
Jupiter Evolving: Transforming Google’s Datacenter
Network via Optical Circuit Switches and

Software-Defined Networking
Leon Poutievski, Omid Mashayekhi, Joon Ong, Arjun Singh, Mukarram Tariq,

Rui Wang, Jianan Zhang, Virginia Beauregard, Patrick Conner, Steve Gribble,

Rishi Kapoor, Stephen Kratzer, Nanfang Li, Hong Liu, Karthik Nagaraj,

Jason Ornstein, Samir Sawhney, Ryohei Urata, Lorenzo Vicisano, Kevin Yasumura,

Shidong Zhang, Junlan Zhou, Amin Vahdat

Google

sigcomm-jupiter-evolving@google.com

ABSTRACT
We present a decade of evolution and production experience

with Jupiter datacenter network fabrics. In this period Jupiter

has delivered 5x higher speed and capacity, 30% reduction in

capex, 41% reduction in power, incremental deployment and

technology refresh all while serving live production traffic. A

key enabler for these improvements is evolving Jupiter from a
Clos to a direct-connect topology among the machine aggrega-
tion blocks. Critical architectural changes for this include: A
datacenter interconnection layer employing Micro-Electro-

Mechanical Systems (MEMS) based Optical Circuit Switches

(OCSes) to enable dynamic topology reconfiguration, central-

ized Software-Defined Networking (SDN) control for traffic

engineering, and automated network operations for incre-

mental capacity delivery and topology engineering. We show

that the combination of traffic and topology engineering on

direct-connect fabrics achieves similar throughput as Clos

fabrics for our production traffic patterns. We also optimize

for path lengths: 60% of the traffic takes direct path from

source to destination aggregation blocks, while the remain-

ing transits one additional block, achieving an average block-

level path length of 1.4 in our fleet today. OCS also achieves

3x faster fabric reconfiguration compared to pre-evolution

Clos fabrics that used a patch panel based interconnect.

CCS CONCEPTS
• Networks→ Data center networks; Traffic engineer-
ing algorithms; Network manageability;

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

SIGCOMM’22, August 22-26, 2022, Amsterdam, Netherlands
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9420-8/22/08.

https://doi.org/10.1145/3544216.3544265

KEYWORDS
Datacenter network, Software-defined networking, Traffic

engineering, Topology engineering, Optical circuit switches.

ACM Reference Format:
Leon Poutievski, OmidMashayekhi, Joon Ong, Arjun Singh, Mukar-

ram Tariq, Rui Wang, Jianan Zhang, Virginia Beauregard, Patrick

Conner, Steve Gribble, Rishi Kapoor, Stephen Kratzer, Nanfang Li,

Hong Liu, Karthik Nagaraj, Jason Ornstein, Samir Sawhney, Ryohei

Urata, Lorenzo Vicisano, Kevin Yasumura, Shidong Zhang, Junlan

Zhou, Amin Vahdat Google sigcomm-jupiter-evolving@google.com

. 2022. Jupiter Evolving: Transforming Google’s Datacenter Net-

work via Optical Circuit Switches and Software-Defined Network-

ing. In Proceedings of ACM Conference (SIGCOMM’22). ACM, New

York, NY, USA, 20 pages. https://doi.org/10.1145/3544216.3544265

1 INTRODUCTION
Software-Defined Networking and Clos topologies [1, 2, 14,

24, 33] built with merchant silicon have enabled cost effec-

tive, reliable building-scale datacenter networks as the basis

for Cloud infrastructure. A range of networked services, ma-

chine learning workloads, and storage infrastructure lever-

age uniform, high bandwidth connectivity among tens of

thousands of servers to great effect.

While there is tremendous progress, managing the het-

erogeneity and incremental evolution of a building-scale

network has received comparatively little attention. Cloud

infrastructure grows incrementally, often one rack or even

one server at a time. Hence, filling an initially empty building

takes months to years. Once initially full, the infrastructure

evolves incrementally, again often one rack at a time with

the latest generation of server hardware. Typically there is

no in advance blueprint for the types of servers, storage,

accelerators, or services that will move in or out over the

lifetime of the network. The realities of exponential growth

and changing business requirements mean that the best laid

plans quickly become outdated and inefficient, making in-

cremental and adaptive evolution a necessity.

https://doi.org/10.1145/3544216.3544265
https://doi.org/10.1145/3544216.3544265

SIGCOMM’22, August 22-26, 2022, Amsterdam, Netherlands Poutievski et al.

Incremental refresh of compute and storage infrastructure

is relatively straightforward: drain perhaps one rack’s worth

of capacity among hundreds or thousands in a datacenter and

replace it with a newer generation of hardware. Incremental

refresh of the network infrastructure is more challenging

as Clos fabrics require pre-building at least the spine layer

for the entire network. Doing so unfortunately restricts the

datacenter bandwidth available to the speed of the network

technology available at the time of spine deployment.

Consider a generic 3-tier Clos network comprising ma-

chine racks with top-of-the-rack switches (ToRs), aggrega-

tion blocks connecting the racks and spine blocks connecting

the aggregation blocks (Fig 1). A traditional approach to Clos

will require pre-building spine at the maximum-scale (e.g., 64

aggregation blocks with Jupiter [33]) using the technology of

the day. With 40Gbps technology, each spine would support

20Tbps burst bandwidth. As the next generation of 100Gbps

becomes available, the newer aggregation blocks can sup-

port 51.2Tbps of burst bandwidth, however, these blocks

would be limited to the 40Gbps link speed of the pre-existing

spine blocks, reducing the capacity to 20Tbps per aggrega-

tion block. Ultimately, individual server and storage capacity

would be derated because of insufficient datacenter network

bandwidth. Increasing compute power without correspond-

ing network bandwidth increase leads to system imbalance

and stranding of expensive server capacity. Unfortunately,

the nature of Clos topologies is such that incremental refresh

of the spine results in only incremental improvement in the

capacity of new-generation aggregation blocks. Refreshing

the entire building-scale spine is also undesirable as it would

be expensive, time consuming, and operationally disruptive

given the need for fabric-wide rewiring.

We present a new end-to-end design that incorporates

Optical Circuit Switches (OCSes) [31]
1
to move Jupiter from

a Clos to a block-level direct-connect topology that elimi-

nates the spine switching layer and its associated challenges

altogether, and enables Jupiter to incrementally incorporate

40Gbps, 100Gbps, 200Gbps, and beyond network speeds. The

direct-connect architecture is coupled with network man-

agement, traffic and topology engineering techniques that

allow Jupiter to cope with the traffic uncertainty, substantial

fabric heterogeneity, and evolve without requiring any down-

time or service drains. Along with 5x higher speed, capacity,

and additional flexibility relative to the static Clos fabrics,

these changes have enabled architectural and incremental
30% reduction in cost and a 41% reduction in power.

This work does not raise any ethical issues.

2 JUPITER’S APPROACH TO EVOLUTION
This section provides an overview of changes in Jupiter’s

architecture to address the problems introduced in §1.

1
Appendix (§F, [41]) details the hardware design of the OCS platform and

WDM transceiver technology used in Jupiter.

Figure 1: A 3-tier Clos network comprising machine racks,
their aggregation blocks, and 40Gbs spine blocks connect-
ing the aggregation blocks. All spines are deployed on Day
1. Blocks deployed on Day 2 are outlined in blue while those
deployed on Day N are highlighted in red. Links from a
100Gbps aggregation block are derated to 40Gbps due to the
40Gbps spine.

Figure 2: An optical switching layer, DCNI (top), enables
incremental expansion in Jupiter while achieving full burst
bandwidth among the aggregation blocks (logical topology
at the bottom). The DCNI layer is implemented using Opti-
cal Circuit Switches (OCS), and allows incremental rewiring
of the fabric as new blocks are added. See §5 for details.

Figure 3: Tx/Rx diplexing using circulators and inter-
operation of coarse Wavelength Division Multiplexing
(cWDM) Optics across various generations with OCS.

The datacenter interconnection layer. Jupiter fab-

rics [33] employ merchant silicon as the basis for

aggregation and spine blocks, which in turn form a Clos

fabric for building-scale datacenters. We introduced an
optical switched datacenter network interconnection layer
(DCNI) to connect the blocks. This layer uses MEMS-based

Optical Circuit Switches (OCS) to enable fast, reliable and

efficient restriping of links among the blocks (Fig. 2). With

restriping, we can maintain full burst bandwidth among all

aggregation blocks while incrementally adding aggregation

Jupiter Evolving SIGCOMM’22, August 22-26, 2022, Amsterdam, Netherlands

Figure 4: Diminishing returns in power consumption nor-
malized to bandwidth (pJ/b) for successive generations of
switches and optics (normalized to the 40Gbps generation).

and spine blocks, removing the challenge of upfront

deployment of spines observed in Fig. 1. As we describe

later, the OCSes also enable software driven traffic-aware

topology reconfiguration (topology engineering). §3.1

describes the DCNI layer architecture in detail.

Multi-generational interoperability. The aggregation

and spine blocks are units of deployment and typically

employ the latest cost and performance competitive network

technologies of the day. However, as the lifetime of a

datacenter far exceeds the competitive span of a technology,

deployment of multiple generations in a single fabric is

inevitable. For this, Jupiter needs to allow multi-generational

switching silicon and link speeds in modular blocks to

coexist and inter-operate. Using Coarse Wavelength

Division Multiplexing 4-lane (CWDM4) optical modules at

the aggregation block interfaces is key to enabling simpler

interoperability across link generations in a heterogeneous

fabric (Fig. 3). Thanks to this interoperability, Jupiter is able

to evolve incrementally and support heterogeneity as a

norm: approximately 2/3
rd
of the fabrics in the fleet have

aggregation blocks of at least two generations.

Streamlining the cost of optical switching. We em-

ployed several techniques to streamline the cost of the

optical switching layer.

• Halving the needed OCS ports using circulators. We use

optical circulators (Fig. 3, § F.3) to diplex the Tx and Rx into

a single fiber strand, halving the number of OCS ports and

fiber strands needed. This introduces a minor constraint of

requiring bi-directional circuits vs. unidirectional ones - a

cost-flexibility tradeoff we chose given the traffic patterns

observed in our datacenters.

• Incremental radix upgrades. The total traffic from aggrega-

tion blocks depends on the level of compute and storage

capacity deployed in a block, the network bandwidth inten-

sity of the applications, and the level of intra-block locality

in traffic. It is common that the inter-block traffic needs

can be met with much less than the maximum inter-block

capacity of an aggregation block. Jupiter initially deploys

most blocks populating only half of optics for DCNI-facing

ports and supports radix upgrade on the live fabric later,

deferring the costs of optics and corresponding OCS ports

until needed (§3.1, [33]).

• Incremental deployment of DCNI. The number of required

DCNI ports grow incrementally as more aggregation and

spine blocks are added to the fabric. So instead of deploying

DCNI for themaximum Jupiter scale upfront, Jupiter defers

the OCS costs by supporting deployment and expansion

of the DCNI layer on the live fabric in three increments:

1/8→1/4→1/2→full size.

§5 describes the process to enable these incremental deploy-

ment changes and loss-free reconfiguration on live fabrics.

Direct-connect architecture. Fig. 1 shows that the link

speed derating makes spines a dominant bottleneck as new

technologies with higher link speeds are introduced. While it

is possible to mitigate some of these issues by incrementally

updating spine blocks or their line cards [2], such approaches

induce cost, fabric-wide operational toil and production risk.

Our multi-tenant and building-scale fabrics have relatively

predictable traffic patterns with uncertainty that is far from

worst-case permutation (§6.1), removing the need for non-

blocking forwarding of worst-case permutation traffic that’s

enabled by Clos topology [10]. With these observations, we
removed the spine blocks from our topology for a direct-connect
fabric (§3) enabled by traffic and topology engineering (§4)
that jointly optimizes the inter-block forwarding and topol-
ogy to achieve short and efficient paths, while simultaneously
accounting for estimated uncertainty in the traffic.

Direct connect also eliminated the cost and power associ-

ated with spine blocks (§6.5). This structural opex reduction

is particularly important because upgrading to the latest

generation of hardware has diminishing returns on perfor-

mance and normalized cost of power with each successive

generation of switches and optics speed (Fig. 4).

3 THE DIRECT-CONNECT JUPITER
Jupiter’s new architecture directly connects the aggregation

blocks with each other via the DCNI layer. Fig. 5 shows

incremental deployment, traffic and topology engineering

in action in such a fabric. The initial fabric can be built with

just two blocks and then expanded (Fig. 5- 1○, 2○). The direct

logical links between blocks comprise three parts: physical

block-to-OCS links from each of the blocks and an OCS cross-

connect (Fig. 3). Thanks to the OCS, the logical links can be

programmatically and dynamically formed (§ 5).

For homogeneous blocks, we allocate logical links equally

among all pairs of blocks. If demand perfectly matched the

logical topology, all traffic could take the direct path between

source and destination blocks. Practically, the demand is

variable and not perfectly matched to the logical topology.

Jupiter employs traffic engineering (§4.4) with a combination

of direct and 1-hop indirect paths to balance performance

and robustness against traffic uncertainty (Fig. 5 3○).

SIGCOMM’22, August 22-26, 2022, Amsterdam, Netherlands Poutievski et al.

Figure 5:An incrementally deployable Jupiter fabricwith a direct-connect topology enhanced by dynamic traffic and topology
engineering. 1○: Initially, Aggregation Blocks A, B are addedwith 512 uplinks each. 2○: Block C is addedwith 512 uplinks. Each
block has 50T outgoing demand, uniformly distributed across other blocks. Topology engineering forms a uniform mesh
topology to match the uniform steady-state demand matrix. 3○: Traffic Engineering (TE) adjusts Weighted Cost Multi Path
(WCMP) weights based on finer-grained version of demand in 2○: A sends all traffic (20T) to B directly (pink) and splits traffic
to C (cyan) 5:1 (25T:5T) between direct and indirect paths (via B). 4○: Block D is added with 256 uplinks (only a subset of
machine racks in D are populated). 5○: Block D is augmented to 512 uplinks. 6○: Blocks C, D are refreshed to 200G link speed.

We use topology engineering (§4.5) to further better match

the topology to demand. In Fig. 5 4○, with lower demand

to/from blocks A/B/C to block D, topology engineering allo-

cates more direct links among blocks A, B, C as compared

to links to block D. We also adjust the topology based on

non-uniform traffic demand (Fig. 5 5○), and link speeds of

heterogeneous blocks (Fig. 5 6○).

3.1 Datacenter Interconnection Layer

OCSes for the DCNI layer are deployed in dedicated racks.

The number of racks vary, but set on day 1 of deployment

based on the maximum projected fabric capacity. The maxi-

mum size is 32 racks, with up to 8 OCS devices per rack. A

fabric can start with one OCS per rack (1/8 populated), and
later expand the DCNI capacity by doubling OCS devices in

each rack. These expansions require manual fiber moves but

our fiber design layout constrains such moves to stay within

a rack, reducing the disruption and human effort.

We fan out the links of each superblock equally to all OCS.

This allows us to create arbitrary logical topologies [46].

Due to the use of circulators, each block needs to have even

number of ports attached to each OCS. These constraints ul-

timately guide the connectivity, as well as trigger expansions

of the DCNI layer as the size of the fabric grows. This design

also enables physical diversity such that a OCS rack failure

impacts each Jupiter block uniformly. For example, failure

of a rack in a 32 OCS rack deployment uniformly reduces

capacity by 1/32, irrespective of the overall size of the fabric.

Figure 6: An illustrative multi-level logical topology factor-
ization. Left: From top to bottom, we start with the block-
level graph, factorize it into 4 factors each corresponding to
a 25% failure domain (only two are shown), and finally map
each factor to an OCS (in reality there are multiple OCSs). a,
b, ... are ports from block A, B, ..., respectively. Each block
has an even number of ports to each OCS. The two ports
are illustratively placed on the two sides (N and S) of the
OCS. The OCS can only cross-connect a N side port to a S
side port. Right: When the block-level graph changes (e.g.,
topology engineering in §4.5), at each level of factorization,
weminimize the difference between the new factors and the
current factors. In this example, the red factor is unchanged,
the blue factor has two logical links changed.

3.2 Logical Topology
Initially, we adopted a static and demand-oblivious topol-

ogy. For homogeneous block speed and radix, we employ a

Jupiter Evolving SIGCOMM’22, August 22-26, 2022, Amsterdam, Netherlands

uniform mesh to interconnect blocks; every block pair has

equal (within one) number of direct logical links. Uniform

topology allows any block pair to burst up to a block’s full

egress bandwidth with only direct and single-transit indirect

paths (§4.3). For homogeneous blocks with different radices,

we set the number of links between the blocks to be propor-

tional to the product of their radices. For example, we assign

4x as many links between two radix-512 blocks as between

two radix-256 blocks. §6.1 and §C provide more details. In

the common case however, a fabric would comprise aggrega-

tion blocks of different generations and supported speeds. In

these cases, we rely on traffic-aware topology engineering

to optimize the throughput and pathing for the observed

demand matrix (§4.5).

After determining the top-level logical topology, we need

to factor the block-level graph to the port-level connectivity

for each OCS (Fig. 6 presents an example). We partition a

block’s ports into four failure domains, each comprising 25%

of the ports (Fig. 7). Ideally failure domains should be equal

in impact, i.e., the residual topology after loss of a single

failure domain should retain ≥ 75% of the throughput of the

original. We achieve this by imposing a balance constraint
that requires subgraphs corresponding to different failure

domains are roughly identical. This way, if the original topol-

ogy is non-uniform, the residual topology would retain the

same proportionality as the original.

For reconfiguring logical topologies, weminimize the delta

between the new and the current port-level connectivity to

in turn minimize: i) the logical links that need to be recon-

figured, and ii) the capacity that must be drained during the

topology mutation (§5). A similar factorization problem for

spine-full topology turns out to be NP-hard [49]. We employ

a scalable approximation with a multi-level factorization

using integer programming [21]. This technique allows us

to solve any block-level topology for our largest fabric in

minutes, while keeping the number of reconfigured links

within 3% of the optimal.

4 TRAFFIC AND TOPOLOGY ENGINEERING
Wediscuss two levels of network adaptations in the following

sections. The first level, Traffic Engineering (TE), operates

on top of the logical topology and optimizes traffic forward-

ing across different paths based on real-time demand matrix

representing communication patterns. It must manage any

imbalances in inter-block connectivity resulting from strip-

ing, failures, or management operations. The second level,

Topology Engineering (ToE), adapts the topology itself to

increase bandwidth efficiency (§4.5).

There are two principal objectives when performing these

optimizations: throughput and efficiency. First, we want

to satisfy the varying traffic demand matrix while leaving

enough headroom to accommodate traffic bursts, network

failures and maintenance. Second, we wish to utilize di-

rect paths more than indirect paths. We call the number

of block-level edges traversed by inter-block traffic stretch. A
direct block-level path has stretch=1.0. An indirect path via

a spineblock or another aggregation block has stretch=2.0

(see an illustration in §A). Indirect paths consume more ca-

pacity and incur higher round-trip time (RTT), hurting flow-

completion time (FCT) especially for small flows (§6.4). Con-

sequently, we want to optimize for throughput and stretch,

but we must simultaneously account for traffic uncertainty

so that the network is able to sustain good performance be-

tween successive optimization runs. In the rest of the section,

we describe the control plane elements, specifically the OCS

controller. Next, we dive into the designs of traffic engineer-

ing and topology engineering, respectively. Last, we describe

their interactions.

4.1 Control Plane Design
Orion, Jupiter’s SDN control plane [12] programs the data-

plane switches to achieve the desired traffic flow, including

for traffic engineering. The network operations layer is used

for the topology reconfiguration, including for topology en-

gineering (§5).

Orion achieves high availability by partitioning the rout-

ing function in two levels (Fig. 7). At the first level, each

Aggregation block is a single Orion domain. Routing Engine

(RE), Orion’s intra-domain routing app, provides connectiv-

ity within the block, and serves as an interface for external

connectivity to other domains. Orion also programs the OCS

(§4.2): we group OCS devices into four separate Orion do-

mains (DCNI domains) each containing 25% of OCSes to

limit the blast radius in case of an OCS control plane failure.

The second level of the control hierarchy is responsible

for the links among the aggregation blocks. We partition

these links into four mutually exclusive colors, each color

controlled by an independent Orion domain. Inter-Block

Router-Central (IBR-C), the inter-block routing app in these

domains, establishes reachability between blocks by com-

puting the inter-block forwarding paths and coordinating

routing advertisements for the inter-block links.

This design limits the impact of a single traffic engineering

domain to 25% of the DCNI. However, this risk reduction

comes at expense of some available bandwidth optimization

opportunity as each domain optimizes based on its view of

the topology, particularly as it relates to imbalances due to

planned (e.g. drained capacity for re-stripes) or unplanned

(e.g. device failures) events.

4.2 Optical Engine Controller
The Optical Engine establishes logical connectivity among

the aggregation blocks by programming the OCS based

on cross-connect intent from the network operations

layer (Fig. 7). For uniformity with our packet switches, we

implemented an OpenFlow [25] interface to the OCSes,

where each OCS cross-connect is programmed as two flows

that match on an input port and forward to an output port:

match {IN_PORT 1} instructions {APPLY: OUT_PORT 2}
match {IN_PORT 2} instructions {APPLY: OUT_PORT 1}

SIGCOMM’22, August 22-26, 2022, Amsterdam, Netherlands Poutievski et al.

Figure 7: Orion control and networkmanagement systems.

The OCS fails static, maintaining the last programmed

cross connect, similar to the behavior of packet switches.

This keeps the dataplane available even if the control plane

is disconnected. Upon re-establishing the control connec-

tion, the Optical Engine reconciles the flows with the OCS

and then programs based on the latest intent. While network

performance can degrade in the fail-static period, such degra-

dations are incremental. As a result the degradation risk is

far more acceptable than the risk of entirely losing the data

plane due to mere control plane disconnections.

OCSes do not maintain the cross-connects on power loss,

breaking the logical links. Inter-block routing can manage

the sudden loss of a modest fraction of capacity (e.g. each

OCS rack impacts only 1/32 of total DCNI links for a 32 rack
deployment). However, synchronized power loss to many

OCS devices would be problematic. We align OCS power

domains with control domains so that even a significant

building-level power issue only affects a maximum of 25%

of OCSes. While extremely rare, more catastrophic power

events are possible, but in those cases, the DCNI layer shares

fate with server, storage, and data plane switches. For these

cases, we rely on separate load balancing systems to divert

application level traffic away from the affected fabrics.

Outside of the Optical Engine, Orion control systems, in-

cluding routing, management, LLDP, and ARP, operate over

the logical topology. A benefit of our layering approach is

that the Layer-1 OCS devices are transparent to most of the

control software, which is only aware of the logical Layer-2

connectivity.

4.3 Non-Shortest Path Routing

Traditional Clos topologies naturally support load balancing

with up-down routing through the spine. However, direct-

connect topologies are oversubscribed 𝑛:1 for worst case

permutation traffic among 𝑛 blocks with shortest path for-

warding. Reducing the oversubscription ratio to 2:1 for worst

case traffic requires non-shortest path forwarding. For uni-

form random traffic, it is possible to approach 1:1 or non-

blocking communication, but requires careful management

of available paths and some available slack in bandwidth

demand for some blocks as demonstrated in Fig. 5. While

transiting other blocks appears less bandwidth efficient, we

identify four scenarios where it is beneficial.

#1: Demand between two blocks may exceed the direct

path capacity between the blocks (Fig. 5 3○).

#2: Block pairwise traffic may be asymmetric. Forcing all

traffic over direct paths means building the pairwise capacity

to the larger of the two directions (due to symmetric pairwise

capacity, see the constraints from circulators in §2).

#3: Datacenter traffic usually exhibits different degrees of

unpredictable variability. Amortizing this uncertainty over

multiple paths, including transit paths, reduces the likelihood

of any path being overloaded (§4.4).

#4: In a heterogeneous network, we may choose to transit

the traffic from a high-speed block to a low-speed block via

another high-speed block (Fig. 9). It allows us to preserve

the high-speed ports on the (first) high-speed block at the

expense of reduced aggregate bandwidth on the transit block.

But as we will observe in §6.1, each fabric usually contains

some blocks with substantial bandwidth slack that can be

exploited for transit.

Fortunately, a large block radix (256 or 512) means we can

construct a mesh topology that gives each block pair high

burst bandwidth using a combination of direct and transit

paths. We limit traffic engineering to 1-hop (single-transit)

paths as having a bounded path length is important for delay-

based congestion control like Swift [19]. Longer paths also

reduce bandwidth efficiency, complicate loop-free routing

and change sequencing. It is worth noting that single-transit

does not automatically avoid routing loops. Consider two

paths A→B→C and B→A→C. If traffic is simply matched

on the destination IP of C, we will create a loop between A

and B. We eliminate loops by isolating the source and transit

traffic into two virtual routing and forwarding (VRF) tables.

Packets arriving on DCNI-facing ports but not destined for

a local destination are annotated to the transit VRF. Here we

match on the destination IP and forward the packet over the

direct links to the destination block.

4.4 Traffic-Aware Routing

Initially, we adopted demand-oblivious routing similar to

Valiant Load Balancing (VLB) [48]. It splits traffic across

all available paths (direct and transit) based on the path

capacity. However, under this scheme, each block operates

with a 2:1 oversubscription ratio, too large for highly-utilized

blocks (§6.3). To prevent over-subscription for such blocks

and higher aggregate fabric throughput, we optimize the

weights across different paths based on real-time traffic data.

We collect flow measurements (through flow counter

diffing or packet sampling) from every server. These

Jupiter Evolving SIGCOMM’22, August 22-26, 2022, Amsterdam, Netherlands

Figure 8: Comparing two routing schemes: (a) Predicted
MLU of 0.5 with demand exclusively placed on direct paths.
(b) Predicted MLU of 0.5, but with demand split equally be-
tween direct and transit paths. (b) is more robust achieving
MLUof 0.75 vs. (a) achievingMLUof 1.0 if the actual demand
between A and B turns out to be 4 units.

fine-grained measurements are aggregated to form the

block-level traffic matrix every 30s. Each entry (𝑖, 𝑗) specifies
the number of bytes sent from block 𝑖 to block 𝑗 in the

last 30s. Based on this traffic matrix stream, we maintain

a predicted traffic matrix for WCMP optimization. The

predicted traffic matrix is composed from the peak sending

rate for each (𝑖, 𝑗) pair in the last one hour. We update the

predicted traffic matrix 1) upon detecting a large change

in the observed traffic stream, and also 2) periodically to

keep it fresh. Based on simulation, we have found an hourly

refresh to be sufficient[46].

We formulate the path weight optimization as a multi-

commodity flow problem with the objective to minimize

the maximum link utilization (MLU) for the predicted traffic

matrix. We found MLU to be a reasonable proxy metric for

throughput as well as for resilience against traffic pattern

variation. In our experience, high MLU is indicative of many

links being in danger of getting overloaded, causing packet

losses, increasing flow-completion time [19], and reducing

fabric throughput. Our MLU formulation does not account

for potential load balancing issues across parallel links con-

necting two blocks due to either poor hashing or skewed

flow sizes. In practice we find that these simplifications have

little impact on performance (see §D).

The predicted matrix should ideally tightly bound the traf-

fic demand for each block pair (a commodity). However, the

30s traffic trace 1) shows high variability over time and, as a

result, past peaks often fail to predict future peaks, 2) does

not capture bursts shorter than 30s. As a result, a naive for-

mulation runs the risk of overfitting the path weights to

the predicted traffic matrix, reducing its robustness to traf-

fic variations. Fig. 8 presents an illustrative example: Two

WCMP solutions may have the same MLU for the predicted

traffic, but the second solution leverages more path diver-

sity and hence is more robust to traffic matrix uncertainty

(aforementioned reason #3 for transit).

Figure 9: A and B are 200Gbps blocks. C is 100Gbps. All
blocks have 500 ports. We assign 250 links between each
pair of blocks for a traffic-agnostic topology. This topol-
ogy cannot support the demand: aggregate demand out of
A is 80Tbps while the aggregate bandwidth out of A is only
75Tbps. A traffic-aware topology can assignmore links (300)
between the 200Gbps blocks to boost the aggregate band-
width out of A, and enabling transit of part of the A↔C de-
mand via B.

We see this divergence between predicted and actual MLU

consistently in both simulation and production, but gener-

ally the divergence for commodities is independent of each

other. As a result, a link that carries more commodities, but

a smaller fraction of each, sees a smaller load increase when

one commodity bursts relative to a link that carries fewer

commodities but a larger fraction of each. Therefore, while

transit generally creates more load in the network, we have

found it more robust to traffic misprediction.

We can thus imagine a continuum of solutions bookended

by an optimization fitting the the predicted traffic with min-

imal MLU and stretch and a VLB-like solution that is de-

mand agnostic and splits traffic equally across all available

paths. The points along the continuum would have differ-

ent tradeoffs between optimality under correct prediction

and robustness under misprediction. We observe that while

all datacenter traffic generally exhibits some uncertainty,

different fabrics have different degrees of unpredictability

due possibly to their different workload mix. Therefore, we

devise a scheme, called variable hedging, that allows us to
operate at different points along this solution continuum. In

our experience, while different fabrics tend to have differ-

ent optimal hedging due to difference in traffic uncertainty,

the optimum for a fabric seems stable enough (§6.3) to be

configured quasi-statically. The stability also allows us to

search for the optimal hedging offline and infrequently by

evaluating against traffic traces in the recent past. A detailed

formulation for variable hedging is presented in in §B.

4.5 Topology Engineering
In a homogeneous-speed fabric, a uniform mesh topology is

sufficient to support the traffic patterns we see in production

thanks to the substantial bandwidth slack in the network

(§6.1, §6.2). However, we still desire to align topology with

the traffic matrix to reduce stretch (Fig. 12) and to protect

against tail burst behavior.

In a heterogeneous speed fabric, a uniform mesh topology

can have too many links derated due to being paired with

lower speed peers, reducing the overall throughput in the

SIGCOMM’22, August 22-26, 2022, Amsterdam, Netherlands Poutievski et al.

fabric. The example in Fig. 9 shows that a traffic-agnostic,

uniform topology fails to provision enough aggregate band-

width for traffic demand from block 𝐴, but a traffic-aware

topology can easily accommodate the load. In addition, a

traffic-aware topology may exploit a lower-utilized high-

speed block to serve as a "de-multiplexer" to convert a high-

speed link into multiple low-speed links. This optimization is

becoming more important (Fig. 12) as our fabrics grow more

heterogeneous and as high-speed (newer) blocks become the

dominant offered load contributor.

To optimize the traffic-aware topology, we use a joint

formulation with both link capacity and path weights as

decision variables, MLU and stretch as objectives. This align-

ment in the formulation ensures that the traffic-engineering

optimization continues to produce good outcomes for the

topology. We also minimize the delta from a uniform topol-

ogy – this produces networks that are unsurprising from an

operations point of view, uniform-like but have either higher

throughput or lower stretch or both (§6.3). Some other tech-

niques to avoid overfit have been explored in [46]. We think

more research is needed in this area.

4.6 Traffic and Topology Engineering Cadence

Today, traffic engineering and topology engineering oper-

ate at distinct time scales. Traffic engineering is the inner

control loop that responds to topology and traffic changes

at 𝑂 (seconds) to 𝑂 (minutes) granularity, depending on the

urgency of the change. We require this level of optimiza-

tion to take no more than a few tens of seconds even for

our largest fabric. The outer loop of topology engineering

is much slower and does not respond to failures or drains.

Effecting a new logical topology currently relies on the same

mechanism designed to handle physical topology changes,

and takes 𝑂 (hour) to finish (§5).

Thanks to OCS, topology engineering can be optimized

to be on-par with (or faster than) routing changes. However,

based on simulation results, we find that block-level topology

reconfiguration more frequent than every few weeks yields

limited benefits [46]. This is because of two main reasons:

1) concerning throughput, most traffic changes can be ade-

quately handled by routing. The kind of traffic change that

requires assistance from topology tends to happen rather

slowly. 2) For a more frequent topology reconfiguration to be

beneficial, a) we need to be able to generate a more accurate

short-term traffic prediction than a long-term one, and b) the

short-term prediction has to be sufficiently different from

the long-term one to warrant a topology change. Neither has

been the case historically because much of the uncertainity

arises from short-term variations in traffic that’s stable on

longer horizons. We believe that large scale ML workloads

are going to change this with their high bandwidth require-

ments and relative predictability of their traffic patterns.

Figure 10: Illustrative rewiring to add two aggregation
blocks. (a) Changes to the logical topology. (b) Correspond-
ing changes in cross connections.

Figure 11: Incremental rewiring to achieve the change of
Fig. 10. Edges labels show the number of bidirectional links.

5 LIVE FABRIC REWIRING
Fig. 10 illustrates a fabric initially comprising two aggre-

gation blocks connected via the OCSes of the DCNI layer

and its reconfiguration to add two more blocks. The optical

path underlying the inter-block logical links has two types

of segments: the two fiber strands from the transceiver ports

on the blocks to the front panel of the OCS switches, and the
cross connections within the OCS that connect these links

(Please see Fig. 3). Adding two blocks requires modifying

many logical links (Fig 10(a)-right), but the change to the

underlying optical path is achieved by only reprogramming

the cross connections – none of the strands connected to the

front panel are moved or modified during these operations

(Fig. 10(b)-bottom).

Common network operations, connecting/disconnecting

entire blocks or their additional radix with the fabric, adapt-

ing the proportional direct connectivity among blocks for

topology engineering (§4.5), and even converting a fabric

from a Clos to direct connect, follow this pattern. Thanks to

the OCS, the cross connections can be programmed quickly

and reliably using a software configuration, enabling huge

operational benefits. Jupiter also supports rewiring of strands

connected to the front panel, but such manual rewiring is

needed for either relatively infrequent operations, or done

Jupiter Evolving SIGCOMM’22, August 22-26, 2022, Amsterdam, Netherlands

when the front-panel facing strands are not part of end-to-

end links. Appendix (§E.2) lists use cases for such operations.

Safety considerations during rewiring:While OCSes sig-

nificantly simplify fabric rewiring, performing this operation

on a live fabric requires two key safety considerations: main-

taining availability and performance SLOs, and reducing risk

for production best practices.

• Maintaining production traffic SLOs relies heavily on

maintaining sufficient capacity at all cuts in the network

to avoid significant congestion and packet loss. A single

shot rewiring for Fig 10(a)-right would create a substantial

disruption in capacity as 2/3
rd
of the links go offline during

rewiring and routing systems adjust to the new topology.

However, an incremental rewiring can keep more capacity

online. Fig. 11 shows such a incremental sequence for the

change in Fig. 10 – it preserves at least 10 units of bidirec-

tional capacity (approx. 83%) between blocks A and B at

all steps, including accounting for links being temporarily

unavailable during rewiring. Using the same principle, in

production settings we can support increments as small

as reprogramming/rewiring a single OCS chassis at a time,

allowing us to maintain safety even in highly utilized fab-

rics. Each incremental rewiring step is bookended by traffic

drain/undrain, which makes the rewiring loss-free.

• Avoiding correlated failures across independent failure
domains and limiting the impact blast radius of operations

is critical as software and operational bugs are inevitable

at scale. To achieve this, the rewiring has to additionally

avoid concurrent operations on multiple failure domains

(DCNI and IBR), and ensure that operations on a failure

domain have successfully completed before proceeding

to the next one to avoid cascading failures in a run-away

train scenario.

§E.1 describes the workflow for rewiring in our production

fabrics, including details for finding suitable reconfiguration

increments, draining the links before modification to achieve

loss-free reconfiguration at each step, and enforcement of

other safety considerations.

6 EVALUATION

6.1 Traffic Characteristics
Our production traffic matrix has two salient points for net-

work design: i) inter-block traffic is best described by a grav-
ity model and ii) offered load varies significantly across dif-

ferent blocks. The gravity model states that the traffic de-

mand between a pair of aggregation blocks is proportional

to the product of their total demands (§C). This trend for

block-level traffic arises due to uniform random communica-

tion pattern for fabric-wide machine-to-machine traffic [10].

Gravity model allows us to make baseline informed choices

for the number of links to allocate between block pairs in

a heterogeneous network fabric. For example, the ratio of

the capacity between a pair of 20Tbps blocks to the capacity

between a pair of 50Tbps in the same fabric would be 4:25.

We find that typically a small number of blocks contribute

the majority of the offered load for a fabric. To quantify this,

we define the normalized peak offered load (NPOL) for an

aggregation block as the peak (99th percentile) offered load

normalized to the capacity of that block. Next, we consider

the NPOL for all aggregation blocks in ten heavily loaded

fabrics with a mix of Search, Ads, Logs, Youtube and Cloud.

Each fabric has a distribution of NPOLs for its set of aggre-

gation blocks. We observe that there is large variation in

all these distributions. Indeed, the coefficient of variation

(i.e., the ratio of standard deviation to mean) of NPOL ranges

from 32% to 56% across the ten fabrics. Over 10% of blocks in

each fabric have NPOL below one standard deviation from

the mean NPOL in that fabric, and the least-loaded blocks

have NPOL <10%, indicating the substantial slack bandwidth

present in all fabrics that can be exploited for transit traffic.

6.2 Optimal throughput and stretch for direct con-
nect fabrics

We evaluate the optimal throughput and stretch for direct

connect topologies using the ten heavily loaded fabrics from

§6.1. Fabric throughput is the maximum scaling of its traffic

matrix before any part of the network is saturated [17]. A

higher throughput corresponds to lower MLU and hence

larger headroom for traffic growth. For simplicity, we con-

sider a single traffic matrix 𝑇max
where 𝑇max

𝑖 𝑗 is the peak

traffic from block 𝑖 to block 𝑗 over one week. We pick one

week to capture daily and weekly recurring peaks.

Fig. 12 shows that a uniform direct connect topology

achieves maximum throughput in most fabrics. Traffic-

aware topology further improves the throughput to the

upper bound in two heterogeneous-speed fabrics. Only

fabric 𝐴 fails to achieve the upper bound. The bottom figure

illustrates the minimum stretch without degrading the

throughput for 𝑇max
. In uniform direct-connect topologies,

the stretch is higher because traffic demand can substantially

exceed the direct path capacity (reason #1 for transit in

§4.3). In contrast, traffic-aware topology engineering admits

most traffic on direct paths and delivers stretch closer to the

lower bound of 1.0. The residual transit traffic is attributable

to asymmetric and higher variability in the traffic (§4.3. For

comparison, a Clos topology has stretch of 2.0 since all

inter-block traffic transits spine blocks. These results assume

perfect traffic knowledge to characterize the performance

limits. Next, we present more detailed simulation results as

well as production measurements where the traffic is not

known a priori.

6.3 Simulation Results
In this section, we use fabric 𝐷 to illustrate the tradeoff

between different traffic and topology engineering designs

under direct connect. Fabric 𝐷 is one of the most loaded in

the fleet and its speed heterogeneity is growing due to a high

SIGCOMM’22, August 22-26, 2022, Amsterdam, Netherlands Poutievski et al.

Figure 12: Top: optimal throughput in 10 fabrics with uni-
form direct connect vs. topology-engineered direct connect.
Throughput is normalized by an upper bound that assumes
a perfect, high-speed spine layer that eliminates link speed
derating and perfectly balances its traffic across links. Bot-
tom: Optimal stretch under the same throughput.

ratio of low-speed to high-speed blocks and the growing

traffic of the latter. We use time series simulation, verified

to accurately match production (§D), to study the following

configurations: 1) demand-oblivious routing (VLB) under

uniform topology, 2) traffic engineering (TE) with smaller or

3) larger hedge under uniform topology, and 4) TEwith larger

hedge under topology engineering (ToE). Fig. 13 shows the

MLU time series and stretch under the four configurations.

VLB cannot support the traffic most of the time as the high

MLU indicates (we also validate this result in a less-utilized

production fabric in the next section). Under traffic-aware

routing, larger hedging reduces average MLU and eliminates

most spikes, at the cost of higher stretch. Topology engi-

neering can reduce both MLU and stretch. At the aggregate

level, the 99th percentile MLU under traffic and topology

engineering (red time series) is within 15% of the 99th per-

centile optimal MLU. Optimal assumes perfect routing and

topology where traffic is known at each time snapshot.

The trade-off between MLU and stretch varies from fabric

to fabric so we must consider a fabric-specific hedge fac-

tor. For example, in fabric 𝐺 , the 99th percentile MLU is 5%

lower and the average stretch is 21% lower for a small hedge

compared with a larger hedge. This is because 𝐺 ’s traffic is

more stable and hence predictable and the small hedge favors

optimality for correct prediction as opposed to robustness

to misprediction. There are differences among fabrics, but

within a fabric the MLU and stretch under different hedging

levels have stable ranking over time, and thus we only need

to reconfigure/re-optimize infrequently (§4.4).

6.4 Production Experience
We examine an instance of Clos to direct-connect conversion

and another of uniform to traffic-aware topology conversion.

We focus on transport layer measurements of min RTT, flow

completion time (FCT), and delivery rate, and compare these

metrics before and after the conversion. For each metric, we

Figure 13:MLU time series under different traffic and topol-
ogy engineering configurations, normalized by the peak
MLU under routing and topology with perfect traffic knowl-
edge. Stretch is stable and the average value is in the legend.

compute the daily median and 99th percentile for two weeks

before and after the conversion. We then used the Student’s

𝑡-test to determine whether the changes are statistically sig-

nificant and report the differences where 𝑝-value≤ 0.05 in

Table 1. The min RTT and FCT of small flows are sensitive to

path length, and are reduced after the conversion from Clos

to uniform direct-connect topology (stretch is reduced from

2 to 1.72). Min RTT and FCT are also reduced after enabling

topology engineering (stretch is reduced from 1.64 to 1.04).

Lower min RTT contributes to higher delivery rate. After the

conversion from Clos to uniform direct-connect topology,

total DCN-facing capacity of aggregation blocks increased by

57% since removing the lower speed spine removed the derat-

ing effect and allowedmore links to operate at a higher speed.

The 99th percentile FCT, which is dominated by queuing de-

lay, is either reduced or statistically unchanged, indicating

that network congestion is either reduced or unchanged by

conversions.

To validate the advantage of TE, we conducted an experi-

ment on a moderately-utilized uniform direct-connect fabric

where we turned off TE and ran VLB for one day. During the

experiment, stretch increased from 1.41 to 1.96, total load

increased by 29% even though the demand incidentally de-

creased by 8% (within the typical variation over time). Min

RTT increased by 6 − 14% due to larger stretch and conges-

tion, 99-percentile FCT increased by up to 29% due to heavier

congestion, and average discard rate increased by 89%.

Fabric rewiring with OCS: Table 2 shows the speed up

in the rewiring of the DCNI layer for a 10-month period

in fabrics with OCS relative to our earlier work where the

DCNI layer comprised manual patch-panel (PP) [49]. OCS

provides a 9.6x speedup at the median, and 3x speedup at

the mean. Due to the faster rewiring speeds in OCS fabrics,

there is a several folds larger contribution of operational

Jupiter Evolving SIGCOMM’22, August 22-26, 2022, Amsterdam, Netherlands

Clos to uniform

direct connect

Uniform to ToE

direct connect

Min RTT 50p -6.89% -11.02%

Min RTT 99p -7.00% -16.01%

FCT (small flow) 50p -5.77% -12.37%

FCT (small flow) 99p -24.22% 𝑝>0.05

FCT (large flow) 50p -10.29% 𝑝>0.05

FCT (large flow) 99p 𝑝>0.05 𝑝>0.05

Delivery rate 50p 13.59% 𝑝>0.05

Delivery rate 99p 36.35% 13.76%

Discard rate 𝑝>0.05 N/A

Table 1: Transport metrics and discard percentage
changes for 1) Clos to uniform direct connect topol-
ogy conversion in a fabric, where stretch is reduced
from 2 to 1.72, and 2) uniform to topology engineered
(ToE) direct connect in a different fabric, where stretch
is reduced from 1.64 to 1.04.

Speedup Operations workflow

w/ OCS on critical path

OCS PP

Median 9.58 x 37.7% 4.7%

Average 3.31 x 31.1% 8.4%

90
th
-% 2.41 x 27.0% 10.9%

Table 2: Comparison of fabric rewiring performance be-
tween fabrics with OCS and PP based DCNI.

workflow software (§E.1) on the critical path for rewiring for

OCS based fabrics, highlighting an obvious avenue for even

further improvements. We are investing in integration of

fabric reconfiguration capabilities within the SDN controller

which allows us to make fabric-wide rewiring safely but at

much higher rates, unlocking the potential of OCS to a fuller

extent.

6.5 Cost Model
We now examine the costs of our current Plan of Record

(PoR) deployed architecture (with direct-connect topology,

OCSes and circulators) and an equivalently sized baseline

conventional datacenter design (with Clos topology and PP

based DCNI, but without circulators).

Fig. 14 presents the components in the cost model for

a Clos-based or direct-connect network architectures. The

machine rack cost (Fig. 14 0○) is not included in the fabric cost

but everything above it (1○- 5○) comprising the aggregation

block switches (assuming the same radix for blocks in both

architectures), optics, copper cables, fiber, rack enclosures,

OCS and spines is included as applicable. We also consider

the normalized cost of power for each architecture.

Our current Jupiter PoR architecture has 70% capex cost of
the baseline. The savings from direct connect, which elim-

inated 4○ and 5○, and from using circulators outweigh the

expense of using OCSes over patch panels in 3○.

Figure 14: Layered components considered in the network
fabric cost model for Clos and direct-connect variants.
Using PP instead of OCSes in 3○ could further reduce

the capex. However, it would neither reduce toil during ex-

pansions nor unlock the ability to promptly engineer the

topology based on traffic patterns. Our use of direct-connect

topology and circulators each separately halves the OCS

ports required in the architecture. Furthermore, the cost of

the OCS is amortized over multiple generations of aggrega-

tion blocks. Consequently, the true cost of the PoR architec-

ture is between 62% and 70% capex of baseline in practice,

depending on the datacenter service lifetime.

The normalized cost of power for the PoR architecture is
59% of baseline. Most of the power reduction comes from re-

moval of spine switches 5○ and associated optics in the direct-

connect architecture. Circulators are passive with no power

consumption, and the OCSes consume negligible power.

These estimates provide a lower bound on the savings

achieved in production relative to the baseline. The labor

cost of OCS-based expansions is expected to be lower than

PP-based ones in both time and toil. The network efficiency

due to topology engineering with the OCS results in both

building less network capacity and deferring network aug-

ments, which reduce deployment costs.

6.6 System Complexity
The combination of direct-connect topology and traffic engi-

neering has delivered significant cost reductions and similar

or better performance than Clos fabrics, but they have also

substantially increased the system complexity. We mitigate

this by investing in analysis and debugging tools. For in-

stance, we rely on record-replay tools based on the network

state and the routing solution to debug reachability and con-

gestion issues. Radix planning similarly needs to account

for the dynamic transit traffic. We have eased the planning

difficulty using automated analysis.

7 RELATEDWORK
Network topologies:Clos-based topologies [1, 2, 14, 24, 33],
while highly scalable, are not the most effective when it

comes to incremental network expansions [37], and path

length. Jellyfish [36, 37] adopts an unstructured topology to

facilitate incremental expansions in exchange for increase

in cabling complexity, management, and routing design.

Direct-connect topologies [6, 18, 32, 45], primarily in

High-Performance Computing (HPC), optimize the long

SIGCOMM’22, August 22-26, 2022, Amsterdam, Netherlands Poutievski et al.

reach links in the network by grouping high-radix routers

as virtual routers to improve the effective radix of the

network and reduce the network diameter. Dragonfly+ [32]

takes a hybrid approach where routers in each group are

connected in a Clos topology instead of a fully connected

mesh, while FatClique [45] has a hierarchy of directly

connected cliques. Slim Fly [6] gets closer to the theoretical

optimal network diameter by solving for graphs that

approximate the solution to the degree-diameter problem.

The direct-connect Jupiter topology adopts a similar hybrid

approach as in Dragonfly+ [32] where aggregation blocks

with Clos-based topology are directly connected. Compared

to hardware-based adaptive routing in Dragonfly+, Jupiter

provides software-based traffic engineering that can work

on legacy commodity silicon switches. With the OCS

layer, Jupiter provides SDN-based topology engineering to

match the topology to the traffic pattern, a unique feature

compared to other direct connect networks. Moreover,

Jupiter supports heterogeneous speed topologies whereas

the HPC networks are typically uniform deployments, and

heterogeneous networks are only explored theoretically in a

network with at most two types of switches [36], to the best

of our knowledge.

Reconfigurable networks: There is extensive work on re-

configurable interconnects [5, 9, 11, 13, 16, 22, 26, 27, 29, 43].

Helios [11] takes a similar approach to the OCS layer pre-

sented in this paper by leveraging hybrid electrical/optical

switches for a dynamic topology, but lacks fine-grained,

demand-based traffic engineering. RotorNet [27] takes a

different design point by alternating the OCS connectivity

through a static set of configurations that provide uniform

bandwidth between all endpoints. This design completely

eliminates the need for a centralized control plane at the cost

of sub-optimal VLB-like bandwidth utilization when traffic

pattern is not uniform.

Traffic and topology engineering: Some prior work on

demand-aware routing [44, 47] reconfigure based on multi-

ple traffic matrices, but focus on routing for fixed wide-area

networks. More similar to Jupiter, recent works propose var-

ious algorithms for fine-grained, demand-based topology

and routing optimizations in networks with OCS intercon-

nect [8, 40], or take a more coarse-grained approach based

on the high level flow types [15]. Jupiter’s traffic engineering

and topology engineering algorithms and update cadences

have evolved over time to scale to large datacenters with

highly variable traffic with proven success in production. Pre-

vious works develop robust routing algorithms under traffic

uncertainty by formulating traffic variation as a penalty [30]

or supporting a given range of traffic with performance guar-

antee [4]. While our designs share similar considerations,

our formulation is simpler and addresses different levels of

uncertainty. There are also other routing techniques that

either focus only on robustness to failure [20, 38], or take

a demand-oblivious approach [3] which perform less effec-

tively relative to demand-aware approaches. There is also

prior work in reconfiguring topology in long-haul WAN

optical networks to adjust links rates based on SNR [35],

or optimize the number of hops by evaluating the signal

strength [34]. Jupiter provides DCNI topology engineering

based on traffic patterns primarily. We assume that the links

are maintained to support the intended quality for signal

strength and bit error rates (§ E.1).

8 CONCLUSION
This paper presents a retrospective on the evolution of

Google’s datacenter network, Jupiter, spanning nearly a

decade. Central to this journey are MEMS-based Optical

Circuit Switches, Software-Defined Networking and Auto-

mated Safe Operation as key enabling technologies. With

these underlying technologies, Jupiter transformed into

an incrementally deployable fabric where heterogeneous

blocks of networking co-exist and are refreshed modularly.

Jupiter started with a standard Clos topology, which de-

livers optimum throughput for arbitrary admissible traffic

patterns. To exploit capacity slack in our production net-

works and to address technology refresh challenges with

spine blocks in Clos fabrics, we evolved Jupiter into a direct-

connect topology and enabled both dynamic traffic and topol-

ogy engineering for the observed block-level traffic patterns.

Doing so achieves comparable throughput and shorter paths

on average relative to the conventional Clos approach, in

addition to substantial Capex and Opex savings.

Several future directions remain active areas of research.

These include i) co-optimizing workload scheduling with net-

work traffic and topology engineering to enable predictable

end-to-end performance, which is important for emerging

high bandwidth Machine Learning workloads, ii) reducing

bandwidth stranding and other optimizations due to the

inter-operation among disparate heterogeneous technolo-

gies, and iii) scaling and extending out to the campus and

inter-datacenter networking. Our vision is to enable a con-

tinuously evolving virtual datacenter-level computer that

jointly optimizes compute, storage and ML with dynamic

traffic and topology engineered networking.

9 ACKNOWLEDGEMENTS
Many teams contributed to the evolution of the datacen-

ter network technologies within Google. In particular, we

would like to acknowledge the Networking Infrastructure,

Platforms (Hardware and Optics), Software Quality Assur-

ance (SQA), Global Capacity Delivery (GCD), Datacenter

Operations, Site Reliability Engineering (SRE), and Program

Management Organization (PMO) teams, to name a few. We

would also like to thank our shepherd, Rachee Singh, as

well as the anonymous SIGCOMM reviewers for their useful

feedback.

Jupiter Evolving SIGCOMM’22, August 22-26, 2022, Amsterdam, Netherlands

REFERENCES
[1] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. 2008. A

Scalable, Commodity Data Center Network Architecture. SIGCOMM
Comput. Commun. Rev. 38, 4 (August 2008), 63–74. https://doi.org/10.

1145/1402946.1402967

[2] Alexey Andreyev, Xu Wang, and Alex Eckert. 2019. Reinventing

Facebook’s data center network. https://engineering.fb.com/2019/

03/14/data-center-engineering/f16-minipack/. Facebook Engineering
(2019).

[3] David Applegate, Lee Breslau, and Edith Cohen. 2004. Coping with

Network Failures: Routing Strategies for Optimal Demand Oblivious

Restoration. In Proc. ACM SIGMETRICS.
[4] David Applegate and Edith Cohen. 2003. Making Intra-domain Routing

Robust to Changing and Uncertain Traffic Demands: Understanding

Fundamental Tradeoffs. In Proc. ACM SIGCOMM.

[5] Hitesh Ballani, Paolo Costa, Raphael Behrendt, Daniel Cletheroe, Istvan

Haller, Krzysztof Jozwik, Fotini Karinou, Sophie Lange, Kai Shi, Benn

Thomsen, and HughWilliams. 2020. Sirius: A Flat Datacenter Network

with Nanosecond Optical Switching. In Proceedings of the Annual
Conference of the ACM Special Interest Group on Data Communication on
the Applications, Technologies, Architectures, and Protocols for Computer
Communication (SIGCOMM ’20).

[6] Maciej Besta and Torsten Hoefler. 2014. Slim fly: A cost effective low-

diameter network topology. In SC’14: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis. IEEE, 348–359.

[7] Betsy Beyer, Chris Jones, Jennifer Petoff, and Niall Murphy. 2016. Site

Reliability Engineering. https://sre.google/books/. Google Engineering
(2016).

[8] Peirui Cao, Shizhen Zhao, Min Yee Teh, Yunzhuo Liu, and Xinbing

Wang. 2021. TROD: Evolving From Electrical Data Center to Optical

Data Center. In 2021 IEEE 29th International Conference on Network
Protocols (ICNP). IEEE, 1–11.

[9] Kai Chen, Ankit Singla, Atul Singh, Kishore Ramachandran, Lei Xu,

Yueping Zhang, Xitao Wen, and Yan Chen. 2013. OSA: An optical

switching architecture for data center networks with unprecedented

flexibility. IEEE/ACM Transactions on Networking 22, 2 (2013), 498–511.
[10] William James Dally and Brian Patrick Towles. 2004. Principles and

practices of interconnection networks. Elsevier.
[11] N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subra-

manya, Y. Fainman, G. Papen, and A. Vahdat. 2010. Helios: A Hybrid

Electrical/Optical Switch Architecture for Modular Data Centers. In

Proc. ACM SIGCOMM.

[12] Andrew D Ferguson, Steve Gribble, Chi-Yao Hong, Charles Edwin

Killian, Waqar Mohsin, Henrik Muehe, Joon Ong, Leon Poutievski,

Arjun Singh, Lorenzo Vicisano, et al. 2021. Orion: Google’s Software-

Defined Networking Control Plane.. In NSDI. 83–98.
[13] Monia Ghobadi, Ratul Mahajan, Amar Phanishayee, Nikhil Devanur, Ja-

nardhan Kulkarni, Gireeja Ranade, Pierre-Alexandre Blanche, Houman

Rastegarfar, Madeleine Glick, and Daniel Kilper. 2016. Projector: Agile

reconfigurable data center interconnect. In Proceedings of the 2016
ACM SIGCOMM Conference. 216–229.

[14] Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula,

Changhoon Kim, Parantap Lahiri, David A. Maltz, Parveen Patel, and

Sudipta Sengupta. 2009. VL2: A Scalable and Flexible Data Center

Network. In Proceedings of the ACM SIGCOMM 2009 Conference on
Data Communication (SIGCOMM ’09). Association for Computing Ma-

chinery, New York, NY, USA, 51–62. https://doi.org/10.1145/1592568.

1592576

[15] Chen Griner, Johannes Zerwas, Andreas Blenk, Manya Ghobadi, Stefan

Schmid, and Chen Avin. 2021. Cerberus: The Power of Choices in

Datacenter Topology Design-A Throughput Perspective. Proceedings
of the ACM on Measurement and Analysis of Computing Systems 5, 3
(2021), 1–33.

[16] N. Hamedazimi, Z. Qazi, H. Gupta, V. Sekar, S. R. Das, J. P. Longtin, H.

Shah, and A. Tanwer. 2014. FireFly: A Reconfigurable Wireless Data

Center Fabric Using Free-space Optics. In Proc. ACM SIGCOMM.

[17] S. A. Jyothi, A. Singla, P. B. Godfrey, and A. Kolla. 2016. Measuring

and Understanding Throughput of Network Topologies. In Proceed-
ings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC).

[18] John Kim, Wiliam J Dally, Steve Scott, and Dennis Abts. 2008.

Technology-driven, highly-scalable dragonfly topology. In 2008 In-
ternational Symposium on Computer Architecture. IEEE, 77–88.

[19] Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan M. G. Was-

sel, Xian Wu, Behnam Montazeri, Yaogong Wang, Kevin Springborn,

Christopher Alfeld, Michael Ryan, David Wetherall, and Amin Vahdat.

2020. Swift: Delay is Simple and Effective for Congestion Control in

the Datacenter. In Proceedings of the Annual Conference of the ACM
Special Interest Group on Data Communication on the Applications,
Technologies, Architectures, and Protocols for Computer Communication
(SIGCOMM ’20). Association for Computing Machinery, New York, NY,

USA, 514–528. https://doi.org/10.1145/3387514.3406591

[20] Praveen Kumar, Yang Yuan, Chris Yu, Nate Foster, Robert Kleinberg,

Petr Lapukhov, Chiun Lin Lim, and Robert Soulé. 2018. Semi-Oblivious

Traffic Engineering: The Road Not Taken. In Proc. NSDI.
[21] Weiqiang Li, Rui Wang, and Jianan Zhang. 2022. Configuring data

center network wiring. US Patent 11,223,527.

[22] He Liu, Matthew K. Mukerjee, Conglong Li, Nicolas Feltman, George

Papen, Stefan Savage, Srinivasan Seshan, Geoffrey M. Voelker, David G.

Andersen, Michael Kaminsky, George Porter, and Alex C. Snoeren.

2015. Scheduling Techniques for Hybrid Circuit/Packet Networks. In

Proc. ACM CoNEXT.
[23] Hong Liu, Ryohei Urata, Xiang Zhou, and Amin Vahdat. 2020. Evolving

Requirements and Trends in Datacenter Networks. Springer handbook
of optical networks.

[24] Vincent Liu, Daniel Halperin, Arvind Krishnamurthy, and Thomas

Anderson. 2013. F10: A Fault-Tolerant Engineered Network. In

10th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 13). USENIX Association, Lombard, IL, 399–

412. https://www.usenix.org/conference/nsdi13/technical-sessions/

presentation/liu_vincent

[25] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,

Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.

2008. OpenFlow: Enabling Innovation in Campus Networks. ACM
Computer Communication Review 38 (2008), 69–74. Issue 2. https:

//doi.org/10.1145/1355734.1355746

[26] William M. Mellette, Rajdeep Das, Yibo Guo, Rob McGuinness, Alex C.

Snoeren, and George Porter. 2020. Expanding across time to deliver

bandwidth efficiency and low latency. In Proc. NSDI.
[27] William M Mellette, Rob McGuinness, Arjun Roy, Alex Forencich,

George Papen, Alex C Snoeren, and George Porter. 2017. Rotornet: A

scalable, low-complexity, optical datacenter network. In Proceedings of
the Conference of the ACM Special Interest Group on Data Communica-
tion. 267–280.

[28] Jeffrey C.Mogul, DragoGoricanec,Martin Pool, Anees Shaikh, Douglas

Turk, Bikash Koley, and Xiaoxue Zhao. 2020. Experiences with Mod-

eling Network Topologies at Multiple Levels of Abstraction. In 17th
Symposium on Networked Systems Design and Implementation (NSDI).
https://www.usenix.org/conference/nsdi20/presentation/mogul

[29] George Porter, Richard D. Strong, Nathan Farrington, Alex Forencich,

Pang-Chen Sun, Tajana Rosing, Yeshaiahu Fainman, George Papen,

and Amin Vahdat. 2013. Integrating microsecond circuit switching

into the data center. In Proc. ACM SIGCOMM.

[30] Matthew Roughan, Mikkel Thorup, and Yin Zhang. 2003. Traffic

engineering with estimated traffic matrices. In Proceedings of the 3rd
ACM SIGCOMM Conference on Internet Measurement. 248–258.

https://doi.org/10.1145/1402946.1402967
https://doi.org/10.1145/1402946.1402967
https://engineering.fb.com/2019/03/14/data-center-engineering/f16-minipack/
https://engineering.fb.com/2019/03/14/data-center-engineering/f16-minipack/
https://sre.google/books/
https://doi.org/10.1145/1592568.1592576
https://doi.org/10.1145/1592568.1592576
https://doi.org/10.1145/3387514.3406591
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/liu_vincent
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/liu_vincent
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1145/1355734.1355746
https://www.usenix.org/conference/nsdi20/presentation/mogul

SIGCOMM’22, August 22-26, 2022, Amsterdam, Netherlands Poutievski et al.

[31] R Ryf, J Kim, JP Hickey, A Gnauck, D Carr, F Pardo, C Bolle, R Frahm,

N Basavanhally, C Yoh, et al. 2001. 1296-port MEMS transparent

optical crossconnect with 2.07 petabit/s switch capacity. In Optical
Fiber Communication Conference. Optical Society of America, PD28.

[32] Alexander Shpiner, Zachy Haramaty, Saar Eliad, Vladimir Zdornov,

Barak Gafni, and Eitan Zahavi. 2017. Dragonfly+: Low cost topology

for scaling datacenters. In 2017 IEEE 3rd International Workshop on
High-Performance Interconnection Networks in the Exascale and Big-
Data Era (HiPINEB). IEEE, 1–8.

[33] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armis-

tead, Roy Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie

Germano, Anand Kanagala, Hanying Liu, Jeff Provost, Jason Simmons,

Eiichi Tanda, JimWanderer, Urs Hölzle, Stephen Stuart, and Amin Vah-

dat. 2015. Jupiter Rising: A Decade of Clos Topologies and Centralized

Control in Google’s Datacenter Network. In SIGCOMM ’15.
[34] Rachee Singh, Nikolaj Bjorner, Sharon Shoham, Yawei Yin, John

Arnold, and Jamie Gaudette. 2021. Cost-effective capacity provisioning

in wide area networks with Shoofly. In Proceedings of the 2021 ACM
SIGCOMM 2021 Conference. 534–546.

[35] Rachee Singh, Manya Ghobadi, Klaus-Tycho Foerster, Mark Filer, and

Phillipa Gill. 2018. RADWAN: rate adaptive wide area network. In

Proceedings of the 2018 Conference of the ACM Special Interest Group on
Data Communication. 547–560.

[36] Ankit Singla, P Brighten Godfrey, and Alexandra Kolla. 2014. High

throughput data center topology design. In 11th USENIX Symposium
on Networked Systems Design and Implementation NSDI 14). 29–41.

[37] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey. 2012. Jellyfish:

Networking Data Centers Randomly. In Proc. USENIX NSDI.
[38] Martin Suchara, Dahai Xu, Robert Doverspike, David Johnson, and Jen-

nifer Rexford. 2011. Network Architecture for Joint Failure Recovery

and Traffic Engineering. In Proc. ACM SIGMETRICS.
[39] Yu-Wei Eric Sung, Xiaozheng Tie, Starsky H.Y.Wong, andHongyi Zeng.

2016. Robotron: Top-down Network Management at Facebook Scale.

In Proceedings of the 2016 ACM SIGCOMM Conference (SIGCOMM ’16).
Association for Computing Machinery, New York, NY, USA, 426–439.

https://doi.org/10.1145/2934872.2934874

[40] Min Yee Teh, Shizhen Zhao, Peirui Cao, and Keren Bergman. 2020.

COUDER: robust topology engineering for optical circuit switched

data center networks. arXiv preprint arXiv:2010.00090 (2020).
[41] Ryohei Urata, Hong Liu, Kevin Yasumura, Erji Mao, Jill Berger, Xiang

Zhou, Cedric Lam, Roy Bannon, Darren Hutchinson, Daniel Nelson,

Leon Poutievski, Arjun Singh, Joon Ong, and Amin Vahdat. 2022.

Mission Apollo: Landing Optical Circuit Switching at Datacenter Scale.

arXiv.
[42] Ryohei Urata, Hong Liu, Xiang Zhou, and Amin Vahdat. 2017. Datacen-

ter interconnect and networking: From evolution to holistic revolution.

In Proceedings of Optical Fiber Communication (OFC) 2017 Conference.
[43] Guohui Wang, David G Andersen, Michael Kaminsky, Konstantina

Papagiannaki, TS Eugene Ng, Michael Kozuch, and Michael Ryan. 2010.

c-Through: Part-time optics in data centers. In Proceedings of the ACM
SIGCOMM 2010 Conference. 327–338.

[44] Hao Wang, Haiyong Xie, Lili Qiu, Yang Richard Yang, Yin Zhang,

and Albert Greenberg. 2006. COPE: Traffic Engineering in Dynamic

Networks. In Proc. ACM SIGCOMM.

[45] Mingyang Zhang, Radhika Niranjan Mysore, Sucha Supittayaporn-

pong, and Ramesh Govindan. 2019. Understanding Lifecycle Manage-

ment Complexity of Datacenter Topologies. In Proc. NSDI.
[46] Mingyang Zhang, Jianan Zhang, Rui Wang, Ramesh Govindan, Jef-

frey C. Mogul, and Amin Vahdat. 2021. Gemini: Practical Reconfig-

urable Datacenter Networks with Topology and Traffic Engineering.

arXiv:cs.NI/2110.08374

[47] Y. Zhang and Z. Ge. 2005. Finding critical traffic matrices. In 2005 In-
ternational Conference on Dependable Systems and Networks (DSN’05).

[48] R. Zhang-Shen and N. McKeown. 2005. Designing a Predictable Inter-

net Backbone with Valiant Load-balancing. In Proc. IEEE IWQoS.
[49] Shizhen Zhao, Rui Wang, Junlan Zhou, Joon Ong, Jeffrey C Mogul,

and Amin Vahdat. 2019. Minimal rewiring: Efficient live expansion for

clos data center networks. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19). 221–234.

[50] Junlan Zhou, Malveeka Tewari, Min Zhu, Abdul Kabbani, Leon

Poutievski, Arjun Singh, and Amin Vahdat. 2014. WCMP: Weighted

Cost Multipathing for Improved Fairness in Data Centers. In Proceed-
ings of the Ninth European Conference on Computer Systems (EuroSys
’14). Association for Computing Machinery, New York, NY, USA, Arti-

cle 5, 14 pages. https://doi.org/10.1145/2592798.2592803

APPENDIX
Appendices are supporting material that has not been peer-

reviewed.

A AGGREGATION BLOCK DESIGN CHOICE
The first aggregation block in Jupiter [33] was a 3 switch

stage design with stage 1 comprising ToRs and stages 2 and

3 arranged in 8 independent blocks (called Middle Blocks or

MBs). We have since settled on a generic 4 MB, 3 switch stage

design for subsequent generations of Jupiter aggregation

blocks.

Fig. 15 (top) shows the general design for an aggregation

block. There are 4 separate MBs for redundancy, each housed

in a physical rack with 2 stages of switches interconnected

within each MB in a blocking topology.

The MBs collectively expose up to 512 links towards ToRs

and up to 512 links towards the DCNI layer. Links within the

aggregation block can run at 40G (4x10G lanes), 100G (4x25G

lanes), or 200G (4x50G lanes) depending on the generation of

the packet switches, with a roadmap to run at 400G (4x100G)

and 800G (4x200G) in the future.

Fig. 15 (bottom) shows the network path of an intra-block

flow (purple), an inter-block flow via a direct inter-block path

(cyan) as well as via an intermediate aggregation block (pink).

Traffic engineering and topology engineering combine to

maximize the direct cyan paths and minimize the pink paths

for cross-block traffic by optimizing the topology and routing

(forwarding paths) for the cross-block traffic pattern.

There are two reasons for choosing a 3-stage aggrega-

tion block vs. a flat 2-stage topology. First, having 4 fully

connected MBs allows the ToR uplinks to be deployed in

multiples of 4 enabling flexibility in bandwidth provisioning

based on the compute/memory/storage under the ToR in

the machine rack. A flat 2-stage aggregation block topology

would have required each ToR to connect to all the aggrega-

tion switches (rather than just 4MBs) affording less flexibility

in ToR uplink provisioning.

Second, the 2 stages within each MB allow each MB to

connect to all the corresponding MBs in other aggregation

blocks in the fabric. This enables “transit traffic” in an in-

termediate aggregation block to reach any destination ag-

gregation block by bouncing within the MB and not all the

way to the ToRs as depicted by the pink path in Fig. 15. It is

https://doi.org/10.1145/2934872.2934874
http://arxiv.org/abs/cs.NI/2110.08374
https://doi.org/10.1145/2592798.2592803

Jupiter Evolving SIGCOMM’22, August 22-26, 2022, Amsterdam, Netherlands

Figure 15: The top figure shows the generic Aggregation
Block design which follows a 4 post (Middle Blocks or MBs)
and a 3 switch stage architecture (ToR, stage 2, stage 3). Each
ToR switch connects to everyMBwith N uplinks (N=1,2,4,...).
The bottom figure shows the network path of an intra-block
flow (purple), an inter-block flow via a direct inter block
path (cyan) as well as via an intermediate aggregation block
(pink).

undesirable to require transit traffic to bounce via the ToRs

because ToRs are deployed incrementally on demand and

ToR-to-MB links are less evenly balanced compared to stage

2 to stage 3 links which are at a higher level of the network

hierarchy. The Traffic engineering controller monitors the

residual bandwidth in each MB and optimally uses the most

idle aggregation blocks for transit traffic.

B VARIABLE HEDGING FORMULATION
At a high level, we implement hedging by introducing addi-

tional constraints to the basic multi-commodity flow formu-

lation to force a commodity to go over multiple block-level

paths. A set of link-disjoint paths (direct and single-transit

paths) is given for each commodity. A path’s capacity is de-

noted by 𝐶𝑝 ; it’s the minimum capacity across the one or

two block-level edges comprising the path. Summing up the

capacity across all paths for a commodity gives the burst
bandwidth: 𝐵 =

∑
𝑝 𝐶𝑝 . Let the offered load of a commodity

be 𝐷 , and the decision variable on how much offered load

to place on a path be 𝑥𝑝 , we have
∑

𝑝 𝑥𝑝 = 𝐷 , i.e., all offered

load must be allocated. We use a parameter Spread, denoted
by 𝑆 where 𝑆 ∈ (0, 1], to indicate the fraction of burst band-

width a commodity must be spread over. Specifically, the

hedging constraint is formulated as 𝑥𝑝 ≤ 𝐷 · 𝐶𝑝

𝐵 ·𝑆 . Note that

when 𝑆 = 1, 𝑥𝑝 = 𝐷 · 𝐶𝑝

𝐵
if offered load is to be fully satisfied.

It degenerates to a demand-oblivious allocation (similar to

VLB) in which each commodity (regardless of offered load)

is allocated to available paths proportional to each path’s

capacity. When 𝑆 approaches 0, the hedging constraint be-

comes free, letting the formulation degenerate to the classic

multi-commodity flow. These are desired properties allowing

us to operate anywhere between the two extreme points by

adjusting 𝑆 .

Other formulations we tried to avoid overfitting either

scaled poorly or did not allow us to explicitly trade-off MLU

and stretch for different workload and fabrics or both. For

example, a formulation that maximizes the headroom for

each commodity will often prefer high stretch even when

traffic uncertainty is low, and the solve time was too long

even for small fabric size.

C GRAVITY TRAFFIC MODEL VALIDATION
AND NETWORK THROUGHPUT

If communications between machines are uniformly random,

then the aggregate inter-block traffic follows the gravity

model. We verify that inter-block traffic can be approximated

by the gravity model, by comparing the inter-block traffic

demand in the measured traffic matrix 𝐷 and the traffic ma-

trix 𝐷 ′
generated based on the gravity model. Recall that

𝐷 ′
𝑖 𝑗 = 𝐸𝑖 · 𝐼 𝑗/𝐿, where 𝐸𝑖 is the egress traffic demand at block

𝑖 and 𝐼 𝑗 is the ingress traffic demand at block 𝑗 . In Fig. 16,

we compare 𝐷𝑖 𝑗 and 𝐷 ′
𝑖 𝑗 , normalized by the largest entry

in 𝐷 and 𝐷 ′
, respectively, and the RMSE of demand estima-

tion is 0.05. The measured traffic matrices {𝐷} include 100
30s-granularity traffic matrices for each of ten fabrics.

Figure 16: Each point represents the estimated traffic de-
mand (𝑥-axis) and the measured demand (𝑦-axis) between a
pair of blocks. The dashed line corresponds to perfect esti-
mation.

We prove that a uniform direct connect topology can sup-

port the same throughput as a Clos topology if all blocks

have the same speed and radix and the traffic matrix follows

the gravity model and is symmetric. We first prove that, if a

SIGCOMM’22, August 22-26, 2022, Amsterdam, Netherlands Poutievski et al.

network supports a symmetric gravity-model traffic matrix,

then it also supports the traffic if the aggregate traffic at a

node decreases. Notice that commodities not from or to node

𝑢 increase as the aggregate traffic at 𝑢 decreases under the

gravity model.

Lemma 1. If a network𝐺 (𝑉 , 𝐸) can support a gravity-model
traffic matrix where block egress and ingress aggregate traffic
demands are the same and given by {𝐷𝑖 ,∀𝑖 ∈ 𝑉 }, then𝐺 (𝑉 , 𝐸)
can support the demand after the aggregate demand at one
node decreases, i.e., the block aggregate demands are given by
{𝐷𝑖 ,∀𝑖 ∈ 𝑉 \ 𝑢}⋃{𝐷 ′

𝑢 : 𝐷 ′
𝑢 < 𝐷𝑢}.

Proof. Given block aggregate traffic demands {𝐷𝑖 ,∀𝑖 ∈
𝑉 }, the traffic demand from 𝑖 to 𝑗 is 𝐷𝑖 𝑗 = 𝐷𝑖𝐷 𝑗/

∑
𝑘∈𝑉 𝐷𝑘

based on the gravity model. If the aggregate demand at 𝑢

decreases from 𝐷𝑢 to 𝐷 ′
𝑢 , the demand from 𝑖 to 𝑢 reduces by

𝑐𝑖𝑣 =
𝐷𝑖𝐷𝑣∑
𝑘∈𝑉 𝐷𝑘

− 𝐷𝑖𝐷
′
𝑣∑

𝑘∈𝑉 𝐷𝑘 + 𝐷 ′
𝑣 − 𝐷𝑣

.

The demand from 𝑖 to 𝑗 increases by

𝑏𝑖 𝑗 =
𝐷𝑖𝐷 𝑗∑

𝑘∈𝑉 𝐷𝑘 + 𝐷 ′
𝑣 − 𝐷𝑣

−
𝐷𝑖𝐷 𝑗∑
𝑘∈𝑉 𝐷𝑘

.

If 𝑐𝑖𝑣 >
∑

𝑗 ∈𝑉 \{𝑖,𝑣 } 𝑏𝑖 𝑗 , then the increased demands from 𝑖

to all other nodes except 𝑣 can transit through 𝑣 , since the

reduced demand from 𝑖 to 𝑣 frees up sufficient capacity. The

remaining work is to prove that 𝑐𝑖𝑣 >
∑

𝑗 ∈𝑉 \{𝑖,𝑣 }𝑏𝑖 𝑗 holds for
all 𝑖 ∈ 𝑉 \ {𝑣}.

𝑐𝑖𝑣 −
∑

𝑗 ∈𝑉 \{𝑖,𝑣 }
𝑏𝑖 𝑗

=
𝐷𝑖𝐷𝑣∑
𝑘∈𝑉 𝐷𝑘

− 𝐷𝑖𝐷
′
𝑣∑

𝑘∈𝑉 𝐷𝑘 + 𝐷 ′
𝑣 − 𝐷𝑣

−
∑

𝑗 ∈𝑉 \{𝑖,𝑣 }

(𝐷𝑖𝐷 𝑗∑
𝑘∈𝑉 𝐷𝑘 + 𝐷 ′

𝑣 − 𝐷𝑣

−
𝐷𝑖𝐷 𝑗∑
𝑘∈𝑉 𝐷𝑘

)
=

𝐷𝑖∑
𝑘∈𝑉 𝐷𝑘

(
𝐷𝑣 +

∑
𝑗 ∈𝑉 \{𝑖,𝑣 }

𝐷 𝑗

)
− 𝐷𝑖∑

𝑘∈𝑉 𝐷𝑘 + 𝐷 ′
𝑣 − 𝐷𝑣

(
𝐷 ′
𝑣 +

∑
𝑗 ∈𝑉 \{𝑖,𝑣 }

𝐷 𝑗

)
= 𝛼

[∑
𝑗 ∈𝑉 \{𝑖 }

𝐷 𝑗 (
∑
𝑘∈𝑉

𝐷𝑘 + 𝐷 ′
𝑣 − 𝐷𝑣)

− (
∑
𝑘∈𝑉

𝐷𝑘) (𝐷 ′
𝑣 +

∑
𝑗 ∈𝑉 \{𝑖,𝑣 }

𝐷 𝑗)
]

= 𝛼𝐷𝑖 (𝐷𝑣 − 𝐷 ′
𝑣)

≥ 0,

where

𝛼 =
𝐷𝑖

(∑𝑘∈𝑉 𝐷𝑘) (
∑

𝑘∈𝑉 𝐷𝑘 + 𝐷 ′
𝑣 − 𝐷𝑣)

.

□

Consider a set of symmetric traffic matrices D = {𝐷 (𝑡)},
where 𝐷 (𝑡) represents the traffic demands between nodes at

time 𝑡 and follows the gravity model. Let 𝐷𝑖 (𝑡) denote the
aggregate traffic at node 𝑖 at time 𝑡 . Let 𝐷𝑖 = max𝑡 𝐷𝑖 (𝑡). We

prove that a static mesh topology is able to support all traffic

using dynamic traffic-aware routing.

Theorem 2. A static mesh topology𝐺 can support all traffic
matrices in D. In𝐺 , the link capacity between 𝑖 and 𝑗 is given
by 𝑢𝑖 𝑗 = 𝐷𝑖𝐷 𝑗/

∑
𝑘∈𝑉 𝐷𝑘 .

Proof. Consider𝐷max
where all nodes have themaximum

aggregate traffic demand 𝐷𝑖 ,∀𝑖 ∈ 𝑉 . A mesh topology 𝐺

where link capacity 𝑢𝑖 𝑗 = 𝐷𝑖𝐷 𝑗/
∑

𝑘∈𝑉 𝐷𝑘 , ∀𝑖, 𝑗 ∈ 𝑉 supports

all commodity traffic over direct paths. We prove that 𝐺 is

able to support 𝐷 (𝑡),∀𝑡 by induction.

For time 𝑡 , consider traffic matrix 𝐷𝑛 (𝑡) that follows the
gravitymodel and𝐷𝑛

𝑥 (𝑡) = 𝐷𝑥 (𝑡), 𝑥 = 1, 2, . . . , 𝑛 and𝐷𝑛
𝑥 (𝑡) =

𝐷𝑥 , 𝑥 = 𝑛 + 1, 𝑛 + 2, . . . , |𝑉 |. We prove that 𝐺 is able to sup-

port 𝐷𝑛 (𝑡),∀𝑛 ∈ 1, 2, . . . , |𝑉 | by induction. By Lemma 1, if

𝐺 supports 𝐷𝑛 (𝑡), then𝐺 supports 𝐷𝑛+1 (𝑡), since the aggre-
gate traffic demand at a single node reduces from 𝐷𝑛+1 to
𝐷𝑛+1 (𝑡). Given that 𝐺 supports 𝐷0 (𝑡) = 𝐷max

, 𝐺 supports

𝐷𝑛 (𝑡), 𝑛 = 1, 2, . . . , |𝑉 |, including 𝐷 (𝑡). □

The total capacity of links adjacent to 𝑖 is∑
𝑗

𝑢𝑖 𝑗 =
∑
𝑗

(𝐷𝑖𝐷 𝑗/
∑
𝑘∈𝑉

𝐷𝑘) = 𝐷𝑖 ,

which is the maximum aggregate traffic at node 𝑖 . In other

words, a static mesh topology supports all symmetric gravity-

model traffic matrices if all node aggregate traffic demands

do not exceeds their capacities. To compare, a Clos topol-

ogy supports all traffic matrices if all node aggregate traffic

demands do not exceeds their capacities.

In the special case where all blocks are identical, a uniform

mesh topology supports a uniform traffic matrix where the

aggregate traffic of each node equals its capacity. By Theorem

2, a uniform mesh topology supports all traffic if all node

aggregate traffic demands do not exceed their capacities and

the traffic matrix is symmetric and follows the gravity model.

D SIMULATION METHODOLOGY
We rely on simulation to guide our traffic and topology en-

gineering designs, reproduce production network state for

diagnosis and debugging, and run what-if analysis for pro-

duction changes. The simulation infrastructure is important

since 1) building physical testbeds to match the scale and

diversity of our fabrics and workloads is impractical, 2) ex-

ploring different designs or answering what-if questions

directly in production is risky and slow, 3) network state is

too complex to model mathematically.

To make simulation tractable we make the following sim-

plifications:

• Network topology. We abstract the Jupiter topology to a

block-level simple graph with each vertex representing a

Jupiter Evolving SIGCOMM’22, August 22-26, 2022, Amsterdam, Netherlands

Figure 17: Histogram of the error between measured link
utilization and simulated link utilization.

block and each edge representing all links spanning the

two blocks. Each block is thus reduced to an abstract switch

with 256 or 512 ports. The traffic on an edge is assumed to

be perfectly load-balanced across the edge’s constituent

links (even when those links span different source and

destination physical switches).

• Traffic. We simulate the network over the 30s-granularity

traffic trace. As mentioned before, a traffic matrix entry

captures the number of bytes sent from the source block

to the destination block over a 30s interval. This traffic

matrix is considered the offered load at the time.

• Ideal load balance and steady state assumptions.We assume

that the offered load is split over multiple paths exactly

to the WCMP weights. We thus omit the errors from 1)

different flow sizes, 2) imperfect hashing, and 3) WCMP

weight reduction [50]. While we run the traffic prediction,

routing optimization, and topology optimization loops

exactly as configured in production, we do not simulate

the transient state when routes are being programmed

in the network (we do simulate topology transition as

that takes longer). In other words, we assume zero delay

changing from one forwarding state to the next.

Despite these simplifications, the simulated link load

matches the measured link load well. The Root Mean Square

Error (RMSE) between simulated and measured link utiliza-

tion is less than 0.02. This precision is more than sufficient

for the aforementioned use cases. By these simplifications,

we can simulate each traffic matrix independently and in

parallel, which allows us to simulate the entire fleet over

multiple months in a few hours of simulation time.

Fig. 17 shows an error histogram of the measured link uti-

lization vs. the simulated link utilization. The samples consist

of over one million data points, corresponding to links from

six fabrics across different times spanning a month. The er-

rors are concentrated around zero and have small magnitude,

which demonstrates the accuracy of the simulation.

E OPERATIONALIZING FABRIC REWIRING
We describe the automated workflows that operationalize

the high level approach to fabric rewiring laid out in §5. We

also highlight the uses cases that require rewiring of the fiber

strands at the front of the OCS.

Figure 18: Workflow for topology changes.
E.1 Rewiring workflow
Fig. 18 shows the workflow used for achieving the rewiring

process. In Step 1○ a solver uses the intended fabric state

(such as the set of blocks, their platform type, radix, expressed

in a proprietary intent expression language) and traffic ma-

trices (for topology engineering §4.5) to produce a target

topology that meets the physical constraints (e.g., radix of

the DCNI and aggregation block switches) and logical objec-

tives such as balancing the links across failure domains and

desired pair-wise block connectivity. The solver also uses

the current topology
2
to minimize the diff while achieving

the intended state [49].

Depending on the scale of the fabric, change in the in-

tended state, and the feasibility of minimization of diff, the

difference between current and target topology can vary

from a few hundred links to tens of thousands of links.

Step 2○, stage selection, identifies the number of incre-

ments needed to safely transition to the target topology by

subtracting progressively smaller divisions (1, 1/2, 1/4, 1/8,

etc.) of the difference from the current topology, and simulate

routing and utilization levels based on recent traffic levels on

the residual network to assess whether the network will be

able to maintain SLOs for the various traffic classes. We align

the divisions with DCNI’s domains and their sub divisions

at the level of racks – this provides natural alignment with

the failure domains, reducing risk.

The workflow executes a set of steps for each increment,

starting with modeling the post-increment topology 3○ and

hitlessly draining the traffic from the links
3
in the diff from

the current topology 4○ – we perform additional safety

checks using analysis similar to the stage selection step

to ensure that the post-drain network can carry the traf-

fic while meeting the SLOs. The validation and draining of

the links is critical for loss-free reconfiguration. Once the

2
The current and target topology is represented in an expressive machine

readable format (e.g., [28, 39]) to facilitate reasoning about the topology

in the later stages of the workflow, as well as to configure and manage the

resulting fabric.

3
Hitless draining is an SDN function that programs alternative paths before

atomically diverting packets away from the affected network element.

SIGCOMM’22, August 22-26, 2022, Amsterdam, Netherlands Poutievski et al.

affected links are safely drained, we commit the modeled

post-increment topology 5○ and dispatch the configuration

to the SDN controllers 6○. Using the post-increment topol-

ogy, the controllers appropriately configure link speeds and

dispatch LLDP packets. This helps detect any miscabling

during the rewiring steps 7○.

The cross-connection rewiring is done using a software

configuration to the SDN controllers in the DCNI domains

(§4.2), which then program the OCS switches. As new end-

to-end links are formed, the workflow performs link qual-

ification including ascertaining correct logical adjacency,

optical levels, and link quality using bit-error rate tests 8○.

The workflow requires that 90+% of the links of a stage are

successfully qualified before proceeding to the next step
4
.

We undrain the links as they are formed and move to the

next increment once a threshold number of links of success-

fully formed and undrained. As a performance optimization,

steps related to modeling 3○ and drain impact analysis 4○ for

the next stage can proceed in parallel to steps 6○ - 9○ of the

previous stage. Once all the stages are completed, we await

for final repairs that fix any remaining broken links left over

from the iterations, and then conclude the operation.

All workflow steps are shadowed by a continuous loop

monitoring the traffic, fabric, Orion controller health and

other "big-red-button" signals. Upon detecting anomalies, it

can preempt the ongoing step, and even initiate an automated

rollback. We also enforce pacing of operations across the

failure domains within the fabric, and across the fleet - this

ensures that all the telemetry has had a chance to catch up

to the change and the safety loop can intervene preventing

a cascading failure. The network management API systems

layer (Fig. 7) creates a separation between the workflows

and the SDN control and dataplane and enforces the safety

constraints. The network management services are sharded

for zonal and regional failure domains, and use progressive

rollouts and shadow launch techniques [7] to prevent bugs

and correlated failures in this critical layer.

In Table 2, we include steps 1○- 5○ as workflow overhead,

whereas the other steps are considered part of the core

rewiring steps. The end-to-end speedup in rewiring excludes

the final repair steps 11○.

E.2 Front panel rewiring
The following operations require connectivity changes at

the front panel with the assistance of operations staff on the

datacenter floor.

• Addition of new blocks or radix upgrades. Jupiter reserves
space and power for future blocks, which additionally al-

lows pre-installation of the the fiber from reserved spots

4
Links may fail qualification tests due to incorrect cabling, unseated plugs,

dust, or deterioration of cables or optics that fail the more stringent tests

performed during the tests. We prefer to perform the repair as part of the

workflow because it is necessary to return the capacity to the fabric to

proceed to the next step, and the datacenter technicians are on-hand during

these operations making it more convenient from an operations perspective.

to the DCNI switches. However, to minimize the inven-

tory, the aggregation blocks (and optics) are deployed later

when they are needed. The newly added links are phys-

ically connected to the DCNI switches prior to the logi-

cal rewiring steps (shown as "pre-deployed" in Fig 10(b)-

bottom). Removal of blocks follows the reverse order –

blocks are first disconnected from the fabric using logical

rewiring, and then physically disconnected from the DCNI

layer.

• DCNI expansion. The DCNI layer follows the incremental

deployment model of Jupiter aggregation blocks (§ 3.1).

Adding new OCS chassis requires re-balancing the links

from the packet switches to the entire DCNI layer, which

naturally requires rewiring at the front panel.

• Repairs and Technology Refresh. Repairs of miscabled links,

bad optics, fiber strands, OCS ports, and chassis all require

changes at the front panel. These changes are often made

in-place, i.e., the point of incidence of links on the DCNI

chassis does not change.

It is desirable to maximize the spatial locality of incremen-

tal rewiring steps for manual operations (e.g., all front-panel

rewiring). The locality allows operations staff to complete

the work for a specific step without having to move vast dis-

tances across the datacenter, maximizing productivity and

reducing the chances of mistakes. This locality is achieved

by sequencing the workflow to process OCS chassis that are

physically adjacent to each other. When the the rewiring step

(7○ in Fig. 18) involves manual work, the workflows offer a

web-based user interface that provides real time assistance

and diagnostics to the operations staff. This further helps

with productivity and reduces the chances of errors.

F HARDWARE COMPONENTS
We developed three critical hardware components, the OCS,

WDM transceivers, and optical circulators, to realize a cost-

effective, large-scale optical switching layer/DCNI [41].

F.1 Palomar OCS
For the first several years of deployment, a vendor-based

OCS solution was adopted in the DCNI layer. However, due

to the difficulties in maintaining reliability and quality of

this solution at scale, the decision was made to internally

develop an OCS system.

Figure 19 shows the high-level optical design and opera-

tion principles of the Palomar OCS. The input/output optical

signals enter the optical core through two-dimensional (2D)

fiber collimator arrays. Each collimator array consists of an

NxN fiber array and 2D lens array. The optical core consists

of two sets of 2D MEMS mirror arrays. Each inband optical

signal traverses through a port in each collimator array and

two MEMS mirrors, as indicated by the green line of Figure

19. Mirrors are actuated and tilted to switch the signal to

a corresponding input/output collimator fiber. The entire

end-to-end optical path is broadband and reciprocal, for data

Jupiter Evolving SIGCOMM’22, August 22-26, 2022, Amsterdam, Netherlands

Figure 19: Illustration of design and optical path of Palo-
mar OCS optical core. The inband optical signal path is indi-
cated by the green line. Superposed with the inband signal
path, a monitoring channel at the 850nm wavelength (red
arrows) assists with tuning of the mirrors.

rate agnostic and bidirectional communication across the

OCS. Superposed with the inband signal path, a monitor-

ing channel (red bars, Figure 19) assists with tuning of the

mirrors.

Each MEMS array is injected with this 850nm light. The

reflected monitor signals are then received at a matching

camera module. A servo utilizes the camera image feedback

to optimize MEMS actuation for minimum loss of the op-

tical signal path. A pair of injection/camera modules con-

trols each 2D MEMS array. By implementing mirror controls

based on image processing of a single camera image per

MEMS array, the control scheme is significantly simplified

in comparison to conventional approaches which require

individual monitoring and/or photodetector hardware per

mirror. This design choice was critical to realizing a low-cost,

manufacturable OCS solution. The above design yields a non-

blocking, 136x136 OCS with bijective, any-to-any input to

output port connectivity.

Figure 20 shows some representative insertion loss and

return loss data for the Palomar OCS. Insertion losses are

typically <2dB for all NxN permutations of connectivity. The

tail in the distributions is nominally due to splice and con-

nector loss variation. Return loss is typically -46dB, with a

nominal spec of <-38dB. The stringent return loss require-

ment stems from the use of bidirectional communication

along each optical path, as any single reflection superposes

directly on top of the main optical signal to degrade signal-

to-noise ratio. Multilevel PAM-based communication further

increases sensitivity to these reflections. not clear if figure

20 is essential to the section, since the text describes all the

key properties well. this is actual data, so would prefer to

keep. cut if space does not allow

F.2 WDM Optical Transceivers
Figure 21 shows the corresponding WDM single mode inter-

connect roadmap developed by Google over the past decade

Figure 20: a) Representative Palomar OCS insertion loss
histogram for 136x136 (18,496) cross-connections. b) Return
loss versus port number for 136 input/output ports, with the
OCS configured for 1:1 connections (input 1-output 1, input
2-output 2, . . .).

[23]. To support the higher loss budget due to the OCS and

circulators, transceiver design emphasized low optical com-

ponent and packaging losses. Thereafter, a variety of tech-

nology directions and trends are notable. First, in order to

support direct interop between various generation aggrega-

tion blocks, it was critical to maintain the same CWDM4

wavelength grid. This necessitated development of key, criti-

cal component technologies starting at the 25G per optical

lane generation well in advance, most importantly uncooled

CWDM directly modulated lasers (DMLs). This eventually

led to after-the-fact creation of the CWDM4 MSA.

Second, in order to keep reducing the cost, power, and den-

sity per Gb/s and enable the use of the switch ASIC/Moore’s

Law improvements [23], continuous speed up of each lane

was essential. This was achieved through development of

a variety of key technologies: optical, electrical, and signal

processing. For the optics, we worked with the industry to

develop faster optical components (lasers/photo-detectors),

migrating from DMLs to more recently the use of externally

modulated lasers (EMLs), due to higher speed and extinction

SIGCOMM’22, August 22-26, 2022, Amsterdam, Netherlands Poutievski et al.

Figure 21: WDM single mode interconnect review and
roadmap.

ratio requirements (critical for mitigating multi-path interfer-

ence (MPI) effects enhanced by bidirectional communication).

For high-speed IC/electrical technologies, we migrated from

analog-based clock-and-data recovery (CDR) solutions to

digital signal processing (DSP)-based ASICs. The DSP ASIC

provided a more robust, scalable solution by relaxing the

requirement on optical and analog electrical components at

the expense of increased power consumption and latency.

In addition, we leveraged the new found digital capabilities

to develop algorithms that mitigate MPI impairments inher-

ent in bidirectional links as well as forward error correction

(FEC) techniques [42] in order to support the higher link

budgets needed for the OCS-based links.

One additional and crucial element of the interconnect de-

velopment was the requirement for backward compatibility

of the optical transceiver technology. In addition to wave-

length grid compatibility, this meant the optical performance

specifications and high speed data path needed to support

various line rates. The current generation transceiver must

also support a superset of all transmitter and receiver dy-

namic ranges of the previous generation transceivers.

F.3 Optical Circulators
As stated earlier, the optical circulator enables bidirectional

operation of DCNI links to halve the number of required

OCS ports and fibers. The optical circulator is a three-port

non-reciprocal device that has a cyclic connectivity. Input

into port 1 is directed to port 2, input into port 2 is directed to

port 3. This functionality can be realized through the use of

birefringent crystals, magneto-optical Faraday rotators (typ-

ically made of Garnet), and polarizers. Figure 22 illustrates

an example implementation. Although the optical signals

running in opposing directions do superpose on top of each

other along the fiber and OCS, they do not directly interact

with each other due to the bosonic nature of photons. Similar

to the OCS, the broadband nature of the circulator allows its

reuse across multiple generations of CWDM4-based optical

transceiver technologies, with costs amortized accordingly.

Figure 22: Example integrated circulator implementation.
Blue lines indicate s-polarization, red lines indicate p-
polarization. PBS - polarizing beam splitter, FR - faraday ro-
tator, HWP - half wave plate.

	Abstract
	1 Introduction
	2 Jupiter's approach to Evolution
	3 The direct-connect Jupiter
	3.1 Datacenter Interconnection Layer
	3.2 Logical Topology

	4 Traffic and Topology Engineering
	4.1 Control Plane Design
	4.2 Optical Engine Controller
	4.3 Non-Shortest Path Routing
	4.4 Traffic-Aware Routing
	4.5 Topology Engineering
	4.6 Traffic and Topology Engineering Cadence

	5 Live Fabric Rewiring
	6 Evaluation
	6.1 Traffic Characteristics
	6.2 Optimal throughput and stretch for direct connect fabrics
	6.3 Simulation Results
	6.4 Production Experience
	6.5 Cost Model
	6.6 System Complexity

	7 Related Work
	8 Conclusion
	9 Acknowledgements
	References
	A Aggregation block design choice
	B Variable hedging formulation
	C Gravity traffic model validation and network throughput
	D Simulation Methodology
	E Operationalizing fabric rewiring
	E.1 Rewiring workflow
	E.2 Front panel rewiring

	F Hardware Components
	F.1 Palomar OCS
	F.2 WDM Optical Transceivers
	F.3 Optical Circulators

