps were
generated and logged on the server (e.g. time of request).
Finally, since the various fields in the logs came from different
systems owned by different teams, occasionally major changes
to the values being logged could invalidate the features. For
instance, the fields used to determine the type of client on
which an event happened may be updated with major changes
to Drive APIs invalidating models trained on older data.

In order to deal with data quality problems, we developed a
tool that tracked the mean and variance for each of the feature
values we gathered in our training data set and monitored
these statistics. If we noticed that some of these statistics
were off, we were able to tell that the fields underlying the
corresponding features were not being correctly populated.
This crude and simple check helped us gain confidence in the
data sources even when the organization structure made it
difficult to control the quality for an ML application.

4.2.1 Training-Serving Skew. In order to test the model
in a production setting, we ran an internal dark experiment
where the Drive client apps fetched our service predictions



for internal Google corpora, but instead of displaying, simply
logged them. The app also logged the document that the
user eventually opened. We measured the online performance
of the model and to our surprise we found that the actual
metrics were substantially worse than those that our offline
analysis predicted.

Careful analysis comparing prediction scores for candidates
in the offline evaluation pipeline and candidates being scored
online showed that the distributions were very different. This
led us to believe that either the training inputs were different
from the inputs being provided to the model in production,
or the real-life distribution of the requests was not reflected
in the data we acquired.

After further analysis we discovered that the Activity Ser-
vice produced different results when the data was requested
using an RPC versus scanning the Bigtable (our source of
training data). For instance, comment and comment-reply
events were treated differently – in the Bigtable, they were
treated as different event types, but when calling the RPC
endpoint they were both resolved to comment. While this
sort of discrepancy is pernicious for an ML application, it was
a desirable feature for existing applications (e.g. the Activity
Stream, which shows both as comment events). We discov-
ered several other such transformations yielding different
data depending on the access path.

Having discovered this major source of training-serving
skew, we considered two approaches to tackle it. The first
was to locate the list of transformations at the Activity
Service and apply the same set of transformations in the
data extraction pipeline. However, we quickly realized that
this might impose a significant maintenance burden as the
Activity Service modified this set of transformations. We
instead devised a new pipeline to generate the training data
by issuing RPCs to the Activity Service for each user, and
replacing the data from the offline dataset with the results
from the RPC. While this approach solved the problem of
skew introduced by the transformations, historical values
of features (e.g. total files created by the user) cannot be
obtained for scenarios that occurred in the past. To prevent
skew in such features, we advocate for gathering all training
data at the prediction service (see Section 4.2.2 below).

Once we retrained our models on the newly generated
training sets, we observed a marked improvement in the dark
experiment. We did continue to observe some skews, largely
because there was latency in propagating very recent (within
the last few minutes) activity from the logs to the Activity
Service. This meant that while the training data contained
all events up to the instant of the scenario, at the time of
applying the model, the last few minutes of activity were not
yet available. We are in the process of re-architecting our
data acquisition pipelines to log the data from the Activity
Service (and other sources) at the time we serve predictions
to be completely free of skew.

4.2.2 Dark-Launch and Iterate. For speculative projects
where the data services feeding into the prediction are not
owned by the same team building ML features, we advocate

the approach of starting a dark experiment early with a basic
set of features to gather clean training data and metrics. Even
when offline dumps are available, if the data are complex
and noisy, and owned by a different team with different goals
and features to support, we believe that this approach serves
to mitigate risk. Beyond initial feasibility analysis, isolating
dependence on offline data dumps can result in higher quality
training data, and captures effects such as data staleness, en-
suring that the training and inference distributions presented
to the model are as similar as possible.

4.3 Evolving Product Definition
As Quick Access evolved, we experimented with several differ-
ent UIs. These iterations were motivated by both UI concerns
and observed predictor performance. The original conception
of Quick Access was as a zero-state search, populating the
query box with predicted document suggestions. Because any
user could conceivably see such predictions, our main goal was
to improve accuracy@k (the fraction of scenarios correctly
predicted in the top k documents, k being the maximum
number of suggestions shown).

After assembling this UI and testing internally, we discov-
ered that this was a poor user experience (UX). Zero-state
search did not serve the bulk of users who are accustomed
to navigating through their directory trees to locate files.
Users who never used search would not benefit from this
approach. We abandoned this UI since it would only help a
small fraction of our users.

A second UI was designed to suggest documents proactively
on the home screen, in the form of a pop-up list containing
at most three documents, as shown in Figure 5 (A). Because
suggestions were overlayed, however, we felt that it was
critical predictions only appear when they were likely to be
correct, minimizing the likelihood of distracting the user with
poor suggestions. Consequently, our main metric shifted from
accuracy@k to coverage@accuracy = 0.8, defined as follows:

(1) Letting S be a set of scenarios, define a confidence
function f : S −→ [0, 1], which associates a single
confidence score to each scenario. In practice, this
was done using an auxiliary function Rk −→ [0, 1]
computed from the top k prediction scores as inputs.

(2) Find the lowest value t ∈ [0, 1] such that the accuracy
over the scenario set St := {s ∈ S|f (s) ≥ t} was at
least 0.8.

(3) Measure the coverage, defined as |St|
|S| .

By optimizing this metric, we would therefore be optimizing
the number of scenarios receiving high-quality predictions
(likely to be correct 80% of the time). The threshold t would
be used at inference time to decide whether or not to show
predictions.

Despite great progress optimizing this metric subsequent
UX studies raised a significant concern. The complexity of the
trigger made it difficult to explain to users when predictions
would appear. We were worried about an inconsistent UX,
both for individual users (suggestions appearing at some
times but not others), and across users (people wondering if



Figure 5: (A) Pop-up style UX considered, and (B) UX at
release.

the feature was working if they did not receive suggestions
while others were). We eventually settled on the current
document list displayed on top of the screen, marking a
return to the accuracy@k metric. Each such change required
changes to the offline evaluation pipeline, and the ability to
adapt to changing optimization objectives.

5 ONLINE METRICS
In this section, we discuss key metrics used to track the
impact of Quick Access and how some of the expectations
we held before launch did not bear out afterwards.

Since initial analysis of access patterns showed that users
often revisit documents that they accessed in the recent
past (to continue reading a document, collaborating on a
spreadsheet, etc.) we chose the Most-Recently-Used (MRU)
heuristic as a baseline. The choice of MRU was natural as it
is a commonly used heuristic in many web products (includ-
ing the “Recents” tab in Drive itself). We also considered a
more complex baseline that incorporated document access fre-
quency in addition to recency. Building such baseline would
have involved designing a heuristic for optimally combining
recency and frequency signals and determining the length of
historic time interval for frequency calculation. Instead, we
focused our effort on ML feature engineering which included
frequency-based features.

Table 2 shows the approximate increase in accuracy@3
numbers the ML model achieved relative to the MRU base-
line for users with various activity levels (classified by the
logarithm of the number of documents accessed in the recent
past).

Tracking performance online, we were later able to confirm
online that our ML models indeed outperform the MRU
heuristic for all classes of users. Furthermore, the relative
improvement over the MRU heuristic was larger for more
active users. We believe these users have more complex

User Class Relative Improvement
(ML over MRU)

Low Activity 3.8%
Medium Activity 13.3%
High Activity 18.5%

Table 2: Accuracy@3 for ML model vs. MRU for users with
different activity levels

behavior, and are therefore harder to predict. As a result,
the ML model out-performs the MRU heuristic by a larger
margin for the power users.

We define a few terms common to the discussions below.
A scenario, as mentioned earlier, denotes the user arriving at
the Drive home screen and eventually opening a document.
A hit is a scenario where the user clicked on a suggestion from
Quick Access. A miss is a scenario where the user opened
a document through other means (for instance, either by
navigating, or through search). We use the term hit rate to
refer to the ratio of the hits to the total scenarios.

5.1 Time-Saved Metric
A key objective for Quick Access is to present the documents
a user is likely to need next as soon as they arrive, thereby
saving the time it takes for our users to locate the content they
are looking for. We measured the mean time elapsed from
arriving at the Drive home screen to opening a document for
hit scenarios as compared to miss scenarios. These numbers
are presented in Table 3 for a 7-day period in 2017, over a
representative fraction of the traffic to Drive.

As the data shows, people take half as long to navigate to
their documents when using Quick Access when compared to
alternatives. We also measured the time elapsed for an open
before enabling the UI and observed that the average time
taken was not statistically different from the 18.4 seconds
reported above. As a result, we believe that faster opens can
be attributed to the UI treatment in Quick Access.

5.2 Hit Rate and Accuracy
Pre-launch, our offline analysis indicated that we were likely
to produce accurate predictions for a large class of users with
non-trivial usage patterns. In order to build more confidence
in our metrics, and to provide additional justification to
product leadership, we performed a dark launch and tracked
accuracy@3. We chose 3 because we expected this number
of documents to be visible without swiping on most devices.

We hoped that this number would be close to the engage-
ment rate we could expect once we enabled the UI. After
launching, we measured the engagement using the hit rate.

Measure Value
Average time elapsed for a hit 9.3 sec
Average time elapsed for a miss 18.4 sec
Percentage of time saved in a hit 49.5%

Table 3: Time-saved by Quick Access



Figure 6: Hit rate for different latency buckets.

Surprisingly, we found that the actual hit rate was substan-
tially lower than accuracy. Table 4 illustrates the approximate
hit rate and accuracy we observed for the ML model as well
as MRU the first few days after launching. The metrics
are normalized to the MRU accuracy to elide proprietary
statistics.

Instead of the hit rate equalling accuracy, it was substan-
tially lower, at approximately half the accuracy. In other
words, even when the right document was displayed in the
Quick Access UI, users clicked on it only about half the time.
Upon further analysis, we came up with two hypotheses
to understand and address this anomaly: latency and the
absence of thumbnails.

5.2.1 Latency. If the Quick Access predictions took too
long to render, users may simply scroll down to locate their
document instead of waiting. We tracked the hit rate sepa-
rately for different latency buckets as shown in Figure 6.

Unsurprisingly, we found that as the latency increased, the
hit rate decreased (of couse, accuracy remained unchanged).
While the actual task of computing the predictions took
very little time, some of the network calls had long tail
latencies, especially on slow cellular networks. Based on this,
we put in effort to improve the round-trip latency through
optimization in the server-side and client-side code. These
gradual improvements in latency, coupled with increasing
familiarity by users with the feature, resulted in a steady
increase in the post-launch hit rate over time even without
improvements in model accuracy as shown in Figure 7. As
a sanity check, we verified that this was true both for the
production model as well as the MRU baseline.

5.2.2 Thumbnails. A second hypothesis to explain the
gap between the hit rate and accuracy was the absence of
thumbnails. Users used to seeing thumbnails for the rest
of their documents might engage less with the new visual
elements which displayed the title of the document instead
of a thumbnail. In a fractional experiment, we were able to

Normalized Hit Rate Normalized Accuracy
MRU 0.488 1.0
Model 0.539 1.10

Table 4: Initial Hit-Rate@3 and Accuracy@3

Figure 7: Improvement in hit rate over time

quickly verify that the new UX indeed produced a substan-
tially higher hit rate. As the numbers in Table 5 show, for
a fixed accuracy level, the hit rate relative to the accuracy
increased from 0.533 to 0.624, an increase of 17%. The UI
mock without thumbnails is shown in Figure 5 (B) in contrast
to the current UI (Figure 1).

6 RELATED WORK
Quick Access draws on several areas of academic work as well
as applied machine learning. Techniques for search ranking
over private corpora using ML [6] are closely related. Efforts
in products like Google Inbox and Facebook Messenger that
try to provide a smart ordering of your private contacts when
you try to compose a new message are similar in spirit. How-
ever, there are no published studies describing the techniques
used and comparing them to heuristics.

Several recent papers attempt to model repeat consump-
tion behavior in various domains such as check-ins at the same
business or repeated watches of the same video. This body of
work identified several important aspects that are predictive
of repeat consumption such as recency, item popularity [5],
inter-consumption frequency [8] and user reconsumption ra-
tio [11]. We drew on these analyses to design several of the
features that we feed into the neural network.

There is a rich body of work on the interaction of privacy
with ML and data mining. Ideas such as k-anonymity [25]
and differential privacy [17] have been studied in various
data mining [4] and ML settings including for deep learn-
ing [2, 24]. In this paper, the problems we faced in building
this system were centered around making sure that useful
ML models could be developed without visual inspection for
data cleaning or feature identification. In contrast to the
questions considered in the literature, only the data that is
already visible to a given user is used to compute suggestions.

Normalized Hit Rate Normalized Accuracy
Old UX 0.533 1.0
New UX 0.624 1.0

Table 5: Impact of UX change on Hit-Rate@3 and Accu-
racy@3



Consequently, this paper does not focus on issues around pre-
venting private information from being inadvertently leaked
through ML driven suggestions.

7 CONCLUSIONS
In building Quick Access, we set out to improve a critical
user journey in Google Drive: getting the user to the file they
were looking for faster. People get to their documents 50%
faster with Quick Access than previously. With ML models
leveraging deep neural networks, we improved accuracy over
heuristics by as much as 18.5% for the most active users.

In grappling with the challenges this project presented,
we learned several lessons we believe will be helpful to the
applied ML community. When dealing with data sources that
were not initially designed with ML products in mind, we
advocate dark launching early to gather high-quality training
data. Even when offline data dumps are available, this serves
as a strategy to mitigate risks of training-serving skew. We
also advocate the construction of tools to monitor aggregate
statistics over the features to be alert to changes in the data
source.

We believe more academic attention to the problem of
building ML pipelines without being able to visually inspect
the underlying data for data cleaning and feature identi-
fication could help practitioners make faster progress on
deploying ML on private corpora.

Finally, having experimented extensively with heteroge-
neous inputs in deep neural networks, an area which has
received relatively little theoretical coverage compared to
homogeneous data (e.g. images and video), we feel that the
area is ripe for exploration.
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