
Harmonizing Classes, Functions, Tuples,
and Type Parameters in Virgil III

Ben L. Titzer
Google

titzer@google.com

Abstract
Languages are becoming increasingly multi-paradigm. Subtype
polymorphism in statically-typed object-oriented languages is be-
ing supplemented with parametric polymorphism in the form of
generics. Features like first-class functions and lambdas are ap-
pearing everywhere. Yet existing languages like Java, C#, C++,
D, and Scala seem to accrete ever more complexity when they
reach beyond their original paradigm into another; inevitably older
features have some rough edges that lead to nonuniformity and pit-
falls. Given a fresh start, a new language designer is faced with a
daunting array of potential features. Where to start? What is impor-
tant to get right first, and what can be added later? What features
must work together, and what features are orthogonal? We report
on our experience with Virgil III, a practical language with a care-
ful balance of classes, functions, tuples and type parameters. Virgil
intentionally lacks many advanced features, yet we find its core
feature set enables new species of design patterns that bridge mul-
tiple paradigms and emulate features not directly supported such as
interfaces, abstract data types, ad hoc polymorphism, and variant
types. Surprisingly, we find variance for function types and tuple
types often replaces the need for other kinds of type variance when
libraries are designed in a more functional style.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

Keywords Multi-paradigm languages; parametric types; object-
oriented programming; functional programming; monomorphiza-
tion; variance; closures; tuples; flattening; unboxing; static compi-
lation

1. Introduction
Mainstream languages are becoming increasingly multi-paradigm
and increasingly complex. Statically-typed object-oriented lan-
guages have now ventured beyond the subtype polymorphism of
class and object inheritance and begun adding parametric polymor-
phism in various forms; erased generics in Java 5.0, reified gener-
ics in C# 2.0, C++ templates, and even more complex generics in
Scala.

Functional programming constructs are now appearing in nearly
all active languages, further adding to language complexity. Lan-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’13, June 16–19, 2013, Seattle, WA, USA.
Copyright c© 2013 ACM 978-1-4503-2014-6/13/06. . . $10.00

guages like Java first offered object-oriented emulation of func-
tions in the form of single-method interfaces like Runnable and
Comparator. Generics gave rise to even more complex emula-
tions of functions such as java.util.concurrent’s Callable
and Guava’s Function [13] and Predicate. Now Java has pro-
posals for syntax for function types and closures in JSR 335 [17].
Similar developments occurred in both C++ and C#, with libraries
first evolving functional patterns before languages added syntactic
support. C# first allowed delegates, which are closures bound to a
method of an object, and then full lambdas. Scala set out to blend
object-oriented and functional styles while still primarily targeting
the JVM. Not to be outdone, C++11 has added support for lambdas
and a host of other new features. Of course the relationship between
functions and objects goes back even further in dynamically-typed
languages. Smalltalk had blocks [12], popular dynamic languages
such as JavaScript, Python and Ruby have first class functions, and
newcomers such as Newspeak, Groovy and Dart also incorporate
some kind of functional features.

A designer of a new programming language faces a daunting
lineup of features from which to choose. What features work best?
How does this feature enhance or hinder another feature? What
feature should be implemented first? Should objects be primary,
or functions be primary? What tools should programmers have to
express polymorphism and reuse, model side-effects or state, and
how can the constructs be implemented efficiently?

Of course, these are the tough design questions to which the
whole of language research is directed. This paper explores just
one potential combination of four language features and the im-
plications of that combination. In seeking to find a smaller, more
cohesive language core made from existing parts, and seeking to
implement a practical language in which efficient systems can be
written, we’ve found a number of surprising patterns arising from
just a small set of features.

This paper finds that integrating four particular features in a
statically-typed language achieves a surprising cohesiveness and
simplicity. Classes provide data abstraction, encapsulation, and in-
formation hiding; first-class functions allow fine-grained reuse; tu-
ples allow for the uniform treatment of multi-argument and multi-
return function types and simplify composing values, and type pa-
rameters allow type abstraction and representation independence
for more reuse of functions and data structures represented by ob-
jects. None of these features are novel, and all of them exhibit
implementations in mainstream languages, but their seamless in-
tegration is key in Virgil’s design. This integration yields surpris-
ing power; enough to build new design patterns that emulate other
language features not in the language, including interfaces, abstract
data types, ad hoc polymorphism, and variants. An interesting aside
is Virgil’s approach to type variance; a key design difficulty in re-
cent statically typed languages with both subtyping and parametric
polymorphism. Surprisingly, we find type variance for class types

to be far less important when libraries are designed in a more func-
tional style because built-in variance for tuple and function type
constructors is often sufficient.

2. Four Pieces of the Puzzle
Virgil I was originally designed [31] for programming severely
resource-constrained devices with only a few hundred bytes of
RAM. A staged computation model allows applications to exe-
cute initialization code during compilation, building a heap of ob-
jects that is compiled into a binary that executes directly on the
hardware. Virgil I supported objects and functions but had no dy-
namic memory allocation, no type parameters, and no tuples, mak-
ing it unsuitable for general-purpose programming. Virgil III is a
clean redesign for a more general-purpose setting. It retains the
staged compilation model of Virgil I but improves classes and func-
tions, adds tuples, type parameters, dynamic memory allocation,
and garbage collection.

Virgil includes primitive types such as int, byte, bool, and
void1. All types support four basic operators: equality ==, inequal-
ity !=, type cast !, and type query ?. Control structures, basic state-
ments and expression syntax are similar to most C language descen-
dants, but declarations and classes look more like Scala.

2.1 Classes
Virgil provides classes that allow encapsulation, data abstraction
and polymorphism through inheritance. Classes resemble those in
Java and C# in that only single inheritance is allowed between
classes and all methods are virtual except those declared private.
All objects are created by instantiating classes and are always
passed by reference, never by value. Unlike most object-oriented
languages, Virgil has no universal superclass akin to Object from
which all classes ultimately inherit. A class declared without a
parent class begins a new hierarchy which is unrelated to other class
hierarchies. This means that there is no unifying supertype for all
objects, and there are no default methods available on all objects.
Classes are further limited in that there is no concept of an interface
which a class can implement. The example below illustrates the
basics of Virgil classes.

(a1) class A {
(a2) var f: int; // mutable field
(a3) def g: int; // immutable field
(a4) new(f, g) { ... } // constructor
(a5) def m(a: byte) -> int { ... } // method
(a6) def n(a: X, b: T) { ... }
(a7) }
(a8) class B extends A { // subclass
(a9) def m(a: byte) -> int { ... } // override
(a10) }

Pure object-oriented philosophy views all values as objects with
some universal type and a default set of methods. The lack of a uni-
versal supertype in Virgil or any kind of interface mechanism at first
seems crippling, but as we will see in this section, the other features
of the language more than make up for the loss of expressiveness.
Virgil does not hold the everything-is-an-object philosophy for sev-
eral reasons. First, domains such as system software [9] [20] and
scientific computing [21] demand efficient primitive types; model-
ing these primitives as objects can be cumbersome, performance
can be unpredictable, and mapping certain object types onto hard-
ware primitives requires significant extra-lingual and compiler sup-
port. Second, a universal type in object-oriented languages of the
past was most often used to implement reuseable datastructures and
provide default methods; these roles are better served with proper

1 void has one value, (), which is always equal to itself.

design of type parameters and use of first class functions, as we
will see in the next section. Third, the possibility of subsumption
to a universal type weakens confinement [34] properties and may
reduce the precision of other static analyses [6][25][31].

2.2 First-class Functions
Virgil provides support for statically-typed first-class functions.
Function types take the form Tp -> Tr , where Tp is the param-
eter type and Tr is the return type. The type void becomes the
parameter type of methods with no parameters and the return type
of methods without a declared return type. Function types are unre-
lated to object types, forming a separate universe of values. Func-
tion types are co-variant in their return type and contra-variant in
their parameter type. A function type can legally appear anywhere
any other type can appear, such as the type of a class field, method
parameter, local variable, or return type of a method. Unlike most
traditional functional languages, tuples are used to model multi-
argument functions instead of currying.

To bridge the object-oriented and functional worlds, any method
of any object can be used as an object method, a function which is
bound to the object as its closure. Similarly, class methods are not
bound to an object but are functions that accept the receiver object
as their first parameter followed by the method parameters. All of
the basic primitive operators can be used as first-class functions as
well, and all three kinds of functions can be used interchangeably.

Examples (b1-7) illustrate the basics, with the types of each
expression given in comments. Continuing with the class A from
(a1-6), we can (b1) create an object of that class and (b2) create a
closure bound to the m method of that object. In (b3) we use the
method m of class A as a first-class function that is not bound to an
object, but accepts the receiver object as the first parameter. In (b4)
we invoke m directly on the object, in (b5) apply the function m1 to
arguments, and in (b6) apply the function m2, supplying the object
as the first argument. Notice that we can also use the new operator
for a class A as a function as well (b7).

(b1) var a = A.new(0, 1); // A
(b2) var m1 = a.m; // byte -> int
(b3) var m2 = A.m; // (A, byte) -> int
(b4) var x = a.m(’5’); // int
(b5) var y = m1(’4’); // int
(b6) var z = m2(a, ’6’); // int
(b7) var w = A.new; // (int, int) -> A

The four basic operators == != ! ? of every type T are avail-
able as first class functions. Though normally written with infix no-
tation, comparisons (b8-9) can be used as functions by referring to
them as members of a type, as can primitive and integer arithmetic
operators (b10-11).

(b8) var z = byte.==; // (byte, byte) -> bool
(b9) var w = A.!=; // (A, A) -> bool
(b10) var p = int.+; // (int, int) -> int
(b11) var m = int.-; // (int, int) -> int

Type casts (b12) express all type conversions, including down-
casts of objects and conversions between primitive values. Type
queries (b13) evaluate to true if the value is of type T , false
otherwise. Type casts and type queries of class types check the dy-
namic type of their input objects. Both operators each have a type
parameter that abstracts the type of the input value. Parameteriza-
tion allows dynamic casts and dynamic type queries between any
two types, even polymorphic types. This is a blatant violation of
the parametricity property of type parameters, but is an intentional
tradeoff that allows dynamic casts to emulate other language fea-
tures, as we will see later. In practice, the compiler rejects casts
and queries between unrelated types wherever possible, such as be-
tween a function type and a primitive type or between unrelated

classes. Like the other operators, casts and queries can be used as
functions (b14-15).

(b12) var x = A.!(...); // A
(b13) var y = A.?(...); // bool
(b14) var z = A.!; // B -> A
(b15) var w = A.?; // B -> bool

2.3 Tuples
Tuples are a lightweight mechanism to group multiple values into
a single value. The resulting tuple value is not an object and has
no identity; tuples with equivalent elements are always equal, no
matter when or where in the program they are computed. No re-
strictions are placed on what types may appear as element types
of a tuple; if A and B are valid types, then (A, B) is a valid tuple
type. Inductively, this means that tuples can be inside of tuples, but
not recursively, since tuple types have no names. Elements are or-
dered and accessed as if they were fields named as integer literals
beginning at 0. Tuples are not arrays; they cannot be indexed by
expressions.

(c1) var x: (int, int) = (0, 1);
(c2) var y: (byte, bool) = (’a’, true);
(c3) var z: ((int, int), (byte, bool)) = (x, y);
(c4) var w: (int) = x.0;
(c5) var u: byte = (z.1.0);
(c6) var v: () = ();

Tuple types with any number of element types are possible, with
two degenerate cases: (c6) a tuple type T = () with no elements is
exactly the same as the void type, and (c4) a tuple type T = (A)
with just one element is exactly the same as the type A. Similarly,
tuple values with any number of element values can be created,
with (c6) a tuple value V = () with no elements equivalent to the
one void value, and (c5) a tuple V = (e) is equivalent to e.

Immutability admits straightforward covariant type rules for
tuples. T = (T0...Tm) is a subtype of S = (S0...Sn) if and only if
m = n and all elements Ti of T are subtypes of the corresponding
Si. 2

Like all types in Virgil, every tuple type T has the four basic op-
erators == != ! ?. Equality and inequality operators operate recur-
sively on the elements of a tuple: two tuple values are equivalent if
the positionally-correspondent elements are equivalent. Casts and
queries are also defined recursively: a cast of a tuple value to a
tuple type succeeds if a cast of each element to the positionally-
corresponding element type succeeds, and a type query of a tuple
value against a tuple type is true if all type queries of elements
against the positionally-corresponding element type are true.

Syntactic choices for tuples give rise to familiar looking calls.
For example, a typical method invocation such as a.m(foo, bar)
parses as an application of the expression a.m to the tuple expres-
sion (foo, bar). The expression a.m itself is an object method
expression, but could be any expression that evaluates to a function
of the appropriate type. Nested calls like f(g(x)) compose nicely,
even if the inner call has a tuple or void return type. This represents
semantics similar to tuples in Haskell and ML, but with syntax that
resembles Java and C#.

Tuple type syntax leads to familiar syntax for function types.
(A, B) -> C denotes a function type with two parameters and
A -> (B, C) denotes a function that returns two values. The de-
generate rules for tuple types imply intuitive equivalences, such as
() -> () = void -> void and (A) -> (B) = A -> B. This
also allows the tuple type constructor () to be used as a grouping

2 Subtyping rules for tuples could also allow a longer tuple to be a subtype of
a shorter tuple, but too much static checking would be lost; basic errors such
as passing more arguments to a function than it expects would go unnoticed.

mechanism, either to emphasize the right-associative nature of ->
by writing A -> (B -> C), or override it with (A -> B) -> C.
For type rules, covariance of tuple types means that variance rules
for function types operate exactly as one would expect when ap-
plied to functions that accept or return tuples.

2.4 Type Parameters
Classes, functions and tuples all coexist in Virgil, but an important
abstraction mechanism is missing. Without abstraction over types,
the nonoverlapping universe of primitive types, the separate class
hierarchies of user classes, the system of tuple types, and the system
of function types would be independent of each other forever. Type
parameters provide this capability, allowing classes and methods to
be parameterized over the types of values they manipulate, greatly
increasing the expressive power of the language.

A type parameter T introduces a new name for a unknown
type within the scope of its declaration. The unknown type is
universally quantified in the sense that it could be instantiated
to any type at a usage site. Within the scope of declaration, the
new unknown type T is unrelated to all other types except itself.
The compiler typechecks the body of the class or method without
any information about T except that it supports the same four
basic operators that all types support, namely == != ! ?. Separate
typechecking means that the bodies of parameterized declarations
are checked independently of any instantiation and type errors in
the declaration do not generate type errors at the usage sites3.

(d1) class List<T> {
(d2) var head: T;
(d3) var tail: List<T>;
(d4) new(head, tail) { }
(d5) }
(d6) def apply<A>(list: List<A>, f: A -> void) {
(d7) for (l = list; l != null; l = l.tail) f(l.head);
(d8) }

In (d1-8) we implement a cons list using a generic class. Objects
of the class (d1) store a value (d2) of the generic type and a
reference to the next link (d3) in the list. A generic convenience
method (d6) provides a handy way of iterating over the elements of
a list and applying a function to each element.

(d9) def print(i: int) { ... }
(d10) var a = List<int>.new(0, null);
(d11) var b = List<(int, int)>.new((3, 4), null);
(d12) apply<int>(a, print);
(d10’) var c = List.new(0, null);
(d11’) var d = List.new((3, 4), null);
(d12’) apply(c, print);
(d13) var e = List<bool>.?(a);
(d14) var f = List<void>.?(a);

At every usage site of a parameterized class or method, type ar-
guments are supplied for the type parameters, either explicitly by
the programmer or inferred by the compiler. Explicit type argu-
ments to a parameterized class or method can always be supplied
with a <...> suffix (d10-12) immediately following the identifier,
but the compiler can usually infer them (d10’-12’). Virgil uses a
best-effort type inference algorithm4 for type arguments to both
classes and methods. Virgil does not perform type erasure; instead,
enough information is always retained to recover the type argu-

3 C++ templates are typechecked at instantiation time, leading to famously
huge and inscrutable error messages where type arguments are already
substituted for type parameters.

ments of any parameterized usage. That means, among other things,
that polymorphic types can be distinguished at runtime (d13-14).

Any type can appear as a type argument. That means we can
use our list class to create and manipulate homogeneous lists of
any type, including primitives, objects, tuples, functions, and even
void. Allowing unrestricted type arguments has subtle but impor-
tant benefits. First, since there are no exceptions or special cases
to remember, the language is actually simpler and more intuitive;
any type can be a type argument, no exceptions. Secondly, reuse of
data structures and functions is greatly enhanced by composability;
we can easily create lists of functions, or lists of tuples of func-
tions, or functions of arrays of lists of functions. Third, it promotes
a programming style based on representation independence where
no information about the representation of a type is necessary for
the class or function to perform its role.

(e1) def time<A, B>(func: A -> B, a: A) -> (B, int) {
(e2) var start = clock.ticks();
(e3) return (func(a), clock.ticks() - start);
(e4) }
(e5) print(time(sqrt, 37).1);

In (e1-5) we make use of three language features to implement a
method that times the execution of a function applied to some given
arguments. First, our utility accepts a function as the routine to be
timed. Second, it has type parameters that abstract the parameter
and return type of that function, allowing it to be used with any
function and arguments, including tuples or even void. Third, it
uses a tuple to return both the time elapsed and function’s result,
even if the function returned void or another tuple.

2.5 Type Constructor Summary
Virgil’s type system employs five kinds of type constructors. Four
language-provided type constructors represent primitive types, ar-
rays, tuples, and functions. The fifth kind of type constructor repre-
sents the types of class objects; a new class type constructor is cre-
ated for each user-defined class. The table below summarizes the
type constructors, their type parameters, and their syntax. In this
table, the symbol 	 means contravariant, and ⊕ means covariant.

Typecon Type Parameters Syntax
Primitive void|int|byte|bool
Array T Array<T>
Tuple ⊕T0 · · · ⊕ Tn ([T (,T)∗])
Function 	Tp ⊕ Tr T -> T
classX T0 · · ·Tn X[<T (,T)∗>]

3. Patterns
Language designers face an unending series of tradeoffs when
choosing which features to add, tradeoffs which become more
complex and difficult as the language grows. Abstract data types,
interfaces, ad hoc polymorphism, and variant types are useful,
but how should they be prioritized relative to other features? Our
experience with the design of Virgil suggests that these features
can at least be postponed. Instead we found that the four principal
language features were often powerful enough to emulate these
other features with multi-paradigm design patterns made possible
by the close collaboration of several features at once.

3.1 Interface Adapters
While other OO languages offer complex patterns of inheritance
such as interfaces and traits, Virgil offers only single inheritance

4 Type inference with both subtyping and type parameters is tricky business;
see for example [23]. Our compiler uses a bi-directional typechecking
approach, but the details are beyond the scope of this paper.

between classes. More complex patterns of inheritance and inter-
face specification can be emulated with first class functions.

The most straightforward technique for emulating interfaces in
Virgil is to define a class whose fields store first-class functions
representing the methods of the interface, each with a name and
a type. This class is essentially a dictionary of named interface
methods. What would be somewhat awkward and verbose to de-
fine in other languages is actually quite easy in Virgil thanks to a
compact syntax for declaring immutable public fields that are ini-
tialized in the constructor. In (f1-5) we see an example where the
DatastoreInterface defines a dictionary with create, load,
and store operations, each of which is a field which stores a func-
tion.

(f1) class DatastoreInterface(
(f2) create: () -> Record,
(f3) load: Key -> Record,
(f4) store: Record -> ()) {
(f5) }

Virgil’s ability to bridge the object and functional paradigms
with class and object methods makes it easy for another unrelated
class to simply construct an instance of the interface using its
own methods. In (g6-7), the DatastoreImpl class adapts itself
to the DatastoreInterface by instantiating an instance of the
class, passing object methods bound to itself (i.e. the this object);
invocations of those functions through the interface will receive the
bound this as the receiver object.

(g1) class DatastoreImpl {
(g2) def create() -> Record { ... }
(g3) def load(k: Key) -> Record { ... }
(g4) def store(r: Record) { ... }
(g5) def adapt() -> DatastoreInterface {
(g6) return DatastoreInterface.new(
(g7) create, load, store);
(g8) }
(g9) }

Tradeoffs. One advantage to this pattern is that an adapter ob-
ject can be constructed from any set of functions, regardless of their
names. A class can implement multiple interfaces, and the names
of the methods it uses to implement the interface are immaterial,
as long as the methods have the correct signature, which avoids
name clashes. In fact, there is no requirement that an interface be
constructed from class methods at all. An interface adapter object
could as well be constructed from top-level functions, built-in op-
erators, or any other functions at hand. Notice that in (g2-4), the
methods could as well have had any names, since they are simply
used as functions when constructing the interface adapter object
(g6-7). Unfortunately, because Virgil has no implicit type conver-
sions, object types do not subsume to the interface types they imple-
ment. Thus the primary disadvantage of this pattern is that to use an
object as an instance of the interface always requires an extra step,
usually the construction of another object. Another drawback is that
the programmer must manually specify the mapping between exist-
ing functions to the interface by supplying them to the constructor
of the interface object, as done in the adapt method in (g5).

3.2 Emulating Abstract Data Types
Abstract data types (ADTs) are useful when modeling a type that
has unknown representation but has a set of associated operations
with names and signatures. One way to model an ADT in Virgil
is to parameterize an interface (h1-7). In this example we model
a number that has an unknown representation but a known set of
associated operations and some named values. The availability of
the basic operators like int.+ as first class functions makes it easy
to adapt the basic primitive type int to the ADT interface (h8-9).

In this pattern the interface is not bound to a particular value or
object instance; instead, the values are external so that they can be
manipulated by the client.

(h1) class NumberInterface<T>(
(h2) add: (T, T) -> T,
(h3) sub: (T, T) -> T,
(h4) compare: (T, T) -> bool,
(h5) one: T,
(h6) zero: T) {
(h7) }
(h8) var IntInterface = NumberInterface.new(
(h9) int.+, int.-, int.==, 1, 0);

A class interface is not always necessary, especially if the num-
ber of operations associated with the type is very small. In (i1-8)
we see one way to design a hash table using the abstract data type
pattern, but without the need to supply an interface object.

(i1) class HashMap<K, V> {
(i2) def hash: K -> int; // hash function
(i3) def equals: (K, K) -> bool; // equality function
(i4) new(hash, equals) { }
(i5) def get(key: K) -> V { ... }
(i6) def set(key: K, val: V) { ... }
(i7) def apply(f: (K, V) -> void) { ... }
(i8) }

HashMap abstracts over the key and value types using type pa-
rameters and accepts the hash and equals functions as parame-
ters to the constructor (i4). This allows this one HashMap imple-
mentation to be used with any key or value type. This is in con-
trast to the typical object-oriented approach, where every key type
would necessarily be a class type and implement hash and equals
methods with appropriate signatures. With unrestricted type param-
eters, even primitives (i15) and tuples (i18) can serve as the key, as
long as they have the associated methods. Moreover, different hash
and equals methods can be used on a per-instance basis (i13-14)
with the help of class methods and first-class operators like == that
bridge the gap between the object-oriented and functional worlds.

(i9) class X {
(i10) def deepEquals(x: X) -> bool { ... }
(i11) def hash() -> int { ... }
(i12) }
(i13) HashMap<X, int>.new(X.hash, X.deepEquals);
(i14) HashMap<X, int>.new(X.hash, X.==);
(i15) HashMap<int, X>.new(int.!, int.==);
(i16) var h2: (int, int) -> int;
(i17) var e2: ((int, int), (int, int)) -> bool;
(i18) HashMap<(int, int), X>.new(h2, e2);

Tradeoffs. The primary disadvantage to using type parameters
and functions to model abstract data types, rather than a module
system, is that type parameters require the client code to be param-
eterized over the abstract data type. There must be a scope where
the client code has declared a type parameter, whereas with a mod-
ule system the type can be made available in the namespace of the
client code. In the HashMap example, the client code instantiates
the HashMap code with the types of the keys and values, but in an-
other example, such as the NumberInterface, the code that pro-
vides the abstract data type must instantiate not only the number
interface, but the code manipulating the numbers.

3.3 Emulating Ad-hoc Polymorphism
Virgil provides no direct support for ad-hoc polymorphism such
as method overloading. While other languages make use of argu-
ments’ types at call sites to perform overload resolution, Virgil al-
lows methods to be used in a first-class way where enough con-
text may not be available. For example, suppose a method m has

several overloaded variants but is used simply as o.m, lacking any
arguments for overload resolution. The inherent ambiguity would
require a manual resolution mechanism. Virgil chooses to disallow
overloading altogether, requiring every method in the same class
to have a unique name. It views overloaded methods as parameter-
ized methods, with the type parameters being instantiated with the
various overloadings at call sites. This approach admits an emula-
tion of method overloading and still allows methods to be used in a
first-class way without ambiguity.

Consider a use case like print. Remembering to call printInt
versus printBool versus printString can become cumbersome.
A somewhat cleaner solution is to use a design pattern that admits
a small number of overloads, making use of type parameters and
casts:

(j1) def print1<T>(fmt: string, a: T) {
(j2) if (int.?(a)) printInt(fmt, int.!(a));
(j3) if (bool.?(a)) printBool(fmt, bool.!(a));
(j4) if (string.?(a)) printString(fmt, string.!(a));
(j5) if (byte.?(a)) printByte(fmt, byte.!(a));
(j6) }
(j7) print1("Result: %1\n", 0);
(j8) print1("Boolean: %1\n", false);
(j9) print1("Hello %1!", name);

A parameterized method (j1) is the starting point of this pattern.
The parameterized method dispatches to the appropriate print*
method through a chain of dynamic type queries and type casts.
The user of the library calls the parameterized method (j7-9), with
the compiler inferring the type arguments. The chain of dynamic
casts in (j2-5) will be optimized by the compiler. First, the compiler
will specialize the parameterized method for each unique type argu-
ment, then optimize each version independently. The type queries
and casts in each version can be decided statically, the chain of if
statements will be folded away, and only a call to the correspond-
ing version remains, which the compiler may then inline, resulting
in code just as efficient as if the caller had called the appropriate
print* method directly.

Tradeoffs. One clear disadvantage of this approach is that some
static checking is lost since the parameterized method must neces-
sarily accept any type for its type argument. Unless all possible
types are covered by some case, the programmer will have to re-
sort to producing a runtime error or defining some default behavior
5. The benefit, aside from not needing to remember to call the ap-
propriate unique method, is that there is no longer any ambiguity
in first-class functions, and the parameterized method can be used
in a first-class way like other methods, supplying explicit type ar-
guments if necessary. Multi-argument overloads are possible with
tuples, but type matching can become painfully ugly, so in practice
one tends to write print1, print2, etc. For complex cases this is
admittedly an unsatisfyingly clunky solution, but it works and is
very efficient. It does not require boxing arguments in any situa-
tion, it optimizes away dynamic type tests, and does not require a
varargs mechanism.

3.4 A Polymorphic Matcher
Subtyping provides a language with a form of information hid-
ing where the exact type of an expression is intentionally for-
gotten when it is used in a context requiring only the supertype.
This ability of subtyping can also hide information about type pa-
rameters. For example, declaring a base class Any and a subclass
Box<T> extends Any allows any value to be boxed and used

5 Our implementation of print accepts the standard primitive types and
also functions of type StringBuffer -> void; we equip those classes
that need to be printed with methods that render the object into a
StringBuffer; we can then simply pass o.render to the print method.

wherever the type Any is accepted. Instead of language-provided
classes for each primitive type such as java.lang.Integer,
java.lang.Double, etc, a single pair of user-defined classes suf-
fices.

(k1) class Matcher {
(k2) var matches: List<Any>;
(k3) def add<T>(f: T -> void) {
(k4) matches = List.new(Box.new(f), matches);
(k5) }
(k6) def dispatch<T>(v: T) {
(k7) for (l = matches; l != null; l = l.tail) {
(k8) var f = l.head;
(k9) if (Box<T -> void>.?(f))
(k10) return Box<T -> void>.!(f).unbox()(v);
(k11) }
(k12) }
(k13) }

Hiding information about type parameters using class subtyp-
ing allows us to improve upon our previous emulation of method
overloading. In (k2-5), the matcher wraps each function in a Box
and intentionally forgets its type, treating it as Any, in order to put
it in a list. To dispatch on a polymorphic value, since Virgil does
not erase type parameters but can in fact distinguish a Box<int ->
void> from a Box<bool -> void>, the matcher can search the
list for a Box that contains a function of the right type that can han-
dle the polymorphic value. In (m1-8) we see examples of how we
could use the Matcher to accomplish polymorphic dispatching for
printing without having to write a series of type queries and casts.
The Matcher class need only be written once, and it can be reused
in whatever context is necessary. 6

(m1) var m = Matcher.new();
(m2) m.add(printInt);
(m3) m.add(printBool);
(m4) m.add(printString);
(m5) ...
(m6) m.dispatch("Result: %1", 1); // printInt
(m7) m.dispatch("Boolean: %1", true); // printBool
(m8) m.dispatch("Hello %1", name); // printString

Tradeoffs. The polymorphic matcher pattern improves upon the
manual type dispatching approach but still lacks static checking.
Since the matcher’s dispatch method can be instantiated with any
type argument, it may fail at runtime if an appropriate method is
not found in the list.

3.5 Emulating Variant types
The ability of subtyping to hide information can emulate a variety
of ad-hoc polymorphism patterns, including the ability to have a
number of variant types, each with the same operation.

(n1) class Instr {
(n2) def emit(buf: Buffer);
(n3) }
(n4) class InstrOf<T> extends Instr {
(n5) var emitFunc: (Buffer, T) -> void;
(n6) var val: T;
(n7) new(emitFunc, val) { }
(n8) def emit(buf: Buffer) {
(n9) emitFunc(buf, val);
(n10) }
(n11) }
(n12) var i = InstrOf.new(asm.add, (rax, rbx));
(n13) var j = InstrOf.new(asm.addi, (rax, -11));
(n14) var k = InstrOf.new(asm.neg, rax);

6 Notice also that (m2-8) uses functions with multiple parameters, which
works seamlessly due to the clean integration between functions and tuples.

The example above shows one approach to representing ma-
chine instructions in the backend of a compiler. Instead of manu-
ally defining classes that represent instructions with one operand,
two operands, an operand and immediate, etc, the four main fea-
tures of Virgil can be used to model all variants of instructions with
just two class definitions. We first declare a base class for instruc-
tions (n1) with an abstract method (n2) that emits the instruction
to some buffer. Then a parameterized subclass (n4) can be instanti-
ated to each of the different variants, with the function that assem-
bles the instruction and the operands themselves stored as fields
(n5-6). The implementation of emit then simply calls the supplied
function with the operands and the buffer (n9). Without writing any
more classes, we can reuse methods from the assembler itself (n12-
14) with various kinds of operands to create instruction variants.
The Instr class in this case is like a super-closure: it not only
closes over the unknown (variant) parts of the instruction, but can
have more than one operation, such as iterating over the register
operands of the instruction for register allocation.

If pattern matching is required on instructions, we can use a
cascade of dynamic type casts and type queries (n15-20), or use a
polymorphic matcher from (k1-13).

(n15) if (InstrOf<Reg>.?(i))
(n16) printReg(InstrOf<Reg>.!(i));
(n17) if (InstrOf<(Reg, Reg)>.?(i))
(n18) printRegReg(InstrOf<(Reg, Reg)>.!(i));
(n19) if (InstrOf<(Reg, int)>.?(i))
(n20) printRegInt(InstrOf<Reg>.!(i));

This pattern requires all four features to work. Without classes
and inheritance, we couldn’t hide the actual representation type
by having an unparameterized superclass, but would instead need
some other form of existential quantification, a universal supertype,
support for algebraic data types, etc. Without first-class functions,
some other form of polymorphism would be required to supply the
logic for assembling each instruction, e.g. subclassing the Instr
class with a lot of redundant classes or using a switch or enu-
meration, all of which mean writing calls to assembler methods
instead of just passing them around. Without tuples, any variant
that consisted of more than one parameter would require an aggre-
gate datastructure of some kind, such as another class. And finally,
without type parameters, some universal representation would have
been required to store all the different variants in some polymorphic
location.

Tradeoffs. Emulating variants suffers from two main problems.
The first problem is similar to emulating ad hoc polymorphism with
dynamic casts; a loss of static checking in pattern matches (n15-
20), where the programmer can too easily miss a case. The second
problem is both an advantage and a disadvantage. This pattern
allows an unbounded number of new variants to be created simply
by instantiating the InstrOf class with new values and methods,
which is an advantage for extensibility but is a disadvantage if the
programmer wants to intentionally bound the set of variants that
can be created.

3.6 Type Variance
Languages that contain both subtyping and type parameters face
type variance problems. Java, C#, and Scala have various solutions
that range from use-site annotations to declaration site annotations,
wildcards, raw types, unsafe casts, or all of the above. Virgil only
offers variance for tuples and function types; but surprisingly these
two features reduce the need for other kinds of variance.

Returning to the cons list example (p1-p10), assume for the
moment that the fields of this class are immutable, written only
once in the constructor. Suppose we have types Animal and Bat
with Bat extends Animal. We might intuitively consider List
to be covariant, i.e. List<Bat><: List<Animal>. In the example

below (o2), we have a function f that performs an operation on
every element in a list, and (o5) we have b of type List<Bat>.
Virgil classes are invariant in their type parameters, so applying f
to b is not well-typed (o6).

(o1) def g(a: Animal) { ... }
(o2) def f(list: List<Animal>) {
(o3) for (l = list; l != null; l = l.tail) g(l.head);
(o4) }
(o5) var b: List<Bat>;
(o6) f(b); // ERROR
(o7) apply(b, g); // OK

However, we can invert the control flow; instead we pass a
function g of type Animal -> void which performs the operation
for just one Animal to our utility function apply from (d6). Due to
contra-variant function parameter types, Animal -> void<: Bat
-> void, and (o7) is well-typed.

As another example, consider again the HashMap class (h1-h8).
If Virgil supported declaration-site variance annotations, the de-
signer of this class might want to add a contra-variance annotation
to K so that HashMap<A, V> <: HashMap<B, V> for B <: A. In
another situation, a client might accept a HashMap<K, V> but only
use the get method. In this case, it would be tempting to add vari-
ance at the use site, since the map could be considered co-variant in
V and contra-variant in K at that use site. But notice that this is ex-
actly the variance of the get method itself, and since function types
do have variance, it would be better if the client simply accepted a
function of type K -> V, and users could pass the get method of
their HashMap, or some other function of their choosing. The client
is thus more general, no longer dependent at all on the type of the
object (if any) bound to the closure.

The prolific reuse of methods from objects radically simplifies
libraries. For example, with help from tuples, functions, and vari-
ance, the call a.apply(b.add) copies the contents of HashMap a
into HashMap b, without even writing a loop or burdening the li-
brary with another convenience method such as addAll. A more
terse functional style transfers well to other kinds of datastructures,
including arrays, sequences, maps, matrices, etc. All manner of fa-
miliar operators from functional libraries such as map, fold, zip,
and unzip are easily defined, and surprisingly they don’t require
variance annotations.

Tradeoffs. The lack of variance for class types and the lack
of either declaration or use site constraints on type parameters
forces a different kind of programming style. This can make it
hard to port code from existing languages that makes use of these
features, necessitating both local refactorings and some redesign to
rely more on a functional style. C# 2.0 debuted without variance
annotations for generics, but they were later added. We believe
this design choice was made because first-class functions were
only timidly employed in their first inception as invariant, named
delegate types. It may be that evolution of existing programs to a
more functional style was deemed too radical at the time.

4. Implementation Issues
Language goals such as supporting system and low-level program-
ming bring important efficiency considerations, posing challenges
for implementing advanced features. This has driven Virgil’s de-
sign throughout its earliest embodiment for microcontroller pro-
gramming until today. The pressure to implement all of Virgil’s
constructs without undue reliance on implicitly allocating mem-
ory on the heap has been a substantial motivator for keeping its
feature set conservative. Key in meeting these efficiency considera-
tions is proper implementation of tuples and type parameters. This
section describes the unique problems posed by tuples in Virgil and
presents a solution based on a flattening strategy that guarantees

that no implicit boxing or unboxing operations need to be inserted.
In fact, Virgil’s native implementation never allocates memory on
the heap except when done explicitly by the programmer but still
retains all the language flexibility described in previous sections.

4.1 Tuple Ambiguity
The uniform treatment of functions that accept multiple parameters
as functions that accept a single tuple parameter is unfortunately
not so uniform in implementation. The interaction between tuples
and the other features of Virgil can give rise to implementation
ambiguity in several different ways. In (p1-5) f and g are both
of type (int, int) -> void, and the variable x could refer to
either at runtime (p3). Two potential problems arise. The caller
could legally pass either two integers (p4) or a tuple of two integers
(p5). What calling convention would the compiler use at these call
sites? What about within the body of f which expects two integers
and g which expects a tuple? In this case, using tuple types to model
multiple arguments creates a potential ambiguity because functions
can be first-class.

(p1) def f(a: int, b: int) { ... }
(p2) def g(a: (int, int)) { ... }
(p3) var x = z ? f : g, t = (0, 1);
(p4) x(0, 1); // ambiguous invocation
(p5) x(t); // ambiguous invocation
(p6) def r<A>(a: A) { ... }
(p7) var y = z ? r<(int, int)> : f;
(p8) y(0, 2); // ambiguous invocation

A parameterized function like the one defined in (p6) can also
give rise to ambiguity. The method r<(int, int)> (p7) could be
used anywhere a function of type (int, int) -> void is ex-
pected (p8). Ambiguity can also arise with simple method overrid-
ing. A class may declare a method (p11) with individual parameters
that is overridden in a subclass (p14) with an implementation that
has a single tuple parameter, leading to ambiguity at virtual method
invocation sites (p17).

(p10) class A {
(p11) def m(a: int, b: int) { ... }
(p12) }
(p13) class B extends A {
(p14) def m(a: (int, int)) { ... }
(p15) }
(p16) var a = z ? A.new() : B.new();
(p17) a.m(1, 2); // ambiguous invocation

One solution is to place dynamic checks at invocation sites
to determine whether the function to be invoked requires a tuple
(i.e. boxed) or multiple scalars (i.e. unboxed) representation for
its arguments. The Virgil interpreter uses this approach, but the
checks are expensive. A small improvement can be made when
compiling to a target machine by eliminating the dynamic checks
at call sites where receiver methods can be statically determined.
This is still suboptimal since too many such sites would give poor
performance and might require allocating memory on the heap
for tuples. Instead our compiler normalizes the program, rewriting
all uses of tuples to eliminate such overhead. This ensures that
all method calls pass scalar arguments regardless of whether the
parameters were originally tuples or scalars, arrays and fields store
dense scalar values, and operations on tuples never allocate on the
heap, on both the JVM target and the native x86 targets.

4.2 Normalization
Tuples are ideal values: they are immutable, have no identity, and
are not extensible. A program cannot discern implementation de-
tails such as whether a tuple is represented by a record or by in-
dividual scalars. Normalization is the process by which the Virgil

compiler converts all uses of tuples into uses of scalars, regard-
less of where they occur, including parameters, return values, local
variables, array elements, fields, and elements inside other tuples.
Variants of normalization (also known as scalar replacement of ag-
gregates or flattening) have been employed in numerous functional
language implementations, e.g. [3] and [36]. Reducing tuples to
individual scalar values simplifies the program to a normal form
where tuples no longer appear and exposes the individual values
to classical compiler optimizations. It also eliminates the ambigui-
ties demonstrated in the previous section; all normalized functions
accept zero or more scalars and return zero or more scalars.

The compiler performs normalization on an internal represen-
tation of the program, but we can illustrate the basics of the al-
gorithm with source-to-source translations. First, we see how the
compiler treats local variables (q1) and parameters (q2) that are
tuples, replacing them with multiple local variables (q1’) or param-
eters (q2’). A use of a variable which was formerly a tuple (q3) is
expanded to the normalized (q3’) variables. An access of a tuple
element (q4) is replaced with a reference to the corresponding nor-
malized variable (q4’). Parameters (q6) and variables (q7) of type
void are replaced with nothing (q6’-7’) 7.

(q1) var b = ("hello", 15);
(q2) def m(a: (string, int)) { ... }
(q3) m(b);
(q4) m("goodbye", b.1);
(q5) m("cheers", (11, 22).0);
(q6) def f(v: void) { ... }
(q7) var t: void;
(q8) f(t);

=>

(q1’) var b0 = "hello", b1 = 15;
(q2’) def m(a0: string, a1: int) { ... }
(q3’) m(b0, b1);
(q4’) m("goodbye", b1);
(q5’) m("cheers", 11);
(q6’) def f() { ... }
(q7’)
(q8’) f();

Normalization can potentially rewrite every expression in the
program, whether it be a field access, array element access, array
creation, method call, comparison, etc. Care is taken to avoid dupli-
cating or reordering side-effects in expressions; this is facilitated by
the compiler’s internal SSA representation of the code. Fields are
normalized by replacing with them with zero or more normalized
fields; field accesses are normalized into multiple reads or writes as
appropriate. Array element accesses require similar normalization.
Depending on the compilation target, an array of tuples may be
normalized to an array whose elements store tuple elements next
to each other in memory, or to be multiple arrays, each of which
stores one element of the tuple. Returns of a tuple become a re-
turn of multiple values, utilizing multiple return registers on native
targets.

There are several corner cases that are not immediately obvi-
ous. Accesses to fields of type void are simply removed and re-
placed with null checks; this ensures that a null dereference always
throws an exception, regardless of the field’s type. Similarly, arrays
of void require no storage for their elements, but accesses are du-
tifully bounds checked. The JVM does not support arrays of void
so such arrays are represented with a java.lang.Integer object
which distinguishes between null and an array with a length. On
native targets a two-word array object that only stores the array

7 Normally programmers do not explicitly use variables of type void, but
they often appear when expanding polymorphic code.

length is sufficient. The JVM also does not support returning mul-
tiple values from a method call. In this case the Virgil compiler
inserts a tuple creation at the return site and deconstructs the tuple
return value after call sites.

Normalization is modular; normalizing a method’s body does
not require knowledge of the call sites, nor do call sites require
knowledge of the methods which they call. However, normalization
relies on knowing the types of all expressions and methods; this
is only possible if type arguments have been substituted for type
parameters, which is the subject of the next section.

Tradeoffs. Normalization removes all boxing related to tuples,
achieving Virgil’s implementation goal of avoiding implicit mem-
ory allocations. For small tuples, normalization has much better
performance than boxing, but large tuples might actually perform
better if allocated on the heap, depending on how the program uses
them; in a program that uses large tuples, reading and writing point-
ers to objects on the heap may be cheaper than reading and writing
the many tuple elements individually.

4.3 Monomorphization
In Virgil, runtime information about type arguments is needed in
some operations, such as allocating or accessing an array of poly-
morphic type, performing a dynamic type cast or type query in-
volving polymorphic types, or accessing a field of a polymorphic
type. We saw dynamic type casts and queries were key in allow-
ing several patterns such as the polymorphic matcher. In the Vir-
gil interpreter, type arguments are passed as invisible arguments to
polymorphic function calls and stored as type information within
objects, arrays and closures. Even with lazy evaluation of the type
expressions that represent type arguments, this exacts a consider-
able runtime cost.

The Virgil compiler instead employs monomorphization, where
a specialized version of each polymorphic class or method is gen-
erated for each distinct assignment of type arguments to type pa-
rameters. Thus an object of type List<(int, int)> has a dif-
ferent representation than List<byte>, and similarly the method
id<int> has a distinct representation from id<byte>. Once the
representation of all classes and methods is obtained through spe-
cialization, no type parameters appear in the program. The result-
ing code is therefore monomorphic and can use the most efficient,
dense representations. Monomorphization affords the opportunity
for whole-program normalization which eliminates all tuples from
the program, and therefore guarantees that programs can be com-
piled to a form where implicit memory allocations on the heap are
not required. This is key for some systems programming problems
where some code must be able to run without interruption from the
garbage collector, and thus may not allocate memory 8.

Tradeoffs. The implementation of parametric polymorphism is
full of tradeoffs and has been the subject of much research which
we cannot fully summarize in the space alotted. The main draw-
back to monomorphization is that polymorphic code can be dupli-
cated repeatedly, perhaps exponentially, even infinitely if the lan-
guage allows polymorphic recursion, which Virgil disallows 9. The
result can be code explosion where polymorphic methods are du-
plicated repeatedly. In our experience, this has not been an issue
in real programs. Other language implementations use monomor-
phization as well, including MLton [35] which employs whole-
program monomorphization quite sucessfully for ML, and C++
does complete template expansion, which is similar to monomor-
phization. Some programming guidelines can reduce code explo-

8 This has been a constant source of problems in system code written
in Java like Jikes RVM and Maxine VM, especially when writing the
garbage collectors themselves in Java. We wrote our GC in Virgil without
encountering these problems.

sion [33]. Another drawback is that monomorphization also re-
quires the whole program to be available, or it must fall back on a
universal representation when instantiations are not known across
compilation unit boundaries.

One alternative to monomorphization is to remove type pa-
rameters from the program by simply erasing them [22]. This is
only possible if all values have a universal representation (e.g.
Scala), the compiler forces a universal representation through box-
ing (most functional language implementations), or by disallow-
ing some types as type arguments (e.g. Java). With erasure, some
polymorphic operations can only be implemented by passing a rep-
resentation of the type arguments at runtime [15]. Both Scala and
Java perform type erasure, but do not pass a runtime representa-
tion of type parameters, meaning that some polymorphic opera-
tions, such as allocating an array of a polymorphic type or casting a
polymorphic type, are simply not allowed. Simply put, type erasure
cannot work for Virgil. Also note that both Scala and Java target the
JVM, which does not support type parameters; dynamic type casts
must be inserted to satisfy the JVM’s bytecode verifier. In contrast,
monomorphization requires no casts to be inserted.

To be fair, Scala recently attempted to address the problem
of missing type information with manifests, which are indeed a
representation of type parameters, but at first they were manual and
not fully integrated with the rest of the language. Scala 2.10 uses
type tags which can be passed as implicit parameters, subsuming
the role of manifests. However, they require the programmer to
request a type tag be passed to a class or method in order to perform
some polymorphic operations. Scala also recently experimented
with annotations to allow programmers to manually instruct the
compiler to perform specialization [7].

In Java, a programmer can explicitly pass instances of
java.lang.Class along with type parameters to act as the miss-
ing type information, but only one level deep: class objects do not
contain information about type arguments to parameterized classes.

C# coined the term reified generics; the semantics are closest
to Virgil’s type parameters. C# mainly targets the CLR which pro-
vides support for type parameters in bytecode, and the virtual ma-
chine performs specialization on demand [18], sharing identical
machine code for some specializations. When one can assume a
VM with a dynamic compiler, late specialization has strong advan-
tages: it avoids the need for the whole program at compile time
and reduces code explosion. However it is not an option for com-
piling Virgil statically. Other differences are that C# has no tuples,
does not allow void as a type argument, and does not allow casts
between, e.g., a type parameter and a concrete type.

Most functional language implementations use a mix of special-
ization and boxing, where the overhead of boxing is removed wher-
ever the compiler has full knowledge of the representation of values
[35], even for tuples [36]. There are more complicated schemes for
implementing parametric polymorphism, such as intensional type
analysis [15] which relies on representation passing. In some sense,
this is the implementation adopted by the Virgil interpreter as dis-
cussed before.

5. Experience
The balance of features in Virgil has proven to be quite practical in
writing small to medium-scale programs. Our experience in writing
over 100,000 lines of Virgil code has motivated continual refine-
ment of the language. A self-hosted, fully-bootstrapped compiler
written in Virgil is the primary implementation. It features com-
pilation to both the JVM and native x86 targets, includes a stan-
dard suite of intraprocedural compiler optimizations, array bounds
check elimination, sophisticated instruction selection, a linear-scan

9 Virgil disallows polymorphic recursion but it is not currently enforced.

register allocator, whole-program optimizations such as monomor-
phization, as well as sophisticated dead code and dead data elimi-
nation [31]. On native targets Virgil provides a precise semi-space
garbage collector (also written in Virgil), a runtime system (writ-
ten in Virgil) and direct access to kernel system calls. The compiler
also offers ancillary tools such as a full interpreter, a profiler, and
a code coverage tool. Despite its small size (just 25,000 lines of
code), the Virgil compiler generates decent quality machine code
and compiles very fast. Virgil III is open source and freely avail-
able at http://code.google.com/p/virgil.

We also wrote a small number of applications, ported several
benchmarks, and created a vast battery of test programs. We found,
like many Scala programmers, that the free intermixing of func-
tions with objects brings a new kind of expressiveness beyond pure
object-oriented and pure functional styles. Objects work well for
encapsulating state and related methods, while functions excel at
small-scale reuse, such as that found in operations like map, fold,
and sort. Our experience has been that unrestricted type argu-
ments and cheap access to tuples have markedly increased expres-
siveness beyond simply throwing objects and functions together
into the same language. For example, the ability to quickly define a
list of tuples and then sort them by, say, the first element, has been
very convenient for rapid prototyping.

Every pattern described in this paper has made it into practical
use. The emulation of abstract data types has direct applicability in
the design of reusable data structures like maps; the emulation of
ad hoc polymorphism has been useful in printing and logging; and
the emulation of variant types is used the Virgil compiler backend
to represent and manipulate machine instructions without requiring
a complete duplication of the x86 assembler’s interface, nor the
definition of many small variant classes.

6. Conclusion
Virgil brings a new kind of harmony between classes, functions,
tuples, and type parameters in a statically-typed setting. The whole
is more than the sum of its parts; these features complement each
other in subtle and powerful ways that reduce the need for more
language features, including complex patterns of inheritance, type
variance annotations, and a universal super type. Perhaps most in-
terestingly, multi-paradigm design patterns can be built that al-
low emulation of features not directly supported in the language,
including abstract data types, ad-hoc polymorphism, and variant
types. Each emulation presents some tradeoffs, and balancing the
inclusion of new features versus those tradeoffs is ongoing chal-
lenge in the art of language design; a challenge which we by no
means claim to have conquered. Moreover, we do not argue that
any of the emulated features should necessarily be excluded from
this or any other language; rather that the use of patterns can give
designers more time to prioritize new language features and ensure
they compose well.

6.1 Future Work
Virgil lacks many advanced features and there are still rough edges.
For example, we find our own emulation of printf-like cases still
somewhat cumbersome; a well-developed pattern matching system
coupled with a kind of varargs mechanism could greatly increase
expressive power without upsetting the existing design. Our experi-
ence programming in the language suggests that enumerated types
are of high priority, and certainly other languages offer excellent
examples of potential design.

Virgil lacks a module system, which can offer representation
independence and separate compilation units for modularity on a
larger scale. Higher-rank polymorphism (i.e. polymorphism over
type constructors) allows more forms of generic programming [24].
We believe both extensions to be important in the future, and like

the other features mentioned, Virgil’s core design has done nothing
to preclude them.

We mentioned issues with full monomorphization in section
4.3. We continually track the amount of code expansion due to
specialization for the compiler and applications we have already
built. We consider it an important goal to avoid code explosion, and
a hybrid approach to monomorphization is the subject of current
research. See for example [29].

Acknowledgments
Thanks to Alex Warth, Jan-Willem Maessen, Marek Gilbert, and
Jens Palsberg for comments on early drafts of this paper.

References
[1] E. Allen and R. Cartwright. The case for run-time types in generic Java.

In Proceedings of the 1st Conference on the Principles and Practice of
Programming in Java (PPPJ ’02). Dublin, Ireland. Jun 2002.

[2] C. Baker-Finch, K. Glynn, and S. P. Jones. Constructed product result
analysis for Haskell. In Journal of Functional Programming (JFP),
Volume 14, Issue 2. Mar 2004.

[3] L. Bergstrom and J. Reppy. Arity raising in Manticore. In Proceedings
of the 21st International Conference on Implementation and Application
of Functional Languages (IFL ’09). South Orange, NJ. Sep 2009.

[4] N. H. Cohen. Type-extension type tests can be performed in constant
time. In ACM Transactions on Programming Languages and Systems
(TOPLAS), Volume 13, Issue 4. Oct 1991.

[5] J. Dean, D. Grove and C. Chambers. Optimization of object-oriented
programs using static class hierarchy analysis. In Proceedings of the 9th

European Conference on Object-Oriented Programming (ECOOP ’95).
Aarhus, Denmark. Aug 1995.

[6] A. Diwan, K. McKinley, and J. E. B. Moss. Using types to analyze
and optimize object-oriented programs. In ACM Transactions on
Programming Languages and Systems (TOPLAS), Volume 23, Issue
1. Jan 2001.

[7] I. Dragos and M. Odersky. Compiling generics through user-directed
type specialization. In Proceedings of the 4th workshop on the Imple-
mentation, Compilation, Optimization of Object-Oriented Languages
and Programming Systems (ICOOOLPS ’09). Genova, Italy. Jul 2009.

[8] B. Emir, A. Kennedy, C. Russo, and D. Yu. Variance and generalized
constraints for C# generics. In Proceedings of the 20th Annual European
Conference on Object-Oriented Programming (ECOOP ’06). Nantes,
France. Jul 2006.

[9] D. Frampton, S. M. Blackburn, P. Cheng , R. J. Garner, D. Grove, J. E.
B. Moss, and S. I. Salishev. Demystifying magic: high-level low-level
programming. In Proceedings of the International Conference on Virtual
Execution Environments (VEE ’09). Washington, DC. Mar 2009.

[10] K. Faxén. Representation analysis for coercion placement. In
Proceedings of the 9th International Symposium on Static Analysis
(SAS ’02). Madrid, Spain. Sep 2002.

[11] E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design patterns: el-
ements of reusable object-oriented software. Addison-Wesley Longman
Publishing Co., Inc. Boston, MA. 1995.

[12] A. Goldberg and D. Robson. Smalltalk-80: the language and its
implementation. Addison-Wesley Longman Publishing Co., Inc. Boston,
MA. 1983.

[13] Guava: Google Core Libraries for Java 1.5+
http://code.google.com/p/guava-libraries/

[14] J. J. Hallett, V. Luchangco, S. Ryu and G. L. Steele Jr. Integrating
coercion with subtyping and multiple dispatch. In Science of Computer
Programming, Volume 75, Issue 9. 2010.

[15] R. Harper and G. Morrisett. Compiling polymorphism with intensional
type analysis. In Proceedings of the 22nd Symposium on Principles of
Programming Languages (POPL ’95). San Francisco, CA. Jan 1995.

[16] A. Igarashi and M. Viroli. On variance-based subtyping for parametric
types. In Proceedings of the 16th Annual European Conference on

Object-Oriented Programming (ECOOP ’02). Malaga, Spain. June
2002.

[17] JSR 335: Lambda expressions for the Java(TM) programming
language. http://jcp.org/en/jsr/detail?id=335

[18] A. J. Kennedy and D. Syme. Design and implementation of generics
for the .NET Common Language Runtime. In Proceedings of the 23rd

Conference on Programming Language Design and Implementation
(PLDI 2001). Snowbird, UT. Jun 2001.

[19] A. J. Kennedy and D. Syme. Combining generics, pre-compilation
and sharing between software-based processes. Jan 2004.

[20] The Maxine Virtual Machine. http://labs.oracle.com/projects/maxine/
[21] J. E. Moreira, S. P. Midkiff, M. Gupta, P. V. Artigas, M. Snir, and

R. D. Lawrence. Java programming for high performance numerical
computing. In IBM Systems Journal, Volume 39, Issue 1. Jan 2000.

[22] M. Odersky and P. Wadler. Pizza into Java: translating theory into
practice. In Proceedings of the 24th Symposium on Principles of
Programming Languages (POPL ’97). Paris, France. Jan 1997.

[23] M. Odersky, M. Sulzmann and M. Wehr. Type inference with
constrained types. In Proceedigns of the 4th International Workshop
on Foundations of Object-Oriented Programming (FOOL ’97). Paris,
France. Jan 1997.

[24] B. Oliveira and J. Gibbons. Scala for generic programmers. In
Proceedings of the Workshop on Generic Programming (WGP ’08).
Victoria, BC. Sep 2008.

[25] J. Palsberg. Type-based analysis and applications. In Proceedings
of the Workshop on Program Analysis for Software Tools (PASTE 01).
Snowbird, UT. Jun 2001.

[26] B. C. Pierce. Advanced topics in types and programming languages.
MIT Press. 2004.

[27] B. C. Pierce and D. N. Turner. Local type inference. In Proceedings
of the 25th Symposium on Principles of Programming Languages (POPL
’98). San Diego, California. Jan 1998.

[28] C. van Reeuwijk and H. J. Sips. Adding tuples to Java: a study
in lightweight data structures. In Proceedings of the Joint Java
Grande/ISCOPE Conference (JGI ’02). Seattle, Washington. Nov 2002.

[29] O. Sallenave and R. Ducournau. Lightweight generics in embedded
systems through static analysis. In Languages, Compilers, Tools and
Theory for Embedded Systems (LCTES ’12). Beijing, China. Jun 2012.

[30] D. Smith and R. Cartwright. Java type inference is broken: can we fix
it? In Proceedings of the 23rd Annual Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA ’08).
Nashville, Tennesee. Oct 2008.

[31] B. L. Titzer. Virgil: Objects on the head of a pin. In Proceedings of
the 21st Annual Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA ’06). Portland, Oregon. Oct
2006.

[32] B. L. Titzer and J. Palsberg. Vertical object layout and compression
for fixed heaps. In Proceedings of the International Conference on
Compilers, Architecture, and Synthesis for Embedded Systems (CASES
’07). Salzburg, Austria. Oct 2007.

[33] D. Tsafrir, R. W. Wisniewski, D. F. Bacon, and B. Stroustrup. Mini-
mizing dependencies within generic classes for faster and smaller pro-
grams. In Proceedings of the 24th Annual Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA ’09).
Orlando, FL. Oct 2009.

[34] J. Vitek and B. Bokowski. Confined types. In Proceedings of the
14th Annual Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA ’99). Denver, CO. Oct 1999.

[35] S. Weeks. Whole-program compilation in MLton. In Proceedings of
the 2006 workshop on ML. Portland, OR. Sep 2006. Slides available:
http://mlton.org/pages/References/attachments/060916-mlton.pdf

[36] L. Ziarek, S. Weeks and S. Jagannathan. Flattening tuples in an SSA
intermediate representation. In Journal of Higher-Order and Symbolic
Computation, Volume 21, Issue 3. Sept 2008.

