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I
n 1913, the Scottish physiologist John Scott Haldane 
proposed the idea of bringing a caged canary into a 
mine to detect dangerous gases. More than 100 years 
later, Haldane’s canary-in-the-coal-mine approach is 
also applied in software testing.

In this article, the term canarying refers to a partial and 
time-limited deployment of a change in a service, followed 
by an evaluation of whether the service change is safe. 
The production change process may then roll forward, 
roll back, alert a human, or do something else. Effective 
canarying involves many decisions—for example, how to 
deploy the partial service change or choose meaningful 
metrics—and deserves a separate discussion.

Automated 
canarying 

quickens 
development, 

improves 
production 
safety, and 

helps prevent 
outages.
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Google has deployed a shared centralized service called 
CAS (Canary Analysis Service) that offers automatic (and 
often autoconfigured) analysis of key metrics during a 
production change. CAS is used to analyze new versions 
of binaries, configuration changes, data-set changes, and 
other production changes. CAS evaluates hundreds of 
thousands of production changes every day at Google.

WORKFLOW WITH CAS
CAS requires a very strict separation between modifying 
and analyzing production. It is a purely passive observer: it 
never changes any part of the production system. Related 
tasks such as canary setup are performed outside of CAS. 

In a typical CAS workflow (shown in figure 1), the rollout 
tool responsible for the production change deploys a 
change to a certain subset of a service. It may perform 
some basic health checks of its own. For example, if 
pushing a new version of an HTTP server causes a process 
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restart, the rollout tool might wait until the server marks 
itself as able to serve before proceeding. (This may also 
inform the deployment speed of the production change. 
This rollout tool behavior is not specific to canarying.)

This subset of production now constitutes the canary 
population. By conducting an A/B test compared to a 
control population, CAS answers the question, “Is the 
canary meaningfully worse?” The control population is a 
(possibly strict) subset of the remainder of the service. 
Importantly, CAS is not trying to establish absolute health.

The population should be as fine-grained as possible. 
For example, an application update can use a global 
identifier of that particular process, which at Google 
would be a BNS (Borg Naming Service) path. A BNS path 
is structured as /bns/<cluster>/<user>/<job name>/<task 
number>. The job name is a logical name of the application, 
and task number is the identifier of a particular instance.2 
For a kernel update, the identifier might be machine 
hostname: clearly, multiple processes can run on the same 
machine, but (modulo virtualization) you are limited to 
a single running kernel, so granularity is defined at the 
machine level. Granularity allows the caller to slice and 
dice the overall service with no restrictions at runtime, and 
it makes a static preexisting canary setup unnecessary.

Once the canary population is set up, the rollout tool 
requests a verdict from CAS. This request specifies the 
canary and control populations, as well as a time range for 
each member of that population. An entity’s canary status 
can be ephemeral: the canary only became a canary at 
some specific point in time; before that time, it did not have 
the tested production change.
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The request also contains a reference to a user-supplied 
configuration, if one exists. As discussed in the following 
section, CAS tries to provide value, even without external 
configuration, by enforcing things we hold generally true. 

CAS provides a point-in-time verdict after evaluation: 
a simple PASS or FAIL, meaning the system is performing 
either the same or in a dangerously anomalous way. (A third 
option, NONE, is also possible if underlying infrastructure 
was unavailable and CAS could not reach a verdict. Clients 
commonly treat this the same as if they could not reach 
CAS.) The signal must be clear and unambiguous for the 
rollout tool to take an action such as rolling forward, rolling 
back, or alerting a human. CAS intentionally does not provide 
a confidence score, p-value, or the like: that would imply that 
the rollout tool has logic to determine when to take a real-
world action. Keeping this decision centralized allows better 
reuse and removes the risk of creating artificial confidence 
scores from a meaningless heuristic.

Default tooling integration and zero configuration option
CAS quickly gained extensive coverage across all of 
Google by integrating with all major tools used to change 
production, including tools to roll out new binaries, 
configurations, and data sets. Widespread integration 
required a conservative integration approach: in some 
cases, concessions in the analysis quality had to be made in 
favor of not inconveniencing users. 

Yet another barrier to entry was removed by not 
requiring a canary setup in order to start using CAS. If the 
user does not specify a configuration, default analyses 
are performed across metrics that can be reasoned about 
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across the board. CAS auto-discovers features of canaried 
systems, such as whether the binary is C++ or Java, or 
which RPC (remote procedure call) methods receive 
significant traffic, then chooses analyses to run (e.g., RPC 
error ratio) for those features. Google’s infrastructure 
homogeneity makes this largely successful.

SERVICE DESIGN
CAS’s relatively simple high-level interactions are enabled 
by a fairly complex system under the hood.

Public API in detail
CAS’s API has two RPC calls: Evaluate() and GetResult().

Evaluate() is given one or more trials and returns a 
unique string identifier, Evaluation ID, which is a fully 
qualified URL to the CAS user interface. This simple 
trick has made it quite trivial to insert these links into 
various rollout tools, since it means they do not need any 
additional client-side logic to figure out how to turn an 
identifier into a URL. Trials are pairs of canary and control 
populations and the time range during which they should 
be compared; if the end time of the time range is left 
unset, CAS is free to decide how much time the evaluation 
needs. This means striking a balance between delaying 
the evaluation too much and not having enough data to 
reach a meaningful conclusion. In practice, at least five 
minutes of data are required. The call is reasonably fast 
(typically under a second), and the API retains the resulting 
data indefinitely (or at least until garbage collection of 
evaluations that are clearly no longer relevant). The client 
sends one RPC for a logical evaluation.
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The CAS API does not promise that the evaluation will 
start when the Evaluate() call is sent. Instead, analysis 
starts on GetResult(), since that indicates someone is 
interested in the result. As an optimization, the analysis 
actually starts on Evaluate(), but in order to set 
appropriate expectations with the client, this optimization 
is not part of the API definition.

GetResult() takes one parameter: the Evaluation ID. 
This RPC blocks until the analysis process is finished, which 
can take between a few seconds and a few minutes after 
the end time of the request; GetResult() is idempotent. 

For the sake of reliability, CAS developers designed the 
system with two calls. This setup allows the system to 
resume processing a request without requiring complex 
client cooperation. This reliability strategy played out in 
practice when a bug in a library made all CAS processes 
crash every five to ten minutes. CAS was still able to serve 
all user requests, thanks to the robust API.

There are some obvious alternatives to this design. CAS 
developers decided against using a single long-running 
RPC: since these calls are fundamentally point-to-point 
connections between two Unix processes, disruption 
(e.g., because one process restarted) would lead to a 
full retry from the client side. The original design doc 
included a large number of options, each with tradeoffs 
tied to nuanced properties of Google’s infrastructure and 
requirements.

Evaluation structure
While the RPC returns only a simple PASS/FAIL verdict, the 
underlying analysis consists of several components.
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The lowest-level unit is a check, a combination of time 
series from the canary population, time series from the 
control population, and a statistical function that turns 
both time series into an unambiguous PASS/FAIL verdict. 
Some example checks might be:
3  Crash rate of the canary is not significantly greater than 

the control.
3  RPC error ratio is not significantly greater than the 

control.
3  Size of data set loaded in memory is similar between 

canary and control.
As mentioned in the API description, each evaluation 

request can define multiple trials (i.e, pairs of canary and 
control populations). Evaluation of each trial results in a 
collection of checks. If any check in any trial fails, the entire 
evaluation is declared a failure, and FAIL is returned.

Currently, trials are implemented to be fairly 
independent, though a given evaluation request might have 
multiple trials if they look at two related but different 
components. For example, consider an application with 
a front end and a back end. Changes on the front end 
can trigger bad behavior on the back end, so you need to 
compare both:
3 The canary front end to the production front end.
3  The back end receiving traffic from the canary front end to 

a back end receiving traffic from the production front end.
These are different populations, possibly with different 

metrics, but failure on either side is a potential problem.

Configuration structure
What exactly does a user-defined configuration 
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entail? While the design phase of CAS involved lengthy 
philosophical discussion about the nature of configuration, 
the primary aim was simplicity. The CAS developers didn’t 
want to force users to learn implementation details in 
order to encode their high-level goals into a configuration. 
The intent was to ask users only a few questions, as close 
to the user’s view of the world as possible. 

The individual checks that should be executed for each 
matching trial define what information is needed. For each 
check, the user specifies:
3 What it should be called.
3 How to get the time series for the particular metric.
3 How to turn these time series into a verdict.

The user can also include optional pieces of information, 
such as a long-form description.

Monarch is the typical source of monitoring data for 
time series.1 The user specifies an abstract query, and 
the canary and control populations are determined at 
runtime in the RPC that requests evaluation. CAS has a 
flexible automatic query rewrite mechanism: at runtime, 
it rewrites an abstract query to specialize it to fetch data 
only for a particular population.Say a user configures a 
query, “Get CPU usage rate.” At runtime, CAS rewrites that 
query as “Get CPU usage rate for job foo-server replicas 0, 
1, 2.” This rewrite happens for both the canary population 
and the control, resulting in two queries.

It is possible, although uncommon, to specify different 
queries for the canary and the control. The queries are still 
subject to rewriting, which guarantees that they will fetch 
data only for the objects that are actually being evaluated.

To simplify configuration, there are also common 
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queries. These are canned queries curated by the CAS 
team, such as crash rate, RPC server error ratio, and CPU 
utilization. These offer known semantics, for which CAS 
can provide better quality analysis.

Finally, there needs to be a way to turn the time series 
(possibly multiple streams) obtained by running the 
Monarch query for the canary and control populations into 
an unambiguous verdict. The user can choose from a family 
of tests. Some tests (such as Student’s t-test) have a clear 
statistical origin, while others contain custom heuristics 
that attempt to mimic how a human would evaluate two 
graphs.

As discussed later, automatic analyses are applied if a 
user chooses the default configuration, as well as on user-
supplied queries if the user does not specify a statistical test.

SYSTEM COMPONENTS AND REQUEST FLOW
Figure 2 illustrates the components of the CAS system. 
This section describes the role of each component and the 
CAS request flow.

Spanner database
The Spanner database is a shared synchronization point for 
the evaluation flow; almost all components write to it. It 
is the canonical storage for evaluation progress and final 
status.

RPC front end
The rollout tool sends Evaluate() calls to the RPC front 
end, which is intentionally very simple. The front end 
generates a unique identifier for the evaluation, stores the 
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entire evaluation request in the database (with the unique 
identifier as primary key), and returns the identifier.

GetResult() calls also land on the RPC front end, which 
queries the database to see if  a coordinator is already 
working on the evaluation. If so, the RPC front end sends an 
AwaitEvaluation() RPC to the coordinator, which blocks 
until the evaluation is complete. If the coordinator isn’t 
tracking the evaluation (e.g., if a restart resulted in lost state) 
or if no coordinator is assigned, the RPC front end chooses 
a coordinator, stores that information in the database, and 
calls AwaitEvaluation(). These retries are limited.

If the evaluation has already finished, the RPC front end 
does not contact the coordinator and immediately returns 

rollout tool

evaluator

coordinator config server

model serverweb front end

Monarch

RPC front end

spanner

FIGURE 2: Diagram of main components of CAS
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the results from the database to the caller.
It is very cheap for the RPC front end to handle 

parallel GetResult()s. Selecting one coordinator avoids 
duplication of expensive work unless the client requests 
two duplicate and independent evaluations.

Coordinator
The coordinator keeps all evaluations it’s currently 
processing in memory. Upon AwaitEvaluation(), the 
coordinator checks whether the evaluation is being 
processed. If so, the coordinator simply adds this RPC to 
the set of RPCs awaiting the result.

If the evaluation is not being processed, the coordinator 
transactionally takes ownership of the evaluation 
in the database. This transaction can fail if another 
coordinator (for whatever reason, such as a race condition) 
independently takes ownership, in which case the 
coordinator pushes back to the RPC front end, which then 
contacts the new canonical coordinator.

Upon receiving a new evaluation, the coordinator does 
the following:
1.  Retrieves fully qualified and unambiguous expanded 

configuration from the config server. The coordinator 
now has the full set of all checks to run.

2. Fans out each check to evaluators.
3.  Calls the model server to obtain predicted behavior 

for checks, simultaneously reporting the results of the 
checks in the current evaluation.

4.  Responds to all waiting AwaitEvaluation() RPCs with 
the final verdict.
The coordinator checkpoints progress to the database 
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throughout. Checkpoints occur after a coordinator 
receives a fully qualified configuration and asynchronously 
as evaluators return check-evaluation requests. If the 
coordinator dies, a new one takes over, reads progress 
from the database, and continues from the last 
coordinator’s checkpoint.

Configuration server
The configuration server looks up and fully expands a 
configuration that matches an evaluation.

When the configuration is explicitly referenced in a 
request, lookup is trivial. If the configuration isn’t explicitly 
referenced, a set of automatic lookup rules search for 
the user’s default config. These lookup rules are based on 
features such as who owns the canaried service.

The CAS-submitted configuration is generic: it might 
say something like “Fetch HTTP error rate,” without 
specifying where to fetch the error rate. In the typical 
flow, the rollout tool identifies the current canary and 
passes this information along to CAS when the evaluation 
is requested. As a result, the configuration author cannot 
necessarily predict the canary population.

To support this flexibility, the configuration server 
expands configuration and canary/control population 
definitions to specify exactly what data is requested. For 
example, the user’s “Fetch HTTP error rate” becomes 
“Fetch HTTP error rate from these three processes for 
canary data, and from these ten processes for control 
data.” From a user’s point of view, after configuring the 
generic variant, the “right thing” happens automatically, 
removing any need to define a dedicated canary setup 
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before canarying (although users can define such a setup if 
they have other reasons to do so). 

Besides evaluations, the configuration server also 
receives configuration updates, validates updates for 
correctness and ACLs (access control lists), and stores 
these updates in the database.

Evaluator
The evaluator receives a fully defined configuration (after 
the expansion already mentioned) for each check, with 
each check in a separate RPC. The evaluator then:
1.  Fetches time series for both canary and control data 

from the appropriate time series store.
2.  Runs statistical tests to turn the resulting pair of sets 

of time series into a single PASS/FAIL verdict for each 
statistical test (pair because of canary/control; sets 
because it’s possible, for example, to have a time series 
per running process and have many processes in the 
canary or control groups).
If a user configures a statistical test, then the evaluator 

runs only that test. If the user opts for autoconfiguration, 
however, the evaluator may run dozens of tests with 
various parameters, which generate data that feeds into 
the model server.

The evaluator returns the data from tests and any 
potential metadata (such as errors talking to time-series 
stores) to the coordinator.

Model server
The model server performs automatic data analysis. After 
evaluation, the coordinator asks the model server for 
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predictions. The request contains information about the 
evaluation and all observed verdicts from the evaluator.

For each observed verdict, the model server returns its 
expected verdict for that particular evaluation. It returns 
this information to the coordinator, which ignores results 
of statistical functions for predicted failures when deciding 
the overall verdict. If the model server predicts failure 
because said failure is typical behavior, this behavior is 
deemed a property of the evaluated system and not a 
failure of this particular canary evaluation.

AUTOCONFIGURATION
Canarying properly is a complex process, as the user needs 
to accomplish these nuanced tasks:
3  Correctly identify a meaningful canary deployment that 

creates a representative canary population with respect 
to the evaluation metrics.

3 Choose appropriate evaluation metrics.
3 Decide how to evaluate canaries as passing or failing.

CAS eases the burden by removing the most daunting of 
these tasks: evaluating what it means for a time-series pair 
to pass or fail. CAS builds upon the underlying argument 
that running reliable systems shouldn’t require in-depth 
knowledge of statistics or constant tuning of statistical 
functions’ parameters. 

CAS uses behavior learning that’s slightly different from 
the general problem of anomaly detection for monitoring. 
In the CAS scenario, you already know that a service is 
being changed, and exactly where and when that change 
takes place; there is also a running control population to 
use as a baseline for analysis. Whereas anomaly detection 

14 of 27



acmqueue | january-february 2018   15

web services

for monitoring triggers user alerts (possibly at 4 a.m.), 
bad CAS-related rollouts are far less intrusive—typically 
resulting in a pause or a rollback.

Users can opt out of autoconfiguration by specifying a 
test and its parameters manually.

Online behavior learning
In the simplest terms, we want to determine the typical 
behavior of the system being evaluated during similar 
production changes. The high-level assumption is that bad 
behavior is rare.

This process takes place online, since it must be possible 
to adapt quickly: if a behavior is anomalous but desirable, 
CAS fails the rollout; when the push is retried, CAS needs 
to adapt.

Adaptive behavior poses a risk if a user keeps retrying 
a push when an anomaly is actually dangerous: CAS 
eventually starts treating this risky behavior as the new 
norm and no longer flags it as problematic. This risk 
becomes less severe as the automation becomes more 
mature and reliable, as users are less inclined to blindly 
retry (assuming an incorrect evaluation) and more inclined 
to actually debug when CAS reports a failure.

Offline supporting processes can supplement the 
standard online learning.

Breakdown of observations
Intuitively, you know that comparing the same metrics 
across different binaries may yield different results. 
Even if you look at the same metric (RPC latency, for 
example), a stateful service such as BigTable may behave 
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quite differently from a stateless web-search back end. 
Depending on the binary being evaluated, you may want to 
choose different parameters from the statistical tests, or 
even different statistical tests altogether.

Rather than attempting to perform in-depth discovery 
of potential functional dependencies, CAS breaks 
down observations across dimensions based upon past 
experiences with running production systems. You may 
well discover other relevant dimensions over time. 

Currently, the system groups observations by the 
following factors:
3  Data source. Are you observing process crash rate, RPC 

latency, or something else? Each data source is assigned 
a unique identifier by fingerprinting the configuration 
and some minor heuristics to remove common sources of 
unimportant differences.

3  Statistical function and parameters. This could mean, 
for example, a t-test with significance level 0.05. 
Each distinct statistical function and parameter set is 
assigned a unique identifier.

3 Application binary.
3  Geographical location. This refers to the locations of the 

canary and control.
3  Process age. Has the process recently restarted? This 

helps distinguish a configuration push (which might not 
restart the process) from a binary update (which likely 
would).

3  Additional breakdowns, such as different RPC methods.
For example, reading a row in BigTable may behave 
very differently from deleting the entire table. This 
breakdown depends on the supplied metric.
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3  Time of observation. This is kept at daily granularity for 
system efficiency.
These factors combine with the count of each observed 

verdict to make a model. A model knows only identifiers—
it has no understanding of the data source, statistical 
functions, or their parameters. 

Prediction selection
All models pertaining to a particular binary are fetched 
across all statistical functions for which there is an 
observation, and across all data sources.

For each statistical function and each data source, 
the weighted sum of the past observed behaviors is 
calculated for each possible result. Similarity is weighted 
both by heuristic similarity of features (process age 
and geographical location) and by the age of the model. 
Because additional breakdowns such as RPC methods don’t 
have a usable similarity metric, the additional matching 
breakdowns are simply filtered in, with no further 
weighting.

For a single statistical function and a single data source, 
we generate a score for each possible verdict (PASS, FAIL, or 
NONE). We calculate this score from a weighted sum of past 
observations. Weighting is based upon factors like age of the 
observation and similarity of the observation to the current 
situation (for example, do both observations pertain to the 
same geographic location?).

Each statistical function has a minimum pass ratio. The 
ratio sum[PASS] / (sum[PASS] + sum[FAIL] + sum[NONE]) 
must be greater than the minimum for a PASS prediction. 
Otherwise, the prediction is FAIL.
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This ratio allows CAS to impose a notion of strictness on 
various functions, while being tolerant of “normal” volatile 
behavior. For example, consider two statistical functions: 
one that tolerates only 1 percent deviation between canary 
and control, and one that tolerates 10 percent. The former 
can be given a very high minimum pass ratio, and the latter 
a lower one. If the metric fluctuates more than 1 percent 
in normal operation, CAS quickly learns that behavior and 
stops flagging it. If that fluctuation is a one-off, CAS flags 
it, the system recovers, and over time CAS relearns that 
normal behavior includes only deviations under 1 percent. 
CAS intentionally takes longer to learn normal behavior 
for larger tolerated fluctuations, so in this example, CAS 
will learn at a slower rate for the 10 percent case.

Bootstrapping
When a user initially submits a configuration that 
evaluates a metric, no past behavior exists to use for 
prediction. To bootstrap such cases, CAS looks for past 
evaluations that could have used this config and runs those 
evaluations to collect observations for the model server. 
With enough recent evaluations, CAS will already have 
useful data the first time a user requests an evaluation.

If such bootstrapping is not possible, the model server 
reverts to the most generous behavior possible.
Arbitrary input analysis
The behavior-prediction mechanism is also the first 
attempt at arbitrary input analysis, which allows modeling 
behavior for tests when there is no prior knowledge of 
what they are about.

When a user configures canarying on RPC error ratio, 
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CAS knows in advance that the values are between 0.0 
and 1.0, and that higher is worse. For a user-supplied query 
against the monitoring data, CAS has no such knowledge 
and can only apply a battery of tests and observe the 
differences.

Despite some significant issues (discussed later), the 
CAS development team chose this approach because they 
were confident that it would have relatively few unexpected 
risks. It still greatly improves automated canarying. The 
developers are actively working on improvements.

FUTURE WORK
Time series aggregate models
While the meta-analysis of the results of hard-coded 
statistical functions has worked well for the initial launch 
of automatic configuration, this approach is crude and 
inflexible. Rather than storing results of statistical tests 
without any knowledge about the time series that caused 
them, CAS could store data about the time series.

Each statistical function that CAS supports requires 
different data from the time series. We could attempt to 
extract constant-size aggregate views on this data, one 
for each statistical test. For example, a Student’s t-test 
view on the time series could be the mean value for both 
populations, the population sizes, and variance estimation.

This aggregated view from many past observations 
would allow synthesizing a single test for each statistical 
function, with the correct parameters chosen based on 
past data and some policy.

This work would essentially replace half of the current 
autoconfiguration system.
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Further observation breakdowns
Observation breakdowns turned out to be the biggest 
contribution of the model server to CAS as a whole, so the 
development team plans to expand this feature. Adding 
more breakdowns entails additional computational/
storage costs and, therefore, needs to be undertaken 
carefully given CAS’s large scale.

While CAS currently has breakdowns based on the 
object of evaluation, this could be expanded to breakdowns 
by type of canarying. Anecdotally, there have been major 
differences in canary behavior when observed using 
before/after tests versus simultaneous tests of two 
populations. The size of the canary population in relation 
to the control population and the absolute sizes of the 
populations can also provide meaningful breakdowns.

Future work could determine if these additional 
breakdowns are worthwhile, and at what granularity to 
perform them. Automatically generated decision trees 
may also be an option.

Priming with steady state data
CAS sees only production changes. Currently, it does not 
learn that a particular metric is erratic even in steady state.

Data about metric behavior outside of production 
changes could be used to define the typical noise in the 
data. CAS would fail a canary only if the deviation is above 
this typical noise level. The noise data could come from 
analyzing only the control population for every evaluation, 
because the control population is expected to have no 
production changes.

20 of 27



acmqueue | january-february 2018   21

web services

KNOWN ISSUES
Same environment overfitting
CAS autoconfiguration’s most significant issue is 
overfitting data when there is already a rich history of 
past observations in exactly the same environment. In this 
scenario, only the historical data for that environment is 
used. 

This behavior has some caveats. Consider a rollout of a 
new version of a system that takes twice as long to handle 
each RPC call but does a significantly better job. CAS 
would flag the longer RPC handling time as anomalous 
behavior for each geographical location of the rollout, 
causing the release owner undue toil. The mitigation is 
to adjust the heuristics carefully in selecting relevant 
environments to include data beyond the perfect match.

User mistrust
CAS is useful but far from perfect. It has experienced 
incidents when users disregarded a canary failure and 
pushed a broken release. User mistrust of complex 
automation is at the root of many of these issues.

The CAS developers are tackling this mistrust by 
explicitly explaining, in human-friendly terms that 
don’t require knowledge of statistics, why CAS reaches 
a particular conclusion. This includes both textual 
explanation and graphical hints.

Relative comparisons only
Because the model server stores only the outcomes of 
statistical functions without knowing the input values, CAS 
doesn’t know the typical values for a time series.
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Not knowing the semantics of the data implies that the 
tests being run are purely relative comparisons, such as 
having a t-test with null hypothesis that the metric didn’t 
increase by more than 5 percent. While relative comparisons 
are easy to reason about, they behave extremely poorly if 
the provided time series value is typically zero, or if a large 
relative change occurs in absolute numbers too small to be 
important to the service owner.

This is a significant limitation of the mechanism. While it 
has not had much practical impact in real-world operation, 
especially given existing trivial workarounds, it merits 
improvement. Numerous improvements can be made to 
this mechanism, some quite simple. In addition to the future 
work mentioned previously, candidates include standard 
deviation analysis and looking at past observed behavior of 
the metric.

Scale limitations on input values
As CAS uses only a hard-coded set of statistical functions 
and their parameters, the system is somewhat inflexible 
about analyzing inputs outside of the expected input scale. 
For example, if the range of 1 percent through 100 percent 
difference is covered, what about the systems and metrics 
where a difference of 200 percent is normal? What if even 
a 1 percent difference is unacceptable?

CAS developers did not anticipate this to be a significant 
limitation in practice, which thankfully proved true. Most 
metrics meriting canary analysis turn out to contain some 
noise; conversely, most of our A/B testing hopes to see 
little difference between the two populations, so large 
differences are unexpected and therefore noticed.
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LESSONS LEARNED
Good health metrics are surprisingly rare
The best way to use CAS is to employ a few high-quality 
metrics that are clear indicators of system health: suitable 
metrics are stable when healthy, and they drastically 
change when unhealthy.

Often, the best canarying strategy is to choose metrics 
tied to SLOs (service-level objectives). CAS automatically 
integrates with an SLO tracking system to apply service-
wide SLOs and some heuristics to scale them appropriately 
to the canary size. 

Setting an SLO is a complex process connected to 
business needs, and SLOs often cover an entire service 
rather than individual components. Even if a canary of a 
single component misbehaves in the extreme, its impact on 
a service’s overall SLO can be small. Therefore, key metrics 
need to be identified (or introduced) for each component.

It’s tempting to feed a computer all the metrics exported 
by a service. While Google systems offer vast amounts of 
telemetry, much of it is useful only for debugging narrow 
problems. For example, many BigTable client library 
metrics are not a direct indication that a system is healthy. 
In practice, using weakly relevant metrics leads to poor 
results. Some teams at Google have performed analysis 
that justifies using a large number of metrics, but unless you 
perform similarly detailed data analysis, using only a few key 
metrics yields much better results.

Perfect is the enemy of good
Canarying is a very useful method of increasing production 
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safety, but it is not a panacea. It should not replace unit 
testing, integration testing, or monitoring.

Attempting a “perfectly accurate” canary setup can lead 
to a rigid configuration, which blocks releases that have 
acceptable changes in behavior. When a system inherently 
does not lend itself to a sophisticated canary, it’s tempting 
to forego canarying altogether.

Attempts at hyper-accurate canary setups often 
fail because the rigid configuration causes too much 
toil during regular releases. While some systems don’t 
canary easily, they’re rarely impossible to canary, though 
the impact of a having a canary process for that system 
may be lower. In both cases, switching to a strategy of 
gradual onboarding of canarying, starting with low-
hanging fruit, will help.

Impact analysis is very hard
Early on, the CAS team asked, “Is providing a centralized 
automatic canarying system worth it?” and struggled to 
find a answer. If CAS actually prevents an outage, how 
do you know the impact of the outage and, therefore, the 
impact of CAS?

The team attempted to perform a heuristic analysis of 
production changes, but the diverse rollout procedures 
made this exercise too inaccurate to be practical. They 
considered an A/B approach where failures of a subset 
of evaluations were ignored, passing them in order to 
measure impact. Given the many factors that influence 
the magnitude of an outage, however, this approach would 
not be expected to provide a clear signal. (Postmortem 
documents often include a section such as “where we got 
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lucky,” highlighting that many elements contribute to the 
severity of the outage.)

Ultimately, the team settled upon what they call near-
miss analysis: looking at large postmortems at Google and 
identifying outages that CAS could have prevented, but 
did not prevent. If CAS didn’t prevent an outage because 
of missing features, those features were identified and 
typically implemented. For example, if CAS could have 
prevented a $10M postmortem if it had an additional 
feature, implementing that feature proves a $10M value 
of CAS. This problem space continues to evolve, as we 
attempt other kinds of analyses. Most recently, the team 
has performed analysis over a (more homogeneous) 
portion of the company to identify trends in outages and 
postmortems, and has found some coarse signal.

The reusability of CAS data is limited
CAS’s immense amount of information about system 
behaviors could potentially be put to other uses. Such 
extensions may be tempting at face value, but are also 
dangerous because of the way CAS operates (and needs to 
operate, at the product level).  

For example, the CAS team could observe where 
canaries behave best and recommend that a user select 
only that geographical location. While the recommended 
location may be optimal now, if a user followed the advice 
to canary only in that location, the team’s ability to provide 
further advice would lessen. CAS data is limited to its 
observations, so behavior at a local optimum might be 
quite different from the global optimum.
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CONCLUSION
Automated canarying has repeatedly proven to improve 
development velocity and production safety. CAS helps 
prevent outages with major monetary impact caused by 
binary changes, configuration changes, and data pushes.

It is unreasonable to expect engineers working on 
product development or reliability to have statistical 
knowledge; removing this hurdle—even at the expense of 
potentially lower analysis accuracy—led to widespread 
CAS adoption. CAS has proven useful even for basic 
cases that don’t need configuration, and has significantly 
improved Google’s rollout reliability. Impact analysis shows 
that CAS has likely prevented hundreds of postmortem-

worthy outages, and the 
rate of postmortems among 
groups that do not use CAS 
is noticeably higher.

CAS is evolving as its 
developers work to expand 
their scope and improve 
analysis quality.
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