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Abstract. The performance of machine learning systems heavily relies
on code generators tailored to tensor computations. We propose an ap-
proach to the design and implementation of such code generators leverag-
ing the natural structure of tensor algebra and illustrating the progressive
lowering of domain-specific abstractions in the MLIR infrastructure.

1 Introduction

This article tackles the design and implementation code generators for portable
and performance-portable tensor operations in Machine Learning (ML) frame-
works.1 As of today, ML frameworks have to make an exclusive choice among
tensor compilers such as XLA [22], Glow [15], TVM [5], Triton [19], TACO [10],
polyhedral compilers [21]. All of these eventually produce some flavor of LLVM
IR, but they come with incompatible abstractions and implementations, do not
compose, and have complex front-end/back-end compatibility matrices. We pro-
pose a portable set of abstractions, composition rules and refinements to break
out of this silo-ed world.

We leverage MLIR, a compiler infrastructure that drastically reduces the
entry cost to define and introduce new abstraction levels for building domain-
specific Intermediate Representations (IRs) [11]. It is part of the LLVM project
and follows decades of established practices in production compiler construction.
Yet, while MLIR provides much needed infrastructure, the problem remains of
defining portable intermediate abstractions and a progressive refinement strat-
egy for tensor compilers. Our strategy involves alternating cycles of top-down
and bottom-up thinking: (1) top-down relates to making primitives available
to the programmer that gradually decompose into smaller building blocks with
unsurprisingly good performance; while (2) bottom-up is concerned with the
creation of building blocks that are well-suited to each hardware architecture
and their gradual composition, connecting to top-down thinking.

1 This version is a preprint of a paper with the same title published in the proceedings
of LCPC 2022 https://doi.org/10.1007/978-3-031-31445-2_10.
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The techniques and abstractions described in this paper are used at Google
for CPU and GPU code generation, including XLA-based flows [22] and IREE [9]
on mobile and edge devices. The extended version of the paper [20] provides
additional examples and details the design and implementation.

2 Overview of the Code Generation Flow

MLIR reduces the cost to define, compose and reuse abstractions for the con-
struction of domain-specific compilers. It offers a comprehensive collection of
compiler construction solutions by: (1) standardizing Static Single Assignment
(SSA) form representations and data structures, (2) unifying compiler analy-
ses and transformations across semantic domains through generic programming
concepts such as operation traits and interfaces, (3) providing a declarative sys-
tem for operations with nested regions and domain-specific type systems, and
(4) providing a wide range of services including documentation, parsing/printing
logic, location tracking, multithreaded compilation, pass management, etc.

MLIR is designed around the principles of parsimony, progressivity and trace-
ability [11]. The code generation approach presented in this paper has largely
contributed to the establishment of these principles and actively leverages them.
The Internal Representation (IR) is fully extensible, allowing for user-defined op-
erations (instructions), attributes and types. IR components that are expected
to work together are grouped into dialects, which can be seen as the IR analog
of dynamic libraries. Unlike earlier compilation flows offering a multi-level IR,
MLIR affords and encourages the mix of different dialects in a single unit of com-
pilation at any point in the compilation flow. For example, a high-level tensor
operation may co-exist with low-level hardware instructions on vector elements
in the same function. This provides a great level of modularity, composition
and optionality: different abstractions can be assembled into solving a particular
problem, instead of having to solve all problems in a unique representation.

2.1 Structured Operations

Optimizations for numerical computing have traditionally focused on loop nests.
The associated analyses consider memory dependences on individual array ele-
ments and aliasing [1]. They are well-suited when starting from an input lan-
guage like C or Fortran where the problem is already specified in terms of loops
over data residing in pre-allocated memory. When focusing on a specific domain
such as Machine Learning (ML), we have the luxury of programs defined at a
much higher level of abstraction than loops. This allows to revisit classical loop
optimizations like fusion, tiling or vectorization, operating at the highest possi-
ble level of abstraction. It eliminates the need for complex analyses retrieving
information from lower-level code. Advantages include reduced complexity and
maintenance cost while also enabling support for sparse storage and computa-
tion that is impractical to model at the loop level. We refer to this approach
as structured code generation since the compiler primarily leverages structural
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Fig. 1. Bird’s eye view of structured code generation.

Fig. 2. Visual description of a typical MLIR compiler flow.

%value_definition = "dialect.operation"(%value_use) {attribute_name = #attr_kind<"value">} ({
// Regions contain blocks. 
^block(%block_argument: !argument_type):
"dialect.further_operation"()[^successor] : () -> ()

^successor: // more operations below
}) : (!operand_type) -> !result_type<"may_be_parameterized">

Fig. 3. MLIR concepts in the generic syntax.

information readily available in the source code, and structured operations refer
to the operations amenable to structured code generation.

Figure 1 depicts the coarse-grained steps and levels of abstraction involved
in a structured code generation flow for a typical tensor compiler. The starting
point (Structured IR) is composed of tensor algebra operations, organized as a
functional program over dense and sparse tensors. From this level we move to
a tiled structured level, which introduces loops by gradually tiling structured
operations into ones operating on smaller tensors. One also perform fusion of
tensor operations at this level. The final granularity of operations is chosen to
make their hardware mapping efficient.

A typical example is to tile matrix multiplication according to a cache hi-
erarchy, lowering block-wise matrix multiplications on sub-tensors to a retar-
getable vector abstraction (possibly involving padding or vector masking), and
eventually targeting a super-optimized microkernel in assembly language. Such a
tiling and refinement flow is made possible through the preservation of high-level
knowledge about the operations.

What makes structured code generation highly composable and reusable is
that tiling and fusion are both fully generic in the operations and data types they
operate upon. These transformations only assume a monotonic (regarding set
inclusion), structural decomposition pattern associated with computations and
composite data. Both dense and sparse tensor algebra exhibit such block-wise
decomposition patterns, and the code generation abstractions and infrastructure
generically applies to both.
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Up until now, computations took place on immutable tensor values. The
next step lowers this to a representation on side-effecting buffers and nested
loops. More optimizations on loops and memory accesses happen at this level,
leveraging existing affine analyses and loop optimizations as implemented in
MLIR, and that have been largely explored in the literature.

In the final step, one may translate the representation directly to the llvm

dialect of MLIR for sequential execution on CPU, or offload a GPU kernel, or
split up loops into async blocks for a task parallel runtime, etc.

While this flow is but a first stake in the ground, it already demonstrates
how to achieve a modular and composable system, following a progressive low-
ering principle. Every step is materialized in the IR and very little load-bearing
logic is hidden in the form of complex static analyses and heuristics in C++.
It is designed with optionality in mind: more operations and data types can be
implemented that do not fit the current code generation stack of abstractions.

2.2 Structured Code Generation in MLIR

The MLIR infrastructure builds on the success of LLVM IR while providing un-
precedented extensibility. MLIR has an open, easily extensible set of instructions,
called operations that typically represent the dynamic semantics of the program.
Operations can represent anything from hardware instructions, or even hardware
itself, to building blocks for machine learning models such as layers or blocks
thereof. They define and use values, which represent units of immutable data in
SSA form. The compile-time knowledge about values is captured in types, and the
knowledge about operations is captured in attributes. Attribute and type systems
are similarly open and extensible. IR objects can be logically grouped together
in libraries, called dialects. The MLIR IR has a recursive structure where opera-
tions may have additional regions containing a graph of (basic) blocks, which in
turn contain further operations. Figure 3 illustrates key MLIR concepts: the IR
has an open set of attributes, operations and types; operations may recursively
contain regions of blocks holding operations themselves.

In addition to common components such as the compiler pass infrastructure,
MLIR provides tools to manage its extensibility, many of which evolved or were
specifically designed to support the code generation flow presented in this doc-
ument. In particular, MLIR features attribute, operation and type interfaces
similar to object-oriented programming languages allowing one to work with
abstract properties rather than (fixed) lists of supported concepts. Interfaces
can be implemented separately from operations, and mixed in using MLIR’s
registration mechanism, thus fully separating IR concepts from transformations.

Let us now review the dialects we defined, listed in increasing level of ab-
straction. Any of these dialects can be mixed with others or simply bypassed if
it does not provide a useful abstraction for a particular case.

The vector dialect provides a fixed-rank, static shape, n-D vector type, such
as vector<4x3x8xf32>, as wel operations that conceptually extend traditional 1-D
vector instructions to arbitrary rank. Such operations decompose progressively
into lower-rank variants, and eventually lower to LLVM vector instructions.
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The gpu dialect defines a retargetable GPU programming model. It features
abstractions common to SIMT platforms, such as host/device code separation, a
workitem/group (thread/block) execution model, communication and synchro-
nization primitives, etc. This dialect can be produced from the vector dialect
and can be lowered to platform-specific dialects such as nvvm, rocdl or spirv.

The memref dialect introduces the memref data type, which is the main rep-
resentation for n-D memory buffers in MLIR, the entry point to the side-
effecting memory-based operations, the way to interoperate with external C
code. The dialect also provides the operations to manage buffer allocation, alias-
ing (memref views) and access. Unlike traditional pointers, memrefs are multi-
dimensional buffers with explicit layout that allows for decoupling the index-
ing scheme from the underlying storage: memref<10x10xf32, strides: [1,10]>

affords column-major access while having row-major storage.

The tensor dialect operates on an abstract n-D tensor type with no speci-
fied representation in memory. Later in the compilation flow, sufficiently small
tensors of static shape may be placed directly in (vector) registers while larger
or dynamically-sized tensors are put into memory storage thanks to the buffer-
ization process. Tensor values are immutable and subject to SSA semantics. Op-
erations on tensors are generally free of side-effects. This allows classical com-
piler transformations such as peephole optimizations, constant sub-expression
and dead code elimination, or loop-invariant code motion to apply seamlessly to
tensor operations regardless of their underlying complexity. Since tensor values
are immutable, they cannot be written into. Instead, “value insertion” operations
create new tensors with a value or a subset thereof replaced. 2

The scf or structured control flow dialect provides operations that repre-
sent looping and conditionals (e.g. regular scf.for and scf.while loops without
early exit as well as an scf.if conditional construct) and embeds them into the
SSA+regions form of MLIR. This is structured at a higher-level of abstraction
than a control flow graph. Notably, scf loop operations may yield SSA values
and compose with other operations and dialects with either side-effecting or
value-based semantics.

The linalg dialect provides higher-level compute primitives that operate on
both multiple containers, including tensor and memref. These primitives can de-
compose into versions of themselves operating on structured subsets of the orig-
inal input data and producing similarly structured subsets of their results. They
also capture program invariants and structural information, such as reduction
patterns or the independence of certain parts of the computation.

The sparse_tensor dialect provides the types and transformations required
to make sparse tensor types first-class citizens within the MLIR compiler in-
frastructure [2]. It bridges high-level linalg operations on sparse tensors with
lower-level operations on the actual sparse storage schemes that save memory
and avoid performing redundant work.

2 This is analogous to the design of struct in LLVM IR: %1 = insertvalue {f64,
f32, i32} %0, f32 42.0, 1 defines a new value %1 that holds the same elements
as %0 except for the element at position 1 that now holds 42.0.
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Figure 2 summarizes a typical flow. At the end of the transformation pro-
cess, MLIR produces low-level dialects common to multiple compilation paths.
The llvm dialect closely mirrors LLVM IR and can be translated to LLVM
IR before being handed off to the LLVM compiler to produce machine code.
This dialect reuses built-in MLIR types such as i32 or f32 scalars. To support
performance-critical scenarios involving specific hardware instructions, it can
also be mixed with low-level platform-specific dialects: nvvm, rocdl, x86vector,
arm neon, arm sve, amx, etc. These dialects partly mirror the corresponding sets
of LLVM IR intrinsic functions. Beyond making these instructions first-class op-
erations, these dialects also provide higher-level abstractions that make use of
MLIR’s extensible type system and interfaces. For example, the

arm_neon .2d.sdot : vector <4x4xi8>, vector <4x4xi8> to vector <4xi32>

operation is naturally expressed on a MLIR multidimensional vector type. Before
converting to LLVM IR, it is first lowered to

arm_neon.intr.sdot : vector <16xi8>, vector <16xi8> to vector <4xi32>

that operates on flattened 1-D vectors to match LLVM’s convention. The full
example is provided in the extended version of the paper [20].

3 Transformations

Let us illustrate important transformations available on structured operations.
We first consider a 1-D convolution named linalg.conv_1d_nwc_wcf and its low-
ering to a tiled, padded and vectorized form. The highest level input is shown in
Figure 4 (left). It operates on SSA values (immutable), with layout information
as annotations for a future bufferization step (more on this later).

The operation is fully defined by the following expression, indexed over a 5-D
rectangular iteration domain, and using/defining 3-D tensors:3

O[n,w, f ] = I[n,w + kw, c].K[kw, c, f ]

The iteration domain is implicit in the operation expression: it is such that itera-
tors span the entire operands’ shape. In the example, this yields the inequalities

0 ≤ n < O.0, 0 ≤ w < O.1, 0 ≤ f < O.2, 0 ≤ kw < K.0, 0 ≤ c < K.1

where O.d denotes the size of the d-th dimension of O. The derivation for these
quantities follows the same rules as Tensor Comprehensions [21]. They can be
derived with successive applications of Fourier-Motzkin elimination [16].

3.1 Tiling

We only describe the simplest form of tiling. Other tiling variants, how to gen-
erate parallel SPMD code, various forms of fusion can be found in the MLIR

3 The operation also allows specifying sizes and strides, omitted for simplicity.
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!tI = type tensor<1x990x32xf32>
!tK = type tensor<3x32x64xf32>
!tO = type tensor<1x988x64xf32>

func @conv_1d_nwc_wcf_main(%I: !tI #in, %K: !tK #in,
%O: !tO #out) -> !tO {

%cst = arith.constant 0.000000e+00 : f32
%0 = linalg.fill(%cst, %O) : f32, !tO -> !tO
%1 = linalg.conv_1d_nwc_wcf
ins(%I, %K : !tI, !tK) outs(%0 : !tO) -> !tO

return %1 : !tO
}

!tDyn = type tensor<?x?x?xf32>
%1 = scf.for %n = 0 to 1 step 1 iter_args(%O1 = %0) -> (!tO) {
%2 = scf.for %w = 0 to 988 step 8 iter_args(%O2 = %O1) -> (!tO) {
%3 = scf.for %f = 0 to 64 step 32 iter_args(%O3 = %O2) -> (!tO) {
%4 = scf.for %kw = 0 to 3 step 1 iter_args(%O4 = %O3) -> (!tO) { 
%5 = scf.for %c = 0 to 32 step 8 iter_args(%O5 = %O4) -> (!tO) {
%8 = tensor.extract_slice %I[%n, %w + %kw, %c]

[1, min(8, 990 - %w - %f), 8] [1, 1, 1] : !tI to !tDyn
%9 = tensor.extract_slice %F[%kw, %c, %f]

[1, 8, 32] [1, 1, 1] : !tK to !tDyn
%11 = tensor.extract_slice %arg12[%n, %w, %f]

[1, min(8, 988 - %w), 32] [1, 1, 1] : !tO to !tDyn
%12 = linalg.conv_1d_nwc_wcf

ins(%8, %9 : !tDyn, !tDyn) outs(%11 : !tDyn) -> !tDyn
%13 = tensor.insert_slice %12 into %O4[%n, %w, %f]

[1, min(8, 988 - %w), 32] [1, 1, 1] : !tDyn into !tO
scf.yield %13 : !tO }

scf.yield %5 : !tO }
scf.yield %4 : !tO }

scf.yield %3 : !tO }
scf.yield %2 : !tO }

#id3d = affine_map<(d0,d1,d2)->(d0,d1,d2)>
{linalg.buffer_layout = #id3d,
linalg.inplaceable = false}

%7 = affine.min affine_map<
(d0)->(8,990-d0)>(%6)

%6 = affine.apply affine_map
<(d0,d1)->(d0+d1)>
(%arg5, %arg9)

%c1 = arith.constant 1 : index

tile[1,8,
32,1,8]

{linalg.buffer_layout = #id3d,
linalg.inplaceable = true}

Fig. 4. Tiling a convolution introduces loops and induction variables. Parts in italic
are simplified for clarity and expanded in callouts. New concepts underscored: (left)
operations on immutable tensors, (right) induction variables and tensor slicing.

!tDyn = type tensor<?x?x?xf32>
%1 = scf.for %n = 0 to 1 step 1 iter_args(%O1 = %0) -> (!tO) {
%2 = scf.for %w = 0 to 988 step 8 iter_args(%O2 = %O1) -> (!tO) {
%3 = scf.for %f = 0 to 64 step 32 iter_args(%O3 = %O2) -> (!tO) {
%4 = scf.for %kw = 0 to 3 step 1 iter_args(%O4 = %O3) -> (!tO) { 
%5 = scf.for %c = 0 to 32 step 8 iter_args(%O5 = %O4) -> (!tO) {
%8 = tensor.extract_slice %I[%n,%w+%kw,%c]

[1,min(8,990-%w-%f),8][1,1,1] : !tI to !tDyn
%9 = tensor.extract_slice %F[%kw,%c,%f]

[1,8,32][1,1,1] : !tK to !tDyn
%11 = tensor.extract_slice %arg12[%n,%w,%f]

[1,min(8,988-%w),32][1,1,1] : !tO to !tDyn
%12 = linalg.conv_1d_nwc_wcf

ins(%8, %9 : !tDyn, !tDyn) outs(%11 : !tDyn) -> !tDyn
%13 = tensor.insert_slice %12 into %O4[%n,%w,%f]

[1,min(8,988-%w),32][1,1,1] : !tDyn into !tO
scf.yield %13 : !tO }

scf.yield %5 : !tO }
scf.yield %4 : !tO }

scf.yield %3 : !tO }
scf.yield %2 : !tO }

!tISlice = type tensor<1x8x8xf32>
!tKFSlice = type tensor<1x8x32xf32>

%1 = scf.for %w = /*...*/ iter_args(%O1 = %O) -> (!tO) {
%3 = linalg.init_tensor [3, 4, 1, 8, 8] : tensor<?x?x1x8x8xf32>
%PI = scf.for %kw = /*...*/ iter_args(%I1 = %I) -> (tensor<?x?x1x8x8xf32>) {
%8 = scf.for %c = /*...*/ iter_args(%I2 = %I1) /*...*/ {
%11 = tensor.extract_slice %I[0, %w+%kw, %c][1,min(8,990-%w-%kw),8][1,1,1]
%13 = linalg.pad_tensor %11 nofold low[0,0,0] high[0,8-min(8,990-%w-%kw),0] {
^bb0(/*tensor indices*/):
linalg.yield 0.000000 : f32

} : tensor<1x?x8xf32> to !tISlice
%14 = tensor.insert_slice %13 into %I2 [1,%c ceildiv 8,0,0,0]

[1,1,1,8,8][1,1,1,1,1]
scf.yield %14 : tensor<?x?x1x8x8xf32> }

scf.yield %8 : tensor<?x?x1x8x8xf32> }

%5 = scf.for %f = /*...*/ iter_args(%O2 = %O1) -> (!tO) {
%6 = scf.for %kw = /*...*/ iter_args(%O3 = %O2) -> (!tO) {
%7 = scf.for %c = /*...*/ iter_args(%O4 = %O3) -> (!tO) {
%8 = tensor.extract_slice %F[%kw,%c,%f][1,8,32] [1,1,1] /*...*/
%9 = tensor.extract_slice %O4[0,%w,%f][1,min(8,988-%w),32][1,1,1] /*...*/
%12 = tensor.extract_slice %PI[%kw,%c ceildiv 8,0,0,0][1,1,1,8,8][1,1,1,1,1]
%13 = linalg.pad_tensor %8 nofold low[0,0,0] high[0,0,0] /*...*/
%15 = linalg.pad_tensor %9 low[0,0,0] high[0, 8-min(8,988-%w),0] /*...*/
%16 = linalg.conv_1d_nwc_wcf

ins(%12, %13 : !tISlice, !tKFSlice) outs(%15 : !tKFSlice) -> !tKFSlice
%17 = tensor.extract_slice %16[0,0,0][1,min(8,988-%w),32][1,1,1] /*...*/
%18 = tensor.insert_slice %17 into %O4[0, %w, %f][1,min(8,988-%w),32][1,1,1]
scf.yield %18 : !tO }

scf.yield %7 : !tO }
scf.yield %6 : !tO }

scf.yield %5 : !tO }

pad

Fig. 5. Padding a tiled operation to obtain fixed-size tensors (highlighted). Parts in
italic are simplified for brevity. Constants in roman font are attributes, those in italic
are arith.constant operation results.

documentation. In this simple form, tiling introduces scf.for loops as well as
subset operations (tensor.extract_slice and tensor.insert_slice) to access
tiled subsets, see Figure 4 (right). The tiled form of the operation is itself a
linalg.conv_1d_nwc_wcf operating on the tiled subsets. The derivation of dense
subsets is obtained by computing the image of the iteration domain by the in-
dexing function for each tensor. Non-dense iteration domains and subsets involve
dialect extensions and inspector-executor [10] code generation that are outside
the scope of this paper.

Let us chose tile sizes 1x8x32x1x8. Some of these do not divide tensor sizes;
as a result the boundary tiles are subject to full/partial tile separation. There is
no single static tensor type that is valid for every loop iteration; the tiled tensor
type !tDyn must be relaxed to a dynamically shaped tensor, whose corresponding
dynamic tile sizes are %8, %9 and %11. Later canonicalization steps kick in to
refine the types that can be determined to be partially static. The resulting
scf.for loops perform iterative yields of the full tensor value that is produced
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at each iteration of the loop nest. Since tensor values are immutable, new values
are produced by each tensor.insert_slice and scf.yield.

3.2 Padding and Packing

Dynamic tile shapes can hamper vectorization which requires static sizes. There
are multiple mitigating options: multi-level loop peeling/versioning to isolate a
statically known constant part, possibly combined with masked vector operations
at domain boundaries; or padding to a larger static size (the padding value must
be neutral for the consuming operation). In Figure 5, the tensor.pad operation
deals with the latter option. Its size is obtained by subtracting the dynamic tile
size from the static tile size. Elements in the padded region are set to the %cst

value. A nofold attribute enforces additional padding to avoid cache line split.
Note that padding operations can often be hoisted out of tile loops, stor-

ing padded tiles in a packed, higher-dimensional tensor. This amortizes copy-
ing cost and makes tiles contiguous in memory (reducing TLB misses). The
amount of hoisting is configurable per tensor, to trade memory consumption for
copy benefits. In the example, input tensor padding is hoisted by 3 loops. This
introduces an additional tile loop nest to precompute padded tiles and insert
them into a packed tensor of type tensor<?x?x1x8x8xf32> containing all padded
tiles. This also results in the actual computations accessing the packed tensor
%12= tensor.extract_slice %PI....

3.3 Vectorization

After tiling and padding, the convolution operands are statically shaped and
amenable to vectorization, see Figure 6 (left). In the current IR, only 2 types of
operations need to be vectorized: tensor.pad and linalg.conv1d_nwc_wcf. The
vector dialect additionally provides a first-class representation for high-intensity
operations. Figure 6 (right) illustrates one of these, vector.contract.

3.4 Bufferization

Bufferization is the process of materializing tensor values into (memref) buffers.
It typically occurs late in the compilation flow. To achieve good performance, it
is essential to allocate and copy as little memory as possible. As a result, buffers
should be reused and updated in-place whenever possible.

Allocating a new buffer for every memory write is always safe, but wastes
memory and introduces unnecessary copies. On the other hand, reusing a buffer
and writing to it in-place can result in invalid bufferization if the original data
at the overwritten memory location must be read at a later point of time. When
performing transformations, one must be careful to preserve program semantics
exposed by dependencies [1]. The right-hand side of Figure 7 illustrates a poten-
tial Read-after-Write (RaW) conflict that prevents in-place bufferization. The
problem of efficient bufferization is related to register coalescing, the register
allocation sub-task associated with the elimination of register-to-register moves.
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!tISlice = type tensor<1x8x8xf32>
!tKFSlice = type tensor<1x8x32xf32>

%1 = scf.for %w = /*...*/ iter_args(%O1 = %O) -> (!tO) {
%3 = linalg.init_tensor [3, 4, 1, 8, 8] : tensor<?x?x1x8x8xf32>
%PI = scf.for %kw = /*...*/ iter_args(%I1 = %I) -> (tensor<?x?x1x8x8xf32>) {
%8 = scf.for %c = /*...*/ iter_args(%I2 = %I1) /*...*/ {
%11 = tensor.extract_slice %I[0, %w+%kw, %c][1,min(8,990-%w-%kw),8][1,1,1]
%13 = linalg.pad_tensor %11 nofold low[0,0,0] high[0,8-min(8,990-%w-%kw),0] {
^bb0(/*tensor indices*/):
linalg.yield 0.000000 : f32

} : tensor<1x?x8xf32> to !tISlice
%14 = tensor.insert_slice %13 into %I2 [1,%c ceildiv 8,0,0,0]

[1,1,1,8,8][1,1,1,1,1]
scf.yield %14 : tensor<?x?x1x8x8xf32> }

scf.yield %8 : tensor<?x?x1x8x8xf32> }

%5 = scf.for %f = /*...*/ iter_args(%O2 = %O1) -> (!tO) {
%6 = scf.for %kw = /*...*/ iter_args(%O3 = %O2) -> (!tO) {
%7 = scf.for %c = /*...*/ iter_args(%O4 = %O3) -> (!tO) {
%8 = tensor.extract_slice %F[%kw,%c,%f][1,8,32] [1,1,1] /*...*/
%9 = tensor.extract_slice %O4[0,%w,%f][1,min(8,988-%w),32][1,1,1] /*...*/
%12 = tensor.extract_slice %PI[%kw,%c ceildiv 8,0,0,0][1,1,1,8,8][1,1,1,1,1]
%13 = linalg.pad_tensor %8 nofold low[0,0,0] high[0,0,0] /*...*/
%15 = linalg.pad_tensor %9 low[0,0,0] high[0, 8-min(8,988-%w),0] /*...*/
%16 = linalg.conv_1d_nwc_wcf

ins(%12, %13 : !tISlice, !tKFSlice) outs(%15 : !tKFSlice) -> !tKFSlice
%17 = tensor.extract_slice %16[0,0,0][1,min(8,988-%w),32][1,1,1] /*...*/
%18 = tensor.insert_slice %17 into %O4[0, %w, %f][1,min(8,988-%w),32][1,1,1]
scf.yield %18 : !tO }

scf.yield %7 : !tO }
scf.yield %6 : !tO }

scf.yield %5 : !tO }

!vecI = type vector<1x8x8xf32>
!vecKF = type vector<1x8x32xf32>
!vecO = type vector<1x8xf32>
#proj_012 = affine_map<(d0,d1,d2,d3) -> (d0,d1,d3)
#proj_32 = affine_map<(d0,d1,d2,d3) -> (d3,d2)

%1 = scf.for %w = /*...*/ iter_args(%O1 = %O) -> (!tO) {
%3 = linalg.init_tensor [3, 4, 1, 8, 8] : tensor<?x?x1x8x8xf32>
%PI = scf.for %kw = /*...*/ iter_args(%I1 = %I)->(tensor<?x?x1x8x8xf32>) {
%8 = scf.for %c = /*...*/ iter_args(%I2 = %I1) /*...*/ {
%11 = tensor.extract_slice %I /*...*/
%12 = vector.transfer_read %11[0,0,0], 0.000000

{in_bounds=[true,false,true]} : tensor<1x?x8xf32>, !vecI
%13 = vector.transfer_write %12, %arg8[%kw,%c ceildiv 8,0,0,0]

{in_bounds=[true,true,true]} : !vecI, tensor<?x?x1x8x8xf32>
scf.yield %13 : tensor<?x?x1x8x8xf32> }

scf.yield %8 : tensor<?x?x1x8x8xf32> }

%5 = scf.for %f = /*...*/ iter_args(%O2 = %O1) -> (!tO) {
%7 = tensor.extract_slice %O2[0,%w,%f][1,min(8,988-%w),32][1,1,1]/*...*/
%8 = vector.transfer_read %7[0,0,0], 0.000000
{in_bounds=[true,false,true]} : tensor<1x?x32xf32>, !vecKF

%9 = scf.for %kw = /*...*/ iter_args(%O3 = %8) -> (!vecO) {
%12 = scf.for %c = /*...*/ iter_args(%O4 = %O3) -> (!vecO) {
%14 = vector.transfer_read %PI[%kw,%c ceildiv 8,0,0,0], 0.000000

{in_bounds=[true,true,true]} : tensor<?x?x1x8x8xf32>, !vecI
%15 = vector.transfer_read %F[%kw,%c,%f], 0.000000

{in_bounds=[true,true,true]} : tensor<3x32x64xf32>, !vecKF
%16 = vector.extract %15[0] : !vecKF
%17 = vector.contract {indexing_maps=[#proj_012,#proj_32,#proj_012],
iterator_types=["parallel","parallel","parallel","reduction"]}
%14, %16, %O4 : !vecI, vector<8x32xf32> into !vecKF

scf.yield %17 : !vecO }
scf.yield %7 : !vecO }

%A = vector.transfer_write %9, %7[0,0,0]
{in_bounds=[true,false,true]} : !vecKF, tensor<1x?x32xf32>

%B = tensor.insert_slice %10 into %O2[0,%w,%f][1,min(8,988-%w),32][1,1,1]
scf.yield %B : !tO }

scf.yield %5 : !tO }

vectorize

Fig. 6. Fixed-size operations can be directly vectorized.

We propose a bufferization interface freeing upstream passes of the risk of
incurring a performance penalty when high-level transformations result in un-
expected allocation and copying. It is based on the so-called destination-passing
style: one of the tensor arguments is singled out and tied with the resulting
tensor for in-place bufferization. This singled-out tensor argument is called an
output tensor; see the left-hand side of Figure 7. After lowering, output tensors
are similar to C++ output parameters that are passed as non-const references
and used for returning the result of a computation. Yet the tie between an output
tensor (argument) and the operation’s result serve as a bufferization constraint
with no observable impact on the functional semantics; in particular, output
tensors still appear as immutable. During bufferization, only output tensors are
considered when looking for a buffer to write the result of an operation into.

The rationale is two-fold: first of all it provides a non-ambigious, “unsurpris-
ing” mechanism for driving bufferization choices from higher level optimization
algorithms; second, notice the ubiquitous sub-setting operations resulting from
tiling and structured control flow (extract_slice, insert_slice and scf.yield)
naturally consume their tensor argument, making them ideal candidates for in-
place bufferization. A comprehensive example is shown in Figure 8. The trade-
off is that upstream compilation passes are responsible of rewriting the IR in
destination-passing style. In particular, we believe that a global copy elimina-
tion problem can be formalized on top of destination-passing style, offering the
best of both worlds in terms of allowing passes to optimize memory usage at a
global scale, while enabling a robust, in-place bufferization path for the impor-
tant special case of refining structured operations.

During bufferization, before modifying the, an analysis decides for each ten-
sor OpOperand %t whether buffer( %t) (in-place bufferization) or a copy thereof
(out-of-place bufferization), denoted by copy(buffer( %t)), should be used with
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%0 = tensor.insert %f into %A[%c0, %c0] : tensor<?x?xf32>

tied OpOperand / OpResult pair
%o = …

%w = tensor.insert %f, %o[%c0, %c0]
{__inplace__ = ["none", "true", "none", "none"]} : tensor<?x?xf32>

%r = tensor.extract %o[%c0, %c0] : tensor<?x?xf32>

bufferizes to mem. read + write

bufferizes to mem. read
expects to read
(“last write”)

alias sets: {{%o, %w}}

Fig. 7. Left-hand side: output tensor arguments, tied with the result of an operation,
in destination-passing style. Right-hand side: example of a read-after-write conflict.

!vecI = type vector<1x8x8xf32>
!vecKF = type vector<1x8x32xf32>
!vecO = type vector<1x8xf32>
#proj_012 = affine_map<(d0,d1,d2,d3) -> (d0,d1,d3)
#proj_32 = affine_map<(d0,d1,d2,d3) -> (d3,d2)

func @conv_1d_nwc_wcf_main(%I: !tI #in, %K: !tK #in,
%O: !tO #out) -> tensor<1x988x64xf32>{

%1 = scf.for %w = /*...*/ iter_args(%O1 = %O) -> (!tO) {
%3 = linalg.init_tensor [3, 4, 1, 8, 8] : tensor<?x?x1x8x8xf32>
%PI = scf.for %kw = /*...*/ iter_args(%I1 = %I)->(tensor<?x?x1x8x8xf32>) {
%8 = scf.for %c = /*...*/ iter_args(%I2 = %I1) /*...*/ {
%11 = tensor.extract_slice %I /*...*/
%12 = vector.transfer_read %11[0,0,0], /*...*/: tensor<1x?x8xf32>,!vecI
%13 = vector.transfer_write %12, %arg8[%kw,%c ceildiv 8,0,0,0]

/*...*/ : !vecI, tensor<?x?x1x8x8xf32>
scf.yield %13 : tensor<?x?x1x8x8xf32> }

scf.yield %8 : tensor<?x?x1x8x8xf32> }

%5 = scf.for %f = /*...*/ iter_args(%O2 = %O1) -> (!tO) {
%7 = tensor.extract_slice %O2[0,%w,%f][1,min(8,988-%w),32][1,1,1]/*...*/
%8 = vector.transfer_read %7[0,0,0], /*...*/ : tensor<1x?x32xf32>, !vecKF
%9 = scf.for %kw = /*...*/ iter_args(%O3 = %8) -> (!vecO) {
%12 = scf.for %c = /*...*/ iter_args(%O4 = %O3) -> (!vecO) {
%14 = vector.transfer_read %PI[%kw,%c ceildiv 8,0,0,0], /*...*/

: tensor<?x?x1x8x8xf32>, !vecI
%15 = vector.transfer_read %F[%kw,%c,%f], /*...*/

: tensor<3x32x64xf32>, !vecKF
%16 = vector.extract %15[0] : !vecKF
%17 = vector.contract /*...*/
scf.yield %17 : !vecO }

scf.yield %7 : !vecO }
%A = vector.transfer_write %9, %7[0,0,0] /*...*/

: !vecKF, tensor<1x?x32xf32>
%B = tensor.insert_slice %10 into %O2[0,%w,%f][1,min(8,988-%w),32][1,1,1]
scf.yield %B : !tO }

scf.yield %5 : !tO }
return %1 }

!MIView = type memref<1x?x8xf32, offset: ?, strides: [31680,32,1]>
!MOView = type memref<1x?x32xf32, offset: ?, strides: [63232,64,1]> 
!MBuf = type memref<3x4x1x8x8xf32>

func @conv_1d_nwc_wcf_main(%I: memref<1x990x32xf32>,
%F: memref<3x32x64xf32>, %O: memref<1x988x64xf32>) {

%0 = memref.alloc() {alignment = 128 : i64} : !MBuf
scf.for %w = /*...*/ {
scf.for %kw = /*...*/ {
scf.for %c = /*...*/ {
%5 = memref.subview %I[0,min(8,988-%w,%kw][1,min(8,990-%w-%kw),8][1,1,1] 

: memref<1x990x32xf32> to !MIView
%6 = vector.transfer_read %5[0,0,0], /*...*/ : !MIView, !vecI
vector.transfer_write %6, %0[%kw,%c ceildiv 8,0,0,0] /*...*/ !vecI, !MBuf

}}

scf.for %f = /*...*/ {
%2 = memref.subview %O[0,%w,%f][1,min(8,988-%w),32][1,1,1] 

: memref<1x988x64xf32> to !MOView
%3 = vector.transfer_read %2[0,0,0], /*...*/ : !MOView, !vecKF
%4 = scf.for %kw = /*...*/ iter_args(%O3 = %3) -> (!vecO) {
%5 = scf.for %c = /*...*/ iter_args(%O4 = %O3) -> (!vecO) {
%14 = vector.transfer_read %0[%kw,%c ceildiv 8,0,0,0], /*...*/

: memref<3x4x1x8x8xf32>, !vecI
%15 = vector.transfer_read %F[%kw,%c,%f], /*...*/

: memref<3x32x64xf32>, !vecKF
%16 = vector.extract %15[0] : !vecKF
%17 = vector.contract /*...*/
scf.yield %17 : !vecO }

scf.yield %7 : !vecO }
vector.transfer_write %4, %2[0,0,0] /*...*/ : !vecKF, !MOView
/* insert_slice may result in a copy, elided here */

}}
memref.dealloc %0 : !MBuf
return }

affine_map<(d0, d1, d2)[s0] -> (d0 * 31680 + s0 + d1 * 32 + d2)>

bufferize

Fig. 8. Bufferization assigns tensor values to buffers, taking into account function-level
annotations #in, #out from Figure 4. Data flow is replaced by side effects, unnecessary
values are crossed out on the left. “Computational payload” dialects such as linalg

and vector are designed to support both tensor and memref (buffer) containers.

the new memref operation. The analysis simulates a future in-place bufferiza-
tion of the OpOperand and checks if a RaW conflict can be found under this
assumption. If not, the analysis greedily commits to this in-place bufferization
decision. Furthermore, the analysis stores the fact that the OpOperand and its
potentially aliasing OpResult are now known to alias, by merging their alias sets.
The search for RaW conflicts only involves the traversal of tensor SSA use-def
chains. The extended version of the paper [20] details the procedure and covers
special cases such as partial updates, cast operations and initialization.

3.5 Lowering of Multidimensional Vector Operations to LLVM

At this point, the IR has reached a level of abstraction close to nested loops with
vector intrinsics in C, except that we operate on multi-dimensional vectors. In the
simplest case, multi-dimensional vector.transfer operations lower to multiple
1-D vector.load and vector.store operations. When supported by hardware,
they can also lower to n-D operations and DMA transfers. In more complex
cases, transfer operations lower to a combination of broadcast, tranposition and
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!MIView = type memref<1x?x8xf32, offset: ?, strides: [31680,32,1]>
!MOView = type memref<1x?x32xf32, offset: ?, strides: [63232,64,1]> 
!MBuf = type memref<3x4x1x8x8xf32>

func @conv_1d_nwc_wcf_main(%I: memref<1x990x32xf32>,
%F: memref<3x32x64xf32>, %O: memref<1x988x64xf32>) {

%0 = memref.alloc() {alignment = 128 : i64} : !MBuf
scf.for %w = /*...*/ {
scf.for %kw = /*...*/ {
scf.for %c = /*...*/ {
%5 = memref.subview %I[0,min(8,988-%w,%kw][1,min(8,990-%w-%kw),8][1,1,1] 

: memref<1x990x32xf32> to !MIView
%6 = vector.transfer_read %5[0,0,0], /*...*/ : !MIView, !vecI
vector.transfer_write %6, %0[%kw,%c ceildiv 8,0,0,0] /*...*/ !vecI, !MBuf

}}

scf.for %f = /*...*/ {
%2 = memref.subview %O[0,%w,%f][1,min(8,988-%w),32][1,1,1] 

: memref<1x988x64xf32> to !MOView
%3 = vector.transfer_read %2[0,0,0], /*...*/ : !MOView, !vecKF
%4 = scf.for %kw = /*...*/ iter_args(%O3 = %3) -> (!vecO) {
%5 = scf.for %c = /*...*/ iter_args(%O4 = %O3) -> (!vecO) {
%14 = vector.transfer_read %0[%kw,%c ceildiv 8,0,0,0], /*...*/

: memref<3x4x1x8x8xf32>, !vecI
%15 = vector.transfer_read %F[%kw,%c,%f], /*...*/

: memref<3x32x64xf32>, !vecKF
%16 = vector.extract %15[0] : !vecKF
%17 = vector.contract /*...*/
scf.yield %17 : !vecO }

scf.yield %7 : !vecO }
vector.transfer_write %4, %2[0,0,0] /*...*/ : !vecKF, !MOView

}}
memref.dealloc %0 : !MBuf
return }

!MBufView = memref<1x?x8xf32, offset: 0, strides: [64,8,1]>
!MIDynView = memref<1x?x8xf32, offset: 0, strides: [?,?,?]>

%11 = memref.subview %O /*...*/
%12 = scf.if min(8,988-%w) >= 8 {
scf.yield %11 as !MIDynView

} else {
linalg.fill(0.000000, %0) : f32, memref<1x8x8xf32> 
%21 = memref.subview %11/*...*/ : !MIView to !MIView
%22 = memref.subview %0/*...*/ : memref<1x8x8xf32> to !MBufView
linalg.copy(%21, %22) : !MIView, !MBufView
scf.yield %0 as !MIDynView }

%13 = vector.load %12[0,0,0] : !MBufView, vector<8xf32>
vector.store %13, %3[%kw,%c ceildiv 8,0,0,0] : !MBuf, vector<8xf32>
/*... etc ...*/
%20 = vector.load %12[0,0,7] : !MBufView, vector<8xf32>
vector.store %20, %3[%kw,%c ceildiv 8,0,7,0] : !MBuf, vector<8xf32>

%37 = vector.load %0[%kw,%c ceildiv 8,0,0,0] : !MBuf, vector<8xf32>
%61 = vector.extract %37[0] : vector<8xf32>
%62 = vector.insert %61, dense<0.000000e+00> [0, 0] : f32 into vector<8x8xf32>
/*... more 1D vectors inserted into %62 to produce %64,%68, ...*/
%44 = vector.load %0[%kw,%c ceildiv 8,0,7,0] : !MBuf, vector<8xf32>
%187 = vector.extract %44[7] : vector<8xf32>
%188 = vector.insert %187, %186 [7, 7] : f32 into vector<8x8xf32>

%45 = vector.load %F[%kw,%c,%f] : memref<3x32x64xf32>, vector<32xf32>
/*... etc ...*/
%59 = vector.load %F[%kw,%c+7,%f] : memref<3x32x64xf32>, vector<32xf32>

%189 = vector.extract %188[0] : vector<8x8xf32>

%60 = vector.extract %O4[0] : vector<1x8x32xf32>
%190 = vector.outerproduct %189, %45, %60

{kind = #vector.kind<add>} : vector<8xf32>, vector<32xf32>
/*... third operand of outerproduct is the result of the previous one ...*/
%203 = vector.extract %188[7] : vector<8x8xf32>
%204 = vector.outerproduct %203, %59, %202

{kind = #vector.kind<add>} : vector<8xf32>, vector<32xf32>
%205 = vector.broadcast %204 : vector<8x32xf32> to vector<1x8x32xf32>

lower vectors

Fig. 9. The vector dialect can be lowered progressively to simpler operations on 1-
D vectors. Illustrated on lowering contractions to outer products, with parts in italic
simplified for brevity and repetitive parts omitted. Lower-level vector operations require
constant indices and are produced by unrolling the outer dimensions.

%a = vector.transfer_read %m0[0], 0.0f {
in_bounds=[true,true],
permutation_map=affine_map<(d0)->(d0,0)>}
: memref<2xf32>, vector<2x2xf32>

%b = vector.transfer_read %m1[0,0], 0.0f {
in_bounds=[true,true],
permutation_map=affine_map<(d0,d1)->(d1,d0)>}
: memref<2x16xf32>, vector<16x2xf32>

%v = vector.broadcast 0.0f : f32 to vector<2x16xf32>
%d = vector.contract #matmul_trait %a, %b, %v
: vector<2x2xf32>, vector<16x2xf32>

vector.transfer_write %d, %m2[0,0] {
in_bounds=[true,true]}
: vector<2x16xf32>, memref<2x16xf32>

%b0 = vector.extract_strided_slice %b
{offsets=[0,0], sizes=[8,2], strides=[1,1]}
: vector<16x2xf32> to vector<8x2xf32>

%v0 = vector.extract_strided_slice %v
{offsets=[0,0], sizes=[2,8], strides=[1,1]}
: vector<2x16xf32> to vector<2x8xf32>

%d0 = vector.contract #matmul_trait %a, %b0, %v0
: vector<2x2xf32>, vector<8x2xf32>

%r0 = vector.insert_strided_slice %d0, %v
{offsets=[0,0], strides=[1,1]}
: vector<2x8xf32> into vector<2x16xf32>

%b1 = vector.extract_strided_slice %b
{offsets=[8,0], sizes=[8,2], strides=[1,1]}
: vector<16x2xf32> to vector<8x2xf32>

%v1 = vector.extract_strided_slice %v
{offsets=[0,8], sizes=[2,8], strides=[1,1]}
: vector<2x16xf32> to vector<2x8xf32>

%d1 = vector.contract #matmul_trait %a, %b1, %v1
: vector<2x2xf32>, vector<8x2xf32>

%d = vector.insert_strided_slice %d1, %r0
{offsets=[0,8], strides=[1,1]}
: vector<2x8xf32> into vector<2x16xf32>

%r = vector.transfer_read %m1[0,0], 0.0f {
in_bounds=[true,true], 
permutation_map=affine_map<(d0,d1)->(d1,d0)>}
: memref<2x16xf32>, vector<8x1xf32>

%vt = vector.transfer_read %m1[0,0], 0.0f {
in_bounds=[true,true]}
: memref<2x16xf32>, vector<1x8xf32>

%r = vector.transpose %vt, [1, 0]
: vector<1x8xf32> to vector<8x1xf32>

%l = vector.load %m1[%c0, %c0]
: memref<2x16xf32>, vector<8xf32>

%cast = vector.shape_cast %l
: vector<8xf32> to vector<1x8xf32>

%r = vector.transpose %cast, [1, 0]
: vector<1x8xf32> to vector<8x1xf32>

%a0 = vector.transpose %a, [1, 0] 
: vector<1x1xf32> to vector<1x1xf32>

%b0 = vector.transpose %b, [1, 0]
: vector<8x1xf32> to vector<1x8xf32>

%a1 = vector.extract %a0[0] : vector<1x1xf32>
%b1 = vector.extract %b0[0] : vector<1x8xf32>
%d = vector.outerproduct %a1, %b1, %acc {
kind = #vector.kind<add>} : vector<1xf32>,vector<8xf32>

%a0 = vector.transpose %a, [1, 0]
: vector<8x1xf32> to vector<1x8xf32>

%a1 = vector.extract %a0[0] : vector<1x8xf32>
%b0 = vector.extract %b[0, 0] : vector<1x1xf32>
%bsplat = vector.splat %b0 : vector<8xf32>
%a2 = vector.extract %a1[0] : vector<1x8xf32>
%d = vector.fma %a2, %bsplat, %acc : vector<8xf32>

(a)

(b) (c)

(d)

(e)

(a)

Fig. 10. Progressive lowering of the vector operations representing matrix product:
(a) vector unrolling to the target shape 2× 8× 2 introduces vector slice manipulation;
(b) the transfer permutation is materialized as a transpose operation; (c) 1-D transfers
become loads with shape adaptation; (d) the contraction rewrites into a sequence of
outer products over a vector accumulator, and each one finally lowers to (e) fused
multiply-add instructions.

masked scatter/gather. In the particular case where the vector.transfer cannot
be determined to be in-bounds, one must resort to an additional separation
between full and partial transfer, akin to the full and partial tile separation for
non-divisible tile sizes. This is illustrated in Figure 9 (right) in the else block
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around the linalg.copy(%21, %22) operation. The progressive lowering process
and resulting code for our example has several dozen operations, as shown in
Figure 10. The detailed discussion of this process is provided in the extended
version of the paper [20].

3.6 Overview of Sparse Code Generation

Let us now briefly describe how sparse code generation fits into the picture. As
stated earlier, the sparse_tensor dialect bridges high-level operations on sparse
tensors types with lower-level operations on the actual sparse storage [2]. To this
end, the dialect introduces a tensor encoding attribute derived from the formats
of the Tensor Algebra Compiler (TACO) [10]. Figure 11 illustrates this on matrix
product over Doubly Compressed Sparse Column (DCSC) storage.

Rewrite rules specific to the sparse_tensor dialect lower the kernel to a sparse
storage scheme and imperative constructs that only store and iterate over the
nonzero elements. This approach to automatic sparse code generation was pio-
neered by [3,4] in the context of sparse linear algebra, and later generalized to
sparse tensor algebra in [10]. The details of these rewrite rules are outside the
scope of this paper, but they follow the structured code generation philosophy
described earlier. Variations include the use of sparse index sets and slightly
more complicated bufferization due to the compound nature of sparse storage
schemes. The rewrite rules similarly interoperate with linalg, tensor, memref,
scf, and vector abstractions, thereby lowering a sparsity-agnostic definition of
a kernel into a form that fully exploits the sparsity of tensors as well as all
performance features of the target architecture.

Figure 12 illustrates the approach on the prototypical sparse matrix-vector
product x = Ab. The Compressed Sparse Row (CSR) format is suitable for a
matrix A with no specific sparsity pattern. Nested scf loops iterate over the
outer dense dimension and over the nonzero elements of the compressed inner
dimension by means of an indirection. If A is actually a structured sparse matrix
where most columns are empty but nonzero the columns are dense, the CDC

format is suitable, favoring column-wise access and compressing the outermost
dimension (now columns) only. Specializing for this format for a sparse 8192 ×
8192 matrix and a vector length of 16, the sparse rewriting rules compose with
vectorization to yield sparse vector code that skips over empty column while
performing the innermost dense update using vectors.

3.7 Discussion

The transformations we introduced are legal by design, in the sense that their
legality and applicability derive from an operation’s properties and structure.

The traditional compilation for numerical computing [1] revolves around:

– Legality: what transformations can be applied without changing the observed
program semantics? Legality conditions are often checked through static
analyses. They may be performed upfront or on-demand, and their results
may be updated as the IR is transformed.
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#DCSC = #sparse_tensor.encoding<{
dimLevelType = [ "compressed", "compressed" ],
dimOrdering = affine_map<(i,j) -> (j,i)>

}>

#CSR = #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ] }>

// Dense linalg.matmul on tensors
%0 = linalg.matmul ins(%a, %b: tensor<10x20xf32>, tensor<20x30xf32>) outs(%c: tensor<10x30xf32>) -> tensor<10x30xf32>

// Same matmul with SpMM kernel
%0 = linalg.matmul ins(%a, %b: tensor<10x20xf32, #CSR>, tensor<20x30xf32>) outs(%c: tensor<10x30xf32>) -> tensor<10x30xf32>

// Same matmul with SpMSpM kernel
%0 = linalg.matmul ins(%a, %b: tensor<10x20xf32, #CSR>, tensor<20x30xf32, #DCSC>) outs(%c: tensor<10x30xf32>) -> tensor<10x30xf32>

simply add a sparse attribute to the tensor type

Fig. 11. Definition of sparse tensor layouts and their usage in a matrix multiplication.

%0 = linalg.generic #matvec
ins(%argA, %argb: tensor<?x?xf64, #???>, tensor<?xf64>)
outs(%argx: tensor<?xf64>) {
^bb(%A: f64, %b: f64, %x: f64):
%0 = arith.mulf %A, %b : f64
%1 = arith.addf %x, %0 : f64
linalg.yield %1 : f64

} -> tensor<?xf64>

scf.for %i = %c0 to %dim_a step %c1 {
%xi = memref.load %x[%i] : memref<?xf64>
%lo = memref.load %A_pointers[%i] : memref<?xindex>
%i1 = arith.addi %i, %c1 : index
%hi = memref.load %A_pointers[%i1] : memref<?xindex>
%acc = scf.for %jj = %lo to %hi step %c1 iter_args(%acc_in = %xi) -> (f64) {
%j = memref.load %A_indices[%jj] : memref<?xindex>
%aij = memref.load %A_values[%jj] : memref<?xf64>
%bj = memref.load %b[%j] : memref<?xf64>
%m = arith.mulf %aij, %bj : f64
%a = arith.addf %acc_in, %m : f64
scf.yield %a : f64

}
memref.store %acc, %x[%i] : memref<?xf64>

}

%lo = memref.load %A_pointers[%c0] : memref<?xindex>
%hi = memref.load %A_pointers[%c1] : memref<?xindex>
scf.for %jj = %lo to %hi step %c1 {
%j = memref.load %1[%jj] : memref<?xindex>
%bj = memref.load %b[%j] : memref<8192xf64>
scf.for %i = %c0 to %c8192 step %c16 {
%0 = arith.muli %jj, %c8192 : index
%1 = arith.addi %0, %i : index
%2 = vector.load %x[%i] : memref<8192xf64>, vector<16xf64>
%3 = vector.load %A_values[%1] : memref<?xf64>, vector<16xf64>
%4 = vector.broadcast %bj : f64 to vector<16xf64>
%5 = arith.mulf %3, %4 : vector<16xf64>
%6 = arith.addf %2, %5 : vector<16xf64>
vector.store %6, %x[%i] : memref<8192xf64>, vector<16xf64>

}
}

#CDC = #sparse_tensor.encoding<{
dimLevelType = [ "compressed", "dense" ],
dimOrdering = affine_map<(i,j) -> (j,i)>

}>
#CSR = #sparse_tensor.encoding<{
dimLevelType = [ "dense", "compressed" ]

}>

specify tensor layout

#CSR

#CDC

vbroadcastsd zmm0, qword ptr [r13 + 8*rsi]
Loop: vmulpd zmm1, zmm0, zmmword ptr [rdx + 8*rsi - 256]

vaddpd zmm1, zmm1, zmmword ptr [rbx + 8*rsi + 128]
vmovupd zmmword ptr [rbx + 8*rsi + 128], zmm1
...
jb Loop

Fig. 12. Lowering sparse matrix-vector multiplication.

– Applicability: how complex is the IR matching process for finding where
to apply a transformation? Applicability also encompasses considerations
related to the loss of high-level semantic information and the ability to apply
subsequent transformations.

– Profitability: what are the transformations deemed beneficial for a given
metric? For example, polyhedral compilers often focus on finding an objective
function to minimize (universal or target-specific) [21], while autotuners may
rely on a learned performance model to accelerate search [23].

It is of central importance to control the abstractions on which the trans-
formation legality, applicability and profitability questions relate to. The finer-
grained the IR, the more general and canonical the representation, but also
the more intractable the analyses and transformations. Indeed, canonicalization
to some flavor SSA CFG such as LLVM IR has proven invaluable in enabling
the reuse of common infrastructure for middle-end and back-end compilers. But
lowering abstractions and domain knowledge too quickly reduces the amount of
structure available to derive transformations from. While a loop nest is a net
abstraction gain compared to a CFG for the application of loop transformations,
important information is still lost. It induces non-trivial phase ordering issues:
e.g., loop fusion to enhance temporal locality may alter the ability to recognize
an efficient BLAS-2 or BLAS-3 implementation in a numerical library.
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The higher-level abstractions we propose facilitate the declarative specifica-
tion of transformations. It makes it possible to target individual operations in
the IR rather than large multi-operation constructs such as loops and control
flow graphs. This is the case of tiling, fusion and unrolling.4 Loops and other
constructs may be produced as a result of transformations, but they rarely need
to be targeted by further high-level transformations. On the other hand, tar-
get specifications can be arbitrarily complex and may use the pattern-matching
infrastructure available in MLIR such as the PDL dialect.

Furthermore, transformation orchestration calls for a meta-programming di-
alect suitable for IR manipulation. Such a dialect makes it possible to capture
transformation schedules [13] in the IR itself. Transformations schedules can
be stored, analyzed, parameterized, and even shipped separately from the main
compiler. This is paramount to retargeting a tensor compiler to new hardware
or to port it to a different ML framework. A declarative approach also facilitates
the design of custom passes by selecting specific rewrite rules.

Finally, the multi-level nature of MLIR makes it possible to build higher-
level dialects to define IR transformations superimposed on the existing infras-
tructure and handled by progressive lowering. For example, the transformation
sequence and some of the parameters can be reified into a new “strategy” opera-
tion that gets lowered into primitive transformation operations with the lowering
also specified declaratively. Just as with any other dialect, IR modules using such
meta-programming dialects can be created programmatically from any language.
The textual or binary IR format enables loosely coupled communication between
the front-end language—in which the transformation is written—and the com-
piler infrastructure. The expressiveness of such transformations is similar to that
of RISE/ELEVATE [8] but without restrictions to the specification language.

4 Related Work

The extended version of the paper surveys related compilers and infrastructure
[20]: ONNX (https://onnx.ai), XLA [22], Halide [13], TVM [5], Fireiron [6],
LIFT [18], Multi-Dimensional Homomorphisms [14], Elevate [7], Glenside [17],
Tensor Comprehensions [21], PolyMage [12]. It also discusses the interaction with
lower level code generators. The crux of the matter is that structured operations
capture the common abstractions and transformations underlying the different
flavors of tensor compilers. From the mathematical specification down to super-
optimized blocks of vector instructions, from polyhedral to domain-specific and
algebraic forms, with or without explicit scheduling languages.

5 Conclusion

We presented the composable multi-level intermediate representation and trans-
formations that underpin tensor code generation in MLIR. This so-called “struc-
tured code generation” approach leverages the natural decomposition of tensor

4 Some transformations such as software pipelining remain naturally attached to loops.

https://onnx.ai
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algebra operations, doing away with static analyses and applicability checks on
low-level IR. The resulting design is modular and built with optionality in mind.
Abstractions span data structures and control flow with both functional (SSA
form) and imperative (side-effecting) semantics; they serve as generic building
blocks for composable, interoperable, retargetable tensor compilers.
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