
acmqueue | january-february 2018 1

web services

I
n 1913, the Scottish physiologist John Scott Haldane
proposed the idea of bringing a caged canary into a
mine to detect dangerous gases. More than 100 years
later, Haldane’s canary-in-the-coal-mine approach is
also applied in software testing.

In this article, the term canarying refers to a partial and
time-limited deployment of a change in a service, followed
by an evaluation of whether the service change is safe.
The production change process may then roll forward,
roll back, alert a human, or do something else. Effective
canarying involves many decisions—for example, how to
deploy the partial service change or choose meaningful
metrics—and deserves a separate discussion.

Automated
canarying

quickens
development,

improves
production
safety, and

helps prevent
outages.

ŠTĚPÁN DAVIDOVIČ WITH BETSY BEYER

1 of 27 TEXT
ONLY

Canary
Analysis
Service

acmqueue | january-february 2018 2

web services

Google has deployed a shared centralized service called
CAS (Canary Analysis Service) that offers automatic (and
often autoconfigured) analysis of key metrics during a
production change. CAS is used to analyze new versions
of binaries, configuration changes, data-set changes, and
other production changes. CAS evaluates hundreds of
thousands of production changes every day at Google.

WORKFLOW WITH CAS
CAS requires a very strict separation between modifying
and analyzing production. It is a purely passive observer: it
never changes any part of the production system. Related
tasks such as canary setup are performed outside of CAS.

In a typical CAS workflow (shown in figure 1), the rollout
tool responsible for the production change deploys a
change to a certain subset of a service. It may perform
some basic health checks of its own. For example, if
pushing a new version of an HTTP server causes a process

2 of 27

rollout
tool

application

canary control
1. set up canary

2. ask CAS 3. receive verdict

population
descriptors

4. roll
forward/back

canary
analysis
service

FIGURE 1: Diagram of typical CAS workflow

acmqueue | january-february 2018 3

web services

restart, the rollout tool might wait until the server marks
itself as able to serve before proceeding. (This may also
inform the deployment speed of the production change.
This rollout tool behavior is not specific to canarying.)

This subset of production now constitutes the canary
population. By conducting an A/B test compared to a
control population, CAS answers the question, “Is the
canary meaningfully worse?” The control population is a
(possibly strict) subset of the remainder of the service.
Importantly, CAS is not trying to establish absolute health.

The population should be as fine-grained as possible.
For example, an application update can use a global
identifier of that particular process, which at Google
would be a BNS (Borg Naming Service) path. A BNS path
is structured as /bns/<cluster>/<user>/<job name>/<task
number>. The job name is a logical name of the application,
and task number is the identifier of a particular instance.2
For a kernel update, the identifier might be machine
hostname: clearly, multiple processes can run on the same
machine, but (modulo virtualization) you are limited to
a single running kernel, so granularity is defined at the
machine level. Granularity allows the caller to slice and
dice the overall service with no restrictions at runtime, and
it makes a static preexisting canary setup unnecessary.

Once the canary population is set up, the rollout tool
requests a verdict from CAS. This request specifies the
canary and control populations, as well as a time range for
each member of that population. An entity’s canary status
can be ephemeral: the canary only became a canary at
some specific point in time; before that time, it did not have
the tested production change.

3 of 27

G
ranularity
allows the
caller to
slice and
dice the

overall service
with no restric-
tions at runtime,
and it makes a
static preexist-
ing canary setup
unnecessary.

acmqueue | january-february 2018 4

web services

The request also contains a reference to a user-supplied
configuration, if one exists. As discussed in the following
section, CAS tries to provide value, even without external
configuration, by enforcing things we hold generally true.

CAS provides a point-in-time verdict after evaluation:
a simple PASS or FAIL, meaning the system is performing
either the same or in a dangerously anomalous way. (A third
option, NONE, is also possible if underlying infrastructure
was unavailable and CAS could not reach a verdict. Clients
commonly treat this the same as if they could not reach
CAS.) The signal must be clear and unambiguous for the
rollout tool to take an action such as rolling forward, rolling
back, or alerting a human. CAS intentionally does not provide
a confidence score, p-value, or the like: that would imply that
the rollout tool has logic to determine when to take a real-
world action. Keeping this decision centralized allows better
reuse and removes the risk of creating artificial confidence
scores from a meaningless heuristic.

Default tooling integration and zero configuration option
CAS quickly gained extensive coverage across all of
Google by integrating with all major tools used to change
production, including tools to roll out new binaries,
configurations, and data sets. Widespread integration
required a conservative integration approach: in some
cases, concessions in the analysis quality had to be made in
favor of not inconveniencing users.

Yet another barrier to entry was removed by not
requiring a canary setup in order to start using CAS. If the
user does not specify a configuration, default analyses
are performed across metrics that can be reasoned about

4 of 27

acmqueue | january-february 2018 5

web services

across the board. CAS auto-discovers features of canaried
systems, such as whether the binary is C++ or Java, or
which RPC (remote procedure call) methods receive
significant traffic, then chooses analyses to run (e.g., RPC
error ratio) for those features. Google’s infrastructure
homogeneity makes this largely successful.

SERVICE DESIGN
CAS’s relatively simple high-level interactions are enabled
by a fairly complex system under the hood.

Public API in detail
CAS’s API has two RPC calls: Evaluate() and GetResult().

Evaluate() is given one or more trials and returns a
unique string identifier, Evaluation ID, which is a fully
qualified URL to the CAS user interface. This simple
trick has made it quite trivial to insert these links into
various rollout tools, since it means they do not need any
additional client-side logic to figure out how to turn an
identifier into a URL. Trials are pairs of canary and control
populations and the time range during which they should
be compared; if the end time of the time range is left
unset, CAS is free to decide how much time the evaluation
needs. This means striking a balance between delaying
the evaluation too much and not having enough data to
reach a meaningful conclusion. In practice, at least five
minutes of data are required. The call is reasonably fast
(typically under a second), and the API retains the resulting
data indefinitely (or at least until garbage collection of
evaluations that are clearly no longer relevant). The client
sends one RPC for a logical evaluation.

5 of 27

acmqueue | january-february 2018 6

web services

The CAS API does not promise that the evaluation will
start when the Evaluate() call is sent. Instead, analysis
starts on GetResult(), since that indicates someone is
interested in the result. As an optimization, the analysis
actually starts on Evaluate(), but in order to set
appropriate expectations with the client, this optimization
is not part of the API definition.

GetResult() takes one parameter: the Evaluation ID.
This RPC blocks until the analysis process is finished, which
can take between a few seconds and a few minutes after
the end time of the request; GetResult() is idempotent.

For the sake of reliability, CAS developers designed the
system with two calls. This setup allows the system to
resume processing a request without requiring complex
client cooperation. This reliability strategy played out in
practice when a bug in a library made all CAS processes
crash every five to ten minutes. CAS was still able to serve
all user requests, thanks to the robust API.

There are some obvious alternatives to this design. CAS
developers decided against using a single long-running
RPC: since these calls are fundamentally point-to-point
connections between two Unix processes, disruption
(e.g., because one process restarted) would lead to a
full retry from the client side. The original design doc
included a large number of options, each with tradeoffs
tied to nuanced properties of Google’s infrastructure and
requirements.

Evaluation structure
While the RPC returns only a simple PASS/FAIL verdict, the
underlying analysis consists of several components.

6 of 27

acmqueue | january-february 2018 7

web services

The lowest-level unit is a check, a combination of time
series from the canary population, time series from the
control population, and a statistical function that turns
both time series into an unambiguous PASS/FAIL verdict.
Some example checks might be:
3 Crash rate of the canary is not significantly greater than

the control.
3 RPC error ratio is not significantly greater than the

control.
3 Size of data set loaded in memory is similar between

canary and control.
As mentioned in the API description, each evaluation

request can define multiple trials (i.e, pairs of canary and
control populations). Evaluation of each trial results in a
collection of checks. If any check in any trial fails, the entire
evaluation is declared a failure, and FAIL is returned.

Currently, trials are implemented to be fairly
independent, though a given evaluation request might have
multiple trials if they look at two related but different
components. For example, consider an application with
a front end and a back end. Changes on the front end
can trigger bad behavior on the back end, so you need to
compare both:
3 The canary front end to the production front end.
3 The back end receiving traffic from the canary front end to

a back end receiving traffic from the production front end.
These are different populations, possibly with different

metrics, but failure on either side is a potential problem.

Configuration structure
What exactly does a user-defined configuration

7 of 27

acmqueue | january-february 2018 8

web services

entail? While the design phase of CAS involved lengthy
philosophical discussion about the nature of configuration,
the primary aim was simplicity. The CAS developers didn’t
want to force users to learn implementation details in
order to encode their high-level goals into a configuration.
The intent was to ask users only a few questions, as close
to the user’s view of the world as possible.

The individual checks that should be executed for each
matching trial define what information is needed. For each
check, the user specifies:
3 What it should be called.
3 How to get the time series for the particular metric.
3 How to turn these time series into a verdict.

The user can also include optional pieces of information,
such as a long-form description.

Monarch is the typical source of monitoring data for
time series.1 The user specifies an abstract query, and
the canary and control populations are determined at
runtime in the RPC that requests evaluation. CAS has a
flexible automatic query rewrite mechanism: at runtime,
it rewrites an abstract query to specialize it to fetch data
only for a particular population.Say a user configures a
query, “Get CPU usage rate.” At runtime, CAS rewrites that
query as “Get CPU usage rate for job foo-server replicas 0,
1, 2.” This rewrite happens for both the canary population
and the control, resulting in two queries.

It is possible, although uncommon, to specify different
queries for the canary and the control. The queries are still
subject to rewriting, which guarantees that they will fetch
data only for the objects that are actually being evaluated.

To simplify configuration, there are also common

8 of 27

acmqueue | january-february 2018 9

web services

queries. These are canned queries curated by the CAS
team, such as crash rate, RPC server error ratio, and CPU
utilization. These offer known semantics, for which CAS
can provide better quality analysis.

Finally, there needs to be a way to turn the time series
(possibly multiple streams) obtained by running the
Monarch query for the canary and control populations into
an unambiguous verdict. The user can choose from a family
of tests. Some tests (such as Student’s t-test) have a clear
statistical origin, while others contain custom heuristics
that attempt to mimic how a human would evaluate two
graphs.

As discussed later, automatic analyses are applied if a
user chooses the default configuration, as well as on user-
supplied queries if the user does not specify a statistical test.

SYSTEM COMPONENTS AND REQUEST FLOW
Figure 2 illustrates the components of the CAS system.
This section describes the role of each component and the
CAS request flow.

Spanner database
The Spanner database is a shared synchronization point for
the evaluation flow; almost all components write to it. It
is the canonical storage for evaluation progress and final
status.

RPC front end
The rollout tool sends Evaluate() calls to the RPC front
end, which is intentionally very simple. The front end
generates a unique identifier for the evaluation, stores the

9 of 27

acmqueue | january-february 2018 10

web services

entire evaluation request in the database (with the unique
identifier as primary key), and returns the identifier.

GetResult() calls also land on the RPC front end, which
queries the database to see if a coordinator is already
working on the evaluation. If so, the RPC front end sends an
AwaitEvaluation() RPC to the coordinator, which blocks
until the evaluation is complete. If the coordinator isn’t
tracking the evaluation (e.g., if a restart resulted in lost state)
or if no coordinator is assigned, the RPC front end chooses
a coordinator, stores that information in the database, and
calls AwaitEvaluation(). These retries are limited.

If the evaluation has already finished, the RPC front end
does not contact the coordinator and immediately returns

rollout tool

evaluator

coordinator config server

model serverweb front end

Monarch

RPC front end

spanner

FIGURE 2: Diagram of main components of CAS

10 of 27

acmqueue | january-february 2018 11

web services

the results from the database to the caller.
It is very cheap for the RPC front end to handle

parallel GetResult()s. Selecting one coordinator avoids
duplication of expensive work unless the client requests
two duplicate and independent evaluations.

Coordinator
The coordinator keeps all evaluations it’s currently
processing in memory. Upon AwaitEvaluation(), the
coordinator checks whether the evaluation is being
processed. If so, the coordinator simply adds this RPC to
the set of RPCs awaiting the result.

If the evaluation is not being processed, the coordinator
transactionally takes ownership of the evaluation
in the database. This transaction can fail if another
coordinator (for whatever reason, such as a race condition)
independently takes ownership, in which case the
coordinator pushes back to the RPC front end, which then
contacts the new canonical coordinator.

Upon receiving a new evaluation, the coordinator does
the following:
1. Retrieves fully qualified and unambiguous expanded

configuration from the config server. The coordinator
now has the full set of all checks to run.

2. Fans out each check to evaluators.
3. Calls the model server to obtain predicted behavior

for checks, simultaneously reporting the results of the
checks in the current evaluation.

4. Responds to all waiting AwaitEvaluation() RPCs with
the final verdict.
The coordinator checkpoints progress to the database

11 of 27

acmqueue | january-february 2018 12

web services

throughout. Checkpoints occur after a coordinator
receives a fully qualified configuration and asynchronously
as evaluators return check-evaluation requests. If the
coordinator dies, a new one takes over, reads progress
from the database, and continues from the last
coordinator’s checkpoint.

Configuration server
The configuration server looks up and fully expands a
configuration that matches an evaluation.

When the configuration is explicitly referenced in a
request, lookup is trivial. If the configuration isn’t explicitly
referenced, a set of automatic lookup rules search for
the user’s default config. These lookup rules are based on
features such as who owns the canaried service.

The CAS-submitted configuration is generic: it might
say something like “Fetch HTTP error rate,” without
specifying where to fetch the error rate. In the typical
flow, the rollout tool identifies the current canary and
passes this information along to CAS when the evaluation
is requested. As a result, the configuration author cannot
necessarily predict the canary population.

To support this flexibility, the configuration server
expands configuration and canary/control population
definitions to specify exactly what data is requested. For
example, the user’s “Fetch HTTP error rate” becomes
“Fetch HTTP error rate from these three processes for
canary data, and from these ten processes for control
data.” From a user’s point of view, after configuring the
generic variant, the “right thing” happens automatically,
removing any need to define a dedicated canary setup

12 of 27

acmqueue | january-february 2018 13

web services

before canarying (although users can define such a setup if
they have other reasons to do so).

Besides evaluations, the configuration server also
receives configuration updates, validates updates for
correctness and ACLs (access control lists), and stores
these updates in the database.

Evaluator
The evaluator receives a fully defined configuration (after
the expansion already mentioned) for each check, with
each check in a separate RPC. The evaluator then:
1. Fetches time series for both canary and control data

from the appropriate time series store.
2. Runs statistical tests to turn the resulting pair of sets

of time series into a single PASS/FAIL verdict for each
statistical test (pair because of canary/control; sets
because it’s possible, for example, to have a time series
per running process and have many processes in the
canary or control groups).
If a user configures a statistical test, then the evaluator

runs only that test. If the user opts for autoconfiguration,
however, the evaluator may run dozens of tests with
various parameters, which generate data that feeds into
the model server.

The evaluator returns the data from tests and any
potential metadata (such as errors talking to time-series
stores) to the coordinator.

Model server
The model server performs automatic data analysis. After
evaluation, the coordinator asks the model server for

13 of 27

acmqueue | january-february 2018 14

web services

predictions. The request contains information about the
evaluation and all observed verdicts from the evaluator.

For each observed verdict, the model server returns its
expected verdict for that particular evaluation. It returns
this information to the coordinator, which ignores results
of statistical functions for predicted failures when deciding
the overall verdict. If the model server predicts failure
because said failure is typical behavior, this behavior is
deemed a property of the evaluated system and not a
failure of this particular canary evaluation.

AUTOCONFIGURATION
Canarying properly is a complex process, as the user needs
to accomplish these nuanced tasks:
3 Correctly identify a meaningful canary deployment that

creates a representative canary population with respect
to the evaluation metrics.

3 Choose appropriate evaluation metrics.
3 Decide how to evaluate canaries as passing or failing.

CAS eases the burden by removing the most daunting of
these tasks: evaluating what it means for a time-series pair
to pass or fail. CAS builds upon the underlying argument
that running reliable systems shouldn’t require in-depth
knowledge of statistics or constant tuning of statistical
functions’ parameters.

CAS uses behavior learning that’s slightly different from
the general problem of anomaly detection for monitoring.
In the CAS scenario, you already know that a service is
being changed, and exactly where and when that change
takes place; there is also a running control population to
use as a baseline for analysis. Whereas anomaly detection

14 of 27

acmqueue | january-february 2018 15

web services

for monitoring triggers user alerts (possibly at 4 a.m.),
bad CAS-related rollouts are far less intrusive—typically
resulting in a pause or a rollback.

Users can opt out of autoconfiguration by specifying a
test and its parameters manually.

Online behavior learning
In the simplest terms, we want to determine the typical
behavior of the system being evaluated during similar
production changes. The high-level assumption is that bad
behavior is rare.

This process takes place online, since it must be possible
to adapt quickly: if a behavior is anomalous but desirable,
CAS fails the rollout; when the push is retried, CAS needs
to adapt.

Adaptive behavior poses a risk if a user keeps retrying
a push when an anomaly is actually dangerous: CAS
eventually starts treating this risky behavior as the new
norm and no longer flags it as problematic. This risk
becomes less severe as the automation becomes more
mature and reliable, as users are less inclined to blindly
retry (assuming an incorrect evaluation) and more inclined
to actually debug when CAS reports a failure.

Offline supporting processes can supplement the
standard online learning.

Breakdown of observations
Intuitively, you know that comparing the same metrics
across different binaries may yield different results.
Even if you look at the same metric (RPC latency, for
example), a stateful service such as BigTable may behave

15 of 27

acmqueue | january-february 2018 16

web services

quite differently from a stateless web-search back end.
Depending on the binary being evaluated, you may want to
choose different parameters from the statistical tests, or
even different statistical tests altogether.

Rather than attempting to perform in-depth discovery
of potential functional dependencies, CAS breaks
down observations across dimensions based upon past
experiences with running production systems. You may
well discover other relevant dimensions over time.

Currently, the system groups observations by the
following factors:
3 Data source. Are you observing process crash rate, RPC

latency, or something else? Each data source is assigned
a unique identifier by fingerprinting the configuration
and some minor heuristics to remove common sources of
unimportant differences.

3 Statistical function and parameters. This could mean,
for example, a t-test with significance level 0.05.
Each distinct statistical function and parameter set is
assigned a unique identifier.

3 Application binary.
3 Geographical location. This refers to the locations of the

canary and control.
3 Process age. Has the process recently restarted? This

helps distinguish a configuration push (which might not
restart the process) from a binary update (which likely
would).

3 Additional breakdowns, such as different RPC methods.
For example, reading a row in BigTable may behave
very differently from deleting the entire table. This
breakdown depends on the supplied metric.

16 of 27

acmqueue | january-february 2018 17

web services

3 Time of observation. This is kept at daily granularity for
system efficiency.
These factors combine with the count of each observed

verdict to make a model. A model knows only identifiers—
it has no understanding of the data source, statistical
functions, or their parameters.

Prediction selection
All models pertaining to a particular binary are fetched
across all statistical functions for which there is an
observation, and across all data sources.

For each statistical function and each data source,
the weighted sum of the past observed behaviors is
calculated for each possible result. Similarity is weighted
both by heuristic similarity of features (process age
and geographical location) and by the age of the model.
Because additional breakdowns such as RPC methods don’t
have a usable similarity metric, the additional matching
breakdowns are simply filtered in, with no further
weighting.

For a single statistical function and a single data source,
we generate a score for each possible verdict (PASS, FAIL, or
NONE). We calculate this score from a weighted sum of past
observations. Weighting is based upon factors like age of the
observation and similarity of the observation to the current
situation (for example, do both observations pertain to the
same geographic location?).

Each statistical function has a minimum pass ratio. The
ratio sum[PASS] / (sum[PASS] + sum[FAIL] + sum[NONE])
must be greater than the minimum for a PASS prediction.
Otherwise, the prediction is FAIL.

17 of 27

acmqueue | january-february 2018 18

web services

This ratio allows CAS to impose a notion of strictness on
various functions, while being tolerant of “normal” volatile
behavior. For example, consider two statistical functions:
one that tolerates only 1 percent deviation between canary
and control, and one that tolerates 10 percent. The former
can be given a very high minimum pass ratio, and the latter
a lower one. If the metric fluctuates more than 1 percent
in normal operation, CAS quickly learns that behavior and
stops flagging it. If that fluctuation is a one-off, CAS flags
it, the system recovers, and over time CAS relearns that
normal behavior includes only deviations under 1 percent.
CAS intentionally takes longer to learn normal behavior
for larger tolerated fluctuations, so in this example, CAS
will learn at a slower rate for the 10 percent case.

Bootstrapping
When a user initially submits a configuration that
evaluates a metric, no past behavior exists to use for
prediction. To bootstrap such cases, CAS looks for past
evaluations that could have used this config and runs those
evaluations to collect observations for the model server.
With enough recent evaluations, CAS will already have
useful data the first time a user requests an evaluation.

If such bootstrapping is not possible, the model server
reverts to the most generous behavior possible.
Arbitrary input analysis
The behavior-prediction mechanism is also the first
attempt at arbitrary input analysis, which allows modeling
behavior for tests when there is no prior knowledge of
what they are about.

When a user configures canarying on RPC error ratio,

18 of 27

acmqueue | january-february 2018 19

web services

CAS knows in advance that the values are between 0.0
and 1.0, and that higher is worse. For a user-supplied query
against the monitoring data, CAS has no such knowledge
and can only apply a battery of tests and observe the
differences.

Despite some significant issues (discussed later), the
CAS development team chose this approach because they
were confident that it would have relatively few unexpected
risks. It still greatly improves automated canarying. The
developers are actively working on improvements.

FUTURE WORK
Time series aggregate models
While the meta-analysis of the results of hard-coded
statistical functions has worked well for the initial launch
of automatic configuration, this approach is crude and
inflexible. Rather than storing results of statistical tests
without any knowledge about the time series that caused
them, CAS could store data about the time series.

Each statistical function that CAS supports requires
different data from the time series. We could attempt to
extract constant-size aggregate views on this data, one
for each statistical test. For example, a Student’s t-test
view on the time series could be the mean value for both
populations, the population sizes, and variance estimation.

This aggregated view from many past observations
would allow synthesizing a single test for each statistical
function, with the correct parameters chosen based on
past data and some policy.

This work would essentially replace half of the current
autoconfiguration system.

19 of 27

acmqueue | january-february 2018 20

web services

Further observation breakdowns
Observation breakdowns turned out to be the biggest
contribution of the model server to CAS as a whole, so the
development team plans to expand this feature. Adding
more breakdowns entails additional computational/
storage costs and, therefore, needs to be undertaken
carefully given CAS’s large scale.

While CAS currently has breakdowns based on the
object of evaluation, this could be expanded to breakdowns
by type of canarying. Anecdotally, there have been major
differences in canary behavior when observed using
before/after tests versus simultaneous tests of two
populations. The size of the canary population in relation
to the control population and the absolute sizes of the
populations can also provide meaningful breakdowns.

Future work could determine if these additional
breakdowns are worthwhile, and at what granularity to
perform them. Automatically generated decision trees
may also be an option.

Priming with steady state data
CAS sees only production changes. Currently, it does not
learn that a particular metric is erratic even in steady state.

Data about metric behavior outside of production
changes could be used to define the typical noise in the
data. CAS would fail a canary only if the deviation is above
this typical noise level. The noise data could come from
analyzing only the control population for every evaluation,
because the control population is expected to have no
production changes.

20 of 27

acmqueue | january-february 2018 21

web services

KNOWN ISSUES
Same environment overfitting
CAS autoconfiguration’s most significant issue is
overfitting data when there is already a rich history of
past observations in exactly the same environment. In this
scenario, only the historical data for that environment is
used.

This behavior has some caveats. Consider a rollout of a
new version of a system that takes twice as long to handle
each RPC call but does a significantly better job. CAS
would flag the longer RPC handling time as anomalous
behavior for each geographical location of the rollout,
causing the release owner undue toil. The mitigation is
to adjust the heuristics carefully in selecting relevant
environments to include data beyond the perfect match.

User mistrust
CAS is useful but far from perfect. It has experienced
incidents when users disregarded a canary failure and
pushed a broken release. User mistrust of complex
automation is at the root of many of these issues.

The CAS developers are tackling this mistrust by
explicitly explaining, in human-friendly terms that
don’t require knowledge of statistics, why CAS reaches
a particular conclusion. This includes both textual
explanation and graphical hints.

Relative comparisons only
Because the model server stores only the outcomes of
statistical functions without knowing the input values, CAS
doesn’t know the typical values for a time series.

21 of 27

acmqueue | january-february 2018 22

web services

Not knowing the semantics of the data implies that the
tests being run are purely relative comparisons, such as
having a t-test with null hypothesis that the metric didn’t
increase by more than 5 percent. While relative comparisons
are easy to reason about, they behave extremely poorly if
the provided time series value is typically zero, or if a large
relative change occurs in absolute numbers too small to be
important to the service owner.

This is a significant limitation of the mechanism. While it
has not had much practical impact in real-world operation,
especially given existing trivial workarounds, it merits
improvement. Numerous improvements can be made to
this mechanism, some quite simple. In addition to the future
work mentioned previously, candidates include standard
deviation analysis and looking at past observed behavior of
the metric.

Scale limitations on input values
As CAS uses only a hard-coded set of statistical functions
and their parameters, the system is somewhat inflexible
about analyzing inputs outside of the expected input scale.
For example, if the range of 1 percent through 100 percent
difference is covered, what about the systems and metrics
where a difference of 200 percent is normal? What if even
a 1 percent difference is unacceptable?

CAS developers did not anticipate this to be a significant
limitation in practice, which thankfully proved true. Most
metrics meriting canary analysis turn out to contain some
noise; conversely, most of our A/B testing hopes to see
little difference between the two populations, so large
differences are unexpected and therefore noticed.

22 of 27

acmqueue | january-february 2018 23

web services

LESSONS LEARNED
Good health metrics are surprisingly rare
The best way to use CAS is to employ a few high-quality
metrics that are clear indicators of system health: suitable
metrics are stable when healthy, and they drastically
change when unhealthy.

Often, the best canarying strategy is to choose metrics
tied to SLOs (service-level objectives). CAS automatically
integrates with an SLO tracking system to apply service-
wide SLOs and some heuristics to scale them appropriately
to the canary size.

Setting an SLO is a complex process connected to
business needs, and SLOs often cover an entire service
rather than individual components. Even if a canary of a
single component misbehaves in the extreme, its impact on
a service’s overall SLO can be small. Therefore, key metrics
need to be identified (or introduced) for each component.

It’s tempting to feed a computer all the metrics exported
by a service. While Google systems offer vast amounts of
telemetry, much of it is useful only for debugging narrow
problems. For example, many BigTable client library
metrics are not a direct indication that a system is healthy.
In practice, using weakly relevant metrics leads to poor
results. Some teams at Google have performed analysis
that justifies using a large number of metrics, but unless you
perform similarly detailed data analysis, using only a few key
metrics yields much better results.

Perfect is the enemy of good
Canarying is a very useful method of increasing production

23 of 27

acmqueue | january-february 2018 24

web services

safety, but it is not a panacea. It should not replace unit
testing, integration testing, or monitoring.

Attempting a “perfectly accurate” canary setup can lead
to a rigid configuration, which blocks releases that have
acceptable changes in behavior. When a system inherently
does not lend itself to a sophisticated canary, it’s tempting
to forego canarying altogether.

Attempts at hyper-accurate canary setups often
fail because the rigid configuration causes too much
toil during regular releases. While some systems don’t
canary easily, they’re rarely impossible to canary, though
the impact of a having a canary process for that system
may be lower. In both cases, switching to a strategy of
gradual onboarding of canarying, starting with low-
hanging fruit, will help.

Impact analysis is very hard
Early on, the CAS team asked, “Is providing a centralized
automatic canarying system worth it?” and struggled to
find a answer. If CAS actually prevents an outage, how
do you know the impact of the outage and, therefore, the
impact of CAS?

The team attempted to perform a heuristic analysis of
production changes, but the diverse rollout procedures
made this exercise too inaccurate to be practical. They
considered an A/B approach where failures of a subset
of evaluations were ignored, passing them in order to
measure impact. Given the many factors that influence
the magnitude of an outage, however, this approach would
not be expected to provide a clear signal. (Postmortem
documents often include a section such as “where we got

24 of 27

acmqueue | january-february 2018 25

web services

lucky,” highlighting that many elements contribute to the
severity of the outage.)

Ultimately, the team settled upon what they call near-
miss analysis: looking at large postmortems at Google and
identifying outages that CAS could have prevented, but
did not prevent. If CAS didn’t prevent an outage because
of missing features, those features were identified and
typically implemented. For example, if CAS could have
prevented a $10M postmortem if it had an additional
feature, implementing that feature proves a $10M value
of CAS. This problem space continues to evolve, as we
attempt other kinds of analyses. Most recently, the team
has performed analysis over a (more homogeneous)
portion of the company to identify trends in outages and
postmortems, and has found some coarse signal.

The reusability of CAS data is limited
CAS’s immense amount of information about system
behaviors could potentially be put to other uses. Such
extensions may be tempting at face value, but are also
dangerous because of the way CAS operates (and needs to
operate, at the product level).

For example, the CAS team could observe where
canaries behave best and recommend that a user select
only that geographical location. While the recommended
location may be optimal now, if a user followed the advice
to canary only in that location, the team’s ability to provide
further advice would lessen. CAS data is limited to its
observations, so behavior at a local optimum might be
quite different from the global optimum.

25 of 27

acmqueue | january-february 2018 26

web services

CONCLUSION
Automated canarying has repeatedly proven to improve
development velocity and production safety. CAS helps
prevent outages with major monetary impact caused by
binary changes, configuration changes, and data pushes.

It is unreasonable to expect engineers working on
product development or reliability to have statistical
knowledge; removing this hurdle—even at the expense of
potentially lower analysis accuracy—led to widespread
CAS adoption. CAS has proven useful even for basic
cases that don’t need configuration, and has significantly
improved Google’s rollout reliability. Impact analysis shows
that CAS has likely prevented hundreds of postmortem-

worthy outages, and the
rate of postmortems among
groups that do not use CAS
is noticeably higher.

CAS is evolving as its
developers work to expand
their scope and improve
analysis quality.

Acknowledgments
A great many people
contributed key components
of this work. Thanks to
Alexander Malmberg, Alex
Rodriguez, Brian O’Leary,
Chong Su, Cody Smith,
Eduardo Blanco, Eric Waters,
Jarrod Todd, Konstantin

Related articles

3 Fail at Scale
Reliability in the face of rapid change
Ben Maurer, Facebook
http://queue.acm.org/detail.cfm?id=2839461

3 The Verification of a Distributed System
A practitioner’s guide to increasing confidence
in system correctness
Caitie McCaffrey
https://queue.acm.org/detail.cfm?id=2889274

3 Browser Security:
Lessons from Google Chrome
Google Chrome developers focused on three key
problems to shield the browser from attacks.
Charles Reis, Adam Barth, Carlos Pizano
http://queue.acm.org/detail.cfm?id=1556050

26 of 27

http://queue.acm.org/detail.cfm?id=1556050

acmqueue | january-february 2018 27

web services

Stepanyuk, Mike Ulrich, Nina Gonova, Sabrina Farmer,
Sergey Kondratyev, and many others who contributed in
their own ways.

Also, thanks to Betsy Beyer, Brian O’Leary, and Chris
Jones for technical review.

References
1. Banning, J. 2016. Monarch, Google’s planet-scale

monitoring infrastructure. Monitorama PDX 2016; https://
vimeo.com/173607638.

2. Van Winkel, J. C. 2017. The production environment at
Google, from the viewpoint of an SRE. https://landing.
google.com/sre/book/chapters/production-environment.
html.

Štěpán Davidovič is a Site Reliability Engineer at Google.
He currently works on internal infrastructure for automatic
monitoring. In previous Google SRE roles, he developed
Canary Analysis Service and has worked on both a wide range
of shared infrastructure projects and AdSense reliability.
He obtained his bachelor’s degree from Czech Technical
University, Prague, in 2010.

Betsy Beyer is a Technical Writer for Google Site Reliability
Engineering in NYC, and the editor of Site Reliability
Engineering: How Google Runs Production Systems. She has
previously written documentation for Google datacenters
and hardware operations teams. Before moving to New
York, Betsy was a lecturer on technical writing at Stanford
University. She holds degrees from Stanford and Tulane.
Copyright © 2018 held by owner/author.

27 of 27

https://vimeo.com/173607638
https://vimeo.com/173607638
https://landing.google.com/sre/book/chapters/production-environment.html
https://landing.google.com/sre/book/chapters/production-environment.html
https://landing.google.com/sre/book/chapters/production-environment.html

