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A Heterogeneous High Dimensional

Approximate Nearest Neighbor Algorithm

Abstract

We consider the problem of finding high dimensional approximate nearest neighbors. Suppose there

are d independent rare features, each having its own independent statistics. A point x will have xi = 0

denote the absence of feature i, and xi = 1 its existence. Let pi,jk be the probability that xi = j

and yi = k for “near” points x, y versus the random (pi,00 + pi,01)(pi,10 + pi,11) for random pairs.

Sparsity means that usually xi = 0 : p01 + p10 + p11 = o(1). Distance between points is a variant

of the Hamming distance. Dimensional reduction converts the sparse heterogeneous problem into a

lower dimensional full homogeneous problem. However we will see that the converted problem can be

much harder to solve than the original problem. Instead we suggest a direct approach, which works

in the dense case too. It consists of T tries. In try t we rearrange the coordinates in increasing order

of λt,i which satisfy pi,00

(1−rt,i)(pi,00+pi,01)
λt,i+rt,i

+ pi,11

(1−rt,i)(pi,10+pi,11)
λt,i+rt,i

= 1 where 0 < rt,i < 1

are uniform random numbers, and the p′s are the coordinates’ statistical parameters. The points are

lexicographically ordered, and each is compared to its neighbors in that order.

We analyze generalizations of this algorithm, show that it is optimal in some class of algorithms,

and estimate the necessary number of tries to success. It is governed by an information like function,

which we call small leaves bucketing forest information. Any doubts whether it is “information” are

dispelled by another paper, where bucketing information is defined.

I. INTRODUCTION

This paper is motivated by the following practical problem. We have a large (billions) corpora

of documents, some in English and some in French (for example). Some (say 1 percent) of

the French documents are translations of some of the English documents (or vice versa). How

can these parallel pairs be found? A natural approach is to use an English-French dictionary of

words (or phrases). Let the dictionary contain d parallel word pairs: English word Ei is paired

with the French word Fi for 1 ≤ i ≤ d. Hence each text generates a a binary vector of d bits,

where the i’th coordinate indicates whether Ei (or Fi) appears in the text:

z = (z1, z2, . . . , zd) zi = 0, 1 (1)
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The dictionary is much larger than most texts, so most of the bits will be 0 (sparsity). We are

not counting the number of word appearances, nor their locations. Of course not all parallel

word pairs are created equal: some are reliable translations of each other, while other are not.

Some words are rare, while others are common. These important differences are expressed by

the probability matrix of the i’th words pair

Pi =

 pi,00 pi,01

pi,10 pi,11

 1 ≤ i ≤ d (2)

pi,00 + pi,01 + pi,10 + pi,11 = 1 (3)

where pi,00 is the probability that for a random translation text pair neither the English text

contains word Ei nor the French text contains word Fi. Similarly pi,01 is the probability that

the English text does not contain Ei but the French text contains Fi etc. These probabilities

are estimated from a large number (millions) of pairs. We make the theoretical simplification

of considering the word pairs independent: the probability of having the paired English-French

vectors x,y is

Probpair(x, y) =
d∏

i=1

pi,xi yi
(4)

The probability of having random English-French vectors x,y is

Probrand(x, y) =
d∏

i=1

pi,xi∗pi,∗yi
(5)

where * means “don’t care”, so pi,j∗, pi,∗k are the marginal probabilities

pi,j∗ = pi,j0 + pi,j1 (6)

pi,∗k = pi,0k + pi,1k (7)

Of course these assumptions do not hold in practice, but they provide a relevant fully defined

mathematical problem: assuming n0 English and n1 French vectors are generated according to

(4),(5), find the parallel pairs.

The bichromatic (English-French) setting is not essential, and all our results are valid for the

monochromatic case, where of course pi,jk = pi,kj . However it seems that bichromatism adds

clarity. This is reminiscent of “fast” matrix multiplication: even if one cares only for square

matrices, rectangular matrix multiplication is relevant.
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Information theory limits what can be achieved without a bound on the number of operations.

Consider for simplicity the case where there is a single nonrandom vector pair. Than we can

not pin down that pair into less than W possibilities where

ln W = ln n0 + ln n1 −
d∑

i=1

I(Pi) (8)

and the mutual information in coordinate i is

I(Pi) =
∑

j,k=0,1

pi,jk ln
pi,jk

pi,j∗ pi,∗k
(9)

When ln W < 0 there is hope. But can one do better than comparing all n0n1 pairs?

As far as we are aware this is the first attempt to adopt the information theory probabilistic

setting to a vector pairs finding problem. However it similar to the very well known problem of

finding approximate nearest neighbors. The simplest connection is for

Pi =

 pi/2 (1− pi)/2

(1− pi)/2 pi/2

 (10)

In that case

Probrand(x, y) = 4−d (11)

Probpair(x, y) = α e−dist(x,y) (12)

where α is a constant and dist is an L1 metric

dist(x, y) =
d∑

i=1

(xi 6= yi) ln
pi

1− pi

(13)

The parallel pairs are exactly the dist close pairs. There is very extensive theoretical literature

dealing with finding them. In low dimensions (d fixed, n0, n1 →∞) it can be done in O(n0 +

n1) ln(n0 +n1) elementary operations or even faster, depending on details. However in our case

the dimension d is at least of order ln(n0 + n1). The large dimensional problem is addressed by

the Locality Sensitive Hashing theory of Indyk and Motwani[8]. Their starting abstraction is to

drop any data details besides the metric distances and space type (here L1). It makes sense as

far as evaluating pairing suggestions is concerned. However there is no reason to assume that

a good parallel pairs finding algorithm will use only metric information. In fact we will see in

section VII that the both the LSH bounds and the random projection algorithms are not suited

to sparse problems.
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Why do we use a probabilistic setting? The homogeneous Pi =

 p00 p01

p10 p11

 problem for

1 ≤ i ≤ d is similar to deterministically require that each parallel vector pair has p00(1 + o(1))d

common 0’s, p01(1+o(1))d English 0’s versus French 1’s etc, and each nonparallel vector pair has

p0∗p∗0(1+o(1))d common 0’s etc. However the heterogeneous (i dependent) probabilistic problem

has no nice deterministic counterpart. That is a reason why the standard information theory setup

is probabilistic. We accept that standard for the approximate nearest neighbor problem too.

There exist numerous practical algorithms for finding approximate nearest neighbors, early

examples are Manber [7], Broder [3] and Gennaro, Savino and Zezula [6]. Broder arranges the

d coordinates in a uniformly random order, and computes for each vector a signature, consisting

of the location of its first nonzero coordinate. Let us call the set of all vectors with some

fixed signature a bucket. English-French pairs falling into the same bucket are examined for

parallelism. The probability that a parallel pair falls into the same bucket is much larger than

for a non parallel pair. It is still small, so one makes T bucketing tries, each using a separate

random permutation.

II. MAIN RESULTS

Definition 2.1: For this paper, the standard data model is the following. Let the sets X0, X1 ⊂

{0, 1, ..., b − 1}d of cardinalities n0 = #X0, n1 = #X1. The n0n1 X0 × X1 vector pairs are

divided into 3 classes: parallel, random and monochromatic. For a parallel pair the probability

that both their i’th coordinates equal j is pi,jj with independence between coordinates. Denote

the probability of disagreement by

pi,bb = 1−
b−1∑
j=0

pi,jj (14)

We assume that each vector can be a member of at most one parallel pair. For a random pair

the probability that both their i’th coordinates equal j is pi,j∗pi,∗j with independence between

coordinates. Monochromatic pairs are allowed only when pi,j∗ = pi,∗j , for the technical purpose

of duplicating a monochromatic set of points X0 = X1 = X . The probability that both their i’th

coordinates equal j is pi,j∗ with independence between coordinates.

Definition 2.2: A bucketing tree algorithm computes a signature for all vectors z ∈ X0 ∪

X1 ⊂ {0, 1, . . . , b− 1}d. Recursively the signature is either
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• Empty (we are at a tree leaf, which is called a bucket).

• The value zi of some coordinate i, followed by the signature of some bucketing tree.

• A random integer in some range, followed by the signature of some bucketing tree.

The bucketing tree’s work is

W = max(n0, n1, n0n1Q) (15)

where the random collision number Q is the expected number of falls into the same bucket

for a random vectors pair. The bucketing tree’s success probability S is the probability that a

random parallel vectors pair falls into the same bucket (have the same signature).

A bucketing forest algorithm is the union of T bucketing tree algorithms. Its work W is

the sum of the tree’s works. Its success probability S is the probability that a random parallel

vectors pair falls into the same bucket for at least one tree.

In the work definition n0 is the number of X0 signature computations, n1 is the number of

X1 signature computations and n0n1Q is the expected number of random putative parallel pairs.

For example the bucketing tree

t̀ `````````          tPPPPPP������

tPPPPPP������t
HHHH

����

z2 = 0 z2 = 1

z5 = 0 z5 = 1 z1 = 0 z1 = 1

rand1 = 0 rand1 = 1
w w ww w

has

Q = p2,0∗p2,∗0(p5,0∗p5,∗0 + p5,1∗p5,∗1/2) + p2,1∗p2,∗1(p1,0∗p1,∗0 + p1,1∗p1,∗1) (16)

S = p2,00(p5,00 + p5,11/2) + p2,11(p1,00 + p1,11) (17)

The success probability of a bucketing forest is complicated, because every tree’s failure

decreases the success probability of later trees. Nevertheless we will prove in section A

Theorem 2.1: For any bucketing forest

ln W ≥ max
0≤λ≤1

1≤µ

[
ln max(n0, n1) + λ ln min(n0, n1) + µ ln S −

d∑
i=1

G(Pi, λ, µ)

]
(18)

where G(P, λ, µ) is some function jointly convex in λ, µ, defined in (123). Moreover the bound is

asymptotically tight in the following sense. For any ε > 0 there exits a constant a(ε) such that for

any dimension d ≥ 1, probabilities satisfying pi,jj = 0 or pi,jj > ε for any 1 ≤ i ≤ d, 0 ≤ j < b
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and parameters n0, n1, S ≤ 1 ≤ W satisfying the above relation there exits a bucketing forest

with work W̃ ≤ W ea(ε)+εd and success S̃ ≥ Se−a(ε)−εd .

It is a nice result, but bucketing trees rely too heavily on the probability estimates being

correct. A less risky approach is

Definition 2.3: The maximal leaf probability of a bucketing forest is the maximum over

the leaves of the probability that a random X0 vector falls into it. A small leaves bucketing forest

is a bucketing forest whose maximal leaf probability is at most

1/ min(n0, n1) (19)

The small leaves condition insures that the work equals

W = max(n0, n1)T (20)

and it is easy to enforce that the number of X0 vectors in a bucket is of order max(1, n0/n1).

A slight modification of the proof of theorem 2.1 gives

Theorem 2.2: For any small leaves bucketing forest

ln W ≥ max
0≤λ≤1

1≤µ

[
ln max(n0, n1) + λ ln min(n0, n1) + µ ln S −

d∑
i=1

F (Pi, λ, µ)

]
(21)

where F (P, λ, µ) is some function jointly convex in λ, µ, defined in (126). Moreover the bound

is asymptotically tight as in theorem 2.1.

Of course F (Pi, λ, µ) ≤ G(Pi, λ, µ).

What is the meaning formulas (21)? Denote the critical (optimizing) parameters by λc, µc.

Intuitively

• If we double min(n0, n1) without increasing the work, the success probability is approxi-

mately reduced by factor 2µc .

• If we double min(n0, n1), the work needed to achieve the same success probability as before

is approximately multiplied by 2λc .

• If we delete coordinate i, the work needed to achieve the same success probability as before

is on average multiplied by eF (Pi,λc,µc). In particular F (Pi, λc, µc) = 0 means that under

current conditions coordinate i is useless.

The striking similarity between (21) and the information bound (8) motivates us to call F (Pi, λ, µ)

the small leaves bucketing forest information function. A devil’s advocate might argue
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that we are making much out of coincidence. The true probabilistic nearest neighbors information

should be defined by allowing general algorithms, not just bucketing forests, and counting

the necessary number of operations till most parallel pairs are listed. General algorithms are

beyond our power, but in [5] we consider the very large class of fixed bucketing algorithms, and

prove a similar formula for its performance, involving the unmistakenly mutual information like

bucketing information.

The proofs of theorem 2.2 is constructive, but it is a cumbersome construction. For large

success probability (for instance S > 1/2) we will prove that the following algorithm is

asymptotically optimal.

Definition 2.4: The random bucketing forest algorithm generates a small leaves buck-

eting tree as follows. Let 0 < r1, r2, . . . , rd < 1 be independent uniform [0, 1] random real

numbers, one per coordinate. For each coordinate i let its random exponent 0 ≤ λi ≤ 1 be

the unique solution of the monotone equation
b−1∑
j=0

pi,jj

(1− ri)p
λi
i,j∗ + ri

= 1 (22)

When there is no solution in range the coordinate is ignored, so we are left with d̃ ≤ d

coordinates. The random exponents define a random subpermutation π by λπ1 < λπ2 < · · · < λπd̃
.

Each vector z ∈ X0∪X1 generates a signature (zπ1 , zπ2 , . . . , zπm) where m is the minimal integer

such that
m∏

i=1

pπi,zπi∗ ≤ 1/ min(n0, n1) (23)

If there is no such m we generate signature (zπ1 , zπ2 , . . . , zπd̃
, k) with k a uniformly random

integer in range 0 ≤ k < min(n0, n1)
∏d̃

i=1 pπi,zπi∗

The extra k signature is similar to adding many

 1/4 1/4

1/4 1/4

 junk coordinates to the data.

The number of trees T for success is asymptotically

ln T ∼ max
0≤λ≤1

[
λ ln min(n0, n1)−

d∑
i=1

F (Pi, λ,∞)

]
(24)

In the sparse case b = 2, pi,01 + pi,10 + pi,11 = o(1) we want only small λi . Then the bound

pi,11

(1− ri)p
λi
i,1∗ + ri

= 1− pi,00

(1− ri)p
λi
i,0∗ + ri

≤ 1− pi,00 (25)
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pλi
i,1∗ ≥ 1− 1

(1− ri)
(
1 + pi,11

pi,01+pi,10

) (26)

is close to equality, and we need not solve an implicit equation.

A nice variant is

Definition 2.5: The random bucketing permutations algorithm is similar to the random

bucketing forest algorithm up to the random exponents generation stage. Then we lexicograph-

ically sort all the n0 + n1 points, with lower exponent coordinates given precedence over larger

exponent coordinates, and the coordinate values 0, 1, . . . , b−1 arbitrarily arranged, even without

consistency. Ties are randomly broken. Each X1 point is putatively paired with the preceding

and following 10 max(1, n0/n1) X0 points.

The bucketing permutations algorithm has two nice properties

• For sparse data, we can consider only nonzero value coordinates.

• During each try at most 20 max(n0, n1) pairs are compared, even when our probabilities

are wrong.

Notice that when the random bucketing forest algorithm succeeds, the corresponding random

bucketing permutations algorithm succeeds with probability at least 0.9 (because the probability

that the bucket size is at least ten times its expected size is at most 1/10).

There must be a reason for such a relatively nice optimal algorithm. What we have are only

proofs.

III. THE HOMOGENEOUS MARGINALLY BERNOULLI(1/2) EXAMPLE

The homogeneous marginally Bernoulli(1/2) example is easy to analyze. The analysis is non-

generalizable, but the issues remain. Let

Pi =

 p/2 (1− p)/2

(1− p)/2 p/2

 (27)

For some p > 1/2. Without restricting generality let n0 ≤ n1. We randomly choose m ≈ log2 n0

out of the d coordinates, and let their values define the buckets. This is a random algorithm

solving a random problem, so we have two levels of randomness. Usually when we will compute

probabilities or expectations, it will be with respect to these two sources together. The expected

number of vector pairs falling into the same buckets is n0n12
−m, while the probability that a

parallel pair falls into the same bucket (success) is pm. (These statements are true assuming only
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model randomness). If the dimension d is large enough so that each try uses different coordinates,

the success probability of T tries is 1− (1− pm)T . Hence taking T ≈ p−m/ ln 2 ≈ n
log2 1/p
0 / ln 2

results in a success probability of about 1/2. The expected number of vector comparisons is of

order

W = O
(
n

log2 1/p
0 n1

)
(28)

When coordinates are shared between tries things are more complicated. Let us consider one

parallel pair. The probability that they agree on k bits is

 d

k

 pk(1 − p)d−k, in particular

k > pd with probability nearly 1/2 . The probability of success in a single try conditioned on k

is

 k

m

/
 d

m

 . Hence we get a decent success probability of about (1−1/e)/2 by taking

T ≈

 d

m

/
 pd

m

 =
m−1∏
i=0

1− i/d

p− i/d
(29)

The total number of signatures is T (n0 + n1), and the total expected number of comparisons is

W = n02
−mTn1 ≈ n0n1

m−1∏
i=0

1− i/d

2(p− i/d)
(30)

Hence increasing m above (2p− 1)d is counterproductive, and the best choice is

m ≈ min[log2 n0, (2p− 1)d] (31)

Another observation is that d >> ln(n0) suffices to make the effects of tries’ interdependence

asymptotically negligible.

IV. THE MARGINALLY BERNOULLI(1/2) EXAMPLE

Let us see what our theory says about n0 ≤ n1

Pi =

 pi/2 (1− pi)/2

(1− pi)/2 pi/2

 1 ≤ i ≤ d (32)

Equation (22) is

2
pi/2

(1− ri)2−λi + ri

= 1 (33)

which can be recast as

2−λi =
pi − ri

1− ri

(34)
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The small leaves bucketing forest function will turn out to be in this case

F (Pi, λ,∞) = G(Pi, λ,∞) =

 pi ln
pi

2−λ + (1− pi) ln 1−pi

1−2−λ pi ≥ 2−λ

0 pi ≤ 2−λ
(35)

The critical exponent attains (24). The extremal condition is
d∑

i=1

max

[
pi − 2−λc

1− 2−λc
, 0

]
= log2 n0 (36)

For the homogeneous case p1 = p2 = · · · = pd = p

2−λc =
pd− log2 n0

d− log2 n0

(37)

Notice that log2 n0 < (2p− 1)d is equivalent to λc < 1.

An extreme heterogeneous example is n0 = n1 = 109, 50 coordinates have pi = 0.9, and other

950 coordinates have pi = 0.7. Solving (36) results in 2−λc .
= 0.75, hence the relatively bad

coordinates are thrown out and we need about nλc
0 e−

∑d

i=1
F (Pi,λc) .

= 144 tries. If we chose 30

out of the 1000 coordinates uniformly, few would have had 0.9 probability, and we would have

needed about 20000 tries. In general the probability that coordinate 1 will have larger random

exponent than coordinate 2 when p1 > p2 is

1

2

1− p1

1− p2

(38)

Hence the probability that a 0.7 coordinate precedes a 0.9 coordinate is 0.17 . However the

chance that a 0.7 coordinate will be ranked among the first 30 is very small.

V. INTUITION FOR THE MARGINALLY BERNOULLI(1/2) EXAMPLE

In this section we will present an intuitive argument for the previous section’s formulas,

without any rigor. Let us order the coordinates in decreasing order of importance

p1 ≥ p2 ≥ · · · ≥ pd (39)

Moreover let us bunch coordinates together into g groups of d1, d2, . . . , dg coordinates, where∑g
h=1 dh = d, and the members of group h all have the same probability qh

pd1+···+dh−1+1 = · · · = pd1+···+dh
= qh (40)

Out of the dh coordinates in group h, a parallel pair will agree in approximately qhdh ’good’

coordinates. Let us make things simple by pretending that this is the exact value (never mind
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that it is not an integer). We want to choose m ≈ log2 n0 coordinates and compare pairs which

agree on them. The greedy approach seems to choose as many as possible from the group 1, but

conditional greed disagrees. Let us pick the first coordinate randomly from group 1. If it is bad,

the whole try is lost. If it is good, group 1 is reduced to size d1 − 1, out of which q1d1 − 1 are

good. Hence the probability that a remaining coordinate is good is reduced to q1d1−1
d1−1

. After taking

k coordinates out of group 1, its probability decreases to q1d1−k
d1−k

. Hence after taking k = q1−q2

1−q2
d1

coordinates, group 1 merges with group 2. We will randomly chose coordinates from this merged

group till its probability drops to q3. At that point the probability of a second group coordinate

to be chosen is q2−q3

1−q3
while the probability of a first group coordinate being picked either before

or after the union is
q1 − q2

1− q2

+

(
1− q1 − q2

1− q2

)
q2 − q3

1− q3

=
q1 − q3

1− q3

(41)

This goes on till at some ql = pc we have m coordinates. Then the probability that coordinate i

is chosen is

max

[
pi − pc

1− pc

, 0

]
(42)

The cutoff probability is determined by
d∑

i=1

max

[
pi − pc

1− pc

, 0

]
≈ m (43)

The previous equation can be iteratively solved. However it is better to look from a different

angle. For each try we will have to generate d independent uniform [0, 1] random real numbers

0 < r1, r2, . . . , rd < 1 (44)

one random number per coordinate. Then we take coordinate i iff

ri ≤
pi − pc

1− pc

(45)

Let us reverse direction. Generate ri first, and then compute for which pc’s coordinate i is taken:

pc ≤ 2−λi = max
[
pi − ri

1− ri

, 0
]

(46)

We call λi the random exponent of coordinate i (random because it is ri dependent). Remember

that pc > 0 so λi = ∞ means that for that value of ri coordinate i can not be used. Now which

value of pc will get us m coordinates? There is no need to solve equations. Sort the λi’s in

nondecreasing order, and pick out the first m. Hence pc = 2−λc where the cutoff exponent λc is

the value of the m′th ordered random exponent.
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VI. AN UNLIMITED HOMOGENEOUS DATA EXAMPLE

Suppose we have an unlimited amount of data d →∞ of the same type

Pi =

 p00 p01

p10 p11

 (47)

What is the success probability of a small leaves bucketing tree? Our initial estimate was the

following. The probability that a parallel pair will agree in a single coordinate is p00 + p11.

The amount of information in a single English coordinate is −p0∗ ln p0∗ − p1∗ ln p1∗ so we will

need about m ≈ ln n0

−p0∗ ln p0∗−p1∗ ln p1∗
coordinates, and the success probability is estimated by

(p00 + p11)
m ≈ n

− ln(p00+p11)

p0∗ ln p0∗+p1∗ ln p1∗
0 This estimate turns out to be disastrously wrong. For the bad

matrix

 1− 2ρ ρ

ρ 0

 with small ρ it suggests exponent 1/ ln(1/ρ), while clearly it should be

1. The interested reader might pause to figure out what went wrong, and how this argument can

be salvaged.

There is an almost exact simple answer with a surprising flavor.

Theorem 6.1: The success probability of S a small leaves bucketing tree for unlimited

 p00 p01

p10 p11


data and n = min(n0, n1) is within bounds

(n/ min(p0∗, p1∗))
−λ ≤ S ≤ n−λ (48)

where 0 ≤ λ < 1 is the unique solution of

p00p
−λ
0∗ + p11p

−λ
1∗ = 1 (49)

or λ = 1 when there is no solution in range.

Proof: Let S(n) denote the success probability of a single tree, with leaf sizes at most 1/n

for any real n > 0. Clearly S(n) = 1 for n ≤ 1. When λ < 1 < n some coordinate is used, so

recursively

S(n) = p00S(np0∗) + p11S(np1∗) (50)

and the theorem follows by induction. When λ = 1 no coordinates will be chosen (d̃ = 0) so

S = 1/dne.
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VII. THE DOWNSIDE OF RANDOM PROJECTIONS

The Indyk-Motwani paper [8] introduces a metric based, worst case analysis. In general no

average upper bound can replace a worst case upper bound, and the reverse holds for lower

bounds. Still some comparison is unavoidable. The Indyk-Motwani theory is (nonessentially)

monochromatic X0 = X1 = X ⊂ Rd, n0 = n1 = n. There is a metric dist and constants

c ≥ 1, r > 0 such that parallel pairs x, y ∈ X satisfy

dist(x, y) ≤ r (51)

while random pairs satisfy

dist(x, y) ≥ cr (52)

They have shown that for an L1 metric dist(x, y) =
∑d

i=1 bi|xi − yi| there exists an algorithm

(called LSH) with success probability S = 1− o(1) and work W = O(n1+1/c).

Let us consider uniform symmetric

Pi =

 p00 p01

P10 p11

 p01 = p10 (53)

The only L1 metric that makes sense here is the Humming distance. The Chernof inequality

implies that for any 0 < ε → 0 there exists δ > 0 such that for a parallel pair (x, y)

Prob{|dist(x, y) − 2p01d| > εd} < e−δd and for a random pair Prob{|dist(x, y) − 2p0∗p1∗d| >

εd} < e−δd . Taking d = d3(ln n)/δe insures that with probability at least 1−1/n all n2 distances

are within the ε bounds, so

|c− p0∗p1∗/p01| < O(ε) = o(1) (54)

The familiar

Pi =

 p/2 (1− p)/2

(1− p)/2 p/2

 (55)

has c = 1/(2− 2p) + o(1). The resulting bound

W = O(n3−2p+o(1)) (56)

is more pessimistic than the real performance of random coordinate selection (28) W = O(nlog2 2/p+o(1)).

Let us now consider a typical sparse bits matrix: for a small ρ

Pi =

 1− 3ρ ρ

ρ ρ

 (57)
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In the previous section we saw that small leaves bucketing forest requires W = O(n1+λ)

comparisons where (1−3ρ)(1−2ρ)−λ+ρ(2ρ)−λ = 1. Bounding (1−2ρ)−λ > 1 gives λ < ln 3
ln 1/2ρ

W = O
(
n1+ ln 3

ln 1/2ρ

)
(58)

In particular the exponent tends to 1 as ρ tends to 0. The LSH ratio is c = 2(1 − 2ρ) + o(1),

resulting in

W = O(n1+ 1
2−4ρ

+o(1)) (59)

As far as the LSH theory is concerned

 1− 3ρ ρ

ρ ρ

 and

 1/2− 1/(8− 16ρ) 1/(8− 16ρ)

1/(8− 16ρ) 1/2− 1/(8− 16ρ)


generate equaly difficult nearest nieghbor problems with c = 2(1 − 2ρ) + o(1). If one accepts

that, dimensional reduction by random projection can look good.

Datar Indyk Immorlica and Mirrokni [4] recommend a specific random projections approach

that “works well on data that is extremely high-dimensional but sparse”. Their optimal choice

r →∞ results in a binary hash function h(x) = sign
(∑d

i=1 ziCi

)
where (z1, z2, . . . , zd) ∈ Rd is

any vector and C1, C2, . . . , Cd are independent Cauchy random variables (density 1
π(1+x2)

). Both

±1 values have probability 1/2, so one has to concatenate m ≈ log2 n0 binary hash functions in

order to determine a bucket. Now consider two parallel vectors. They will have approximately

ρd 1’s in common, and each will have approximately ρd 1’s where the other has zeroes. The

sum of ρd independent Cauchy random variables has the same distribution as ρd times a single

Cauchy random variable, so the probability that the two parallel vectors get the same hash bit

is approximately

Prob {sign (C1 + C2) = sign (C1 + C3)} = 2/3 (60)

Hence the amount of actual work is even worse than (59):

W = O((3/2 + o(1))mn) = O(nlog2 3+o(1)) (61)

Random projections allow efficient approximate computation of distances between vectors. But

they make finding parallel vector pairs harder than before the data was scrambled. We encourage

the interested reader to look at his favorite dimensional reduction scheme, and see that the ln 1/2ρ

factor is really lost.
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VIII. A SMALL LEAVES BUCKETING FOREST BOUND

In this section we will prove a lower bound on the performance of small leaves bucketing

forest algorithms. The proof is elegant, tricky and hard to generalize.

Definition 8.1:

F (P, λ,∞) = max
0≤r≤1

ln(1− r) +
b−1∑
j=0

pjj ln
(
1− r + rp−λ

j∗

) (62)

Other representations are

F (P, λ,∞) = max
0≤u0,u1,...,ub

u0+u1+...+ub=1

[
λ

b−1∑
j=0

uj ln
1

pj∗
+ ub ln ub + (1− ub) ln(1− ub) + (63)

+
b−1∑
j=0

(pjj ln pjj − uj ln uj − (pjj − uj) ln(pjj − uj))

]
(64)

F (P, λ,∞) = min
0≤q0,...,qb∑b

j=0
qj=1∑b−1

j=0
qjp−λ

j∗ ≤1

b∑
j=0

pj ln
pj

qj

(65)

Equivalence follows from evaluation at the extremal arguments. When
∑b−1

j=0 pjjp
−λ
j∗ ≤ 1 the

extremal r = 0 and of course F (P, λ,∞) = 0. Otherwise the extremal r satisfies
b−1∑
j=0

pjj

(1− r)pλ
j∗ + r

= 1 (66)

The extremal u’s are uj = rpjj

(1−r)pλ
j∗+r

for 0 ≤ j < b and ub = 1 − r. The extremal q’s are

qj = pjj

1−r+rp−λ
j∗

for 0 ≤ j < b and qb = pbb

1−r
.

Theorem 8.1: The success probability S of a small leaves bucketing tree whose leaves all

have probabilities at most 1/n is at most

S ≤ n−λ
d∏

i=1

max

1,
b−1∑
j=0

pi,jjp
−λ
i,j∗

 (67)

for any 0 ≤ λ ≤ 1. We do not assume pi,jj ≤ pi,j∗.

Proof: Use induction. The base is trivial: condition 1 ≤ 1/n implies 1 ≤ n−λ (this is where

0 ≤ λ is used). Without losing generality the tree starts with coordinate 1

S(n) ≤
b−1∑
j=0

p1,jjS(np1,j∗) ≤
b−1∑
j=0

p1,jj(np1,j∗)
−λ

d∏
i=2

max

1,
b−1∑
j=0

pi,jjp
−λ
i,j∗

 (68)
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or for a random split into k possibilities (this is where λ ≤ 1 is used)

S(n) ≤ k−1S(n/k) ≤ k−1(n/k)−λ
d∏

i=1

max

1,
b−1∑
j=0

pi,jjp
−λ
i,j∗

 (69)

The maximization with 1 is necessary because coordinates can be ignored.

Theorem 8.2: Suppose a small leaves bucketing forest has leaves probability at most 1/n,

contains T trees and its success probability is S. Then for any 0 ≤ λ ≤ 1

ln T ≥ λ ln N + ln S/2−
d∑

i=1

F (Pi, λ,∞)−

√√√√ 4

S

d∑
i=1

V (Pi, λ) (70)

where

V (Pi, λ) =
b∑

j=0

pi,j

(
ln

pi,j

qi,j

−
b∑

k=0

pi,k ln
pi,k

qi,k

)2

(71)

and the qi,j’s are the minimizing arguments from F ’s definition (65)

Proof: The previous theorem provides a good bound for the success probability of a single

tree, but it is not tight for a forest, because of dependence: the failure of each tree increases the

failure probability of other trees. Now comes an interesting argument. The success probability of

a bucketing forest (or even more general bucketing schemes) can be written as follows. Consider

a parallel pair. Let yi = j denote both having value j in coordinate i (probability pi,jj), and

yi = b denote disagreement in coordinate i (probability pi,bb). Let 0 ≤ A(y) ≤ 1 denote the

probability that y ∈ {0, . . . , b}d is accepted by the forest (it is 0 or 1 when there is no random

branching). Clearly

S = E[A] =
∑

y∈{0,...,b}d

A(y)
d∏

i=1

pi,yiyi
(72)

What happens when we replace pi,jj by qi,j ≥ 0 for all i, j in the success formula?

S(Q) =
∑

y∈{0,...,b}d

A(y)
d∏

i=1

qi,yi
= E

(
Ae−Z

)
(73)

where

Z(y) =
d∑

i=1

ln
pi,yiyi

qi,yi

(74)

For any scalar z

S = E((Z ≥ z)A) + E
(
(Z < z)eZAe−Z

)
≤ Prob{Z ≥ z}+ ezS(Q) (75)



JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 1, MARCH 2007 17

We insist upon
∑b

j=0 qi,j = 1 so that we can use the previous lemma to bound S(Q). Notice that

qi,j ≤ pi,j∗ is not required.

S(Q) ≤ Tn−λ
d∏

i=1

max

1,
b−1∑
j=0

qi,jp
−λ
i,j∗

 (76)

The other term is handled by the Chebyshev bound: for z > E(Z)

Prob{Z ≥ z} ≤ Var(Z)

(z − E(Z))2 (77)

Together

S ≤ Var(Z)

(z − E(Z))2 + ezS(Q) (78)

The reasonable choice of

z = E(Z) +
√

2Var(Z)/S (79)

results in

S ≤ 2eE(Z)+
√

2Var(Z)/SS(Q) (80)

Notice that this proof gives no indication that the bound is tight, nor guidance towards

constructing an actual bucketing forest, (except for telling which coordinates to throw away).

IX. CONCLUSION

To sum up, we present three things:

1) A practical approximate nearest neighbor algorithm 2.5.

2) An information style performance estimate 2.2.

3) A warning against dimensional reduction of sparse data in section VII.

REFERENCES

[1] N. Alon Private Communication.

[2] A. Andoni, P. Indyk Near-Optimal Hashing Algorithms for Approximate Nearest Neighbor in High Dimensions FOCS 2006.

[3] A. Broder. Identifying and Filtering Near-Duplicate Documents Proc. FUN, 1998.

[4] M. Datar, P. Indyk, N. Immorlica and V. Mirrokni Locality-Sensitive Hashing Scheme Based on p-Stable Distributions Proc.

Sympos. on Computational Geometry, 2004.

[5] Moshe Dubiner Bucketing Coding and Information theory for the Statistical High Dimensional Nearest Neighbor Problem

To be Published.



JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 1, MARCH 2007 18

[6] C.Gennaro, P.Savino and P.Zezula Similarity Search in Metric Databases through Hashing Proc. ACM workshop on

multimedia, 2001.

[7] U. Manber Finding similar files in a large file system Proceedings of the USENIX Winter 1994 Technical Conference

[8] P. Indyk and R. Motwani. Approximate Nearest Neighbor: Towards Removing the Curse of Dimensionality Proc. 30th Annu.

ACM Sympos. Theory Comput., 1998.

[9] R.M. Karp, O. Waarts, and G. Zweig. The Bit Vector Intersection Problem Proc. 36th Annu. IEEE Sympos. Foundations

of Computer Science, pp. 621-630, 1995.

APPENDIX A

PROOF OF THEOREMS 2.1,2.2

The proof we are about to give is elaborate but constructive. It systematically computes the

bucketing forest information function. Bucketing trees are recursively defined, but we failed to

inductively bound their performance. Instead we use tensor products.

Definition A.1: Suppose we have a bucketing forest defined over {0, . . . , b − 1}d having T

trees, maximal leaf probability 1/N , collision number Q and success probability S. Suppose

another forest defined over {0, . . . , b− 1}d̃ has T̃ trees etc. Their tensor product is the forest

containing T1T2 trees, one for each pair. They are generated by taking a tree from the first

forest and grafting the same tree from the second forest on each leaf. In particular the tensor

product will have T T̃ trees, maximal leaf probability 1/(NÑ), collision number QQ̃ and success

probability SS̃.

Theorem A.1: For any bucketing forest with T trees, work per point Q and success probability

S there exist numbers 0 ≤ α, β, 0 ≤ ui,j ≤ vi,j and 0 ≤ vi,b ≤ ui,b for 1 ≤ i ≤ d, 0 ≤ j < b

such that
∑b

j=0 ui,j =
∑b

j=0 vi,j = 1 and

ln T ≥ Z4 − Z3 − α ≥ 0 (81)

ln Q ≥ Z4 − Z2 − α− β (82)

ln S ≤ −Z1 − α− β (83)

where

Z1 =
d∑

i=1

b∑
j=0

vi,j ln
vi,j

pi,jj

(84)

Z2 =
d∑

i=1

b−1∑
j=0

ui,j ln
1

pi,j∗pi,∗j
(85)
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Z3 =
d∑

i=1

(1− ui,b) ln(1− ui,b)−
b−1∑
j=0

ui,j ln ui,j

 (86)

Z4 =
d∑

i=1

−ui,b ln ui,b +
b−1∑
j=0

((vi,j − ui,j) ln(vi,j − ui,j)− vi,j ln vi,j)

 (87)

On the other hand for any parameters satisfying the above conditions and ε > 0 there exists a

constant a(e) such that for any m ≥ 1 there exits a bucketing forest defined on md coordinates,

with the original probabilities each repeated m times, such that the forest has at most Tmea(ε)+εm

trees, at most Qmea(ε)+εm collision number and at least Sme−a(ε)−εm success probability.

Proof: The inverse direction of constructing a bucketing forest according to parameters is

easy. We need only do it for d = 1 and then take a tensor product. Let m →∞, uj = bmu1,jc,

vj = bmv1,jc for 0 ≤ j < b and ub = m−∑b−1
j=0 uj , vb = m−∑b−1

j=0 vj . We construct a uniform

forest of random

Tm = dem(Z4−Z3−α)e (88)

trees, each involving randomly chosen m−u1,b coordinates out of the m available. The signature

is the ordered values of these coordinates, followed by a random number in range 1 to demβe.

However only leaves that attain value j uj times are kept (the rest can get an extra very large

random signature). Hence each tree contains Lm = Kmdemβe leaves, where

Km =

 m− ub

u0, . . . ,ub−1

 = em(Z3+o(1)) (89)

The collision number is

Qm = TmKm

b−1∏
j=0

(p1,j∗p1,∗j)
uj/demβe = em(Z4−Z2−α−β+o(1)) (90)

The success probability (averaged over the random choices of trees) is

Sm = 1−
∑

0≤ν1,...,νb
ν0+···+νb=m

m!
b∏

j=0

p
νj

1,jj

νj!

1−
b−1∏
j=0

 νj

uj

/
 m

m− ub




Tm

(91)

Sm ≥ m!
b∏

j=0

p
vj

1,jj

vj!

/1 +
1

Tm

 m

m− ub

/b−1∏
j=0

 vj

uj


 (92)

m!
b∏

j=0

p
vj

1,jj

vj!
= e−m(Z1+o(1)) (93)
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m− ub

/b−1∏
j=0

 vj

uj

 = em(Z4−Z3+o(1)) (94)

Suppose we are given a bucketing forest depending upon d coordinates and extra d̃ random

branching vertices (at which a random signature is computed). Let us raise the forest to tensor

power m. A subforest of the tensor forest will be called uniform iff each leaf involves 0 ≤ ui,j

branches where coordinate i and its tensor copies have value j, and 0 ≤ ũĩ ≤ m random

branches that are the tensor copies of random branch ĩ. Denote ui,b = m−∑b−1
j=0 ui,j ≥ 0. The

tensor power forest is split into at most (m + 1)bd+d̃ uniform subforests (each leaf goes into

one uniform subforest). We take the subforest with the largest success probability, and denote

ui,j = mui,j . We will let m →∞, and there will be a subsequence of m’s whose u’s converge.

The uniform subforest has success probability Sm, Tm trees, and collision number Qm . Clearly

T ≥ T 1/m
m , Q ≥ Q1/m

m , S ≤ (m + 1)(bd+d̃)/mS1/m
m (95)

Notice that (m + 1)(bd+d̃)/m = 1 + o(1) .

The ũ1 + · · · + ũd̃ random branchings will simply reduce the success probability and the

collision number by the same factor e−mβ (β ≥ 0), so let us count reduced leaves i.e. leaves

without them. How many reduced leaves Km can a single uniform tree have? Without restricting

generality let it start with coordinate 1. Then

Km(u1,0, . . . ,u1,b−1, . . .) ≤ Km(u1,0 − 1, . . . ,u1,b−1, . . .) + · · ·+ Km(u1,0, . . . ,u1,b−1 − 1, . . .)

(96)

so by induction

Km ≤
d∏

i=1

(m− ui,b)!∏b−1
j=0 ui,j!

(97)

1

m
ln Km ≤ Z3 + o(1) (98)

The total number of reduced leaves Lm satisfies

Lm ≤ TmKm (99)

Denoting

α ≡ Z4 − lim sup
1

m
ln Lm (100)
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we have proven most of (81)

ln T ≥ 1

m
ln Tm ≥ Z4 − Z3 − α (101)

Each reduced leaf has collision number e−mZ2 so we get (82)

Qm = e−m(Z2+β)Lm (102)

ln Q ≥ Z4 − Z2 − α− β (103)

For a random md dimensional parallel pair, let 0 ≤ vi,j ≤ m (for 1 ≤ i ≤ d, 0 ≤ j < b) denote

the number of times coordinate type i attains value j for both vectors, and vi,b = m−∑b−1
j=0 vi,j is

the number of mistakes. The v’s can have at most (m+1)bd values, each contributing something

to the success probability of our reduced uniform forest. Let vi,j = mvi,j’s contribute the most.

Again there is a subsequence of m’s for which the v’s converge. Then

Sm ≤ (m + 1)bd
d∏

i=1

m!
b∏

j=0

p
vi,j

i,jj

vi,j!

 e−mβ (104)

ln S ≤ −Z1 − β (105)

Assuming the v’s, the success probability of a single leaf is

sm =
d∏

i=1

∏b−1
j=0 [vi,j(vi,j − 1) · · · (vi,j − ui,j + 1)]

m(m− 1) · · · (ui,b + 1)
(106)

1

m
ln sm = −Z4 + o(1) (107)

Summing up over the leaves we get (83)

Sm ≤ (m + 1)bd
d∏

i=1

m!
b∏

j=0

p
vi,j

i,jj

vi,j!

 e−mβLmsm (108)

ln S ≤ −Z1 − α− β (109)

We are still missing the limitations on α. Negative α can be replaced with α = 0 because of

(105). When α > Z4 − Z3 we can increase β by α − Z4 + Z3, and decrease α by the same

amount. Inequality (101) remains valid because ln T ≥ 0.

Definition A.2: For any bucketing tree and n0, n1 let the point number be n = min(n0, n1)

and the work per point be V = W/ max(n0, n1) = max(T, nQ), for any real n0, n1 ≥ 0. Denote

E(P1, . . . , Pd) =
{

1

m

(
ln nm,− ln S̃m, ln Ṽm

) ∣∣∣∣ 0 ≤ S̃m ≤ Sm, Ṽm ≥ Vm

}c

(110)
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where the set depend on all md dimensional bucketing forests, with each Pi duplicated m ≥ 1

times, and c means closure.

Lemma A.2: E(P1, . . . , Pd) is a convex subset of R3. It equals{
1

m

(
ln

Tm

Qm

,− ln Sm, ln Tm

)}c

+ ConvCone ({(−1, 0, 0), (0, 1, 0), (1, 0, 1)}) (111)

where Tm, Qm, Sm go over the number of trees, collision number and success probability of all

md dimensional bucketing forests, with each Pi duplicated m ≥ 1 times. The convex cone is

{(γ3 − γ1, γ2, γ3) | 0 ≤ γ1, γ2, γ3}.

Proof: The convexity holds because the tensor product of k copies of a forest with Tm trees

and k̃ copies of a forest with T̃m trees has T k
mT̃ k̃

m trees, and all other relevant quantities behave

in the same way. The trivial forest (one tree, single leaf) shows that E contains the convex cone.

For nm ≥ Tm/Qm Vm = nmQm and we can write

(ln nm,− ln Sm, ln Vm) = (ln Tm/Qm,− ln Sm, ln Tm) + (1, 0, 1) ln(nmQm/Tm) (112)

while for nm ≤ Tm/Qm Vm = Tm so

(ln nm,− ln Sm, ln Vm) = (ln Tm/Qm,− ln Sm, ln Tm) + (1, 0, 0) ln(Tm/nmQm) (113)

We now recognize theorem A.1 to state

Corollary A.3:

E = D ∩ {(x, y, z) | z ≥ 0} (114)

D = E + ConvCone ({ (0, 1,−1) }) = (115)

= {(Z2 − Z3, Z1, Z4 − Z3)}+ ConvCone ((−1, 0, 0), (1, 0, 1), (0, 1,−1)) (116)

where the Pi, ui,j, vi,j dependence is understood. Moreover

E(P1, . . . , Pd) = E(P1) + · · ·+ E(Pd) (117)

Notice that (0, 1, 0) dropped out because it is spanned by the others.

The set D is convex and contain the origin, so it is the dual of its dual

D = {(x, y, z) | ∀ (α, β, γ) ∈ D⊥ αx− βy − γz ≤ 1} (118)

D̃⊥ = {(α, β, γ) | ∀ (x, y, z) ∈ D̃ αx− βy − γz ≤ 1} (119)



JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 1, MARCH 2007 23

The convex cone establishes 0 ≤ α ≤ γ ≤ β. When γ = 0 it follows that 0 = α ≤ β

and the resulting condition −βy ≤ 1 follows from y ≥ 0. When γ > 0 we can divide by it

λ = α/γ, µ = β/γ so

D = {(x, y, z) | y, z ≥ 0, ∀ 0 ≤ λ ≤ 1 ≤ µ z ≥ λx− µy −G(λ, µ)} (120)

where

G(λ, µ) = max [λ(Z2 − Z3)− µZ1 − (Z4 − Z3)] (121)

In Full

Definition A.3: The bucketing forest information function G(P, λ, µ) is

G(P, λ, µ) = max
0≤u0≤v0,...,0≤ub−1≤vb−1,0≤ub,vb
u0+u1+...+ub=v0+v1+...+vb=1

[
λ

b−1∑
j=0

uj ln
uj

(1− ub)pj∗p∗j
− µ

b∑
j=0

vj ln
vj

pjj

+ (122)

+ub ln ub + (1− ub) ln(1− ub) +
b−1∑
j=0

(vj ln vj − uj ln uj − (vj − uj) ln(vj − uj))

]
(123)

We have shown that when condition (18) is met, there are near optimal bucketing trees on

m →∞ copies of P1, . . . , Pd. What does it imply for a single copy? For δ > 0 0 ≤ j < b let P (δ)

be defined by pjj(δ) = e−d−(ln pjj)/δeδ 0 ≤ j < b and similar actions for pj∗ and p∗j . The work per

point and success are changed by at most e−δd ≤ V (δ)/V ≤ 1, e−δd ≤ S(δ)/S ≤ 1. Suppose that

(ln n,− ln S, ln V ) ∈ E(P1, . . . , Pd). It implies (ln n,− ln S+δd, ln V ) ∈ E(P1(δ), . . . , Pd(δ)) =

E(P1(δ))+ · · ·+E(Pd(δ)). Requiring pi,jj > ε or pi,jj = 0 for all 1 ≤ i ≤ d, 0 ≤ j < b bounds

the number of possible P (δ) by (−(ln ε)/δ+1)3b. For each P (δ) apply the constructive direction

of theorem A.1. Then replace P1(δ), . . . , Pd(δ) by P1, . . . , Pd, increasing the work again by a

factor. Taking small enough δ = ε/2 completes the proof of theorem 2.1.

The small leaves bucketing forest case is very similar to general bucketing forest, only a bit

simpler. In stead of the collision number Qm we have the small leaves inequality Z5 + β ≥ ln n

where

Z5 =
d∑

i=1

b−1∑
j=0

ui,j ln
1

pi,j∗
(124)

Definition A.4: The small leaves bucketing forest information function F (P, λ, µ) is

F (P, λ, µ) = max
0≤u0≤v0,...,0≤ub−1≤vb−1,0≤ub,vb
u0+u1+...+ub=v0+v1+...+vb=1

[
λ

b−1∑
j=0

uj ln
1

pj∗
− µ

b∑
j=0

vj ln
vj

pjj

+ (125)

+ub ln ub + (1− ub) ln(1− ub) +
b−1∑
j=0

(vj ln vj − uj ln uj − (vj − uj) ln(vj − uj))

]
(126)
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where ub, vb, pbb are defined as before.

APPENDIX B

PERFORMANCE OF THE RANDOM BUCKETING FOREST ALGORITHM

It is relatively easy to prove that our algorithm satisfies the inverse direction of theorem 2.2

for S > 1/2. It is harder to give a good “hard” bound.

Theorem B.1: Denote n = min(n0, n1). Let ε > 0 be some small parameter, and let λ, r1, r2, . . . , rd

attain

min
λ≥0

max
0≤r1,...,rd≤1

[
− (1 + ε)λ ln n +

d∑
i=1

b∑
j=0

pi,j

(
1− ri + (j 6= b)rip

−λ
i,j∗

) ]
(127)

The extrema conditions are
d∑

i=1

b−1∑
j=0

pi,j
−ri ln pi,j∗

(1− ri)pλ
i,j∗ + ri

= (1 + ε) ln n (128)

and ri = 0 or
b−1∑
j=0

pi,j

(1− ri)pλ
i,j∗ + ri

= 1 1 ≤ i ≤ d (129)

Suppose that for some δ < 1/5

d∑
i=1

b∑
j=0

pi,j

(
ln[1− ri + (j 6= b)rip

−λ
i,j∗]− (130)

−
b∑

k=0

pi,k ln[1− ri + (k 6= b)rip
−λ
i,k∗]

)2

≤ ε2δλ2 (ln n)2 (131)

d∑
i=1

b−1∑
j=0

pi,j

(
−ri ln pi,j∗

(1− ri)pλ
i,j∗ + ri

−
b−1∑
k=0

pi,k
−ri ln pi,k∗

(1− ri)pλ
i,k∗ + ri

)2

≤ ε2δ (ln n)2 /4 (132)

d∑
i=1

b−1∑
j=0

pi,j
ri(1− ri)[ln pi,j∗]

2[
(1− ri)pλ

i,j∗ + ri

]2 ≤ ε2δ (ln n)2 /8 (133)

Then the random bucketing forest algorithm with T trees where

ln T ≥ ln
1

δ
+ (1 + 3ε)λ ln n−

d∑
i=1

b∑
j=0

pi,j

(
1− ri + (j 6= b)rip

−λ
i,j∗

)
(134)

has success probability

S ≥ 1− 5δ (135)

The alarmingly complicated small variance conditions are asymptotically valid, because both

the variances and ln n grow linearly with the dimension d. However there is no guarantee that
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they can be always met. Indeed the upper bound is of the Chernof inequality large deviation

type, and can be a poor estimate in some cases.

Definition B.1: Let Y, Z be joint random variables. We denote by YZ the conditional type

random variable Y with its probability density multiplied by eZ

E[eZ ]
. In the discrete case Z, Y

would have values yi, zi with probability pi. Then YZ has values yi with probability pie
zi∑

j
pjezj .

Lemma B.2: For any random variable Z, and λ ≥ 0

ln Prob {Z ≥ E [ZλZ ]} ≤ ln E
[
eλZ

]
− λE [ZλZ ] (136)

ln Prob
{
Z ≥ E [ZλZ ]−

√
2Var [ZλZ ]

}
≥ (137)

≥ ln E
[
eλZ

]
− λE [ZλZ ]− ln 2− λ

√
2Var [ZλZ ] (138)

Proof: The upper bound is the Chernof bound. The lower bound combines the Chebyshev

inequality

Prob
{
|ZλZ − E[ZλZ ]| ≤

√
2Var[ZλZ ]

}
≥ 1

2
(139)

with the fact that the condition in the curly bracket bounds the densities ratio:

ln
eλZ

E [eλZ ]
= ln

eλZλZ

E [eλZ ]
≤ − ln E

[
eλZ

]
+ λE [ZλZ ] + λ

√
2Var [ZλZ ] (140)

It is amusing, and sometimes useful to note that

E[ZλZ ] =
∂ ln E

[
eλZ

]
∂λ

(141)

Var[ZλZ ] =
∂2 ln E[eλZ ]

∂λ2
(142)

We will now prove the theorem B.1.

Proof: Let λ ≥ 0 be a parameter to be optimized. Let w ∈ {0, 1}d be the random Bernoulli

vector

wi = (λi ≤ λ) (143)

where λi is the i’th random exponent. In a slight abuse of notation let 0 ≤ ri ≤ 1 denote not a

random variable but a probability

ri = Prob{wi == 1} = Prob{λi ≤ λ} (144)
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We could not resist doing that because equation (129) is still valid under this interpretation.

Another point of view is to forget (129) and consider ri a parameter to be optimized. Again let

y ∈ {0, 1, . . . , b}d denote the state of a parallel pair. Let us consider a single tree, conditioned

on both y and w. When

Z(y, w) =
d∑

i=1

ln
[
1− wi + (yi 6= b)wip

−1
i,yi∗

]
≥ ln n (145)

is satisfied, the coordinates i for which wi = 1 are “good” (yi 6= b) and the product of their

marginal probabilities
∏

1≤i≤d
wi=1

pi,yi∗ ≤ 1/n so no further coordinates will consulted. Summing

over w gives success probability of a single tree, conditioned over y to be at least

S(y) ≥
∑

w∈{0,1}d

d∏
i=1

[(1− wi)(1− ri) + wiri][Z(y, w) ≥ ln n]

In short

S(y) ≥ Prob {Z(y) ≥ ln N} (146)

Conditioning over y makes the successes of random trees independent of each other, hence the

conditional success probability T tries is at least

ST (y) ≥ 1− (1− S(y))T ≥ TS(y)

1 + TS(y)
(147)

Averaging over y bounds the success probability S of the algorithm by

S ≥
∑

y∈{0,1,...,b}d

d∏
i=1

pi,yiyi
·
[

TS(y)

1 + TS(y)

]
(148)

In short

S ≥ E

[
TS(y)

1 + TS(y)

]
(149)

Now we must get our hands dirty. The reverse Chernof inequality is

ln Prob
{
Z(y) ≥ E

[
Z(y)λZ(y)

]
−
√

2Var
[
Z(y)λZ(y)

]}
≥ (150)

≥ ln E
[
eλZ(y)

]
− λE

[
Z(y)λZ(y)

]
− ln 2− λ

√
2Var

[
Z(y)λZ(y)

]
(151)

Denoting

U(y) = ln E
[
eλZ(y)

]
=

d∑
i=1

ln[1− ri + (yi 6= b)rip
−λ
i,yi∗] (152)

V (y) =
∂U(y)

∂λ
= E

[
Z(y)λZ(y)

]
=

∑
1≤i≤d

yi 6=b

−ri ln pi,yi∗

(1− ri)pλ
i,yi∗ + ri

(153)
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W (y) =
∂2U(y)

∂λ2
= Var

[
Z(y)λZ(y)

]
=

∑
1≤i≤d

yi 6=b

ri(1− ri)[ln pi,yi∗]
2[

(1− ri)pλ
i,yi∗ + ri

]2 (154)

the reverse Chernof inequality can be rewritten as

ln Prob
{
Z(y) ≥ V (y)−

√
2W (y)

}
≥ U(y)− λV (y)− ln 2− λ

√
2W (y) (155)

It is time for the second inequality tier. For any δ < 1/3

Prob
{
|U(y)− E[U ]| ≤

√
Var[U ]/δ, (156)

|V (y)− E[V ]| ≤
√

Var[V ]/δ, W (y) ≤ E[W ]/δ
}
≥ 1− 3δ (157)

where

E[U ] =
d∑

i=1

b∑
j=0

pi,j ln[1− ri + (j 6= b)rip
−λ
i,j∗] (158)

E[V ] =
d∑

i=1

b−1∑
j=0

pi,j
−ri ln pi,j∗

(1− ri)pλ
i,j∗ + ri

(159)

Hence

ln Prob
{
Z(y) ≥ E[V ]−

√
Var[V ]/δ −

√
2E[W ]/δ

}
≥ (160)

≥ E[U ]− λE[V ]− ln 2−
√

Var[U ]/δ − λ
√

Var[V ]/δ − λ
√

2E[W ]/δ (161)

Now we have to pull all strings together. In order to connect with (146) we will require

E[V ] = (1 + ε) ln n (162)√
Var[U ] ≤ εδ1/2λ ln n (163)√

Var[V ] +
√

2E[W ] ≤ εδ1/2 ln n (164)

for some small ε > 0. Recalling (153), condition (162) is achieved by choosing λ to attain

min
λ≥0

[−(1 + ε)λ ln n + E[U ]] (165)

If (164) holds, then with probability at least 1− 3δ

ln S(y) ≥ −(1 + 3ε)λ ln n + E[U ]− ln 2 (166)

Recalling (149) the success probability is at least

S ≥ 1− 3δ

1 + 2e(1+3ε)λ ln n−E[U ]/T
(167)


