
Estimating the Number of Users behind IP Addresses for
Combating Abusive Traffic

Ahmed Metwally and Matt Paduano
Google Inc

1600 Amphitheatre Pkwy, Mountain View, CA 94043 USA
{metwally, mattp}@google.com

ABSTRACT
This paper addresses estimating the number of the users of
a specific application behind IP addresses (IPs). This prob-
lem is central to combating abusive traffic, such as DDoS
attacks, ad click fraud and email spam. We share our expe-
rience building a general framework at Google for estimating
the number of users behind IPs, called hereinafter the sizes
of the IPs. The primary goal of this framework is combating
abusive traffic without violating the user privacy. The esti-
mation techniques produce statistically sound estimates of
sizes relying solely on passively mining aggregated applica-
tion log data, without probing machines or deploying active
content like Java applets. This paper also explores using the
estimated sizes to detect and filter abusive traffic. The pro-
posed framework was used to build and deploy an ad click
fraud filter at Google. The first 50M clicks tagged by the fil-
ter had a significant recall of all tagged clicks, and their false
positive rate was below 1.4%. For the sake of comparison,
we simulated a näıve IP-based filter that does not consider
the sizes of the IPs. To reach a comparable recall, the näıve
filter’s false positive rate was 37% due to aggressive tagging.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database applications—
Data mining ; C.2.0 [Computer Communication Net-

works]: General—security and protection

General Terms
Algorithms, Experimentation, Measurement, Security

Keywords
IP Size Estimation, Abusive Traffic Filtering, Advertisement
Click Fraud, Real Data Experiments

1. INTRODUCTION
Simple conventional mechanisms for abuse detection that

rely on source IPs set a limit, i.e., filtering threshold, on the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’11, August 21–24, 2011, San Diego, California, USA.
Copyright 2011 ACM 978-1-4503-0813-7/11/08 ...$10.00.

IP activity within a time period. Once the limit is reached
by an IP, either the IP traffic gets filtered for the rest of
that time period, or the IP gets blacklisted for several con-
secutive periods. These techniques typically set the same
threshold for all IPs. Setting an aggressive threshold yields
a high false positive rate since some IPs have numerous users
behind them and are hence expected to send relatively large
traffic volumes. Setting a conservative threshold yields a
high false negative rate, since the threshold becomes ineffec-
tive for distributed attacks where IPs send relatively little
traffic. This work tailors the thresholds to the sizes of the
IPs. It proposes a new framework for timely estimation of
the number of users behind IPs with high enough accuracy
to reduce false positives and with high enough coverage in
the IP space to reduce false negatives.

We define the sizes of the IPs based on two dimensions:
application and time. Each application has a specific size
associated with each IP depending on the number of human
users using this application. For Google, the query size of an
IP is the number of human users querying the search engine,
which may differ from the number of users clicking ads or the
number of users sending emails to the Google email service.
Thus, sizes should be estimated using the log files of the
application whose activity is subject to estimation.

The other dimension for defining the sizes is time. The
number of human users behind an IP changes over time, like
when the IP observes a flash crowd, i.e., an unexpected surge
in usage, or gets reassigned to households and/or companies.
The size estimates should be issued frequently enough to
cope with the frequent size changes. This calls for a short
estimation time period. Conversely, the estimation period
should be long enough to yield enough IP coverage, as well
as enough traffic per IP to produce statistically sound sizes.

Estimation Challenges and Methodology
While estimating the sizes of individual IPs has ramifica-
tions on the security field, the primary concern is violating
the user privacy. To preserve the user privacy, the proposed
techniques estimate sizes of IPs using the application-level
log files. First, the application users are assumed to be only
temporarily identified, e.g., with cookie IDs in the case of
HTTP-based log files. Thus, no Personally Identifiable In-
formation, such as the name or the email address, is re-
vealed. Second, no individual machines are tracked. Third,
the framework uses application log data aggregated at the
IP-level. Over 30% of dynamic IPs are reassigned every one
to three days [19], and thus an IP is considered a tempo-
rary identification of a user. In addition, the majority of the

users share IPs. This is illustrated by Fig. 1 that shows the
distribution of 10M random IPs (from Google ad click log
files) shared by 26.9M total estimated ad users.

Figure 1: The estimated sizes of 10M random IPs.

Estimating sizes from the log files is not straightforward.
Näıve counting of distinct user identifications, e.g., cookie
IDs or “user agents” (UAs), per IP fails to accurately esti-
mate sizes. Corporate NAT devices usually have the same
UA on all hosts. Similarly, an Internet cafe host is used by
several users sharing the same user ID. Meanwhile, small IPs
can masquerade as large IPs by clearing or farming cookies,
and overwriting UAs in HTTP requests. Therefore, esti-
mating sizes by distinct counting of cookies and UAs may
result in over-estimation or under-estimation. Filtering traf-
fic based on these inaccurate sizes yields high false negatives
and high false positives, respectively.
Instead, this paper proposes using the log files to build

statistical models that are later used for estimating sizes.
However, this approach poses some challenges.

1. The log files do not contain only legitimate traffic. The
existence of abusive traffic entries in these files degrades
the quality of the models and the estimated sizes. To
avoid such quality degradation, the models should be
built only from the traffic of the trusted users1. This
introduces a sampling bias in the traffic used to build
the models. To mitigate this bias later in the estima-
tion phase, only the trusted traffic of each IP2 during
a period, p, is used to estimate its size for p (§ 2.).

2. The sizes of the IPs change due to legitimate reasons,
such as reassignments, flash crowds and business-week
cycles. For an estimation period, p, the log files cannot
be finalized before the end of p. They are then ana-
lyzed to produce estimates after each IP has already
made its activities during p. Hence, estimated sizes
are always lagging behind real-time sizes. Meanwhile,
real-time abuse detection needs the estimates when p
begins. This lag reduces the filtering accuracy when an
IP legitimately changes size (§ 4).

1Trusted users, identified by cookie IDs for example, are
typically those whose activity was rarely tagged as abusive
by any existing filter. If this is the only deployed filter,
trusted users can be alternatively defined as those with some
signature of good traffic, where the definition of good traf-
fic is application-dependent. For combating ad click fraud,
trusted cookies can be defined as those with a relatively
high conversion rate, where conversions are rare but trusted
post-click activities, like purchases from the advertisers.
2Traffic entries tagged by filters are logged in abusive log
files. Both trusted and untrusted traffic entries exist in the
log files. Only untrusted entries exist in the abusive log files.

Given the above challenges, our contributions can be bet-
ter laid down into the following three efforts:

1. building statistical models for size estimation in an au-
tonomous, passive and privacy-preserving way from ag-
gregated log files (§ 3),

2. devising a distributed efficient algorithm that examines
previous size estimates, and produces a predicted size
for each possible IP for a period p before p begins to
mitigate the deleterious effects of lag (§ 4), and

3. setting traffic filtering thresholds based on the sizes
without any manual intervention (§ 5).

The cycle and the interdependencies between these three
processes is summarized in § 2.

2. THE SIZE ESTIMATION CYCLE
The cycle of size estimation and filtering is laid out in this

section. The basic cycle consists of four processes that com-
municate via log files and size lookup tables. For period p,
the inputs and outputs of the real-time traffic event logging,
estimation, predictions, and real-time abuse detection pro-
cesses are formalized in relations 1, 2, 3, and 4, respectively.

trafficp
RT-Log(p)
−−−−−−→ log-filesp (1)

log-filesp 1entry abusive-log-filesp
Est(p)
−−−−→ estimates-tablep

(2)

∀p−2
i=p−w−1estimates-tablei

Prd(p)
−−−−→ predictions-tablep (3)

trafficp 1IP predictions-tablep
RT-Abuse-Dtct(p)
−−−−−−−−−−−→ abusive-log-filesp

(4)
Real-time logging, denoted RT-Log(p) in rel. 1, finalizes

the traffic log-filesp as p + 1 starts. Next, the log-filesp are
consumed, among other input, by the estimation process,
Est(p), to produce the estimates-tablep mapping IPs that
issued traffic during p to their estimated sizes (rel. 2). Next,
the algorithm for predicting sizes, Prd(p+2), consumes the
estimates-tables from a sliding window of length w periods3,
p−w+1 through p, to produce the predictions-tablep+2. We
assume that before the beginning of p + 2, this prediction
process, Prd(p+2), completes and produces the predictions-
tablep+2, mapping IPs to their predicted sizes of period p+2.

The estimates-tables that contributed to predictions-tablep

are shown in rel. 3. The predictions-tablep is used by the
real-time abuse detection process, denoted RT-Abuse-Dtct(p)
in rel. 4, to produce the abusive-log-filesp for p. The abusive-
log-filesp contain the IDs of the traffic entries in log-filesp
identified as abusive. The abusive-log-filesp are joined with
the log-filesp by Est(p) to disregard the abusive traffic en-
tries, and produce estimates based solely on legitimate traf-
fic (rel. 2). While this joining makes estimation exclusively
based on non-abusive traffic, care should be taken to avoid
over-filtering of legitimate traffic.

This over-filtering caveat is best clarified by an example.
Let IP 10.1.1.1 be stable at an estimated size of 1 for the pe-
riods p−w through p−1, and then suddenly observes a flash

3The length, w, of the estimates window should be long
enough to span cycles in the activities of the IPs such that
Prd(.) considers legitimate cyclic size changes. Conversely,
w should not be excessively large not to include very old
sizes unrepresentative of future sizes. In our system, the
estimates window was set to span several weekly cycles.

crowd during period p. Prd(p+1), which runs during period
p, is agnostic to this flash crowd and predicts a size of 1 for
period p+1. Hence, RT-Abuse-Dtct(p+1) filters the major-
ity of the traffic from 10.1.1.1. When the log-filesp+1 and the
abusive-log-filesp+1 are joined, most of the traffic from this
IP is not considered for estimation, and Est(p + 1) under-
estimates its size. Since the estimates-tablep+1 are fed back
into Prd(p+3), 10.1.1.1 continues to have a small predicted
size, and to be overfiltered in p+3. To mitigate over-filtering
caused by this hysteresis loop, only the egregiously abusive
traffic is disregarded for the purpose of estimation4.
The estimation and prediction phases have been assumed

so far to run together in less than l = |p|, the period length.
This introduced a lookahead delay of 2l. That is, the output
of RT-Log(p) is not used by RT-Abuse-Dtct(.) before p+ 2.
The longer the lookahead delay, the higher the chance of
filtering based on inaccurate sizes. Enhancements to the
basic cycle to reduce the lookahead delay are discussed in
Appendix A. We next discuss the Est(.), Prd(.) and RT-
Abuse-Dtct(.) phases in § 3, § 4 and § 5, respectively.

3. ESTIMATION DETAILS
In the sequel, a user is defined as an entity that generates

average activity of a trusted human for a specific application
over a particular time period of length l. It is assumed
that cookie IDs in the log files temporarily identify trusted
users. Models of the average activity built from cookie IDs
are influenced by the noise of users sharing or frequently
clearing cookies. The log entries of one cookie ID may show
the activity of one or more users, or part of the activity of
one user. Thus, these cookie IDs do not perfectly represent
real users. This phenomenon is a part of the trusted user
activity, and is hard to separate from the log files.
Moreover, there is natural variance in the users’ activity

that can result in size estimation errors. However, this risk
is lower for large IPs, where the absolute estimation errors
are operationally more significant. The estimation error de-
creases as the IP traffic increases, as verified in § 3.4.
Next, two main classes for building models are presented:

the rate estimators (§ 3.1) and the features diversity estima-
tors (§ 3.2). Combining estimates is described in § 3.3.

3.1 The Rate Estimators Class
This class of estimators relies on the activity rate of an IP

to estimate the number of users behind it. For any activity,
if the trusted-user activity rate is verified to follow a Poisson
distribution, then from the properties of the distribution, the
size of an IP can be estimated based on its activity rate.
For a Poisson distribution with rate λ, the probability of

having k log entries from a single user within one period is

given by f(k, λl) = (λl)ke−λl

k!
. The sum of Poisson random

4We have defined egregious traffic as the traffic that was fil-
tered by another filter already deployed at Google. However,
as a guideline if this is the only deployed filter, egregious
traffic can be defined as the traffic filtered using a thresh-
old h times higher than the normal threshold for the size of
the source IP, where h > 1. Selecting h involves a trade-
off. As h increases, filtering abusive traffic is reduced, which
could later contribute to overestimating sizes of abusive IPs.
Building attacks slowly over time exploits this vulnerability.
As h decreases, the filter becomes less vulnerable, but pro-
duces more false positives since the estimation cycle becomes
less responsive to unforeseen legitimate changes in sizes.

Figure 2: The query rate distribution PDF.

variables with parameters λ1, . . . , λM is a Poisson random
variable with λ =

∑M
i=1 λi. For the estimated activity, the

average trusted-user rate, λm, can be used to estimate the
sizes of IPs. An IP with M users is expected to have a rate
of M ×λm. More formally stated, the Maximum Likelihood
Estimator (MLE) of the number of users behind an IP is
λIP

λm
, where λIP is the rate of activity of the IP.

To estimate the average unknown trusted-user rate of ac-
tivity, the straightforward way is to calculate the MLE of
λm, the average number of activity entries per trusted cookie
per time period. A more practical method that is less suscep-
tible to outliers is to construct the distribution of rates, and
use its median or mode as λm. An empirical c-confidence
interval on estimated size is given by [λIP

λhi

, λIP

λlo

], where c is

the fraction of the trusted users’ rates between λlo and λhi.
Taking the number of users who query Google as an ex-

ample, Fig. 2 shows the query rate distribution of ≈ 100M
highly trusted cookies5. A median of 7, and an interquartile
interval [λ0.25, λ0.75] of [3, 24] can be used for estimation.

3.2 The Features Diversity Estimators Class
This class of estimators builds a regression model of the

numbers of trusted cookies behind IPs, i.e., the baseline of
measured sizes, as related to the explanatory diversity of
their traffic feature(s). For example, after a linear model is
built of how themeasured sizes of IPs relates to their distinct
queries, the same model can then be used to estimate the
query size of any IP from its number of distinct queries.

The explanatory diversity of feature(s) can be quantified
in several ways. One simple way is counting its distinct
values in the IP traffic. More sophisticated ways include
calculating the perplexity and the compressibility of the se-
quence of the feature in the IP traffic. A feature, X (e.g.,
the query) in the traffic of an IP typically assumes several
values, x1, x2, . . . (all the possible query phrases). The per-

plexity of a feature is calculated as Perp(X, b) = bHb(p),
where b is some base and Hb(p) =

∑

x p(x) logb(
1

p(x)
) is the

entropy of the distribution of feature X in the IP traffic6.
A training sample of ≈ 10M IPs, was collected to build

a linear regression model of the number of users as related

5Due to the sensitive nature of the exact distribution, the
rate is scaled by an arbitrary constant.
6Perplexity was verified on several datasets to exhibit linear
relationship with the numbers of trusted cookie IDs behind
IPs (measured sizes). Entropy does not exhibit this quality.

(a) The distinct count of queries scattered with user
count.

(b) The perplexity of queries scattered with user
count.

Figure 3: The scatter plots of query diversity and the number of users.

to the query diversity quantified using distinct counting and
perplexity. The data used to build the regression model
for query sizes is plotted in Fig. 3. In Fig. 3, each circle
represents one, or multiple overlapping sampled IP(s). Each
circle shows the distinct number of trusted cookies querying
Google, and the distinct count (Fig. 3(a)) and perplexity
(Fig. 3(b)) of the queries issued by these trusted cookies7.
Because models are built from log files aggregated at the

level of IPs, and the overwhelming majority of IPs have very
few trusted cookies behind them, sampling noise can cause
issues. If a random training sample is selected, the few
IPs with large measured sizes, i.e, the IPs with numerous
trusted cookies, can be easily missed out. To avoid under-
representing IPs with large measured sizes, stratified sam-
pling is used [16]. IPs are bucketed into disjoint classes by
their measured sizes. The number of samples from each class
should represent this class in the global sample by the same
proportion of that class in the global IPs population.
From Figures 3(a) and 3(b), some observations can be

made about the stratified sample of IPs. First, the relation-
ship between the measured sizes, i.e, the number of trusted
cookies, and query diversity shows high heteroscedasticity.
That is, the variance of the measured sizes increases with
the distinct count (Fig. 3(a)) and perplexity (Fig. 3(b))
of queries. To build the model, instead of ordinary least
squares linear regression, quantile regression [8] is used8,
since it is less susceptible to outliers.
The second observation is the data density decreases al-

most exponentially as the explanatory diversity increases.
Using quantile regression to build the regression model on
all the data yields models whose accuracy highly favors the
dense areas of the low values of the explanatory diversity,

7Due to the sensitive nature of the exact distribution, the
x-axes of Fig. 3 are scaled, and the perplexity is calculated

with two bases, b1 6= b2, as Perp(X, b1, b2) = b
Hb2

(p)

1 .
8A q-quantile regression applied to a dataset fits a hyper-
plane that lies under roughly q of the points.

and demonstrates low accuracy bias towards IPs with large
measured size, where the accuracy is more critical. To build
an estimation model that does not strongly favor dense re-
gions, the high disparity in the data density should be nor-
malized by giving all values of the explanatory diversity
roughly the same weight. For a quantile, q, let the q-quantile-
curve be the set of the q-quantile points of themeasured sizes
across all values of the explanatory diversity on the x-axis.
Let the slopes of the lines that best fit the qlo-quantile-curve,
0.5-quantile-curve and qhi-quantile-curve be θqlo , θ0.5 and
θqhi

, respectively, and qhi−qlo = c. Then, the estimated size
of an IP whose explanatory diversity value is ρIP is ρIP ∗θ0.5;
the size of the IP is in the range [ρIP ∗ θqlo , ρIP ∗ θqhi

] with
confidence c.

For example, in Fig. 3, the quantile-curves of 0.2, 0.5 and
0.8, are plotted. Each point on the 0.5-quantile-curve in
Fig. 3(a) constitutes the median of the measured sizes on the
y-axis for its corresponding value of distinct query count on
the x-axis. The number of unique queries from an IP scaled
by θ0.5 is its estimated query size.

3.3 Combining Estimates
For each IP, individual estimates are calculated based on

its traffic rate and diversity, as discussed in § 3.1 and § 3.2.
Even more, these two classes of estimators produce multiple
individual estimates if the application has multiple “sub-
activities”. Taking the Google social network service as an
example, a user can do several sub-activities like updating
status, or sharing links. Each one of these sub-activities can
be used for size estimation based on its rate and diversity.

When building the estimation models, the individual esti-
mates are linear-regressed against the baseline of measured
sizes to calculate the combining weights that are later used
to calculate the overall estimated sizes when doing estima-
tion. The overall estimated sizes are expected to have higher
confidence and less error variance than any individual size
estimate; and should serve as a general purpose size for the
application whose activity is subject to estimation.

Preliminary filtering can be carried out at this stage. Since
each IP typically has multiple individual estimates, high
variance in these estimates is a strong signal for focusing
on a specific activity, which is usually abusive. For instance,
IPs that have noticeably high rates of issuing friend requests,
and uncommonly low rates of status updates could be sus-
picious. IPs with high variance in their individual estimates
are ignored when building the estimation models and have
their traffic tagged as abusive during the filtering phase. The
simplest method for setting a threshold on the variance is
to measure the variances of all the IPs, calculate the stan-
dard deviation of the variances, and set the threshold at 2
or 3 times the standard deviation. More robust methods for
setting this threshold are currently under investigation.

3.4 Gauging Estimation Accuracy

Figure 4: The estimated vs. measured query sizes.

Assessing the accuracy of the estimation process is done
by using the estimation models on a testing set that is differ-
ent from the training set. Only the traffic from the trusted
cookies are used to produce the overall estimated sizes of
the IPs in the testing set. These estimates are compared
against the baseline measured sizes, the number of trusted
cookies behind these IPs. For the purpose of modeling and
gauging accuracy, only the traffic from the trusted cookies
are used to produce the size estimates, and traffic from the
non-trusted cookies is ignored. However, in reality, all the
traffic is used to estimate the total number of users, and not
only the trusted cookies users.
The sizes and the 0.1, 0.5 and 0.9 quantile-curves are plot-

ted in Fig. 4 with logarithmic axes, where each circle rep-
resents one, or multiple overlapping IP(s). The line passing
though the point (1, 1) with slope 1 (drawn in black) repre-
sents perfect estimation. The median quantile-curve is al-
most overlapping with perfect estimation for estimates above
1, and 80% of the estimates are close to perfect estimation.
While from a statistical perspective it is undesirable to

have estimation accuracy biases, it was purposeful for larger
IPs, where the relative estimation errors are operationally
more significant, to be more accurate. To achieve that, the
sampling of the training IPs was stratified, and quantile re-
gression on the quantile-curves was used to fit the models.

4. PREDICTION DETAILS
As discussed in § 2, the estimates-tables produced by the

Est(.) phase over a window of size w are input to the Prd(.)
phase. To reduce the lookahead delay, the prediction algo-
rithm was developed with high focus on efficiency.

4.1 The Size Prediction Alternative Approaches
Predicting the size of every possible IP based on its previ-

ous size estimates is a gigantic web-scale time series analysis
problem.

Typically, a time series prediction is carried out by doing a
weighted average of the previous w values, where the weights
are usually calculated offline using regression analysis. This
is effective with time series with high autocorrelation where
the current state is a function of previous states and white
noise. This is customarily combined with smoothing, such
as moving averages, to reduce noise, yielding the commonly
known autoregressive moving average (ARMA) models [7].

Other alternatives for predicting sizes include nonpara-
metric regression, like Spline curves [6]. The accuracy of
these techniques depends largely on the number of itera-
tions used to fit some model. This computational cost is
still acceptable if the modeling is done offline.

There are several challenges with applying conventional
time series procedures for predicting sizes of IPs. First, the
time series of sizes are non-stationary. The time series of
each IP does not follow the same distribution over time due
to, among other factors, the reassignments of over 30% of the
dynamic IPs every one to three days [19]. Such abrupt and
unforeseen changes to sizes cause lack of stationarity, which
limits the application of some techniques, like ARMA.

The second and bigger challenge is the estimates of each
IP form a time series that should be analyzed to produce a
prediction for this IP. Given the high heterogeneity in the be-
havior of IPs according to numerous factors including their
assignments, time-zones and sizes, building a one-size-fits-all
predictive model based on a sample of IPs becomes imprac-
ticable. Therefore, a specialized and efficient prediction al-
gorithm is sought. While the time series literature does not
strictly apply to this problem, the PredictSizes algorithm,
described in § 4.4, employs some concepts from seasonal au-
toregressive integrated moving average (ARIMA) models.

At a high level, for each IP, PredictSizes predicts its size in
isolation based on its latest w size estimates. For each IP, the
PredictSizes algorithm performs three main functions. First,
it analyzes the periodicity of the size estimates, since it has
been consistently observed that the activity of IPs is periodic
(§ 4.2). Second, for each periodicity, PredictSizes analyzes
a sliding window of estimates and seeks their representative
stable size by doing iterative variance reduction until the
estimates lie within an acceptable confidence interval (§ 4.3).
Third, it combines the estimates of all periodicities.

4.2 Considering Multiple Size Periodicities
Considering the periodicity of IP activity is imperative.

Periodicities of the sizes of the IPs were discovered by select-
ing a sample of IPs, and applying Discrete Fourier Trans-
form to each. The terms with the highest coefficients are
the periodicities used by the PredictSizes algorithm [3]. For
the vast majority of IPs, most of their sizes were noticed to
have diurnal and weekly periodicities. These periodicities
were especially clear for the IPs of school districts and large
institutes, as informed by the Whois databases [18].

PredictSizes fetches the estimates of several periodicities,
e.g., diurnal and weekly, for each IP to produce its predic-
tion. For n periodicities, s1 < s2 < · · · < sn, PredictSizes
considers the most recent wi estimates si periods apart, for
1 ≤ i ≤ n. For example, to estimate the sizes of IPs in six
hours with all the sliding windows having length 10, s1 = 1,
s2 = 4 and s3 = 28, PredictSizes is considering the last
10 six-hour contiguous estimates, as well as the same-slot
estimates of the last ten days and the last ten weeks.

4.3 Iterative Variance Reduction
PredictSizes deals with the sizes time series of each period-

icity of each IP in isolation. It then combines the predictions
from all the periodicities of an IP as discussed in § 4.4.
For time series predictions, it is typical to do simple trend

analysis using simple linear regression with time as the ex-
planatory dimension to show consistent increase or decrease
over time (allowing for some white noise) [7]. The trend
is then used for extrapolation. However, based on analy-
sis of numerous IPs, time series of size periodicities almost
never show strong trends within the window of estimates
used for predictions. Moreover, using trend analysis hurts
IPs that have drastic size change, since false trends result in
erroneous predictions. Hence, PredictSizes assumes a stable
value for each periodicity time series. The stable value, the
representative statistic on the time series, is calculated using
the StableSize function and is produced as the prediction.
For simplicity, the StableSize algorithm deals with each

periodicity time series as a set. For each time series, Stable-
Size does iterative variance reduction by removing outlier
estimates that contribute the most to the variance until the
ratio of the width of the confidence interval to the mean
falls below a specific bound. The truncated mean of the
remaining sizes is declared the stable size of this time series.
At each iteration, StableSize calculates the standard de-

viation, mean and the width of the c-confidence interval on
the mean of the time series. The element that contributes
the most to the variance is the farthest from the mean. This
element can be identified in constant time by checking which
of the maximum and the minimum elements are farther from
the set mean and deleting it in each iteration. Each time an
extreme element is deleted, the new mean and variance are
incrementally accurately updated in constant time [17]. The
most costly process is then identifying the extreme elements,
which can be done efficiently using a minmax heap.
The algorithm fails if the time series exhibits little stabil-

ity, due to abrupt size changes or due to the weakness of
this periodicity compared to others. It bails out once the
fraction of the discarded elements exceeds some threshold.

4.4 The PredictSizes Algorithm
Since PredictSizes deals with each periodicity of each IP

separately, it can be massively parallelized using the Mapre-
duce framework [14], as the size estimates are stored in files
sharded by the period IDs and IPs. The algorithm combines
all the stable sizes of all the periodicities using a Combiner
function that also does sanity checks on the predicted sizes.
The main factor that influences the choice of the Combiner

is the loss function of the predictions, which is application-
dependent. In its simplest form, a Combiner can be a simple
statistic, such as the mean, truncated mean, median, max or
min. For instance, when sizes are used for service optimiza-
tion, the mean statistic minimizes the expected loss under

the mean squared error loss function. Another alternative
for Combiner functions is using a weighted average of the
stable sizes, where the weights are inversely proportional to
the fraction of size outliers (extreme estimates) discarded by
the StableSize function for each periodicity. More involved
analysis entails doing a regression of the size estimates of a
particular period (as the expected predicted size) as related
to the stable sizes from individual periodicities (as explana-
tory sizes(s)). However, such a regression-based Combiner
can be easily influenced by the heterogeneity of IPs discussed
in § 4.1, such as time-zones.

The Combiner algorithm ensures that the predicted size
agrees with the stable sizes of all the periodicities. A simple
solution was implemented that does two sanity checks. First,
it checks that the predicted size is within some factor of the
stable size for each periodicity. Second, it checks that the
predicted size is within a specific quantile range of all the
stable sizes. If the predicted size does not conform to the
Combiner sanity check, the IP is deemed unstable, and no
predicted size is produced for it. In our experiments, these
simple sanity checks proved to be very effective in detecting
abrupt legitimate size changes early on, and hence reducing
the false positives caused by over-filtering legitimate traffic.

4.5 Evaluating Predictions
To evaluate the proposed predictions algorithm, an exper-

iment was run on three months worth of query data log files.
Two metrics were measured. The first metric is, for every
period p, the agreement of the predicted sizes of the IPs with
their estimated sizes during p (§ 4.5.1). The second metric
is the coverage, the ratio of IPs in the traffic in period p that
had predictions (§ 4.5.2).

4.5.1 Prediction Accuracy
To assess the prediction accuracy, a random sample of

10M IPs was collected. The relative ratio, predicted size /
estimated size, is shown in Fig. 5, where each circle repre-
sents one, or multiple overlapping IP(s).

Figure 5: The relative ratio in predicting query sizes

by the estimated sizes.

98% of the absolute errors are between −4 and 2, and
54% of the predictions are exact. The mean absolute error

Figure 6: The CDF of a given number of clicks from

a given number of users in red lines. The empiri-

cal CDF of a given number of clicks from a given

estimated number of users in blue.

is −0.149. All the quantiles with a step of 0.001 were cal-
culated. The topmost four 0.001 quantiles are 5282, 5, 4
and 3, and the bottommost quantiles are −6870, −12, −8,
−7. Based on Whois databases, the IPs that caused the
largest absolute errors belonged to large commercial ISPs
with several netblocks and diverse customer bases. These
IPs probably changed sizes due to reassignment.
From Fig. 5, among all the predicted sizes, 98% were

within a factor of 2 of the estimated size. The topmost four
0.001 quantiles of the relative ratios were 5283, 4, 4 and 3,
and the bottommost quantiles were 0.2, 0.4, 0.4 and 0.44.
Since the largest relative ratio was as high as 5283, it was

concerning that reassignments of IPs and flash crowds can
result in predicted sizes that are significantly smaller than
the estimated sizes. The IP-period instances9 showing this
behavior in these three months were counted. No IP showed
this behavior for more than 2 periods, owing to the 2 period
lookahead delay discussed in the framework cycle (§ 2) and
the Combiner algorithm sanity checks (§ 4.4). Only 33 IP-
period instances, , composed of 21 IP’s, had a relative ratio
greater than 500. Some IP’s spanned 2 periods. Only≈ 4700
IP-period instances from only≈ 3000 IPs had a relative ratio
greater than 100. These anomalies are very insignificant
compared to the number of IPs observed over three months.
The relative ratio is broken down by the estimated sizes

in Fig. 5. The comparisons of measured vs estimated sizes
are quantitatively similar to the comparisons of estimated vs
predicted sizes. The line that passes through the y-axis point
1 with slope 0 represents perfect predictions. Clearly, the
median quantile-curve is almost overlapping with the perfect
predictions line for medium and large values of estimated
sizes. In addition, 80% of the predictions lie in the vicinity
of perfect predictions. Most importantly, the accuracy of the
predictions increases as the estimated size increases, where
the accuracy is more operationally desired.

4.5.2 Predictions Coverage
For predictions to be effective, they should have high cov-

erage, i.e., a high ratio of the IPs in the traffic have predic-

9An IP-period instance is the size of one IP in one period.

tions. There are several factors that contribute to the pre-
dictions coverage, such as the stability of the estimated sizes
of the IPs, the diversity of the IPs that visit the application
provider, the length of the estimation period and the length
of the sliding windows of estimates used for prediction.

The coverage of the three-month experiments dropped be-
low 95% on two days, and never dropped below 93%. The
coverage of the click sizes was also examined. The click-
coverage averaged around 65%, and never dropped below
61%. Since the number of queries is at least one order of
magnitude more than the clicks, the query traffic is expected
to come from more IPs, which better cover the IP space than
the click traffic. Hence, the probability any IP generates
traffic on two distinct IP-period is higher for queries than
clicks, which explains the higher query-coverage.

5. THRESHOLD-BASED FILTERING
Thanks to the high accuracy and coverage of the estima-

tion and prediction phases discussed in § 3 and § 4, respec-
tively, a threshold-based traffic filter, RT-Abuse-Dtct(.), was
built based on the predicted sizes of the IPs. The ad click
filter built at Google caps the number of clicks per IP at a
specific threshold and filters any extra clicks.

5.1 Selecting the Filtering Threshold
The distribution of the number of trusted users (cook-

ies) who generate N traffic log entries per period is reused
when setting the filtering thresholds. Normalizing this dis-
tribution yields the PDF of the number of entries from the
average trusted user. This PDF is convolved with itself M
times to get the distribution of the number of entries from
M users10. This distribution is then numerically integrated
to produce a CDF of the number of entires from M users.

For the application of ad click filtering, the number of
trusted users who click N times per period is used. The
shape of this distribution is extremely similar to the cor-
responding query distribution in Fig. 2. The CDF contour
lines for the 0.8, 0.9, 0.99 and 0.999 quantiles were calculated
and are plotted in Fig. 6 in red for 1 ≤ M ≤ 10K. The q-
quantile-curve at size M indicates the number of clicks M
trusted users should not exceed with probability q. For in-
stance, from Fig. 6, 99% of the IPs with an estimated size
of 2000 should generate clicks less than ≈ 148011. Using a
q-quantile-curve as the threshold, only 1− q of IPs with any
given size have their clicks filtered. Therefore, q can be set
based on how aggressive the filter is designed to be.

To check the combined accuracy of the estimation and
prediction phases, the numbers of clicks from IPs with pre-
dicted sizes were analyzed. A sample of 1M IPs were se-
lected at random, and their numbers of clicks are plotted in
Fig. 6 with the 0.99-quantile-curve plotted in blue. Com-
paring the red and blue curves in Fig. 6 shows the theoreti-
cal and the empirical calculations of the 0.99-quantile-curve
agree. This proves the accuracy of the proposed framework
and the threshold selection mechanism.

Notice that while models exclusively built from the traf-
fic of trusted users may be biased, reusing the distribution
of the activity of the trusted users to select the filtering

10This convolution is done by performing Fast Fourier Trans-
form (FFT) on the single-user distribution, raising the result
to the M th power, and taking the inverse FFT.

11The number of clicks is scaled by an arbitrary constant.

threshold mitigates such bias. Practically, both modeling
and traffic filtering are done in the domain of trusted users.

5.2 Filter Evaluation
A sensitivity analysis on the parameter q was carried out.

The value of q was varied and the filtered traffic as well
as the false positives were measured. For the purpose of
this paper, the false positives are calculated as the ratio of
conversion rate from the tagged clicks to the conversion rate
from all the ad traffic12. A conversion is a trusted post-
click activity, like a purchase from the advertisers. While
conversions are useful for evaluating filters, they are less
useful for directly detecting fraud in real time, since they
are scarce and delayed events.
When q was set to 0.999, the filtering rate was significantly

higher than 1 − q. Most of the filtered traffic entries were
false positives. As q approached 0.99, the filtering rate was
slightly higher than 1− q, with a low ratio of false positives.
While the absolute number of false positives did not de-
crease as q decreased, the ratio of the false positives to the
filtered traffic dropped drastically. As q approached 0.95,
both the absolute number of false positives and their ra-
tio to the filtered traffic increased quickly due to aggressive
filtering. Hence, the threshold quantile was set at 0.99.
The discovered false positives were consistently due to un-

foreseen reassignments of IPs and flash crowds. For instance,
the top 10 IPs causing false positives had predicted sizes
significantly smaller than their estimated sizes. These false
positives were reduced significantly by detecting abrupt le-
gitimate size changes early on using the prediction sanity
checks discussed in § 4.4.
The overlap between proposed filters and existing filters

is a useful metric customarily measured at Google. Multi-
ple filtering layers provide defense in depth against abuse.
Among the first 50M clicks tagged by the filter, 99.55% of
them overlapped with other filters. While the marginal gain
of this filter is small, the filter is highly valuable as a very
accurate safety net and as a verifier of other filters.
The false negatives, the clicks tagged only by other filters,

decreased monotonically with q. Most of the false negatives
occurred due to two reasons: botnet attacks with few clicks
per IP, and attacks from IPs with no predicted sizes. To ad-
dress the first reason, we are currently generalizing this filter
to multi-dimensions. We are investigating thresholds on the
number of clicks per IP across some dimension(s), such as
the query term. This allows for setting tighter thresholds at
a finer granularity. For the second reason of false negatives,
we analyzed the coverage of the predicted click sizes. While
the coverage of the predicted click sizes was around 65%, the
number of clicks whose IPs had predicted sizes was roughly
78% due to the non-uniform distribution of the number of
clicks from different IPs. To increase the recall of the filter,
we are currently evaluating using a default high threshold
for IPs with no predicted sizes.
The filter was deployed on all the ad traffic at Google,

and had a significant recall of all the clicks tagged by all
the filters. Analyzing and monitoring the filtered traffic of
the deployed filters is customary at Google to retune the
thresholds based on the natural changes in global traffic pat-
terns. Among these 50M clicks, the rate of false positives
was ≈ 1.4%, which surpasses many other deployed filters.

12A significant ratio of advertisers share conversion informa-
tion with Google.

For the sake of comparison, we simulated a näıve filter that
does not consider the sizes of the IPs. It tags clicks from
IPs based on a fixed threshold. It was difficult to force the
näıve filter to have exactly the same recall of the developed
filter. However, to achieve comparable recall, the threshold
of the näıve filter had to be set for aggressive tagging, which
yielded a false positive rate of 37%.

6. RELATED WORK
To the best of our knowledge, this is the first work that

mines Internet traffic to estimate sizes of IPs. This work
complements the prior work on the dynamics of IPs and
classifying them [2, 4, 5, 9]. Only some of the recent work
on combating abusive traffic based on the source IPs [1, 10,
11, 13, 15, 19, 20] have considered the nature of IPs, e.g.,
the rate of reassignment, but not the sizes of IPs.

The work that is most related to estimating sizes of IPs
deals with counting the hosts behind NAT devices [2, 4, 9,
12]. Bellovin presented a technique for counting the hosts
behind a NAT using the IPid field in [2]. The technique re-
lies on the host operating system sequentially incrementing
the IPid field for each successive packet. Hence, the number
of unique IPid streams from a specific IP can be used as an
estimate of the number of hosts. This technique is limited by
the resolution of the IPid field. Even more, the IPid field is
not incremented sequentially in modern operating systems.
Furthermore, in the measurements reported in [4], less than
5% of the sampled NATs sent multiple IPid streams.

The focus of [4] was identifying middle-boxes and clas-
sifying them as NAT devices and Proxies by learning the
internal IPs of the hosts using active web content. However,
this technique underestimates the sizes by the ratio of users
not collaborating with the research effort. It also fails if a
NAT box has a hierarchy of NAT devices behind it, where
collisions, and hence under-estimation can happen.

In [9], Kohno et al. investigated using clock skews for
identifying hosts behind NAT devices, where the clock skew
is the ratio of the actual clock frequency to the nominal
one. Typically, the clock skew of a host is stable within 1-2
µs/s. Given that the difference between the clock skews of
different hosts goes up to 50 µs/s, hosts can be fingerprinted
by their clock skews. The number of hosts behind a NAT
device can then be passively estimated by counting distinct
fingerprints from this NAT device. However, the accuracy
of this technique is highly limited by the collisions between
clock skew identities. For instance, [12] could only extract
4-6 bits of host identification using clock skews.

This work is different in scope, goal and methodology
from these in [2, 4, 9]. The proposed techniques are not
restricted to NAT devices to achieve high IP coverage. The
proposed framework neither probes machines for pseudo-
identification, nor does it deploy active content, which can
be intrusive, and is hence worrisome for some users. The
goal of this work is filtering abusive traffic according to the
source IPs, while preserving the user privacy.

7. CONCLUSION
This paper is an example of how to mine traffic at an

aggregate level in order to balance combating abusive traffic
and preserving user privacy. It shares our experience:

1. building statistical models for estimating the number
of application users behind IPs,

2. devising a sizes prediction algorithm, and

3. setting traffic thresholds based on the predicted sizes.

The framework has been deployed on Google live traffic
for combating click fraud. While sharing this new framework
could be inspiring, details of the signals and parameters used
were concealed to preserve their effectiveness.
The proposed framework is general, and can be applied to

a wide spectrum of applications to estimate a population of
users who are not permanently identified. The framework
only assumes the existence of a body of trusted users, whose
activities are used to build models for size estimation. These
models are known only to the application/service providers.
When applied for abuse detection, the framework leverages
such knowledge to give an advantage to the providers over
the attackers in the arms race. The traffic filtering is also
general, since most of the filtering is threshold-based, and is
hence agnostic to the traffic nature.
Our future work focuses on applying the framework to

more types of abuse, such as excessive service sign-ups, which
have less traffic and lower coverage in the IP space. One ap-
proach being explored is using IP classification techniques [5,
19, 20] to improve the filtering coverage in the lack of high
IP space coverage in the traffic. In addition, we are cur-
rently exploring other more sophisticated abuse detection
and combating approaches that compare how the distribu-
tion of sizes of IPs per entity, e.g., the query term, to the
aggregate background distribution of sizes of IPs.

Acknowledgment
We thank Adel El-Atawy, Adrian Isles, Amgad Zeitoun,
Algis Rudys, Christos Faloutsos, John Hawkins, Kourosh
Gharachorloo, Michael McNally, Mohamed Elfeky and the
rest of the ad traffic quality team for the useful discussions
and help with the deployment.

8. REFERENCES
[1] D. Anderson, C. Fleizach, S. Savage, and G. Voelker.

Spamscatter: Characterizing Internet Scam Hosting
Infrastructure. In Proceedings of the 16th USENIX Security
Symposium, pages 135–148, 2007.

[2] S. Bellovin. A Technique for Counting NATted hosts. In
Proceedings of the 2nd ACM SIGCOMM IMW Workshop on
Internet measurment, pages 267–272, 2002.

[3] P. Bloomfield. Fourier Analysis of Time Series: An
Introduction. Wiley-IEEE, 2004.

[4] M. Casado and M. Freedman. Peering Through the Shroud:
The Effect of Edge Opacity on IP-Based Client Identification.
In Proceedings of the 4th ACM/USENIX NSDI Symposium
on Networked Systems Design and Implementation, pages
173–186, 2007.

[5] M. Freedman, M. Vutukuru, N. Feamster, and H. Balakrishnan.
Geographic Locality of IP Prefixes. In Proceedings of the 5th
ACM SIGCOMM IMC Conference on Internet Measurement,
pages 13–13, 2005.

[6] J. Friedman. Multivariate Adaptive Regression Splines. Annals
of Statistics, 19(1), 1991.

[7] J. Hamilton. Time series analysis. Princeton University Press,
illustrated edition, 1994.

[8] R. Koenker and K. Hallock. Quantile Regression. Journal of
Economic Perspectives, 15(4):143–156, 2001.

[9] T. Kohno, A. Broido, and K. Claffy. Remote Physical Device
Fingerprinting. In Proceedings of the 26th IEEE S&P
Symposium on Security and Privacy, pages 211–225, 2005. An
extended version appeared in the IEEE Transactions on
Dependable and Secure Computing, 2(2):93–108, 2005.

[10] A. Metwally, D. Agrawal, and A. El Abbadi. DETECTIVES:
DETEcting Coalition hiT Inflation attacks in adVertising
nEtworks Streams. In Proceedings of the 16th WWW

International World Wide Web Conference, pages 241–250,
2007.

[11] A. Metwally, F. Emekçi, D. Agrawal, and A. El Abbadi.
SLEUTH: Single-pubLisher attack dEtection Using correlaTion
Hunting. Proceedings of the VLDB Endowment,
1(2):1217–1228, 2008.

[12] S. Murdoch. Hot or Not: Revealing Hidden Services by their
Clock Skew. In Proceedings of the 13th ACM CCS conference
on Computer and Communications Security, pages 27–36,
2006.

[13] T. Peng, C. Leckie, and K. Ramamohanarao. Proactively
Detecting Distributed Denial of Service Attacks Using Source
IP Address Monitoring. In Proceedings of the 3rd International
IFIP-TC6 Networking Conference, pages 771–782, 2004.

[14] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan.
Interpreting the Data: Parallel Analysis with Sawzall.
Scientific Programming, 13(4):277–298, 2005.

[15] A. Ramachandran, N. Feamster, and S. Vempala. Filtering
Spam with Behavioral Blacklisting. In Proceedings of the 14th
ACM CCS Conference on Computer and Communications
Security, pages 342–351, 2007.

[16] G. Snedecor and W. Cochran. Statistical Methods. Wiley, John
& Sons, Incorporated, eighth edition, 1991.

[17] D. West. Updating Mean and Variance Estimates: An Improved
Method. Communications of the ACM, 22(9):532–535, 1979.

[18] Whois.net. Domain Research Tool. http://www.whois.net.

[19] Y. Xie, F. Yu, K. Achan, E. Gillum, M. Goldszmidt, and
T. Wobber. How Dynamic are IP Addresses? In Proceedings of
the 22nd ACM SIGCOMM Conference on Applications,
Technologies, Architectures, and Protocols for Computer
Communications, pages 301–312, 2007.

[20] L. Zhuang, J. Dunagan, D. Simon, H. Wang, and J. Tygar.
Characterizing Botnets from Email Spam Records. In
Proceedings of the 1st Usenix LEET Workshop on
Large-Scale Exploits and Emergent Threats, pages 1–9, 2008.

APPENDIX

A. CYCLE ENHANCEMENTS
Some enhancements are applicable to the basic cycle in § 2

to reduce the lookahead delay introduced by the estimation
phase. First, we introduce Estd(p) that divides the periods
into d sub-periods, p1, . . . , pd of length l

d
. Hence, prelimi-

nary processing can be done once a sub-period ends, and the
intermediary results from all the d sub-periods can be com-
bined together into estimates-tablep. The lower bound on

the lookahead delay is hence reduced from l
(

1 +
⌈

|Est(.)|+|Prd(.)|
l

⌉)

to l + (l/d)
⌈

|Estd(.)|+|Prd(.)|
(l/d)

⌉

13.

The estimation period can also be defined as a sliding
window over sub-periods. Hence, d − 1 sub-periods would
be shared by any two consecutive periods. This amortizes
the preliminary processing on several cycles. As d increases,
Estd(.) is expected to run in less time than Est(.) as long as
the benefits of producing preliminary results and amortizing
their processing outweigh the cost of combining them.

The main advantage of the sliding window model is pro-
ducing estimates roughly d times more frequently than the
basic cycle. Let PrelimEstd(.) be the preliminary processing
of any sub-period, and Combd(.) be the combining of d the
sub-periods results, then the sliding window model reduces

the lookahead delay to (l/d)
(

1 +
⌈

|PrelimEstd(.)|+|Combd(.)|+|Prd(.)|
(l/d)

⌉)

.

Therefore, for low traffic-volume applications, l can be in-
creased proportionally to produce sound estimates frommore
traffic. Experimentation is needed to set the value of l and d
based on the IPs’ coverage in the traffic, and the processing
power available.

13Each process run time is assumed consistent over time.

