
PseudoID: Enhancing Privacy for Federated Login

Arkajit Dey1 and Stephen Weis2

1 Massachusetts Institute of Technology, Cambridge, MA, USA 02139
2 Google Inc., Mountain View, CA, USA 94043

Abstract. PseudoID is a federated login system that protects users from disclosure of private login data held by
identity providers. We offer a proof of concept implementation of PseudoID based on blind digital signatures that
is backward-compatible with a popular federated login system named OpenID. We also propose several extensions
and discuss some of the practical challenges that must be overcome to further protect user privacy in federated login
systems. 3

1 Introduction

Internet users often manage login credentials for many accounts across multiple web sites. This is both an incon-
venience and a potential security risk, as users often resort to reusing passwords. Users also become accustomed to
typing user names and passwords in many different interfaces. This can leave users more susceptible to phishing, that
is, having their credentials stolen by imposter websites.

Issues with managing web login credentials helped motivate the creation of web single sign-on (SSO) systems.
One SSO model is for users to have a single identity provider (IDP) for all logins. Arbitrary web sites may then
become relying parties (RPs), who delegate logins to the identity provider. The IDP handles authenticating the user
and attesting an identity back to the RP.

Some proposals, such as Windows Live ID or Facebook Connect, rely on a centralized identity provider. Other
systems, such as OpenID, allow users to have identities from among a federation of identity providers. Federated login
systems like OpenID offer more flexibility to end users, since they are able to choose among many identity providers.
Large web mail providers like Yahoo, Google, and MSN have all adopted OpenID [22, 19, 21] and are already capable
of serving as identity providers for hundreds of millions of users.

While federated login systems like OpenID may streamline logins, they may create risks to user privacy. The core
problem in both centralized and federated login systems is that all user logins to relying party web sites must flow
through an identity provider. A user’s identity provider can easily link together the various websites that the user
visits. An identity provider could, for example, release data about which sites users visited without user consent.

In a federated system with many providers to choose from, users could avoid identity providers that abused privacy
and use reputable firms. Unfortunately, honest identity providers may still be compromised and leak logs, or otherwise
be compelled to reveal logs. Besides simply revealing which sites a user visits, identity providers often reveal personal
information about users through extensions like OpenID Attribute Exchange (AX) [16] or Simple Registration (SREG)
[17]. The goal of this exchange is typically to pass information like an email address, real name, or birth date from an
identity provider to a web site. Automatically obtaining these data can greatly streamline the user sign-up process for
relying parties.

Although most identity providers will prompt users whether they want to reveal this information, identity providers
could reveal whichever data they want to a relying party. Thus, there is no way for a user to selectively disclose
certain properties (e.g. age, gender, etc.) about themselves to a relying party. Much work has gone into developing
cryptographic schemes for selective disclosure [4, 5, 3, 2], but these have yet to be adopted in practice.

In this paper, we outline a privacy-preserving federated login system called PseudoID and offer a proof of concept
implementation as a pseudonymous OpenID provider located at http://pseudoid.net. The system utilizes
blind signatures [7] as part of a blind signature service. This service allows users to generate a pseudonym that can
be used to login to relying parties, but cannot be linked to their true identity. We also propose extensions based on
zero-knowledge proofs [11] to support selective disclosure of user properties.

3 Draft in submission, Feb. 2010



2 Federated Login Overview

Web users who want to use a particular website most often authenticate themselves directly to the site by entering a
user name and password as in Figure 1. Maintaining many sets of user credentials across different sites carries a burden
for the user and can lead to password reuse. Websites must carry the burden of creating accounts, storing credentials,
and authenticating users. Account creation, or “on-boarding”, is often a large barrier to signing up new users. It is not
uncommon for the over half of sign-up attempts to be abandoned.

Site
"Who are 

you?"

"Alice"User
1

2

"Password"

Fig. 1. A typical web login system where users log into websites by entering site-specific credentials.

Federated login systems, on the other hand, extract authentication as a service in its own right. Just as websites
rely on third-party services for traffic analysis, CAPTCHA verification, or file hosting, they can also rely on separate
services for authentication.

Federated login adds a third party to the interaction between the user and the website: the identity provider (IDP).
Instead of authenticating herself to the website directly, the user authenticates herself to the IDP. The IDP then returns
a user identifier to the website. Thus, the website is often referred to as the relying party (RP) since it relies on the
identity provider for authentication.

Federated login alleviates the need for websites to store user credentials, making them less desirable targets for
attackers who want to hijack user accounts. The user benefits from federated login too. Instead of managing separate
login credentials for every website he wants to use, the user can just log into a single identity provider.

Systems like Facebook Connect and OpenID 2.0 are able to offer one-click logins for relying parties, which greatly
simplifies the login process. For example, Plaxo, a social networking and address book site, performed a two-click
OpenID login experiment where 92% of users successfully completed registration after starting the sign-up process
[13]. In contrast, on-boarding abandonment rates of 50% are common for many websites.

Accordingly, federated login systems are being adopted by a growing number of Internet sites, particularly by large
web mail providers and social networks. Several different federated login technologies have arisen over the years, such
as Microsoft Passport (now Windows Live ID), OpenID, Facebook Connect, and SAML.

However, popular federated login systems have generally been designed without privacy as a primary concern.
Subsequently, current widely-used federated login systems could put sensitive user data at risk. The problem of user
privacy is indeed magnified in federated login systems since identity providers act as stewards of user data for mul-
tiple websites. This not only makes identity providers more appealing targets to attackers, but also more likely to be
subpoenaed for user records.

2.1 OpenID: A web-based federated login system

OpenID is a popular federated login system that we focus on for a proof of concept implementation. In OpenID, users
can claim identifiers in the form of URIs. To login to a website that supports OpenID, the user enters his OpenID URI
and the relying party redirects him to his identity provider’s page. The identity provider authenticates the user through
its choice of authentication system (e.g. passwords, smart cards, etc.) and then returns the user to the relying party with



RP
"Who are 

you?"

"Alice"User
1

2

"Is this 
Alice?"

"Who are 
you?"

"Alice" / 
"Password"

"Yes"/
"No"

"@IDP"

IDP

5

4 3

6

Fig. 2. A federated login system: (1) The RP prompts the user for an identity. (2) The user enters an identifier that specifies an IDP.
(3) The RP requests that the IDP authorize the user. (4) The IDP prompts the user for her credentials. (5) The user presents her
credentials to the IDP. (6) The IDP returns the result of the authorization to the RP.



either a positive or negative assertion that the user owns the claimed identifier. If the relying party receives a positive
assertion from the identity provider, it may allow the user to enter the site under the name of the claimed identifier.

With the advent of OpenID 2.0 [15], the protocol also began to support the concept of directed identity [6] or private
digital addresses through a new feature called identifier select [18]. This allows the user to just specify the URI of his
identity provider instead of claiming a personal identifier when logging into a website. The site then redirects the user
to the identity provider as before, but the identity provider now has the opportunity to select an identifier for the user.
Upon successfully authenticating the user, the identity provider returns the selected identifier to the site.

This allows the identity provider more flexibility in selecting identifiers for its users. For example, the identity
provider may decide to return a different identifier for the same user for different relying parties in order to implement
true directed identity as defined in Kim Cameron’s Laws of Identity [6]. Indeed, some OpenID providers like Google
do return a per site unique identifier rather than a globally unique identifier for its users.

2.2 Privacy Concerns in Federated Login

In federated login systems, users entrust identity providers to manage their identity, so privacy concerns may seem
relatively minor. After all, in OpenID and most other major single sign-on systems, a malicious identity provider
could easily impersonate users to relying parties. However, even if an identity provider is not corrupt, there are privacy
concerns for honest, but retentive providers who may reveal user data due to a security breach or a legal subpoena.

The core privacy issue with widely-deployed federated login systems is that a user’s identity can be correlated with
the sites she logs into. For example, OpenID identity providers will authenticate users, then redirect them back to a
relying party. This makes it trivial for an identity provider to know all the web sites a user logs into. The same is true
for Live ID or Facebook Connect.

One might develop a different federated login flow where a user acted as an intermediary between relying parties
and identity providers. The user could avoid passing any information about the specific relying party to the identity
provider. In this case, the identity provider might return an anonymized identifier via the user to the relying party.
However, if the provider colluded with the relying party, they could link the user’s real identity with the account on
the relying party.

Alternatively, an identity provider could abstain from logging, could try to anonymize or delete identifying in-
formation, or could simply destroy logs completely. Logs are retained for many valid reasons including analytics,
diagnostics, and security auditing. In practice, abstaining from logging is often not a viable option.

Removing or anonymizing identifying information ex post facto is one option, but has proved difficult in practice.
Supposedly anonymized logs released by AOL [1] and Netflix [14] were both de-anonymized to some extent. An
identity provider would need to be vigilant and thoroughly scrub logs to remove identifying data. They would also
need to ensure that identifying data was not being unintentionally logged by an unrelated service or a different layer
of the stack.

Another issue is that both logs anonymization and destruction may be subject to data retention laws that specify
minimum retention periods [10]. Identity providers may be legally compelled to collect identifying data and retain it
for a minimum period. In some jurisdictions, authorities have broad powers to rapidly seize these data, often without
user knowledge.

Given these considerations, we will focus on privacy in a setting where: (1) identity providers are unable to assure
that logs are not retained, and (2) identity providers may be compelled to reveal logs at some time.

There are several real-world risks where honest, but retentive identity providers may threaten user privacy. One
risk is simply if the provider were compromised and logs were leaked by an attacker. Another risk is for providers
operating in jurisdictions where logs may be seized without due legal process.

Identity providers may have an interest in not being able to link a particular user’s identity to logins on a relying
party. An identity provider may want to provably show that they cannot link logins on a relying party to a particular
user. With this in mind, we informally define what it means for an identity provider to be private in Section 3. Section
4 propose a practical system that meets this definition.



3 Properties of Private Federated Login

For the scope of this paper, we are going to focus on privacy in federated login systems with an OpenID-like login
flow illustrated in Figure 2. The relevancy to other types of federated login systems may vary.

We assume that identity providers have a set of users that can be thought of as “real” identities. Users may possess
credentials which are presented to identity providers for authentication. If the credentials are valid, identity providers
will return some identifier to a relying party. This identifier may be of any form, i.e. a “real” user name, a pseudonym,
a value derived from the credentials, or even a random value. In order to contrast these different behaviors, we will
first state several informal properties.

Definition 1 (One-wayness). An identity provider is one-way if given a specific identifier, attackers have no significant
ability to cause identity providers to return that value.

One-wayness means that users actually “own” their identities and people cannot imitate them on relying parties.
For example, one cannot typically login with a specific user name without knowing that user’s password. A trivial
example of an identity provider that is not one-way is one where an identity provider will assert any identity without
authorizing the user. We’ll refer to this as the “Yes IDP”. Users of a Yes IDP could log into relying parties with
arbitrary identities, but would not be able to prevent other people from using the same identities.

Definition 2 (Consistency). An identity provider is consistent if users may present credentials that will return the
same identifier over multiple sessions.

The consistency property means that users can have long-lived identities on relying parties. That is, users can log
in as the same identity to a relying party any number of times. A trivial inconsistent identity provider would be one
which returned a random value for each login, or a “Random IDP”. Users of a Random IDP would be anonymous on
relying parties and could not be linked to their real identities, but would not be able to establish long-lived accounts
on relying parties.

Definition 3 (Unlinkability). An identity provider is unlinkable if given a transcript of an authentication event and a
set of users, an attacker has no significant advantage in distinguishing the user being authenticated.

Unlinkability is intended to capture the notion that an attacker who obtains access logs from an identity provider
and relying party should not be able to tell which “real” user was logging in. OpenID identity providers are generally
linkable in practice, although there are exceptions. An attacker obtaining a user’s credentials or identity provider access
logs would be able to trivially see which user was associated with a particular identity on a relying party.

Note that this property is not specific to OpenID or a flaw in the OpenID protocol. Instead, it’s an artifact of how
real world identity providers typically authenticate users: with user names and passwords. For example, an attacker
may observe “Alice” authenticate herself to an identity provider and the identity “Bob” returned to a relying party;
linking her real identity to her pseudonym.

Thus, an unlinkable relying party must not require any identifying information about their real users during the
federated login protocol. The Yes and Random IDPs mentioned before are in fact unlinkable, but are not practical
in many use cases since they are respectively not one-way or consistent. A practical unlinkable system must be both
one-way and consistent. We will present such a system in Section 4.

4 PseudoID: A privacy-preserving federated login system

PseudoID is designed to be a one-way, consistent, and unlinkable federated login system. It consists of a token service
used during setup, and a private identity provider used for sign-ons. The user has an account with the token service,
which may be a persistent, “real” identity like an email address. During setup, the user logs on to the token service
using a familiar authentication scheme, such as entering a user name and password.

The user then requests an access token from the token service that is bound to a desired pseudonym. When logging
into a relying party, the user presents this token to an identity provider. The identity provider will verify the authenticity
of the token and return the user’s pseudonym to the relying party.



To be unlinkable, the access tokens must be generated such that even if both the token service and identity provider
are compromised, the user’s “real” identity with the token service cannot be linked to their pseudonyms on different
relying parties. PseudoID achieves this property by employing blind signatures.

4.1 Blind Signatures

Traditional public key digital signature schemes [9] consist of a private signing function S known only to the signer
and a public verifying predicate V . Then for any message m that is provided to the signer to be signed, a verifier
can check that V (m, S(m)) is true. It is infeasible to produce the signature S(m) without knowledge of the signing
function S.

Blind signature systems [7] augment this traditional scheme with a blinding function B and its inverse unblinding
function B−1, such that B−1(S(B(m)) = S(m) and both functions are known only to a user getting a message
signed.

In a blind signature scheme, the user wishes to obtain a signature S(m) on some message m without revealing the
contents of m to the signer. To do so, the user sends the blinded message, B(m), to the signer that leaks no information
about m. The signer then signs the blinded message and returns S(B(m)) to the user. Finally, the user unblinds this
signed message to obtain

B−1(S(B(m))) = S(m),

a valid signature on m that can be publicly verified.
One example of a blind signature system is Chaum’s RSA blind signatures. In a standard RSA digital signature

system, the public parameters are a modulus n and an exponent e. Only the signer knows the private exponent d. To
blind a message m prior to sending it to the signer, the user multiplies it by a random blinding factor r to produce
B(m) = mre. The signer signs B(m) to produce

mdred ≡ mdr (mod n)

by Euler’s theorem. Since the user can compute r−1, he can unblind the returned signature to obtain

md (mod n),

a valid signature on the original message m.

4.2 Blind Token Service

PseudoID employs a blind signature service (BSS) or blind signer that generates blinded access tokens. These tokens
are redeemed with an identity provider and used to derive identifiers that are returned to relying parties. This setup
phase is outlined in Figure 3.

During a setup phase, the user will visit the blind signer and login to an existing account. The user then se-
lects a pseudonym that they want to use on a relying party and a secret value. This pseudonym and random se-
cret value are bundled into an access token that the blind signer will sign. That is, the user will prepare a token
T = (pseudonym, secret).

To prevent the signer from being able to link a user with her pseudonym, the user first blinds the token B(T ) before
sending it to the blind signer. The blind signer will sign this token without knowing its contents and return it to the
user as S(B(T )). Upon receiving the singed token back from the service, the user unblinds it to obtain a signed token
S(T ) that contains the user’s chosen pseudonym and secret value. Note that the blind signer will not see the user’s
pseudonym or secret value in the clear; it will only see the blinded token.

4.3 Private Identity Provider

The identity provider relies on the blindly signed tokens to be able to authenticate users without forcing them to reveal
their identity. When a user is redirected to her identity provider by a relying party, the provider checks whether the
user has an access token that has been signed by the blind signer.



User BSS
"Blinded 
Token"

"Blind 
Signed 
Token"

"Alice/Password"

"Unblind"
AT

1

2

3

4

Fig. 3. Blind Signer Setup: (1) User first authenticates herself to the BSS normally. (2) Then the user sends the BSS a blind token to
sign. (3) The BSS signs the token and returns it. (4) The user unblinds the blind signed token to obtain a valid, untraceable access
token (AT).

The signature on the token may be either publicly verifiable or privately verifiable. In the former case, the identity
provider can verify the signature on the access token using the blind signer’s public key. In the latter case, the identity
provider could send the token to the blind signer and ask them whether they signed it. The sign-on process using an
access token in the publicly verifiable case is illustrated in Figure 4. If the access token is valid, the provider is only
assured that the user has been authenticated by the blind signer. Thus the provider knows that the user is a valid user
of the blind signer, but does not know which user.

Given a valid access token from the user, the identity provider will compute a one-way, collision-resistant function
F on its value and return that as part of an identifier to the relying party. For instance, if the access token contains
T = (pseudonym, secret) the identity provider could assert (pseudonym, F (T )) as the user’s identifier to the relying
party. Given the properties of F , attackers will not be able to invert the value F (T ) to obtain T or find a value T ′ such
that F (T ) = F (T ′).

4.4 Properties of PseudoID

We informally argue that PseudoID can meet the properties described in Section 3.

Claim (1). PseudoID is one-way The access token T that is presented by the user to the IDP will contain a random
secret value. The IDP will then compute a one-way, collision-resistant function of that token F (T ) that is presented as
part of the user’s identity. An attacker will only be able to cause an IDP to return that same identity if they are either
able to learn the secret, invert F (T ), or find a colliding token value T ′ such that F (T ) = F (T ′). Thus, attackers will
have no significant ability to cause the IDP to return a given identity.

Claim (2). PseudoID is consistent The private identity provider will always return the same identifier for a given
access token. It’s output is completely deterministic, and thus consistent.

Claim (2). PseudoID is unlinkable Suppose an attacker has all the logs of the blind signing service, all blinded access
tokens, and all unblinded access tokens used to authenticate to the IDP. The attacker will win if they are able to link
a specific blinded access token to a specific unblinded access token, i.e. revealing a user’s identity. However, this is
precisely what blinding prevents. PsuedoID uses blinding in exactly the same fashion as Chaum’s untraceable payment
scheme [7]. Thus, PsuedoID is unlinkable based on the properties of the blind signature scheme.



User IDP
"Who are 

you?"

Access

Token

1

2

"Did BSS sign AT?"

3

AT

Fig. 4. Identity Provider Sign-on with Blind Signed Access Token: (1) IDP asks users to authenticate (2) User supplies access token
rather than true identity or credentials (3) IDP verifies whether BSS signed the token using BSS’s public key.

4.5 OpenID with PseudoID

PseudoID is practical to implement in a web setting, such as for OpenID. We have implemented a proof of concept
blind signing service and identity provider available at http://pseudoid.net. The proof of concept blind signer
is implemented as a web service. Users visit the blind signer and prepare a blinded token signed with JavaScript (see
Section 4.6 for a discussion of some security caveats).

The blind signer will blindly sign this value and return it to the user. This value is unblinded and stored as a cookie
in the user’s browser. This cookie will be set on the identity provider’s domain. The identity provider itself may be
slightly modified from existing OpenID providers. It simply needs to read an access token from a cookie on the user’s
browser, verify a signature on it, and return the pseudonym it contains to a relying party. From the user’s perspective,
this eliminates the need to retype a user name and password on an identity provider.

PseudoID identity providers are fully compatible with existing OpenID relying parties. Existing relying parties do
not have to change anything about their current OpenID flow in order to be able to accept users from private identity
providers. From the perspective of the relying party, a private identity provider is indistinguishable from a regular
provider. A private provider simply uses a different authentication mechanism than most other identity providers, but
it still participates in the same federated login flow outlined in Figure 2.

4.6 Caveats of the proof of concept implementation

The proof of concept PseudoID implementation stores a user’s access tokens as cookies in the browser. This is not
the ideal solution. Users who clear cookies frequently or use a private browsing mode would lose their blinded access
token. Cookies are also set in a single browser, and thus it would be complicated to extend a user’s pseudonym across
different machines.

There is also a security issue with setting a cookie on the identity provider’s domain. JavaScript executing on one
domain cannot set a cookie on another. The proof of concept PseudoID implementation must make a call to the identity
provider to set an unblinded cookie during the setup phase. This means that access logs on the blind signer and the
identity provider could be joined to correlate the user’s login with the value that was set as a cookie.

Even if logins are private, user requests can still be tied to a particular IP address. Anonymization on the network
level is an independent risk and may be mitigated by the use of web proxies or anonymous browsing technology like
Tor [20].

In practice, users are often tracked by cookies as well as by IP addresses. One risk of the proof of concept system
is that a malicious blind signer or identity provider may try to set tracking cookies on the user’s browser while they
are logged in with their real identity. Thus, a user would need to scrub all cookies except their access token from their



browser. This is not practical from a usability standpoint. Another issue is that blinding and unblinding is being done
with JavaScript in the user’s browser. This code must be trusted, otherwise it could leak their identity.

5 Extensions and Future Work

The caveats of the proof of concept PseudoID implementation make it impractical for general use. There are both
unresolved usability and security issues which would need to be addressed in it and private federated login systems in
general.

5.1 Simplified Cryptography in the Browser

Modern browsers are equipped with support for a broad range of cryptographic functionality to support SSL/TLS. Yet,
it is difficult for a typical web application to make use of it. In the case of PseudoID, server-side JavaScript was used
to blind and unblind tokens. Using JavaScript is both inefficient and insecure. Basic cryptographic functionality has to
be reimplemented in JavaScript and interpreted, rather than using the native cryptographic libraries already available
in the browser.

There is also a question of where the JavaScript code comes from. If it is hosted on a server, it may later be
substituted with malicious code without the user’s knowledge. For example, if the host of the JavaScript code were
compromised, an attacker could inject code to leak the user’s identity.

Browser cryptographic support could be made available through a browser plug-in or extension, but this is a barrier
to adoption and difficult to support on multiple platforms. PseudoID and many other applications could benefit from a
simple, standardized, and cross-platform API to client-side cryptographic services.

5.2 Browser Storage and Cross-Domain Communication

Another practical challenge in the proof of concept implementation was communicating cryptographic tokens across
domains subject to the constraints of the same-origin policy. In this case, a page on the blind signer’s domain cannot
set a cookie on a different domain.

This was a difficulty because we wanted to set an unblinded token that was readable from the identity provider’s
domain, but not visible to the blind signer. The workaround was to load a hidden cross-domain iframe. This technique
was used to allow the blind signer to set a cookie on the identity provider’s domain. That represents a privacy risk,
since it would be easy to correlate logs between the blind signer and the identity provider.

PseudoID could benefit from a more flexible browser storage model than cookies, and the means to pass messages
from one domain to another using the browser as an intermediary. Several features proposed in HTML 5 may help
facilitate this [12].

5.3 Selective Disclosure

In the current version, PseudoID access tokens contain a user-selected pseudonym and a random nonce. Tokens do not
contain any meaningful semantics nor any properties of the user’s real identity. By using zero-knowledge proofs, one
may extend the blind signer to support selective disclosure. There is a broad range of literature on this topic [8, 4, 5, 3,
2].

The basic idea is that users will engage in a zero-knowledge proof with the blind signer. They will prove that the
contents of blindly signed messages convey some meaningful data or have a proper semantic form. For example, the
user may prove that a blindly signed message contains a bit value representing “Is this user over 18 years of age?”
that is true for their real identity, without revealing any other information about the message. Another example use
is obtaining a token with an expiration time in it. The user would prove to the blind signer that a blinded message
contains a valid expiration time, without revealing any other knowledge of the message.

By allowing tokens to have these types of semantics, identity providers will be able to offer more fine-grained
access policies. In the simple PseudoID system, identity providers can only verify a signature on a token – all they



learn is that a blind signer signed it at some point in time. If tokens had semantics, they could, for instance, only allow
access to users with tokens that were issued within some time period.

From a web-based implementation standpoint, performing zero-knowledge proofs in the browser requires better
support for both cryptography and storing persistent values. While it is possible to implement zero-knowledge proof
systems with a JavaScript and cookie approach, this would have the same security issues that the proof of concept
PseudoID implementation has.

References

1. Barbaro, M., Zeller Jr., T.: A face is exposed for AOL searcher no. 4417749. New York Times (August 9, 2006),
http://www.nytimes.com/2006/08/09/technology/09aol.html

2. Camenisch, J., Groß, T.: Efficient attributes for anonymous credentials. In: Proceedings of the 15th ACM conference on Com-
puter and communications security. pp. 345–356 (2008)

3. Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact e-cash. In: EUROCRYPT. pp. 302–321 (2005)
4. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anonymous credentials with optional anonymity

revocation. In: EUROCRYPT. vol. 2045, pp. 93–118 (2001)
5. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials from bilinear maps. In: CRYPTO. pp. 56–72

(2004)
6. Cameron, K.: Laws of identity, http://www.identityblog.com/?p=354
7. Chaum, D.: Blind signatures for untraceable payments. In: Advances in Cryptology: Proceedings of CRYPTO. pp. 23–25

(1982)
8. Chaum, D.: Security without identification: transaction systems to make big brother obsolete. Communications of the ACM

28(10), 1030–1044 (1985)
9. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on Information Theory IT-22(6), 644–654

(November 1976)
10. EU data directive (1995), http://www.cdt.org/privacy/eudirective/EU Directive .html
11. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM Journal of Computing

18(1), 186–208 (February 1989)
12. Hickson, I., Hyatt, D.: HTML5 (December 21, 2009), http://dev.w3.org/html5/spec/Overview.html
13. Kirkpatrick, M.: Comcast property sees 92% success rate with new OpenID method. ReadWriteWeb Article (February 10,

2009), http://www.readwriteweb.com/archives/comcast property sees 92 success rate openid.php
14. Narayanan, A., Shmatikov, V.: Robust de-anonymization of large sparse datasets. In: Proceedings of the 2008 IEEE Symposium

on Security and Privacy. pp. 111–125 (2008)
15. OpenID authentication 2.0, http://openid.net/specs/openid-authentication-2 0.html
16. OpenID attribute exchange 1.0, http://openid.net/specs/openid-attribute-exchange-1 0.html
17. OpenID simple registration extension 1.0, http://openid.net/specs/openid-simple-registration-extension-1 0.html
18. Recordon, D., Reed, D.: OpenID 2.0: A platform for user-centric identity management. In: Proceeedings of the second ACM

workshop on Digital identity management. pp. 11–16 (2006)
19. Sachs, E.: Google moves toward single sign-on with OpenID. Blog (October 29, 2008),

http://googlecode.blogspot.com/2008/10/google-moves-towards-single-sign-on.html
20. TOR: The onion router project, http://www.torproject.org
21. Windows live ID becomes an OpenID provider. Blog (October 27, 2008),

http://winliveid.spaces.live.com/Blog/cns!AEE1BB0D86E23AAC!1745.entry
22. Yahoo! announces support for OpenID. Press Release (January 17, 2008),

http://yhoo.client.shareholder.com/press/releasedetail.cfm?releaseid=287698


