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Browser Security:  
Lessons from Google Chrome

Google Chrome developers focused on three key problems to shield the browser from attacks. 

Charles Reis, Google; Adam Barth, UC Berkeley ; Carlos Pizano, Google 

The Web has become one of the primary ways people interact with their computers, connecting 
people with a diverse landscape of content, services, and applications. Users can find new and 
interesting content on the Web easily, but this presents a security challenge: malicious Web-site 
operators can attack users through their Web browsers. Browsers face the challenge of keeping their 
users safe while providing a rich platform for Web applications. 

Browsers are an appealing target for attackers because they have a large and complex trusted 
computing base with a wide network-visible interface. Historically, every browser at some point has 
contained a bug that let a malicious Web-site operator circumvent the browser’s security policy and 
compromise the user’s computer. Even after these vulnerabilities are patched, many users continue 
to run older, vulnerable versions.5 When these users visit malicious Web sites, they run the risk of 
having their computers compromised. 

Generally speaking, the danger posed to users comes from three factors, and browser vendors can 
help keep their users safe by addressing each of these factors: 
•  The severity of vulnerabilities. By sandboxing their rendering engine, browsers can reduce the 

severity of vulnerabilities. Sandboxes limit the damage that can be caused by an attacker who 
exploits a vulnerability in the rendering engine. 

•  The window of vulnerability. Browsers can reduce this window by improving the user experience 
for installing browser updates, thus minimizing the number of users running old versions that lack 
security patches. 

•  The frequency of exposure. By warning users before they visit known malicious sites, browsers can 
reduce the frequency with which users interact with malicious content. 
Each of these mitigations, on its own, improves security. Taken together, the benefits multiply and 

help keep users safe on today’s Web. 
In this article, we discuss how our team used these techniques to improve security in Google 

Chrome. We hope our first-hand experience will shed light on key security issues relevant to all 
browser developers. 

REDUCING VULNERABILITY SEVERITY 
In an ideal world, all software, including browsers, would be bug-free and lack exploitable 
vulnerabilities. Unfortunately, every large piece of software contains bugs. Given this reality, we 
can hope to reduce the severity of vulnerabilities by isolating a browser’s complex components and 
reducing their privileges. 

Google Chrome incorporates several layers of defenses to protect the user from bugs, as shown in 
figure 1. Web content itself is run within a JavaScript virtual machine, which acts as one form of a 
sandbox and protects different Web sites from each other. We use exploit barriers, such as address-
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space layout randomization, to make it more diffi cult to exploit vulnerabilities in the JavaScript 
sandbox. We then use a sandbox at the operating-system level to limit the process itself from causing 
damage, even if exploits escape the earlier security mechanisms. In this section, we discuss in more 
detail how these layers of defense are used. 

SECURITY ARCHITECTURE 

Google Chrome uses a modular architecture that places the complex rendering engine in a low-
privilege sandbox, which we discuss in depth in a separate report.1 Google Chrome has two major 
components that run in different operating-system processes: a high-privilege browser kernel and a 
low-privilege rendering engine. The browser kernel acts with the user’s authority and is responsible 
for drawing the user interface, storing the cookie and history databases, and providing network 
access. The rendering engine acts on behalf of the Web principal and is not trusted to interact with 
the user’s fi le system. The rendering engine parses HTML, executes JavaScript, decodes images, 
paints to an off-screen buffer, and performs other tasks necessary for rendering Web pages. 

To mitigate vulnerabilities in the rendering engine, Google Chrome runs rendering-engine 
processes inside a restrictive operating-system-level sandbox (see fi gure 1). The sandbox aims to 
prevent the rendering engine from interacting with other processes and the user’s operating system, 
except by exchanging messages with the browser kernel via an IPC channel. All HTTP traffi c, 
rendered pages, and user input events are exchanged via such messages. 

To prevent the rendering engine from interacting with the operating system directly, our 
Windows implementation of the sandbox runs with a restricted Windows security token, a separate 
and invisible Windows desktop, and a restricted Windows job object.12 These security mechanisms 
block access to any fi les, devices, and other resources on the user’s computer. Even if an attacker 
is able to exploit a vulnerability and run arbitrary code in the rendering engine, the sandbox will 
frustrate the attacker’s attempts to install malware on the user’s computer or to read sensitive fi les 
from the user’s hard drive. The attacker’s code could send messages to the browser kernel via the IPC 
channel, but we aim to keep this interface simple and restricted. 

Getting existing code bases such as rendering engines to work fully within this type of sandbox 
sometimes presents engineering challenges. For example, the rendering engine typically loads 
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font files directly from the system’s font directory, but our sandbox does not allow such file access. 
Fortunately, Windows maintains a system-wide memory cache of loaded fonts. We can thus load any 
desired fonts in the browser-kernel process, outside the sandbox, and the rendering-engine process is 
then able to access them from the cache. 

There are a number of other techniques for sandboxing operating-system processes that we could 
have used in place of our current sandbox. For example, Internet Explorer 7 uses a “low rights” 
mode that aims to block unwanted writes to the file system.4 Other techniques include system-call 
interposition (as seen recently in Xax2) or binary rewriting (as seen in Native Client14). Mac OS X 
has an operating system-provided sandbox, and Linux processes can be sandboxed using AppArmor 
and other techniques. For Windows, we chose our current sandbox because it is a mature technology 
that aims to provide both confidentiality and integrity for the user’s resources. As we port Google 
Chrome to other platforms such as Mac and Linux, we expect to use a number of different 
sandboxing techniques but keep the same security architecture. 

EXPLOIT MITIGATION 

Google Chrome also makes vulnerabilities harder to exploit by using several barriers recommended 
for Windows programs.8 These include DEP (data execution prevention), ASLR (address space layout 
randomization), SafeSEH (safe exception handlers), heap corruption detection, and stack overrun 
detection (GS). These are available in recent versions of Windows, and several browsers have adopted 
them to thwart exploits. 

These barriers make it more difficult for attackers to jump to their desired malicious code when 
trying to exploit a vulnerability. For example, DEP uses hardware and operating-system support 
to mark memory pages as NX (non-executable). The CPU enforces this on each instruction that it 
fetches, generating a trap if the instruction belongs to an NX page. Stack pages can be marked as 
NX, which can prevent stack overflow attacks from running malicious instructions placed in the 
compromised stack region. DEP can be used for other areas such as heaps and the environment block 
as well. 

Stack overrun detection (GS) is a compiler option that inserts a special canary value into each 
stack call between the current top of the stack and the last return address. Before each return 
instruction, the compiler inserts a check for the correct canary value. Since many stack-overflow 
attacks attempt to overwrite the return address, they also likely overwrite the canary value. The 
attacker cannot easily guess the canary value, so the inserted check will usually catch the attack and 
terminate the process. 

Sophisticated attacks may try to bypass DEP and GS barriers using known values at predictable 
addresses in the memory space of all processes. ASLR, which is available in Windows Vista and 
Windows 7, combats this by randomizing the location of key system components that are mapped 
into nearly every process. 

When used properly, these mechanisms can help prevent attackers from running arbitrary code, 
even if they can exploit vulnerabilities. We recommend that all browsers (and, in fact, all programs) 
adopt these mitigations because they can be applied without major architectural changes. 

COMPATIBILITY CHALLENGES

One of the major challenges for implementing a security architecture with defense in-depth is 
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maintaining compatibility with existing Web content. People are unlikely to use a browser that 
is incompatible with their favorite Web sites, negating whatever security benefit might have been 
obtained by breaking compatibility. For example, Google Chrome must support plug-ins such as 
Flash Player and Silverlight so users can visit popular Web sites such as YouTube. These plug-ins 
are not designed to run in a sandbox, however, and they expect direct access to the underlying 
operating system. This allows them to implement features such as full-screen video chat with access 
to the entire screen, the user’s webcam, and microphone. Google Chrome does not currently run 
these plug-ins in a sandbox, instead relying on their respective vendors to maintain their own 
security. 

Compatibility challenges also exist for using the browser’s architecture to enforce the same-
origin policy, which isolates Web sites from each other. Google Chrome generally places pages from 
different Web sites into different rendering-engine processes,11 but it can be difficult to do this in 
all cases, as is necessary for security. For example, some frames may need to be rendered in different 
processes from their parent page, and some JavaScript calls need to be made between pages from 
different origins. For now, Google Chrome sometimes places pages from different origins in the same 
process. Also, each rendering-engine process has access to all of the user’s cookies, because a page 
from one origin can request images, scripts, and other objects from different origins, each of which 
may have associated cookies. As a result, we do not yet rely on Google Chrome’s architecture to 
enforce the same-origin policy. 

Recently, some researchers have experimented with browsers (such as OP7 and Gazelle13) that do 
attempt to enforce the same-origin policy by separating different origins into different processes 
and mediating their interaction. This is an exciting area of research, but challenges remain that 
need to be overcome before these designs are sufficiently compatible with the Web. For example, 
supporting existing plug-ins and communication between pages is not always straightforward in 
these proposals. As these isolation techniques improve, all browsers will benefit. 

REDUCING THE WINDOW OF VULNERABILITY
Even after we have reduced the severity of vulnerabilities, an exploit can still cause users harm. For 
example, a bug might let a malicious Web-site operator circumvent the same-origin policy and read 
information from other Web sites (such as e-mail). To reduce the danger to users, Google Chrome 
aims to minimize the length of time that users run unpatched versions of the browser. We pursue 
this goal by automating our quality-assurance process and updating users with minimal disruption 
to their experience. 

AUTOMATED TESTING 

After a vulnerability is discovered, the Google Chrome team goes through a three-step process before 
shipping a security patch to users: 
1.  The on-duty security sheriff triages the severity of the vulnerability and assigns an engineer to 

resolve the issue.
2.  The engineer diagnoses the root cause of the vulnerability and writes a patch to fix the bug. Often 

security patches are as simple as adding a missing bounds check, but other patches can require 
more extensive surgery.
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3.  The patched binary goes through a quality assurance process to ensure that (a) the issue is actually 
fixed; and (b) the patch has not broken other functionality. 
For a software system as complex as a Web browser, step 3 is often a bottleneck in responding 

to security issues, because testing for regressions requires ensuring that every browser feature is 
functioning properly. 

The Google Chrome team has put significant effort into automating step 3 as much as possible. 
The team has inherited more than 10,000 tests from the WebKit project that ensure the Web 
platform features are working properly. These tests, along with thousands of other tests for browser-
level features, are run after every change to the browser’s source code. 

In addition to these regression tests, browser builds are tested on 1 million Web sites in a virtual-
machine farm called ChromeBot. ChromeBot monitors the rendering of these sites for memory 
errors, crashes, and hangs. Running a browser build through ChromeBot often exposes subtle race 
conditions and other low-probability events before shipping the build to users. 

SECURITY UPDATES 

Once a build has been qualified for shipping to users, the team is still faced with the challenge of 
updating users of older versions. In addition to the technical challenge of shipping updated bits 
to every user, the major challenge in an effective update process is the end-user experience. If the 
update process is too disruptive, users will defer installing updates and continue to use insecure 
versions.5 

Google Chrome uses a recently open-sourced system called Omaha to distribute updates.6 Omaha 
automatically checks for software updates every five hours. When a new update is available, a 
fraction of clients are told about it, based on a probability set by the team. This probability lets 
the team verify the quality of the release before informing all clients. When a client is informed 
of an update, it downloads and installs the updated binary in a parallel directory to the current 
binary. The next time the user runs the browser, the older version defers to the newer version.

This update process is similar to that for Web applications. The user’s experience is never 
disrupted, and the user never has to wait for a progress bar before using the browser. In practice, 
this approach has proven effective for keeping users up to date. A recent study of HTTP User-Agent 
headers in Google’s anonymized logs reveals how quickly users adopt patched versions of various 
browsers.3 We reproduce their results in figure 2. In these measurements, Google Chrome’s auto-
update mechanism updates the vast majority of its users in the shortest amount of time, as compared 
with other browsers. (Internet Explorer is not included in these results because its minor version 
numbers are not reported in the User-Agent header.) 

REDUCING FREQUENCY OF EXPOSURE
Even with a hardened security architecture and a small window of vulnerability, users face risks 
from malicious Web-site operators. In some cases, the browser discourages users from visiting known 
malicious Web sites by warning users before rendering malicious content. Google Chrome and other 
browsers have taken this approach, displaying warning pages if a user tries to visit content that has 
been reported to contain malware or phishing attempts. Google works with StopBadware.org to 
maintain an up-to-date database of such sites, which can be used by all browsers. 

One challenge with using such a database is protecting privacy. Users do not want every URL they 
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visit reported to a centralized service. Instead, the browser periodically downloads an effi cient list of 
URL hashes without querying the service directly. To reduce the space required, only 32-bit prefi xes 
of the 256-bit URL hashes are downloaded. This list is compared against a list of malicious sites. If a 
match is found for a prefi x, the browser queries the service for the full 256-bit hashes for that prefi x 
to perform a full comparison. 

Another challenge is minimizing false positives. Google and StopBadware.org have tools to help 
publishers remove their pages from the database if they have been cleaned after hosting malware. 
It is also possible for human errors to fl ag sites incorrectly, as in an incident in January 2009 that 
fl agged all URLs as dangerous.9 Such errors are typically fi xed quickly, though, and safeguards can be 
added to prevent them from recurring. 

These services also have false negatives, because not every malicious page on the Web can be 
cataloged at every point in time. Although Google and StopBadware.org attempt to identify as many 
malicious pages as possible,10 it is unlikely to be a complete list. Still, these blacklists help protect 
users from attack. 

CONCLUSION
There is no silver bullet for providing a perfectly secure browser, but there are several techniques 
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that browser developers can use to help protect users. Each of these techniques has its own set of 
challenges. 

In particular, browsers should minimize the danger that users face using three techniques: 
•  Reduce attack severity by applying the principle of least privilege in the browser architecture. This 

technique limits the damage caused when an attacker exploits a vulnerability. 
•  Reduce the window of vulnerability by ensuring updates are developed and deployed as quickly as 

possible. This technique minimizes the number of vulnerable browsers an attacker can target. 
•  Reduce how often users are exposed to attacks by filtering out known malicious content. This 

technique protects users during vulnerable time windows. 
The Google Chrome team has focused on each of these factors to help provide a secure browser 

while preserving compatibility with existing Web content. To make Google Chrome even more 
secure, we are investigating further improvements to the browser’s security architecture, such as 
mitigating the damage that plug-in exploits can cause and more thoroughly isolating different Web 
sites using separate sandboxed processes. Ultimately, our goal is to raise the bar high enough to deter 
attackers from targeting the browser. Q
 
REFERENCES 

1.  Barth, A., Jackson, C., Reis, C., and Google Chrome Team. 2008. The Security Architecture of 
the Chromium Browser; http://crypto.stanford.edu/websec/chromium/chromium-security-
architecture.pdf.

2.  Douceur, J.R., Elson, J., Howell, J., Lorch, J.R. 2008. Leveraging legacy code to deploy desktop 
applications on the Web. In Proceedings of Operating Systems Design and Implementation (OSDI). 

3.  Duebendorfer, T., Frei, S. 2009. Why silent updates boost security. ETH Tech Report TIK 302; 
http://www.techzoom.net/silent-updates.

4.  Franco, R. 2005. Clarifying low-rights IE. IEBlog (June);  http://blogs.msdn.com/ie/archive/2005/0
6/09/427410.aspx.  

5.  Frei, S., Duebendorfer, T., Plattner, B. 2009. Firefox (in)security update dynamics exposed. ACM 
SIGCOMM Computer Communication Review 39(1). 

6.  Google. Omaha: Software installer and auto-updater for Windows. Google Code; http://code.
google.com/p/omaha/. 

7.  Grier, C., Tang, S., King, S.T. 2008. Secure Web browsing with the OP Web browser. In Proceedings 
of IEEE Symposium on Security and Privacy.

8.  Howard, M., Thomlinson, M. 2007. Windows Vista ISV Security; http://msdn.microsoft.com/ 
en-us/library/bb430720.aspx.

9.  Mayer, M. 2009.“This site may harm your computer” on every search result. The Official Google 
Blog (January); http://googleblog.blogspot.com/2009/01/this-site-may-harm-your-computer-
on.html.

10.  Provos, N., McNamee, D., Mavrommatis, P., Wang, K., Modadugu, N. 2007. The ghost in the 
browser: analysis of Web-based malware. In Proceedings of the First Usenix Workshop on Hot Topics 
in Botnets (April).

11.  Reis, C. Gribble, S.D. 2009. Isolating Web programs in modern browser architectures. In 
Proceedings of European Conference on Computer Systems (Eurosys) (April). 

http://crypto.stanford.edu/websec/chromium/chromium-security-architecture.pdf
http://crypto.stanford.edu/websec/chromium/chromium-security-architecture.pdf
http://www.techzoom.net/silent-updates
http://blogs.msdn.com/ie/archive/2005/06/09/427410.aspx
http://blogs.msdn.com/ie/archive/2005/06/09/427410.aspx
http://code.google.com/p/omaha/
http://code.google.com/p/omaha/
http://msdn.microsoft.com/en-us/library/bb430720.aspx
http://msdn.microsoft.com/en-us/library/bb430720.aspx
http://googleblog.blogspot.com/2009/01/this-site-may-harm-your-computer-on.html
http://googleblog.blogspot.com/2009/01/this-site-may-harm-your-computer-on.html


WEB SECURITY

8

12.  Sandbox. Chromium Developer Documentation. 2008; http://dev.chromium.org/developers/
design-documents/sandbox. 

13.  Wang, H. J., Grier, C., Moshchuk, A.,King, S. T., Choudhury, P.,Venter, H. 2009. The Multi-
Principal OS Construction of the Gazelle Web Browser. Microsoft Research Technical Report 
(MSR-TR-2009-16); http://research.microsoft.com/pubs/79655/gazelle.pdf. 

14.  Yee, B., Sehr, D., Dardyk, G., Chen, J. B., Muth, R., Ormandy, T., Okasaka, S., Narul, N., Fullagar, 
N. 2009. Native Client: a sandbox for portable, untrusted x86 native code. In Proceedings of IEEE 
Symposium on Security and Privacy.

LOVE IT, HATE IT? LET US KNOW
feedback@queue.acm.org

CHARLES REIS is a software engineer at Google working on the Google Chrome Web browser. He 
recently completed his Ph.D. in the Department of Computer Science and Engineering at the University 
of Washington. His research focuses on improving the reliability and security of Web browsers and Web 
content. He received B.A. and M.S. degrees in computer science from Rice University. At Rice, he was the 
second lead developer for DrJava, a widely used educational programming environment.
ADAM BARTH is a postdoctoral fellow at the University of California, Berkeley. His research focuses on 
the security of modern Web browsers, including their security policies, enforcement mechanisms, and 
security user interfaces. He is a contributor to the Chromium, WebKit, and Firefox open source projects 
and is an invited expert to the W3C HTML and Web Applications working groups. He holds a Ph.D. and 
M.S. in computer science from Stanford University and a B.A. in computer science and mathematics from 
Cornell University.
CARLOS PIZANO is a senior software engineer at Google working on the Google Chrome Web 
browser. He has an M.S. degree in computer engineering from the University of New Mexico and a B.S. 
in electrical engineering from Universidad Javeriana. His work focuses on security and sandboxing for 
Internet-facing applications.
© 2009 ACM 1542-7730/09/0600 $10.00

http://dev.chromium.org/developers/design-documents/sandbox
http://dev.chromium.org/developers/design-documents/sandbox
http://research.microsoft.com/pubs/79655/gazelle.pdf
mailto:feedback@queue.acm.org

