
Practical Large-Scale Latency Estimation

Michal Szymaniak
†

David Presotto
‡

Guillaume Pierre
†

Maarten van Steen
†

†Vrije Universiteit Amsterdam, The Netherlands
‡Google Inc.

Abstract

We present the implementation of a large-scale latency estimation system based on GNP and incorpo-
rated into the Google content delivery network. Our implementation does not rely on active participation
of Web clients, and carefully controls the overhead incurred by latency measurements using a scalable
centralized scheduler. It also requires only a small numberof CDN modifications, which makes it attrac-
tive for any CDN interested in large-scale latency estimation.

We investigate the issue of coordinate stability over time and show that coordinates drift away from
their initial values with time, so that 25% of node coordinates become inaccurate by more than 33 mil-
liseconds after one week. However, daily recomputations make 75% of the coordinates stay within 6
milliseconds of their initial values. Furthermore, we demonstrate that using coordinates to decide on
client-to-replica redirection leads to selecting replicas closest in term ofmeasured latency in 86% of all
cases. In another 10% of all cases, clients are redirected toreplicas offering latencies that are at most
two times longer than optimal. Finally, collecting a huge volume of latency data and using clustering
techniques enable us to estimate latencies between globally distributed Internet hosts that have not partic-
ipated in our measurements at all. The results are sufficiently promising that Google may offer a public
interface to the latency estimates in the future.

1 Introduction

Modern large-scale distributed applications can benefit from information about latencies observed between
their various components. Knowing such latencies, a distributed application can organize its operation such
that the communication delays between its components are minimized [1, 2, 3]. For example, a content
delivery network can place its hosted data such that its clients are serviced at their proximal datacenters [4,
5]. In addition to improving the client-experienced latency, reducing the overall length of client-to-replica
network paths allows one to localize the communication, leading to lower backbone and inter-ISP link
utilization. Analogous benefits can be achieved for other large-scale distributed applications such as peer-
to-peer overlays or online gaming platforms.

The effectiveness of latency-driven techniques in improving the application performance depends on
the accuracy of the latency information. A simple solution consists of periodically probing each latency the
application needs to know [6]. However, such an approach makes sense only in relatively small systems, as
continuous probing of pair-wise latencies is clearly not feasible when the number of nodes is very large. For
example, redirecting clients to their nearest datacenterswould require Google to maintain latency informa-
tion from virtually every Web client in the Internet to each of its datacenters [7]. Also, the high dynamics
of the Internet causes recently measured latencies to not always be a good indication of their current coun-
terparts, as one latency measurement result is not a good predictor of a subsequent identical measurement.
These two problems drive the need for scalable and accurate techniques for latency discovery.

A promising approach to the problem of scalable latency estimation is GNP, which models Internet la-
tencies in a multi-dimensional geometric space [8]. Given asmall number of “base” latency measurements
to a number of dedicated “landmark” nodes, GNP associates each node with its coordinates in that space.
The latency between any pair of nodes can then be approximated with the Euclidean distance between their

1

corresponding coordinates. What makes GNP scalable is the constant low number of measurements neces-
sary to position each machine, which enables GNP to estimateall-pair latencies between a large number of
machines at low cost.

The attractiveness of GNP has resulted in its various aspects being investigated for several years. How-
ever, whereas numerous theoretical properties of GNP have been described in detail [9, 10, 11, 12, 13, 14],
no large-scale GNP implementations have been deployed in real-world environments.

The common property of existing GNP implementations that hinders their deployment is active par-
ticipation of positioned nodes, which are responsible for measuring and propagating their own base la-
tencies [15, 16, 17, 18]. Such an approach has several disadvantages. First, it introduces problems with
malicious nodes lying about their base latencies. Handlingsuch nodes is usually very hard, and typically
comes at the expense of increased system complexity. Second, independent measurements of base latencies
performed by many active nodes might overload both the network and the landmarks. This, in turn, might
lead to numerous measurement inaccuracies affecting the GNP performance. Finally, active participation re-
quires running some special software at each positioned node. Meanwhile, deploying such software might
be infeasible. For example, in content delivery networks, most nodes are unmodifiable third-party Web
browsers.

This article presents a GNP implementation that addresses all these issues. Our solution is based on two
key observations. First, instead of relying on remote nodesto measure and report their base latencies, one
can measure these latencies passively on the landmark side.This eliminates the need for customizing the
remote nodes and ensures the integrity of measurement results. Second, instead of allowing remote nodes
to independently perform their measurements, one can trigger measurements individually using a central,
yet scalable, scheduler. This prevents landmarks from overloads and reduces the overall network overhead
in general, as the scheduler triggers only the measurementsthat are really necessary. We demonstrate the
feasibility of our approach by incorporating GNP into the content delivery network operated by Google,
which enables us to position millions of Google clients.

Compared to the previous GNP implementations, our approachhas several advantages. First, it greatly
facilitates system deployment, as only the landmarks and the scheduler need to be instrumented. Second,
it removes the problem of malicious nodes, as all the instrumented nodes are kept under full control of
Google. Third, it eliminates the risk of overloading the landmarks, as the scheduler effectively adjusts the
measurement volume to the landmark capacity.

Implementing our system at the scale of millions of clients requires one to address a number of subtle
issues. For example, it is necessary to transparently and efficiently schedule measurements such that they
do not affect the client-perceived browsing performance. Also, implementing a centralized scheduler is far
from trivial when millions of Web clients are serviced by thousands of globally-distributed Web servers [19].
Finally, producing GNP coordinates that can remain representative for a long time requires that some special
pre-processing techniques are applied to base latencies.

Within the first 2 months of operation, our positioning system performed more than 75 million latency
measurements to more than 22 million unique Google clients.Using host clustering techniques allowed us
to compute the coordinates of more than 200 million Internethosts falling into more than 880,000 of /24
networks. To our best knowledge, this is the largest experiment involving network positioning performed
so far.

Our study confirms many earlier results, and adds to them by extensively investigating the issue of
coordinate stability over time. We show that coordinates drift away from their initial values with time,
making 25% of the coordinates to be off by more than 33 milliseconds after one week. However, daily
recomputations make 75% of the coordinates stay within 6 milliseconds of their initial values. We also
recommend to derive daily coordinates from base latencies measured until around 10pm UTC, as it results
in coordinates remaining representative throughout the most of the next 24 hours.

We also contribute to understanding the practical applicability of GNP coordinates in real-life systems.
We demonstrate that using latency estimates to decide on client-to-replica redirection leads to selecting
replicas closest in term ofmeasured latency in 86% of all cases. In another 10% of all cases, clients are
redirected to replicas offering latencies that are at most two times longer than optimal. Also, we show that

2

x

y

Euclidean Space
2−Dimensional

The Internet

(x2,y2)

(x1,y1) (x3,y3)

Calculated Distance

Landmark

Measured Latency

L1

L3

L2

L3

L2

L1

x

y

Euclidean Space
2−Dimensional

The Internet

(x2,y2)

(x1,y1) (x3,y3)

(x4,y4)

Any CDN Component

Calculated Distance

Landmark

Measured Latency

L1

L3

L2

L3

L2

L1

(a) (b)

Figure 1: GNP: landmark positioning (a), and host positioning (b)

positioning Google clients makes it possible to estimate latencies between globally distributed Internet hosts
that have not participate in our measurements. We treat thisresult as an incentive to develop a new publicly
available Google service providing pairwise latency estimates for Internet hosts.

The remainder of this article is structured as follows. We discuss a number of related research efforts
in Section 2. Then follows the description of our system: Section 3 describes how we integrated GNP
into the Google infrastructure, Section 4 shows how to compute stable coordinates, and Section 5 discusses
our experience with GNP-based client redirection. Section6 evaluates the performance of our system as an
application-independent latency estimation service. Finally, Section 7 concludes by summarizing our future
development plans.

2 Related Work

2.1 Internet Node Positioning

GNP was the first system to propose modeling the Internet as anN -dimensional geometric space [8]. Given
such a space, GNP approximates the latency between any pair of hosts as the Euclidean distance between
their corresponding coordinates in that space.

The space is determined by the coordinates of “landmark” hosts that GNP computes first. The number
of landmarksk must be at leastN + 1 to unambiguously determine theN -dimensional geometric space.
Given thek landmark coordinates, GNP can compute the coordinates of any hostX based on the measured
latencies betweenX and each of thek landmarks. By treating these latencies as distances, GNP triangulates
the coordinates ofX relative to the landmark coordinates.

The landmark coordinates are computed as follows. First, GNP instructs the landmarks to measure
their latencies to each other. Based on these latencies, GNPcalculates all the landmark coordinates so
that the distance between any pair of these coordinates is asclose as possible to the latency measured
between the corresponding pair of the landmarks (see Figure1a). The discrepancy between the distances and
their corresponding latencies is minimized using a popularerror-minimization algorithm called Simplex-
downhill [20].

Once the landmark coordinates are known, GNP can determine the coordinates of any hostX based on
the measured latencies between that host and each of the landmarks. The coordinates ofX are calculated
so that the distance between these coordinates and the coordinates of each landmark is as close as possible
to its corresponding measured latency (see Figure 1b). Thisis again achieved by means of the Simplex-
downhill algorithm. The GNP authors show that, in 90% of cases, the latency estimations produced by their
system are within a relative error ratio of 0.53 compared to the real latency.

3

2.2 Positioning Variants

A number of variants have been proposed to the original GNP concept. The PIC project suggested that
at least some of the landmarks should be located close to the positioned hosts to improve the positioning
accuracy [15]. When positioning a global community of Web clients, this suggestion is equivalent to that
from another study, which recommends to globally distribute the landmarks in order to achieve higher
positioning accuracy [10]. We discuss some practical implications of these suggestions in Section 3.1.1.

Another project established that the accuracy and stability of coordinates can be improved by statistical
filtering of latency samples used for positioning [14]. The intuition is that long-term coordinates should
not be affected by temporary and intermittent network conditions such as network congestion. This can be
prevented by computing coordinates based on latencies typical for given landmark-host pairs. We verify
these findings in our experiments presented in Section 4.2. Compared to [14], we rely on a much larger and
more diverse trace of latencies. We also investigate the issue of how to determine typical latencies, and how
often the resulting coordinates need to be re-computed.

The issue of positioning scalability has been addressed in the Lighthouses project [16]. It demonstrated
that hosts can also be positioned relative to any previouslypositioned hosts, which in that case act as “local”
landmarks. This eliminates the need for measuring latencies to the original landmarks each time a host
is positioned, in turn leading to a distribution of the measurement effort resulting in higher positioning
scalability. However, as we show below, one can position a huge community of Web clients by relying on
the original landmarks only, as long as the measurements performed by the landmarks are appropriately
scheduled. This also enables us to avoid the loss of accuracythat using local landmarks inherently incurs.

Following the idea of Lighthouses, our earlier SCoLE project showed that latencies estimated in com-
pletely different spaces are highly correlated [21]. Such correlation enables different hosts in a distributed
system to construct their own spaces and effectively run their private GNP instances. This improves system
scalability, as there is no need for all the members of the distributed system to negotiate common GNP
parameters. However, since our Google implementation usesonly one set of GNP parameters, it does not
benefit from these findings.

Other research efforts replace the Simplex-downhill computation used in GNP with simpler optimization
schemes [11, 13]. In fact, the selection of a particular positioning algorithm is orthogonal to the question
of how to measure latencies required for positioning, as long as all the algorithms require the same set of
latencies to be measured. We chose to compute all the coordinates using the Simplex-downhill algorithm
recommended in the original GNP paper, as it has performed well when used in our other research projects.

The remaining efforts take a completely different approachand position all hosts simultaneously as a
result of a global optimization process [9, 17, 22]. In that case, there is no need to choose landmarks,
since every host is in fact considered to be a landmark. The respective authors claim that it leads to better
accuracy. However, Google cannot generally rely on its clients to measure latencies to each other, which
renders these techniques infeasible in our case.

2.3 Positioning Implementations

A recent study by the authors of the original GNP paper describes how to implement a global Network
Positioning System (NPS) based on GNP [18]. The authors identify four key system-building issues that
must by addressed by any GNP implementation: maintaining a single global space, adapting to changes
in Internet routes, handling fluctuations in network latencies, and computing positions as accurately as
possible.

NPS addresses the key building issues by organizing hosts interested in positioning into a distributed
infrastructure in which each host periodically recalculates its own coordinates. All the coordinates are
calculated in the same geometric space, determined by a fixedset of global landmarks. NPS prevents these
landmarks from becoming performance bottlenecks by allowing the hosts to position themselves relative
not only to the landmarks, but also to any other “reference” hosts whose coordinates are already known.
In that sense, NPS generalizes the concept of local landmarks introduced by Lighthouses. On top of that,
NPS enables each of the landmarks to compute its coordinateslocally by means of a special scheme for

4

Positioned
Host Landmarks

Modeling
Subsystem

Latency
Measurements

Measurement
Reports Positions

Applications

L

L

L A

A

A

M

Figure 2: High-level concept of positioning implementation

decentralized landmark positioning, and exploits some other distributed algorithms to synchronize positions
computed by different hosts.

The distributed nature of NPS results in improved scalability. However, it also forces NPS to deal with
a number of problems that result from the distribution itself, such as preventing malicious hosts from being
used as positioning references, synchronizing distributed latency probing to prevent reference hosts from
being overloaded, or triggering host re-positioning to maintain global consistency of coordinates. Solving
these problems makes NPS relatively complex. On the other hand, following our centralized approach
enables one to avoid all these problems without limiting thesystem scalability. As a result, our solutions to
the four key building issues identified by NPS are much simpler.

3 System Architecture

Using GNP to position Google clients seems to be relatively simple. Essentially, the positioning process
can be split into three phases (see Figure 2): measuring baselatencies, collecting the measurement results,
and modeling latencies in the form of GNP coordinates. The coordinates can then be passed to any latency-
driven applications, such as those responsible for client redirection or replica placement.

However, as it turns out, naive implementations of either phase in a large-scale Internet service will
easily show poor results. This is caused by a number of subtleproblems that arise when deploying GNP in
a real-world setting. The following sections discuss how weaddressed these problems when implementing
each phase of the positioning process.

3.1 Landmark Infrastructure

3.1.1 Landmark Deployment

GNP computes the coordinates of each host based on a number ofso-called base latencies to that host.
Base latencies are measured by landmarks, which must be deployed by the service. Deploying landmarks
essentially consists of three steps: deciding on the numberof landmarks, on their approximate location,
and, finally, on the actual hosting facility where they should be installed.

The first step is to decide on the number of landmarks to deploy. Although GNP is able to compute
coordinates using any number of landmarks, previous studies have recommended running at least seven
landmarks to obtain good positioning accuracy [11, 21]. Although we use that number of landmarks in our
experiments, in practice we also run a number of redundant landmarks to increase the system’s resilience to
landmark failures.

The second step is to choose approximate geographical locations for the landmarks. As mentioned in
Section 2, the landmarks should be globally distributed. This is because GNP relies on the assumption that

5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

C
D

F
Relative Estimation Error

Only US
4 US + 3 EU

2 US + 2 EU + 3 AP
2 US + 2 EU + 2 AP + Brazil

Figure 3: Importance of landmark distribution

vectors of landmark-to-host latencies are different for hosts located in different parts of the Internet. Should
we fail to meet this assumption, then the performance of GNP might turn out to be poor.

To confirm that global landmark distribution is indeed necessary in practice, we evaluated the accuracy
of GNP offered by various combinations of landmarks locatedin different parts of the Internet. To this end,
we chose 20 PlanetLab nodes [23] to act as candidate landmarks, and connected them to our positioning
system. This allowed us to collect a large set of latencies between the candidate landmarks and a small
fraction of Google clients.

The clients in the set turned out to originate from 113 countries, with the number of clients per country
varying from 1 to many thousands. To make the evaluation fairfor all the countries, we randomly picked 10
clients from each country. For countries represented by less than 10 clients in our trace, all the clients were
included. The resulting test set consisted of 616 clients.

Having generated the test set of clients, we iteratively positioned them relative to various combina-
tions of 7 landmarks. The subsequent combinations consisted of manually selected landmarks that were
increasingly distributed in a geographical sense. For eachcombination, we evaluated its offered estimation
accuracy based on the latencies measured between the clients and the 13 PlanetLab nodes that were not used
for positioning. To this end, we calculated the relative estimation errorε(·) for each such latency similar to
GNP:

ε(dCL, d∗CL) =
∣

∣

∣

d∗
CL

−dCL

min(dCL,d∗
CL

)

∣

∣

∣

wheredCL andd∗CL respectively denote the measured and estimated latencies between clientC and land-
markL. The distribution of estimation errors observed for four example landmark combinations is depicted
in Figure 3.

As can be observed, estimation accuracy is lowest when all the landmarks are located in the US. The
combination consisting of four American- and three European landmarks offers better accuracy, which
improves even further when three of the seven landmarks are located in Asia (Tokyo, Singapore, and China).
The best accuracy is offered by the fourth combination, wherein the landmark in Tokyo is replaced with
a Brazilian one. This confirms the importance of global landmark distribution, and allows for reaching
estimation accuracy close to those reported in our previousstudy [21].

The last step of landmark deployment is to choose the actual hosting facilities where the landmarks
should be installed. It may seem attractive to deploy landmarks in existing service datacenters to benefit
from hardware that is already in place. However, the number or locations of such datacenters may not meet
the global landmark distribution requirement. In that case, we need to decouple the placement of landmarks
from the locations of the datacenters by constructing an infrastructure of dedicated landmarks rented from
third-party hosting facilities worldwide. In our experiments, we used the best set of PlanetLab nodes as our
landmark set.

6

SYN/ACK

SYN

ACK

Client Server

Round−trip Time

TCP Handshake

Figure 4: Passive latency discovery with SYNACK/ACK

3.1.2 Latency Collector

All the latencies measured by the landmarks must be collected and passed to some modeling component
for processing. However, the modeling component typicallyruns in one of the datacenters. Given that
datacenters are normally tightly firewalled, the landmarksdeployed outside the datacenters cannot contact
the modeling component directly.

One solution to that problem would be to reconfigure the datacenter firewalls to allow incoming traf-
fic from the landmarks. However, doing so potentially exposes the service to attacks initiated from the
landmarks. The potential problem becomes even worse when the landmarks are operated by external or-
ganizations such as PlanetLab. This solution should therefore be avoided unless there are no other options
available.

We therefore decided to follow another approach, in which latencies are collected using network con-
nections openedfrom some dedicated component residing in one of the datacentersto the landmarks. This
component, called acollector, retrieves latencies from the landmarks and stores them in measurement logs
accessed by the modeling component. The collector-to-landmark connections are protected with SSL for
secure communication.

3.2 Latency Measurements

3.2.1 Measurement Types

Once the landmark infrastructure has been deployed, we can start collecting latencies. There are essentially
three kinds of latencies to be measured. First, the landmarks must measure latencies between each other,
as GNP requires this information to construct its geometricspace. This can easily be achieved by means
of periodical active probing, which is the simplest way of discovering latencies between any two machines
under our control.

Second, the landmarks must measure their latencies to each datacenter so that the datacenters can be
positioned as well. Computing the coordinates of datacenters is necessary to estimate client-datacenter
latencies, which can then be used during client redirection. Given that datacenters are operated by the
service, the landmarks can discover their latencies to the datacenters by actively probing them just like they
probe each other.

Third, the landmarks must determine their latencies to Google clients so that the coordinates of these
clients can be computed as well. However, we cannot use active probing this time, as it is likely to trig-
ger various intrusion-detection systems deployed on the client side. This could result in numerous client
complaints affecting the service reputation.

Rather than actively probing clients, the landmarks can measure their latencies to the clients without
initiating any traffic to these clients. To this end, the landmarks must rely on passive latency discovery,
wherein latency measurements can be obtained by monitoringthe service traffic and deriving the client
latencies from the dynamics of packets constituting that traffic.

A well-known technique for passive latency discovery is theSYNACK/ACK method [24]. It enables a
server to estimate its round-trip time to a client when the client initiates a TCP connection to the server. The

7

round-trip time can then be estimated during the TCP hand-shake phase as the delay between sending the
SYNACK packet and receiving its corresponding ACK packet (see Figure 4). We chose this technique for
its natural applicability in Web systems, wherein network traffic is typically carried over TCP connections.

3.2.2 Measurement Triggering

Using SYNACK/ACK to measure the latency between a client anda landmark requires that the client opens
a TCP connection to the landmark. However, the clients issuerequests only to datacenters, which are
separated from the landmark infrastructure. We must therefore implement a mechanism causing clients to
open additional TCP connections to the landmarks.

In general, Google clients are regular Web browsers. A natural way to make them open TCP connections
to the landmarks consists of deploying Web servers on the landmarks and instructing the clients to fetch
content from these Web servers.

We can easily instruct Web servers to fetch content from the landmarks by embedding some small
landmark-delivered objects inside Google Web pages. A classical example of such objects is a tiny image,
which is commonly used by the providers of Web site statistics to track site accesses [25]. However, the
major drawback with such an approach is that it makes the client experience dependent on the landmark
performance, as Web pages can be displayed in their final shape only after all their parts have been retrieved.
Datacenters are typically tuned to offer reliable service of high quality to a huge number of clients, but the
landmarks are likely to be incomparably less reliable and powerful. Should any landmark face reliability or
performance problems, then these failures may become visible to users, and in turn compromise the overall
service performance.

Solving this problem requires that the landmark-deliveredobjects are embedded in such a way that
the client-perceived service performance does not depend on the landmarks. In particular, a Web browser
should be able to display complete service responses even ifthe embedded objects cannot be downloaded.

This transparency can be achieved in two ways. First, the service might rely on JavaScript code included
in a response to retrieve a number of objects from the landmarks after the response has been displayed [26].
This approach is appealing because JavaScript is supportedby most Web browsers. However, the semantics
of retrieval failures varies across different JavaScript implementations, which makes it hard to guarantee
that running JavaScript code never results in unexpected browser behavior [27]. Since one of our priorities
was to keep the user’s perception of Google untouched, we decided not to risk compromising it by using
JavaScript.

Another transparent way of embedding objects is to use server-directed prefetching capabilities of cer-
tain browsers [28]. This technique enables a Web server to instruct browsers to retrieve a given objectafter
the entire response has been displayed. Prefetching is typically used to accelerate the download of Web
documents that clients are likely to be requesting next [29]. However, it can also be used to trigger the
retrieval of landmark-delivered objects.

The service can pass prefetching instructions to Web browsers in the form of special HTTP headers or
HTML tags embedded inside its responses [30]. Each such instruction contains the URL of an object that a
Web browser should retrieve. In contrast to regular object retrieval, however, Web browsers keep their users
unaware of any delays or failures that might occur during prefetching. This guarantees that prefetching does
not affect client-perceived service performance.

We decided to employ prefetching to trigger the retrieval oflandmark-delivered objects. To this end,
we modified Google Web servers to embed prefetching instructions inside their responses such that each
tag points at an object hosted by some landmark. This causes the clients to open HTTP connections to the
landmarks, which can then perform passive latency discovery.

A potential limitation of prefetching is that it is currently supported only by the Mozilla Firefox Web
browser [31]. This means that Google can only trigger prefetching requests from approximately 11% of its
clients [32]. However, prefetching features are planned tobe supported by the future releases of Internet
Explorer browser as well [33]. Also, measuring latencies toa fraction of all the clients might turn out to be
enough to position all Internet hosts, as we discuss next.

8

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F
10-90 percentile range (divided by mean)

Figure 5: Variation of latencies to hosts within a /24 network

3.3 Measurement Scheduling

The above sections have discussed two mechanisms that enable the service to trigger latency measurements:
active probing and embedding of prefetching instructions.Whereas the configuration of active probing is
relatively straightforward, deciding on how to trigger measurements with prefetching is much harder.

Obviously, the service needs to trigger all the measurements necessary to position its clients. However,
while doing so, it should respect the following three conditions. First, it should trigger only as many
measurements as each of the landmarks can handle, as overloaded landmarks cannot measure latencies
accurately. Second, it should also keep the total number of measurements low to reduce client-side overhead.
Third, it should avoid triggering redundant measurements to minimize network usage.

The following sections describe how our system meets each ofthese three requirements using a central-
ized scheduling policy. We then propose how such a policy canbe implemented in a large-scale system in
which responses are simultaneously generated by the thousands of Web servers that constitute the Google
infrastructure [19].

3.3.1 Landmark Load

In a naive approach, the service could include prefetching tags in all its responses to perform as many mea-
surements as possible. However, doing so would most likely lead to overloading the network connections
to the landmarks, resulting in latencies being measured with high inaccuracies.

Overloading the landmarks can be avoided by limiting the number of measurements performed by each
landmark. To this end, the service can enforce some delay between subsequent measurements scheduled
to each landmark such that the landmark capacity is never exceeded. The distinguishing property of this
time-sharing scheme is that it can be easily distributed over multiple scheduling components, which we
benefit from below. It is also very easy to implement, as it only needs to maintain a timestamp of the most
recent measurement scheduled to each landmark.

3.3.2 Client Clustering

Scheduling individual measurements should ultimately result in collecting all the latencies necessary to
position all the clients. However, since the clients might consider measurements to be an unnecessary
burden, the service should strive to minimize that burden byreducing the number of measurements.

We decided to reduce the number of measurements issued to theclients by means of clustering, which is
a popular technique for reducing the number of operations performed in a distributed system. In principle,
clustering groups machines into so-called clusters, and performs the operations on a per-cluster- rather than

9

on a per-machine basis. In our case, clustering reduces the number of measurements by grouping clients
whose latencies to a given landmark are very similar.

Efficient scheduling requires that clustering is fast, which limits the selection of clustering schemes to
very simple ones. An example of such a scheme is clustering ofmachines whose IP addresses share the
same 24-bit prefix. We call each such cluster a /24 network, and identify each such network with its 24-bit
prefix. Given that each /24 network can contain up to 254 machines, /24 clustering can reduce the number
of measurements by up to two orders of magnitude.

However, relying on /24 clustering when performing latencymeasurement is possible only if latencies
measured to the clustered machines are similar. To validatewhether this condition is met in the Internet, we
calculated 10-90 percentile ranges for latencies measuredto different clients in the same /24 networks.

The percentile ranges were calculated based on the latency trace collected by our system. First, we
extracted latencies measured by the landmark running at MITduring a two-week period. The duration
of two weeks was chosen to limit the impact of routing changeson the observed latencies. Second, we
identified all the /24 networks containing at least three different clients in the two-week trace. The number
of such networks turned out to be 28,540. Third, we obtained an indication of the landmark’s latency to each
client by calculating a median for each landmark-client pair. Finally, for all the clients in each network, we
evaluated how close their median latencies are to each other. To this end, we calculated the 10-90 percentile
range over the set of medians, and divided that range by the mean median latency for that network. The
resulting distribution of 10-90 percentile range coefficients is depicted in Figure 5.

As can be observed, in over 91% of /24 networks, the coefficient of the 10-90 percentile range is lower
than 0.2. This means that, in 91% of /24 networks, median latencies to 80% of clients differ by at most
20%. Such a low variation enables the landmarks to measure their latencies to any client in a network, and
treat these latencies as representative for any other clients in that network. Note that /24 clustering enables
to position all the clients in a given /24 network only if at least one of them supports prefetching. According
to our data, this condition is met by about 85% of /24 networkscontaining Google clients. The remaining
clients can be positioned when a more aggressive clusteringscheme is used, as we discuss in Section 6.

3.3.3 Redundant Measurements

Positioning a /24 network requires measuring latencies between that network and all the landmarks. This
can be achieved by triggering measurements from a given /24 network to the landmarks in a round-robin
fashion. To this end, subsequent service responses sent to each network contain prefetching tags pointing at
objects hosted by subsequent landmarks.

A potential problem is that starting all the round-robin sequences from the same landmark is likely to
cause that landmark to be fully loaded. In that case, the mechanism responsible for limiting the landmark
load will prevent many measurements from being performed. The service can avoid this problem by using
random initial landmarks in round-robin sequences specificto different /24 networks.

Another problem with round-robin scheduling is that it keeps triggering measurements from a given
network even after a complete set of landmark latencies to that network has been collected. The redundant
measurements are of little use to the positioning system andmight prevent the service from triggering more
useful latencies when the landmark load increases.

We chose to avoid triggering redundant measurements by simply limiting the number of round-robin
sessions to a given network. For example, once a complete setof latencies has been collected for a given
network, no other measurements are triggered to that network for some time. The duration of the interval
between sessions generally depends on how often new coordinates are being computed. In the current setup,
we allow only one round-robin session per /24 network every hour.

3.3.4 Scheduling Policy

The complete scheduling policy consists of three steps taking place every time a measurement can be trig-
gered to some client. First, the policy determines the client’s /24 network by dropping the last 8 bits of the
client’s IP address.

10

1

2

3

4

5

6

Scheduling
Cluster

Client Web BrowserWeb Server
Service

Landmark

Regular Client Request

Request
Prefetching

(redirected)
Prefetching RequestResponse with Static

Prefetching Tags

Short HTTP ResponseHTTP Redirection

W

S

B

L

Figure 6: Two-phase measurement triggering

Next, the policy inspects the round-robin state specific to that network and checks whether any more
measurements should be performed to it in its current round-robin session. If not, then no measurement is
triggered. Otherwise, the policy identifies the next landmark that should perform the measurement.

Finally, the policy verifies the approximate load of the selected landmark. If that landmark is currently
overloaded, then no measurement is triggered. Otherwise, the policy updates both the round-robin state and
the landmark load information, and instructs the service totrigger a measurement between the client and
the landmark.

3.3.5 Scheduler Separation

Although the scheduling policy is conceptually simple, it is not obvious how to implement it in a large-scale
Web system. This is because it requires the service to maintain state for round-robin landmark selection and
an approximation of landmarks’ load. The service needs thisinformation to decide which of its generated
Web pages should contain prefetching instructions.

Unfortunately, given the large number and wide-area distribution of Web servers in a large-scale Web
system, it is unlikely that they can efficiently share state among them [19]. This is because of frequent
updates that make the state difficult to keep consistent without degrading the scheduling performance, even
though the state itself is relatively small (about 8 bytes for round-robin information per cluster, plus another
8 bytes per landmark for the load information).

We decided to solve this problem by splitting the measurement-triggering mechanism into two parts
(see Figure 6). First, while responding to regular client requests, the Web servers implementing the ser-
vice includestatic prefetching tags into a small fraction of their responses. Static prefetching tags do not
point at any particular landmark. Instead, they point at a dedicated cluster of Web servers taking care of
measurement scheduling.

The second part of the triggering mechanism is implemented by the scheduling cluster. Each machine
in the cluster maintains its local scheduling state, and processes an even share of all the requests triggered
by the static prefetching tags. For each such request, it invokes the scheduling policy to select the target
landmark for the measurement that the request can potentially trigger.

The scheduling policy might sometimes decide not to triggerany measurement for a given prefetching
request, for example when all the landmarks are overloaded.In that case, the prefetching request is serviced
locally by the scheduling cluster. Note that the schedulingcluster could even exploit the performance-
neutral nature of prefetching requests and drop them completely.

Typically, however, the scheduling policy returns the address of some landmark. The scheduling cluster
can then redirect the prefetching request to that landmark using an HTTP-302 response [30]. This causes
the clients to re-issue the prefetching request to the landmark exactly as if the landmark address was put in

11

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0 50 100 150 200 250 300

N
um

be
r

of
 P

os
iti

on
ed

 N
et

w
or

ks

Time (hours)

Cookie
Random

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 0 300 600 900 1200 1500

N
um

be
r

of
 P

os
iti

on
ed

 N
et

w
or

ks

Time (hours)

1 tag per response
2 tags per response
4 tags per response
7 tags per response

(a) (b)

Figure 7: Impact of different tag-embedding strategies (a), and different numbers of tags

the prefetching tag embedded inside the original service response. Note that although the content prefetched
from the landmarks is never displayed to the users, it can still contain some brief information about the mea-
surements being performed. This helps preventing users from becoming suspicious about the prefetching
requests after they are detected by client-side firewalls.

3.3.6 Web Server Logic

Embedding static prefetching tags prevents the regular Webservers from maintaining any scheduling state,
as all the prefetching tags always point at the URL of the scheduling cluster. However, the Web servers
must still be able to decide whether a given response should carry a static prefetching tag, or not. For now,
we assume that Web servers insert at most one prefetching tagper response.

One way of enabling the Web servers to decide on insertion of prefetching tags would be to rely on
client identifiers embedded in service cookies. In that case, the Web servers would include prefetching tags
in responses sent to clients holding cookies with identifiers meeting the condition that:

IDclient % X == 0

whereX denotes some divisor value, which can be used to adjust the number of generated prefetching
tags to the capacity of the scheduling cluster. An attractive property of this approach is that it keeps trig-
gering measurements from the same clients, which should intuitively result in quickly collecting multiple
measurements required to position these clients.

However, triggering measurements from the same group of clients results in only a small fraction of all
the /24 networks being ultimately positioned. This can be observed in Figure 7a (the ’Cookie’ line), which
indicates that only about 250,000 out of the total 1.2 millions of client /24 networks were positioned after
300 hours.

The positioning coverage can be improved by inserting static prefetching tags purely at random. To this
end, the Web servers include prefetching tags when:

random() % X == 0

whereX can again be adjusted to the capacity of the scheduling cluster. As can be observed in Figure 7a
(the ’Random’ line), this approach results in a larger number of /24 networks being positioned in the long
run (500,000 after 300 hours), even though relying on cookies might initially seem to perform better.

An interesting question is how many static prefetching tagsshould be embedded in a single service
response once the decision has been made that there should beany. Clearly, inserting more tags results
in triggering more measurements at the cost of increasing the load at the clients and the landmarks. On

12

Regular Client Request

1

2 3

4

5

6

7

Scheduling
Cluster

Web Server
Service

Measured Latencies

Client Web Browser

Landmark Collector

Measurement
Logs

Application

Modeller

Positions

Request
Prefetching

Response with Static
Prefetching Tags

Prefetching Request
(redirected)

HTTP Redirection

Short HTTP Response

W

S

B

L C

M

A

Figure 8: Final system architecture

the other hand, collecting more measurements should also result in a larger number of /24 networks being
positioned the same time, as the seven measurements necessary to position each network are collected faster.

Figure 7b depicts the dependency between the number of positioned networks and the number of static
prefetching tags embedded in a single response. As can be observed, inserting more prefetching tags in a
single response indeed helps to collect measurements faster. For example, inserting four tags per response
allows for positioning more than 800,000 of /24 networks after about 450 hours, instead of 1200 hours
necessary to position these networks when only one prefetching tag is embedded. Inserting seven tags per
response, in turn, allows for reducing that time to 160 hours, which is less than one week.

3.4 Final Architecture

The final system architecture is depicted in Figure 8. Latency measurements to the clients are triggered by
service Web servers, which embed static prefetching tags inside a fraction of their responses.

The prefetching tags cause the clients to issue prefetchingrequests to the scheduling cluster, which
redirects these requests to the landmarks according to the scheduling policy. This causes the clients to re-
issue the requests to the landmarks, which perform latency measurements while delivering a short system
description. All the measured latencies are reported to thecollector.

Once the latencies have been collected, they are stored in measurement logs. These logs are periodically
retrieved by a special component calledmodeler, which processes the latencies and computes new sets of
coordinates, as we discuss next.

4 Latency Modeling

The modeler essentially performs two types of tasks. First,it creates a geometric space by computing the
landmark coordinates. Second, it computes all the other coordinates relative to the landmark coordinates.
Since both these tasks require some set of latencies as the input, it is tempting to directly apply the position-
ing algorithm to the base latencies stored in the measurement logs.

13

However, GNP requires its input to contain only one indication of latency between a given pair of
machines. On the other hand, the measurement logs produced by the controller are likely to contain multiple
such indications, as each landmark typically measures its latency to the same /24 network many times.
Since subsequent latency measurements between the same pair of nodes are likely to return fluctuating
results, the modeler must pre-process the measurement logsbefore their contents can be passed to the GNP
implementation.

4.1 Stable Latencies

In principle, latencies measured between a given landmark-node pair can fluctuate for two types of reasons.
The first type are temporary intermittent conditions that donot affect long-term latencies between landmarks
and nodes, such as network congestion and high CPU load. The second type are route changes, which can
permanently change latencies between nodes. The goal of a good latency pre-processor is to eliminate
fluctuations caused by the intermittent conditions while remaining reactive to permanent latency changes.

Clearly, network congestion can affect the observed latencies. If the path between the landmark and the
node is saturated, the measurement packets are delayed by routers on the path, causing the observed latency
to be longer. Note that the service should strive to reduce the impact of network congestion by avoiding it
on the landmark side. This can be achieved by deploying the landmarks in hosting facilities providing hard
bandwidth guarantees.

Apart from network congestion, latencies can also fluctuatebecause of high CPU load on either the
node or the landmark. The problem with high CPU load on the node is that it might prevent the node
from immediately responding to packets sent by the landmark. This can result in observed latencies being
longer than they really are. On the other hand, since the packets exploited by both ICMP probing and
SYNACK/ACK are handled entirely by the operating system kernels, the delay caused by high load of the
node’s CPU is likely to be negligible.

High load on the landmark presents a bigger problem, as it canprevent the packet sniffer running on the
landmark from timestamping measurement packets accurately. The resulting inaccuracies strongly depend
on sniffer implementation. We therefore assume that the observed latencies can not only be higher, but also
lower than they really are.

Given that temporary intermittent conditions occur only occasionally, their resulting measurement inac-
curacies can be eliminated through statistical filtering. To this end, the modeler could maintain a history of
latencies measured between each landmark-node pair, and identify the real latency for that pair as the one
occurring most commonly in the history. This could be achieved by means of medians, for example.

However, median latencies can change over time as well. Thisis caused by long-lasting conditions,
such as route changes. As the route between the landmark and the node changes, its corresponding history
of latencies contains more and more groups of latencies, each measured for a different route. In that case,
medians calculated over complete latency histories are notguaranteed to indicate current real latencies.

We decided to detect route changes by applying the sliding percentile concept to the latency history [14].
To this end, it keeps only a specific number of most recent measurements in each history, which should result
in history medians being closer to the actual observed latencies.

We verified the impact of sliding percentiles on measurements used for positioning. To this end, we
applied them to the latency trace collected by our system, and evaluated their performance. The trace
spanned a period of six weeks and contained latencies to Google clients measured by one of our PlanetLab
landmarks located in MIT. To ensure fair comparison, we analyzed latencies to only the 10,000 networks
that occurred most frequently in the trace (57 times on average). The performance of sliding percentiles
was evaluated by calculating the relative error between observed latencies and their corresponding values
after filtering with sliding percentiles. The resulting error distribution for various configurations of sliding
percentiles in depicted in Figure 9.

As can be observed, using sliding percentiles indeed enables one to identify current latencies more accu-
rately, although the improvement is not very high. However,these small improvements result in significantly
higher stability of coordinates, as we demonstrate next.

14

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5

C
D

F
Relative Estimation Error

Last Measurement
Median over 3 Latest Measurements
Median over 9 Latest Measurements

Figure 9: Stabilization of measured latencies

4.2 Stable Coordinates

Computing the coordinates for a given /24 network enables one to estimate latencies between hosts in that
network and those in any other network whose coordinates arealready known. This allows our request
redirector to identify the datacenter that is closest in terms of latency to clients in a given network, and
redirect these clients accordingly.

However, latency fluctuations cause the coordinates to change over time. The degree of these changes
determines how useful the coordinates are to make long-termdecisions, which are important for the above
applications. For example, when client requests are redirected using DNS, it can cache the responses pro-
duced by the redirecting DNS servers for several hours, which causes the redirecting decisions based on
coordinates produced by our system to remain in effect for a relatively long time.

To investigate the influence of latency fluctuations on GNP coordinates, we evaluated the stability of
coordinates produced by our system. We used the trace of latencies between the landmarks and the 10,000
most popular /24 networks selected for the previous experiment. We split the six-week trace into two parts.
The first part was two-weeks long and was used as a basis to compute the initial coordinates of all the /24
networks. The remaining part of four weeks was used as a test trace, based on which we investigated how
the coordinates of /24 networks change over time in terms of distance to their initial counterparts. To this
end, for every test trace hour, we recomputed the coordinates of all the /24 networks for which latency
measurements were performed within that hour. This resulted in re-positioning on average 1271 networks
every hour.

Ideally, at each hour, we would compute the distance betweenthe current- and initial coordinates of
each /24 network. In many cases, however, due to the lack of latency measurement within the last hour, it is
impossible to compute the current coordinates directly. However, this does not mean that these coordinates
did not change during that hour, but just that we did not measure latencies frequently enough.

Figure 10 depicts how we approximated the missing coordinates for each network. Essentially, for
each pair of coordinates computed during subsequent re-positioning operations, we assume that the missing
coordinates between them change linearly. This enabled us to calculate the coordinates of all the networks
for each test trace hour.

We evaluate the changes in coordinates during subsequent hours by calculating the median distance
between the 10,000 coordinates calculated for a given hour and their initial counterparts. As shown in
Figure 11, the coordinates change significantly when computed based on the most recent measurements
(line ’Last Measurement’). They also seem to increasingly deviate from their initial values over time, as
the median distance between current and initial coordinates generally increases with time. However, this
hypothesis was not confirmed by a number of case studies we performed for individual networks. We
therefore believe that the increasing trend is caused not bylarge deviation in coordinates, but by a large

15

2−Dimensional Geometric Space

T(3)

T(5)

T(0)

Computed

Approximated

Coordinates
T(n)− after hour n

T(1)

T(2) T(4)

Figure 10: Approximating missing coordinates

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 48 96 144 192 240 288 336

M
ed

ia
n

di
st

an
ce

fr
om

 in
iti

al
 p

os
iti

on
 (

m
se

c)

Time (hours)

Last Measurement
Median-9

Median-9 (recomputed)

Figure 11: Latency stabilization vs. coordinate stability

number of relatively small deviations. This number increases withtime, as latencies to more and more
networks become affected by route changes, leading the coordinates of these networks to be significantly
different. The result of aggregating such differences calculated for 10,000 networks is the increasing trend
in in the median distance between the current- and initial coordinates.

Having observed the instability of coordinates computed based on the most recent latency measure-
ments, we investigated whether the coordinate stability can be improved by computing coordinates based
on latency measurements stabilized with sliding percentiles. To this end, we performed an experiment that
was very similar to the previous one. The only difference wasthat the networks were re-positioned based
on latencies filtered using sliding percentiles. We used median latencies calculated over the set of 9 most
recent measurements. The results are depicted in Figure 11 (line ’Median-9’).

As can be observed, sliding percentiles significantly improve the stability of coordinates. However, they
do not eliminate the increasing trend, which limits the maximum time for which coordinates can be relied
upon. To overcome this problem, each application would needto periodically recompute coordinates so
that they meet its requirements with respect to positioningaccuracy. Line ’Median-9 recomputed’ shows
that daily re-computations can keep current coordinates within 8 milliseconds of their initial counterparts.

How often coordinates should be re-computed depends on a trade-off between the positioning accuracy
and the cost of computing and propagating the coordinates tothe applications. To investigate this trade-off,
we ran the above experiment withinitial coordinates re-computed everyX days, forX between 1 and 7.
For each of the resulting 7 simulations, we computed both themedian- and the 75th percentile of distances
between current coordinates and their most recently computed “initial” counterparts.

16

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0 1 2 3 4 5 6 7

D
is

ta
nc

e
fr

om
in

iti
al

 c
oo

rd
in

at
es

 (
m

se
c)

Re-computation period (days)

Median
75-percentile

Figure 12: Impact of different re-computation periods

 0

 2

 4

 6

 8

 10

 12

 0 6 12 18 24

D
is

ta
nc

e
fr

om
in

iti
al

 c
oo

rd
in

at
es

 (
m

se
c)

Re-computation hour (0 means noon UTC)

75-Percentile

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0 1 2 3 4 5 6 7

D
is

ta
nc

e
fr

om
in

iti
al

 c
oo

rd
in

at
es

 (
m

se
c)

Re-computation period (days)

75-percentile, 10pm UTC
75-percentile, 10am UTC

(a) (b)

Figure 13: Impact of re-positioning hour on daily coordinate stability (a), and on coordinate stability in
general (b)

The results in presented in Figure 12. They indicate that daily re-positioning reduces the median dis-
tance between current- and initial coordinates to only 1.53milliseconds, whereas re-computing coordinates
every week results in that distance being 11.94 milliseconds. However, the corresponding 75th percentiles
percentiles of distances to initial coordinates are already 7.33 milliseconds and 33.56 milliseconds, respec-
tively. In our experiments, we decided to re-compute all thecoordinates on a daily basis, which, apart from
offering very good stability, also makes the system very responsive to changes in network conditions.

When re-computing coordinates every day, an interesting question is whether the coordinate stability
depends on the actual time of day when re-computations take place. To answer this question, we performed
24 simulations of daily re-positioning based on our 4-weeks-long test trace. Each simulation was configured
to re-compute coordinates at a different trace hour. We evaluated the resulting stability by computing the
75 percentile of distances between current- and initial coordinates observed throughout the 24 trace hours
after each re-positioning. The results are depicted in Figure 13a.

As can be observed, the coordinates are most stable when re-computed around 10pm UTC. We believe
that this is because the coordinates are then computed basedon measurements collected during peak Internet
hours, as they account for day time in the US and evening in Europe, which are the two continents where
most of the 10,000 test networks are located. As a consequence, these coordinates remain representative
for the most of the 24 hours following the re-computation, which results in 30%, or 2.5 milliseconds,
improvement compared to re-computing at 10am UTC, when the stability is the worst.

17

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 1.5 2 2.5 3

C
D

F
Ratio to optimal latency

Popular (10,000)
Global (616)

Figure 14: Efficiency of GNP-based replica selection

For the sake of completeness, we also checked how different re-positioning hours influence the stability
of coordinates re-computed every 2 days or more. To this end,we again simulated coordinate recompu-
tations everyN days (forN from 1 to 7) based on our test trace. We performed two simulations, each
configured to re-compute positions at a different hour: 10pmUTC and 10am UTC. The results are pre-
sented in Figure 13b. As can be observed, the improvement of 2.5 milliseconds remains roughly constant
irrespective of how often coordinates are re-computed, which reduces its impact to approximately 10%
when recomputing coordinates every 4 days or more.

5 Coordinate-Based Client Redirection

Deploying the positioning system enables Google to implement various latency-driven applications that
shall improve access latency for its clients. One of such applications is client redirection: based on the
coordinates produced by GNP, we can redirect each client to areplica that is closest to that client in terms
of latency. To this end, we calculate the distance between the coordinates of the client and the coordinates
of each replica, and select the replica with the shortest distance to the client.

5.1 Absolute Performance

We verified the efficiency of coordinate-based redirection.To this end, we positioned the 10,000 /24 net-
works based on the median latencies measured between these networks and 20 candidate landmarks de-
ployed on PlanetLab nodes over a period of six weeks. Each network was positioned relative to the best set
of seven landmarks identified in Section 3.1.1. We chose 10 ofthe 13 remaining candidate landmarks to
form a globally distributed set of replicas. Next, for each replica, we calculated its median measured latency
to each network. Finally, for each network, we determined its closest replica based on the median measured
latencies, and matched that choice against that made based on latencies estimated with coordinates. The
results are depicted in Figure 14 (line ’Popular’).

As can be observed, clients from 86% of /24 networks are redirected to the replica closest to them in
terms of median measured latency. Also, clients from another 10% of networks are redirected to replicas
offering latencies at most two times longer than the closestones. Finally, only about 2% of networks are
redirected to replicas further than 3 times than the closestones.

We have also performed the above experiment for the set of 616globally-distributed clients that we
constructed in Section 3.1.1. The results are also depictedin Figure 14 (line ’Global’). It shows that
coordinate-based redirection selects the closest replicafor clients in about 67% of globally-distributed /24
networks, and replicas offering latencies at most 2 times higher than optimal in for clients in another 24%
of such networks. We believe that the suboptimal replica selection in the remaining cases is caused by node

18

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

Relative Rank Loss

Popular (10,000)
Global (616)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 25 50 75 100 125 150

C
D

F

Latency Loss upon Mis-Ordering (msec)

Popular (10,000)
Global (616)

(a) (b)

Figure 15: Relative performance of client redirection in terms of: rrl (a), and latency (b)

mispositioning. Nodes are typically mispositioned when they have long latencies to all the landmarks, or
when the latencies of their network paths to the landmarks are self-inconsistent from the perspective of
GNP, for example, because of multi-homing [34].

5.2 Relative Performance

Although GNP-based redirection seems to perform well in terms of absolute latency values, it has recently
been suggested that absolute metrics are not enough to completely evaluate redirection efficiency [35]. This
is because redirected clients often care more aboutrelative dependencies between latencies to different
replicas, rather than about their absolute values.

The relative performance of GNP-based redirection can be measured by means of another metric, called
Relative Rank Loss (rrl). For each client, it creates two replica rankings: one calculated based on measured
client-to-replica latencies, and another based on latencyestimates provided by GNP. Given the two rankings,
therrl of each clientC can be computed according to the following formula:

rrl(C, R) = {(x,y)|x 6=yandswapped(x,y)}
|R|(|R|−1)

whereR is the set of replicas,(x, y) are elements ofR × R, andswapped(x, y) is true when the relative
ordering ofx andy is different in the two rankings created for clientC. rrl can also be interpreted as the
probability thatswapped(x, y) is true for any two different replicas.

We have computedrrl values based the client latencies from the test sets used to evaluate the absolute
performance of client redirection. The results are presented in Figure 15a.

As can be observed,rrl is lower than .2 for about 92% of frequent clients, and for about 65% of globally-
distributed clients. For these clients, any pair of replicas has only 20% chance to be re-ordered when
client-to-replica latencies are estimated with GNP. Furthermore, according to our data, misordering happens
mostly when two replicas have very similar latencies to the client. This can be observed in Figure 15b, which
depicts the distribution of differences in client-to-replica latencies when a misordering occurs. It shows that
loss in client-to-replica latency resulting from misordering is less than 50 milliseconds for 95% of frequent-
and 73% of globally-distributed clients.

5.3 DNS Considerations

A potential problem when using client coordinates for request redirection is that large-scale Internet services
typically redirect their clients using DNS. In that case, the redirecting decisions are made based on the
addresses of client-side DNS servers rather than on these ofend clients themselves [36]. Meanwhile, our

19

positioning system can compute coordinates only for /24 networks that contain at least one Web client,
which is relatively uncommon for networks used by client-side DNS servers. This means that the service
might be unable to determine the coordinates of a DNS server,which in turn makes it impossible to select
the best replica for the service clients which access that server.

We solve this problem by associating networks containing Google clients with networks containing
DNS servers these clients use. To this end, one could rely on network-aware clustering, which identifies
co-located /24 networks as those falling within the same BGPprefix [37]. However, this solution implicitly
assumes that clients typically use DNS servers that belong to the same BGP prefix, which has been shown
to be false in most cases [38]. We therefore exploit a proprietary mechanism that precisely discovers which
DNS server is used by each Google client. The details of this mechanism are out of scope of this article.

6 Generic Latency Estimation Service

Given that our system collects latency information about millions of Internet hosts, it can potentially be
used to predict latencies between arbitrary machines in theInternet, which are not necessarily Google
clients. Such a generic latency estimation service could beuseful for any application that needs to estimate
end-to-end latencies between Internet hosts, such as a peer-to-peer overlay or a third-party content delivery
network.

In this section, we investigate to what extent our system succeeds in predicting such latencies. To this
end, we evaluate the accuracy of latency estimates predicted for hosts that have never been involved in
any operation performed by our system. Such a non-involvement means that these hosts have never been
instrumented by our system, and that we have never measured their base latencies in any way. Instead, we
determine the coordinates of these hosts by simply taking the coordinates of their co-located Google clients.

A potential problem at this stage is that our system can estimate latencies only between /24 networks
containing Google clients. However, while using /24 clustering allows us to position a huge number of
Internet hosts, there are also many hosts that cannot be positioned when such an approach is followed.
This is true for network servers, for example, which are typically deployed in different networks than user
machines. We circumvent this problem by clustering Google clients into BGP prefixes, and not into /24
networks. Such coarse-grain clustering enables us to position more hosts at the expense of potential loss in
estimation accuracy, as latencies to machines located in the same BGP prefixes are likely to be more diverse
than those to machines located in the same /24 networks.

Fair accuracy evaluation requires that latency estimates produced by our system are compared against
their corresponding measured latencies. We use two datasets of measured latencies derived from third-
party latency traces, called PlanetLab and RIPE. Both thesedatasets contain matrices of all-pair latencies
measured between a number of machines during subsequent hours in November 2006. Each matrix is
specific to a different hour and contains minimum latencies observed for given pairs of machines throughout
that hour. We chose to use minimum latency values because they correspond to the “empty path” latencies
that our system is striving to estimate.

The estimation accuracy is evaluated by measuring the relative difference between latencies found in
each dataset against their estimated counterparts. To ensure the fairness of comparison, all the estimates are
computed based on the data collected before their corresponding measurements were performed.

6.1 PlanetLab Latencies

The PlanetLab dataset contains latencies measured between489 PlanetLab nodes. It was derived from the
latency trace collected by Jeremy Stribling for his “all-pair pings” project [39]. To this end, we aggregated
the original latencies (measured every 15 minutes) into hourly all-pair matrices.

We compare the dataset latencies against their estimates provided for 327 (out of 489) PlanetLab nodes
whose coordinates we were able to derive from base latenciesmeasured to Google clients. The total number
of latencies analyzed is 39.6 million (more than 50,000 per hourly matrix). For each such latency, we

20

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.5 1 1.5 2

C
D

F

Relative Estimation Error

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

F
ra

ct
io

n
of

 e
st

im
at

es
w

ith
 e

rr
or

 lo
w

er
 th

an
 .5

Time (days)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.5 1 1.5 2

C
D

F

Relative Estimation Error

>100 msec (65.5%)
50-100 msec (17.3%)
25-50 msec (10.6%)

<25 msec (6.6%)

(a) (b) (c)

Figure 16: PlanetLab latency estimation: relative error (a), accuracy over time (b), and accuracy for different
latency intervals (c)

calculate the relative latency estimation error accordingto the formula introduced in Section 3.1.1. The
resulting distribution of error values is depicted in Figure 16a.

As can be observed, relative estimation error is lower than .5 in approximately 83% of the cases, which
comes close to that reported in the original GNP paper for hosts instrumented with GNP software. More
importantly, the high estimation accuracy is preserved over time. This can be observed in Figure 16b, which
shows how the fraction of good estimates (with error lower than .5) changes over time.

Although the overall system performance for the PlanetLab dataset is very good, a further investigation
of error values reveals that the estimation accuracy variesdepending on latency magnitude. This can be
observed in Figure 16c, which depicts the distributions of estimation errors for four different intervals of
measured latencies. The differences between these distributions indicate that precise estimation of very
short latencies (25 milliseconds or less) is very hard, as opposed to predicting long latencies (100 mil-
liseconds or more). These results make us believe that the high overall estimation accuracy achieved for
PlanetLab latencies is partially caused by their favorabledistribution, as more than 65% of them are at least
100 milliseconds long.

6.2 RIPE Latencies

The favorable properties of PlanetLab latencies are not present in our second dataset. It contains latencies
measured by the infrastructure of 70 diagnostic stations deployed for the RIPE Test Traffic Measurements
project (TTM) [40]. The diagnostic stations, called test-boxes, are deployed on the backbones of various
Internet Service Providers, and used for evaluating and streamlining the communication between these
backbones. Given that most of TTM ISPs are located in Europe,most of the latencies between test-boxes
are very short, which makes them very hard to estimate accurately.

We evaluate the performance of our system based on the RIPE dataset just as we did with PlanetLab.
First, we use BGP clustering to position the test-boxes, which ultimately led to determining GNP coordi-
nates for 47 of them. Given these coordinates, we calculate relative estimation errors for latencies measured
between these stations, which leads to analyzing more than 1,100 measurements per hourly matrix. The
resulting distribution is error values depicted in Figures17a and 17c.

As can be observed, short latencies are indeed very hard to estimate accurately. This severely affects the
overall performance, as 61.8% of RIPE latencies are shorterthan 50 milliseconds. However, the accuracy
of long latency estimates is far better: 70% of them are off byless than .5. Also, similar as in the case of
PlanetLab, the estimation accuracy for RIPE latencies is preserved over time (see Figure 17b).

Based on the analysis performed with our two datasets, we conclude that our system could be used as
a generic latency estimation service. It performs very goodwhen estimating long latencies, which makes it
particularly suitable for predicting latencies between globally distributed hosts. As for short latencies, such
as those found in the RIPE dataset, they are very hard to estimate precisely. However, our system can still
estimate at least some of them with a reasonable degree of accuracy.

21

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.5 1 1.5 2

C
D

F

Relative Estimation Error

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

F
ra

ct
io

n
of

 e
st

im
at

es
w

ith
 e

rr
or

 lo
w

er
 th

an
 .5

Time (days)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.5 1 1.5 2

C
D

F

Relative Estimation Error

>100 msec (20.5%)
50-100 msec (17.7%)
25-50 msec (32.1%)

<25 msec (29.7%)

(a) (b) (c)

Figure 17: RIPE latency estimation: relative error (a), accuracy over time (b), and accuracy for different
latency intervals (c)

7 Conclusions and Future Work

We have presented an implementation of GNP incorporated into the Google content delivery network. In
contrast to all its previous counterparts, our implementation does not rely on active participation of Web
clients, as all the latency measurements are performed passively by the landmarks. The overhead incurred
by latency measurements is carefully controlled by a scalable centralized scheduler, which prevents both
the landmarks and the network from becoming overloaded. Deploying our solution requires only a small
number of CDN modifications, which makes it attractive for any CDN interested in large-scale latency
estimation.

Our system has been collecting latency information about millions of Google clients for several months.
The analysis of these data enabled us to confirm many of the results presented in earlier research on GNP,
and add to these results by investigating the issue of coordinate stability over time. We have shown that
coordinates drift away from their initial values with time,making 25% of the coordinates to become in-
accurate by more than 33 milliseconds after one week. However, daily recomputations make 75% of the
coordinates stay within 6 milliseconds of their initial values.

Apart from analyzing the behavior of GNP coordinates over time, we have also discussed our experience
with their practical applicability. We have demonstrated that using coordinates to decide on client-to-replica
redirection leads to selecting replicas closest in term ofmeasured latency in 86% of all cases. In another
10% of all cases, clients are redirected to replicas offering latencies that are at most two times longer than
optimal.

Collecting a huge volume of latency data has enabled us to estimate latencies between globally dis-
tributed Internet hosts that have not participated in our measurements. We have been able to determine the
coordinates of such hosts by applying network-aware clustering. The results are sufficiently promising that
Google may offer a public interface to the latency estimatesin the future. Such an interface could be use-
ful for any large-scale distributed applications, including peer-to-peer overlays and other content delivery
networks. We plan on developing our system further by improving its scalability using multiple schedulers,
and by reducing the delay between measuring base latencies and converting them into fresh coordinates.

Acknowledgments

We would like to express our gratitude to all the people who have made conducting this research possible. In
particular, Sean Knapp and James Morrison, both from Google, helped us modify the code of Google Web
Search servers. Marius A. Eriksen, another Google engineer, pointed us to the prefetching functionality of
Firefox. Larry L. Peterson from the PlanetLab Consortium enabled us to deploy our landmarks on port 81
of PlanetLab nodes. Henk Uijterwaal from the RIPE Network Coordination Centre provided us with the
latency data from the Test-Traffic Measurement project.

22

References
[1] M. Zari and H. Saiedian and M. Naeem, “Understanding and Reducing Web Delays,”IEEE Computer, vol. 34,

no. 12, pp. 30–37, 2001.

[2] F. Dabek, J. Li, E. Sit, J. Robertson, M. Kaashoek, and R. Morris, “Designing a DHT for low latency and high
throughput,” Berkeley, CA, Mar. 2004, USENIX, USENIX.

[3] J. Pereira, L. Rodrigues, A. Pinto, and R. Oliveira, “LowLatency Probabilistic Broadcast in Wide Area Networks,”
in Proc. 23rd International Symposium on Reliable Distributed Systems, Florianópolis, Brazil, Oct. 2004, IEEE.

[4] M. Szymaniak and G. Pierre and M. van Steen, “Latency-Driven Replica Placement,” inProceedings of the
International Symposium on Applications and the Internet, Trento, Italy, Feb. 2005.

[5] L. Amini and H. Schulzrinne, “Client Clustering for Traffic and Location Estimation,” in24th International
Conference on Distributed Computing Systems, Mar. 2004.

[6] R. Wolski, N. Spring, and J. Hayes, “The Network Weather Service: A Distributed Resource Performance Fore-
casting Service for Metacomputing,”Future Generation Computer Systems, vol. 15, no. 5-6, Oct. 1999.

[7] S. Brin and L. Page, “The anatomy of a large-scale hypertextual Web search engine,”Computer Networks and
ISDN Systems, vol. 30, no. 1–7, pp. 107–117, 1998.

[8] T.S. Eugene Ng and Hui Zhang, “Predicting Internet Network Distance with Coordinates-Based Approaches,” in
21st IEEE INFOCOM Conference, June 2002.

[9] Y. Shavitt and T. Tankel, “Big-Bang Simulation for Embedding Network Distances in Euclidean Space,” in22nd
IEEE INFOCOM Conference, Apr. 2003.

[10] S. Srinivasan and E. W. Zegura, “An Empirical Evaluation of Landmark Placement on Internet Coordinate
Schemes,” inInternational Conference on Computer Communications and Networks, Oct. 2004.

[11] L. Tang and M. Crovella, “Virtual Landmarks for the Internet,” in ACM Internet Measurement Conference, Oct.
2003.

[12] R. Cox, F. Dabek, F. Kaashoek, J. Li, and R. Morris, “Practical, Distributed Network Coordinates,” in2nd ACM
Workshop on Hot Topics in Networks (HotNets-II), Nov. 2003.

[13] H. Lim, J. Hou, and C.-H. Choi, “Constructing Internet coordinate system based on delay measurements,” in
Proceedings of Internet Measurement Conference, Oct. 2003.

[14] P. Pietzuch and J. Ledlie and M. Seltzer, “Supporting Network Coordinates on PlanetLab,” inProceedings of the
Second Workshop on Real, Large Distributed Systems (WORDS), San Francisco, CA, Dec. 2005.

[15] M. Castro, M. Costa, P. Key, and A. Rowstron, “PIC: Practical Internet Coordinates for Distance Estimation,”
Technical Report MSR-TR-2003-53, Microsoft Research, Sept. 2003.

[16] M. Pias, J. Crowcroft, S. Wilbur, T. Harris, and S. Bhatti, “Lighthouses for Scalable Distributed Location,” in2nd
International Workshop on Peer-to-Peer Systems, Feb. 2003.

[17] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: adecentralized network coordinate system,” inSIG-
COMM ’04: Proceedings of the 2004 conference on Applications, technologies, architectures, and protocols for
computer communications, Aug. 2004.

[18] T. S. Eugene Ng and H. Zhang, “A Network Positioning System for the Internet,” in4th USENIX Symposium on
Internet Technologies and Systems, June 2004.

[19] L. A. Barroso, J. Dean, and U. Holzle, “Web Search for a Planet: The Google Cluster Architecture,”IEEE Micro,
vol. 23, no. 2, pp. 22–28, 2003.

[20] J. A. Nelder and R. Mead, “A Simplex Method for Function Minimization,” The Computer Journal, vol. 4, no. 7,
1965.

[21] M. Szymaniak, G. Pierre, and M. van Steen, “Scalable Cooperative Latency Estimation,” in10th International
Conference on Parallel and Distributed Systems, July 2004.

[22] M. Waldvogel and R. Rinaldi, “Efficient Topology-AwareOverlay Network,” in1st ACM Workshop on Hot Topics
in Networks (HotNets-I), Oct. 2002.

[23] “The PlanetLab Project,”http://www.planet-lab.org/ .

23

[24] M. Andrews, B. Shepherd, A. Srinivasan, P. Winkler, andF. Zane, “Clustering and Server Selection Using Passive
Monitoring,” in 21st IEEE INFOCOM Conference, June 2002.

[25] “Site Meter,”http://www.sitemeter.com/ .

[26] R. Kokku, P. Yalagandula, A. Venkataramani, and M. Dahlin, “NPS: A Non-interfering Deployable Web Prefetch-
ing System,” inThe 4th USENIX Symposium on Internet Technologies and Systems, Mar. 2003.

[27] C. Wootton, “JavaScript Weirdness,” Web Developer’s Journal, Sept. 1999,
http://www.webdevelopersjournal.com/ .

[28] D. Fisher and G. Saksena, “SYNOPSIS: Link Prefetching in Mozilla: A Server-Driven Approach,” inThe 8th
International Workshop on Web Content Caching and Distribution, Sept. 2003.

[29] D. Duchamp, “Prefetching Hyperlinks,” in2nd USENIX Symposium on Internet Technologies and Systems, Oct.
1999.

[30] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee, “Hypertext Transfer
Protocol - HTTP/1.1,” RFC 2616, June 1999.

[31] “Firefox,” http://www.mozilla.com/firefox/ .

[32] OneStat.com, “Mozilla’s browsers global usage share is still growing,” Nov. 2005,
http://www.onestat.com/ .

[33] V. Kudallur, “IE7 Networking improvements in content caching and decompression,” Oct. 2005,
http://blogs.msdn.com/ .

[34] H. Zheng, E. Keong Lua, M. Pias, and T. Griffin, “InternetRouting Policies and Round-Trip Times,” inPassive
and Active Measurement Workshop, Mar. 2005.

[35] E. Keong Lua, T. Griffin, M. Pias, H. Zheng, and J. Crowcroft, “On the Accuracy of Embeddings for Internet
Coordinate Systems,” inInternet Measurement Conference, Berkeley, CA, Oct. 2005, USENIX.

[36] A. Shaikh, R. Tewari, and M. Agrawal, “On the Effectiveness of DNS-based Server Selection,” in20th INFOCOM
Conference, Los Alamitos, CA., Apr. 2001, IEEE, pp. 1801–1810, IEEE Computer Society Press.

[37] B. Krishnamurthy and J.Wang, “On network-aware clustering of Web clients,” inProc. ACM SIGCOMM, Stock-
holm, Sweden, Aug. 2000.

[38] Z. Morley Mao, C. D. Cranor, F. Douglis, M. Rabinovich, O. Spatscheck, and J. Wang, “A Precise and Efficient
Evaluation of the Proximity between Web Clients and their Local DNS Servers,” inAnnual Technical Conference,
Berkeley, CA, June 2002, USENIX, pp. 229–242, USENIX.

[39] J. Stribling, “All-pairs Ping Data for PlanetLab,” Jan. 2006,http://pdos.csail.mit.edu/˜strib/pl app/ .

[40] F. Georgatos, F. Gruber, D. Karrenberg, M. Santcroos, A. Susanj, H. Uijterwaal, and R. Wilhelm, “Providing
Active Measurements as a Regular Service for ISP’s,” inPassive and Active Measurements Workshop, Apr. 2001.

24

