
0272-1732 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MM.2020.3009475, IEEE Micro

1

ReLeQ: A Reinforcement Learning Approach for
Automatic Deep Quantization of Neural

Networks
Ahmed T. Elthakeb, Prannoy Pilligundla, Fatemehsadat Mireshghallah, Amir Yazdanbakhsh,

and Hadi Esmaeilzadeh

Abstract—Deep Quantization (below eight bits) can significantly reduce DNN computation and storage by decreasing the bitwidth of
network encodings. However, without arduous manual effort, this deep quantization can lead to significant accuracy loss, leaving it in a
position of questionable utility. We propose a systematic approach to tackle this problem, by automating the process of discovering the
bitwidths through an end-to-end deep reinforcement learning framework (RELEQ). This framework utilizes the sample efficiency of
Proximal Policy Optimization (PPO) to explore the exponentially large space of possible assignment of the bitwidths to the layers. We
show how RELEQ can balance speed and quality, and provide a heterogeneous bitwidth assignment for quantization of a large variety
of deep networks with minimal accuracy loss (≤ 0.3% loss) while minimizing the computation and storage costs. With these DNNs,
RELEQ enables conventional hardware and custom DNN accelerator to achieve 2.2× speedup over 8-bit execution.

Index Terms—Neural networks, quantization, autoML.

F

1 INTRODUCTION

Deep Neural Networks (DNNs) have made waves across a
variety of domains [1], however their compute efficiency
has become a major constraint in unlocking further appli-
cations and capabilities. To this end, quantization of neural
networks provides a path forward as it reduces the bitwidth
of operations and memory footprint. For instant, in many
scenarios, the bottleneck of running DNNs is in transferring
the weights and data between main memory and compute
cores. Using 8-bit integer rather than 32-bit, we instantly
speed up the memory transfer by 4×.

Albeit alluring, quantization can lead to significant accu-
racy loss if not employed with diligence. To that end, two
fundamental problems need to be addressed. (1) Developing
learning techniques that can perform quantized training of
DNNs. (2) Designing algorithms that identify appropriate
bitwidth per-layer while preserving accuracy. This paper
takes on the second challenge as there are inspiring efforts
that have developed techniques for quantized training [2],
[3].

However, this possibility (discovering bitwidths) is man-
ually laborious as to preserve accuracy, the bitwidth varies
across individual layers and different DNNs [2], [3]. Each
layer has a different role and unique properties in terms
of weight distribution; hence, displays different sensitiv-

• Ahmed T. Elthakeb is with the Department of Electrical and Computer
Engineering, University of California San Diego, La Jolla, CA, 92093.
E-mail: a1yousse@eng.ucsd.edu

• Prannoy Pilligundla, Fatemehsadat Mireshghallah, and Hadi Es-
maeilzadeh are with the Department of Computer Science and Engineer-
ing, University of California San Diego, La Jolla, CA, 92093.
E-mail: {ppilligu, fmireshg, hadi}@eng.ucsd.edu

• Amir Yazdanbakhsh is with Google Brain, Mountain View, CA.
E-mail: ayazdan@google.com

Manuscript received February 24, 2020; revised Month XX, 2020.

ity towards quantization. Nonetheless, considering layer-
wise quantization opens a rather exponentially large hyper-
parameter space, specially when quantization below eight
bits is considered. For example, ResNet-20 exposes a hyper-
parameter space of size 8l = 820 > 1018, where l = 20
is the number of layers and 8 is the possible bitwidths.
This exponentially large hyper-parameter space grows with
the number of layers making it impractical to exhaustively
assess and determine the bitwidth for each layer.

We develop an end-to-end framework, dubbed RELEQ,
that exploits the sample efficiency of the Proximal Pol-
icy Optimization [4] to explore the quantization hyper-
parameter space. The RL agent starts from a full-precision
previously trained model and learns the sensitivity of final
classification accuracy with respect to the bitwidth of each
layer, determining its bitwidth while keeping classification
accuracy almost intact. Observing that the quantization
bitwidth for a given layer affects the accuracy of subse-
quent layers, our framework implements a Long short-
term memory (LSTM)-based RL framework which enables
selecting bitwidths with the context of previous layers’
bitwidths. Rigorous evaluations with a variety of networks
(AlexNet, CIFAR, LeNet, SVHN, VGG-11, ResNet-20, and
MobileNet) show that RELEQ can effectively find heteroge-
nous bitwidths with minimal accuracy loss (≤0.3% loss)
while minimizing the computation and storage cost. The re-
sults (Table 1) show that there is a high variance in bitwidths
across the layers of these networks. With the seven bench-
mark DNNs, RELEQ enables conventional hardware [5] as
well as a custom DNN accelerator [6] to achieve 2.2−2.7×
speedup over 8-bit execution. These results suggest that
RELEQ takes an effective first step towards automating the
deep quantization of neural networks.

Authorized licensed use limited to: GOOGLE. Downloaded on July 16,2020 at 23:52:22 UTC from IEEE Xplore. Restrictions apply.

0272-1732 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MM.2020.3009475, IEEE Micro

2

2 RL FOR DEEP QUANTIZATION OF DNNS

2.1 Method Overview
RELEQ trains an RL agent that determines the bitwidth
for each layer of the network. RELEQ explores the search
space of the bitwidths, layer by layer. The underlying opti-
mization problem is multi-objective (higher accuracy, lower
compute, and reduced memory); however, preserving the
accuracy is the primary objective. With this formulation
of the RL problem, RELEQ employs the state-of-the-art
Proximal Policy Optimization (PPO) [4] to train its policy
and value networks. This section details the components
and the research path we have examined to design them.

2.2 State Space Embedding

Interplay between layers. We design the state space to con-
sider sensitivities and interplay between layers by including
the knowledge about the bitwidth of previous layers, the in-
dex of the layer-under-quantization, layer size, and weights
statistics (e.g. standard deviation).

However, this information is incomplete without
knowing the accuracy of the network given a set of
bitwidths and state of quantization for the entire network.
As such, the parameters used to embed the state space of
RELEQ agent are categorized across two different axes.
(1) “Layer-Specific” parameters which are unique to the
layer (Layer index, Layer Dimensions, Weight Statistics) vs.
“Network-Specific” parameters that characterize the entire
network as the agent steps forward during training process
(state of quantization and relative accuracy). (2) “Static”
parameters that do not change during the training process
vs. “Dynamic” parameters that change during training
depending on the actions taken by the agent while it
explores the search space such as state of quantization and
relative accuracy.

State of quantization and relative accuracy. The “Network-
Specific” parameters reflect some indication of the state of
quantization and relative accuracy. State of Quantization is
a metric to evaluate the benefit of quantization for the
network and it is calculated using the compute and memory
costs of each layer. For a neural network with L layers, we
define compute cost of layer l as the number of Multiply-
Accumulate (MAcc) operations (nMAcc

l), where (l = 0, ..., L).
Additionally, since RELEQ only quantizes weights, we de-
fine memory cost of layer l as the number of weights (nw

l)
scaled by the ratio of Memory Access Energy (EMemoryAccess)
to MAcc Computation Energy (EMAcc), which is estimated to
be around 120×.

It is intuitive to consider that the sum of memory and
compute costs linearly scale with the number of bits for
each layer (nbits

l). The nbits
max term is the maximum bitwidth

among the predefined set of bitwidths that’s available for
the RL agent to pick from. Lastly, the State of Quantization
(StateQuantization) is the normalized sum over all layers (L)
that accounts for the total memory and compute costs of the
entire network.

(1)

StateQuantization

=

∑L
l=0[(n

w
l ×

EMemoryAccess

EMAcc
+ nMAcc

l)× nbits
l]∑L

l=0[n
w
l ×

EMemoryAccess

EMAcc
+ nMAcc

l]× nbits
max

Besides the potential benefits, captured by
StateQuantization, RELEQ considers the State of Relative
Accuracy to gauge the effects of quantization on the
classification performance. To that end, the State of Relative
Accuracy (StateAccuracy) is defined as the ratio of the
current accuracy (AccCurr) with the current bitwidths for
all layers during RL training, to accuracy of the network
when it runs with full precision (AccFullP).

(2)StateAccuracy =
AccCurr

AccFullP

Given these embeddings of the observations from the envi-
ronment, the RELEQ agent can take actions, described next.

2.3 Flexible Actions Space
The RELEQ agent steps through each layer sequentially
and chooses the bitwidth of a layer from a discrete set of
bitwidths which are provided as possible choices.

Figure 1(a)(i) shows the representation of action space
in which the set of bitwidths is {1, 2, 3, 4, 5, 6, 7, 8}. As de-
picted, the agent can flexibly choose to change the bitwidth
of a given layer from any bitwidth to any other bitwidth. An
alternative (Figure 1(a)(ii)) that we experimented with was
to only allow RELEQ agent to increment/decrement/keep
the current bitwidth of the layer (B(t)). The experimenta-
tion showed that the convergence is much longer than the
aforementioned flexible action space, which is used, as it
encourages more exploration.

2.4 Asymmetric Reward Formulation for Accuracy
While the state space embedding focused on interplay be-
tween the layers and the action space provided flexibility,
reward formulation for RELEQ aims to preserve accuracy
and minimize bitwidth of the layers simultaneously. This re-
quirement creates an asymmetry between the accuracy and
bitwidth reduction, which is a core objective of RELEQ. The
following Reward Shaping formulation provides the asym-
metry and puts more emphasis on maintaining the accuracy
as illustrated with different color intensities in Figure 1(b)(i).
This reward uses the same terms of StateQuantization and
StateAcc from Section 2.2.

Reward Shaping:
reward = 1.0− (StateQuantization)

a

if (StateAcc < th) then
reward = −1.0

else
Accdiscount = StateAcc

(b/StateAcc)

reward = reward×Accdiscount
end if

This used formulation (1) produces a smooth reward
gradient as the agent approaches the optimum quantization
combination. (2) The varying 2-dimensional gradient speeds
up the agent’s convergence time. In the reward formulation,
th is threshold for relative accuracy below which the accu-
racy loss may not be recoverable and those bitwidths are
completely unacceptable. After some trials, we observe that
a = 0.2, b = 0.4, th = 0.4 provide reasonable convergence
times and accuracy-quantization trade-off; thus, we fixed

Authorized licensed use limited to: GOOGLE. Downloaded on July 16,2020 at 23:52:22 UTC from IEEE Xplore. Restrictions apply.

0272-1732 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MM.2020.3009475, IEEE Micro

3

Fig. 1: (a) Action spaces: (i) Flexible action space (used in RELEQ), (ii) Alternative action space with restricted movement. (b) Reward
shaping with three different formulations as functions of the optimization objectives: state of relative accuracy and state of quantization:
(i) Proposed formulation, (ii) direct division, and (iii) direct subtraction. The color palette shows the intensity of the reward. (c) Overview
of RELEQ, which starts from a pre-trained network and delivers its corresponding deeply quantized network.

them throughout the experiments. While Figure 1 (b) (i)
shows the aforementioned formulation, Figures 1 (b) (ii) and
(iii) depict two other alternatives. Figure 1 (b) (ii) is based on
StateAcc/StateQuantization while Figure 1 (b) (iii) is based
on StateAcc − StateQuantization. In summary, based on our
experiments, the formulation for Figure 1(b) (i) offers faster
convergence.

2.5 Network Architecture of Policy and Value Networks

Both Policy and Value are functions of state, so the state
space, defined in Section 2.2, is encoded as a vector and fed
as input to LSTM layer which acts as the first hidden layer
for both Policy and Value networks. Apart from the LSTM,
policy network has two fully connected hidden layers of
128 neurons each and the number of neurons in the final
output layer is equal to the number of available bitwidths
the agent can choose from. Whereas the Value network has
two fully connected hidden layers of 128 and 64 neurons
each. Based on our evaluations, LSTM enables the RELEQ
agent to converge almost ×1.33 faster in comparison to a
network with only fully connected layers.

(a) (b)

(c) (d)

Fig. 2: Action (Bitwidths selection) probability evolution over train-
ing episodes for LeNet.

Authorized licensed use limited to: GOOGLE. Downloaded on July 16,2020 at 23:52:22 UTC from IEEE Xplore. Restrictions apply.

