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Abstract

We present the implementation of a large-scale latencgnasitin system based on GNP and incorpo-
rated into the Google content delivery network. Our implatagon does not rely on active participation
of Web clients, and carefully controls the overhead inalilvg latency measurements using a scalable
centralized scheduler. It also requires only a small numb&DN modifications, which makes it attrac-
tive for any CDN interested in large-scale latency estiorati

We investigate the issue of coordinate stability over timé show that coordinates drift away from
their initial values with time, so that 25% of node coordesmbecome inaccurate by more than 33 mil-
liseconds after one week. However, daily recomputationken¥% of the coordinates stay within 6
milliseconds of their initial values. Furthermore, we dersinate that using coordinates to decide on
client-to-replica redirection leads to selecting reictosest in term ofneasured latency in 86% of all
cases. In another 10% of all cases, clients are redirectegptizas offering latencies that are at most
two times longer than optimal. Finally, collecting a hugdwne of latency data and using clustering
techniques enable us to estimate latencies between glaistitibuted Internet hosts that have not partic-
ipated in our measurements at all. The results are suffigipmmising that Google may offer a public
interface to the latency estimates in the future.

1 Introduction

Modern large-scale distributed applications can ben@fihfinformation about latencies observed between
their various components. Knowing such latencies, a Oigteid application can organize its operation such
that the communication delays between its components amanizied [1, 2, 3]. For example, a content
delivery network can place its hosted data such that itetsiare serviced at their proximal datacenters [4,
5]. In addition to improving the client-experienced latgneducing the overall length of client-to-replica
network paths allows one to localize the communicationdileg to lower backbone and inter-ISP link
utilization. Analogous benefits can be achieved for otheydascale distributed applications such as peer-
to-peer overlays or online gaming platforms.

The effectiveness of latency-driven techniques in imprgvhe application performance depends on
the accuracy of the latency information. A simple solutionsists of periodically probing each latency the
application needs to know [6]. However, such an approactesia&nse only in relatively small systems, as
continuous probing of pair-wise latencies is clearly nasible when the number of nodes is very large. For
example, redirecting clients to their nearest datacemtetsd require Google to maintain latency informa-
tion from virtually every Web client in the Internet to eachits datacenters [7]. Also, the high dynamics
of the Internet causes recently measured latencies towayalbe a good indication of their current coun-
terparts, as one latency measurement result is not a goditianeof a subsequent identical measurement.
These two problems drive the need for scalable and accewtaitjues for latency discovery.

A promising approach to the problem of scalable latencyregtion is GNP, which models Internet la-
tencies in a multi-dimensional geometric space [8]. Givemall number of “base” latency measurements
to a number of dedicated “landmark” nodes, GNP associats made with its coordinates in that space.
The latency between any pair of nodes can then be approxdmétte the Euclidean distance between their



corresponding coordinates. What makes GNP scalable iotistant low number of measurements neces-
sary to position each machine, which enables GNP to estiatlapair latencies between a large number of
machines at low cost.

The attractiveness of GNP has resulted in its various asbettg investigated for several years. How-
ever, whereas numerous theoretical properties of GNP hese teescribed in detail [9, 10, 11, 12, 13, 14],
no large-scale GNP implementations have been deployediiweld environments.

The common property of existing GNP implementations thatéis their deployment is active par-
ticipation of positioned nodes, which are responsible f@asuring and propagating their own base la-
tencies [15, 16, 17, 18]. Such an approach has several distdyes. First, it introduces problems with
malicious nodes lying about their base latencies. Handlirgh nodes is usually very hard, and typically
comes at the expense of increased system complexity. Sdodegendent measurements of base latencies
performed by many active nodes might overload both the m&tand the landmarks. This, in turn, might
lead to numerous measurement inaccuracies affecting tliegeNormance. Finally, active participation re-
quires running some special software at each positioned.ndéanwhile, deploying such software might
be infeasible. For example, in content delivery networkestmodes are unmaodifiable third-party Web
browsers.

This article presents a GNP implementation that addredigbese issues. Our solution is based on two
key observations. First, instead of relying on remote nadeseasure and report their base latencies, one
can measure these latencies passively on the landmark®iieeliminates the need for customizing the
remote nodes and ensures the integrity of measurementsieSeglcond, instead of allowing remote nodes
to independently perform their measurements, one canetrigggasurements individually using a central,
yet scalable, scheduler. This prevents landmarks fromases and reduces the overall network overhead
in general, as the scheduler triggers only the measurertteatitare really necessary. We demonstrate the
feasibility of our approach by incorporating GNP into thentamt delivery network operated by Google,
which enables us to position millions of Google clients.

Compared to the previous GNP implementations, our apprioasiseveral advantages. First, it greatly
facilitates system deployment, as only the landmarks aedtheduler need to be instrumented. Second,
it removes the problem of malicious nodes, as all the instnied nodes are kept under full control of
Google. Third, it eliminates the risk of overloading thedamarks, as the scheduler effectively adjusts the
measurement volume to the landmark capacity.

Implementing our system at the scale of millions of cliemguires one to address a number of subtle
issues. For example, it is necessary to transparently dicibafly schedule measurements such that they
do not affect the client-perceived browsing performandsoAimplementing a centralized scheduler is far
from trivial when millions of Web clients are serviced by tlsands of globally-distributed Web servers [19].
Finally, producing GNP coordinates that can remain reprtas@e for a long time requires that some special
pre-processing techniques are applied to base latencies.

Within the first 2 months of operation, our positioning systeerformed more than 75 million latency
measurements to more than 22 million unique Google clidnging host clustering techniques allowed us
to compute the coordinates of more than 200 million Intehwets falling into more than 880,000 of /24
networks. To our best knowledge, this is the largest expartrmvolving network positioning performed
so far.

Our study confirms many earlier results, and adds to them bgnsively investigating the issue of
coordinate stability over time. We show that coordinatéft dway from their initial values with time,
making 25% of the coordinates to be off by more than 33 milisels after one week. However, daily
recomputations make 75% of the coordinates stay within @isedonds of their initial values. We also
recommend to derive daily coordinates from base latencessored until around 10pm UTC, as it results
in coordinates remaining representative throughout thgt wicche next 24 hours.

We also contribute to understanding the practical appilitabf GNP coordinates in real-life systems.
We demonstrate that using latency estimates to decide ent¢b-replica redirection leads to selecting
replicas closest in term ofeasured latency in 86% of all cases. In another 10% of all cases, tdiare
redirected to replicas offering latencies that are at mesttimes longer than optimal. Also, we show that
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Figure 1: GNP: landmark positioning (a), and host positigr(b)

positioning Google clients makes it possible to estimatnieies between globally distributed Internet hosts
that have not participate in our measurements. We treatdkigt as an incentive to develop a new publicly
available Google service providing pairwise latency eatas for Internet hosts.

The remainder of this article is structured as follows. Wecdss a number of related research efforts
in Section 2. Then follows the description of our system: ti®ac3 describes how we integrated GNP
into the Google infrastructure, Section 4 shows how to camptable coordinates, and Section 5 discusses
our experience with GNP-based client redirection. Sedienaluates the performance of our system as an
application-independentlatency estimation servicealinSection 7 concludes by summarizing our future
development plans.

2 Related Work
2.1

GNP was the first system to propose modeling the Internet 5-dimensional geometric space [8]. Given
such a space, GNP approximates the latency between anyfpaists as the Euclidean distance between
their corresponding coordinates in that space.

The space is determined by the coordinates of “landmarkisitbst GNP computes first. The number
of landmarksk must be at leaslv + 1 to unambiguously determine thé-dimensional geometric space.
Given thek landmark coordinates, GNP can compute the coordinates/di@st X based on the measured
latencies betweeXN and each of thé landmarks. By treating these latencies as distances, Gaifgjtiates
the coordinates ok relative to the landmark coordinates.

The landmark coordinates are computed as follows. FirstP @idtructs the landmarks to measure
their latencies to each other. Based on these latencies, caNRBlates all the landmark coordinates so
that the distance between any pair of these coordinates ¢toas as possible to the latency measured
between the corresponding pair of the landmarks (see Figyr& he discrepancy between the distances and
their corresponding latencies is minimized using a popetesr-minimization algorithm called Simplex-
downhill [20].

Once the landmark coordinates are known, GNP can deterimneobrdinates of any hoit based on
the measured latencies between that host and each of thedakel The coordinates df are calculated
so that the distance between these coordinates and theraeslof each landmark is as close as possible
to its corresponding measured latency (see Figure 1b). i$tagain achieved by means of the Simplex-
downhill algorithm. The GNP authors show that, in 90% of sasige latency estimations produced by their
system are within a relative error ratio of 0.53 comparedhéoreal latency.

Internet Node Positioning



2.2 Positioning Variants

A number of variants have been proposed to the original GNRRejat. The PIC project suggested that
at least some of the landmarks should be located close toa$igqmed hosts to improve the positioning
accuracy [15]. When positioning a global community of Welerds, this suggestion is equivalent to that
from another study, which recommends to globally distebtite landmarks in order to achieve higher
positioning accuracy [10]. We discuss some practical ioggions of these suggestions in Section 3.1.1.

Another project established that the accuracy and stabflitoordinates can be improved by statistical
filtering of latency samples used for positioning [14]. Théuition is that long-term coordinates should
not be affected by temporary and intermittent network ctowlé such as network congestion. This can be
prevented by computing coordinates based on latenciesalyfar given landmark-host pairs. We verify
these findings in our experiments presented in Section athpared to [14], we rely on a much larger and
more diverse trace of latencies. We also investigate tlie isEhow to determine typical latencies, and how
often the resulting coordinates need to be re-computed.

The issue of positioning scalability has been addressdtkihighthouses project [16]. It demonstrated
that hosts can also be positioned relative to any previqaaditioned hosts, which in that case act as “local”
landmarks. This eliminates the need for measuring latsrtcighe original landmarks each time a host
is positioned, in turn leading to a distribution of the meaasuent effort resulting in higher positioning
scalability. However, as we show below, one can positiongetaommunity of Web clients by relying on
the original landmarks only, as long as the measurementsrpegxd by the landmarks are appropriately
scheduled. This also enables us to avoid the loss of acctiratysing local landmarks inherently incurs.

Following the idea of Lighthouses, our earlier SCoLE progwowed that latencies estimated in com-
pletely different spaces are highly correlated [21]. Suairelation enables different hosts in a distributed
system to construct their own spaces and effectively ruin phivate GNP instances. This improves system
scalability, as there is no need for all the members of thiribiged system to negotiate common GNP
parameters. However, since our Google implementation arsigsone set of GNP parameters, it does not
benefit from these findings.

Other research efforts replace the Simplex-downhill cotaian used in GNP with simpler optimization
schemes [11, 13]. In fact, the selection of a particularfpmsing algorithm is orthogonal to the question
of how to measure latencies required for positioning, ag lamall the algorithms require the same set of
latencies to be measured. We chose to compute all the capeginsing the Simplex-downhill algorithm
recommended in the original GNP paper, as it has performédulien used in our other research projects.

The remaining efforts take a completely different approactt position all hosts simultaneously as a
result of a global optimization process [9, 17, 22]. In thase, there is no need to choose landmarks,
since every host is in fact considered to be a landmark. T¢etive authors claim that it leads to better
accuracy. However, Google cannot generally rely on itsmtdiéo measure latencies to each other, which
renders these techniques infeasible in our case.

2.3 Positioning Implementations

A recent study by the authors of the original GNP paper deesrhow to implement a global Network
Positioning System (NPS) based on GNP [18]. The authordifgidour key system-building issues that
must by addressed by any GNP implementation: maintainingglesglobal space, adapting to changes
in Internet routes, handling fluctuations in network laieag and computing positions as accurately as
possible.

NPS addresses the key building issues by organizing hastested in positioning into a distributed
infrastructure in which each host periodically recalcegaits own coordinates. All the coordinates are
calculated in the same geometric space, determined by adetesf global landmarks. NPS prevents these
landmarks from becoming performance bottlenecks by afigvthe hosts to position themselves relative
not only to the landmarks, but also to any other “referenamstd whose coordinates are already known.
In that sense, NPS generalizes the concept of local landniatioduced by Lighthouses. On top of that,
NPS enables each of the landmarks to compute its coordilwataly by means of a special scheme for
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decentralized landmark positioning, and exploits someradistributed algorithms to synchronize positions
computed by different hosts.

The distributed nature of NPS results in improved scalgbitiowever, it also forces NPS to deal with
a number of problems that result from the distribution fisgich as preventing malicious hosts from being
used as positioning references, synchronizing distriblggency probing to prevent reference hosts from
being overloaded, or triggering host re-positioning tomtein global consistency of coordinates. Solving
these problems makes NPS relatively complex. On the othed,Hallowing our centralized approach
enables one to avoid all these problems without limitingdystem scalability. As a result, our solutions to
the four key building issues identified by NPS are much simple

3 System Architecture

Using GNP to position Google clients seems to be relativiehpke. Essentially, the positioning process
can be split into three phases (see Figure 2): measuringdtaseies, collecting the measurement results,
and modeling latencies in the form of GNP coordinates. Tledioates can then be passed to any latency-
driven applications, such as those responsible for cliegitection or replica placement.

However, as it turns out, naive implementations of eitheagghin a large-scale Internet service will
easily show poor results. This is caused by a number of sphglelems that arise when deploying GNP in
a real-world setting. The following sections discuss howaaidressed these problems when implementing
each phase of the positioning process.

3.1 Landmark Infrastructure
3.1.1 Landmark Deployment

GNP computes the coordinates of each host based on a numbe+called base latencies to that host.
Base latencies are measured by landmarks, which must beyaejiby the service. Deploying landmarks
essentially consists of three steps: deciding on the numbkndmarks, on their approximate location,
and, finally, on the actual hosting facility where they sl installed.

The first step is to decide on the number of landmarks to depMihough GNP is able to compute
coordinates using any number of landmarks, previous stutiee recommended running at least seven
landmarks to obtain good positioning accuracy [11, 21]haltgh we use that number of landmarks in our
experiments, in practice we also run a number of redundadhiarks to increase the system'’s resilience to
landmark failures.

The second step is to choose approximate geographicaidosdor the landmarks. As mentioned in
Section 2, the landmarks should be globally distributeds Thbecause GNP relies on the assumption that
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vectors of landmark-to-host latencies are different fathdocated in different parts of the Internet. Should
we fail to meet this assumption, then the performance of Gightturn out to be poor.

To confirm that global landmark distribution is indeed nesegg in practice, we evaluated the accuracy
of GNP offered by various combinations of landmarks locéaedifferent parts of the Internet. To this end,
we chose 20 PlanetLab nodes [23] to act as candidate landpearl connected them to our positioning
system. This allowed us to collect a large set of latenci¢adoen the candidate landmarks and a small
fraction of Google clients.

The clients in the set turned out to originate from 113 cdastwith the number of clients per country
varying from 1 to many thousands. To make the evaluatioridaiall the countries, we randomly picked 10
clients from each country. For countries represented sytiean 10 clients in our trace, all the clients were
included. The resulting test set consisted of 616 clients.

Having generated the test set of clients, we iterativelyitipoed them relative to various combina-
tions of 7 landmarks. The subsequent combinations codsiftenanually selected landmarks that were
increasingly distributed in a geographical sense. For eaofbination, we evaluated its offered estimation
accuracy based on the latencies measured between the diehthe 13 PlanetLab nodes that were not used
for positioning. To this end, we calculated the relativénaation errors(-) for each such latency similar to
GNP:

eldor, dip) = |midhorst
whered¢r, anddy,;, respectively denote the measured and estimated lateretiwedn clienC' and land-
mark L. The distribution of estimation errors observed for fousugple landmark combinations is depicted
in Figure 3.

As can be observed, estimation accuracy is lowest whenalbtihdmarks are located in the US. The
combination consisting of four American- and three Europladmarks offers better accuracy, which
improves even further when three of the seven landmarksea¢dd in Asia (Tokyo, Singapore, and China).
The best accuracy is offered by the fourth combination, einethe landmark in Tokyo is replaced with
a Brazilian one. This confirms the importance of global laadadistribution, and allows for reaching
estimation accuracy close to those reported in our prestudy [21].

The last step of landmark deployment is to choose the actustlry facilities where the landmarks
should be installed. It may seem attractive to deploy larimmn existing service datacenters to benefit
from hardware that is already in place. However, the numbkraations of such datacenters may not meet
the global landmark distribution requirement. In that caseneed to decouple the placement of landmarks
from the locations of the datacenters by constructing aragtfucture of dedicated landmarks rented from
third-party hosting facilities worldwide. In our experimts, we used the best set of PlanetLab nodes as our
landmark set.
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3.1.2 Latency Collector

All the latencies measured by the landmarks must be colleantel passed to some modeling component
for processing. However, the modeling component typicallys in one of the datacenters. Given that
datacenters are normally tightly firewalled, the landmaldgsloyed outside the datacenters cannot contact
the modeling component directly.

One solution to that problem would be to reconfigure the datter firewalls to allow incoming traf-
fic from the landmarks. However, doing so potentially expote service to attacks initiated from the
landmarks. The potential problem becomes even worse whelatldmarks are operated by external or-
ganizations such as PlanetLab. This solution should thexdfe avoided unless there are no other options
available.

We therefore decided to follow another approach, in whitérleies are collected using network con-
nections openeftom some dedicated component residing in one of the datacedotirs landmarks. This
component, called eollector, retrieves latencies from the landmarks and stores theneasarement logs
accessed by the modeling component. The collector-toatanki connections are protected with SSL for
secure communication.

3.2 Latency Measurements
3.21 Measurement Types

Once the landmark infrastructure has been deployed, wetadresllecting latencies. There are essentially
three kinds of latencies to be measured. First, the landsmartist measure latencies between each other,
as GNP requires this information to construct its geomeafpizce. This can easily be achieved by means
of periodical active probing, which is the simplest way cdaivering latencies between any two machines
under our control.

Second, the landmarks must measure their latencies to egabethiter so that the datacenters can be
positioned as well. Computing the coordinates of datacerngenecessary to estimate client-datacenter
latencies, which can then be used during client redirecti@iven that datacenters are operated by the
service, the landmarks can discover their latencies todkecenters by actively probing them just like they
probe each other.

Third, the landmarks must determine their latencies to Goolients so that the coordinates of these
clients can be computed as well. However, we cannot useeggtishing this time, as it is likely to trig-
ger various intrusion-detection systems deployed on tiemtcside. This could result in numerous client
complaints affecting the service reputation.

Rather than actively probing clients, the landmarks cansueatheir latencies to the clients without
initiating any traffic to these clients. To this end, the laradtks must rely on passive latency discovery,
wherein latency measurements can be obtained by monitthingervice traffic and deriving the client
latencies from the dynamics of packets constituting theificr

A well-known technique for passive latency discovery is ¥NACK/ACK method [24]. It enables a
server to estimate its round-trip time to a client when thentlinitiates a TCP connection to the server. The



round-trip time can then be estimated during the TCP haaéteshhase as the delay between sending the
SYNACK packet and receiving its corresponding ACK packeg(Eigure 4). We chose this technique for
its natural applicability in Web systems, wherein netwadffic is typically carried over TCP connections.

3.22 Measurement Triggering

Using SYNACK/ACK to measure the latency between a clientatahdmark requires that the client opens
a TCP connection to the landmark. However, the clients isegeests only to datacenters, which are
separated from the landmark infrastructure. We must thezeémplement a mechanism causing clients to
open additional TCP connections to the landmarks.

In general, Google clients are regular Web browsers. A aaivay to make them open TCP connections
to the landmarks consists of deploying Web servers on thénianks and instructing the clients to fetch
content from these Web servers.

We can easily instruct Web servers to fetch content from #émelrharks by embedding some small
landmark-delivered objects inside Google Web pages. Asidakexample of such objects is a tiny image,
which is commonly used by the providers of Web site stasstiictrack site accesses [25]. However, the
major drawback with such an approach is that it makes thatatieperience dependent on the landmark
performance, as Web pages can be displayed in their fina¢sirdp after all their parts have been retrieved.
Datacenters are typically tuned to offer reliable servitkigh quality to a huge number of clients, but the
landmarks are likely to be incomparably less reliable andlgrtul. Should any landmark face reliability or
performance problems, then these failures may becomdevisilusers, and in turn compromise the overall
service performance.

Solving this problem requires that the landmark-delivesbgects are embedded in such a way that
the client-perceived service performance does not deperldelandmarks. In particular, a Web browser
should be able to display complete service responses ettemémbedded objects cannot be downloaded.

This transparency can be achieved in two ways. First, thecsgamight rely on JavaScript code included
in a response to retrieve a number of objects from the lankbradter the response has been displayed [26].
This approach is appealing because JavaScript is supgnyrmost Web browsers. However, the semantics
of retrieval failures varies across different JavaScripplementations, which makes it hard to guarantee
that running JavaScript code never results in unexpectagldar behavior [27]. Since one of our priorities
was to keep the user’s perception of Google untouched, widelbaot to risk compromising it by using
JavaScript.

Another transparent way of embedding objects is to use seéixected prefetching capabilities of cer-
tain browsers [28]. This technique enables a Web servesstouict browsers to retrieve a given objafter
the entire response has been displayed. Prefetching isatiypused to accelerate the download of Web
documents that clients are likely to be requesting next.[29wever, it can also be used to trigger the
retrieval of landmark-delivered objects.

The service can pass prefetching instructions to Web brnaasehe form of special HTTP headers or
HTML tags embedded inside its responses [30]. Each suctuaigin contains the URL of an object that a
Web browser should retrieve. In contrast to regular objetctaval, however, Web browsers keep their users
unaware of any delays or failures that might occur durindgtching. This guarantees that prefetching does
not affect client-perceived service performance.

We decided to employ prefetching to trigger the retrievalamidmark-delivered objects. To this end,
we modified Google Web servers to embed prefetching instmginside their responses such that each
tag points at an object hosted by some landmark. This caheediénts to open HTTP connections to the
landmarks, which can then perform passive latency disgover

A potential limitation of prefetching is that it is curreptbupported only by the Mozilla Firefox Web
browser [31]. This means that Google can only trigger pofie requests from approximately 11% of its
clients [32]. However, prefetching features are planneldesupported by the future releases of Internet
Explorer browser as well [33]. Also, measuring latenciea foaction of all the clients might turn out to be
enough to position all Internet hosts, as we discuss next.
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3.3 Measurement Scheduling

The above sections have discussed two mechanisms thaédhalskervice to trigger latency measurements:
active probing and embedding of prefetching instructioMhereas the configuration of active probing is
relatively straightforward, deciding on how to trigger mesements with prefetching is much harder.

Obviously, the service needs to trigger all the measuresneettessary to position its clients. However,
while doing so, it should respect the following three coiodis. First, it should trigger only as many
measurements as each of the landmarks can handle, as oegflzedmarks cannot measure latencies
accurately. Second, it should also keep the total numbeeaburements low to reduce client-side overhead.
Third, it should avoid triggering redundant measuremantainimize network usage.

The following sections describe how our system meets eatttesé three requirements using a central-
ized scheduling policy. We then propose how such a policybeaimplemented in a large-scale system in
which responses are simultaneously generated by the thdsisd Web servers that constitute the Google
infrastructure [19].

3.3.1 Landmark Load

In a naive approach, the service could include prefetclagg in all its responses to perform as many mea-
surements as possible. However, doing so would most lileglg ko overloading the network connections
to the landmarks, resulting in latencies being measurdu ligth inaccuracies.

Overloading the landmarks can be avoided by limiting the beinof measurements performed by each
landmark. To this end, the service can enforce some delayeleet subsequent measurements scheduled
to each landmark such that the landmark capacity is neveregbarl. The distinguishing property of this
time-sharing scheme is that it can be easily distributed owdtiple scheduling components, which we
benefit from below. It is also very easy to implement, as iyordeds to maintain a timestamp of the most
recent measurement scheduled to each landmark.

3.3.2 Client Clustering

Scheduling individual measurements should ultimatelyltaa collecting all the latencies necessary to
position all the clients. However, since the clients migbhsider measurements to be an unnecessary
burden, the service should strive to minimize that burdereblyicing the number of measurements.

We decided to reduce the number of measurements issueddidethis by means of clustering, which is
a popular technique for reducing the number of operatiorf®pred in a distributed system. In principle,
clustering groups machines into so-called clusters, anfdipas the operations on a per-cluster- rather than



on a per-machine basis. In our case, clustering reducesuthnber of measurements by grouping clients
whose latencies to a given landmark are very similar.

Efficient scheduling requires that clustering is fast, WHimits the selection of clustering schemes to
very simple ones. An example of such a scheme is clusterimgachines whose IP addresses share the
same 24-bit prefix. We call each such cluster a /24 networtkj@entify each such network with its 24-bit
prefix. Given that each /24 network can contain up to 254 nmeshi/24 clustering can reduce the number
of measurements by up to two orders of magnitude.

However, relying on /24 clustering when performing latenayasurement is possible only if latencies
measured to the clustered machines are similar. To valdag¢her this condition is met in the Internet, we
calculated 10-90 percentile ranges for latencies measardifferent clients in the same /24 networks.

The percentile ranges were calculated based on the latesny ¢ollected by our system. First, we
extracted latencies measured by the landmark running atddfing a two-week period. The duration
of two weeks was chosen to limit the impact of routing changeshe observed latencies. Second, we
identified all the /24 networks containing at least threéedént clients in the two-week trace. The number
of such networks turned out to be 28,540. Third, we obtaimdddication of the landmark’s latency to each
client by calculating a median for each landmark-client.fi&inally, for all the clients in each network, we
evaluated how close their median latencies are to each dihéhis end, we calculated the 10-90 percentile
range over the set of medians, and divided that range by tla& median latency for that network. The
resulting distribution of 10-90 percentile range coefittels depicted in Figure 5.

As can be observed, in over 91% of /24 networks, the coefficiethe 10-90 percentile range is lower
than 0.2. This means that, in 91% of /24 networks, mediamdéats to 80% of clients differ by at most
20%. Such a low variation enables the landmarks to measeiddtencies to any client in a network, and
treat these latencies as representative for any othetgliethat network. Note that /24 clustering enables
to position all the clients in a given /24 network only if aast one of them supports prefetching. According
to our data, this condition is met by about 85% of /24 netwaxdstaining Google clients. The remaining
clients can be positioned when a more aggressive clustscimgme is used, as we discuss in Section 6.

3.3.3 Redundant Measurements

Positioning a /24 network requires measuring latencieswdsen that network and all the landmarks. This
can be achieved by triggering measurements from a givendgdonk to the landmarks in a round-robin
fashion. To this end, subsequent service responses seaatthtametwork contain prefetching tags pointing at
objects hosted by subsequent landmarks.

A potential problem is that starting all the round-robinsegces from the same landmark is likely to
cause that landmark to be fully loaded. In that case, the ax@sim responsible for limiting the landmark
load will prevent many measurements from being performds §ervice can avoid this problem by using
random initial landmarks in round-robin sequences speifitifferent /24 networks.

Another problem with round-robin scheduling is that it keg¢pggering measurements from a given
network even after a complete set of landmark latenciesabribtwork has been collected. The redundant
measurements are of little use to the positioning systemraglt prevent the service from triggering more
useful latencies when the landmark load increases.

We chose to avoid triggering redundant measurements byhsiingpting the number of round-robin
sessions to a given network. For example, once a completd tencies has been collected for a given
network, no other measurements are triggered to that nktiwosome time. The duration of the interval
between sessions generally depends on how often new catediare being computed. In the current setup,
we allow only one round-robin session per /24 network evexyrh

3.34 Scheduling Policy

The complete scheduling policy consists of three stepsitafiiace every time a measurement can be trig-
gered to some client. First, the policy determines the t#i¢@4 network by dropping the last 8 bits of the
client’s IP address.
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Next, the policy inspects the round-robin state specifihtd hetwork and checks whether any more
measurements should be performed to it in its current rgobd: session. If not, then no measurement is
triggered. Otherwise, the policy identifies the next landathat should perform the measurement.

Finally, the policy verifies the approximate load of the s&de landmark. If that landmark is currently
overloaded, then no measurementis triggered. Othenhisg@dlicy updates both the round-robin state and
the landmark load information, and instructs the servicgitger a measurement between the client and
the landmark.

3.3.5 Scheduler Separation

Although the scheduling policy is conceptually simplesihbt obvious how to implementitin a large-scale
Web system. This is because it requires the service to niastte for round-robin landmark selection and
an approximation of landmarks’ load. The service needsitiicsmation to decide which of its generated
Web pages should contain prefetching instructions.

Unfortunately, given the large number and wide-area tigtion of Web servers in a large-scale Web
system, it is unlikely that they can efficiently share stateong them [19]. This is because of frequent
updates that make the state difficult to keep consistenbwittlegrading the scheduling performance, even
though the state itself is relatively small (about 8 bytaséand-robin information per cluster, plus another
8 bytes per landmark for the load information).

We decided to solve this problem by splitting the measuré+treggering mechanism into two parts
(see Figure 6). First, while responding to regular cliemfuests, the Web servers implementing the ser-
vice includegtatic prefetching tags into a small fraction of their responseatiSprefetching tags do not
point at any particular landmark. Instead, they point at dickted cluster of Web servers taking care of
measurement scheduling.

The second part of the triggering mechanism is implemenyetid scheduling cluster. Each machine
in the cluster maintains its local scheduling state, andgsses an even share of all the requests triggered
by the static prefetching tags. For each such request,dkewthe scheduling policy to select the target
landmark for the measurement that the request can potgrtigber.

The scheduling policy might sometimes decide not to trigggr measurement for a given prefetching
request, for example when all the landmarks are overlodddHtat case, the prefetching request is serviced
locally by the scheduling cluster. Note that the scheduthggter could even exploit the performance-
neutral nature of prefetching requests and drop them cdeiple

Typically, however, the scheduling policy returns the asddrof some landmark. The scheduling cluster
can then redirect the prefetching request to that landmsiriguan HTTP-302 response [30]. This causes
the clients to re-issue the prefetching request to the |amklexactly as if the landmark address was put in

11



600000 1.2e+06

500000

1le+06

400000

800000

L R

S S

2 2

()] (]

z z

=l el

[} - Q

c L c

] 5]

I*UE) 300000 e Zg 600000

g o 1 < 4

‘5 200000 o 5 400000

g — g 1 tag per response

£ 100000 : £ 200000 | 2 tags per response - 1

2 7 Cookie > i 4 tags per response -

o =4 Random - 0 / ‘ 7 tags per response
0 50 100 150 200 250 300 0 300 600 900 1200 1500

Time (hours) Time (hours)
() (b)

Figure 7: Impact of different tag-embedding strategiesga)l different numbers of tags

the prefetching tag embedded inside the original servisgaese. Note that although the content prefetched
from the landmarks is never displayed to the users, it cliestitain some brief information about the mea-
surements being performed. This helps preventing usens fiecoming suspicious about the prefetching
requests after they are detected by client-side firewalls.

3.36 Web Server Logic

Embedding static prefetching tags prevents the regulard¥ekers from maintaining any scheduling state,
as all the prefetching tags always point at the URL of the dualieg cluster. However, the Web servers
must still be able to decide whether a given response shautgl a static prefetching tag, or not. For now,
we assume that Web servers insert at most one prefetchipgtagsponse.

One way of enabling the Web servers to decide on insertionrefefrhing tags would be to rely on
client identifiers embedded in service cookies. In that déseWeb servers would include prefetching tags
in responses sent to clients holding cookies with idensifieeeting the condition that:

IDclient % X==0

where X denotes some divisor value, which can be used to adjust themof generated prefetching
tags to the capacity of the scheduling cluster. An attragbiroperty of this approach is that it keeps trig-
gering measurements from the same clients, which shouldiugly result in quickly collecting multiple
measurements required to position these clients.

However, triggering measurements from the same groupe@fitsiiresults in only a small fraction of all
the /24 networks being ultimately positioned. This can bgeobed in Figure 7a (the 'Cookie’ line), which
indicates that only about 250,000 out of the total 1.2 mikief client /24 networks were positioned after
300 hours.

The positioning coverage can be improved by insertingsspagfetching tags purely at random. To this
end, the Web servers include prefetching tags when:

random() % X ==0

whereX can again be adjusted to the capacity of the schedulingetluas can be observed in Figure 7a
(the 'Random’ line), this approach results in a larger nundié24 networks being positioned in the long
run (500,000 after 300 hours), even though relying on caokigght initially seem to perform better.

An interesting question is how many static prefetching tsigsuld be embedded in a single service
response once the decision has been made that there shoahy.b€learly, inserting more tags results
in triggering more measurements at the cost of increasiadadd at the clients and the landmarks. On
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the other hand, collecting more measurements should adsit ie a larger number of /24 networks being
positioned the same time, as the seven measurements ngd¢egsasition each network are collected faster.

Figure 7b depicts the dependency between the number of@usitnetworks and the number of static
prefetching tags embedded in a single response. As can kevelsinserting more prefetching tags in a
single response indeed helps to collect measurements fasteexample, inserting four tags per response
allows for positioning more than 800,000 of /24 networkeafibout 450 hours, instead of 1200 hours
necessary to position these networks when only one préfigithg is embedded. Inserting seven tags per
response, in turn, allows for reducing that time to 160 houtsch is less than one week.

3.4 Final Architecture

The final system architecture is depicted in Figure 8. Lateneasurements to the clients are triggered by
service Web servers, which embed static prefetching tagiddra fraction of their responses.

The prefetching tags cause the clients to issue prefetaleiggests to the scheduling cluster, which
redirects these requests to the landmarks according tatealsling policy. This causes the clients to re-
issue the requests to the landmarks, which perform lateregsarements while delivering a short system
description. All the measured latencies are reported tadhector.

Once the latencies have been collected, they are storeddisurementlogs. These logs are periodically
retrieved by a special component calieddeler, which processes the latencies and computes new sets of
coordinates, as we discuss next.

4 Latency Modeling

The modeler essentially performs two types of tasks. Hirsteates a geometric space by computing the
landmark coordinates. Second, it computes all the otherdanates relative to the landmark coordinates.
Since both these tasks require some set of latencies agiligiiris tempting to directly apply the position-
ing algorithm to the base latencies stored in the measurgogs)
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However, GNP requires its input to contain only one indmatof latency between a given pair of
machines. On the other hand, the measurement logs produdtiee @ontroller are likely to contain multiple
such indications, as each landmark typically measureaienty to the same /24 network many times.
Since subsequent latency measurements between the sanod pades are likely to return fluctuating
results, the modeler must pre-process the measuremerid¢bg® their contents can be passed to the GNP
implementation.

4.1 StableLatencies

In principle, latencies measured between a given landmade pair can fluctuate for two types of reasons.
The first type are temporary intermittent conditions thahdbaffect long-term latencies between landmarks
and nodes, such as network congestion and high CPU load.etbhed type are route changes, which can
permanently change latencies between nodes. The goal obalgtency pre-processor is to eliminate
fluctuations caused by the intermittent conditions whilaa@ing reactive to permanent latency changes.

Clearly, network congestion can affect the observed lagsndf the path between the landmark and the
node is saturated, the measurement packets are delayedtbysron the path, causing the observed latency
to be longer. Note that the service should strive to redueéntipact of network congestion by avoiding it
on the landmark side. This can be achieved by deploying tientarks in hosting facilities providing hard
bandwidth guarantees.

Apart from network congestion, latencies can also fluctbateause of high CPU load on either the
node or the landmark. The problem with high CPU load on theeniedhat it might prevent the node
from immediately responding to packets sent by the landmbks can result in observed latencies being
longer than they really are. On the other hand, since thegia@ploited by both ICMP probing and
SYNACK/ACK are handled entirely by the operating systemrmiets, the delay caused by high load of the
node’s CPU is likely to be negligible.

High load on the landmark presents a bigger problem, as ipcawrent the packet sniffer running on the
landmark from timestamping measurement packets accurdiie¢ resulting inaccuracies strongly depend
on snifferimplementation. We therefore assume that therves latencies can not only be higher, but also
lower than they really are.

Given that temporary intermittent conditions occur onlgagionally, their resulting measurement inac-
curacies can be eliminated through statistical filteringthiis end, the modeler could maintain a history of
latencies measured between each landmark-node pair, entifycthe real latency for that pair as the one
occurring most commonly in the history. This could be acbély means of medians, for example.

However, median latencies can change over time as well. i§hiaused by long-lasting conditions,
such as route changes. As the route between the landmark@ndde changes, its corresponding history
of latencies contains more and more groups of latencies, maasured for a different route. In that case,
medians calculated over complete latency histories argumntanteed to indicate current real latencies.

We decided to detect route changes by applying the slidincppéile concept to the latency history [14].
To this end, it keeps only a specific number of most recent areasents in each history, which should result
in history medians being closer to the actual observedd#ten

We verified the impact of sliding percentiles on measuremased for positioning. To this end, we
applied them to the latency trace collected by our systerd, emaluated their performance. The trace
spanned a period of six weeks and contained latencies tol&olignts measured by one of our PlanetLab
landmarks located in MIT. To ensure fair comparison, we yaread latencies to only the 10,000 networks
that occurred most frequently in the trace (57 times on @e&raThe performance of sliding percentiles
was evaluated by calculating the relative error betweermiesl latencies and their corresponding values
after filtering with sliding percentiles. The resulting@rdistribution for various configurations of sliding
percentiles in depicted in Figure 9.

As can be observed, using sliding percentiles indeed esahketo identify current latencies more accu-
rately, although the improvementis not very high. Howetherse small improvements result in significantly
higher stability of coordinates, as we demonstrate next.
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Figure 9: Stabilization of measured latencies

4.2 Stable Coordinates

Computing the coordinates for a given /24 network enablestorestimate latencies between hosts in that
network and those in any other network whose coordinateslegady known. This allows our request
redirector to identify the datacenter that is closest imtepf latency to clients in a given network, and
redirect these clients accordingly.

However, latency fluctuations cause the coordinates togghawer time. The degree of these changes
determines how useful the coordinates are to make longdenqisions, which are important for the above
applications. For example, when client requests are refgideusing DNS, it can cache the responses pro-
duced by the redirecting DNS servers for several hours, wb@ases the redirecting decisions based on
coordinates produced by our system to remain in effect fetatively long time.

To investigate the influence of latency fluctuations on GNBrdimates, we evaluated the stability of
coordinates produced by our system. We used the trace otlatebetween the landmarks and the 10,000
most popular /24 networks selected for the previous exmarim\We split the six-week trace into two parts.
The first part was two-weeks long and was used as a basis touteitie initial coordinates of all the /24
networks. The remaining part of four weeks was used as aréest, tbased on which we investigated how
the coordinates of /24 networks change over time in termssvéuce to their initial counterparts. To this
end, for every test trace hour, we recomputed the coordirztall the /24 networks for which latency
measurements were performed within that hour. This resuitee-positioning on average 1271 networks
every hour.

Ideally, at each hour, we would compute the distance betwsicurrent- and initial coordinates of
each /24 network. In many cases, however, due to the lackesfdg measurement within the last hour, it is
impossible to compute the current coordinates directlywéier, this does not mean that these coordinates
did not change during that hour, but just that we did not meslsiiencies frequently enough.

Figure 10 depicts how we approximated the missing coordmédr each network. Essentially, for
each pair of coordinates computed during subsequent lidgmiisg operations, we assume that the missing
coordinates between them change linearly. This enabledl cel¢ulate the coordinates of all the networks
for each test trace hour.

We evaluate the changes in coordinates during subsequarg hy calculating the median distance
between the 10,000 coordinates calculated for a given hoditlzeir initial counterparts. As shown in
Figure 11, the coordinates change significantly when coathbbaised on the most recent measurements
(line 'Last Measurement’). They also seem to increasinglyiate from their initial values over time, as
the median distance between current and initial coordingémerally increases with time. However, this
hypothesis was not confirmed by a number of case studies vierped for individual networks. We
therefore believe that the increasing trend is caused ndargg deviation in coordinates, but by a large
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Figure 11: Latency stabilization vs. coordinate stability

number of relatively small deviations. This number increases Wiithe, as latencies to more and more
networks become affected by route changes, leading thelicades of these networks to be significantly
different. The result of aggregating such differenceswdated for 10,000 networks is the increasing trend
in in the median distance between the current- and initiafdinates.

Having observed the instability of coordinates computeskedaon the most recent latency measure-
ments, we investigated whether the coordinate stabilitylmimproved by computing coordinates based
on latency measurements stabilized with sliding peraesitiTo this end, we performed an experiment that
was very similar to the previous one. The only difference thas the networks were re-positioned based
on latencies filtered using sliding percentiles. We usediameldtencies calculated over the set of 9 most
recent measurements. The results are depicted in FigutméINedian-9’).

As can be observed, sliding percentiles significantly imprihe stability of coordinates. However, they
do not eliminate the increasing trend, which limits the maxin time for which coordinates can be relied
upon. To overcome this problem, each application would neqgkeriodically recompute coordinates so
that they meet its requirements with respect to positiomioguracy. Line 'Median-9 recomputed’ shows
that daily re-computations can keep current coordinatdsm@ milliseconds of their initial counterparts.

How often coordinates should be re-computed depends ode-tfibetween the positioning accuracy
and the cost of computing and propagating the coordinatihetapplications. To investigate this trade-off,
we ran the above experiment withitial coordinates re-computed eveky days, forX between 1 and 7.
For each of the resulting 7 simulations, we computed botmtedian- and the 75th percentile of distances
between current coordinates and their most recently cosddiritial” counterparts.
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general (b)

The results in presented in Figure 12. They indicate thdy daipositioning reduces the median dis-
tance between current- and initial coordinates to only infiliseconds, whereas re-computing coordinates
every week results in that distance being 11.94 millisesofitbwever, the corresponding 75th percentiles
percentiles of distances to initial coordinates are alyga83 milliseconds and 33.56 milliseconds, respec-
tively. In our experiments, we decided to re-compute allaberdinates on a daily basis, which, apart from
offering very good stability, also makes the system verpeoesive to changes in network conditions.

When re-computing coordinates every day, an interestirggtipn is whether the coordinate stability
depends on the actual time of day when re-computations fake pTo answer this question, we performed
24 simulations of daily re-positioning based on our 4-weleks) test trace. Each simulation was configured
to re-compute coordinates at a different trace hour. Weuatedl the resulting stability by computing the
75 percentile of distances between current- and initiatdioates observed throughout the 24 trace hours
after each re-positioning. The results are depicted inr€ig3a.

As can be observed, the coordinates are most stable whemmputed around 10pm UTC. We believe
that this is because the coordinates are then computed baseeasurements collected during peak Internet
hours, as they account for day time in the US and evening iof&jrwhich are the two continents where
most of the 10,000 test networks are located. As a consegqu#rase coordinates remain representative
for the most of the 24 hours following the re-computation,ickhresults in 30%, or 2.5 milliseconds,
improvement compared to re-computing at 10am UTC, whent#i@lisy is the worst.
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Figure 14: Efficiency of GNP-based replica selection

For the sake of completeness, we also checked how diffezgmisitioning hours influence the stability
of coordinates re-computed every 2 days or more. To this wiedagain simulated coordinate recompu-
tations everyN days (for N from 1 to 7) based on our test trace. We performed two sinuriatieach
configured to re-compute positions at a different hour: 1@HhC and 10am UTC. The results are pre-
sented in Figure 13b. As can be observed, the improvemenbahifliseconds remains roughly constant
irrespective of how often coordinates are re-computedclwinéduces its impact to approximately 10%
when recomputing coordinates every 4 days or more.

5 Coordinate-Based Client Redirection

Deploying the positioning system enables Google to implgmarious latency-driven applications that
shall improve access latency for its clients. One of sucHiegions is client redirection: based on the
coordinates produced by GNP, we can redirect each clientepleca that is closest to that client in terms
of latency. To this end, we calculate the distance betweemdlrdinates of the client and the coordinates
of each replica, and select the replica with the shortetdnli® to the client.

5.1 Absolute Performance

We verified the efficiency of coordinate-based redirectido this end, we positioned the 10,000 /24 net-
works based on the median latencies measured between thtegarks and 20 candidate landmarks de-
ployed on PlanetLab nodes over a period of six weeks. Eaetonletvas positioned relative to the best set
of seven landmarks identified in Section 3.1.1. We chose @3 remaining candidate landmarks to
form a globally distributed set of replicas. Next, for eaeplica, we calculated its median measured latency
to each network. Finally, for each network, we determingdlivsest replica based on the median measured
latencies, and matched that choice against that made badatkacies estimated with coordinates. The
results are depicted in Figure 14 (line 'Popular’).

As can be observed, clients from 86% of /24 networks are @ethid to the replica closest to them in
terms of median measured latency. Also, clients from amdtféo of networks are redirected to replicas
offering latencies at most two times longer than the closast. Finally, only about 2% of networks are
redirected to replicas further than 3 times than the clozess.

We have also performed the above experiment for the set of&i@lly-distributed clients that we
constructed in Section 3.1.1. The results are also depiatédgure 14 (line 'Global’). It shows that
coordinate-based redirection selects the closest refaliczients in about 67% of globally-distributed /24
networks, and replicas offering latencies at most 2 timghdri than optimal in for clients in another 24%
of such networks. We believe that the suboptimal replicacdign in the remaining cases is caused by node

18



1 1
0.9 — 0.9
0.8 0.8
0.7 0.7
o6 | 0.6 /
5 o5l |/ 5 o5, /|
© o4l |/ © o4l [/
03 |/ 03 |/
02|/ 02 [/
01t Popular (10,000) —— | 0.1 / Popular (10,000) —— |
-0 _ Global (616) ——— '0 Global (616) ———
0 0.2 0.4 0.6 0.8 1 0 25 50 75 100 125 150
Relative Rank Loss Latency Loss upon Mis-Ordering (msec)
(a) (b)

Figure 15: Relative performance of client redirection inrte of: rrl (a), and latency (b)

mispositioning. Nodes are typically mispositioned whegythave long latencies to all the landmarks, or
when the latencies of their network paths to the landmar&ssalf-inconsistent from the perspective of
GNP, for example, because of multi-homing [34].

5.2 Redative Performance

Although GNP-based redirection seems to perform well imteof absolute latency values, it has recently
been suggested that absolute metrics are not enough toetety@valuate redirection efficiency [35]. This
is because redirected clients often care more absative dependencies between latencies to different
replicas, rather than about their absolute values.

The relative performance of GNP-based redirection can tesored by means of another metric, called
Relative Rank Loss (rrl). For each client, it creates two replica rankings: one dated based on measured
client-to-replica latencies, and another based on latestisnates provided by GNP. Given the two rankings,
therrl of each clienC can be computed according to the following formula:

z,y)|r#yandswapped(x,
rrl(C,R) = {(zy)] #I%I(Ilelz;p (=,9)}

whereR is the set of replicagz, y) are elements oR x R, andswapped(x,y) is true when the relative
ordering ofx andy is different in the two rankings created for cligfit rr/ can also be interpreted as the
probability thatswapped(z, y) is true for any two different replicas.

We have computed| values based the client latencies from the test sets useglioe¢e the absolute
performance of client redirection. The results are presbimt Figure 15a.

As can be observed| is lower than .2 for about 92% of frequent clients, and fonal&®% of globally-
distributed clients. For these clients, any pair of regit@s only 20% chance to be re-ordered when
client-to-replica latencies are estimated with GNP. Femtiore, according to our data, misordering happens
mostly when two replicas have very similar latencies to thent. This can be observed in Figure 15b, which
depicts the distribution of differences in client-to-riepllatencies when a misordering occurs. It shows that
loss in client-to-replica latency resulting from misonderis less than 50 milliseconds for 95% of frequent-
and 73% of globally-distributed clients.

5.3 DNSConsiderations

A potential problem when using client coordinates for rexjuedirection is that large-scale Internet services
typically redirect their clients using DNS. In that caseg tiedirecting decisions are made based on the
addresses of client-side DNS servers rather than on thessedotlients themselves [36]. Meanwhile, our
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positioning system can compute coordinates only for /24vaits that contain at least one Web client,
which is relatively uncommon for networks used by cliemtesDNS servers. This means that the service
might be unable to determine the coordinates of a DNS samhéch in turn makes it impossible to select
the best replica for the service clients which access thaese

We solve this problem by associating networks containin@d@b® clients with networks containing
DNS servers these clients use. To this end, one could relyebmonk-aware clustering, which identifies
co-located /24 networks as those falling within the same B@fix [37]. However, this solution implicitly
assumes that clients typically use DNS servers that beltigetsame BGP prefix, which has been shown
to be false in most cases [38]. We therefore exploit a prtgmyanechanism that precisely discovers which
DNS server is used by each Google client. The details of tieishanism are out of scope of this article.

6 Generic Latency Estimation Service

Given that our system collects latency information abodtionis of Internet hosts, it can potentially be
used to predict latencies between arbitrary machines irriteznet, which are not necessarily Google
clients. Such a generic latency estimation service coulaskeéul for any application that needs to estimate
end-to-end latencies between Internet hosts, such as-dgpeer overlay or a third-party content delivery
network.

In this section, we investigate to what extent our systenceeds in predicting such latencies. To this
end, we evaluate the accuracy of latency estimates prediotehosts that have never been involved in
any operation performed by our system. Such a non-involmemeans that these hosts have never been
instrumented by our system, and that we have never measherdase latencies in any way. Instead, we
determine the coordinates of these hosts by simply takimgdlerdinates of their co-located Google clients.

A potential problem at this stage is that our system can estifatencies only between /24 networks
containing Google clients. However, while using /24 cldstg allows us to position a huge number of
Internet hosts, there are also many hosts that cannot b&opesi when such an approach is followed.
This is true for network servers, for example, which aredgfly deployed in different networks than user
machines. We circumvent this problem by clustering Gootits into BGP prefixes, and not into /24
networks. Such coarse-grain clustering enables us to@ositore hosts at the expense of potential loss in
estimation accuracy, as latencies to machines locatee isetine BGP prefixes are likely to be more diverse
than those to machines located in the same /24 networks.

Fair accuracy evaluation requires that latency estimateduyzed by our system are compared against
their corresponding measured latencies. We use two datateteasured latencies derived from third-
party latency traces, called PlanetLab and RIPE. Both tHatssets contain matrices of all-pair latencies
measured between a number of machines during subsequenstiholovember 2006. Each matrix is
specific to a different hour and contains minimum latencleseoved for given pairs of machines throughout
that hour. We chose to use minimum latency values becaugedneespond to the “empty path” latencies
that our system is striving to estimate.

The estimation accuracy is evaluated by measuring theveldifference between latencies found in
each dataset against their estimated counterparts. Toegth&fairness of comparison, all the estimates are
computed based on the data collected before their corrdgmpmeasurements were performed.

6.1 PlanetLab Latencies

The PlanetLab dataset contains latencies measured be#g88drlanetLab nodes. It was derived from the
latency trace collected by Jeremy Stribling for his “alifgaings” project [39]. To this end, we aggregated
the original latencies (measured every 15 minutes) intali@li-pair matrices.

We compare the dataset latencies against their estimatessipd for 327 (out of 489) PlanetLab nodes
whose coordinates we were able to derive from base latemsasured to Google clients. The total number
of latencies analyzed is 39.6 million (more than 50,000 pmirly matrix). For each such latency, we
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Figure 16: PlanetLab latency estimation: relative errprgacuracy over time (b), and accuracy for different
latency intervals (c)

calculate the relative latency estimation error accordmthe formula introduced in Section 3.1.1. The
resulting distribution of error values is depicted in Figd6a.

As can be observed, relative estimation error is lower tBan approximately 83% of the cases, which
comes close to that reported in the original GNP paper fotshiostrumented with GNP software. More
importantly, the high estimation accuracy is preserved tree. This can be observed in Figure 16b, which
shows how the fraction of good estimates (with error lowanttb) changes over time.

Although the overall system performance for the Planetlathskt is very good, a further investigation
of error values reveals that the estimation accuracy valégending on latency magnitude. This can be
observed in Figure 16c¢, which depicts the distributionsatineation errors for four different intervals of
measured latencies. The differences between these digtris indicate that precise estimation of very
short latencies (25 milliseconds or less) is very hard, gmsed to predicting long latencies (100 mil-
liseconds or more). These results make us believe that giedvierall estimation accuracy achieved for
PlanetLab latencies is partially caused by their favordidtzibution, as more than 65% of them are at least
100 milliseconds long.

6.2 RIPE Latencies

The favorable properties of PlanetLab latencies are naemtan our second dataset. It contains latencies
measured by the infrastructure of 70 diagnostic statiopsogled for the RIPE Test Traffic Measurements
project (TTM) [40]. The diagnostic stations, called tesixbs, are deployed on the backbones of various
Internet Service Providers, and used for evaluating arehistlining the communication between these
backbones. Given that most of TTM ISPs are located in Eunmast of the latencies between test-boxes
are very short, which makes them very hard to estimate attyra

We evaluate the performance of our system based on the RiaBedlgust as we did with PlanetLab.
First, we use BGP clustering to position the test-boxeschvhitimately led to determining GNP coordi-
nates for 47 of them. Given these coordinates, we calcudtdtve estimation errors for latencies measured
between these stations, which leads to analyzing more tH&0 Ineasurements per hourly matrix. The
resulting distribution is error values depicted in Figut@a and 17c.

As can be observed, short latencies are indeed very hartrmegs accurately. This severely affects the
overall performance, as 61.8% of RIPE latencies are shttréer 50 milliseconds. However, the accuracy
of long latency estimates is far better; 70% of them are offdsg than .5. Also, similar as in the case of
PlanetLab, the estimation accuracy for RIPE latenciesdsgawed over time (see Figure 17b).

Based on the analysis performed with our two datasets, welwda that our system could be used as
a generic latency estimation service. It performs very gabdn estimating long latencies, which makes it
particularly suitable for predicting latencies betweewbgllly distributed hosts. As for short latencies, such
as those found in the RIPE dataset, they are very hard toastipnecisely. However, our system can still
estimate at least some of them with a reasonable degree wiagyc
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7 Conclusions and Future Work

We have presented an implementation of GNP incorporatedii Google content delivery network. In
contrast to all its previous counterparts, our impleméoatioes not rely on active participation of Web
clients, as all the latency measurements are performed/phsiy the landmarks. The overhead incurred
by latency measurements is carefully controlled by a staledntralized scheduler, which prevents both
the landmarks and the network from becoming overloaded.Idyem our solution requires only a small
number of CDN modifications, which makes it attractive foy &DN interested in large-scale latency
estimation.

Our system has been collecting latency information abollibm$ of Google clients for several months.
The analysis of these data enabled us to confirm many of théisgesesented in earlier research on GNP,
and add to these results by investigating the issue of coatglistability over time. We have shown that
coordinates drift away from their initial values with timeaking 25% of the coordinates to become in-
accurate by more than 33 milliseconds after one week. Howeedly recomputations make 75% of the
coordinates stay within 6 milliseconds of their initial uak.

Apart from analyzing the behavior of GNP coordinates ovaetiwe have also discussed our experience
with their practical applicability. We have demonstrateattusing coordinates to decide on client-to-replica
redirection leads to selecting replicas closest in termmedsured latency in 86% of all cases. In another
10% of all cases, clients are redirected to replicas offglatencies that are at most two times longer than
optimal.

Collecting a huge volume of latency data has enabled us imast latencies between globally dis-
tributed Internet hosts that have not participated in ouasueements. We have been able to determine the
coordinates of such hosts by applying network-aware alugte The results are sufficiently promising that
Google may offer a public interface to the latency estimatdake future. Such an interface could be use-
ful for any large-scale distributed applications, inchglipeer-to-peer overlays and other content delivery
networks. We plan on developing our system further by imjprgits scalability using multiple schedulers,
and by reducing the delay between measuring base latenmeaverting them into fresh coordinates.
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