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Abstract

We study GREEDY routing over n nodes placed in a ring, with the distance between two nodes
defined to be the clockwise or the absolute distance between them along the ring. Such graphs arise
in the context of modeling social networks and in routing networks for peer-to-peer systems. We
construct the first network over n nodes in which GREEDY routing takes O(logn/logd) hops in the

worst-case, with d out-going links per node. Our result has the first asymptotically optimal greedy

2
routing complexity. Previous constructions required O(l‘)gT") hops.

1 Introduction

We study GREEDY routing over uni-dimensional metrics! defined over n nodes lying in a ring. GREEDY
routing is the strategy of forwarding a message along that out-going edge that minimizes the distance
remaining to the destination:

DEFINITION (Greedy Routing). In a graph (V, E) with a given distance function § : VXV — R,
GREEDY routing entails the following decision: Given a target node t, a node u with neighbors
N(u) forwards a message to its neighbor v € N(u) such that §(v,t) = minge () 6(z,1).

Two natural distance metrics over n nodes placed in a circle are the clockwise-distance and the absolute-
distance between pairs of nodes:

vV —1U v>u
5clockwise (u7 U) = .
n+v—u otherwise

min{v —u,n+u—v} v>u

5absolute(uvv) = {

min{u —v,n +v —u} otherwise
In this paper, we study the following related problems for the above distance metrics:

1. Given integers d and A, what is the largest graph that satisfies two constraints: the out-degree
of any node is at most d, and the length of the longest GREEDY route is at most A hops?

II. Given integers d and n, design a network in which each node has out-degree at most d such that
the length of the longest GREEDY route is minimized.
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Summary of results

1. We construct a family of network topologies, the Papillon?, in which GREEDY routes are as-
ymptotically optimal. For both Jeockwise and dgpsolute; Papillon has GREEDY routes of length
A = O(logn/logd) hops in the worst-case when each node has d out-going links. Papillon is
the first construction that achieves asymptotically optimal worst-case GREEDY routes.

2. Upon further investigation:, two properties of Papillon emerge: (a) GREEDY routing does not send
messages along shortest paths, and (b) Edge congestion with GREEDY routing is not uniform —
some edges are used more often than others. We exhibit the first property by identifying routing
strategies that result in paths shorter than those achieved by GREEDY routing. In fact, one of these
strategies guarantees uniform edge-congestion.

3. Finally, we consider another distance function &4, (u,v), defined as the number of bit-positions
in which v and v differ. .4 occurs naturally, e.g., in hypercubes, and GREEDY routing with {0
routes along shortest paths in them. We construct a variant of Papillon that supports asymptotically
optimal routes of length ©(log n/log d) in the worst-case, for GREEDY routing with distance function

5zor-

2 Related Work

GREEDY routing is a fundamental strategy in network theory. It enjoys numerous advantages. It is com-
pletely decentralized, in that any node takes routing decisions locally and independently. It is oblivious,
thus message headers need not be written along the route. It is inherently fault tolerant, as progress
toward the target is guaranteed so long as some links are available. And it has good locality behavior in
that every step decreases the distance to the target. Finally, it is simple to implement, yielding robust
deployments. For these reasons, GREEDY routing has long attracted attention in the research of network
design. Recently, GREEDY routing has witnessed increased research interest in the context of decentralized
networks. Such networks arise in modeling social networks that exhibit the “small world phenomenon”,
and in the design of overlay networks for peer-to-peer (P2P) systems. We now summarize known results
pertaining to GREEDY routing on a circle.

The Role of the Distance Function

Efficient graph constructions are known that support GREEDY routing with distance function other than
Oclockwises Oabsolute and Ozor. For de Bruijn networks, the traditional routing algorithm (which routes
almost always along shortest paths) corresponds to GREEDY routing with 6(u,v) defined as the longest
suffix of u that is also the prefix of v. For a 2D grid, shortest paths correspond to GREEDY routing with
d(u,v) defined as the Manhattan distance between nodes u and v.

For GREEDY routing on a circle, the best-known constructions have d = ©(logn) and A = ©(logn).
Examples include: Chord [SMK™01] with distance-function dockwise, @ variant of Chord with “bidirec-
tional links” [GM04] and distance-function dgpsorute; and the hypercube with distance function d,4r. In
this paper, we improve upon all of these constructions by showing how to route in ©(logn/logd) hops
in the worst case with d links per node.

GREEDY Routing in Deterministic Graphs

The Degree-Diameter Problem, studied in extremal graph theory, seeks to identify the largest graph with
diameter A, with each node having out-degree at most d (see Delorme [D04] for a survey). The best

2Qur constructions are variants of the well-known butterfly family, hence the name Papillon.



constructions for large A tend to be sophisticated [BDQ92, CG92,E01]. A well-known upper bound is
Nd,A)=1+d+d>+---+d> = dAl:l_l, also known as the Moore bound. A general lower bound is
d® +d>~1, achieved by Kautz digraphs [K68,K69], which are slightly superior to de Bruijn graphs [dB46]
whose size is only d®. Thus it is possible to route in O(logn/logd) hops in the worst-case with d out-
going links per node. Whether GREEDY routes with distance functions d.jockwise OF Oubsolute Can achieve
the same bound, is the question we have addressed in this paper.

GREEDY routing with distance function dgpsoiute has been studied for Chord [GMO04], a popular topol-
ogy for P2P networks. Chord has 2° nodes, with out-degree 2b — 1 per node. The longest GREEDY route
takes |b/2| hops. In terms of d and A, the largest-sized Chord network has n = 222+! nodes. Moreover,
d and A cannot be chosen independently — they are functionally related. Both d and A are ©(logn).
Analysis of GREEDY routing of Chord leaves open the following question:

For GREEDY routing on a circle, is A = Q(logn) when d = O(logn)?

Xu et al. [XKYO03] provide a partial answer to the above question by studying GREEDY routing with
distance function 0 ockwise OVer uniform graph topologies. A graph over n nodes placed in a circle is
said to be uniform if the set of clockwise offsets of out-going links is identical for all nodes. Chord is an
example of a uniform graph. Xu et al. show that for any uniform graph with O(logn) links per node,
GREEDY routing with distance function d.ocrwise necessitates Q(logn) hops in the worst-case.

Cordasco et al. [CGHT04] extend the result of Xu et al. [XKY03] by showing that GREEDY routing with
distance function dcjockwise in a uniform graph over n nodes satisfies the inequality n < F(d + A + 1),
where d denotes the out-degree of each node, A is the length of the longest GREEDY path, and F(k)
denotes the k' Fibonacci number. It is well-known that F(k) = [¢*/v/5], where ¢ = 1.618... is the
Golden ratio and [z] denotes the integer closest to real number z. It follows that 1.441logsn < d+ A+ 1.
Cordasco et al. show that the inequality is strict if |d — A| > 1. For |d — A| < 1, they construct uniform
graphs based upon Fibonacci numbers which achieve an optimal tradeoff between d and A.

The results in  [GMO04, XKY03, CGH'04] leave open the question whether there exists any graph
construction that permits GREEDY routes of length ©(logn/log d) with distance function 0 .pckwise and/or
Oabsolute- Papillon provides an answer to the problem by constructing a non-uniform graph — the set of
clockwise offsets of out-going links is different for different nodes.

GREEDY Routing in Randomized Graphs

GREEDY routing over nodes arranged in a ring with distance function d.jockwise has recently been studied
for certain classes of randomized graph constructions. Such graphs arise in modeling social networks that
exhibit the “small world phenomenon”, and in the design of overlay networks for P2P systems.

In the seminal work of Kleinberg [K00|, a randomized graph was constructed in order to explain the
“small world phenomenon”, first identified by Milgram [M67]. The phenomenon refers to the observation
that individuals are able to route letters to unknown targets on the basis of knowing only their immediate
social contacts. Kleinberg considers a set of nodes on a uniform two-dimensional grid. It proposes a link
model in which each node is connected to its immediate grid neighbors, and in addition, has a single long
range link drawn from a normalized harmonic distribution with power 2. In the resulting graph, GREEDY
routes have length at most O(log2 n) hops in expectation; this complexity was later shown to be tight by
Barriere et al. in [BFKKO1].

Kleinberg’s construction has found applications in the design of overlay routing networks for Distrib-
uted Hash Tables. Symphony [MBRO03] is an adaptation of Kleinberg’s construction in a single dimension.
The idea is to place n nodes in a virtual circle and to equip each node with d > 1 out-going links. In
the resulting network, the average path length of GREEDY routes with distance function d.ockwise 1S
O(% log? n) hops. Note that unlike Kleinberg’s network, the space here is virtual and so are the distances



and the sense of GREEDY routing. The same complexity was achieved with a slightly different Kleinberg-
style construction by Aspnes et al. [ADS02]. In the same paper, it was also shown that any symmetric,
randomized degree-d network has Q( dllgggfogn) GREEDY routing complexity.
Papillon outperforms all of the above randomized constructions, using degree d and achieving O (logn/log d)
routing. It should be possible to randomize Papillon along similar principles to the Viceroy [MNRO02]

randomized construction of the butterfly network, though we do not pursue this direction here.

Summary of Known Results

With ©(log n) out-going links per node, several graphs over n nodes in a circle support GREEDY routes with
©(logn) GREEDY hops. Deterministic graphs with this property include: (a) the original Chord [SMK™01]
topology with distance function d¢jockwise, (b) Chord with edges treated as bidirectional [GMO04] with dis-
tance function dgpsepute. This is also the known lower bound on any uniform graph with distance function
Sctockwise | XKY03]. Randomized graphs with the same tradeoff include randomized-Chord [GGGT03,
ZGGO03] and Symphony [MBRO03]| — both with distance function d¢jockwise- With degree d < logn, Sym-
phony [MBRO3] has GREEDY routes of length ©((logZn)/d) on average. The network of [ADS02] also
supports GREEDY routes of length O((log?n)/d) on average , with a gap to the known lower bound on

their network of €( dllgggfo’;n).

The above results are somewhat discouraging, because routing that is non-GREEDY can achieve much
better results. In particular, networks of degree 2 with hop complexity O(logn) are well known, e.g., the
Butterfly and the de Bruijn (see for example [L92] for exposition material). And networks of logarithmic
degree can achieve O(logn/loglogn) routing complexity (e.g., take the degree-log, n de Bruijn). Routing
in these networks is non-GREEDY according to any one of our metrics (Ocjockwises Oabsolutes a0d dzor).

The Papillon construction demonstrates that we can indeed design networks in which GREEDY routing
along these metrics has asymptotically optimal routing complexity. Our contribution is a family of
networks that extends the Butterfly network family, so as to facilitate efficient GREEDY routing. With
d links per node, GREEDY routes are ©(logn/logd) in the worst-case, which is asymptotically optimal.
For d = o(logn), this beats the lower bound of [ADS02] on symmetric, randomized greedy routing
networks (and it meets it for d = O(logn). In the specific case of d = logn, our greedy routing achieves
O(logn/loglogn) average route length.

GREEDY with LOOKAHEAD

Recent work [MNWO04] explores the surprising advantages of GREEDY with LOOKAHEAD in randomized
graphs over n nodes in a circle. The idea behind LOOKAHEAD is to take neighbor’s neighbors into account
to make routing decisions. It shows that greedy with LOOKAHEAD achieves O(log2 n/dlogd) expected
route length in Symphony [MBRO3]. For other networks which have ©(logn) out-going links per node,
e.g., randomized-Chord [GGGT03,ZGG03], randomized-hypercubes [GGGT03], skip-graphs [AS03] and
SkipNet [HJST 03], average path length is ©(logn/loglogn) hops. Among these networks, Symphony and
randomized-Chord use GREEDY routing with distance function d.ockwise- Other networks use a different
distance function (none of them uses d0.). For each of these networks, with O(logn) out-going links per
node, it was established that plain GREEDY (without LOOKAHEAD) is sub-optimal and achieves Q(logn)
expected route lengths. The results suggest that LOOKAHEAD has significant impact on GREEDY routing.

Unfortunately, realizing GREEDY routing with LOOKAHEAD on a degree-k network implies that O(k?)
nodes need to be considered in each hop, while plain GREEDY needs to consider only k£ nodes. For
k = logy n, this implies a O(logn) overhead for LOOKAHEAD routing in every hop.

Papillon demonstrates that it is possible to construct a graph in which each node has degree d and
in which GREEDY without 1-LOOKAHEAD has routes of length O(logn/logd) in the worst case, for the



metrics Oejockwises Oabsolute aNd Ozor. Furthermore, for all d = o(logn), plain GREEDY on our network
design beats even the results obtained in [MNWO04] with 1-LOOKAHEAD.

Previous Butterfly-based Constructions
Butterfly networks have been used in the context of routing networks for DHTs as follows:

1. Deterministic butterflies have been proposed for DHT routing by Xu et al. [XKY03], who subse-
quently developed their ideas into Ulysses [KMXY03]. Papillon for distance function d.ockwise has
structural similarities with Ulysses — both are butterfly-based networks. The key differences are as
follows: (a) Ulysses does not use dgpsorute as its distance function, (b) Ulysses does not use GREEDY
routing, and (c) Ulysses uses more links than Papillon for distance function d¢ockwise — additional
links have been introduced to ameliorate non-uniform edge congestion caused by Ulysses’ routing
algorithm. In contrast, the CONGESTION-FREE routing algorithm developed in §4 obviates the need
for any additional links in Papillon (see Theorem 5).

2. Viceroy [MNRO2] is a randomized butterfly network which routes in O(logn) hops in expectation
with ©(1) links per node. Mariposa (see reference [M04] or [MO03]) improves upon Viceroy by
providing routes of length O(logn/logd) in the worst-case, with d out-going links per node. Viceroy
and Mariposa are different from other randomized networks in terms of their design philosophy. The
Papillon topology borrows elements of the geometric embedding of the butterfly in a circle from
Viceroy [MNRO2] and from [M03], while extending them for GREEDY routing.

3 Papillon

We construct two variants of butterfly networks, one each for distance-functions &¢ockwise and gpsolute-
The network has n nodes arbitrarily positioned on a ring. We label the nodes from 0 to n — 1 according
to their order on the ring. For convenience, x mod n always represents an element lying in the range
[0,n — 1] (even when z is negative, or greater than n — 1).

DEFINITION (Papillon for dciockwise):  Belockwise(K, m) is a directed graph, defined for any pair of
integers k,m > 1

1. Let n = k™m.
2. Let L(u) = (m — 1) — (umod m). Fach node has k links. For node u, these directed links
are to nodes (u -+ x) mod n, where x € {1+ imx*™ | i € [0,x —1]}.

We denote the link with node (u+ 1) mod n as u’s “short link”. The other k — 1 links are
called u’s “long links”.

DEFINITION (Papillon for dapsotute).-  Babsotute (k,m) is a directed graph, defined for any pair of
integers k,m > 1,

1. Letn = (2k +1)™m.

2. Let L(u) = (m — 1) — (umod m). Fach node has 2k + 2 out-going links. Node u makes
2k + 1 links with nodes (u+ x) mod n, where x € {1+ im(2k +1)*™ | i € [—k, +k]}. Node
u also makes an out-going link with node (u + =) mod n, where x = —m + 1.

We denote the link with node (u+ 1) mod n as u’s “short link”. The other 2k + 1 links are
called u’s “long links”.



In both Biockwise and Bapsotute, all out-going links of node w are incident upon nodes with level
({(u) —1) mod m. In Beockwise, the short links are such that each hop diminishes the remaining clockwise
distance by at least one. Therefore, GREEDY routing is guaranteed to take a finite number of hops. In
Bapsolute; N0t every GREEDY hop diminishes the remaining absolute distance. However, GREEDY routes
are still finite in length, as we show in the proof of Theorem 2.

Theorem 1. GREEDY 71outing in Biockwise With distance function dgockwise takes 3m — 2 hops in the
worst-case. The average is less than 2m — 1 hops.

Proof. For any node u, we define SPAN(u) = {v | 0 < dgjockwise(U, v) < m/ﬂz(“)ﬂ}. Let t and u denote
the target node and the current node, respectively. Routing proceeds in (at most) three phases:

Phase I: t ¢ SPAN(u) (at most m — 1 hops)
Phase II: ¢t € SPAN(u) and dgockwise(u,t) > m  (at most m hops)
Phase III: ¢t € SPAN(u) and 0cockwise(u,t) < m  (at most m — 1 hops)

We now prove upper bounds on the number of hops in each phase.

I. The out-going links of u are incident upon nodes at level (¢(u) —1) mod m. So eventually, the level
of the current node u will be m — 1. At this point, ¢ € SPAN(u) because SPAN(u) includes all the
nodes. Thus Phase 1 lasts for at most m — 1 hops (mTfl hops on average).

II. GREEDY will forward the message to some node v such that ¢ € SPAN(v) and ¢(v) = ¢(u) — 1.
Eventually, the current node u will satisfy the property ¢(u) = 0. This node will forward the
message to some node v with ¢(v) = m — 1 such that dgockwise(v,t) < m, thereby terminating this
phase of routing. There are at most m hops in this phase (at most m on average as well).

III. In this phase, GREEDY will decrease the clockwise distance by exactly one in each hop by following
m—1

the short-links. Eventually, target ¢ will be reached. This phase takes at most m — 1 hops ("5
hops on average).

The worst-case route length is 3m — 2. On average, routes are at most 2m — 1 hops long. O

Theorem 2. GREEDY routing in Bapsoute With distance function Sqpsolute takes 3m —2 hops in the worst-
case. The average is less than 2m — 1 hops.

Proof. For any node u, we define

£(u)
SPAN (1) = {v | dabsotute (1, v) = [c+m Y _(2k +1)'di|, ¢ € [0,m — 1], d; € [k, +k] }.
i=0
Let t and u denote the target node and the current node, respectively.
Routing proceeds in (at most) three phases:

Phase I: ¢ & SPAN(u) (at most m — 1 hops)
Phase II: ¢ € SPAN(u) and dgpsorute(u,t) > m  (at most m hops)
Phase III: ¢ € SPAN(u) and dgpsorute(u,t) < m  (at most m — 1 hops)

We now prove upper bounds on the number of hops in each phase.
I. All out-going links of node u are incident upon nodes at level (¢(u) — 1) mod m. So eventually, the

current node u will satisfy the property ¢(u) = m—1. At this point, ¢ € SPAN(u) because SPAN(u)
includes all nodes. Thus Phase I lasts at most m — 1 hops (at most mT_l hops on average).



IT. Phase 2 terminates if target node ¢ is reached, or if dupsorute (U, t) < m. Node u always forwards the
message to some node v such that ¢ € SPAN(v) and ¢(v) = ¢(u) — 1. So eventually, either target ¢
is reached, or the current node u satisfies the property ¢(u) = 0. At this point, if node u forwards
the message to node v, then it is guaranteed that ¢(v) = m — 1 and dapsorute(v,t) < m, thereby
terminating Phase II. There are at most m hops in this phase (at most m on average as well).

ITI. The target node ¢t is reached in at most m — 1 hops (the existence of the “back edge” that connects
node u to node (u+ 1 —m) mod n guarantees this). This phase takes at most m — 1 hops (at most
mT_l hops on average).

The worst-case route length is 3m — 2. On average, routes are at most 2m — 1 hops long. O

Routes in both Bgockwise and Bapsoiute are at most 3m — 2 hops, which is O(log(x™m)/log k) and
O(log((2k + 1)™m)/log(2k + 2)), respectively. Given degree d and diameter A, the size of Papillon is
n = 208 A nodes. Given degree d and network size n, the longest route has length A = O(logn/ log d).

4 Improved Routing Algorithms for Papillon

GREEDY routing does not route along shortest-paths in Bockwise and Bapsolute: We demonstrate this
constructively below, where we study a routing strategy called HYPERCUBIC-ROUTING which achieves
shorter path lengths than GREEDY.

Hypercubic Routing

Theorem 3. There exists a routing strateqy for Beockwise in which routes take 2m — 1 hops in the
worst-case. The average is at most 1.5m hops.

Proof. Consider the following HYPERCUBIC-ROUTING algorithm on Bgjocpwise- Let s be the source node,
t the target, and let dist = dcjockwise(S,t) = ¢+ m + mzzigl_l K'd; with 0 < c <mand 0 < d; < K (dist
has exactly one such representation, unless dist < m in which case routing takes < m hops).

Phase I: Follow the short-links to “fix” the c-value to zero. This takes at most m — 1 hops (at most
0.5m hops on average).

Phase II: In exactly m hops, “fix” the d;’s in succession to make them all zeros: When the current
node is u, we fix dy,) to zero by following the appropriate long-link, i.e., by shrinking the clockwise
distance by d@(u)nz(“)m + 1. The new node v satisfies £(v) = ({(u) + m — 1)(mod m). When each d; is
zero, we have reached the target.

Overall, the worst-case route length is 2m — 1. Average route length is at most 1.5m. O

Theorem 4. There exists a routing strateqy for Bupsolute 1 which routes take 2m — 1 hops in the worst-
case. The average is at most 1.bm hops.

Proof. Let s be the source node, t the target.

Phase I: Follow the short-links in the clockwise direction, to reach a node s’ such that £(s’) = £(¢).
This takes at most m — 1 hops (at most 0.5m hops on average). The remaining distance can be expressed
as m—+ mZﬁzgl_l(2k + l)idi where —k < d; < k. There is a unique such representation.

Phase II: In exactly m hops, “fix” the d;’s in succession to make them all zeros: When the current node
is u, we fix dy, by following the appropriate long-link, i.e., by traveling distance 1 + dg(u)(2k' + 1)5(“)m
along the circle (this distance is positive or negative, depending upon the sign of dy,). The new node v
satisfies £(v) = ({(u) — 1)(mod m). When each d; is zero, we have reached the target.

Overall, the worst-case route length is 2m — 1. Average route length is at most 1.5m. O



Note that the edges that connect node u to node (u+ 1 —m) mod n are redundant for HYPERCUBIC-
ROUTING since they are never used. However, these edges play a crucial role in GREEDY routing in
Bapsotute (to guide the message to the target in Phase 3).

Congestion-Free Routing

Theorems 3 and 4 prove that GREEDY routing is sub-optimal in the constants. HYPERCUBIC-ROUTING,
as described above, is faster than GREEDY. However, it causes edge-congestion because short-links are
used more often than long-links. Let m denote the ratio of maximum and minimum loads on edges
caused by all (Z) pairwise routes. HYPERCUBIC-ROUTING for Bjockwise consists of two phases (see Proof
of Theorem 3). The load due to Phase II is uniform — all edges (both short-links and long-links) are used
equally. However, Phase I uses only short-links, due to which 7 # 1. We now modify the routing scheme
slightly to obtain m = 1 for both Bjockwise and Bapsolute-

Theorem 5. There exists a congestion-free routing strategqy in Bejockwise that takes 2m — 1 hops in the
worst-case and at most 1.5m hops on average, in which ™= 1.

Proof. The theorem is proved constructively, by building a new routing strategy called CONGESTION-
FREE. This routing strategy is exactly the same as HYPERCUBIC-ROUTING, with a small change.

Let s be the source node, t the target. Let ¢ = (¢ + m — s) mod m, the difference in levels between
¢(s) and £(t).

Phase I: For ¢ steps, follow any out-going link, chosen uniformly at random. We thus reach a node s’
such that £(s") = £(¢). A

Phase II: The remaining distance is dist = dockwise(sst) = m + mZﬁigl_l k'd; with 0 < d; < k.
Continue with Phase II of the HYPERCUBIC-ROUTING algorithm for Bjockwise (see Theorem 3).

It is easy to see that in this case, all outgoing links (short- and long-) are used with equal probability
along the route. Hence, m = 1. O

Theorem 6. There exists a congestion-free routing strateqy in Bapsoiute that takes 2m — 1 hops in the
worst-case and at most 1.bm hops on average, in which ™= 1.

Proof. We will ignore the edges that connect node u to node (u + 1 —m) mod n (recall that these edges
are not used in HYPERCUBIC-ROUTING described in Theorem 4). We will ensure m = 1 for the remainder
of the edges.

CONGESTION-FREE routing follows the same idea as that for Bgockwise (Theorem 5): Let s be the
source node, t the target. Let ¢ = (¢t + m — s) mod m, the difference in levels between ¢(s) and £(t). In
Phase I, for ¢ steps, we follow any out-going link, chosen uniformly at random. We thus reach a node s’
such that £(s’) = £(t). In Phase II, we continue as per Phase II of the HYPERCUBIC-ROUTING algorithm
for Bapsoiute (Theorem 4).

An alternate CONGESTION-FREE routing algorithm for Bgpseiute that routes deterministically is based
upon the following idea: We express any integer a € [—k, +k| as the sum of two integers: o’ = | (k + a)/2]
and a” = —|(k — a)/2]. Tt is easy to verify that a = a’+a”. Now if we list all pairs (da’, ") for a € [—k, +k],
then each integer in the range [—k, +k| appears exactly twice as a member of some pair.

Let s be the source node, ¢ the target. Let ¢ = (t + m — s) mod m, the difference in levels between
¢(s) and £(t). The remaining distance is dist = ¢ +m +m Y .=g" ' (2k + 1)'d; with —k < d; < k (there is
a unique way to represent dist in this fashion).

Phase I: For c¢ steps, if the current node is u, then we follow the edge corresponding to dlZ(u)’ ie.,

the edge that covers distance 1 + md’g(u)(Qk‘ + 1) (in the clockwise or the anti-clockwise direction,
depending upon the sign of dé(u)). At the end of this phase, we reach a node s’ such that £(s") = £(t).



Phase II: Continue with Phase II of the HYPERCUBIC-ROUTING algorithm for Bypsorute (Theorem 4),
for exactly m steps.

Due to the decomposition of integers in [—k, +k] into pairs, as defined above, all outgoing links (short-
and long-) are used equally. Hence, 7 = 1. O

Notes: In the context of the current Internet, out-going links correspond to full-duplex TCP connec-
tions. Therefore, the undirected graph corresponding to Bupsoiute is of interest. In this undirected graph,
it is possible to devise congestion-free routing with 7 = 1, maximum path length m + |m/2] and average
route-length at most 1.25m. This is achieved by making at most [m/2] initial random steps either in the
down or the up direction, whichever gets to a node with level £(t) faster.

5 Papillon with Distance Function d,,,

In this Section, we define a variant of Papillon in which GREEDY routing with distance function ., results
in worst-case route length O(logn/logd), with n nodes, each having d out-going links. For integers s and
t, Ozor(s,t) is defined as the number of bit-positions in which the binary representations of s and ¢ differ.

DEFINITION (Papillon for dz0r).  Bzor(A,m) is a directed graph, defined for any pair of integers
A,m > 1 where X is a power of two.

1. The network has n = mA\™ nodes labeled from 0 to n — 1.

2. Let u denote a node. Let {(u) denote the unique integer x € [0,m — 1] that satisfies
A" <u < (z+ 1)A\™. The node u makes links with nodes with labels

((6(w) + 1) mod m)A™ + X where 0<i <\

Thus, if (u,v) is an edge, then £(v) = (¢(u) + 1) mod m.

Theorem 7. GREEDY routing in By, with distance function 0., takes 2m — 1 hops in the worst-case.
The average is at most 1.5m hops.

Proof. Let the current node be s. Let ¢ denote the target node. Then s @ t, the bit-wise exclusive-OR of
s and ¢, can uniquely be expressed as ¢+ Zi’onfl Mid;, where ¢ > 0 and 0 < d; < . Routing proceeds in
two phases. In Phase I, each of the d; is set to zero. This takes at most m steps (at most m on average).
In Phase II, the most significant [log, m] bits of s @ ¢ are set to zero, thereby reaching the target. This

phase takes at most m — 1 hops (at most mT_l on average). O

6 Summary

We presented Papillon, a variant of multi-butterfly networks which supports asymptotically optimal
GREEDY routes of length O(logn/logd) with distance functions 0cockwises dabsolute and dzor, when each
node makes d out-going links, in an n-node network. Papillon is the first construction with this property.

Some questions that remain unanswered:

1. Is it possible to devise graphs in which GREEDY routes with distance function d.ockwise MG Ogbsolute
are along shortest-paths? As Theorems 3 and 4 illustrate, GREEDY routing on Papillon do not
route along shortest-paths. Is this property inherent in GREEDY routes?



2. What is the upper-bound for the Problem of Greedy Routing on the Circle?  Papillon furnishes
a lower-bound, which is asymptotically optimal. However, constructing the largest-possible graph
with degree d and diameter A, is still an interesting combinatorial problem.
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