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Abstract
New methods for modeling musical scores, often
based on deep learning, have made it possible
to automatically generate ever more convincing
compositions. However, these models are often
not accessible enough for artists to easily play and
experiment with on their own terms. Application
developers are already imagining ways to apply
their design expertise to this new class of AI tech-
nologies but often lack a sufficient background
in machine learning. Magenta.js is a new open
source library with a simple JavaScript API in-
tended to bridge this gap by abstracting away tech-
nical details, making it easier than ever for app
developers to create new interfaces to generative
models. Furthermore, because it is easily extensi-
ble, we hope that Magenta.js can foster a connec-
tion between the broader research community and
creative developers through contributions from
both groups. Finally, Magenta.js will open up the
possibility for a new type of compositional tool
that adapts to user preferences and behaviors in
real-time. Code and documentation are available
online at https://goo.gl/magenta/js.

1. Introduction
Deep learning has proven to be a powerful technique for
modeling complex data distributions, including music and
art. While there is some desire to use these models for
autonomous generation, a more transformative approach
involves using these models to augment–rather than replace–
human creativity to develop new processes, new art forms,
and new types of artists (Carter & Nielsen, 2017).

In order to invent the next generation of smart instruments
and compositional tools, interface developers and musicians
must be able to experiment with generative models in an
environment they are comfortable with. While there are
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notable examples of simple tools for creating instrument
interfaces with machine learning (Fiebrink & Cook, 2010),
using deep learning for generation has thus far relied on
frameworks targeted at researchers and backend developers
with a high level of machine learning expertise.

The recent advent of WebGL-accelerated frameworks, in-
cluding TensorFlow.js1, makes it possible to do efficient in-
ference and training within a desktop or mobile web browser
using common frontend languages like JavaScript. The web
provides a flexible, universal portal with an immense base
of existing developers and users. WebAudio and WebMIDI
supply an interface to professional music production tools,
making the web an ideal testbed for developing smart musi-
cal applications that are accessible to creators of all levels.
A high-level API that implements music generation mod-
els while hiding unnecessary complexities from developers
would remove the need for machine learning expertise, cre-
ating an environment that is rife with opportunity to revolu-
tionize music creation.

The purpose of Magenta.js is to to provide this higher-
level API for creative developers, utilizing TensorFlow.js
to be fast and extensible. While the goal of Magenta.js
is broader than just music, the first package of the suite,
@magenta/music, implements several state-of-the-art
models for music generation. We hope it will grow to in-
clude many more as researchers adopt it as a conduit for
engaging developers and end users.

2. API
The @magenta/music package contains a JavaScript
API for interacting with music generation models. Here
we discuss three major components of the API: data pro-
cessing, model interfaces, and accessing pre-trained models.

2.1. Data Processing

To provide a universal interface, a shared representation
of musical scores is required. We chose to use the
NoteSequence protocol buffer originally developed for
the Magenta Python library2. This data representation stores
fundamental aspects of note sequences (timing, pitches, in-

1https://js.tensorflow.org
2https://goo.gl/magenta/py
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struments, etc.) as well additional metadata (section labels,
chord information, etc.). It is serializable and can be ac-
cessed and modified via multiple languages.

The package also contains a TypeScript re-implementation
of a subset of the Magenta Python NoteSequence li-
brary, including functionality for converting to and from
MIDI and synthesizing audio for playback. There is also
a set of DataConverter classes to convert between
NoteSequences and the tensors that are used as input
and output to the neural networks. These converters mir-
ror those used in the Python library, enabling inference on
models trained with TensorFlow.

2.2. Model Interfaces

We are initially supplying two model classes: MusicRNN
and MusicVAE.

2.2.1. MUSICRNN

Since the early 1990s, researchers have experimented with
neural network music composition based on language mod-
elling, including simple recurrent networks (Todd, 1991),
RNNs trained using backpropagation through time (Mozer,
1994), and LSTM networks (Eck & Schmidhuber, 2002).
See (Briot et al., 2017) for a full overview.

The MusicRNN class implements a combination of ideas
from this body of work, including models for melodies,
drum patterns, and polyphonic human piano performances.
A typical interaction for this type of model is to extend a
priming sequence, similar to “auto-complete” in text.

In our interface, this interaction is achieved by call-
ing continueSequence and providing a priming
NoteSequence, which may be empty for pure sampling.
Additionally, the method accepts an optional chord sequence
for models that support this type of conditioning.

2.2.2. MUSICVAE

The MusicVAE class implements several variants of the
more recent hierarchical recurrent variational autoencoder
described in (Roberts et al., 2018), including models for
melodies, drum patterns, and multi-instrument sequences.

Autoencoders support a different set of interactions than lan-
guage models. The implemented methods include encode
and decode, to encode a NoteSequence into a latent
vector and decode a latent vector into a NoteSequence,
respectively. These two methods are sufficient to enable
a rich set of latent space operations including sampling,
interpolation, and attribute vector arithmetic. We provide
interpolate and sample methods for simplicity.

As with MusicRNN, these methods accept optional argu-
ments for chord conditioning when supported by the model.

2.3. Loading Models

A key to making it trivial for all developers to use ma-
chine learning in their applications is to provide pre-trained
models. Our approach is to host weights along with config-
urations in JSON format. The configuration contains all pa-
rameters of a model that cannot be inferred from names and
shapes of the weights. A JSON-formatted list of hosted mod-
els along with their descriptions and URLs is maintained at
https://goo.gl/magenta/js-checkpoints.

To use a particular model, a developer simply instantiates
the correct model class with a URL for its configuration and
weights (see Figure 1, line 6).

So that others may host their own trained models, we
also provide a script for extracting weights from Tensor-
Flow checkpoints along with specifications for the JSON-
formatted configuration file.

3. Examples
Figure 1 implements a simple web application built with
Magenta.js. When a user clicks the “Play Trio” button, the
model is loaded and a sample is played back. A number of
more interesting apps have already been made by others3.

1 <html>
2 <head>
3 <script src="https://cdn.jsdelivr.net/npm/@magenta/

music@1.0.0"></script>
4 <script>
5 // Instantiate model by loading desired config.
6 const model = new mm.MusicVAE(
7 'https://storage.googleapis.com/magentadata/js/

checkpoints/music_vae/trio_4bar');
8 const player = new mm.Player();
9

10 function play() {
11 mm.Player.tone.context.resume(); // enable audio
12 model.sample(1)
13 .then((samples) => player.start(samples[0]));
14 }
15 </script>
16 </head>
17 <body><button onclick="play()">Play Trio</button></body>
18 </html>

Figure 1. A minimal web application that samples and plays back
a 4-bar “trio” from a MusicVAE model. This application is hosted
at https://goo.gl/magenta/simpletrio.

4. Conclusion
With Magenta.js, we provide an API to help bridge the gap
between researchers, developers, and creators. We hope
our open source approach will lead to contributions from
all three communities as new models and creative tools are
developed. Magenta.js also lays the groundwork for the in-
browser refinement and personalization of models based on
user preferences and behavior (Jaques et al., 2018), which
we plan to explore in future work.

3https://g.co/magenta/demos
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