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ABSTRACT

The paper presents an empirical exploration of google . com query
stream language modeling. We describe the normalization of the
typed query stream resulting in out-of-vocabulary (OoV) rates below
1% for a one million word vocabulary. We present a comprehensive
set of experiments that guided the design decisions for a voice search
service. In the process we re-discovered a less known interaction be-
tween Kneser-Ney smoothing and entropy pruning, and found em-
pirical evidence that hints at non-stationarity of the query stream, as
well as strong dependence on various English locales—USA, Britain
and Australia.

Index Terms— language modeling, voice search, query stream

1. INTRODUCTION

A typical voice search language model used in our system for the US
English query stream is trained as follows:

e vocabulary size: 1M words, OoV rate 0.57%

e training data: 230B words, a random sample of anonymized
queries that did not trigger spelling correction

The resulting size, as well as its performance on unseen query
data (10k queries) when using Katz smoothing is shown in Table 1.
We note a few key aspects:

e the first pass LM (15 million n-grams) requires very aggres-
sive pruning—to about 0.1% of its unpruned size—in order
to make it usable in static FST-based ASR decoders

o the perplexity hit taken by pruning the LM is significant, 50%
relative; similarly, the 3-gram hit ratio is halved

o the impact on WER due to pruning is significant, yet lower in
relative terms—10% relative, as we show in Section 6

o the unpruned model has excellent n-gram hit ratios on unseen
test data: 77% for n = 5, and 97% forn = 3

e the choice of n = 5 is because using higher n-gram orders
yields diminishing returns: a 7-gram LM is four times larger
than the 5-gram LM trained from the same data and using the
same vocabulary, at no gain in perplexity.

The paper attempts to explain our design choices. The next
section describes the text normalization that allows us to use a one
million word vocabulary and obtain out-of-vocabulary (OoV) rates
lower than 1%, as well as the excellent n-gram hit ratios presented
in Table 1.

*The author performed the work as a summer intern at Google, NYC. Her
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The use of Katz smoothing in our language model is not acci-
dental: we examined the interaction between Stolcke pruning and
various m-gram LM smoothing techniques for aggressive pruning
regimes which cut the original LM to under 1% of its original size.
The main finding is that the increasingly popular family of Kneser-
Ney [1] smoothing methods is in fact poorly suited for such aggres-
sive pruning regimes, as explained in Section 3. When evaluated in
terms of both perplexity and ASR word error rate, the more tradi-
tional ones, e.g. Katz/Good-Turing [2] perform significantly better
after pruning. We wish to emphasize that this is not a new result, [3]
also pointed out this behavior of Kneser-Ney models ' and proposed
a solution that alleviates the problem by growing the LM, instead of
pruning it. [4] also suggests a variation of Kneser-Ney smoothing
more suitable for pruning.

We then present experiments that show the temporal and spatial
dependence of the English language models. Somewhat unexpect-
edly, using more training data does not result in an improved lan-
guage model despite the fact that it is extremely well matched to the
unseen test data. The English language models built from training
data originating in three locales (USA, Britain, and Australia) ex-
hibit strong locale-specific behavior, both in terms of perplexity and
OoV rate.

The last section presents speech recognition experiments on a
voice search test set. We conclude by highlighting our main findings.

2. TEXT NORMALIZATION

In order to build a language model for spoken query recognition we
boot-strap from written queries to google.com. Written queries
provide a data rich environment for modeling of queries. This re-
quires robustly transforming written text into spoken form.

Table 2 lists a couple of example queries and their corresponding
spoken equivalents. Written queries contain a fair number of cases
which require special attention to convert to spoken form. Analyz-
ing the top million vocabulary items before text normalization we
see approximately 20% URLs and 20+% numeric items in the query
stream. Without careful attention to text normalization the vocabu-
lary of the system will grow substantially.

We adopt a finite state approach to text normalization. Let
T (written) be an acceptor that represents the written query. Con-
ceptually the spoken form is computed as follows

T (spoken) = bestpath(T (written) o N (spoken))

where N (spoken) represents the transduction from written to spo-
ken form. Note that composition with N (spoken) might introduce

1 Alas, we were unaware of this at the time of our experiments and re-
discovered this on our own.



Order no. n-grams pruning PPL  n-gram hit-ratios
3 I5M  entropy (Stolcke) 190 47/93/100
3 7.7B  none 132 97/99/100
5 12.7B  cut-off (1-1-2-2-2) 108  77/88/97/99/100

Table 1. Typical voice search LM, Katz smoothing: the LM is trained on 230 billion words using a vocabulary of 1 million words, achieving

out-of-vocabulary rate of 0.57% on test data.

Written Query

Spoken Query

weather scarsdale, ny

bankofamerica.com
81 walker rd

weather scarsdale new york
weather in scarsdale new york
bank of america dot com
eighty one walker rd

10:30am ten thirty A M
at&et ATand T
espn ESPN

Table 2. Example written queries and their corresponding spoken form.

Time, Date,
Number
Normalizer

$20 books
on
amazon.com

twenty dollar books

Location on amazon dot com

Annotator Normalizer

URL
Normalizer

Normalizers

Fig. 1. Block diagram for context aware text normalization.

multiple alternate spoken representations of the input text. For the
purpose of computing n-grams for spoken language modeling of
queries we use the bestpath operation to select a single most likely
interpretation.

The text normalization is run in multiple phases. Figure 1 de-
picts the text normalization process. In the first step we annotate the
data. In this phase we categorize parts (sub strings) of queries into a
set of known categories (e.g time, date, url, location).

Since the query is annotated, it is possible to perform context-
aware normalization on the substrings. Each category has a corre-
sponding text normalization transducer Ncq¢(spoken) that is used
to normalize the substring. Depending on the category we ei-
ther use rule based approaches or a statistical approach to con-
struct the text normalization transducer. For numeric categories like
date, time and numbers it is easy enough to describe N (spoken)
using context dependent rewrite rules. For the URL normalizer
Nuri(spoken) we train a statistical word decompounder that seg-
ments the string into its word constituents. For example, one reads
the URL cancercentersofamerica.com as “cancer centers
of america dot com”. The URL decompounding transducer (decom-
pounder) is built from the annotated data. Let ) be the set of queries

in this table, and let U be the set of substrings of these queries that
are labeled URLs.

For a string s of length k let I(s) be the transducer that maps
each character in s to itself; i.e., the i-th transition in I(s) has input
and output label s(¢). I(s) represents the word segmented into char-
acters. Further, let T'(s) be the transducer that maps the sequence of
characters in s to s; i.e., the first transition in 7'(s) has input s(1)
and output s, and the i-th transition, where ¢ # 1, has input s(4) and
output €. T'(s) represents the transduction of the spelled form of the
word to the word itself. For a set of strings S, we define

T(S)=EPT1(s)

s€S

where €D is the union operation on transducers. 7'(S) therefore rep-
resents the transduction of the spelling of the word to the word itself
for the whole vocabulary. Figure 2 illustrates the operation of 7°(-).

The queries in ) and their frequencies are used to train an LM
Lgase. Let Vease be its vocabulary. We build the decompounder as
follows:

1. Foreach u € U, define N (u) as,

N(u) = bestpath (I(u) o T (Veass) © Leass) (1)

s

where <*
operator.

is the Kleene Closure, and ‘o’ is the composition

2. NU) = @ N (u) is the URL decompounder.
uelU

The transducer I(u) o T™(Vgase) in (1) represents the lattice of all
possible segmentations of u using the words in Vpase, where each
path from the start state to a final state in the transducer is a valid seg-
mentation. The composition with the LM Lgase scores every path.
Finally, N (u) is the path with the highest probability; i.e. the most
likely segmentation.

As an example, Figure 3 depicts I(u) o T*(Vpase) for u =
myspacelayouts. Each path in this lattice is a valid decomposition,
and in Table 3 we list a sample of these paths. After scoring all the
paths via the composition with Lgssz, we choose the best path to
represent the spoken form of the URL.



Fig. 2. T'(S) for the set of words S = {my, space, myspace, lay, outs, layouts} where ‘eps’ denotes €.

Fig. 3. The lattice I(u) o T*(Vaase) of all possible segmentations
for u = myspacelayouts using words in Vgase.

Possible Segmentations

myspace layouts
my space layouts
my space lay outs
my space 1 a y outs

Table 3. Sample segmentations from Fig. 3. The one in bold repre-
sents the highest probability path as determined by the composition
with Lpasg.

3. PRUNING INTERACTION WITH SMOOTHING

We examined the interaction between Stolcke pruning [5] and
various n-gram LM smoothing techniques for aggressive pruning
regimes which cut the original LM to under 1% of its original size.
The main finding is that the increasingly popular family of Kneser-
Ney [1] smoothing methods is in fact poorly suited for such aggres-
sive pruning regimes.

Seymore-Rosenfeld pruning [6] is an alternative to Stolcke prun-
ing that relies on the relative frequency in the training data for a
given context f(h) instead of the probability P(h) computed from
lower order estimates. For Kneser-Ney models this eliminates one
source of potential problems in pruning: since the P(h) calculation
involves only lower order n-gram estimates it will use the diversity
based estimates, which are quite different from the relative frequency
ones.

Figure 4 shows the the change in perplexity with the number
of n-grams in the entropy pruned model. We experimented with
4-gram models built on Broadcast News data, as reported in [7]. Al-
though the unpruned Kneser-Ney models start from a slightly lower
perplexity than the Katz model, they degrade faster with pruning.

In experiments for voice search we observed large relative differ-
ences in perplexity between Kneser-Ney/Katz models—after prun-

Perplexity Increase with Pruned LM Size
8.4 T T T

T T
+  Katz (Good-Turing)
Kneser-Ney

a2l O Interpolated Kneser-Ney Ll

N
©
T
L

g
<] e}
S 76 + il
i
['%
o .
+ o
745 .
. .
o
72+ . . |
o
N
7k + o 1
+ o,.
ot
@ oamp
6.8 L L L L L L
18 19 20 21 22 23 24 25

Model Size in Number of N-grams (log2)

Fig. 4. Stolcke pruned 4-gram model perplexity as a function of
model size (no. n-grams) for Katz, Kneser-Ney and Interpolated
Kneser-Ney models as implemented by the SRILM toolkit. The In-
terpolated Kneser-Ney model is estimated by turning the -interpolate
option on in the SRILM toolkit.

ing them to 0.1% of their original size. Aggressive Stolcke pruning
for a Kneser-Ney 4-gram model can lead to a relative increase in per-
plexity that is twice as large as for the other smoothing techniques
evaluated—135% vs. 65% relative increase. The differences were
also found to impact speech recognition accuracy significantly, ap-
proximately 10% relative.

Since the difference between Katz and Kneser-Ney is very small
on unpruned models and significant on pruned models we chose to
use Katz smoothing when building a LM for voice search. A thor-
ough analysis on the interaction between LM smoothing and aggres-
sive pruning in this context is presented in [7].



Training Set Test Set PPL
Unpruned  Pruned

230B 121 205

BIG 132 209

Table 4. Pruned and unpruned 3-gram language model perplexity
when trained on the most recent 230 billion words, and a much larger
amount of training data prior to test data, respectively.

4. QUERY STREAM NON-STATIONARITY

Our first attempt at improving the language model was to use more
training data: we used a significantly larger amount of training
data (BIG) vs. the most recent 230 billion (230B) prior to Septem-
ber 2008. The 230B corpus is the most recent subset of BIG. As
test data we used a random sample consisting of 10k queries from
Sept-Dec 2008.

The first somewhat surprising finding was that this had very little
impact in OoV rate for 1M word vocabulary: 0.77% (230B vocab-
ulary) vs. 0.73% (BIG vocabulary). Perhaps even more surprising
however is the fact that the significantly larger training set did not
yield a better language model, despite the training data being clearly
well matched, as illustrated in Table 4. In fact, we observed a sig-
nificant reduction in PPL (10%) when using the more recent 230B
data. Pruning masks this effect, and the differences in PPL and WER
become insignificant after reducing the language model size to ap-
proximately 10 million 3-grams.

Since the vocabulary, and training data set change between the
two rows, the PPL differences need to be analyzed in a more careful
experimental setup.

A superficial interpretation of the results seems to contradict
the “there’s no data like more data” dictum, recently reiterated in
a somewhat stronger form in [8], [9] and [10].

Our experience has been that supply of “more data” needs to be
matched with increased demand on the modeling side, usually by in-
creasing the model capacity—typically achieved by estimating more
parameters. Experiments reported in Section 6 improve performance
by keeping the amount of training data constant (albeit very large),
and increasing the n-gram model size by adding more n-grams at
fixed n, as well as increasing the model order n. As such, it may
well be the case that the increase in PPL for the BIG model is in fact
due to limited capacity in the 3-gram model.

More investigation is needed to disentangle the effects of query
stream non-stationarity from possible mismatched model capacity
issues. A complete set of experiments needs to:

e let the n-gram order grow as large as the data allows;

e build a sequence of models trained on exactly the same
amount of data obtained by sliding a time-window of vary-
ing length over the query stream, and control for the ensuing
vocabulary mismatches.

5. LOCALE MATTERS

We also built locale specific English language models using train-
ing data prior to September 2008 across 3 English locales: USA
(USA), Britain (GBR, about a quarter of the USA amount) and Aus-
tralia (AUS, about a quarter of the GBR amount). The test data con-
sisted as before of 10k queries for each locale sampled randomly
from Sept-Dec 2008.

Tables 5, 6, 7 show the results. The dependence on locale is
surprisingly strong: using an LM on out-of-locale test data doubles
the OoV rate and perplexity, either pruned or unpruned.

Training Test Locale
Locale USA GBR AUS
USA 0.7 1.3 1.6
GBR 1.3 0.7 1.3
AUS 1.3 1.1 0.7

Table 5. Out of Vocabulary Rate: locale specific vocabulary halves
the OoV rate

Training Test Locale
Locale USA GBR AUS
USA 132 234 251
GBR 260 110 224
AUS 276 210 124

Table 6. Perplexity of unpruned LM: locale specific LM halves the
PPL of the unpruned LM

We have also build a combined model by pooling data across
locales, with the results shown on the last row of Table 7. Combining
the data negatively impacts all locales, in particular the ones with
less data. The farther the locale from USA (as seen on the first line,
GBR is closer to USA than AUS), the more negative the impact of
clumping all the data together, relative to using only the data from
that given locale.

Training Test Locale
Locale USA GBR AUS
USA 210 369 412
GBR 442 150 342
AUS 422 293 171

combined 227 210 271

Table 7. Perplexity of pruned LM: locale specific LM halves the
PPL of the unpruned LM. Pooling all data is suboptimal.

6. EFFECT OF LANGUAGE MODEL SIZE ON SPEECH
RECOGNITION ACCURACY

The work described in [11] and [12] enables us to evaluate relatively
large query language models in the 1-st pass of our ASR decoder
by representing the language model in the OpenFst [13] framework.
Figures 5-6 show the PPL and word error rate (WER) for two lan-
guage models (3-gram and 5-gram, respectively) built on the 230B
training data, after entropy pruning to various sizes in the range 15
million - 1.5 billion n-grams. Perplexity is evaluated on the test set
described in Section 4; word error rate is measured on another test
set representative for the voice search task.

As can be seen, perplexity is very well correlated with WER, and
the size of the language model has a significant impact on speech
recognition accuracy: increasing the model size by two orders of
magnitude reduces the WER by 10% relative.



Perplexity (left) and Word Error Rate (right) as a function of LM size
260 T

240~

220~

200~

160

120 = o L 17
10 10 10 10 10
LM size: # n—grams(B, log scale)

Fig. 5. 3-gram language model perplexity and word error rate as a
function of language model size; lower curve is PPL.

We have also implemented lattice rescoring using the distributed
language model architecture described in [14], see the results pre-
sented in Table 8. This enables us to validate empirically the fact
that rescoring lattices generated with a relatively small 1-st pass lan-
guage model (in this case 15 million 3-gram, denoted 15M 3-gram
in Table 8) yields the same results as 1-st pass decoding with a large
language model. A secondary benefit of the lattice rescoring setup is
that one can evaluate the ASR performance of much larger language
models.

Pass Language Model PPL WER
Ist 15M 3-gram 191 18.7
Ist 1.6B 5-gram 112 16.9
2nd  15M 3-gram 191 18.8
2nd  1.6B 5-gram 112 16.9
2nd  12.7B 5-gram 108 16.8

Table 8. Speech recognition language model performance when
used in the 1-st pass or in the 2-nd pass—Ilattice rescoring.

7. CONCLUSIONS

Our experiments show that with careful text normalization the query
stream is not as “wild” as it seems at first sight. One can achieve
excellent OoV rates for a one million word vocabulary, and n-gram
hit ratios of 77/88% even at n = 5/4, respectively.

We have confirmed in a different experimental setup the less
known fact that aggressive entropy pruning (in particular Stolcke
pruning) significantly degrades language models built using Kneser-
Ney smoothing, whereas Katz smoothing performs much better.

Experimental evidence suggests that the query stream is non-
stationary, and that more data does not automatically imply better
models even when the data is clearly matched to the test data. More
careful experiments are needed to adjust model capacity and iden-
tify an optimal way of blending older and recent data—attempting
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Fig. 6. 5-gram language model perplexity and word error rate as a
function of language model size; lower curve is PPL.

to separate the stationary/non-stationary components in the query
stream. Less surprisingly, we have shown that locale matters signif-
icantly for English query data across USA, Great Britain and Aus-
tralia.

As a concluding remark, we generally see excellent correlation
of WER with PPL under various pruning regimes, as long as the
training set and vocabulary stays constant.
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