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Quadratic programming over the (special) orthogonal group encompasses a broad class of opti-
mization problems such as group synchronization, point-set registration, and simultaneous localiza-
tion and mapping. Such problems are instances of the little noncommutative Grothendieck problem
(LNCG), a natural generalization of quadratic combinatorial optimization where, instead of binary
decision variables, one optimizes over orthogonal matrices. In this work, we establish an embed-
ding of this class of LNCG problems over the orthogonal group onto a quantum Hamiltonian. This
embedding is accomplished by identifying orthogonal matrices with their double cover (Pin and
Spin group) elements, which we represent as quantum states. We connect this construction to the
theory of free fermions, which provides a physical interpretation of the derived LNCG Hamiltonian
as a two-body interacting-fermion model due to the quadratic nature of the problem. Determin-
ing extremal states of this Hamiltonian provides an outer approximation to the original problem,
analogous to classical relaxations of the problem via semidefinite programming. When optimizing
over the special orthogonal group, our quantum relaxation naturally obeys additional, powerful
constraints based on the convex hull of rotation matrices. The classical size of this convex-hull rep-
resentation is exponential in matrix dimension, whereas the quantum representation requires only
a linear number of qubits. Finally, to project the relaxed solution into the feasible space, we em-
ploy rounding procedures which return orthogonal matrices from appropriate measurements of the
quantum state. Through numerical experiments we provide evidence that this quantum relaxation
can produce high-quality approximations.
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I. INTRODUCTION

Finding computational tasks where a quantum computer could have a large speedup is a primary driver for the
field of quantum algorithm development. While some examples of quantum advantage are known, such as quantum
simulation [1, 2], prime number factoring [3], and unstructured search [4], generally speaking computational advantages
for industrially relevant calculations are scarce. Specifically in the field of optimization, which has attracted a large
amount of attention from quantum algorithms researchers due to the ubiquity and relevance of the computational
problems, substantial quantum speedups, even on model problems, are difficult to identify. This difficulty is in part
because it is not obvious a priori how the unique features of quantum mechanics—e.g., entanglement, unitarity, and
interference—can be leveraged towards a computational advantage [4–6].

In this work we take steps toward understanding how to apply quantum computers to optimization problems
by demonstrating that the class of optimization problems involving rotation matrices as decision variables has a
natural quantum formulation and efficient embedding. Examples of such problems include the joint alignment of
points in Euclidean space by isometries, which has applications within the contexts of structural biology via cryogenic
electron microscopy (cryo-EM) [7, 8] and NMR spectroscopy [9], computer vision [10, 11], robotics [12, 13], and
sensor network localization [14]. The central difficulty in solving these problems is twofold: first, the set of orthogonal
transformations O(n) is nonconvex, making the optimization landscape challenging to navigate in general. Second, the
objectives of these problems are quadratic in the decision variables, making them examples of quadratic programming
under orthogonality constraints [15]. In this paper we specifically focus on the problem considered by Bandeira
et al. [16], which is a special case of the real little noncommutative Grothendieck (LNCG) problem [17]. While
significant progress has been made in classical algorithms development for finding approximate solutions, for example
by semidefinite relaxations [16, 18–21], guaranteeing high-quality solutions remains difficult in general. This paper
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therefore provides a quantum formulation of the optimization problem, as a first step in exploring the potential use
of a quantum computer to obtain more accurate solutions.

The difficulty of the LNCG problem becomes even more pronounced when restricting the decision variables to the
group of rotation matrices SO(n) [22, 23]. One promising approach to resolving this issue is through the convex
relaxation of the problem, studied by Saunderson et al. [21, 24]. They identified that the convex hull of rotation
matrices, conv SO(n), is precisely the feasible region of a semidefinite program (SDP) [24]. Therefore, standard
semidefinite relaxations of the quadratic optimization problem can be straightforwardly augmented with this convex-
hull description as an additional constraint [21]. They prove that when the problem is defined over particular types
of graphs, this enhanced SDP is exact, and for more general instances of the problem they numerically demonstrate
that it yields significantly higher-quality approximations than the basic SDP. The use of this convex hull has since
been explored in related optimization contexts [25–27]. Notably however, the semidefinite description of conv SO(n)
is exponentially large in n. Roughly speaking, this reflects the complexity of linearizing a nonlinear determinant
constraint. One such representation is the so-called positive-semidefinite (PSD) lift of conv SO(n), which is defined
through linear functionals on the trace-1, PSD matrices of size 2n−1 × 2n−1.

One may immediately recognize this description as the set of density operators on n − 1 qubits. In this paper we
investigate this statement in detail and make a number of connections between the optimization of orthogonal/rotation
matrices and the optimization of quantum states, namely fermionic states in second quantization. The upshot is
that these connections provide us with a relaxation of the quadratic program into a quantum Hamiltonian problem.
Although this relaxation admits solutions (quantum states) which lie outside the feasible space of the original problem,
we show that it retains much of the important orthogonal-group structure due to this natural embedding. The notion
of quantum relaxations have been previously considered in the context of combinatorial optimization (such as the Max-
Cut problem), wherein quantum rounding protocols were proposed to return binary decision variables from the relaxed
quantum state [28]. In a similar spirit, in this paper we consider rounding protocols which return orthogonal/rotation
matrices from our quantum relaxation.

Within the broader context of quantum information theory, our work here also provides an alternative perspective
to relaxations of quantum Hamiltonian problems. There is a growing interest in classical methods for approximating
quantum many-body problems based on SDP relaxations [29–38]. In that context, rounding procedures are more
difficult to formulate because the space of quantum states is exponentially large. For instance, the algorithm may
only round to a subset of quantum states with efficient classical descriptions such as product states [29–31, 33, 36]
or low-entanglement states [32, 34], effectively restricting the approximation from representing the true ground state.
Nonetheless, these algorithms can still obtain meaningful approximation ratios of the optimal energy, indicating that
such states can at least capture some qualitative properties of the generically entangled ground state.

Our quantum relaxation can be viewed as working in the opposite direction: we construct a many-body Hamiltonian
where the optimal solution to the underlying classical quadratic program is essentially a product state. Therefore, we
propose preparing an approximation to the ground state of the Hamiltonian,1 which is then rounded to the nearest
product state corresponding to the original classical solution space. This is not unlike quantum approaches to binary
optimization such as quantum annealing or the quantum approximate optimization algorithm [6, 39–42], which explore
a state space outside the classical feasible region before projectively measuring, or rounding, the quantum state to
binary decision variables. We furthermore provide numerical evidence that the physical qualitative similarity between
optimal product and entangled states may translate into quantitative accuracy for the classical optimization problem,
in a context beyond discrete combinatorial optimization.

Finally, we remark that Grothendieck-type problems and inequalities have a considerable historical connection to
quantum theory. Tsirelson [43] employed Clifford algebras to reformulate the commutative Grothendieck inequality
into a statement about classical XOR games with entanglement. Regev and Vidick [44] later introduced the notion of
quantum XOR games, which they studied through the generalization of such ideas to noncommutative Grothendieck
inequalities. The mathematical work of Haagerup and Itoh [45] studied Grothendieck-type inequalities as the norms
of operators on C∗-algebras; their analysis makes prominent use of canonical anticommutation relation algebras over
fermionic Fock spaces. Quadratic programming with orthogonality constraints has also been applied for classical
approximation algorithms for quantum many-body problems, for instance by Bravyi et al. [30]. Recasting noncom-
mutative Grothendieck problems into a quantum Hamiltonian problem may therefore provide new insights into these
connections.

The rest of this paper is organized as follows: Section II provides a formal description of the optimization problem
that we study in this paper and reviews known complexity results of related problems. In Section III we describe two
well-known applications of the problem: the group synchronization problem and the generalized orthogonal Procrustes
problem. Section IV provides a summary of our quantum relaxation which embeds the optimization problem into a

1 While the physical problem typically considers the ground-state problem, this paper takes the convention of maximizing objectives.
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Hamiltonian, and two accompanying rounding protocols. In Section V we derive an embedding of orthogonal matrices
into quantum states via the Pin and Spin groups. We elaborate on the connection to fermionic theories and provide a
quantum perspective on the convex hull of the orthogonal groups. From this embedding, Section VI then establishes
the quantum Hamiltonian relaxation of the quadratic optimization problem. Section VII describes both classical and
quantum rounding protocols for relaxations of the problem. Notably, for the classical SDP we derive an approximation
ratio for SO(n) rounding. Finally, in Section VIII we demonstrate numerical experiments on random instances of
the group synchronization problem for SO(3) on three-regular graphs and report the performance of various classical
and quantum rounding protocols. For our simulations of the quantum relaxation, we consider two classes of quantum
states: maximal eigenstates of the Hamiltonian and quasi-adiabatically evolved states. We close in Section IX with a
discussion on future lines of research.

II. PROBLEM STATEMENT

In this paper we consider the class of little noncommutative Grothendieck (LNCG) problems over the orthogonal
group, as studied previously by Bandeira et al. [16].2 Let (V,E) be an undirected graph with m = |V | vertices and
edge set E. For integer n ≥ 1, let C ∈ Rmn×mn which for notation we partition into n× n blocks as

C =

C11 · · · C1m

...
. . .

...
Cm1 · · · Cmm

 . (1)

The quadratic program we wish to solve is of the form

max
R1,...,Rm∈G

∑
(u,v)∈E

〈Cuv, RuRT
v 〉, (2)

where G is either the orthogonal group

O(n) := {R ∈ Rn×n | RTR = In}, (3)

or the special orthogonal group

SO(n) := {R ∈ Rn×n | RTR = In, detR = 1} (4)

on Rn. Here, 〈A,B〉 = tr(ATB) denotes the Frobenius inner product on the space of real matrices and In is the n×n
identity matrix. Note that when G = O(1) = {±1}, Problem (2) reduces to combinatorial optimization of the form

max
x1,...,xm∈{±1}

∑
(u,v)∈E

Cuvxuxv, (5)

where now C ∈ Rm×m. This is sometimes referred to as the commutative instance of the little Grothendieck problem.
Problem (2) can therefore be viewed as a natural generalization of quadratic binary optimization to the noncommu-
tative matrix setting.

We now comment on the known hardness results of these optimization problems. The commutative problem (5)
is already NP-hard in general, as can be seen by the fact that the Max-Cut problem can be expressed in this form.
In particular, Khot et al. [46] proved that, assuming the Unique Games conjecture, it is NP-hard to approximate the
optimal Max-Cut solution to better than a fraction of (2/π) minθ∈[0,π]

θ
1−cos θ ≈ 0.878. This value coincides with the

approximation ratio achieved by the celebrated Goemans–Williamson (GW) algorithm for rounding the semidefinite
relaxation of the problem [47]. More generally, consider the fully connected graph and let C � 0 be arbitrary.
Nesterov [48] showed that GW rounding guarantees an approximation ratio of 2/π ≈ 0.636 in this setting, which Alon
and Naor [49] showed matches the integrality gap of the semidefinite program. Khot and Naor [50] later demonstrated
that this approximation ratio is also Unique-Games-hard to exceed, and finally Briët et al. [17] strengthened this result
to be unconditionally NP-hard.

For the noncommutative problem (2) that we are interested in, less is known about its hardness of approximability.
However, it is a subclass of more general optimization problems for which some results are known. The most general

2 The authors also consider the complex-valued problem over the unitary group, which is outside the scope of this present paper.
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instance is the “big” noncommutative Grothendieck problem, for which Naor et al. [20] provided a rounding procedure

of its semidefinite relaxation. Their algorithm achieves an approximation ratio of at least 1/2
√

2 ≈ 0.353 in the real-
valued setting, and 1/2 in the complex-valued setting (wherein optimization is over the unitary group instead of the
orthogonal group). This 1/2 result was later shown to be tight by Briët et al. [17] for both the real- and complex-
valued settings; in fact, they show that this is the NP-hardness threshold of a special case of the problem, called
the little noncommutative Grothendieck problem.3 However, the threshold for Problem (2), which is an special
case of LNCG, is not known. Algorithmically, Bandeira et al. [16] demonstrated constant approximation ratios for
Problem (2) when C � 0 and G = O(n) or U(n) via an (n×n)-dimensional generalization of GW rounding, along with
matching integrality gaps. These approximation ratios exceed 1/2, indicating that this subclass is quantitatively less
difficult than the general instance of the LNCG problem. Although the optimization of rotation matrices is of central
importance to many applications, we are unaware of any general approximation ratio guarantees for the G = SO(n)
setting.

III. APPLICATIONS

Before describing our quantum relaxation, here we motivate the practical interest in Problem (2) by briefly discussing
some applications. Throughout, let G = O(n) or SO(n) and (V,E) be a graph as before.

A. Group synchronization

The group synchronization problem over orthogonal transformations has applications in a variety of disciplines,
including structural biology, robotics, and wireless networking. For example, in structural biology the problem
appears as part of the cryogenic electron microscopy (cryo-EM) technique. There, one uses electron microscopy
on cryogenically frozen samples of a molecular structure to obtain a collection of noisy images of the structure. The
images are noisy due to an inherently low signal-to-noise ratio, and furthermore they feature the structure in different,
unknown orientations (represented by rotation matrices). One approach to solving the group synchronization problem
yields best-fit estimates for these orientations via least-squares minimization [51], from which one can produce a model
of the desired 3D structure.4 See Ref. [8] for a further overview, and Ref. [11] for a survey of other applications of
group synchronization.

The formal problem description is as follows. To each vertex v ∈ [m] := {1, . . . ,m} we assign an unknown but
fixed element gv ∈ G. An interaction between each pair of vertices connected by an edge (u, v) ∈ E is modeled as
guv = gug

T
v . However, measurements of the interactions are typically corrupted by some form of noise. For instance,

one may consider an additive noise model of the form Cuv = guv + σWuv, where σ ≥ 0 characterizes the strength of
the noise and each Wuv ∈ Rn×n has independently, normally distributed entries. We would like to recover each gv
given only access to the matrices Cuv. Therefore, as a proxy to the recovery problem one may cast the solution as
the least-squares minimizer

min
R∈Gm

∑
(u,v)∈E

‖Cuv −RuRT
v ‖2F , (6)

where ‖A‖F =
√
〈A,A〉 is the Frobenius norm and we employ the notation R ≡ (R1, . . . , Rm). It is straightforward

to see that the minimzer of this problem is equivalent to the maximizer of

max
R∈Gm

∑
(u,v)∈E

〈Cuv, RuRT
v 〉, (7)

which is precisely in the form of Problem (2).

B. Generalized orthogonal Procrustes problem

Procrustes analysis has applications in fields such as shape and image recognition, as well as sensory analysis and
market research on n-dimensional data. In this problem, one has a collection of point clouds, each representing for

3 See Section 6 of Briët et al. [17] for the precise relation between the big and little NCG.
4 Note that other loss functions are also considered in the literature, which may not necessarily have a reformulation as Problem (2).
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instance the important features of an image. One wishes to determine how similar these images are to each other
collectively. This is achieved by simultaneously fitting each pair of point clouds to each other, allowing for arbitrary
orthogonal transformations on each cloud to best align the individual points. We refer the reader to Ref. [52] for a
comprehensive review.

Consider m sets of K points in Rn, Sv = {xv,1, . . . , xv,K} ⊂ Rn for each v ∈ [m]. We wish to find an orthogonal
transformation Rv ∈ G for each Sv that best aligns all sets of points simultaneously. That is, for each k ∈ [K] and
u, v ∈ [m] we wish to minimize the Euclidean distance ‖RT

uxu,k−RT
vxv,k‖2. Taking least-squares minimization as our

objective, we seek to solve

min
R∈Gm

∑
u,v∈[m]

∑
k∈[K]

‖RT
uxu,k −RT

vxv,k‖22. (8)

From the relation between the vector 2-norm and matrix Frobenius norm, Eq. (8) can be formulated as

max
R∈Gm

∑
u,v∈[m]

〈Cuv, RuRT
v 〉, (9)

where each Cuv ∈ Rn×n is defined as

Cuv =
∑
k∈[K]

xu,kx
T
v,k. (10)

IV. SUMMARY

We now provide a high-level overview of the main contributions of this paper. We provide summary cartoon in
Figure 1, depicting the quantum embedding of the problem and the quantum rounding protocols. Let (V,E) be a
graph where we label the vertices by V = [m], and denote the objective function of Problem (2) by

f(R) :=
∑

(u,v)∈E

〈Cuv, RuRT
v 〉. (11)

A. Quantum Hamiltonian relaxation

First, consider the setting in which R = (R1, . . . , Rm) ∈ O(n)m. We embed this problem into a Hamiltonian by
placing n qubits on each vertex v ∈ [m], resulting in a total Hilbert space H⊗m2n of mn qubits. Define the n-qubit
Pauli operators

Pij :=


−XiZi+1 · · ·Zj−1Xj i < j,

Zi i = j,

−YjZj+1 · · ·Zi−1Yi i > j,

(12)

where Zi := I⊗(i−1)
2 ⊗ Z ⊗ I⊗(n−i)

2 (similarly for Xi, Yi). The Hamiltonian

H :=
∑

(u,v)∈E

∑
i,j∈[n]

[Cuv]ij
∑
k∈[n]

P
(u)
ik ⊗ P

(v)
jk (13)

defines our quantum relaxation of the objective f over O(n)m. The notation A(v) denotes the operator A acting only
on the Hilbert space of vertex v, and we overload this notation to indicate either the n-qubit operator or mn-qubit
operator acting trivially on the remaining vertices. When the context is clear we typically omit writing the trivial
support.

For optimization over SO(n)m, we consider instead the (n− 1)-qubit Pauli operators

P̃ij := Π0PijΠ
T
0 , (14)

Π0 =
1√
2

Ä
〈+| ⊗ I⊗(n−1)

2 + 〈−| ⊗ Z⊗(n−1)
ä
, (15)
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FIG. 1. A cartoon description of the quantum and classical encodings of an LNCG problem, followed by classical and quantum
rounding. (Left) The description of the problem that we consider, which is described by a graph ([m], E) and n × n matrices
Cuv for each edge (u, v). We wish to assign elements of O(n) or SO(n) to each vertex such that the quadratic form of Eq. (11)
is maximized. (Center top) The description of the standard classical relaxation of the LNCG problem as an mn ×mn PSD
matrix M � 0, which is optimized using a semidefinite program. (Right top) The classical rounding procedure, which returns a
collection of orthogonal matrices from M . (Center bottom) A description of our quantum formulation of the LNCG problem as
a two-body interacting Hamiltonian. On each vertex we place a d-dimensional Hilbert space, and the Hamiltonian corresponds
to interaction terms Huv on the edges (L(H) is the set of linear operators on a Hilbert space H). The classical solution of the
LNCG problem lies in a subset of the full Hilbert space containing separable Gaussian states. (Right bottom) Our proposed
quantum rounding protocols. One protocol requires knowledge of the two-body reduced density matrices across edges, while
the other uses the one-body reduced density matrices on each vertex.

where Π0 : H2n → H2n−1 represents the projection onto the even-parity subspace of H2n . The construction of the
relaxed Hamiltonian for SO(n) is then analogous to Eq. (13):

H̃ :=
∑
u,v∈E

∑
i,j∈[n]

[Cuv]ij
∑
k∈[n]

P̃
(u)
ik ⊗ P̃

(v)
jk , (16)

where now the relaxed quantum problem is defined over m(n− 1) qubits.
These Hamiltonians serve as relaxations to Problem (2) in the following sense. First, we show that for every

R ∈ O(n), there is an n-qubit state |φ(R)〉 which is the maximum eigenstate of

F (R) =
∑
i,j∈[n]

RijPij . (17)

In particular, F (R) is a free-fermion Hamiltonian, so |φ(R)〉 is a fermionic Gaussian state. If R ∈ SO(n), then
furthermore |φ(R)〉 is an even-parity state, i.e., 〈φ(R)|Z⊗n|φ(R)〉 = 1, so it is only supported on a subspace of
dimension 2n−1 (the image of Π0). This correspondence establishes a reformulation of the classical optimization
problem as a constrained Hamiltonian problem:

max
R∈Gm

f(R) = max
|ψ〉=

⊗
v∈[m] |φ(Rv)〉
Rv∈G

〈ψ|H|ψ〉. (18)

Dropping these constraints on |ψ〉 implies the inequalities

max
R∈O(n)m

f(R) ≤ max
ρ∈D(H⊗m

2n
)
tr(Hρ), (19)

max
R∈SO(n)m

f(R) ≤ max
ρ∈D(H⊗m

2n−1 )
tr(H̃ρ), (20)

where D(H) denotes the set of density operators on a Hilbert space H. This establishes the quantum Hamiltonian
relaxation.



8

Algorithm 1: convG-based rounding of edge marginals

Data: Quantum state ρ ∈ D(H⊗m
d ) over a graph of m vertices, each with local Hilbert space of dimension d = 2n if

G = O(n), or d = 2n−1 if G = SO(n)
Result: Orthogonal matrices on each vertex, R1, . . . , Rm ∈ G
M← Imn ;
for u 6= v ∈ [m] do

for (i, j) ∈ [n]2 do
if G = O(n) then

[Muv]ij ← 1
n

tr(Γ
(u,v)
ij ρ) ;

else if G = SO(n) then

[Muv]ij ← 1
n

tr(Γ̃
(u,v)
ij ρ) ;

end

end

end
for v ∈ [m] do

Rv ← arg minY ∈G ‖Y −M1v‖F ;
end

Algorithm 2: Rounding vertex marginals

Data: Quantum state ρ ∈ D(H⊗m
d ) over a graph of m vertices, each with local Hilbert space of dimension d = 2n if

G = O(n), or d = 2n−1 if G = SO(n)
Result: Orthogonal matrices on each vertex, R1, . . . , Rm ∈ G
for v ∈ [m] do

Qv ← 0 ∈ Rn×n ;

for (i, j) ∈ [n]2 do
if G = O(n) then

[Qv]ij ← tr(P
(v)
ij ρ) ;

else if G = SO(n) then

[Qv]ij ← tr(P̃
(v)
ij ρ) ;

end

end

end
for v ∈ [m] do

Rv ← arg minY ∈G ‖Y −Qv‖F ;
end

B. Quantum rounding

In order to recover orthogonal matrices from a relaxed quantum solution ρ, we propose two rounding procedures,
summarized in Algorithms 1 and 2. These rounding procedures operate on local (i.e., single- or two-vertex observables)
expectation values of ρ stored in classical memory, which can be efficiently estimated, e.g., by partial state tomography.

Algorithm 1 is inspired by constructing a quantum analogue of the PSD variable appearing in semidefinite relax-
ations to Problem (2). Consider the mn×mn matrix of expectation values

M :=


In T12 · · · T1m

T21 In · · · T2m

...
...

. . .
...

Tm1 Tm2 · · · In

 , (21)
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where the off-diagonal blocks are defined as

Tuv :=
1

n

tr(Γ
(u,v)
11 ρ) · · · tr(Γ

(u,v)
1n ρ)

...
. . .

...

tr(Γ
(u,v)
n1 ρ) · · · tr(Γ

(u,v)
nn ρ)

 = TT
vu, (22)

Γ
(u,v)
ij :=

∑
k∈[n]

P
(u)
ik ⊗ P

(v)
jk (23)

when G = O(n), and we replace the operators Pij with P̃ij when G = SO(n). We show thatM satisfies the following
properties for all states ρ:

M� 0, (24)

Muv ∈ convG ∀u, v ∈ [m], (25)

where convG is the convex hull of G. Thus when G = SO(n), M obeys the same constraints as the conv SO(n)-
based semidefinite relaxation proposed by Saunderson et al. [21]. However, whereas the classical representation of the
conv SO(n) constraints requires at least matrices of size 2n−1 × 2n−1 for each edge, our quantum state automatically
satisfies these constraints (using only n− 1 qubits per vertex).

Algorithm 2 uses the single-vertex information tr(P
(v)
ij ρ) of ρ, as opposed to the two-vertex information tr(Γ

(u,v)
ij ρ).

We consider this rounding procedure due to the fact that, if ρ is a pure Gaussian state satisfying the constraint of
Eq. (18), then the matrix of expectation values

Qv :=

tr(P
(v)
11 ρ) · · · tr(P

(v)
1n ρ)

...
. . .

...

tr(P
(v)
n1 ρ) · · · tr(P

(v)
nn ρ)

 (26)

lies in O(n). On the other hand, for arbitrary density matrices we have the relaxation Qv ∈ conv O(n), and again

when we replace P
(v)
ij with P̃

(v)
ij then Qv ∈ conv SO(n).

Both rounding procedures use the standard projection of the matrices X ∈ convG (e.g., the matrices Tuv or Qv
measured from the quantum state) to some R ∈ G by finding the nearest (special) orthogonal matrix according to
Frobenius-norm distance:

R = arg min
Y ∈G

‖X − Y ‖F . (27)

This can be solved efficiently as a classical postprocessing step, essentially by computing the singular value decom-
position of X = UΣV T. When G = O(n), the solution is R = UV T. When G = SO(n), we instead use the so-called

special singular value decomposition of X = U Σ̃Ṽ T, where Σ̃ = ΣJ and Ṽ = V J , with J being the diagonal matrix

J =

ï
In−1 0

0 det(UV T)

ò
, (28)

assuming that the singular values σi(X) are in descending order, σ1(X) ≥ · · · ≥ σn(X). Then the solution to Eq. (27)

is R = UṼ T ∈ SO(n).

V. QUANTUM FORMALISM FOR OPTIMIZATION OVER ORTHOGONAL MATRICES

Our key insight into encoding orthogonal matrices into quantum states comes from the construction of the orthogonal
group from a Clifford algebra. We review this mathematical construction in Appendix A and only discuss the main
aspects here. The Clifford algebra Cl(n) is a 2n-dimensional real vector space equipped with an inner product and
multiplication operation satisfying the anticommutation relation

eiej + ejei = −2δij11, (29)

where e1, . . . , en is an orthonormal basis for Rn and 11 is the multiplicative identity of the algebra. The orthogonal
group is then realized through a quadratic map Q : Cl(n)→ Rn×n and the identification of a subgroup Pin(n) ⊂ Cl(n)
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such that Q(Pin(n)) = O(n). Notably, the elements of Pin(n) have unit norm (with respect to the inner product
on Cl(n)). The special orthogonal group, meanwhile, is constructed by considering only the even-parity elements of
Cl(n), denoted by Cl0(n). The group Spin(n) = Pin(n) ∩ Cl0(n) then yields Q(Spin(n)) = SO(n).

Because the Clifford algebra Cl(n) is a 2n-dimensional vector space, we observe that it can be identified with a
Hilbert space of n qubits.5 In this section we explore this connection in detail, showing how to represent orthogonal
matrices as quantum states and how the mapping Q acts as a linear functional on those states.

A. Qubit representation of the Clifford algebra

First we describe the canonical isomorphism between Cl(n) and H2n := (R2)⊗n as Hilbert spaces. We denote the
standard basis of Cl(n) by {eI := ei1 · · · eik | I = {i1, . . . , ik} ⊆ [n]}. By convention we assume that the elements
of I are ordered as i1 < · · · < ik. Each basis element eI maps onto to a computational basis state |b〉, where
b = b1 · · · bn ∈ {0, 1}n, via the correspondence

eI ≡
⊗
i∈[n]

|bi〉, where bi =

®
1 if i ∈ I,
0 otherwise.

(30)

The inner products on both spaces coincide since this associates one orthonormal basis to another. This correspondence
also naturally equates the grade |I| of the Clifford algebra with the Hamming weight |b| of the qubits. The notion of
parity, |I|mod 2 = |b|mod 2, is therefore preserved, so Cl0(n) corresponds to the subspace of H2n with even Hamming
weight.

To represent the multiplication of algebra elements in this Hilbert space, we use the fact that left- and right-
multiplication are linear automorphisms on Cl(n), which are denoted by

λx(y) = xy, ρx(y) = yx. (31)

The action of the algebra can therefore be represented on H2n as linear operators. We shall use the matrix represen-
tation provided in Ref. [24], as it precisely coincides with the n-qubit computational basis described above. Because
of linearity, it suffices to specify left- and right-multiplication by the generators ei, which are the operators

λi ≡ Z⊗(i−1) ⊗ (−iY )⊗ I⊗(n−i)
2 , (32)

ρi ≡ I⊗(i−1)
2 ⊗ (−iY )⊗ Z⊗(n−i). (33)

It will also be useful to write down the parity automorphism α(eI) = (−1)|I|eI under this matrix representation. As
the notion of parity is equivalent between Cl(n) and H2n , α is simply the n-qubit parity operator,

α ≡ Z⊗n. (34)

It will also be useful to represent the subspace Cl0(n) explicitly as an (n− 1)-qubit Hilbert space. This is achieved
by the projection from Cl(n) to Cl0(n), expressed in Ref. [24] as the 2n−1 × 2n matrix

Π0 :=
1√
2

Ä
〈+| ⊗ I⊗(n−1)

2 + 〈−| ⊗ Z⊗(n−1)
ä
. (35)

It is straightforward to check that Π0|b〉 = 0 if |b|mod 2 = 1, and that its image is a 2n−1-dimensional Hilbert space.

B. The quadratic mapping as quantum expectation values

The quadratic map Q : Cl(n)→ Rn×n is defined as

Q(x)(v) := πRn(α(x)vx) ∀x ∈ Cl(n), v ∈ Rn, (36)

where πRn is the projector from Cl(n) to Rn and the conjugation operation is eI = (−1)|I|eik · · · ei1 . This map
associates Clifford algebra elements with orthogonal matrices via the relations Q(Pin(n)) = O(n) and Q(Spin(n)) =

5 In fact, n rebits suffice since Cl(n) is a real vector space, but to keep the presentation straightforward we will not make such a distinction.
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SO(n) (see Appendix A for a review of the construction). In the standard basis of Rn, the linear map Q(x) : Rn → Rn
has the matrix elements

[Q(x)]ij = 〈ei, Q(x)(ej)〉
= 〈ei, α(x)ejx〉.

(37)

Using the linear maps λi, ρj of left- and right-multiplication by ei, ej , as well as the conjugation identity 〈x, yz〉 =
〈xz, y〉 in the Clifford algebra, these matrix elements of Q(x) can be rearranged as

[Q(x)]ij = 〈ei, α(x)ejx〉
= 〈eix, α(x)ej〉
= 〈λi(x), ρj(α(x))〉

= 〈x, λ†i (ρj(α(x)))〉.

(38)

We now transfer this expression to the quantum representation developed above. First, define the following n-qubit
Pauli operators as the composition of the linear maps appearing in Eq. (38):

Pij := λ†iρjα =


−I⊗(i−1)

2 ⊗X ⊗ Z⊗(j−i−1) ⊗X ⊗ I⊗(n−j)
2 i < j,

I⊗(i−1)
2 ⊗ Z ⊗ I⊗(n−i)

2 i = j,

−I⊗(j−1)
2 ⊗ Y ⊗ Z⊗(i−j−1) ⊗ Y ⊗ I⊗(n−i)

2 i > j,

(39)

where the expressions in terms of Pauli matrices follow from Eqs. (32) to (34). Then we may rewrite Eq. (38) as

[Q(x)]ij = 〈x|Pij |x〉, (40)

where |x〉 ∈ H2n is the quantum state identified with x ∈ Cl(n). Hence, the matrix elements of Q(x) ∈ Rn×n possess
the interpretation as expectation values of a collection of n2 Pauli observables {Pij}i,j∈[n]. Furthermore, recall that

Q(x) ∈ O(n) if and only if x ∈ Pin(n), andQ(x) ∈ SO(n) if and only if x ∈ Spin(n). Because Spin(n) = Pin(n)∩Cl0(n),
one can work in the even-parity sector directly by projecting the operators as

P̃ij := Π0PijΠ
T
0 . (41)

These are (n− 1)-qubit Pauli operators, and we provide explicit expressions in Appendix C. When necessary, we may

specify another map Q̃ : Cl0(n)→ Rn×n,

[Q̃(x)]ij := 〈x|P̃ij |x〉, (42)

for which Q̃(Spin(n)) = SO(n).
In general, these double covers are only a subset of the unit sphere in Hd (d = 2n or 2n−1), so not all quantum

states mapped by Q yield orthogonal matrices. In Section V C we characterize the elements of Pin(n) and Spin(n) as
a class of well-studied quantum states, namely, pure fermionic Gaussian states.

C. Fermionic representation of the construction

1. Notation

First we establish some notation. A system of n fermionic modes, described by the creation operators a†1, . . . , a
†
n,

can be equivalently represented by the 2n Majorana operators

γi = ai + a†i , (43)

γ̃i = −i(ai − a†i ), (44)

for all i ∈ [n]. These operators form a representation for the Clifford algebra Cl(2n), as they satisfy6

γiγj + γjγi = γ̃iγ̃j + γ̃j γ̃i = 2δij11, (45)

γiγ̃j + γ̃jγi = 0. (46)

6 Note that we adopt the physicist’s convention here, which takes the generators to be Hermitian, as opposed to Eq. (A1) wherein they
square to −11.
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The Jordan–Wigner mapping allows us to identify this fermionic system with an n-qubit system via the relations

γi = Z⊗(i−1) ⊗X ⊗ I⊗(n−i)
2 , (47)

γ̃i = Z⊗(i−1) ⊗ Y ⊗ I⊗(n−i)
2 . (48)

We will work with the two representations interchangeably.
A central tool for describing noninteracting fermions is the Bogoliubov transformation γ 7→ Oγ, where O ∈ O(2n)

and

γ :=
[
γ̃1 · · · γ̃n γ1 · · · γn

]T
. (49)

This transformation is achieved by fermionic Gaussian unitaries, which are equivalent to matchgate circuits on qubits
under the Jordan–Wigner mapping [53–55]. In particular, we will make use of a subgroup of such unitaries corre-
sponding to O(n) × O(n) ⊂ O(2n). For any U, V ∈ O(n), let U(U,V ) be the fermionic Gaussian unitary with the
adjoint action

U(U,V )γ̃iU†(U,V ) =
∑
j∈[n]

Uij γ̃j , (50)

U(U,V )γiU†(U,V ) =
∑
j∈[n]

Vijγj . (51)

In contrast to arbitrary O(2n) transformations, these unitaries do not mix between the γ- and γ̃-type Majorana
operators.

2. Linear optimization as free-fermion models

Applying the representation of Majorana operators under the Jordan–Wigner transformation, Eqs. (47) and (48),

to the Clifford algebra automorphisms, Eqs. (32) to (34), we see that λ†i = iγ̃i and ρjα = γj . Therefore the Pauli
operators Pij defining the quadratic map Q are equivalent to fermionic one-body operators,

Pij = iγ̃iγj . (52)

Consider now a linear objective function `(X) := 〈C,X〉 for some fixed C ∈ Rn×n, which we wish to optimize over
O(n):

max
X∈O(n)

`(X) = max
X∈O(n)

〈C,X〉. (53)

Because we require X ∈ O(n), it is equivalent to search over all x ∈ Pin(n) through Q:

max
X∈O(n)

〈C,X〉 = max
x∈Pin(n)

〈C,Q(x)〉. (54)

Writing out the matrix elements explicitly, we see that the objective takes the form

`(X) =
∑
i,j∈[n]

Cij [Q(x)]ij

=
∑
i,j∈[n]

Cij〈x|Pij |x〉

= 〈x|F (C)|x〉,

(55)

where we have defined the noninteracting fermionic Hamiltonian

F (C) :=
∑
i,j∈[n]

CijPij = i
∑
i,j∈[n]

Cij γ̃iγj . (56)

The linear optimization problem is therefore equivalent to solving a free-fermion model,

max
X∈O(n)

〈C,X〉 = max
x∈Pin(n)

〈x|F (C)|x〉, (57)
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the eigenvectors of which are fermionic Gaussian states. As such, this problem can be solved efficiently by a classical
algorithm. In fact, the known classical algorithm for solving the optimization problem is exactly the same as that
used for diagonalizing F (C).

We now review the standard method to diagonalize F (C). Consider the singular value decomposition of C = UΣV T,
which is computable in time O(n3). This decomposition immediately reveals the diagonal form of the Hamiltonian:

F (C) = i
∑
i,j∈[n]

[UΣV T]ij γ̃iγj

= i
∑
k∈[n]

σk(C)

Ñ∑
i∈[n]

[UT]kiγ̃i

éÑ∑
j∈[n]

[V T]kjγj

é
= U†(U,V )

Ñ∑
k∈[n]

σk(C)iγ̃kγk

é
U(U,V ).

(58)

Because iγ̃kγk = Zk, it follows that the eigenvectors of F (C) are the fermionic Gaussian states

|φb〉 = U†(U,V )|b〉, b ∈ {0, 1}n, (59)

with eigenvalues

Eb =
∑
k∈[n]

(−1)bkσk(C). (60)

The maximum energy is E0n = tr Σ since all singular values are nonnegative. The corresponding eigenstate |φ0n〉
is the maximizer of Eq. (57), so it corresponds to an element φ0n ∈ Pin(n). It is straightforward to see this by
recognizing that [Q(φ0n)]ij = 〈φ0n |iγ̃iγj |φ0n〉 = [UV T]ij . The fact that Q(φ0n) ∈ O(n) if and only if φ0n ∈ Pin(n)
concludes the argument.

Indeed, the standard classical algorithm [56] for solving Eq. (53) uses precisely the same decomposition. From the
cyclic property of the trace and the fact that O(n) is a group, we have

max
X∈O(n)

〈UΣV T, X〉 = max
X′∈O(n)

〈Σ, X ′〉, (61)

where we have employed the change of variables X ′ := UTXV . Again, because Σ has only nonnegative entries,
〈Σ, X ′〉 achieves its maximum, tr Σ, when X ′ = In. This implies that the optimal solution is X = UV T. Note that
this problem is equivalent to minimizing the Frobenius-norm distance, since

arg min
X∈O(n)

‖C −X‖2F = arg min
X∈O(n)

(
‖C‖2F + ‖X‖2F − 2〈C,X〉

)
= arg max

X∈O(n)

〈C,X〉.
(62)

Now suppose we wish to optimize ` over SO(n). In this setting, one instead computes X = UṼ T from the special

singular value decomposition of C = U Σ̃Ṽ T. This ensures that det(X) = 1 while maximizing `(X), as only the
smallest singular value σn(C) has its sign potentially flipped to guarantee the positive determinant constraint. This
sign flip also has a direct analogue within the free-fermion perspective. Recall that the determinant of Q(x) ∈ O(n)
is given by the parity of x ∈ Pin(n), or equivalently the parity of the state |x〉 in the computational basis. Note
also that all fermionic states are eigenstates of the parity operator. To optimize over SO(n), we therefore seek the
maximal eigenstate |φb〉 of F (C) which has even parity. If 〈φ0n |Z⊗n|φ0n〉 = 1 then we are done. On the other hand, if
〈φ0n |Z⊗n|φ0n〉 = −1 then we need to flip only a single bit in 0n to reach an even-parity state. The smallest change in
energy by such a flip is achieved from changing the occupation of the mode corresponding to the smallest singular value
of C. The resulting eigenstate |φ0n−11〉 is then the even-parity state with the largest energy, E0n−11 = tr Σ− 2σn(C).

Finally, we point out that all elements of Pin(n) are free-fermion states. To see this, observe that C is arbitrary.
We can therefore construct the family of Hamiltonians {F (C) | C ∈ O(n)}. Clearly, the maximum 〈C,X〉 = n
within this family is achieved when X = C, each of which corresponds to a fermionic Gaussian state |φ〉 satisfying
F (C)|φ〉 = n|φ〉 and Q(φ) = C. We note that this argument generalizes the mathematical one presented in Ref. [24],
which only considered the eigenvectors lying in Spin(n).
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3. Mixed states and the convex hull

First we review descriptions of the convex hull of orthogonal and rotation matrices, the latter of which was charac-
terized by Saunderson et al. [24]. The convex hull of O(n) is the set of all matrices with operator norm bounded by
1,

conv O(n) =
{
X ∈ Rn×n | σ1(X) ≤ 1

}
. (63)

On the other hand, the convex hull of SO(n) has a more complicated description in terms of special singular values:

conv SO(n) =

X ∈ Rn×n
∣∣∣∣∣ ∑
i∈[n]\I

σ̃i(X)−
∑
i∈I

σ̃i(X) ≤ n− 2 ∀I ⊆ [n], |I| odd

. (64)

Saunderson et al. [24] establish that this convex body is a spectrahedron, the feasible region of a semidefinite program.
The representation that we will be interested in is called a PSD lift:

conv SO(n) =


〈P̃11, ρ〉 · · · 〈P̃1n, ρ〉

...
. . .

...

〈P̃n1, ρ〉 · · · 〈P̃nn, ρ〉

 ∣∣∣∣∣ ρ � 0, tr ρ = 1

, (65)

where the 2n−1 × 2n−1 matrices P̃ij are defined in Eq. (41).7

Recall that the density operators on a Hilbert space H form the convex hull of its pure states:

D(H) := conv{|ψ〉〈ψ| | |ψ〉 ∈ H, 〈ψ|ψ〉 = 1} = {ρ ∈ L(H) | ρ � 0, tr ρ = 1}. (66)

From Eq. (65) one immediately recognizes that the PSD lift of conv SO(n) corresponds to D(H2n−1), where we
recognize that H2n−1

∼= Cl0(n). Furthermore, the projection of the lift is achieved through the convexification of the
map Q : Cl(n)→ Rn×n, where the fact that Q is quadratic in Cl(n) translates to being linear in D(Cl(n)). Specifically,
by a slight abuse of notation we shall extend the definition of Q to act on density operators as

Q(ρ) =
∑
µ

pµQ(xµ), where ρ =
∑
µ

pµ|xµ〉〈xµ|. (67)

Then Eq. (65) is the statement that Q(D(Cl0(n))) = conv SO(n).
In Appendix B 1 we show that this statement straightforwardly generalizes for Q(D(Cl(n))) = conv O(n). We prove

this using the fermionic representation developed in Section V C 2, and furthermore use these techniques to provide
an alternative derivation for the PSD lift of conv SO(n). The core of our argument is showing that the singular-value
conditions of Eqs. (63) and (64) translate into bounds on the largest eigenvalue of corresponding n-qubit observables:

σi(X) = tr(iγ̃iγiρ) ≤ 1, (68)∑
i∈[n]\I

σ̃i(X)−
∑
i∈I

σ̃i(X) = tr

ρ0

Ñ ∑
i∈[n]\I

iγ̃iγi −
∑
i∈I

iγ̃iγi

é ≤ n− 2, (69)

where ρ ∈ D(Cl(n)) and ρ0 ∈ D(Cl0(n)). The physical interpretation here is that not all pure quantum states map
onto to orthogonal or rotation matrices (which is clear from the fact that fermionic Gaussian states are only a subset
of quantum states). However, all density operators do map onto to their convex hulls, and the distinction between
conv O(n) and conv SO(n) can be automatically specified by restricting the support of ρ to the even-parity subspace.

VI. QUANTUM RELAXATION FOR THE QUADRATIC PROBLEM

We now arrive at the primary problem of interest in this work, the little noncommutative Grothendieck problem
over the (special) orthogonal group. While the linear problem of Eq. (53) can be solved classically in polynomial

7 Technically, Saunderson et al. [24] use the definition P̃ij = −Π0λiρjΠT
0 because they employ the standard adjoint representation, which

differs from our use of the twisted adjoint representation which includes the parity automorphism α. However since α(x) = x for all

x ∈ Cl0(n), both definitions of P̃ij coincide.
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time, quadratic programs are considerably more difficult. Here, we use the quantum formalism of the Pin and Spin
groups developed above to construct a quantum relaxation of this problem. Then in Section VII we describe rounding
procedures to recover a collection of orthogonal matrices from the quantum solution to this relaxation.

Recall the description of the input to Problem (2). Let (V,E) be a graph, and associate to each edge (u, v) ∈ E a
matrix Cuv ∈ Rn×n. We label the vertices as V = [m]. We wish to maximize the objective

f(R1, . . . , Rm) =
∑

(u,v)∈E

〈Cuv, RuRT
v 〉. (70)

over (R1, . . . , Rm) ∈ O(n)m. First, expand this expression in terms of matrix elements:∑
(u,v)∈E

〈Cuv, RuRT
v 〉 =

∑
(u,v)∈E

∑
i,j∈[n]

[Cuv]ij
∑
k∈[n]

[Ru]ik[RT
v ]kj . (71)

From the quadratic mapping Q : Cl(n)→ Rn×n, we know that for each R ∈ G there exists some φ ∈ Pin(n) such that
Rij = 〈φ|Pij |φ〉. Hence we can express the matrix product as

[Ru]ik[RT
v ]kj = 〈φu|Pik|φu〉〈φv|Pjk|φv〉

= 〈φu ⊗ φv|Pik ⊗ Pjk|φu ⊗ φv〉,
(72)

which is now the expectation value of a 2n-qubit Pauli operator with respect to a product state of two Gaussian states
|φu〉, |φv〉. To extend this over the entire graph, we define a Hilbert space of m registers of n qubits each. For each
edge (u, v) ∈ E we introduce the Hamiltonian terms

Huv :=
∑
i,j∈[n]

[Cuv]ijΓ
(u,v)
ij , (73)

where

Γ
(u,v)
ij :=

Ñ∑
k∈[n]

P
(u)
ik ⊗ P

(v)
jk

é ⊗
w∈V \{u,v}

I(w)
2n . (74)

To simplify notation, we shall omit the trivial support
⊗

w∈V \{u,v} I
(w)
2n when the context is clear.

The problem is now reformulated as optimizing the mn-qubit Hamiltonian

H :=
∑

(u,v)∈E

Huv =
∑

(u,v)∈E

∑
i,j∈[n]

[Cuv]ij
∑
k∈[n]

P
(u)
ik ⊗ P

(v)
jk . (75)

The exact LNCG problem over O(n) then corresponds to

max
R∈Gm

f(R) = max
|ψ〉∈H⊗m

2n

〈ψ|H|ψ〉 subject to


〈ψ|ψ〉 = 1,

|ψ〉 =
⊗

v∈[m] |φv〉,
|φv〉 = U(Rv,In)|0n〉, Rv ∈ O(n) ∀v ∈ [m].

(76)

The hardness of this problem is therefore related to finding the optimal separable state for local Hamiltonians, which
is NP-hard in general [57–59]. Dropping these constraints on the state provides a relaxation of the problem, since

max
|ψ〉∈H⊗m

2n
,

〈ψ|ψ〉=1

〈ψ|H|ψ〉 ≥ max
R∈Gm

f(R). (77)

We point out here that the Hamiltonian terms Huv can be interpreted as two-body fermionic interactions. Note that
there is an important distinction between two-body fermionic operators (Clifford-algebra products of four Majorana
operators) and two-body qudit operators (tensor products of two qudit Pauli operators). Recall that Pij = iγ̃iγj

is one-body in the fermionic sense. While the operators P
(u)
ik ⊗ P

(v)
jk appear to mix both notions, here they in fact

coincide. To see this, we consider a global algebra of Majorana operators {γi+(v−1)n, γ̃i+(v−1)n | i ∈ [n], v ∈ [m]}



16

acting on a Hilbert space of mn fermionic modes. While it is not true that the local single-mode Majorana operators
map onto the global single-mode operators, i.e.,

γ
(v)
i

⊗
w∈V \{v}

I(w)
2n 6= γi+(v−1)n, (78)

the local two-mode Majorana operators in fact do correspond to global two-mode operators:

γ̃
(v)
i γ

(v)
j

⊗
w∈V \{v}

I(w)
2n = γ̃i+(v−1)nγj+(v−1)n. (79)

Thus, taking the tensor product of two local two-mode Majorana operators on different vertices is equivalent to taking
the product of two global two-mode Majorana operators:

γ̃
(u)
i γ

(u)
j ⊗ γ̃(v)

k γ
(v)
l

⊗
w∈V \{u,v}

I(w)
2n = γ̃i+(u−1)nγj+(u−1)nγ̃k+(v−1)nγl+(v−1)n. (80)

Therefore Eq. (75) can be equivalently expressed as a Hamiltonian with two-body fermionic interactions.
Finally, when we wish to optimize over (R1, . . . , Rm) ∈ SO(n)m, it is straightforward to see that we can simply

replace the terms Pij with P̃ij . Defining

Γ̃
(u,v)
ij :=

Ñ∑
k∈[n]

P̃
(u)
ik ⊗ P̃

(v)
jk

é ⊗
w∈V \{u,v}

I(w)
2n−1 , (81)

H̃uv :=
∑
i,j∈[n]

[Cuv]ijΓ̃
(u,v)
ij , (82)

the quantum relaxation for the SO(n) problem is given by the m(n− 1)-qubit Hamiltonian

H̃ :=
∑

(u,v)∈E

H̃uv. (83)

VII. ROUNDING ALGORITHMS

Optimizing the energy of a local Hamiltonian is a well-studied problem, both from the perspective of quantum
and classical algorithms. In this section we will assume that such an algorithm has been used to produce the state
ρ ∈ D(H⊗md ) which (approximately) maximizes the energy tr(Hρ). We wish to round this state into the feasible space,
namely the set of product states of Gaussian states. We do so by rounding the expectation values of ρ appropriately,
such that we return some valid approximation R1, . . . , Rm ∈ G. In this section we propose two approaches to perform
this quantum rounding.

The first uses insight from the fact that our quantum relaxation is equivalent to a classical semidefinite relaxation
with additional constraints based on the convex hull of the orthogonal group. This is approach is particularly
advantageous when optimizing over SO(n), as conv SO(n) has a matrix representation exponential in n (its PSD
lift). To build the semidefinite variable from the quantum state, we require measurements of the expectation values

of the two-vertex operators Γ
(u,v)
ij =

∑
k∈[n] P

(u)
ik ⊗ P

(v)
jk for each pair of vertices (u, v). We refer this procedure

as conv SO(n)-based rounding.8 Our second rounding protocol uses the expectation values of P
(v)
ij of each vertex v

directly. In this case, rather than expectation values of two-vertex operators as before, we only require the information
of single-vertex marginals ρv := tr¬v(ρ). Therefore we call this approach vertex-marginal rounding.

If ρ is produced by a deterministic classical algorithm, then the relevant expectation values can be exactly computed
(to machine precision). However if the state is produced by a randomized algorithm, or is otherwise prepared by a
quantum computer, then we can only estimate the expectation values to within statistical error by some form of
sampling. In the quantum setting, this can be achieved either by partial state tomography [60, 61] or a more
sophisticated measurement protocol [62].9 See Appendix H for further comments on this quantum measurement
aspect. The rounding algorithms then operate entirely as classical postprocessing after estimating the necessary
expectation values.

8 This rounding can also be applied to the optimization problem over O(n) as well, but we are particularly interested in the conv SO(n)
constraints due to their exponentially large classical representation.

9 For the present discussion we do not consider the effects of finite sampling, although we expect that rounding is fairly robust to such
errors since it will always return a solution in the feasible space.



17

A. Approximation ratio for rounding the classical SDP

Before describing our quantum rounding protocols, we first review classical relaxations and rounding procedures
for Problem (2). The standard semidefinite relaxation can be expressed as the SDP

max
M∈Rmn×mn

〈C,M〉 subject to

®
M � 0,

Mvv = In ∀v ∈ [m],
(84)

where C ∈ Rmn×mn is the matrix with n × n blocks Cuv. If an additional nonconvex constraint rank(M) = n is
imposed, then the solution would be exact:

M = RRT =


In R1R

T
2 · · · R1R

T
m

R2R
T
1 In · · · R2R

T
m

...
...

. . .
...

RmR
T
1 RmR

T
2 · · · In

 . (85)

Problem (84) is there a relaxation of the original problem. However, the solution M ∈ Rmn×mn is still PSD, so it can
be decomposed as M = XXT, where

X =

X1

...
Xm

 , Xv ∈ Rn×mn. (86)

The rounding algorithm of Bandeira et al. [16] then computes, for each v ∈ [m],

Ov = P(XvZ) := arg min
Y ∈O(n)

‖Y −XvZ‖F , (87)

where Z is an mn× n Gaussian random matrix whose entries are drawn i.i.d. from N (0, 1/n). When optimizing over
G = O(n), this rounded solution guarantees (in expectation) an approximation ratio of

α2
O(n) = E

 1

n

∑
i∈[n]

σi(Z1)

2

, (88)

where Z1 is a random n× n matrix with i.i.d. entries from N (0, 1/n).
In Appendix E we extend the argument used to obtain this result for the optimization problem over G = SO(n),

and we show a corresponding approximation ratio of

α2
SO(n) = E

 1

n

∑
i∈[n−1]

σi(Z1)

2

(89)

where the only change to the rounding algorithm is that we project to the nearest SO(n) element via P̃, which is
defined as

P̃(X) := arg min
Y ∈SO(n)

‖Y −X‖F . (90)

Note that singular values are nonnegative, and in particular we show that E[σn(Z1)] > 0 for all finite n. Hence it
follows that α2

SO(n) < α2
O(n), which provides evidence for the claim that solving for rotations is generally a more

difficult problem (see Ref. [23, Section 4.3] for a brief discussion). For small values of n, the numerical values of these
approximation ratios are (computed using Mathematica):

α2
O(2) ≈ 0.6564, α2

SO(2) ≈ 0.3927, (91)

α2
O(3) ≈ 0.6704, α2

SO(3) ≈ 0.5476, (92)

α2
O(4) ≈ 0.6795, α2

SO(4) ≈ 0.6096. (93)
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In Appendix E we provide an integral expression for αSO(n) which can be evaluated for arbitrary n.
For the problem over SO(n), Saunderson et al. [21] propose augmenting this SDP by adding the constraints that

each block of M lies in conv SO(n):

max
M∈Rmn×mn

〈C,M〉 subject to


M � 0,

Mvv = In ∀v ∈ [m],

Muv ∈ conv SO(n) ∀u, v ∈ [m].

(94)

Although they do not prove approximation guarantees for this enhanced SDP, they first show that, if one reintroduces
the rank constraint on M , then the convex constraint Muv ∈ conv SO(n) in fact suffices to guarantee the much
stronger condition Muv ∈ SO(n). Then, when dropping the rank constraint (but leaving the conv SO(n) constraint)
they show that the relaxed problem is still exact over certain types of graphs, such as tree graphs. Finally, they provide
numerical evidence that even when the relaxation is not exact, it returns substantially more accurate approximations
than the standard SDP (84).

B. Quantum Gram matrix

Analogous to the classical SDP solution M , we can form a matrix M ∈ Rmn×mn from the expectation values of ρ
as

M :=


In T12 · · · T1m

T21 In · · · T2m

...
...

. . .
...

Tm1 Tm2 · · · In

 , (95)

where

Tuv :=
1

n

tr(Γ
(u,v)
11 ρ) · · · tr(Γ

(u,v)
1n ρ)

...
. . .

...

tr(Γ
(u,v)
n1 ρ) · · · tr(Γ

(u,v)
nn ρ)

 (96)

and Tvu = TT
uv for u < v. Just as 〈C,M〉 gives the relaxed objective value (up to rescaling and constant shifts),

here we have that 〈C,M〉 = 2
n tr(Hρ) + tr(C). In Appendix B we show that for any quantum state, M satisfies the

following properties: 
M� 0,

Mvv = In ∀v ∈ [m],

Muv ∈ conv O(n) ∀u, v ∈ [m].

(97)

Furthermore, we show that when ρ is supported only on the even subspace of each single-vertex Hilbert space (or

equivalently, if we replace Γ
(u,v)
ij with Γ̃

(u,v)
ij in Eq. (96)), then

1

n

tr(Γ̃
(u,v)
11 ρ) · · · tr(Γ̃

(u,v)
1n ρ)

...
. . .

...

tr(Γ̃
(u,v)
n1 ρ) · · · tr(Γ̃

(u,v)
nn ρ)

 ∈ conv SO(n) ∀ρ ∈ D(H⊗m2n−1). (98)

Therefore when optimizing the relaxed Hamiltonian H̃ for the SO(n) setting, we are guaranteed to automatically
satisfy the conv SO(n) constraints.

C. conv SO(n)-based rounding

Given the construction of the M from quantum expectation values, we proceed to round the Gram matrix as in
the classical SDP with conv SO(n) constraints [21]. This consists of computing the matrices

Rv = P̃(M1v), (99)
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where the projection to SO(n) can be efficiently computed from the special singular value decomposition, i.e.,

P̃(X) = UṼ T (100)

(recall Eq. (28)). Our choice of rounding using the first n×mn “row” ofM amounts to fixing R1 = In. We note that

the same rounding procedure can naturally be applied to the O(n) setting as well, replacing P̃ with P.

D. Vertex-marginal rounding

The single-vertex marginals are obtained by tracing out the qudits associated to all but one vertex v ∈ [m],

ρv = tr¬v(ρ). (101)

As ρv ∈ D(H⊗md ), from Section V C 3 we have that Q(ρv) ∈ convG, where we linearly extend the definition of Q to

Q(ρv) :=

tr(P
(v)
11 ρ) · · · tr(P

(v)
1n ρ)

...
. . .

...

tr(P
(v)
n1 ρ) · · · tr(P

(v)
nn ρ)

 . (102)

The rounding scheme we propose here then projects Q(ρv) to G using either P or P̃:

Rv = arg min
Y ∈G

‖Y −Q(ρv)‖F . (103)

We point out that the relaxed Hamiltonian only has two-vertex terms which we seek to maximize. In Appendix F
we show that H commutes with U⊗m(In,V ) for all V ∈ O(n), which we further show implies that H may possess

eigenstates whose single-vertex marginals obey Q(σv) = 0. This indicates that there may exist eigenstates of H whose
single-vertex marginals yield no information, despite the fact that their two-vertex marginals are nontrivial. In our
numerical studies, we observe that breaking this symmetry resolves this issue. We accomplish this by including small
perturbative one-body terms which correspond to the trace of Q(σv):

H1 =
∑
v∈[m]

∑
i∈[n]

P
(v)
ii , (104)

Note that this trace quantity is importantly invariant with respect to the choice of basis for Rn. We then augment
the objective Hamiltonian with H1, defining

H ′(ζ) := H + ζH1 (105)

where ζ > 0 is a small regularizing parameter. While this one-body perturbation does not correspond to any
terms in the original quadratic objective function, any arbitrarily small ζ > 0 suffices to break the O(n) symmetry.
Furthermore, the rounding procedure always guarantees that the solution is projected back into the feasible space

Gm. When G = SO(n) we define H̃ ′(ζ) analogously.

VIII. NUMERICAL EXPERIMENTS

To explore the potential of our quantum relaxation and rounding procedures, we performed numerical experiments
on randomly generated instances of the group synchronization problem. Because the Hilbert-space dimension grows
exponentially in both m and n, our classical simulations here are limited to small problem sizes. However, optimizing
over rotations in R3 (requiring only two qubits per vertex) is highly relevant to many practical applications, so
here we focus on the problem of SO(3) group synchronization. For example, this problem appears in the context of
cryo-EM as described in Section III A. To model the problem, we generated random instances by selecting random
three-regular graphs ([m], E), uniformly randomly sampling m rotations g1, . . . , gm ∈ SO(n), and then constructing
Cuv = gug

T
v +σWuv for each (u, v) ∈ E, where the Gaussian noise matrix Wuv ∈ Rn×n has i.i.d. elements drawn from

N (0, 1) and σ ≥ 0 represents the strength (standard deviation) of this noise.
While the classical conv SO(n)-based SDP is not guaranteed to find the optimal solution, the problems studied

here were selected for such that this enhanced SDP in fact does solve the exact problem. We verify this property



20

4 6 8 10
Number of vertices m

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Ap

pr
ox

im
at

io
n 

ra
tio

Quantum (CR)
Quantum (VR)
Classical SDP

10 3.3 10 2.8 10 2.3 10 1.8 10 1.3 10 0.8 10 0.3

Noise strength 

0.2

0.4

0.6

0.8

1.0

Ap
pr

ox
im

at
io

n 
ra

tio

Quantum (CR)
Quantum (VR)
Classical SDP

FIG. 2. Approximation ratios for solutions obtained from rounding the maximum eigenvector of the relaxed Hamiltonian

H̃. Violin plots show the distribution of approximation ratios over 50 randomly generated instance, and with the median
being indicated by the center marker. CR refers to rounding according to the conv SO(n)-based scheme (Section VII C), while
VR denotes the vertex-marginal rounding scheme (Section VII D). The classical SDP solution was rounded by the standard
randomized algorithm [16], and we report the best solution over 1000 rounding trials. (Left) Varying the number of vertices
m in the graph (random 3-regular graphs). Note that the number of qubits required here is 2m. (Right) Varying the noise
strength parameter σ which defines the problem via Cuv = gug

T
v + σWuv.

by confirming that rank(M) = n before rounding on each problem instance. In this way we are able to calculate an
approximation ratio for the other methods (as it is not clear how to solve for the globally optimal solution in general,
even with an exponential-time classical algorithm). The methods compared here include our quantum relaxation with
conv SO(n)-based rounding (denoted CR), vertex-marginal rounding (VR), and the classical SDP (without conv SO(n)

constraints but using the P̃ projection to guarantee that the rounded solutions are elements of SO(n)). When using

the vertex-rounding method, we employ H̃ ′(ζ) as the objective Hamiltonian with ζ = 10−6.

A. Exact eigenvectors

First, we consider the solution obtained by rounding the maximum eigenvector of H̃. Although the hardness of
preparing such a state is equivalent that of the ground-state problem, this nonetheless provides us with a benchmark
for the ultimate approximation quality of our quantum relaxation. In Figure 2 we plot the approximation ratio of the
rounded quantum states and compare to that of the classical SDP on the same problem instances. Each violin plot
was constructed from the results of 50 random instances.

The results here demonstrate that, while the approximation quality of the classical SDP quickly falls off with larger
graph sizes, our rounded quantum solutions maintain high approximation ratios, at least for the problem sizes probed
here. Notably, the conv SO(n)-based rounding on the quantum state is significantly more powerful and consistent
than the vertex-marginal rounding. This feature is not unexpected since, as discussed in Section VII D, we are
maximizing an objective Hamiltonian with only two-body terms, whereas the single-vertex rounding uses strictly
one-body expectation values. Furthermore, as demonstrated in previous works [21, 25] the conv SO(n) constraints are
powerful in practice, and so we expect that the quantum rounding protocol which makes use of this structure enjoys
the same advantages.

Meanwhile, when varying the noise parameter σ, we observe that all methods are fairly consistent. In particular, the
conv SO(n)-based rounding only shows an appreciable decrease in approximation quality when the noise is considerable
(note that σ = 0.5 ≈ 10−0.3 is a relatively large amount of noise, since gug

T
v is an orthogonal matrix and therefore

has matrix elements bounded in magnitude by 1).
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FIG. 3. Demonstration of a typical instance of adiabatic state preparation for preparing relaxed quantum solutions. The initial
state is the product of Gaussian states corresponding to the rounded solution of the classical SDP. As the total evolution time T
increases, the evolution becomes more adiabatic, indicated by the convergence of the relaxed value to the maximum eigenvalue
(in units of the original problem’s optimal value). The rounded solutions of course can never exceed the original problem’s
optimal value.

B. Quasi-adiabatic state preparation

Because it may be unrealistic to prepare the maximum eigenvector of H̃, here we consider preparing states using
ideas from adiabatic quantum computation [63]. Specifically, we wish to demonstrate that states whose relaxed
energy may be far from the maximum eigenvalue can still provide high-quality approximations after rounding. If

this is the case then we do not need to prepare very close approximations to the maximum eigenstate of H̃, so the
rigorous conditions of adiabatic state preparation may not be required in this context. Hence we consider “quasi-
adiabatic” state preparation, wherein we explore how time-evolution speeds far from the adiabatic limit may still
return high-quality approximations. Our numerical experiments here provide a preliminary investigation into this
conjecture.

For simplicity of the demonstration, we consider a linear annealing schedule according to the time-dependent
Hamiltonian

H(t) =

Å
1− t

T

ã
Hi +

t

T
Hf , (106)

which prepares the state

|ψ(T )〉 = T exp

Ç
−i

∫ T

0

dtH(t)

å
|ψ(0)〉 (107)

for some T > 0, where T is the time-ordering operator. The final Hamiltonian Hf is the desired objective LNCG
Hamiltonian,

Hf = H̃. (108)

The initial Hamiltonian Hi is the parent Hamiltonian of the initial state, which we choose to be the approximation
obtained from the classical SDP, as it can be obtained classically in polynomial time. Let R1, . . . , Rm ∈ SO(n) be the
SDP solution. Our initial state is then the product of Gaussian states

|ψ(0)〉 =
⊗
v∈[m]

|φ(Rv)〉, (109)

where each |φ(Rv)〉 is the maximum eigenvector of the free-fermion Hamiltonian

F (Rv) = i
∑
i,j∈[n]

[Rv]ij γ̃iγj . (110)
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FIG. 4. Approximation ratios for solutions obtained from rounding the “adiabatically” evolved state |ψ(T )〉 with fixed T = 1
for all m,σ. Problem instances and visualization is the same as in Figure 2. We also include the maximum eigenvalue of
the relaxed Hamiltonian and the energy of the prepared unrounded state, to demonstrate how far |ψ(T )〉 is from the exact
maximum eigenvector. (Left) Varying the number of vertices m in the graph. Note that the number of qubits required here is
2m. (Right) Varying the noise strength parameter σ.

Therefore the initial Hamiltonian Hi is a sum of such free-fermion Hamiltonians (here we include the even-subspace
projection since we are working with SO(n)):

Hi =
∑
v∈[m]

Π0F (Rv)Π
T
0 . (111)

As a Gaussian state, |φ(Rv)〉 can be prepared exactly from a quantum circuit of O(n2) gates [64]. Note that since we
are working directly in the even subspace of n − 1 qubits here, this n-qubit circuit must be projected appropriately
using Π0. We discuss how to perform this circuit recompilation in Appendix C. We comment that this choice of
initial state is that of a mean-field state for non-number-preserving fermionic systems, for instance as obtained from
Hartree–Fock–Bogoliubov theory. Suitably, the final Hamiltonian we evolve into is non-number-preserving two-body
fermionic Hamiltonian.

In adiabatic state preparation, the total evolution time T controls how close the final state |ψ(T )〉 is to the max-
imum eigenstate10 of the final Hamiltonian Hf . One metric of closeness is how the energy of the prepared state,
〈ψ(T )|Hf |ψ(T )〉, compares to the maximum eigenvalue of Hf . On the other hand, as a relaxation, this maximum
energy is already larger than the optimal objective value of the original problem. We showcase this in Figure 3, using
one random problem instance as a demonstrative (typical) example on a graph of m = 6 vertices (12 qubits). For
each total evolution time point T , we computed |ψ(T )〉 by numerically integrating the time-dependent Schrödinger
equation, and we plot its relaxed energy as well as its rounded objective values. For large T we approach the maximum

eigenstate of H̃ as expected (thereby also demonstrating that the initial “mean-field” state |ψ(0)〉 has appreciable
overlap). Particularly interesting is the behavior for relatively small total evolution times T , wherein the energy of
|ψ(T )〉 is far from the maximum eigenenergy. Despite this, the approximation quality after rounding the state using
M is nearly exact around T ≈ 1. On the other hand, the approximation quality of vertex-marginal rounding is highly
inconsistent, which again we attribute to the fact that the single-vertex information is not directly seen by the final
Hamiltonian Hf .

Then in Figure 4 we plot the same 50 problem instances (per graph size/noise level) as in Figure 2, but using the
quasi-adibatically prepared state |ψ(T )〉 where we have fixed T = 1 for all graph sizes. The classical SDP results are
the same as in Figure 4, and for reference we include the energy of the unrounded quantum state and the maximum
eigenvalue of the relaxed Hamiltonian (normalized with respect to the optimal objective value). Qualitatively, we
observe features similar to those seen in Figure 3. Namely, although the annealing schedule is too fast to prepare a close

10 We remind the reader that we are starting in the maximum eigenstate of the initial Hamiltonian, whereas in the physics literature,
adiabatic theorems are typically stated in terms of ground states. Of course, the two perspectives are equivalent by simply an overall
sign change (note that all Hamiltonians here are traceless).
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approximation to the maximum eigenstate, the rounded solutions (using the conv SO(n)-based protocol) consistently
have high approximation ratios. Meanwhile, the vertex-rounded solutions are highly inconsistent, which reflects the
highly fluctuating behavior seen in Figure 3.

IX. DISCUSSION AND FUTURE WORK

In this paper we have developed a quantum relaxation for a quadratic program over orthogonal and rotation ma-
trices, known as an instance of the little noncommutative Grothendieck problem. The embedding of the classical
objective is achieved by recognizing an intimate connection between the geometric-algebra construction of the orthog-
onal group and the structure of quantum mechanics, in particular the formalism of fermions in second quantization.
From this perspective, the determinant condition of SO(n) is succinctly captured by a simple linear property of the
state—its parity—and the convex bodies conv O(n) and conv SO(n) (relevant to convex relaxations of optimization
over orthogonal matrices) are completely characterized by density operators on n and n− 1 qubits, respectively. Rec-
ognizing that the reduced state on each vertex therefore corresponds to an element of this convex hull, we proposed
vertex-marginal rounding which classically rounds the measured one-body reduced density matrix of each vertex.

We additionally showed that these convex hulls are characterized by density operators on 2n and 2(n− 1) qubits as
well, where the linear functionals defining this PSD lift are the Hamiltonian terms appearing in our quantum relaxation.
This insight enables our second proposed rounding scheme, convG-based edge rounding, which is inspired by the fact
that the a quantum Gram matrix M can be constructed from the expectation values of the quantum state which
obeys the same properties as the classical SDP of Saunderson et al. [21]. Numerically we observe that this approach
to quantum rounding is significantly more accurate and consistent than vertex rounding, and it consistently achieves
larger approximation ratios than the basic SDP relaxation. However, we are severely limited by the exponential
scaling of classically simulating quantum states; further investigations would be valuable to ascertain the empirical
performance of these ideas at larger scales.

The primary goal of this work was to formulate the problem of orthogonal-matrix optimization into a familiar quan-
tum Hamiltonian problem, and to establish the notion of a quantum relaxation for such optimization problems over
continuous-valued decision variables. A clear next step is to prove nontrivial approximation ratios from our quantum
relaxation. If such approximation ratios exceed known guarantees by classical algorithms, for example on certain
types of graphs, then this would potentially provide a quantum advantage for a class of applications not previously
considered in the quantum literature. We have proposed one standard, realistically preparable class of states—quasi-
adiabatic time evolution—but a variety of energy-optimizing ansatze exist in the literature, especially considering
that the constructed Hamiltonian is an interacting-fermion model. From this perspective, it would also be interesting
to see if a classical many-body method can produce states which round down to high-quality approximations, even
heuristically. Such an approach would constitute a potential example of a quantum-inspired classical algorithm.

From a broader perspective, the quantum formalism described here may also provide new insights into the compu-
tational hardness of the classical problem. First, the NP-hard thresholds for Problem (2) are not currently known.
However, by establishing the classical problem as an instance of Gaussian product state optimization on the many-
body Hamiltonian, it may be possible to import tools from quantum computational complexity to study the classical
problem. This idea also applies to the more general instances of noncommutative Grothendieck problems,

max
U,V ∈O(N)

∑
i,j,k,l∈[N ]

TijklUijVkl, (112)

where the N ×N ×N ×N tensor T specifies the problem input. It is straightforward apply our quantum relaxation
construction to this problem, yielding a 2N -qubit Hamiltonian whose terms are of the form Pij ⊗Pkl. While Briët et
al. [17] showed that the NP-hardness threshold of approximating this problem is 1/2, it remains an open problem to
construct an algorithm which is guaranteed to achieve this approximation ratio.

Although we have provided new approximation ratios for the instance of Problem (2) over SO(n), it is unclear
precisely how much harder the SO(n) problem is compared to the O(n) problem. The work by Saunderson et al. [24]
establishes a clear distinction between the representation sizes required for conv O(n) and conv SO(n), and this paper
has connected this structure to properties of quantum states on n qubits. However this does not yet establish a
difference of hardness for the corresponding quadratic programs. Again it would be interesting to see if the tools of
quantum information theory can be used to further understand this classical problem. For example, one might study
the NP-hardness threshold of Problem (112) where instead U, V ∈ SO(N) and leverage the quantum (or equivalently,
Clifford-algebraic) representation of SO(N). In such a setting, the size of the problem is given by a single parameter
N and so the exponentially large parametrization of conv SO(N) appears to signify a central difficulty of this problem.

We note that it is straightforward to extend our quantum relaxation to the unitary groups U(n) and SU(n),
essentially by doubling the number of qubits per vertex via the inclusions U(n) ⊂ O(2n) and SU(n) ⊂ SO(2n).
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However this is likely an inefficient embedding, since the n-qubit Majorana operators already form a representation
of Cl(2n). It may therefore be possible to encode complex-valued matrices via a complexification of Q, using the
same amount of quantum space. It is interesting to note that Briët et al. [17] in fact utilize a “complex extension” of
Clifford algebras when considering Problem (112) over the unitary group, although the usage is different from ours.

ACKNOWLEDGMENTS

The authors thank Ryan Babbush, Bill Huggins, Robin Kothari, Jarrod McClean, Chaithanya Rayudu, and Jun
Takahashi for helpful discussions and feedback on the manuscript. AZ thanks Akimasa Miyake for support.

[1] R. P. Feynman, Simulating physics with computers, International Journal of Theoretical Physics 21, 467 (1982).
[2] S. Lloyd, Universal quantum simulators, Science 273, 1073 (1996).
[3] P. Shor, Algorithms for quantum computation: discrete logarithms and factoring, in Proceedings 35th Annual Symposium

on Foundations of Computer Science (1994) pp. 124–134.
[4] L. K. Grover, A fast quantum mechanical algorithm for database search, in Proceedings of the Twenty-Eighth Annual ACM

Symposium on Theory of Computing , STOC ’96 (Association for Computing Machinery, New York, NY, USA, 1996) p.
212–219.

[5] R. Babbush, J. R. McClean, M. Newman, C. Gidney, S. Boixo, and H. Neven, Focus beyond quadratic speedups for
error-corrected quantum advantage, PRX Quantum 2, 010103 (2021).

[6] J. R. McClean, M. P. Harrigan, M. Mohseni, N. C. Rubin, Z. Jiang, S. Boixo, V. N. Smelyanskiy, R. Babbush, and
H. Neven, Low-depth mechanisms for quantum optimization, PRX Quantum 2, 030312 (2021).

[7] Y. Shkolnisky and A. Singer, Viewing direction estimation in cryo-EM using synchronization, SIAM Journal on Imaging
Sciences 5, 1088 (2012).

[8] A. Singer, Mathematics for cryo-electron microscopy, in Proceedings of the International Congress of Mathematicians: Rio
de Janeiro 2018 (World Scientific, 2018) pp. 3995–4014.

[9] M. Cucuringu, A. Singer, and D. Cowburn, Eigenvector synchronization, graph rigidity and the molecule problem, Infor-
mation and Inference: A Journal of the IMA 1, 21 (2012).

[10] M. Arie-Nachimson, S. Z. Kovalsky, I. Kemelmacher-Shlizerman, A. Singer, and R. Basri, Global motion estimation
from point matches, in 2012 Second International Conference on 3D Imaging, Modeling, Processing, Visualization &
Transmission (IEEE, 2012) pp. 81–88.
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Appendix A: Clifford algebras and the orthogonal group

In this appendix we review the key components for constructing the orthogonal and special orthogonal groups from
a Clifford algebra. Our presentation of this material broadly follows Refs. [24, 65].

The Clifford algebra Cl(n) of Rn is a 2n-dimensional real vector space, equipped with an inner product 〈·, ·〉 :
Cl(n)× Cl(n)→ R and a multiplication operation satisfying the anticommutation relation

eiej + ejei = −2δij11, (A1)

where {e1, . . . , en} is an orthonormal basis of Rn and 11 is the multiplicative identity of the algebra. The basis elements
ei are called the generators of the Clifford algebra, in the sense that they generate all other basis vectors of Cl(n) as

eI := ei1 · · · eik , I = {i1, . . . , ik} ⊆ [n]. (A2)

By convention we order the indices i1 < · · · < ik, and the empty set corresponds to the identity, e∅ = 11. Taking
all subsets I ⊆ [n] and extending the inner product definition from Rn to Cl(n), it follows that {eI | I ⊆ [n]} is an
orthonormal basis with 2n elements. Specifically, we can write any element x ∈ Cl(n) as

x =
∑
I⊆[n]

xIeI (A3)

with each xI ∈ R, and the inner product on Cl(n) is11

〈x, y〉 =
∑
I⊆[n]

xIyI , (A4)

11 Equipping an inner product to the vector representation of Cl(n) elements is achieved using the fact that algebra elements square to a
multiple of the identity.
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where y =
∑
I⊆[n] yIeI . Hence Cl(n) is isomorphic as a Hilbert space to R2n

.

Now we show how to realize the orthogonal group O(n) from this algebra. First observe the inclusion Rn = span{ei |
i ∈ [n]} ⊂ Cl(n). We shall identify the sphere Sn−1 ⊂ Rn as all u ∈ Rn satisfying 〈u, u〉 = 1. We then define the Pin
group as all possible products of Sn−1 elements:

Pin(n) := {u1 · · ·uk | u1, . . . , uk ∈ Sn−1, 0 ≤ k ≤ n}. (A5)

It is straightforward to check that this is indeed a group. Each x ∈ Pin(n) is also normalized, 〈x, x〉 = 1. In fact, an
equivalent definition of this group is all elements x ∈ Cl(n) satisfying xx = 11, where conjugation x is defined from
the linear extension of

eI := (−1)|I|eik · · · ei1 . (A6)

The Pin group is a double cover of O(n), which can be seen from defining a quadratic map Q : Cl(n)→ Rn×n. This
map arises from the so-called twisted adjoint action, introduced by Atiyah et al. [65]:12

v 7→ α(x)vx, x, v ∈ Cl(n), (A7)

where the linear map α : Cl(n)→ Cl(n) is the parity automorphism, defined by linearly extending

α(eI) := (−1)|I|eI . (A8)

Then for any x ∈ Cl(n), the linear map Q(x) : Rn → Rn is defined as

Q(x)(v) := πRn(α(x)vx) ∀v ∈ Rn, (A9)

where πRn is the projection from Cl(n) onto Rn. To show that Q(Pin(n)) = O(n), it suffices to recognize that, for
any u ∈ Sn−1, α(u)vu ∈ Rn is the reflection of the vector v ∈ Rn across the hyperplane normal to u. To see this, first
observe that uv + vu = −2〈u, v〉11, which follows from Eq. (A1) by linearity. Then

α(u)vu = uvu

= (−vu− 2〈u, v〉11)u

= v − 2〈u, v〉u,
(A10)

which is precisely the elementary reflection as claimed. By the Cartan–Dieudonné theorem, one can implement any
orthogonal transformation on Rn by composing k ≤ n such reflections about arbitrary hyperplanes u1, . . . , uk [66]. This
characterization coincides precisely with the definition of the Pin group provided in Eq. (A5), through the composition
of the linear maps Q(u1), . . . , Q(uk) on Rn. Hence for all x ∈ Pin(n), Q(x) is an orthogonal transformation on Rn.
The double cover property follows from the fact that Q is quadratic in x, so Q(x) = Q(−x).

The special orthogonal group arises from the subgroup Spin(n) ⊂ Pin(n) containing only even-parity Clifford
elements. First observe that Cl(n) is a Z2-graded algebra:

Cl(n) = Cl0(n)⊕ Cl1(n), (A11)

where

Cl0(n) := span{eI | |I| even}, (A12)

Cl1(n) := span{eI | |I| odd}. (A13)

By a Z2 grading we mean that for each x ∈ Cla(n) and y ∈ Clb(n), their product xy lies in Cla+bmod 2(n). We say
that elements in Cl0(n) (resp., Cl1(n)) have even (resp., odd) parity. In particular, this grading implies that Cl0(n)
is a subalgebra, hence its intersection with the Pin group is also a group, which defines

Spin(n) := Pin(n) ∩ Cl0(n) = {u1 · · ·u2k | u1, . . . , u2k ∈ Sn−1, 0 ≤ k ≤ bn/2c}. (A14)

Just as the Pin group double covers O(n), so does the Spin group double cover SO(n). This is again a consequence
of the Cartan–Dieudonné theorem, wherein all rotations on Rn can be decomposed into an even number of (at most
n) arbitrary reflections.

12 Saunderson et al. [24] consider the standard adjoint action, which is sufficient for describing rotations. However, the “twist” due to α
is necessary to construct arbitrary orthogonal transformations.
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Appendix B: Convex hull of orthogonal matrices and quantum states

Recall the following characterizations of the convex hulls:

conv O(n) =
{
X ∈ Rn×n | σ1(X) ≤ 1

}
(B1)

conv SO(n) =

X ∈ Rn×n
∣∣∣∣∣ ∑
i∈[n]\I

σ̃i(X)−
∑
i∈I

σ̃i(X) ≤ n− 2 ∀I ⊆ [n], |I| odd

, (B2)

where {σi(X)}i∈[n] and {σ̃i(X}i∈[n] are the singular values and special singular values of X in descending order,
respectively. Note that σi(X) = σ̃i(X) for all i ≤ n− 1 and σn(X) = sign(det(X))σn(X).

1. PSD lift of conv O(n) and conv SO(n)

In this section we show that Q(D(Cl(n))) = conv O(n) and Q(D(Cl0(n))) = conv SO(n), using the quantum
formalism described in Section V.

First we show that for all X ∈ conv O(n), there exists some ρ ∈ D(H2n) which generates X, essentially by the
convex extension of Q. Every X ∈ conv O(n) can be expressed as a convex combination (

∑
µ pµ = 1, pµ ≥ 0) of

orthogonal matrices Rµ ∈ O(n):

X =
∑
µ

pµRµ. (B3)

For each Rµ there exists some xµ ∈ Pin(n) such that [Rµ]ij = 〈xµ|Pij |xµ〉. Therefore the matrix elements of X can
be expressed as

Xij = tr

(
Pij
∑
µ

pµ|xµ〉〈xµ|

)
= tr(Pijρ), (B4)

where ρ :=
∑
µ pµ|xµ〉〈xµ| ∈ D(H2n).

Next we show the reverse direction, that for all ρ ∈ D(H2n), the matrix X := [tr(Pijρ)]i,j∈[n] is an element of
conv O(n). Recall that X ∈ conv O(n) if and only if σ1(X) ≤ 1. Therefore we take the singular value decomposition
of X = UΣV T and, using Pij = iγ̃iγj , each singular value is equal to

σk(X) = [UTXV ]kk

=
∑
i,j∈[n]

Uik tr(iγ̃iγjρ)Vjk

= tr(iU†(U,In)γ̃kU(U,In)U†(In,V )γkU(In,V )ρ)

= tr(iγ̃kγkρ
′),

(B5)

where ρ′ := U(U,V )ρU†(U,V ). Because iγ̃kγk has eigenvalues ±1, we see that σk(X) ≤ 1 for all k ∈ [n].

For the restriction to conv SO(n), the first argument is essentially the same. One merely replaces Pij with P̃ij , hence∑
µ pµ|xµ〉〈xµ| ∈ D(H2n−1). For the reverse direction, we instead employ the special singular value decomposition

which yields

σ̃k(X) = tr(iγ̃kγkρ
′), (B6)

where now ρ′ := U(U,Ṽ )ρU
†
(U,Ṽ )

∈ D(H2n−1). Note that we have not projected to the even subspace this time, as it is

more convenient to work in the full n-qubit space when handling the Gaussian unitaries. Instead, we will impose the
constraint that ρ only has support on the even-parity subspace, so tr(Z⊗nρ) = 1. Furthermore, because the special

singular value decomposition guarantees that det(U) det(Ṽ ) = 1, U(U,Ṽ ) is parity preserving so that tr(Z⊗nρ′) = 1 as

well. Now recall that X ∈ conv SO(n) if and only if∑
k∈[n]\I

σ̃k(X)−
∑
k∈I

σ̃k(X) ≤ n− 2 (B7)



29

for all subsets I ⊆ [n] of odd size. By linearity,

∑
k∈[n]\I

σ̃k(X)−
∑
k∈I

σ̃k(X) = tr

Ñ
ρ′
∑
k∈[n]

(−1)zkZk

é
, (B8)

where z = z1 · · · zn ∈ {0, 1}n is defined as zk = 1 if k ∈ I and zk = 0 otherwise, and we have used the fact that
iγ̃kγk = Zk. It therefore suffices to examine the spectrum of Az :=

∑
k∈[n](−1)zkZk:

Az|b〉 =

Ñ∑
k∈[n]

(−1)[z⊕b]k

é
|b〉, b ∈ {0, 1}n, (B9)

where ⊕ denotes addition modulo 2. As we are only interested in the subspace spanned by even-parity states, we
restrict attention to the eigenvalues for which |b|mod 2 = 0. Because |I| is odd, so too is |z|, hence |z ⊕ b|mod 2 = 1.
This implies that there must be at least one term in the sum of Eq. (B9) which is negative, so it can only take integer
values at most n− 2. This establishes Eq. (B7), hence X ∈ conv SO(n).

2. Relation to conv SO(n)-based semidefinite relaxation

Here we provide details for our claim that the relaxed quantum solution obeys the same constraints as the classical
SDP which uses the exponentially large representation of conv SO(n). Recall that this relaxation can be formulated
as

max
M∈Rmn×mn

∑
(u,v)∈E

〈Cuv,Muv〉 subject to


M � 0,

Mvv = In ∀v ∈ [m],

Muv ∈ conv SO(n) ∀u, v ∈ [m].

(B10)

We will show that the Gram matrix M constructed from the measurements of a quantum state ρ, defined in Sec-
tion VII B as

[Muv]ij =


δij u = v,
1
n tr(Γ

(u,v)
ij ρ) u < v,

[Mvu]ji u > v,

(B11)

obeys the constraints of Eq. (B10). Specifically, when the marginals of ρ on each vertex are even-parity states (recall

this is equivalent to replacing Γij with Γ̃ij), we obtain the conv SO(n) condition, whereas when the parity of ρ is not
fixed then Muv ∈ conv O(n).

First, we show that M is positive semidefinite for all quantum states.

Lemma B.1. Let M∈ Rmn×mn be defined as in Eq. (B11). For all ρ ∈ D(H⊗m2n ), M� 0.

Proof. We prove the statement by a sum-of-squares argument. To see where the fact of 1/n appears in the quantum
definition of M above, we first construct a matrix M′ � 0 which turns out to simply be M′ = nM.

For each k ∈ [n] define the Hermitian operator

Ak =
∑
v∈V

∑
i∈[n]

c
(v)
i P

(v)
ik , (B12)

where c
(v)
i ∈ R are arbitrary coefficients. Consider its square,

A2
k =

Ñ∑
v∈V

∑
i∈[n]

c
(v)
i P

(v)
ik

é2

=
∑
v∈V

∑
i,j∈[n]

c
(v)
i c

(v)
j P

(v)
ik P

(v)
jk +

∑
u,v∈V
u 6=v

∑
i,j∈[n]

c
(u)
i c

(v)
j P

(u)
ik ⊗ P

(v)
jk .

(B13)
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Note that the terms with u 6= v feature the two-vertex operators as desired, while the diagonal terms of the sum
contain products of the Pauli operators acting on the same vertex. Because Pik = iγ̃iγk, the diagonal terms reduce
to (suppressing superscripts here)∑

i,j∈[n]

cicjPikPjk = −
∑
i,j∈[n]

cicj γ̃iγkγ̃jγk

=
∑
i,j∈[n]

cicj γ̃iγ̃j

=
∑
i∈[n]

c2i I2n +
∑

1≤i<j≤n

cicj(γ̃iγ̃j + γ̃j γ̃i)

=

Ñ∑
i∈[n]

c2i

é
I2n .

(B14)

Plugging this result into Eq. (B13) and summing over all k ∈ [n], we obtain

∑
k∈[n]

A2
k =

Ñ∑
v∈V

∑
i,k∈[n]

|c(v)
i |

2

é
I2n +

∑
u,v∈V
u6=v

∑
i,j,k∈[n]

c
(u)
i c

(v)
j P

(u)
ik ⊗ P

(v)
jk

= n〈c, c〉I2n +
∑
u,v∈V
u 6=v

∑
i,j∈[n]

c
(u)
i c

(v)
j Γ

(u,v)
ij ,

(B15)

where we have collected the coefficients c
(v)
i into a vector c ∈ Rmn. Similarly, if we arrange the expectation values

tr(Γ
(u,v)
ij ρ) into a matrix T ∈ Rmn×mn (where the n× n blocks on the diagonal are 0), then the expectation value of

the sum-of-squares operator is

tr

Ñ∑
k∈[n]

A2
kρ

é
= n〈c, c〉+ 〈c, T c〉

= 〈c,M′c〉

(B16)

where we have definedM′ := nImn+T . Because
∑
k∈[n]A

2
k is a sum of PSD operators, its expectation value is always

nonnegative, hence 〈c,M′c〉 ≥ 0. This inequality holds for all vectors c ∈ Rmn, soM′ � 0 and henceM =M′/n � 0
as claimed.

The fact that the diagonal blocks Mvv = In holds by definition. Finally, we need to show that each block of
M lies in conv(SO(n)) when ρ has even parity. A straightforward corollary of this result is that the blocks lie in
conv O(n) when ρ does not have fixed parity. Note that in Section V C 3 we showed that the matrix of expectation
values tr(Pijρ1) lies in conv O(n) for any n-qubit density operator ρ1, a straightforward extension of the PSD-lift
representation of conv SO(n) presented in Ref. [24]. Here we instead show that the matrix of expectation values
1
n tr(Γijρ2) for any 2n-qubit density operator ρ2 also lies in conv O(n), and is an element of conv SO(n) when ρ2 has
support only in the even-parity sector.

Because In ∈ conv SO(n) ⊂ conv O(n), and because these convex hulls are closed under transposition, all that
remains is to prove the statement for the blocks Muv when u < v. We show this by considering all density matrices
on the reduced two-vertex Hilbert space.

Lemma B.2. Let ρ2 ∈ D(H⊗2
2n ). Define the n× n matrix T by

Tij := tr(Γijρ2) = tr

Ñ∑
k∈[n]

Pik ⊗ Pjkρ2

é
, i, j ∈ [n]. (B17)

Then T/n ∈ conv O(n). Furthermore, if tr(Z⊗2nρ2) = 1, then Muv ∈ conv SO(n).
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Proof. Consider the special singular value decomposition of T = U Σ̃Ṽ T. We can express the special singular values
as

σ̃i(T ) = [UTT Ṽ ]ii

=
∑
j,`∈[n]

UjiTj`Ṽ`i

=
∑
j,`∈[n]

UjiṼ`i
∑
k∈[n]

tr(iγ̃jγk ⊗ iγ̃`γkρ2)

=
∑
k∈[n]

tr
(
U†(U,In)iγ̃iγkU(U,In) ⊗ U†(Ṽ ,In)

iγ̃iγkU(Ṽ ,In)ρ2

)
=
∑
k∈[n]

tr(iγ̃iγk ⊗ iγ̃iγkρ
′
2),

(B18)

where ρ′2 :=
Ä
U(U,In) ⊗ U(Ṽ ,In)

ä
ρ2

Ä
U(U,In) ⊗ U(Ṽ ,In)

ä†
. The fact that T/n ∈ conv O(n) follows immediately from the

fact that the spectrum of iγ̃iγk ⊗ iγ̃iγk is {±1}:

σ1(T/n) =
1

n
|σ̃1(T )|

=
1

n

∣∣∣∣∣∣∑k∈[n]

tr(iγ̃1γk ⊗ iγ̃1γkρ
′
2)

∣∣∣∣∣∣
≤ 1

n

∑
k∈[n]

|tr(iγ̃1γk ⊗ iγ̃1γkρ
′
2)|

≤ 1.

(B19)

Now we examine the inclusion in conv SO(n). Suppose that ρ2 is an even-parity state. By virtue of the special

singular value decomposition, we have that det(UṼ T) = 1 which implies that the Gaussian unitary U(U,In) ⊗ U(Ṽ ,In)

preserves the parity of ρ2: tr(Z⊗2nρ2) = tr(Z⊗2nρ′2) = 1. For T/n to lie in conv SO(n), the following inequality from
Eq. (B2) must hold: ∑

i∈[n]\I

σ̃i(T )−
∑
i∈I

σ̃i(T ) ≤ n(n− 2) (B20)

for all subsets I ⊆ [n] of odd size. To show this, first we write the left-hand side in terms of the result derived from
Eq. (B18): ∑

i∈[n]\I

σ̃i(T )−
∑
i∈I

σ̃i(T ) =
∑

i∈[n]\I

∑
k∈[n]

tr(iγ̃iγk ⊗ iγ̃iγkρ
′
2)−

∑
i∈I

∑
k∈[n]

tr(iγ̃iγk ⊗ iγ̃iγkρ
′
2)

= tr

Ñ
ρ′2

∑
i,k∈[n]

(−1)zi iγ̃iγk ⊗ iγ̃iγk

é
,

(B21)

where the string z = z1 · · · zn ∈ {0, 1}n is defined as

zi =

®
1 i ∈ I,
0 i /∈ I.

(B22)

Note that |I| being odd implies that the Hamming weight of z is also odd. To bound Eq. (B21) we shall seek a bound
on the largest eigenvalue of the Hermitian operator

∑
i,k∈[n]

(−1)zi iγ̃iγk ⊗ iγ̃iγk =

Ñ∑
i∈[n]

(−1)zi⊕1γ̃i ⊗ γ̃i

éÑ∑
k∈[n]

γk ⊗ γk

é
=: AzB (B23)

over the space of even-parity states. Here we use ⊕ to denote addition modulo 2.
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The operator AzB can in fact be exactly diagonalized in the basis of Bell states. First, observe that [Az, B] = 0,
which follows from the fact that γ̃iγk = −γkγ̃i, hence [γ̃i ⊗ γ̃i, γk ⊗ γk] = 0 for all i, k ∈ [n]. We can therefore seek
their simultaneous eigenvectors, which can be determined from looking at the Jordan–Wigner representation of the
Majorana operators:

γ̃i ⊗ γ̃i = (Z1 · · ·Zi−1Yi)⊗ (Z1 · · ·Zi−1Yi), (B24)

γk ⊗ γk = (Z1 · · ·Zk−1Xk)⊗ (Z1 · · ·Zk−1Xk). (B25)

These operators are diagonalized by the 2n-qubit state

|β(x, y)〉 =

n⊗
j=1

|β(xj , yj)〉, (B26)

where x, y ∈ {0, 1}n, and the Bell state |β(xj , yj)〉 between the jth qubits across the two subsystems is defined as

|β(xj , yj)〉 :=
|0〉 ⊗ |yj〉+ (−1)xj |1〉 ⊗ |yj ⊕ 1〉√

2
. (B27)

Indeed there are 22n such states |β(x, y)〉, so they form an orthonormal basis for the 2n qubits. The eigenvalues of
Eqs. (B24) and (B25) can be determined by a standard computation,

(Xj ⊗Xj)|β(xj , yj)〉 = (−1)xj |β(xj , yj)〉, (B28)

(Yj ⊗ Yj)|β(xj , yj)〉 = (−1)xj⊕yj⊕1|β(xj , yj)〉, (B29)

(Zj ⊗ Zj)|β(xj , yj)〉 = (−1)yj |β(xj , yj)〉. (B30)

Taking the appropriate products furnishes the eigenvalues of the B and Az as

B|β(x, y)〉 =
∑
k∈[n]

(Z1 ⊗ Z1) · · · (Zk−1 ⊗ Zk−1)(Xk ⊗Xk)|β(x, y)〉

=
∑
k∈[n]

(−1)y1⊕···⊕yk−1(−1)xk |β(x, y)〉,
(B31)

Az|β(x, y)〉 =
∑
i∈[n]

(−1)zi⊕1(Z1 ⊗ Z1) · · · (Zk−1 ⊗ Zk−1)(Yk ⊗ Yk)|β(x, y)〉

=
∑
i∈[n]

(−1)zi⊕1(−1)y1⊕···⊕yi−1(−1)xi⊕yi⊕1|β(x, y)〉

=
∑
i∈[n]

(−1)zi(−1)y1⊕···⊕yi(−1)xi |β(x, y)〉

(B32)

Altogether we arrive at the expression for the eigenvalues of AzB,

〈β(x, y)|AzB|β(x, y)〉 =

Ñ∑
i∈[n]

(−1)zi(−1)y1⊕···⊕yi(−1)xi

éÑ∑
k∈[n]

(−1)y1⊕···⊕yk−1(−1)xk

é
. (B33)

We wish to find the largest value this can take over even-parity states. First, observe that the eigenstates |β(x, y)〉
have fixed parity according to

〈β(x, y)|Z⊗2n|β(x, y)〉 = (−1)|y|, (B34)

which follows from Eq. (B30). Hence we shall only consider y to have even Hamming weight. Additionally recall that
z has odd Hamming weight, while the Hamming weight of x is unrestricted.

Let us denote the sums in Eq. (B33) by

az(x, y) :=
∑
i∈[n]

(−1)zi(−1)y1⊕···⊕yi−1⊕yi(−1)xi , (B35)

b(x, y) :=
∑
k∈[n]

(−1)y1⊕···⊕yk−1(−1)xk . (B36)
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Clearly, they can be at most n, and this occurs whenever all the terms in their sum are positive. For b(x, y), this
is possible if and only if x = p(y), where p : {0, 1}n → {0, 1}n stores the parity information of the (k − 1)-length
substring of its input into the kth bit of its output:

[p(y)]k := y1 ⊕ · · · ⊕ yk−1. (B37)

For notation clarity we point out that [p(y)]1 = 0 and [p(y)]2 = y1. The forward direction, b(p(y), y) = n, is clear
by construction. The reverse direction, that b(x, y) = n implies x = p(y), follows from the bijectivity of modular
addition.

Plugging this value of x = p(y) into az(x, y) yields

az(p(y), y) =
∑
i∈[n]

(−1)zi(−1)yi =
∑
i∈[n]

(−1)[z⊕y]i . (B38)

Because y has even and z has odd Hamming weight, their sum y ⊕ z must have odd Hamming weight. Therefore at
least one term in Eq. (B38) must be negative, implying that az(p(y), y) ≤ n− 2. It follows that

〈β(p(y), y)|AzB|β(p(y), y)〉 = az(p(y), y)b(p(y), y) ≤ (n− 2)n. (B39)

We now show that no other assignment of (x, y) can exceed this bound. Recall that b(x, y) = n if and only if x = p(y).
Thus any other choice of x necessarily returns a smaller value of b(x, y). Because sums of ±1 cannot yield n− 1, the
next largest value would be b(x, y) = n − 2. However we can always trivially bound az(x, y) ≤ n for all x, y. This
implies that such a choice of x for which b(x, y) = n− 2 (whatever it is) also cannot provide a value of az(x, y)b(x, y)
exceeding n(n− 2).

Note that there is another assignment that saturates the upper bound, which is simply considering a global negative
sign in front of both products. Specifically, let x = p(y) ⊕ 1n. In this case b(x, y) = −n and az(x, y) ≥ −(n − 2),
yielding the same bound az(x, y)b(x, y) ≤ n(n− 2).

To conclude, we use the fact that the maximum eigenvalue of AzB in the even-parity subspace is n(n− 2) for any
odd-weight z (equiv., any odd-size I ⊆ [n]). This bounds the value of Eq. (B21) by n(n − 2), hence validating the
inequality of Eq. (B20). Thus T/n ∈ conv SO(n) whenever ρ2 has even parity.

As usual, replacing the operators Γij with Γ̃ij is equivalent to enforcing the even-parity constraint. In fact, since

Γ̃ij =
∑
k∈[n] P̃ik ⊗ P̃jk, the equivalent constraint involves the reduced single-vertex marginals, tr(Z⊗n ⊗ I2nρ2) =

tr(I2n ⊗Z⊗nρ2) = 1, rather than the entire 2n-qubit Hilbert space. Of course, if both single-vertex parity constraints
are satisfied, then the two-vertex constraint automatically follows.

Appendix C: Details for working in the even-parity subspace

First we provide an expression for n-qubit Pauli operators projected to Cl0(n). Let

A := W1 ⊗ · · · ⊗Wn, Wi ∈ {I, X, Y, Z}. (C1)

A straightforward calculation yields the conditional expression:

Ã = Π0AΠT
0 =


0 if [A,Z⊗n] 6= 0
W2 ⊗ · · · ⊗Wn if W1 = I, X
i(W2Z)⊗ · · · ⊗ (WnZ) if W1 = Y

(W2Z)⊗ · · · ⊗ (WnZ) if W1 = Z.

if [A,Z⊗n] = 0.
(C2)

Notably, if A does not commute with the parity operator then Ã = 0.
Now we generalize from the main text, defining the operator

Πk :=
1√
2

Ä
〈+| ⊗ I⊗(n−1)

2 + (−1)k〈−| ⊗ Z⊗(n−1)
ä
, k ∈ {0, 1}, (C3)

which is the projector Cl(n)→ Clk(n). These operators obey

ΠkΠT
k = I2n−1 , (C4)

ΠT
kΠk =

I2n + (−1)kZ⊗n

2
. (C5)
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Given a state ρ̃ ∈ D(H2n−1), the expectation values of P̃ij satisfy

tr(P̃ij ρ̃) = tr(PijΠ
T
0 ρ̃Π0)

= tr(Pijρ0),
(C6)

where ρ0 := ΠT
0 ρ̃Π0 ∈ D(H2n) has only support on even-parity computational basis states. By Eq. (C4) we can

“invert” this relation in the following sense: given a state ρ ∈ D(H2n) which only has support on the even subspace,
its (n− 1)-qubit representation is Π0ρΠT

0 ∈ D(H2n−1).
This translation is useful when using the fermionic interpretation of the Pij but we wish to work directly in the

(n−1)-qubit subspace. For example, suppose we wish to prepare a product of Gaussian states in a quantum computer
(as is done in Section VIII B to prepare the initial state of the quasi-adiabatic evolution). It is well known how to
compile linear-depth circuits for this task [64], however this is within the standard n-qubit representation. Here we
show how to translate those circuits into the (n − 1)-qubit representation under Π0. In fact, these techniques apply
to any sequence of gates which commute with the parity operator Z⊗n.

Let |ψ〉 := V |0n〉 ∈ H2n , where the circuit V is constructed from L gates, V = VL · · ·V1. We can assume without
loss of generality that the initial state is the vacuum |0n〉 and that all gates V` commute with the parity operator, as
otherwise |ψ〉 would not lie in the even subspace of H2n .13 For example, parity-preserving Gaussian unitaries can be
decomposed into single- and two-qubit gates of the form e−iθZi , e−iθXiXi+1 . We wish to obtain a circuit description
for preparing the state Π0|ψ〉 ∈ H2n−1 . By Eq. (C5), ΠT

0 Π0|0n〉 = |0n〉, and furthermore Π0|0n〉 = |0n−1〉 is the
(n− 1)-qubit representation of the vacuum. Therefore

Π0|ψ〉 = Π0V |0n〉
= Π0VL · · ·V1ΠT

0 Π0|0n〉
= Π0VL · · ·V1ΠT

0 |0n−1〉.
(C7)

Because Π0 is not unitary (ΠT
0 is merely an isometry), we cannot simply insert terms like ΠT

0 Π0 in between each
gate. However, observe that if each V` preserves parity, then they can be block diagonalized into the even and odd
subspaces of H2n ,

V` =

ï
V`,0 0
0 V`,1

ò
, (C8)

where V`,k := ΠkV`Π
T
k are 2n−1-dimensional unitary matrices. Thus

V =

ï
VL,0 · · ·V1,0 0

0 VL,1 · · ·V1,1

ò
, (C9)

and conjugation by the projector Π0 precisely extracts the first block of this matrix:

Π0VΠT
0 = VL,0 · · ·V1,0. (C10)

This sequence of gates is what we wish to implement on the physical (n− 1)-qubit register. When the gates V` take
the form

V` = e−iθA` (C11)

for some n-qubit Pauli operator A`, then

V`,0 = Π0V`Π
T
0

= Π0(I2n cos θ − iA` sin θ)ΠT
0

= I2n−1 cos θ − iÃ` sin θ

= e−iθÃ` ,

(C12)

where Ã` := Π0A`Π
T
0 . Note that this calculation assumes that V` commutes with parity, hence [A`, Z

⊗n] = 0, which

guarantees that Ã` is unitary and Hermitian and hences furnishes the final line of Eq. (C12). (If they did not commute
then the decomposition of Eq. (C8) would not be valid to begin with.)

13 While it is possible to have an even number of gates which anticommute with the parity operator, for simplicity we assume that the
circuit has been compiled such that each V` preserves parity.
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Appendix D: Small n examples

In this appendix we write down the Pauli operators Pij and P̃ij for small but relevant values of n, to provide the
reader with some concerte examples of how to construct the LNCG Hamiltonian.

1. The Ising model from the O(1) setting

As a warm-up we first demonstrate that the LNCG Hamiltonian reduces to the Ising formulation of the commutative
combinatorial optimization problem when considering G = O(1). Each local Hilbert space Hd with d = 2 is simply a
qubit, and we only have to consider a single Pauli operator on each local qubit,

P11 = iγ̃1γ1 = Z. (D1)

It then follows that the LNCG interaction terms are

Γ
(u,v)
11 = Z(u) ⊗ Z(v), (D2)

and so the full Hamiltonian acting on H⊗|V |2 is indeed the classical Ising Hamiltonian,

H =
∑

(u,v)∈E

CuvZ
(u) ⊗ Z(v), (D3)

with weights Cuv ∈ R. It is also instructive to write down the elements of Pin(1) as quantum states. The Clifford
algebra Cl(1) is spanned by e1 and e∅ = 11, with the only elements of S0 being ±e1. Therefore, taking all possible
products of elements in S0 (including the empty product), we arrive at

Pin(1) = {±e∅,±e1}, (D4)

which corresponds to the qubit computational basis states {|0〉, |1〉} (up to global phases), as expected. Indeed, one
sees that the mappings Q(e∅) = 〈0|Z|0〉 = 1 and Q(e1) = 〈1|Z|1〉 = −1 fully cover O(1).

2. The projected operators of the SO(3) setting

As SO(3) is arguably the most ubiquitous group for physical applications, for reference we explicitly write down its
Pauli operators under the projection to Cl0(3) ∼= H4. As seen by the dimension of this Hilbert space, only two qubits
per variable (for a total of 2m qubits) are required to represent this problem. Using Eq. (C2) we haveP̃11 P̃12 P̃13

P̃21 P̃22 P̃23

P̃31 P̃32 P̃33

 =

Z1Z2 −X1 −Z1X2

X1Z2 Z1 −X1X2

X2 −Y1Y2 Z2

 . (D5)

Appendix E: Classical approximation ratio for SO(n)

Approximation ratios for the rounded solution of the classical semidefinite relaxation of Problem (2) were obtained
in Ref. [16] for the cases G = O(n) and U(n). However, no such approximation ratios were derived for the case of
SO(n). Here we adapt the argument of Ref. [16] to this setting, wherein the rounding algorithm performs the special
singular value decomposition to guarantee that the rounded solutions have unit determinant. As we will see, this
feature results in a approximation ratio for the classical semidefinite program over SO(n) that is strictly worse than
the previously studied O(n) case.

Recall that the semidefinite relaxation of Problem (2) can be formulated as

max
X1,...,Xm∈Rn×mn

∑
(u,v)∈E

〈Cuv, XuX
T
v 〉 subject to XvX

T
v = In. (E1)

To round the relaxed solution back into the feasible space of orthogonal matrices, Ref. [16] proposes the following
randomized algorithm with a guarantee on the approximation ratio.
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Theorem E.1 ([16, Theorem 4]). Let X1, . . . , Xn ∈ Rn×mn be a solution to Problem (E1). Let Z be an mn × n
Gaussian random matrix whose entries are drawn i.i.d. from N (0, 1/n). Compute the orthogonal matrices

Qv = P(XvZ), (E2)

where P(X) = arg minY ∈O(n) ‖Y −X‖F . The expected value of this approximate solution (averaged over Z) obeys

E[f(Q1, . . . , Qm)] ≥ α2
O(n) max

R1,...,Rm∈O(n)
f(R1, . . . , Rm). (E3)

The approximation ratio α2
O(n) is defined by the average singular value of random Gaussian n × n matrices Z1 ∼

N (0, In/n),

αO(n) := E

 1

n

∑
i∈[n]

σi(Z1)

, (E4)

where σi(Z1) is the ith singular value of Z1.

Our adaptation to the SO(n) setting simply replaces the rounding operator P with P̃(X) := arg minY ∈SO(n) ‖Y −
X‖F . With this change we obtain an analogous result for optimizing over SO(n) elements with the same classical
semidefinite program:

Theorem E.2. Let X1, . . . , Xn and Z be as in Theorem E.1. Compute the rotation matrices

Qv = P̃(XvZ), (E5)

where P̃(X) = arg minY ∈SO(n) ‖Y −X‖F . The expected value of this approximate solution (averaged over Z) obeys

E[f(Q1, . . . , Qm)] ≥ α2
SO(n) max

R1,...,Rm∈SO(n)
f(R1, . . . , Rm). (E6)

The approximation ratio α2
SO(n) is defined by the average n − 1 largest singular values of random Gaussian n × n

matrices Z1 ∼ N (0, In/n),

αSO(n) := E

 1

n

∑
i∈[n−1]

σi(Z1)

, (E7)

where σi(Z1) is the ith singular value of Z1, in descending order σ1(Z1) ≥ · · · ≥ σn(Z1) ≥ 0.

Because singular values are nonnegative, it is clear that

αO(n) − αSO(n) =
1

n
E[σn(Z1)] ≥ 0. (E8)

In particular we will see that E[σn(Z1)] > 0 for all finite n, so the rounding algorithm guarantees a strictly smaller
approximation ratio for the problem over SO(n) than over O(n).

The proof of Theorem E.1 requires two lemmas regarding the expected value of random Gaussian matrices under
the rounding operator P. Analogously, our proof of Theorem E.2 requires a modification of those lemmas when P is

replaced by P̃.

Lemma E.3 (Adapted from [16, Lemma 5]). Let M,N ∈ Rn×mn obey MMT = NNT = In. For Z ∈ Rmn×n with
i.i.d. entries drawn from N (0, n−1), we have

E
î
P̃(MZ)(NZ)T

ó
= E
î
(MZ)P̃(NZ)T

ó
= αSO(n)MNT. (E9)

This lemma is proved with the help of the following lemma.

Lemma E.4 (Adapted from [16, Lemma 6]). Let Z1 ∈ Rn×n with i.i.d. entries drawn from N (0, 1/n). Then

E
î
P̃(Z1)ZT

1

ó
= E
î
Z1P̃(Z1)T

ó
= αSO(n)In. (E10)
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Before we prove these two lemmas, we will use them to prove Theorem E.2. The proof idea here is entirely analogous

to the original argument of Theorem E.1 from Ref. [16], but with the appropriate replacements of P by P̃. Nonetheless
we sketch the proof below for completeness.

Proof (of Theorem E.2). We wish to lower bound the average rounded value

E[f(Q1, . . . , Qm)] = E

 ∑
(u,v)∈E

〈Cuv, P̃(XuZ)P̃(XvZ)T〉

 (E11)

in terms of the relaxed value
∑

(u,v)∈E〈Cuv, XuX
T
v 〉. Assuming we have such a lower bound with ratio 0 < α2 ≤ 1,

this leads to a chain of inequalities establishing the desired approximation ratio to the original problem:

E

 ∑
(u,v)∈E

〈Cuv, P̃(XuZ)P̃(XvZ)T〉

 ≥ α2
∑

(u,v)∈E

〈Cuv, XuX
T
v 〉

≥ α2 max
R1,...,Rm∈O(n)

∑
(u,v)∈E

〈Cuv, RuRT
v 〉

≥ α2 max
R1,...,Rm∈SO(n)

∑
(u,v)∈E

〈Cuv, RuRT
v 〉,

(E12)

where the second inequality follows from the fact that the relaxation provides an upper bound to the original problem,
and the third inequality is a consequence of SO(n) ⊂ O(n). The task is then to determine such an α which satisfies
the first inequality of Eq. (E12). The core argument is a generalization of the Rietz method [49], which proceeds by
constructing a positive semidefinite matrix S ∈ Rmn×mn whose (u, v)th block is defined as

Suv :=
Ä
XuZ − α−1P̃(XuZ)

äÄ
XvZ − α−1P̃(XvZ)

ä
T. (E13)

The expected value of this matrix is

E[Suv] = E
î
XuZ(XvZ)T − α−1P̃(XuZ)(XvZ)T − α−1(XuZ)P̃(XvZ)T + α−2P̃(XuZ)P̃(XvZ)T

ó
= Xu E

[
ZZT

]
Xv − α−1 E

î
P̃(XuZ)(XvZ)T

ó
− α−1 E

î
(XuZ)P̃(XvZ)T

ó
+ α−2 E

î
P̃(XuZ)P̃(XvZ)T

ó
.

(E14)

Because ZZT is a Wishart matrix with covariance matrix In/n, we have E[ZZT] = In. Meanwhile, E
î
P̃(XuZ)P̃(XvZ)T

ó
is the quantity we wish to bound. To compute the expected values of the two cross terms, we invoke Lemma E.3
which holds because XuX

T
u = XvX

T
v = In:

E
î
P̃(XuZ)(XvZ)T

ó
= E
î
(XuZ)P̃(XvZ)T

ó
= αSO(n)XuX

T
v . (E15)

Thus, setting α = αSO(n), we obtain

E[Suv] = XuX
T
v −XuX

T
v −XuX

T
v + α−2

SO(n) E
î
P̃(XuZ)P̃(XvZ)T

ó
= −XuX

T
v + α−2

SO(n) E
î
P̃(XuZ)P̃(XvZ)T

ó
.

(E16)

Finally, using the fact that C, S � 0, we have that 〈C, S〉 ≥ 0 and so E〈C, S〉 ≥ 0, which implies that

E

 ∑
(u,v)∈E

〈Cuv, P̃(XuZ)P̃(XvZ)T〉

 ≥ α2
SO(n)

∑
(u,v)∈E

〈Cuv, XuX
T
v 〉. (E17)

Then by Eq. (E12) the claim follows.

We now establish the value of

αSO(n) = E

 1

n

∑
i∈[n−1]

σi(Z1)

 (E18)
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from Lemmas E.3 and E.4. Because Lemma E.3 is somewhat technical and the argument is virtually unchanged by

replacing P with P̃, we refer the reader to Ref. [16] for proof details. Instead, we simply note that the only part of

the proof for Lemma E.3 which does depend on the change to P̃ is the final result, wherein it is established that

E
î
(MZ)P̃(NZ)T

ó
= E
î
Z1P̃(Z1)T

ó
MNT, (E19)

where Z1 ∈ Rn×n has entries i.i.d. from N (0, 1/n). Thus proving Lemma E.4 is the key component in establishing
the value of the approximation ratio α2

SO(n).

Proof (of Lemma E.4). Consider the singular value decomposition of Z1 = UΣV T ∈ Rn×n. Its special singular value
decomposition can be written as Z1 = U(ΣJUV T)(V JUV T)T, where JUV T is the n× n diagonal matrix

JUV T :=

ï
In−1 0

0 detUV T

ò
. (E20)

Note that JUV T = JUJV . Using the fact that the (special) rounding operator returns

P̃(Z1) = UJUV TV T, (E21)

we have

P̃(Z1)ZT
1 = UJUJV ΣUT. (E22)

Because Z1 is a random Gaussian matrix with i.i.d. entries, its singular values and left- and right-singular vectors are
distributed independently [67]. In particular, both U and V are distributed according to the Haar measure on O(n).
The expected value of Eq. (E22) can therefore be split into three independent averages:

E
Z1∼N (0,In/n)

î
P̃(Z1)ZT

1

ó
= E

Σ∼D
E

U∼O(n)

ï
UJU E

V∼O(n)
[JV ]ΣUT

ò
. (E23)

(We shall comment on the distribution D of singular values later.) Because O(n) is evenly divided into its unconnected
(+1)- and (−1)-determinant components, the average determinant vanishes: EV∼O(n)[detV ] = 0. This leaves us with

E
î
P̃(Z1)ZT

1

ó
= E

[
UΣUT

]
, (E24)

where

Σ =


σ1(Z1)

. . .

σn−1(Z1)
0

 . (E25)

The Haar average over U ∼ O(n) in Eq. (E24) is well-known [68] to be proportional to the identity, E[UΣUT] = λIn,
and the constant of proportionality can be determined by considering its trace:

nλ = tr(λIn) = tr
(
E[UΣUT]

)
= E[tr Σ]

= E

 ∑
i∈[n−1]

σi(Z1)

. (E26)

Hence λ = αSO(n) and so

E
î
P̃(Z1)ZT

1

ó
= αSO(n)In. (E27)

The corresponding statement for E
î
Z1P̃(Z1)T

ó
follows completely analogously, essentially by interchanging the roles

of U and V . The entire argument is equivalent because U and V are i.i.d.
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To numerically evaluate αSO(n) we can use the linearity of expectation,

αSO(n) = αO(n) −
1

n
E[σn(Z1)]. (E28)

The distribution of singular values of random Gaussian matrices can be analyzed from the theory of Wishart matrices.
In particular, Z1Z

T
1 = UΣ2UT is a Wishart matrix with covariance matrix In/n, so the distribution of singular values Σ

is the square root of the Wishart distribution of eigenvalues. The quantity αO(n) in terms of the marginal distribution

p
(avg)
n (x) of Wishart eigenvalues x ∈ (0,∞) was studied in Ref. [16], yielding the expression

αO(n) =
1√
n

∫ ∞
0

p(avg)
n (x)

√
x dx. (E29)

Note the factor of n−1/2, which is introduced because the distribution p
(avg)
n (x) is normalized to have unit variance.

An explicit expression of p
(avg)
n (x) can be found in Refs. [16, Lemma 21] and [69, Eq. (16)].

For our newly derived approximation ratio αSO(n), we need to additionally evaluate the expected smallest singu-
lar value of this Wishart distribution. This minimum-eigenvalue distribution was studied in Ref. [70], wherein an
analytical expression was derived (again assuming unit variance):

p(min)
n (x) =

n

2n−1/2

Γ(n)

Γ(n/2)

e−xn/2√
x

U

Å
n− 1

2
,−1

2
,
x

2

ã
. (E30)

Here, U(a, b, z) with a > 0 and b < 1 is the Tricomi confluent hypergeometric function, the unique solution to the
differential equation

z
d2U

dz2
+ (b− z)dU

dz
− aU = 0 (E31)

with boundary conditions U(a, b, 0) = Γ(1− b)/Γ(1+a− b) and limz→∞ U(a, b, z) = 0. The expression for the average
smallest singular value is therefore

E[σn(Z1)] =
1√
n

∫ ∞
0

p(min)
n (x)

√
x dx. (E32)

Altogether, we arrive at the integral expression for

αSO(n) =
1√
n

∫ ∞
0

ï
p(avg)
n (x)− 1

n
p(min)
n (x)

ò√
x dx. (E33)

Appendix F: LNCG Hamiltonian symmetries

Here we demonstrate the local O(n) symmetry discussed in Section VII D. Consider an edge term

Huv =
∑
i,j∈[n]

[Cuv]ij
∑
k∈[n]

P
(u)
ik ⊗ P

(v)
jk . (F1)

Because Pik = iγ̃iγk and the sum over k is independent of Cuv, we can factor out each γ
(u)
k ⊗ γ(v)

k and rewrite the
Hamiltonian term as as

Huv = −
∑
i,j∈[n]

[Cuv]ij
Ä
γ̃

(u)
i ⊗ γ̃(v)

j

äÑ∑
k∈[n]

γ
(u)
k ⊗ γ(v)

k

é
. (F2)
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The operator
∑
k∈[n] γ

(u)
k ⊗ γ(v)

k is invariant to any orthogonal transformation V ∈ O(n) which acts identically on

both vertices:

U⊗2
(In,V )

Ñ∑
k∈[n]

γ
(u)
k ⊗ γ(v)

k

é
(U⊗2

(In,V ))
† =

∑
k∈[n]

Ñ∑
`∈[n]

Vk`γ
(u)
`

é
⊗

Ñ∑
`′∈[n]

Vk`′γ
(v)
`′

é
=

∑
`,`′∈[n]

Ñ∑
k∈[n]

[V T]`kVk`′

é
γ

(u)
` ⊗ γ(v)

`′

=
∑

`,`′∈[n]

δ``′γ
(u)
` ⊗ γ(v)

`′

=
∑
`∈[n]

γ
(u)
` ⊗ γ(v)

` .

(F3)

Because U(In,V ) acts trivially on all γ̃i, it follows that

U⊗2
(In,V )Huv(U⊗2

(In,V ))
† = Huv (F4)

for each (u, v). Finally, this symmetry can be straightforwardly extended to all m vertices:

U⊗m(In,V )H(U⊗m(In,V ))
† = H. (F5)

Now we investigate some consequences of this continuous symmetry. The following lemma is particularly important,
as it necessitates the use of the one-body perturbation ζH1 to break this symmetry when preparing of eigenstates of
H.

Lemma F.1. Let |ψ〉 be a nondegenerate eigenstate of H. Then for each single-vertex marginal σv := tr¬v |ψ〉〈ψ|,
v ∈ [m], we have

Q(σv) = 0. (F6)

Proof. Consider the expansion of its density matrix |ψ〉〈ψ| in the Majorana operator basis, up to the relevant one-body
expectation values:

|ψ〉〈ψ| = 1

dm

Ñ
11⊗m +

∑
v∈[m]

∑
i,j∈[n]

[Q(σv)]ij iγ̃
(v)
i γ

(v)
j + · · ·

é
, (F7)

where we recall that [Q(σv)]ij = 〈ψ|iγ̃(v)
i γ

(v)
j |ψ〉. Due to the symmetry [Eq. (F5)], for every V ∈ O(n) the state

|ψ(V )〉 = U⊗m(In,V )|ψ〉 is also an eigenvector of H with the same eigenvalue. The one-body expectation values of |ψ〉 are

therefore transformed as

U⊗m(In,V )

Ñ∑
v∈[m]

∑
i,j∈[n]

[Q(σv)]ij iγ̃
(v)
i γ

(v)
j

é
(U⊗m(In,V ))

† =
∑
v∈[m]

∑
i,j∈[n]

[Q(σv)]ij i
∑
i′∈[n]

Vii′ γ̃
(v)
i′ γ

(v)
j

=
∑
v∈[m]

∑
i′,j∈[n]

[V TQ(σv)]i′j iγ̃
(v)
i′ γ

(v)
j .

(F8)

Now suppose that |ψ〉 is nondegenerate. Then we have that |ψ〉〈ψ| = |ψ(V )〉〈ψ(V )| for all V ∈ O(n), and in particular
we can take the Haar integral over O(n) of this identity:∫

O(n)

dµ(V )|ψ(V )〉〈ψ(V )| =
∫

O(n)

dµ(V )|ψ〉〈ψ| = |ψ〉〈ψ|, (F9)

where µ is the normalized Haar measure satisfying µ(O(n)) = 1. Because the Haar integral over linear functions
vanishes, i.e.,

∫
O(n)

dµ(V )Vij = 0 [68], it follows that∫
O(n)

dµ(V )V TQ(σv) = 0. (F10)
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Furthermore, because iγ̃
(v)
i γ

(v)
j are linearly independent (as elements of an operator basis), the equality |ψ〉〈ψ| =∫

O(n)
dµ(V )|ψ(V )〉〈ψ(V )| implies that

Q(σv) =

∫
O(n)

dµ(V )V TQ(σv) = 0 (F11)

for all v ∈ [m].

Appendix G: The Pin group from quantum circuits

In the main text we showed that each x ∈ Pin(n) corresponds to the eigenstates of a family of free-fermion Hamilto-
nians, which are (pure) fermionic Gaussian states. Here we provide an alternative perspective of this correspondence,
using quantum circuits which prepare such states.

Recall that every x ∈ Pin(n) can be written as

x = u1 · · ·uk (G1)

for some k ≤ n, where we may expand each uj ∈ Sn−1 in the standard basis as

uj =
∑
i∈[n]

v
(j)
i ei (G2)

for some unit vector v(j) ∈ Rn. The product of these unit vectors can be expressed using the right-multiplication
operator ρuj

acting on the identity element,

x = e∅x

= e∅u1 · · ·uk
= (ρuk

· · · ρu1)(e∅)

(G3)

On the other hand, consider the so-called Clifford loader [71], a circuit primitive defined (in our notation) as

Γ(v) =
∑
i∈[n]

viγi (G4)

for any unit vector v ∈ Rn. It is straightforward to check that this operator is Hermitian and unitary, and Ref. [71]
provides an explicit circuit constructions based on two-qubit Givens rotation primitives.14 Using the relation γi = ρiα
and acting this circuit on the vacuum state |0n〉 ≡ |e∅〉, we see that the state

|x〉 = Γ(v(k)) · · ·Γ(v(1))|0n〉
= (ρuk

α · · · ρu1
α)|e∅〉

= (−1)(
k
2)(ρuk

· · · ρu1)|e∅〉
(G5)

indeed is equivalent to x ∈ Pin(n), up to a global sign (recall that α2 = 11 and α|e∅〉 = |e∅〉). In other words, the
Clifford loader is precisely the quantum-circuit representation of generators of the Pin group.

It is worth noting that in Ref. [71] they construct “subspace states” from this composition of Clifford loaders. In
the language of fermions, subspace states are Slater determinants: free-fermion states with fixed particle number.
Preparing Slater determinants in this fashion requires that the unit vectors v(1), . . . , v(k) be linearly independent (and
thus, without loss of generality, they can be made orthonormal while preserving the subspace that they span, hence
the alternative name). However, the definition of the Pin group demands all possible unit vectors in such products,
not just those which are linearly independent. Indeed, one can see that if the state |x〉 is a Slater determinant, then
its trace is an integer, as

tr[Q(x)] = 〈x|
∑
i∈[n]

iγ̃iγi|x〉 = 〈x|(nI2n − 2N)|x〉 = n− 2k ∈ {−n, . . . , n}, (G6)

where N =
∑
i∈[n] a

†
iai is the total number operator. Clearly not all orthogonal matrices have integer trace, so Slater

determinants are insufficient to cover all of Pin(n). To reach the remaining elements, we note that if the unit vectors
are linearly dependent, then one can show that the |x〉 = Γ(v(k)) · · ·Γ(v(1))|0n〉 does not have fixed particle number,
so 〈x|N |x〉 is not necessarily an integer.

14 Givens rotations themselves are representations of fermionic Gaussian transformations acting on two modes at a time.
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Appendix H: Measurement schemes

In this section we comment on the efficient schemes available for measuring the relevant expectation values. This
is important even in the context of a phase-estimation approach, as one needs to obtain the values of the decision
variables to perform the rounding procedure.

1. Tomography of edge marginals

To measure the energy (for variational approaches) or to perform edge rounding, we require the expectation values
of the two-body observables

Γ
(u,v)
ij =

∑
k∈[n]

P
(u)
ik ⊗ P

(v)
jk , G = O(n), (H1)

Γ̃
(u,v)
ij =

∑
k∈[n]

P̃
(u)
ik ⊗ P̃

(v)
jk , G = SO(n), (H2)

for each (u, v) ∈ E and i, j ∈ [n]. When considering G = O(n), because each P
(u)
ik ⊗ P

(v)
jk is a fermionic two-body

operator, we can straightforwardly apply the partial tomography schemes developed for local fermionic systems, such
as Majorana swap networks [60] or classical shadows [61]. In either case, the measurement circuits required are
fermionic Gaussian unitaries and the sample complexity is O(N2/ε2), where N = n|V | is the total number of qubits
and ε > 0 is the desired estimation precision of each expectation value.

2. Tomography of vertex marginals

The vertex-rounding procedure requires the expectation values of only single-qudit observables P
(v)
ij or P̃

(v)
ij on each

vertex v ∈ V , i, j ∈ [n]. In this case the observables being measured commute across vertices, so it suffices to talk
about the tomography of a single vertex, as the same process can be executed in parallel across all vertices. Again,
because these operators are fermionic one-body observables, the same fermionic partial tomography technology [60, 61]
can be applied here, incurring a sampling cost of O(n/ε2). In fact, further constant-factor savings can be achieved in
the one-body setting by using the measurement scheme introduced in Ref. [72]. This scheme requires only particle-
conserving fermionic Gaussian unitaries, which can be compiled with only half the depth of the more general Gaussian
unitaries required of the previous two methods. Note that each operator Pij is of the form of either XX or Y Y when
|i− j| = 1, and so they correspond precisely to the observables measured to reconstruct the real part of the fermionic
one-body reduced density matrix [72].

3. Estimating observables via gradient method

Ref. [62] introduces a quantum algorithm for estimating a large collection of (generically noncommuting) M ob-
servables {Oj | j ∈ [M ]} to precision ε by encoding their expectation values into the gradient of a function. This

function is implemented as a quantum circuit which prepares the state of interest and applies Õ(
√
M/ε) gates of

the form c-e−iθOj , controlled on O(M log(1/ε)) ancilla qubits. Finally, using the algorithm of Ref. [73] for gradient

estimation, one calls this circuit Õ(
√
M/ε) times to estimate the encoded expectation values (the notation Õ(·) sup-

presses polylogarithmic factors). Although this approach demands additional qubits and more complicated circuitry,
it has the striking advantage of a quadratically improved scaling in the number of state preparations with respect to
estimation error ε, compared to the refinement of sampling error in tomographic approaches. In our context, we have
either M = n3|E| or M = n2|V | observables of interest (satisfying a technical requirement of having their spectral
norms bounded by 1), corresponding to the measurement of edge or vertex terms respectively. The gates required are
then simply controlled Pauli rotations.
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