
114 communications of the acm | June 2011 | vol. 54 | no. 6

research highlights

doi:10.1145/1953122.1953148

Dremel: Interactive Analysis
of Web-Scale Datasets
By Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shivakumar, Matt Tolton,
and Theo Vassilakis

Abstract
Dremel is a scalable, interactive ad hoc query system for
analysis of read-only nested data. By combining multilevel
execution trees and columnar data layout, it is capable of
running aggregation queries over trillion-row tables in
seconds. The system scales to thousands of CPUs and pet-
abytes of data, and has thousands of users at Google. In this
paper, we describe the architecture and implementation
of Dremel, and explain how it complements MapReduce-
based computing. We present a novel columnar storage
representation for nested records and discuss experiments
on few-thousand node instances of the system.

1. INTRODUCTION
Large-scale analytical data processing has become wide-
spread in Web companies and across industries, not least
due to low-cost storage that enabled collecting vast amounts
of business-critical data. Putting this data at the fingertips
of analysts and engineers has grown increasingly impor-
tant; interactive response times often make a qualitative
difference in data exploration, monitoring, online customer
support, rapid prototyping, debugging of data pipelines,
and other tasks.

Performing interactive data analysis at scale demands a
high degree of parallelism. For example, reading a terabyte
of compressed data from secondary storage in 1 s would
require more than 10,000 commodity disks. Similarly,
CPU-intensive queries may need to run on thousands of
cores to complete within seconds. At Google, massively
parallel computing is done using shared clusters of com-
modity machines.5 A cluster typically hosts a multitude of
distributed applications that share resources, have widely
varying workloads, and run on machines with different
hardware parameters. An individual worker in a distrib-
uted application may take much longer to execute a given
task than others or may never complete due to failures or
preemption by the cluster management system. Hence,
dealing with stragglers and failures is essential for achiev-
ing fast execution and fault tolerance.

The data used in Web and scientific computing are often
non-relational. Hence, a flexible data model is essential
in these domains. Data structures used in programming
languages, messages exchanged by distributed systems,
structured documents, etc., lend themselves naturally to
a nested representation. Normalizing and recombining
such data at Web scale is usually prohibitive. A nested
data model underlies most of the structured data pro-
cessing at Google22 and reportedly at other major Web
companies.

This paper describes a system called Dremela that sup-
ports interactive analysis of very large datasets over shared
clusters of commodity machines. Unlike traditional data-
bases, it is capable of operating on in situ nested data. In situ
refers to the ability to access data “in place,” for example, in
a distributed file system (like Google File System (GFS)14) or
another storage layer (e.g., Bigtable9). Dremel can execute
many queries over such data that would ordinarily require
a sequence of MapReduce (MR12) jobs, but at a fraction of
the execution time. Dremel is not intended as a replace-
ment for MR and is often used in conjunction with it to
analyze outputs of MR pipelines or rapidly prototype larger
computations.

Dremel has been in production since 2006 and has
thousands of users within Google. Multiple instances of
Dremel are deployed in the company, ranging from tens to
thousands of nodes. Examples of system usage include the
following:

•	 Analysis of crawled Web documents
•	 Tracking install data for applications on Android

Market
•	 Crash reporting for Google products
•	 OCR results from Google Books
•	 Spam analysis
•	 Debugging of map tiles on Google Maps
•	 Tablet migrations in managed Bigtable instances
•	 Results of tests run on Google’s distributed build

system
•	 Disk I/O statistics for hundreds of thousands of disks
•	 Resource monitoring for jobs run in Google’s data

centers
•	 Symbols and dependencies in Google’s codebase

Dremel builds on ideas from Web search and parallel
DBMSs. First, its architecture borrows the concept of a serv-
ing tree used in distributed search engines.11 Just like a
Web search request, a query gets pushed down the tree and
is rewritten at each step. The result of the query is assem-
bled by aggregating the replies received from lower levels
of the tree. Second, Dremel provides a high-level, SQL-like

The original version of this paper was published in VLDB
2010.

a  Dremel is a brand of power tools that primarily rely on their speed as
opposed to torque. We use this name for an internal project only.

JUne 2011 | vol. 54 | no. 6 | communications of the acm 115

to an interactive dashboard. Finally, she registers her new
dataset in a catalog, so other engineers can locate and
query it quickly.

The above scenario requires interoperation between the
query processor and other data management tools. The
first ingredient for that is a common storage layer. GFS14 is
one such distributed storage layer widely used in the com-
pany. GFS uses replication to preserve the data despite faulty
hardware and achieve fast response times in presence of
stragglers. A high-performance storage layer is critical for
in situ data management since it allows accessing the data
without a time-consuming loading phase. As an added ben-
efit, data in a file system can be conveniently manipulated
using standard tools, for example, to transfer to another
cluster, change access privileges, or identify a subset of data
for analysis based on file names.

The second ingredient for building interoperable data
management components is a shared storage format.
Columnar storage proved successful for flat relational data
but making it work for Google required adapting it to a
nested data model. Figure 1 illustrates the main idea: all
values of a nested field such as A.B.C are stored contigu-
ously. Hence, A.B.C can be retrieved without reading A.E,
A.B.D, etc. The challenge that we address is how to pre-
serve all structural information and be able to reconstruct
records from an arbitrary subset of fields. Next we discuss
our data model and then turn to algorithms and query
processing.

3. DATA MODEL
In this section, we present Dremel’s data model and intro-
duce the terminology used later. The data model originated
in the context of distributed systems (which explains its
name, “Protocol Buffers”22) is used widely at Google and
is available as an open source implementation. The data
model is based on strongly typed nested records. Its abstract
syntax is given by:

τ = dom | 〈A1 : τ [∗|?], . . . , An : τ [∗|?]〉

where τ is an atomic type or a record type. Atomic types in
dom comprise integers, floating-point numbers, strings,
etc. Records consist of one or multiple fields. Field i in a

language to express ad hoc queries. In contrast to layers
such as Pig19 and Hive,16 it executes queries natively without
translating them into MR jobs.

Lastly, and importantly, Dremel uses a column-striped
storage representation, which enables it to read less data
from secondary storage and reduce CPU cost due to cheaper
compression. Column stores have been adopted for analyz-
ing relational data1 but to the best of our knowledge have
not been extended to nested data models. The columnar
storage format that we present is supported by many data
processing tools at Google, including MR, Sawzall,21 and
FlumeJava.8

In this paper we make the following contributions:

•	 We describe a novel columnar storage format for nested
data. We present algorithms for dissecting nested records
into columns and reassembling them (Section 4).

•	 We outline Dremel’s query language and execution.
Both are designed to operate efficiently on column-
striped nested data and do not require restructuring of
nested records (Section 5).

•	 We show how execution trees used in Web search sys-
tems can be applied to database processing and explain
their benefits for answering aggregation queries effi-
ciently (Section 6).

•	 We present experiments on trillion-record, multi-
terabyte datasets, conducted on system instances
running on 1000–4000 nodes (Section 7).

This paper is structured as follows. In Section 2, we
explain how Dremel is used for data analysis in combina-
tion with other data management tools. Its data model is
presented in Section 3. The main contributions listed above
are covered in Sections 4–8. Related work is discussed in
Section 9. Section 10 is the conclusion.

2. BACKGROUND
We start by walking through a scenario that illustrates
how interactive query processing fits into a broader data
management ecosystem. Suppose that Alice, an engineer
at Google, comes up with a novel idea for extracting new
kinds of signals from Web pages. She runs an MR job that
cranks through the input data and produces a dataset con-
taining the new signals, stored in billions of records in the
distributed file system. To analyze the results of her experi-
ment, she launches Dremel and executes several interactive
commands:

DEFINE TABLE t AS/path/to/data/*
SELECT TOP(signal1, 100), COUNT(*) FROM t

Her commands execute in seconds. She inspects the 100
most frequent signals returned by the query. She runs
other queries, looking for ways to integrate her signals
into Web search. Once she finds enough clues, she sets up a
pipeline to process the incoming input data continuously
and feeds it to another MR or a serving system. She formu-
lates a few canned SQL queries that aggregate the results
of her pipeline across various dimensions and adds them

A

B

C D

E

*

*

*

. . .

Record-
oriented

. . .
r1

r2 r1
r1

r1

r2

r2

r2

Column-
oriented

Figure 1. Record-wise vs. columnar representation of nested data.

116 communications of the acm | June 2011 | vol. 54 | no. 6

research highlights

level encodes the length of the common prefix of pi−1 and pi,
while definition level encodes the length of pi (or, alterna-
tively, the length of pi’s suffix). For example, the common
prefix of the first two paths in Figure 4 is r1.Name1 and has
length 2.

Path lengths are encoded compactly as follows. The
common prefix of two consecutive paths always ends on
a repeated field, so we define the repetition level as the

record has a name Ai and a multiplicity label. Repeated fields
(label “∗”) may occur multiple times in a record; the order of
field occurrences is significant. Optional fields (label “?”) may
be missing from the record. Otherwise, a field is required,
that is, must appear exactly once.

To illustrate, see Figure 2. It depicts a schema that defines
a record type Document, representing a Web document. The
schema definition uses the concrete syntax from Protocol
Buffers.22 A Document has a required integer Docld and
optional Links, containing a list of Forward and Backward
entries holding Doclds of other Web pages. A document can
have multiple Names, which are different URLs by which the
document can be referenced. A Name contains a sequence
of Code and (optional) Country pairs. Figure 2 also shows
two sample records, r1 and r2, conforming to the schema. The
record structure is outlined using indentation. We will use
these sample records to explain the algorithms in the next
sections. The fields defined in the schema form a tree hier-
archy. The full path of a nested field is denoted using the
usual dotted notation, for example, Name.Language.Code.

The nested data model backs a platform-neutral, exten-
sible mechanism for serializing structured data at Google.
Code generation tools produce bindings for programming
languages such as C++ or Java. Cross-language interop-
erability is achieved using a standard binary on-the-wire
representation of records, in which field values are laid out
sequentially as they occur in the record. This way, an MR
program written in Java can consume records from a data
source exposed via a C++ library.

4. NESTED COLUMNAR STORAGE
As illustrated in Figure 1, our goal is to store all values of
a given field consecutively to improve retrieval efficiency.
However, columnar data might eventually be consumed by
record-oriented tools such as MR. Therefore, we need a way
to assemble records efficiently from any given subset of col-
umns. In this section, we address the following challenges:
lossless representation of record structure in a columnar
format (Section 4.1), fast encoding (Section 4.2), and effi-
cient record assembly (Section 4.3).

4.1. Repetition and definition levels
In Figure 2, we have seen two documents represented as
records. Contrast those to Figure 3. It depicts the same data
in a columnar format. The values of every field are stored
sequentially as a separate stripe. For each value, we keep
extra information, a repetition level and a definition level
(abbreviated as r and d in the figure). This information
encodes the structure of the records.

We explain our encoding using the example of Name.
Language.Code in Figure 4. The right-hand side of the fig-
ure shows a flattened representation of records r1 and r2
obtained as follows. First, we strip away all fields except
Name, Language, and Code. Second, we represent the
stripped records as a list of root-to-leaf paths. The sub-
scripts denote positions of the respective fields within their
enclosing records.

A (repetition level, definition level) pair represents the
delta between two consecutive paths pi−1 and pi. Repetition

value r d
10 0 0
20 0 0

DocId
value r d

http://A 0 2
http://B 1 2
NULL 1 1

http://C 0 2

Name.Url

value r d
en-us 0 2

en 2 2
NULL 1 1
en-gb 1 2
NULL 0 1

Name.Language.Code Name.Language.Country

Links.BackwardLinks.Forward

value r d
us 0 3

NULL 2 2
NULL 1 1

gb 1 3
NULL 0 1

value r d
20 0 2
40 1 2
60 1 2
80 0 2

value r d
NULL 0 1

10 0 2
30 1 2

Figure 3. Column-striped representation of the data in Figure 2.

value r d

en-us 0 2

en 2 2

NULL 1 1

en-gb 1 2

NULL 0 1

Name.Language.Code

r1.Name1.Language1.Code: 'en-us'
r1.Name1.Language2.Code: 'en'
r1.Name2

r1.Name3.Language1.Code: 'en-gb'
r2.Name1

: common prefix

Figure 4. Repetition and definition levels: delta between paths.

DocId: 10
Links
 Forward: 20
 Forward: 40
 Forward: 60
Name
 Language
 Code: 'en-us'
 Country: 'us'
 Language
 Code: 'en'
Url: 'http://A'

Name
Url: 'http://B'

Name
 Language
 Code: 'en-gb'
 Country: 'gb'

r1
message Document {

required int64 DocId;
 optional group Links {

repeated int64 Backward;
repeated int64 Forward; }

repeated group Name {
 repeated group Language {

required string Code;
optional string Country; }

optional string Url; }}

DocId: 20
Links
 Backward: 10
 Backward: 30
 Forward: 80
Name
Url: 'http://C'

r2

Figure 2. Two sample nested records and their schema.

JUne 2011 | vol. 54 | no. 6 | communications of the acm 117

number of repeated fields in the common prefix (including
the first path element identifying the record). The definition
level specifies the number of optional and repeated fields
in the path (excluding the first path element). We do not
count required fields since they are always present. A defini-
tion level smaller than the maximal number of repeated and
optional fields in a path denotes a NULL. For example, the
maximum definition level of Name.Language.Code is 2.

The encoding outlined above preserves the record struc-
ture losslessly. We omit the proof for space reasons.

Tablet Layout: A table is stored as a set of tablets. A tab-
let is a self-contained horizontal partition of the table.
Figure 5 illustrates the layout of a tablet. In addition to the
actual data, the tablet contains the schema and extra meta-
data that includes specification of keys, sorting order, value
ranges, etc.

Each column is stored as a set of blocks. Each block con-
tains the repetition and definition levels (henceforth, sim-
ply called levels) and compressed field values. NULLs are
not stored explicitly as they are determined by the defini-
tion levels. Definition levels are not stored for values that
are always defined. Similarly, repetition levels are stored
only if required; for example, definition level 0 implies
repetition level 0, so the latter can be omitted. In fact, in
Figure 3, no levels are stored for Docld. Levels are packed
as bit sequences. We only use as many bits as necessary; for
example, if the maximum definition level is 3, we use 2 bits
per definition level.

4.2. Splitting records into columns
Above we presented an encoding of the record structure in
a columnar format. The next challenge we address is how to
produce column stripes with repetition and definition levels
efficiently.

The algorithm for computing repetition and definition
levels is given in Melnik et al.18 The algorithm recurs into
the record structure and computes the levels for each field
value. As illustrated earlier, repetition and definition levels
may need to be computed even if field values are missing.
Many datasets used at Google are sparse; it is not uncom-
mon to have a schema with thousands of fields, only a hun-
dred of which are used in a given record. Hence, we try to
process missing fields as cheaply as possible. To produce
column stripes, we create a tree of field writers, whose struc-
ture matches the field hierarchy in the schema. The basic

idea is to update field writers only when they have their own
data, and not try to propagate parent state down the tree
unless absolutely necessary.

4.3. Record assembly
Assembling records from columnar data efficiently is criti-
cal for record-oriented data processing tools (e.g., MR).
Given a subset of fields, our goal is to reconstruct the origi-
nal records as if they contained just the selected fields,
with all other fields stripped away. The key idea is we create
a finite state machine (FSM) that reads the field values and
levels for each field, and appends the values sequentially
to the output records. An FSM state corresponds to a field
reader for each selected field. State transitions are labeled
with repetition levels. Once a reader fetches a value, we
look at the next repetition level to decide what next reader
to use. The FSM is traversed from the start to end state once
for each record.

Figure 6 shows an FSM that reconstructs the complete
records in our running example. The start state is Docld.
Once a Docld value is read, the FSM transitions to Links.
Backward. After all repeated Backward values have been
drained, the FSM jumps to Links.Forward, etc.

If only a subset of fields needs to be retrieved, we con-
struct a simpler FSM that is cheaper to execute. Figure
7 depicts an FSM for reading the fields Docld and Name.
Language.Country. The figure shows the output records s1

Schema
Metadata

(keys, order, ranges, ...)

column1 columnn

block1 blockm

values r d

Figure 5. Tablet layout.

Name.Language.Country Name.Language.Code

Links.Backward Links.Forward

Name.Url

DocId

1 B k d

0

1

N LC d

0

0,1,2
Name.Langua

2

l 0,1

nguage.Code

1

I

00

0

Figure 6. Complete record assembly automaton. Edges are labeled
with repetition levels.

DocId

Name.Language.Country 1,2 guag

0

00

ocId

DocId: 10
Name
 Language
 Country: 'us'
 Language
Name
Name
 Language
 Country: 'gb'

DocId: 20
Name

S1

S2

Figure 7. Automaton for assembling records from two fields, and the
records it produces.

118 communications of the acm | June 2011 | vol. 54 | no. 6

research highlights

and s2 produced by the automaton. Notice that our encoding
and the assembly algorithm preserve the enclosing structure
of the field Country. This is important for applications that
need to access, for example, the Country appearing in the
first Language of the second Name. In XPath, this would cor-
respond to the ability to evaluate expressions like /Name[2]/
Language[1]/Country.

The details of record assembly and FSM construction are
in Melnik et al.18

5. QUERY LANGUAGE
Dremel’s query language is based on SQL and is designed
to be efficiently implementable on columnar nested stor-
age. Defining the language formally is out of scope of this
paper; instead, we illustrate its flavor. Each SQL statement
(and algebraic operators it translates to) takes as input
one or multiple nested tables and their schemas and
produces a nested table and its output schema. Figure 8
depicts a sample query that performs projection, selec-
tion, and within-record aggregation. The query is evalu-
ated over the table t = {r1, r2} from Figure 2. The fields are
referenced using path expressions. The query produces a
nested result although no record constructors are present
in the query.

To explain what the query does, consider the selection
operation (the WHERE clause). Think of a nested record
as a labeled tree, where each label corresponds to a field
name. The selection operator prunes away the branches of
the tree that do not satisfy the specified conditions. Thus,
only those nested records are retained where Name.Url is
defined and starts with http. Next, consider projection. Each
scalar expression in the SELECT clause emits a value at the
same level of nesting as the most repeated input field used
in that expression. So, the string concatenation expression
emits Str values at the level of Name.Language.Code in the
input schema. The COUNT expression illustrates within-
record aggregation. The aggregation is done WITHIN each
Name subrecord and emits the number of occurrences of
Name.Language.Code for each Name as a nonnegative 64-bit
integer (uint64).

The language supports nested subqueries, inter- and
intra-record aggregation, top-k, joins, user-defined func-
tions, etc.; some of these features are exemplified in the
experimental section.

6. QUERY EXECUTION
We discuss the core ideas in the context of a read-only sys-
tem, for simplicity. Many Dremel queries are one-pass
aggregations; therefore, we focus on explaining those and
use them for experiments in the next section. We defer
a detailed discussion of joins, indexing, updates, etc., to
future work.

Tree Architecture: Dremel executes queries using a serving
tree (see Figure 9). Its purpose is twofold:

1.	 To parallelize query scheduling and aggregation
2.	 To provide fault tolerance and deal with stragglers

A root server receives incoming queries, reads metadata
from the tables, and routes the queries to the next level in
the serving tree. The leaf servers communicate with the stor-
age layer or access the data on local disk.

Consider a simple aggregation query below:

SELECT A, COUNT(B) FROM T GROUP BY A

When the root server receives the above query, it deter-
mines all tablets that comprise T and rewrites the query as
follows:

SELECT A, SUM(c) FROM (R1
1 UNION  ALL... R1

n) GROUP
BY A

Tables R 11 . . . R 1n are the results of queries sent to the nodes
1, . . . , n at level 1 of the serving tree:

R1
i = SELECT A, COUNT(B) AS c FROM T1

i  GROUP BY A

T 1i is a disjoint partition of tablets in T processed by server
i at level 1. Each serving level performs a similar rewriting.
Ultimately, the queries reach the leaves, which scan the tab-
lets in T in parallel. On the way up, intermediate servers per-
form a parallel aggregation of partial results. The execution
model presented above is well suited for aggregation queries

Id: 10
Name
Cnt: 2

 Language
Str: 'http://A,en-us'
Str: 'http://A,en'

Name
Cnt: 0

t1

SELECT DocId AS Id,
COUNT(Name.Language.Code) WITHIN Name AS Cnt,
Name.Url + ',' + Name.Language.Code AS Str

FROM t
WHERE REGEXP(Name.Url, '^http') AND DocId < 20;

message QueryResult {
required int64 Id;
repeated group Name {
optional uint64 Cnt;
repeated group Language {

 optional string Str; }}}

Figure 8. Sample query, its result, and output schema.

Query execution tree

. . .

. . .
. . .

Storage layer (e.g., GFS)

. . .

. . .

. . .Leaf servers
(with local
 storage)

Intermediate
servers

Root server

Client

Figure 9. System architecture and execution inside a server node.

JUne 2011 | vol. 54 | no. 6 | communications of the acm 119

returning small- and medium-sized results, which are a very
common class of interactive queries. This model also works
well for computing approximate results using known one-
pass algorithms, such as those for top-k and count-distinct
(e.g., see Bar-Yossef et al.4).

Beyond One-Pass Aggregation: Dremel supports query pro-
cessing mechanisms that go beyond one-pass aggregation.
These mechanisms are designed to leverage the serving tree
architecture, too. For example, one way to execute a query
that joins a large partitioned table with small user-defined
tables is by sending a copy of the small tables to each leaf
server. This strategy is referred to as broadcast join. The serv-
ing tree supports such queries efficiently by broadcasting
the small tables in parallel down the tree.

As another example, joins that repartition the data (simi-
larly to the “shuffle” phase of MR) maintain a significant
amount of distributed execution state. The serving tree
helps aggregate their execution state efficiently. Last but
not least, SELECT-INTO operations persist query results as
new tables in the DFS. The serving tree monitors distributed
writes and ensures successful completion. We found that
serving trees are a useful building block that complements
existing distributed query processing algorithms.

Query Dispatcher: Dremel is a multiuser system, that is,
usually several queries are executed simultaneously. A query
dispatcher schedules queries based on their priorities and
balances the load. Its other important role is to provide fault
tolerance when one server becomes much slower than others
or a tablet replica becomes unreachable.

The amount of data processed in each query is often
larger than the number of processing units available for
execution, which we call slots. A slot corresponds to an
execution thread on a leaf server. For example, a system of
3,000 leaf servers each using 8 threads has 24,000 slots. So, a
table spanning 100,000 tablets can be processed by assign-
ing about 5 tablets to each slot. During query execution, the
query dispatcher computes a histogram of tablet processing
times. If a tablet takes a disproportionately long time to pro-
cess, it reschedules it on another server. Some tablets may
need to be redispatched multiple times.

The leaf servers read stripes of nested data in columnar
representation. The blocks in each stripe are prefetched
asynchronously; the read-ahead cache typically achieves hit
rates of 95%. Tablets are usually three-way replicated. When
a leaf server cannot access one tablet replica, it falls over to
another replica.

The query dispatcher honors a parameter that specifies
the minimum percentage of tablets that must be scanned
before returning a result. As we demonstrate shortly, setting
such parameter to a lower value (e.g., 98% instead of 100%)
can often speed up execution significantly, especially when
using smaller replication factors.

Each server has an internal execution tree, as depicted
on the right-hand side of Figure 9. The internal tree corre-
sponds to a physical query execution plan, including evalu-
ation of scalar expressions. Optimized, type-specific code
is generated for most scalar functions. An execution plan

for project-select-aggregate queries consists of a set of itera-
tors that scan input columns in lockstep and emit results
of aggregates and scalar functions annotated with the cor-
rect repetition and definition levels, bypassing the record
assembly entirely during query execution. For details, see
Melnik et al.18

7. EXPERIMENTS
In this section, we evaluate Dremel’s performance on sev-
eral datasets used at Google and examine the effectiveness
of columnar storage for nested data. The properties of the
datasets are summarized in Figure 10. In uncompressed,
non-replicated form, they occupy about a petabyte of space.
All tables are three-way replicated, except one two-way rep-
licated table, and contain from 100K to 800K tablets. We
start by examining data access characteristics on a single
machine, then show how columnar storage benefits MR
execution, and finally focus on Dremel’s performance. The
experiments were conducted on system instances running
in two data centers next to many other applications, during
regular business operation. Unless specified otherwise, exe-
cution times were averaged across five runs. Table and field
names used below are anonymized.

Local Disk: In the first experiment, we examine perfor-
mance tradeoffs of columnar vs. record-oriented storage,
scanning a 1GB fragment of table T1 containing about 300K
rows (see Figure 11). The data is stored on a local disk and

Table
name

Number of
records

Size (unrepl.,
compressed)

Number
of fields

Data
center

Repl.
factor

T1 85 billion 87TB 270 A 3�

T2 24 billion 13TB 530 A 3�

T3 4 billion 70TB 1200 A 3�

T4 1+ trillion 105TB 50 B 3�

T5 1+ trillion 20TB 30 B 2�

Figure 10. Datasets used in the experimental study.

0

2

4

6

8

10

12

14

16

18

20

1 2 2 4 5 6 7 8 9 10

Columns
Records

Objectsbj

Fr
om

 r
ec

or
ds

Fr
om

 c
ol

um
ns

(a) Read +
 decompress

(b) Assemble
 records

(c) Parse as
 objects

(d) Read +
 decompress

(e) Parse as
 objects

Time (s)

Number of fields

Figure 11. Performance breakdown when reading from a local disk
(300K-record fragment of Table T1).

120 communications of the acm | June 2011 | vol. 54 | no. 6

research highlights

takes about 375MB in compressed columnar representation.
The record-oriented format uses heavier compression yet
yields about the same size on disk. The experiment was
done on a dual-core Intel machine with a disk providing
70MB/s read bandwidth. All reported times are cold; OS
cache was flushed prior to each scan.

The figure shows five graphs, illustrating the time it takes
to read and uncompress the data, and assemble and parse
the records, for a subset of the fields. Graphs (a)–(c) outline
the results for columnar storage. Each data point in these
graphs was obtained by averaging the measurements over
30 runs, in each of which a set of columns of a given car-
dinality was chosen at random. Graph (a) shows reading
and decompression time. Graph (b) adds the time needed
to assemble nested records from columns. Graph (c) shows
how long it takes to parse the records into strongly typed
C++ data structures. Graphs (d) and (e) depict the time for
accessing the data from record-oriented storage, with or
without parsing.

The main takeaways of this experiment are the follow-
ing: when few columns are read, the gains of columnar rep-
resentation are of about an order of magnitude. Retrieval
time for columnar nested data grows linearly with the num-
ber of fields. Record assembly and parsing are expensive,
each potentially doubling the execution time. We observed
similar trends on other datasets. A natural question to ask
is when record-wise storage starts outperforming columnar
storage. In our experience, the crossover point often lies at
dozens of fields but it varies across datasets and depends on
whether or not record assembly is required.

MR and Dremel: Next we illustrate an MR and Dremel execu-
tion on columnar vs. record-oriented data. We consider a
case where a single field is accessed, that is, the performance
gains are most pronounced. Execution times for multiple
columns can be extrapolated using the results of Figure 11.
In this experiment, we count the average number of terms
in a field txtField of table T1. MR execution is done using the
following Sawzall21 program:

numRecs: table sum of int;
numWords: table sum of int;
emit numRecs <– 1;
emit numWords <– CountWords (input.txtField);

The number of records is stored in the variable numRecs.
For each record, numWords is incremented by the number
of terms in input.txtField returned by the CountWords func-
tion. After the program runs, the average term frequency can
be computed as numWords/numRecs. In SQL, this compu-
tation is expressed as:

Q1: �SELECT SUM(CountWords(txtField) )/COUNT(*)
FROM T1

Figure 12 shows the execution times of two MR jobs and
Dremel on a logarithmic scale. Both MR jobs are run on
3000 workers. Similarly, a 3000-node Dremel instance is

used to execute Query Q1. Dremel and MR-on-columns read
about 0.5TB of compressed columnar data vs. 87TB read
by MR-on-records. As the figure illustrates, MR gains an
order of magnitude in efficiency by switching from record-
oriented to columnar storage (from hours to minutes).
Another order of magnitude (from minutes to seconds) is
achieved by using Dremel, which eliminates the overheads
of launching MR jobs, scheduling half a million tasks, and
assembling records.

Serving Tree Topology: In the next experiment, we show the
impact of the serving tree depth on query execution times.
We consider two GROUP BY queries on Table T2, which has
24 billion nested records. Each record has a repeated field
item containing a numeric amount. The field item.amount
occurs about 40 billion times. The first query sums up the
item amount by country:

Q2: �SELECT country, SUM(item.amount) FROM T2
GROUP BY country

It returns a few hundred records and reads roughly 60GB of
compressed data. The second query performs a GROUP BY on
a text field domain with a selection condition. It reads about
180GB and produces around 1.1 million distinct domains:

Q3: �SELECT domain, SUM(item.amount) FROM T2
WHERE domain CONTAINS ’.net’
GROUP BY domain

0

10

100

1,000

10,000

MR-records MR-columns Dremel

Execution time (s)

Figure 12. MR and Dremel execution on columnar vs. record-oriented
storage (3000 nodes, 85 billion records).

0
10
20
30
40
50
60

Q2 Q3

2 levels

3 levels

4 levels

Execution time (s)

Figure 13. Execution time as a function of serving tree levels for two
aggregation queries on T2.

JUne 2011 | vol. 54 | no. 6 | communications of the acm 121

Scalability: The following experiment illustrates the scalabil-
ity of the system on a trillion-record table. Query Q5 shown
below selects top-20 aid’s and their number of occurrences
in Table T4. The query scans 4.2TB of compressed data.

Q5: �SELECT TOP(aid, 20), COUNT(*) FROM T4
  WHERE bid = {value1} AND cid = {value2}

The query was executed using four configurations
of the system, ranging from 1000 to 4000 nodes. The
execution times are in Figure 15. In each run, the total
expended CPU time is nearly identical, at about 300K
seconds, whereas the user-perceived time decreases
near-linearly with the growing size of the system. This
result suggests that a larger system can be just as effec-
tive in terms of resource usage as a smaller one, yet
allows faster execution.

Stragglers: Our last experiment shows the impact of strag-
glers. Query Q6 below is run on a trillion-row table T5. In
contrast to the other datasets, T5 is two-way replicated.
Hence, the likelihood of stragglers slowing the execution
is higher since there are fewer opportunities to reschedule
the work.

Q6: SELECT COUNT(DISTINCT a) FROM T5

Query Q6 reads over 1TB of compressed data. The com-
pression ratio for the retrieved field is about 10. As indi-
cated in Figure 16, the processing time for 99% of the

Figure 13 shows the execution times for each query as a
function of the server topology. In each topology, the num-
ber of leaf servers is kept at 2900 to achieve the same cumu-
lative scan speed. In the two-level topology (1:2900), a single
root server communicates directly with the leaf servers. For
three levels, we use a 1:100:2900 setup, that is, an extra
level of 100 intermediate servers. The four-level topology is
1:10:100:2900.

The experiment illustrates that aggregations returning
many groups benefit from deeper serving trees. Using two
levels is not very effective since the root server needs to
aggregate near-sequentially the results received from thou-
sands of nodes. Adding a fourth level halves the execution
time of Q3 due to increased parallelism but does not benefit
Q2, which returns a small result.

Per-Tablet Histograms: To drill deeper into what happens
during query execution consider Figure 14. The figure
shows how fast tablets get processed by the leaf servers for
a specific run of Q2 and Q3. The time is measured starting at
the point when a tablet got scheduled for execution in an
available slot, that is, excludes the time spent waiting in the
job queue. This measurement methodology factors out the
effects of other queries that are executing simultaneously.
The area under each histogram corresponds to 100%. As the
figure indicates, 99% of Q2 (or Q3) tablets are processed un-
der 1 s (or 2 s).

Within-Record Aggregation: As another experiment, we ex-
amine the performance of Query Q4 run on Table T3. The
query illustrates within-record aggregation: it counts all re-
cords where the sum of a.b.c.d values occurring in the record
are larger than the sum of a.b.p.q.r values. The fields repeat
at different levels of nesting. Due to column striping, only
13GB (out of 70TB) are read from disk and the query com-
pletes in 15 s. Without support for nesting, running this
query on T3 would be grossly expensive.

Q4: SELECT COUNT(c1 > c2) FROM
     (SELECT SUM(a.b.c.d) WITHIN RECORD AS c1,
       SUM(a.b.p.q.r) WITHIN RECORD AS c2
       FROM T3)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.5 1 1.5 2 2.5 3

Percentage of processed tablets

Processing time
per tablet (s)

Q3Q2

Figure 14. Histograms of processing times.

0

50

100

150

200

250

1000 2000 3000 4000

Execution time (s)

Number of
leaf servers

Figure 15. Scaling the system from 1000 to 4000 nodes using a top-k
query Q5 on a trillion-row table T4.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10 12 14 16

Percentage of processed tablets

Processing time per tablet (s)

Stragglers

Figure 16. Query Q5 on T5 illustrating stragglers at 2× replication.

122 communications of the acm | June 2011 | vol. 54 | no. 6

research highlights

9. RELATED WORK
The MR12 framework was designed to address the chal-
lenges of large-scale computing in the context of
long-running batch jobs. Like MR, Dremel provides fault-
tolerant execution, a flexible data model, and in situ data
processing capabilities. The success of MR led to a wide
range of third-party implementations (notably open-
source Hadoop15), and a number of hybrid systems that
combine parallel DBMSs with MR, offered by vendors like
Aster, Cloudera, Greenplum, and Vertica. HadoopDB,3 is a
research system in this hybrid category. Recent articles13,

23 contrast MR and parallel DBMSs. Our work emphasizes
the complementary nature of both paradigms.

Dremel is designed to operate at scale. Although it is con-
ceivable that parallel DBMSs can be made to scale to thou-
sands of nodes, we are not aware of any published work or
industry reports that attempted that. Neither are we famil-
iar with prior literature studying MR on columnar storage.

Our columnar representation of nested data builds on
ideas that date back several decades: separation of struc-
ture from content and transposed representation. A recent
review of work on column stores, including compression
and query processing, can be found in Abadi et al.1 Many
commercial DBMSs support storage of nested data using
XML (e.g., O’Neil et al.20). XML storage schemes attempt
to separate the structure from the content but face more
challenges due to the flexibility of the XML data model.
One system that uses columnar XML representation is
XMill.17 XMill is a compression tool. It stores the struc-
ture for all fields combined and is not geared for selective
retrieval of columns.

The data model used in Dremel is a variation of the
complex value models and nested relational models dis-
cussed in Abiteboul et al.2 Dremel’s query language builds
on the ideas from Colby,10 which introduced a language
that avoids restructuring when accessing nested data.
In contrast, restructuring is usually required in XQuery
and object-oriented query languages, for example, using
nested for-loops and constructors. We are not aware of
practical implementations of Colby.10 A recent SQL-like
language for nested data is Pig Latin.19 Other systems for
parallel data processing include Scope7 and DryadLINQ,24
and are discussed in more detail in Chambers et al.8

10. CONCLUSION
We presented Dremel, a distributed system for interactive
analysis of large datasets. Dremel is a custom, scalable
data management solution built from simpler compo-
nents. It complements the MR paradigm. We discussed its
performance on trillion-record, multiterabyte datasets of
real data. The system is widely used at Google and serves
as the foundation of BigQuery,6 a product launched in pre-
view mode. We outlined the key aspects of Dremel, includ-
ing its storage format, query language, and execution. In
the future, we plan to cover in more depth such areas as
formal algebraic specification, joins, extensibility mecha-
nisms, etc.

tablets is below 5 s per tablet per slot. However, a small
fraction of the tablets take a lot longer, slowing down the
query response time from less than a minute to several
minutes, when executed on a 2500 node system. The next
section summarizes our experimental findings and the les-
sons we learned.

8. OBSERVATIONS
Dremel scans quadrillions of records per month. Figure 17
shows the query response time distribution in a typical
monthly workload of one Dremel system, on a logarithmic
scale. As the figure indicates, most queries are processed
under 10 s, well within the interactive range. Some queries
achieve a scan throughput close to 100 billion records per
second on a shared cluster, and even higher on dedicated
machines. The experimental data presented above suggests
the following observations:

•	 Scan-based queries can be executed at interactive
speeds on disk-resident datasets of up to a trillion
records.

•	 Near-linear scalability in the number of columns and
servers is achievable for systems containing thousands
of nodes.

•	 MR can benefit from columnar storage just like a
DBMS.

•	 Extreme-scale parallel DBMSs may benefit from the
serving tree architecture just like search engines.

•	 Record assembly and parsing are expensive. Software
layers (beyond the query processing layer) need to be
optimized to directly consume column-oriented
data.

•	 MR and query processing can be used in a complemen-
tary fashion; one layer’s output can feed another’s
input.

•	 In a multiuser environment, a larger system can benefit
from economies of scale while offering a qualitatively
better user experience.

•	 The bulk of a Web-scale dataset can be scanned fast.
Getting to the last few percent within tight time bounds
is hard.

Dremel’s codebase is dense; it comprises fewer than
100K lines of C++, Java, and Python code. The first version
was built by Andrey Gubarev as a 20% project.

0

5

10

15

20

25

30

1 10 100 1000

Percentage of queries

Execution
time (s)

Figure 17. Query response time distribution in a monthly workload.

JUne 2011 | vol. 54 | no. 6 | communications of the acm 123

13.	 Dean, J., Ghemawat, S.
MapReduce: A Flexible data
processing tool. Commun.
ACM 53, 1 (2010).

14.	G hemawat, S., Gobioff, H., Leung, S.-T.
The Google File System. In SOSP,
2003.

15.	H adoop Apache Project. http://hadoop.
apache.org.

16.	H ive. http://wiki.apache.org/hadoop/
Hive, 2009.

17.	L iefke, H., Suciu, D. XMill: An efficient
compressor for XML data. In
SIGMOD, 2000.

18.	 Melnik, S., Gubarev, A., Long, J.J.,
Romer, G., Shivakumar, S., Tolton,
M., Vassilakis, T. Dremel: Interactive
analysis of web-scale datasets.
PVLDB 3, 1 (2010).

19.	O lston, C., Reed, B., Srivastava, U.,
Kumar, R., Tomkins, A. Pig Latin:
A not-so-foreign language for
data processing. In SIGMOD,
2008.

20.	O ’Neil, P.E., O’Neil, E.J., Pal, S.,
Cseri, I., Schaller, G., Westbury, N.
ORDPATHs: Insert-friendly XML node
labels. In SIGMOD, 2004.

21.	 Pike, R., Dorward, S., Griesemer, R.,
Quinlan, S. Interpreting the data:
Parallel analysis with Sawzall. Sci.
Program. 13, 4 (2005).

22.	 Protocol Buffers: Developer Guide.
Available at http://code.google.com/
apis/protocolbuffers/docs/overview.
html.

23.	S tonebraker, M., Abadi, D., DeWitt,
D.J., Madden, S., Paulson, E., Pavlo,
A., Rasin, A., MapReduce and parallel
DBMSs: Friends or foes? Commun.
ACM 53, 1 (2010).

24.	Y u, Y., Isard, M., Fetterly, D.,
Budiu, M., Erlingsson, Ú., Gunda, P.K.,
Currey, J. DryadLINQ: A system for
general-purpose distributed
data-parallel computing using
a high-level language. In OSDI,
2008.

Acknowledgment
Dremel has benefited greatly from the input of many engi-
neers and interns at Google, in particular Craig Chambers,
Ori Gershoni, Rajeev Byrisetti, Leon Wong, Erik Hendriks,
Erika Rice Scherpelz, Charlie Garrett, Idan Avraham, Rajesh
Rao, Andy Kreling, Li Yin, Madhusudan Hosaagrahara, Dan
Belov, Brian Bershad, Lawrence You, Rongrong Zhong,
Meelap Shah, Nathan Bales, Ju-yi Kuo, Ovidiu Platon, Nick
Kline, Matthew Weaver, Dan Delorey, and Jinyuan Li. We
thank Gerhard Weikum for valuable improvement sugges-
tions on the Communications article.�

References
	 1.	A badi, D.J., Boncz, P.A., Harizopoulos,

S. Column-oriented database systems.
VLDB 2, 2 (2009).

	 2.	A biteboul, S., Hull, R., and Vianu, V.
Foundations of Databases. Addison
Wesley, Reading, PA, 1995.

	 3.	A bouzeid, A., Bajda-Pawlikowski, K.,
Abadi, D.J., Rasin, A., Silberschatz, A.
HadoopDB: An architectural hybrid of
MapReduce and DBMS technologies
for analytical workloads. VLDB 2, 1
(2009).

	 4.	B ar-Yossef, Z., Jayram, T.S., Kumar, R.,
Sivakumar, D., Trevisan, L. Counting
distinct elements in a data stream. In
RANDOM, 2002, 1–10.

	 5.	B arroso, L.A., Hölzle, U. The
Datacenter as a Computer: An
Introduction to the Design of
Warehouse-Scale Machines. Morgan &
Claypool Publishers, 2009.

	 6.	B igQuery. http://code.google.com/
apis/bigquery.

	 7.	 Chaiken, R., Jenkins, B., Larson, P.-A.,
Ramsey, B., Shakib, D., Weaver, S.,

Zhou, J. SCOPE: Easy and efficient
parallel processing of massive data
sets. VLDB 1, 2 (2008).

	 8.	 Chambers, C., Raniwala, A., Perry, F.,
Adams, S., Henry, R., Bradshaw, R.,
Weizenbaum, N. FlumeJava: Easy,
efficient data-parallel pipelines. In
PLDI, 2010.

	 9.	 Chang, F., Dean, J., Ghemawat, S.,
Hsieh, W.C., Wallach, D.A.,
Burrows, M., Chandra, T., Fikes, A.,
Gruber, R. Bigtable: A distributed
storage system for structured data.
In OSDI, 2006.

10.	 Colby, L.S. A recursive algebra
and query optimization
for nested relations. In SIGMOD,
1989.

11.	 Dean. J., Challenges in building
large-scale information retrieval
systems: Invited talk. In WSDM,
2009.

12.	 Dean, J., Ghemawat, S. MapReduce:
Simplified data processing
on large clusters. In OSDI,
2004.

Sergey Melnik (melnik@google.com),
Google, Inc.

Andrey Gubarev (andrey@google.com),
Google, Inc.

Jing Jing Long (jlong@google.com),
Google, Inc.

Geoffrey Romer (gromer@google.com),
Google, Inc.

Shiva Shivakumar (shiva @google.com,
shiva@cs.stanford.edu), Google, Inc.

Matt Tolton (mtolton@google.com),
Google, Inc.

Theo Vassilakis (theov@google.com),
Google, Inc.

© 2011 ACM 0001-0782/11/06 $10.00

