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Abstract—One of the key factors in selecting a good schedul-
ing algorithm is using an appropriate metric for comparing
schedulers. But which metric should be used when evaluat-
ing schedulers for warehouse-scale (cloud) clusters, which have
machines of different types and sizes, heterogeneous workloads
with dependencies and constraints on task placement, and long-
running services that consume a large fraction of the total
resources? Traditional scheduler evaluations that focus on metrics
such as queuing delay, makespan, and running time fail to
capture important behaviors – and ones that rely on workload
synthesis and scaling often ignore important factors such as
constraints. This paper explains some of the complexities and
issues in evaluating warehouse scale schedulers, focusing on what
we find to be the single most important aspect in practice: how
well they pack long-running services into a cluster. We describe
and compare four metrics for evaluating the packing efficiency
of schedulers in increasing order of sophistication: aggregate
utilization, hole filling, workload inflation and cluster compaction.

I. INTRODUCTION

At the very minimum, we wish that all articles
about job schedulers, either real or paper design,
make clear their assumptions about the workload,
the permissible actions allowed by the system, and
the metric that is being optimized.

– Dror Feitelson, 1996 [11]

There have been many studies of scheduling systems for
compute clusters, but most evaluations of their effectiveness
cannot be directly applied to the warehouse-scale environments
that are behind cloud computing and high-performance web
services [3]. A significant scheduling improvement here might
produce a few percentage points of benefit. That may seem
small in relative terms, but at this scale, we risk wasting mil-
lions of dollars without reliable, repeatable ways of quantifying
the impact of those improvements. This paper explores tech-
niques to do so. Its primary contributions are to explain why
this is not a solved problem; describe and characterize four
approaches (including a novel cluster compaction technique)
to evaluating schedulers; and demonstrate their behavior by
analysing some simple scheduler algorithms against real, pro-
duction workloads that run on tens of thousands of machines.

A. Heterogeneity

Real-life warehouse-scale data centers exhibit heterogene-
ity that is often ignored on smaller scales, or in high-
performance computing (HPC) studies. A month-long work-
load trace from a Google cluster [31] illustrates many of these
aspects [25].

Machines are heterogeneous: A scheduler evaluation
should not assume homogeneous machines. Even when a
datacenter has just been constructed, its machines will have

different numbers of disks, varying amounts of memory, differ-
entiated network connections (e.g., some will have external IP
connections), special peripherals (tape drives, flash memory),
and processor types (e.g., GPUs or low-power processors).
This variety only increases as new machines are brought in
to replace broken ones, or the cluster is expanded [4], [25].

Keeping track of resources that have been allocated on a
machine is not enough: the opportunity cost of placing a task
on a machine needs to be considered too – e.g., the largest
machines may need to be reserved for running the largest tasks,
or else they won’t fit. A similar issue arises for workloads
that are picky, and can only run in a few places because of
constraints [26], or because machines with the right attributes
are scarce. Effective packing requires that other work is steered
away from the scarce machines such picky work will require.

Heterogeneous machines will have different costs, too;
because of issues like physical plant infrastructure and opera-
tional expenses, that cost may not always be a simple function
of the quantity of resources (e.g., the total amount of RAM).

Workloads are heterogeneous: some work is structured
as finite-duration batch jobs; some as long-running services.
Some of those workloads are latency-sensitive (e.g., user-
facing web functions); others not (e.g., long-running batch
jobs). Some are small (e.g., a single task consuming a few MB
of memory); some may be huge (e.g., TBs of memory, spread
across thousands of machines). Availability, performance, and
cost-effectiveness needs may vary widely, too [25], [33]. The
union of the variety of properties and requirements mean that
it’s naive to assume homogeneous workloads in evaluations.

Evaluation criteria vary: scheduler evaluations serve dif-
ferent purposes. Capacity planners want to know how many
machines they need to buy to support a planned workload;
operators of a cluster want to know how many additional users
they can add, or how much their existing users can grow their
workloads. Scheduler designers are interested in both.

B. Other issues

Long-running jobs: Work in the Grid and HPC community
has traditionally assumed that the workload is made up of
batch jobs that complete and depart, and hence emphasized
makespan or total time to completion, perhaps combined with
user- and session-based modeling (e.g., [34]). But much of
the workload for modern warehouse-scale data centers consists
of long-running service jobs, so we need different evaluation
criteria.

Constraints: placement constraints are critical for some
applications to meet their performance and availability goals,
but it is rare to find scheduler evaluations that take these into
account. Similarly, machines with different attributes, as well
as different amounts of resources, are inevitable in all but the



smallest warehouse-scale installations, and these too are rarely
discussed.

Workload modeling is surprisingly hard to do well: the
presence of long-running jobs, constraints, preferences, dis-
parate job shapes (the number of tasks, CPU-to-memory ratios,
and the absolute sizes of those values) mean that varying
workloads by naive techniques such as changing the inter-
arrival rate of requests is unlikely to be appropriate. This is
especially true for batch jobs, for which complications such
as inter-job dependencies, inter-arrival rates and user response
may be critical [11], [13]. Although it may be helpful to use
simplified models while developing scheduling algorithms (i.e.,
ignoring much of the heterogeneity described above), adopting
them when evaluating job packing at warehouse scale may lead
to incorrect – and expensive – choices.

Incorrect metrics: Metrics that focus on time to completion
for batch jobs miss the point. Many jobs in warehouse-scale
clusters are long running services, and these are often more
important than batch jobs: in our environment, long-running
services can evict batch jobs to obtain resources if necessary.
Although increased utilization is certainly a side-effect of
better packing, simply measuring utilization (usage divided
by capacity) is not enough – as it ignores the need to build
in headroom for handling workload spikes, constraints and
heterogeneity, and is heavily dependent on workload behaviors
[11]. We need something better.

C. Appropriate metrics

We are not alone in observing the problem. Frachtenberg
et. al [13] provide a summary of common pitfalls in scheduler
evaluations for run-to-completion workloads, including job
inter-arrival and running times, and open vs closed queueing
models. And we echo the plea made nearly two decades ago
that we quoted in the introduction [11].

A precise definition of scheduler “packing efficiency” is
hard to pin down in the face of all the complications listed
above. This paper offers four different metrics and approaches,
and investigates their tradeoffs. Each evaluation metric defines
packing efficiency somewhat differently.

We note that there are several other measures such as a
scheduler’s runtime performance, the amount of resources it
needs to execute, fairness across users or jobs, power and
energy consumption, predictability, repeatability, makespan
minimization etc. All of these are important, but in our en-
vironment these are second-order considerations after packing
efficiency, because we size our clusters around the needs
of these long-running services. Other, lower-priority, work is
fitted around their needs.

We focus here on the how well a scheduler can pack a
workload into a cluster at a single moment in time. How
well an online scheduler handles a stream of job requests is
certainly relevant, too, but that is much harder to evaluate,
requiring trace replaying, which can be quite cumbersome at
warehouse scale. Replaying a four hour workload trace for a
medium sized cluster at high fidelity takes us more than an
hour. We’d ideally prefer to replay a multi-week trace (e.g.,
[31] perhaps combined with bootstrapping techniques [29] to
provide variations), but this is not very practical at this scale.

Indeed, almost all external users of the trace [31] use only a
tiny fraction of it.

Fortunately, with long-lived service jobs, semi-static place-
ment remains a key part of packing efficiency, and we focus
our efforts on exploring how to carefully evaluate how good
a scheduler is at this. As we will see, there are many details
that have to be done right to do this evaluation well.

II. BACKGROUND

We begin by introducing our system model, and then
describe the experimental methodology we use for comparing
our evaluation techniques.

A. System model

A warehouse-scale (cloud) workload is typically structured
as a set of jobs that are composed of one or more tasks; each
task is scheduled onto a machine or marked pending. A task
has a set of requirements that specify how many resources
(e.g., CPU, RAM) it needs; these may vary over time. A task’s
usage represents the amount of resources it actually consumes,
which is usually smaller than the requirement. A task may have
constraints that restrict where it may be placed, for example,
by referring to attributes associated with machines (e.g., OS
version, processor type). A job can also have bounds on the
number of tasks that can be placed on the same machine or
rack, typically implemented as special types of constraints.

Such workloads generally consist of a mix of service jobs,
which can run for months, and batch jobs, which can complete
in a few minutes, or last for many hours or even days. A job’s
requirements and constraints are known to the scheduler only
upon its arrival and the duration of the tasks is typically not
known before the job starts, so scheduling is an online process.

B. Experimental methodology

We use an offline simulator of our production scheduling
system to compare the packing behavior of different sched-
ulers. Each simulator run begins by feeding it a point-in-time
snapshot (checkpoint) state of a real production Google cluster
containing several thousand machines. This state includes data
about all the machines, jobs and tasks, whether running or
pending, as well as information about the placement and
usage of running tasks. The data we use for this paper was
obtained from checkpoints taken at 2013-08-01 14:00 PDT
(21:00 UTC). A detailed analysis of a representative workload
for a similar Google cluster is given in [25].

The simulator wraps our real-life scheduler production
code, and emulates its interaction with the outside world (e.g.,
with the machines in the cluster). When we ask the simulated
scheduler to pack the workload onto the cluster’s machines, it
uses the exact same algorithms as our production scheduler.

To simplify the exposition, we made a few changes:
we eliminated all non-production-priority workloads from the
cluster, so none of the data reported here indicates the utiliza-
tions we achieve in practice; we remove special and broken
machines and all tasks assigned to them from the checkpoint.
To assess the repeatability of the experiments, we run eleven
trials for each data point and show error bars in all figures
indicating the full range of the values across trials. For several



TABLE I. SUMMARY OF TECHNIQUES FOR EVALUATING PACKING EFFECTIVENESS.

Aggregate utilization Hole filling Workload inflation Cluster compaction

Accuracy low medium high high
Fragmentation/stranding no yes yes yes

Attributes/constraints no no yes yes
Time for computation < 1 min ∼ 30 mins ∼ 2 hours ∼ 5 hours
Context where useful quick approximation fixed-size slot counts cluster operators capacity planners

figures the error bars appear as a small horizontal bar indicating
that the variations are small.

We applied our techniques to eight clusters; space pre-
cludes us from providing data for more than two representative
ones, which we refer to as Cluster 1 and Cluster 2. Each
contains several thousand machines and is running a live
production workload; the clusters and individual machines
are shared by many users. We first demonstrate the different
techniques using Cluster 1 and later use data from both clusters
to measure the packing efficiency of job ordering policies.

We reiterate that the purpose of this paper is to compare
scheduler-evaluation techniques, not schedulers. But to give
the evaluation techniques something to evaluate, we concocted
a few scheduler policies by tweaking the existing production
schedulers in a specific way, described further in Section IV.
Note that the full complexity of the production scheduler was
retained – all we changed was one small aspect: the order in
which tasks were examined while being scheduled.

III. EVALUATION TECHNIQUES

We compare four techniques for evaluating packing ef-
ficiency. In order of increasing sophistication, they are: ag-
gregate utilization, hole filling, workload inflation and cluster
compaction. Table I provides a quick comparison of the four.

A. Aggregate utilization

Probably the simplest, and most commonly used, efficiency
metric is the aggregate utilization: the fraction of the cluster’s
resource capacity of each type (e.g., CPU, RAM) that has been
allocated. For example, Cluster 1 has 68% CPU utilization and
48% memory utilization. This metric is simple to compute,
but has some shortcomings: (1) It cannot distinguish between
schedulers that place all tasks, since the utilizations are the
same. (2) It hides fragmentation effects: the “holes” of unused
resources may be too small to be useful. For example, even
though aggregate CPU resources are available, they may be
fragmented across several machines each of which may be too
small to be useful for tasks. (3) It hides stranding effects since
CPU and memory utilization are independently computed: for
example, even though CPU resources may be available on a
machine, tasks may not be able to schedule on it because there
is no spare memory.

Because of these problems, we don’t usually find this
metric helpful, and won’t pursue it further in this paper.

B. Hole filling

The shortcomings of the aggregate utilization metric can
be partially addressed by looking at the unallocated capac-
ity on each machine after task placement (the holes). This

technique discounts fragmentation effects by counting how
many appropriately-sized units of size U can fit into the holes,
thereby discounting unallocated spaces that are too small to
be useful. The size U can be picked in several different ways.
It can be based on the overall capacity of the machines in the
cluster (e.g., 30% of the median-sized machine), tailored to
individual machines (e.g., 30% of a particular machine’s size),
based on the workload (e.g., 90%ile of the task request sizes),
or picked by the execution environment (e.g., the memory slot
size in Hadoop).

It is important that the units each have multiple resource
dimensions (e.g., CPU and RAM) to account for both fragmen-
tation and stranding. The algorithm is straightforward: simply
count how many units will fit into the unallocated resources,
one machine at a time, multiply by the unit size U , and add
that to the utilization achieved before hole filling to indicate
what might be possible, and thereby providing a measure of
how much wastage the scheduler’s packing has. We report the
result as a percentage of the total cluster capacity.
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Fig. 1. Hole filling: aggregate CPU and memory utilization after hole filling
as a function of the unit size U , expressed as a fraction of the median machine
size. Both memory and CPU are scaled together. Data for Cluster 1.

Figure 1 shows the CPU and memory utilization achieved
after hole-filling for cluster 1.1 Without hole-filling, the aggre-
gate utilization of the cluster is about 68% for CPU and 48%
for memory. Using units whose sizes are 5% of the median
machine size, hole filling can grow up to 80% of the CPU
and 62% of the memory; the remaining capacity represents
resources lost due to fragmentation and stranding. As expected,
larger unit sizes result in more lost capacity, as it is harder to
fit bigger units into the fragmented space that remains.

The hole-filling metric is almost as fast to calculate as

1Reminder: this is after removing all but “production” work, so is not an
accurate reflection of the utilization we achieve in practice.



aggregate utilization, but it uses a single fixed unit U to
determine what would fit into the holes, which is not a good
match to the heterogeneous task sizes seen in real workloads.
Fixing this by using multiple unit sizes would turn it into a bin-
packing scheduling pass, losing the simplicity of the evaluation
technique. And what mix of sizes would be appropriate? Hole-
filling also ignores task constraints and machine attributes, thus
providing an optimistic assessment of the remaining capacity
and the efficacy of the scheduler’s packing.

C. Workload inflation

Workload inflation addresses the limitations of hole filling
by scaling up the original workload until it no longer fits. This
gives a more accurate estimate of how much new workload
could be added to a cluster. A few things have to be done cor-
rectly to make this work well. Workload heterogeneity needs
to be maintained; this is done by scaling all jobs uniformly
(using a scale factor) or by randomly sampling them using
a Monte Carlo method. Similarly, the effects of constraints
are retained by replicating existing constraints when jobs are
grown or new copies are added.

Algorithm 1 gives an outline for workload inflation using
a scale factor f > 1.

We distinguish two kinds of scaling. Horizontal scaling
grows the total number of tasks by ( f − 1), but retains the
original task sizes. (This can be achieved by growing the
number of tasks in the original job, which can cause difficulties
if jobs are very large, or by cloning jobs; we do the latter.)
Vertical scaling inflates the resource requirement of each task
by the factor f , thus growing each task, while retaining the
same number of tasks.

A task is considered picky if it is “too big” – larger than a
threshold percentage of the median machine – or is constrained
to “too few” machines – a threshold fraction of the cluster size.
Both thresholds are set to 60% in our experiments. Inflating
a non-picky (conforming) job is unlikely to cause problems,
but inflating a picky job can quickly cause it to go pending,
thereby ignoring the load it induces or stopping the inflation
process prematurely. So one parameter to Algorithm 1 specifies
whether to inflate all jobs or only the conforming ones.

With vertical inflation, there are a few more choices to be
made. For example, what should be done with a task that is
scaled to become larger than the biggest machine? We could
let it go pending or clip it at the largest machine size. The
former mimics what an automatically-scaled system might do;
the latter represents how users would behave if they noticed
that their jobs were going pending. Both options give a slightly
different view of the workload growth that can be achieved;
we picked the latter on the grounds that it is more realistic and
gives larger scale factors.

Figure 2 shows what happens when workload inflation is
applied to cluster 1. As expected, at scale factor f = 1 there are
no pending tasks. As the scale factor increases the horizontal-
all and vertical-all schemes immediately cause some tasks
to go pending, probably because of picky tasks that are not
able to schedule. The horizontal-conforming and vertical-
conforming schemes do not suffer this problem, because they
scale only conforming, non-picky tasks. After scale factor

Algorithm 1 Workload inflation.

Input: cluster checkpoint with a list of machines
Output: CPU and memory utilization after inflation,
number of pending tasks after inflation
Parameters: scaling factors, horizontal or vertical,
conforming or all

1. J ← set of all jobs
2. if conforming then
3. J ← set of only conforming jobs
4. end if
5. for each f in scaling factors do
6. for each j in J do
7. if horizontal inflation then
8. j′← clone( j)
9. j′tasks← ⌈ jtasks× ( f −1)⌉

10. else if vertical inflation then
11. for each t in tasks of j do
12. tcpu← tcpu× f
13. tmem← tmem× f
14. end for
15. end if
16. end for
17. Schedule all tasks on machines
18. Output number of pending tasks
19. Output aggregate CPU and memory utilization after

inflation
20. end for

f > 1.25 the number of pending tasks ramps up quickly for
all the inflation methods.

The achieved utilization at scale factor of 1.25 is slightly
under 80% for CPU and under 60% for memory and increases
only a little with larger scale factors, although the number of
pending tasks continues to grow.

Not surprisingly, inflating only conforming tasks results in
larger scale factors before the cluster runs out of capacity, and
the pending task graph for the conforming-only case is to the
right of the all-tasks case.

One problem with inflation is determining when to stop: it
is not always obvious what fraction of pending tasks should be
permitted, because the number is a function of the particular
workload applied to a cluster. In practice, we tend to “eyeball”
the graphs, and look at the knee of the pending-tasks curves.
This is not easy to automate.

An alternative that does better in this regard is to use a
Monte-Carlo technique to inflate the workload (see Algorithm
2) [23]. At each step this picks a job at random from the
existing workload and clones it, repeating the process until
a chosen stopping criterion is reached (e.g., the number of
pending tasks exceeds a chosen threshold, such as 1%). The
output is the aggregate CPU and memory utilization achieved
for that threshold. This procedure can be repeated many times
to provide greater confidence in the result, and ensure that
enough random samples have been taken to cover even the
rare, picky jobs. Sensitivity analysis shows that the achieved
utilization is fairly stable with respect to the stopping criterion:
varying the pending-task threshold from 2% to 30% increases
achieved utilization only by about 2%.



●
●

●
●●●

●

●

●

●●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0

2.5

5.0

7.5

10.0

1.00 1.25 1.50 1.75 2.00

Inflation scale factor

P
e
rc

e
n
ta

g
e
 o

f 
p
e
n
d
in

g
 t
a
s
k
s

Workload

●

●

all

conforming

Stretching

●

●

horizontal

vertical

●

●●
●●

●

●
●
●●

●

●
●
●
●

●

●
●●
● ●

●●●
●
●

●●

●
●

●●

●●

●●

●●

●●
●●

●●

20

40

60

80

100

1.00 1.25 1.50 1.75 2.00

Inflation scale factor

C
P

U
 u

ti
liz

a
ti
o

n
 a

ft
e

r 
in

fl
a

ti
o

n

●

●●
●●

●

●
●
●●

●

●
●●●

●

●
●●
● ●

●●
● ●●

●
●

●●

●●

●
●
●● ●●

●
●

●
●●
●

20

40

60

80

100

1.00 1.25 1.50 1.75 2.00

Inflation scale factor

M
e

m
o

ry
 u

ti
liz

a
ti
o

n
 a

ft
e

r 
in

fl
a

ti
o

n

Fig. 2. Workload inflation: pending tasks, and CPU and memory utilization, as a function of the inflation scale factor f in Cluster 1. The lines show the effects
of inflating all or just conforming jobs, using horizontal and vertical scaling. The effective inflation limit is the knee in the pending-tasks curve, at the point
where just a “few” tasks have gone pending; beyond this point, utilization doesn’t increase much.

Algorithm 2 Monte-Carlo workload inflation.

Input: cluster checkpoint with a list of machines
Output: CPU and memory utilization after inflation,

number of pending tasks after inflation
Parameters: fraction of tasks allowed to go pending τ ,
conforming or all

1. J ← set of all jobs
2. if conforming then
3. J ← set of only conforming jobs
4. end if
5. while fraction of pending tasks < τ do
6. Pick j uniformly at random from J
7. j′← clone( j)
8. Schedule all tasks on existing machines
9. end while

10. Output number of pending tasks
11. Output aggregate CPU and memory utilization after infla-

tion

D. Cluster compaction

Cluster compaction takes the opposite approach: treat the
workload as fixed, and shrink the cluster until the workload no
longer fits. This directly answers “how small a cluster could
be used to run this workload?” and avoids the complexity
of workload scaling. When machines are uniform without
constraints and fragmentation, this would roughly correspond
to the average utilization metric defined earlier. Presence of
heterogeneity, constraints and fragmentation make this more
challenging for warehouse scale datacenters.

The compaction process is described in Algorithm 3. The
basic idea is to generate a random permutation of machines in
the cluster, and then use binary search to determine the mini-
mum prefix of the permutation required to run the workload.
The end point of the binary search is returned as the compacted
cluster size for this trial. Repeated trials are run to obtain a
distribution of the compacted cluster sizes and to eliminate the
effects of an unfortunate permutation (e.g., all big machines
being at one end). Figure 3 shows the 90%ile of eleven trials
and the error bars indicate the full range.

There are some key features, policy choices and details to

Algorithm 3 Cluster compaction algorithm.

Input: cluster checkpoint with a list of machines
Output: minimum number of machines needed
Parameters: fraction of tasks allowed to go pending τ ,

error bound for the number of machines needed µ

1. while fraction of pending tasks > τ do
2. machines← machines+ clone(machines)
3. Schedule all tasks on machines
4. end while
5. Generate a random permutation p of machines
6. min← 0,max← length(p)+1
7. while max−min≥ µ do
8. mid← ⌊(min+max)/2⌋
9. Disable all but the first mid machines in p

10. Discard tasks (e.g., storage servers) that were tied to the
disabled machines.

11. Reschedule all tasks on the enabled machines
12. if fraction of pending tasks > τ then
13. min← mid
14. else
15. max← mid
16. end if
17. end while
18. Output mid as the estimate for the minimum number of

machines needed

note about the compaction process:

Maintaining machine heterogeneity. The use of random
permutation in step 5 helps to maintain the machine hetero-
geneity probabilistically. As machines are removed from one
end of the permutation (step 9), the remaining machines on
average have similar heterogeneity to the original set in terms
of resource capacities and attributes. For clusters with rare
combinations of heterogeneity and constraints (e.g., few rare
machines out of n and a job being constrained to only those)
this wouldn’t work well, but our clusters do not have such
adversarial combinations in practice.

Repeated trials and distribution: As mentioned above, we
run repeated trials to obtain a distribution of the compacted-
cluster-sizes and to eliminate the effects of an unfortunate



permutation. A high percentile (e.g., 90%ile) of the repeated
trials is used as the overall compacted cluster size, on the
grounds that this is a conservative approximation to “how many
machines would we need?” than just the mean or median. Error
bars are shown in the plots to illustrate the variance involved.

Stopping criterion. The strictest one is to end compaction
as soon as there are any pending tasks. This has the advantage
of simplicity but is vulnerable to even a single extremely hard-
to-schedule task. To overcome such picky jobs, we use the
parameter τ (typically 0.6%) to allow a small fraction of tasks
to go pending. Figure 3 shows the sensitivity of the compacted
cluster size as the stopping criterion goes τ from 0 to 1%.

Constraints that tie tasks to particular machines. Some
tasks are constrained to run on a small number of machines,
or even specific machines, and go pending if these machines
are removed from the cluster during compaction. Either the
constraints must be relaxed or we simply allow the tasks to
go pending, and count against the threshold τ in Algorithm 3.
Such tasks are rare, so we choose the latter course.

Special jobs and preprocessing. Some jobs (e.g., file system
servers) have tasks on all the machines in the cluster and have
to be handled specially. The simplest way is to delete the
associated file server task when the machine is removed. The
resulting reduction in storage capacity can be compensated by
moving the storage workload to other servers or by ignoring
the issue on the grounds that storage capacity isn’t scarce,
which is what we do in the experiments reported below.

Cluster expansion. With some experiments, the cluster size
might need to increase (e.g., if a scheduler policy that fosters
better compaction is disabled, or if the workload is being
inflated). This can be done by adding in clones of the original
cluster (step 2), to preserve the existing machine heterogeneity,
and then compacting the resulting combined cluster.

Running time: The number of binary search iterations in
the compaction algorithm is proportional to log(M/µ), where
M is the number of machines in the cluster and µ is the error
bound (step 7). If desired, running time can be improved at
the cost of accuracy by making µ larger and foregoing the last
few iterations of the binary search.

Compaction has similarities to power-based right-sizing
of data centers [19], [28] and virtualization enabled server-
consolidation [30] in data centers, but their goals are different.
While those studies aim to minimize the cost or number of
servers needed to serve the given workload, our goal is to use
the compacted cluster size as a metric to compare the given
scheduling or packing algorithms.

If no tasks are allowed to go pending then the compacted
cluster size is around 92% of the original (Figure 3). As we
allow a few more to do so, the compacted cluster size de-
creases to 82% with up to 0.4% pending tasks, and eventually
stabilizes around 80% with 1% pending tasks. Constraints and
picky jobs are the cause: they make it hard to remove certain
machines, which causes the compaction algorithm to stop.

We would expect the compacted cluster size to be about
1/ f where f is the scale factor achieved by inflation, and
indeed this is roughly what we see (compaction produces a
little more than 80%, while horizontal conformal inflation sees
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Fig. 3. Cluster compaction: number of compacted machines as a function
of the fraction of tasks that are permitted to go pending. The plotted point is
the 90%ile of 11 runs, error bars show the full range. Data for Cluster 1.

f = 1.25). The two techniques roughly agree in this case.
However, the presence of constraints, workload peculiarities
and other factors can cause this to vary. Similarly, note that the
aggregate utilization would suggest that the compacted cluster
size should be about 68% – but that doesn’t take fragmentation,
heterogeneity and constraints into account.

IV. USING THE TECHNIQUES: EVALUATING DIFFERENT

JOB ORDERS

As we mention above, this paper isn’t about scheduling
algorithms, but about ways to evaluate them – but to test
these approaches, we needed some scheduling algorithms to
compare. Here’s what we did.

Our production scheduling algorithms are all online: they
do not know about the future arrival of tasks and can rarely mi-
grate tasks between machines. Could we achieve better packing
of tasks if we looked at all the jobs that are running now, and
repack them? If so, in what order should the jobs be looked
at? We picked three intentionally-simple variations: decreasing
cpu, decreasing memory, and decreasing normalized sum of
cpu and memory (where normalization is done by dividing
cpu and memory requirements by the size of the median
machine in that cluster). The baseline is arrival, which reflects
the sequence in which jobs arrived. We also fixed the order of
the machines and used first fit for scheduling these incoming
jobs – thus effectively emulating a First Fit Decreasing bin
packing [2] where ”decreasing” is either by cpu, memory or
normalized sum.

Figure 4 shows the analyses of these different policies on
data from Cluster 1 using horizontal inflation, vertical inflation,
hole filling and compaction:

• Horizontal scaling reports that the scheduler can sup-
port a workload that grows by a scale factor f of
about 1.4 for arrival and sum, and by 1.3 for cpu
and memory.

• Vertical inflation produces slightly bigger scale fac-
tors: 1.5 for arrival, 1.4 for cpu, 1.3 for sum and
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Fig. 4. Four different scheduling algorithms (represented by different lines), evaluated using horizontal inflation, vertical inflation, hole filling and cluster
compaction (the different plots). Data from Cluster 1.

memory orders. However they have different slopes
after the inflection point is reached.

• Hole filling shows that for most unit sizes, arrival
order can achieve the highest utilization, cpu and sum
orders are barely distinguishable, and are followed
by memory. But the order changes with units above
about 50% of the median machine size.

• Workload compaction with a pending tasks threshold
of 0.4%, suggests that we can compact the cluster
down to 60% of its original size using arrival, 68%
using sum, 70% using cpu and 75% using memory.

All four techniques agree on arrival being the best for this
cluster, followed by cpu or sum, and finally memory.

Ordering jobs by their cpu or memory requirements causes
resource stranding: the scheduler does a good job of bin-
packing machines in the preferred dimension, but often leaves
other resources idle. sum does better, by encouraging a more
balanced approach to the two resource dimensions. But arrival
outperforms the others – probably because it (effectively)
randomizes the order of jobs and this leads to less stranding.

Figure 5 shows the same data as in Figure 4, but for a
different cluster. Here:

• Horizontal scaling can achieve a workload scaling
factor of 2 using sum or arrival, and by 1.9 using
cpu or memory.

• As before, vertical inflation can achieve an even higher
scaling factor: 2.6 using sum or arrival, and 2.5 using
cpu or memory.

• Hole filling consistently shows that arrival and sum
order are better than cpu and memory.

• Compaction can shrink the cluster size down to 43%
using sum, 55% using arrival, and 60% using cpu or
memory.

All four techniques agree that sum and arrival are better
than cpu and memory, with compaction biased towards sum.
Based on this analysis, we would recommend using sum if
the goal is to use fewer machines.

We performed similar experiments with six other clusters
and found that workload inflation and cluster compaction
techniques agree on the ranking order in the majority of the
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Fig. 5. These are the same plots as in Figure 4, but using data from Cluster 2. The four graphs correspond to different techniques.

cases and hole-filling is able to distinguish only when the
cluster load is sufficiently high.

V. RELATED WORK

Job scheduling has seen a rich body of work ranging from
kernel level scheduling (on a single computer) to scheduling in
grids and large warehouse-scale clusters. For a comprehensive
survey of scheduling and resource management in cloud clus-
ters, we refer the reader to [18]. For job scheduling strategies
in grid context, please see [9], [16], [22].

Warehouse scale clusters have been described and studied
in [3], [21]. Detailed analyses and characterization of work-
loads from such large warehouse scale clusters have been
presented in [25], [26], [31]. These analyses highlight the
challenges of scale, heterogeneity and constraints inherent in
such datacenters.

Much of the prior work in evaluating cluster schedulers has
focused on short-lived batch tasks and runtime modeling ([5],
[10], [12], [20]), fairness across users or jobs ([8], [15], [32]),
and power-minimization ([6], [7], [14]).

Efficient packing of long-running services is an important
part of improving utilization in large data centers and is

relatively less explored. For example, [17] studies job packing
but not at warehouse scale. Algorithms and heuristics for
vector bin packing have been studied in various domains ([1],
[24], [27], [30]), but they are usually offline methods with the
objective of minimizing the number of bins used. And they
often ignore the heterogeneity and constraints that are common
in warehouse scale datacenters.

VI. CONCLUSION

In this paper, we address the question of evaluating sched-
ulers in warehouse-scale clusters where the important problem
is of packing long-running tasks. Addressing the complexities
of heterogeneity and constraints that arise in such clusters, we
propose and evaluate four approaches and metrics: aggregate
utilization, hole filling, workload inflation and cluster com-
paction. These approaches have different sweet spots:

1) Aggregate utilization: can give a quick, simple mea-
sure of overall resource utilization without consid-
eration of fragmentation, stranding and constraints.
Not useful for comparing scheduling algorithms es-
pecially if they can pack all jobs at low loads.

2) Hole-filling: fast, simple assessment of unallocated
resources using fixed size slot counting. Unfortu-



nately, it ignores constraints and workload hetero-
geneity, and cannot make fine grained distinctions
between scheduling policies, especially at lower uti-
lization levels.

3) Workload inflation: answers “what if?” questions
about future workload growth, and is most useful for
cluster operators who want to know how much addi-
tional workload can be added to a cluster. Provides
multiple policy choices on what is inflated and how.

4) Cluster Compaction: good for capacity planning and
for providing an automated comparison metric for
fine-grained distinctions. It has fewer policy choices
than inflation and a longer running time.

Which one is best? It depends on the kind of what-if
questions you ask. Regardless of which approach you pick,
we urge authors of scheduling papers to be explicit about both
their assessment objectives and the policy choices they make.
We hope this paper has provided information on how to do so,
thereby increasing the repeatability of research in this space.
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