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We address the problem of estimating the variability of an es-
timator computed from a massive data stream. While nearly-linear
statistics can be computed exactly or approximately from “Google-
scale” data, second-order analysis is a challenge. Unfortunately, mas-
sive sample sizes do not obviate the need for uncertainty calculations:
modern data often have heavy tails, large coefficients of variation, tiny
effect sizes, and generally exhibit bad behaviour. We describe in detail
this New Frontier in statistics, outline the computing infrastructure
required, and motivate the need for modification of existing meth-
ods. We introduce two procedures for basic uncertainty estimation,
one derived from the bootstrap and the other from a form of subsam-
pling. Their costs and theoretical properties are briefly discussed, and
their use is demonstrated using Google data.

1. Introduction. With the advent of modern computing and the rise of user-generated
web content, data structures are becoming increasingly unwieldy. In this paper we inves-
tigate the important problem of estimating the variance of a statistic in the context of
“Google-scale” data. Three important properties of these data sets necessitate specialized
methodology:

1. Massive scale. The sample size N in a statistical problem can be very large, at
least on the order of 10° and often larger.

E.g. N is the number of visitors to google.com over the course of a week.

2. Streaming form. The statistician interacts with the data as a stream. This is true
either literally, because the data are analyzed as they are collected, or is effectively
true since the data are too large to be fit in memory.

F.g. Each time a query is issued on google.com, a server emits data to logs.

3. Sharded units. Data from one statistical unit are scattered temporally or across
multiple data sources or machines (“shards”); it is therefore impractical to retain
an entire observation in memory at any given time.

FE.g. A user’s queries do not appear consecutively, nor are they guaranteed to be
processed by the same server or even the same data center.

There are many practical implications of these properties. Item 1 suggests that we have
finally arrived in Asymptopia, and yet at the same time precludes computationally inten-
sive methods and even positing structures of size, say, N x N. Computational tools such
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2 N. CHAMANDY ET AL.

as the MapReduce framework (Dean and Ghemawat, 2004), which we discuss briefly in
Section 1.2, are necessary. Moreover, web data on even this scale often contain sufficient
variability that estimating it is important. An example will be given in Section 5.

Property 2 implies that ‘single-pass’ methods are preferable to multi-pass or iterative
algorithms. For instance, fitting certain classes of linear models to streaming data de-
mands a special algorithm wherein parameter estimates are updated for each new data
point. In this paper we assume for the most part that appropriate single-pass estimation
procedures exist.

The consequences of Property 3 are most material to this paper, and often counter-
intuitive: summary statistics that we normally take for granted, such as sums of squared
deviations across all units, are sometimes unavailable. The latter observation, discussed
further in Section 1.3, is what makes uncertainty estimation challenging in the context
of massive data streams.

1.1. Mathematical framing. In this paper we consider the problem of estimating a pa-
rameter 6 of the distribution F' of an i.i.d. stream of random objects

(1) X1, X, .., X,

and most importantly estimating the uncertainty in our estimator. An important con-
straint is that we cannot necessarily observe any X; as a random variable in memory.
This is a fundamental property of massive data streams: the exchangeable unit is often
different from the unit used to record the data. We will see an example of this in the next
section, where the exchangeable unit is a Google user, while the unit of the data stream
is a Google query event. In view of this, the observed data stream is more formally

(2) Xihjl , X , X

12,427+ ¢ Uy JRs *

where ¢ indexes the exchangeable unit and j the record within the exchangeable unit. The
notation in (2) highlights that the ordering of our data stream is completely arbitrary. For
the most part, to simplify notation, we stick to representation (1) with the understanding
that X; may be sharded across different records or machines.

In general, X; may be a non-vector, instead having a more complex hierarchical structure
with a random dimensionality. For example, it may consist of the set of queries issued
by a user on a given day. We denote the space of possible values by X'. Without any real
loss of generality, we can assume if necessary that each X; has a p-dimensional sufficient
statistic Y;. Therefore, for simplicity we assume X = RP.

We assume throughout that F' has the requisite number of finite absolute moments,
and denote its mean by g and variance matrix by ¥ (or o2 when p = 1). For the most
part, we focus our attention on functions of means because their sample versions can be
easily computed from one pass over a massive data stream using MapReduce. In such
cases, the parameter of interest can be expressed as § = g(u), where g : RP — R is a
smooth function with gradient g and hessian g. Moreover, letting X = (X --- Xy) and
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ESTIMATING UNCERTAINTY FOR MASSIVE DATA STREAMS 3

X = Xy denote the sample mean, we typically estimate 6 by

N
(3) in(X) = g(X) = g (Z xz-/N) .

In order to keep technical conditions to a minimum, we simply assume that g has con-
tinuous derivatives of all orders, each of which — including g itself — can be bounded
componentwise by a polynomial in its argument. (Less restrictive assumptions are pos-
sible on a results-by-result basis, but they do not add any real insight.)

We are interested in either (a) estimating the variance of @y or (b) estimating the
distribution of a root

(4) Ry = 5 (0n — 0),

with 7y an appropriate scaling constant. Typically 7y = N 12 hut it could be any
sample size dependent constant which gives Ry a nondegenerate limiting distribution.
We denote by G the distribution of Ry. Let Var(éN) = 512\,, and write 1 ® X to denote
the p x N matrix (X,...,X). The classical delta method estimator of £3; is

() S3 =8(X)(X - 12 X)(X -1 X)'g(X)/N?.

In the simple case that p = 1 and g(u) = p, which we shall refer to from time to time as
an illustrative example, (5) reduces to

N
1 _
(6) SZ: ﬁz(Xi*X)%
i=1

the scaled (slightly biased) sample variance. As the example in the next section demon-
strates, Limitation 3 above prevents us from explicitly computing the sample covariance
in (5). While it is tempting to calculate S naively by assuming that each data record
is independent, doing so typically ignores positive correlation and leads to underestima-
tion of 512\1- Si nonetheless serves as a useful gold standard against which to evaluate
other variance estimators, since it works remarkably well when available in massive data
settings. Our main contribution will be to describe two feasible alternatives to SZ and
examine their properties.

Though the emphasis above, and indeed throughout much of the paper, is on parameters
which are smooth functions of u, our results in Section 4 generalize the validity of the
methods to more complicated functionals of Gp. These include quantiles, and other
parameters for which bootstrap-type inference is valid.

1.2. A cartoon Google data stream. Figure 1 depicts a stylized path that Google data
may take from the time of their creation to the time they arrive on the statistician’s
computer. The example is designed to illustrate why traditional methods, which assume
that all data from a given statistical unit are available in memory at the same time, fail
for massive data. It is not necessarily the case that such data are analyzed continuously
upon arrival, however, it is useful to think in such terms because our most powerful
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4 N. CHAMANDY ET AL.

computational tools, including MapReduce, effectively reproduce such a scenario. They
do this to achieve the degree of parallelism necessary for doing computation at scale.

We assume that the final summary data to be output is a list of tuples (k,v) = (k, v(k)),
where k € IC denotes a categorical ‘key’, and v € V a random vector somehow obtained by
aggregation from the raw data. This is typical in the analysis of web data. The cardinality
of K may be large, though it is generally orders of magnitude smaller than the size of the
raw data. As a concrete running example, consider the following application involving
advertisements displayed on google.com search results pages. We wish to compute the
average click-through rate (CTR) for the largest 10,000 advertisers and 100 countries,
defined as the total number of ad clicks divided by the number of ads displayed (called
“Impressions”). In this case, k is the bivariate factor (advertiser ID)x (country), and v
a pair consisting of an ad impression count and an ad click count (summed over many
queries).

User population

queries

Vel
Server 1 Server 2 Server 3 e Server K
Y Y Y
Server logs
(raw data)
\ / many-to-1
Map phase Mapper 1 Mapper 2 Mapper M
' many-to-many
Red
pehauscée Reducer 1 Reducer J

data dump

Fig 1: A stylized example of a Google data stream. Every user-generated query is pro-
cessed by one of K servers, with different queries from the same user possibly hitting
different servers. The servers write raw data to logs, one record per query. These records
are first processed by M mapper machines, which are shuffled along the key of interest
k and mapped in order to J reducer machines. The data are further processed by the
reducers into a single summary tuple for each unique value of k. These data are finally
analyzed by the statistician. Typically, K > M > J.

Briefly, MapReduce is a parallel computing framework which can produce such tuples
from petabytes (10'°B) of input data in just a few hours, by leveraging a large number of

imsart-aoas ver. 2012/08/31 file: stream_paper.tex date: September 19, 2012



ESTIMATING UNCERTAINTY FOR MASSIVE DATA STREAMS 5

machines. In its simplest form, the MapReduce consists of a single master machine, which
coordinates the process, and many mapper and reducer machines. The system is fully
parallel in that there is no communication among mappers nor among reducers (though
there is some limited communication between the two groups, and both communicate
with the master).

There are correspondingly two phases of the MapReduce. During the map phase, each
mapper processes a set of input records, which may themselves be complex non-vector
objects, and produces intermediate tuples (k,u), u € U. The u tuples are different from
the final v because they have been computed from only a subset of the data, and must
be further combined. These intermediate data are then sorted by k& and sent as input
to the reducers, a process known as ‘shuffling’. Assume, as in Figure 1, that there are
M mappers and J reducers. Shuffling can be thought of simply as a map S from K
into {1,...,J}. In the reduce phase, the jth reducer further aggregates the vectors u to
produce a final statistic v = v(k) for every unique k € S~1(5). The final data, which are
of a manageable size, can then be downloaded from the MapReduce network.

In slightly more detail, the output of mapper m is the set of tuples {(k, um(k)), k € K}
for some subset KC,;, C K of keys which happen to appear therein. For a fixed key k, v(k)
must then be computable from the sequence of arbitrarily ordered vectors u,, (k) via a
binary, associative operation. In other words, there exists a function A : 4?2 — V such
that A(s,r) = A(r,s) and

(7) v(k) = A(up(K), . .., A(uz(k), A(uz(k), ur(k))) ---)
(in the case that k € Iy, for every m).

It is the job of the S(k)th reducer to perform the calculation (7), in a sequential manner
as it scans over its input data. In the CTR example given above, u consists of partial sums
of (ad impressions, ad clicks), and the aggregator A is simple addition. More generally, A
may be allowed to depend on a small buffer of summary statistics of the local collection
of previously seen u(k). This slight complication extends the methodology from sum-like
estimands to more complicated statistics such as approximate sample quantiles.

1.3. Practical example. Rate parameters are ubiquitous in the statistical analysis of
internet data. In addition to the CTR statistic introduced in the last section, other
examples include the average revenue per web pageview for display advertising, and the
“conversion rate” among users who click through to an e-commerce site. Such scenarios
can be modeled within the framework of Section 1.1 by assuming that

(8) X;=(X,Y)s EX;, = EYi|Xi)|=60X;; g(zy) =y/z; z>1

In many Google-scale applications, distributions of statistics can be reasonably well-
approximated by a lognormal distribution. Since a ratio of lognormals is again lognormal
and has moments of all orders, this is a convenient distribution to posit in the current
example.

The delta method variance estimator is

VN (S x2 S XY,
2 _ [ (il Ui ) P2 Lo .
©) 54 <X) { N3 TN NXY }
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6 N. CHAMANDY ET AL.

To see why (9) poses computational problems in a massive data setting, let us return
to our running CTR example. X; denotes the number of ad impressions displayed to
User ¢ over some time period, and Y; denotes the number of times the user clicked on an
ad. The exhangeable unit is the Google user, the record unit is a Google query, and the
primary output key is an advertiser-country pair. This example illustrates yet a third
unit of interest: the finest division of the data which belongs to a unique element of I,
which we call the “key unit”. In a sense, this becomes the new sharding unit once the
MapReduce has begun. In our example, the key unit is an ad impression.

Under the MapReduce framework, and analogously to (2), we can decompose a user’s
data based on which reducer machine each impression is mapped to. Therefore, X; =
ijl X;j and Y; = ijl Yi; with j indexing the reducer. In this example, there may
exist j # j' such that both X;; > 0 and X, > 0 for any user seeing ad impres-
sions from multiple advertisers. Thus, while it is a simple matter to compute both
> Xi= Z” Xij and Z” X?j, we have no hope of computing ZZ-JJ, X;jXi;, nor there-

2
fore Y, X2 =", <Zj Xz-j) . Similar arguments of course apply to Y, ¥;? and >, X;V;.
Moreover, blindly using ZZ j Xz-zj, ZZ j YZ? and ZZ ; Xi;Yi; in their place will systemati-
cally underestimate the variability, to the extent that different queries and ad impressions
from the same user are correlated.

Put simply, the delta method fails for massive data whenever sharding has been done in
a manner inconsistent with the statistical dependence structure of the data—when the
exchangeable unit is coarser than the record unit. This phenomenon is illustrated with
real data in Section 5.

1.4. Costs and constraints. There are numerous costs associated with inference on mas-
sive data streams. Loosely, they can be grouped as follows.

e [teration cost. Increases with the number of required passes over the data, and
decreases as greater parallelization is acheived.

e Computation cost. Related to the complexity of the intermediate calculations per-
formed on each input record.

o Input/output (1/0) cost. These can be grouped into the cost associated with

1. Reading a record into memory.
2. Updating an estimator (e.g. incrementing a MapReduce sum).

3. Writing data to file for post-processing.

In this paper we assume that single-pass, highly parallel algorithms are available, and
that the computation required per input record is constant with respect to the uncer-
tainty estimation method chosen (from among those proposed). Hence iteration and
computation costs are less interesting than I/O cost.

The primary cost with which we shall concern ourselves is the storage and retrieval cost
associated with I/O, which we shall later summarize with a parameter b. Suppose, as is
often the case, that post-processing of our summary statistics must be performed, using
R software say, on a single machine. For example, we may wish to examine fine categorical
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ESTIMATING UNCERTAINTY FOR MASSIVE DATA STREAMS 7

slices of the advertiser population in order to isolate where an applied treatment has the
greatest impact. Typically, our data will have size proportional to b|K|. Put differently,
for a fixed amount of disk memory D, we can effectively only afford on the order of
D/IK| ‘degrees of freedom’ for use in estimating second-order statistics.

1.5. Looking ahead. The rest of the paper is organized as follows. In Sections 2 and 3 we
describe two competing but related approaches to solving the inference problem described
above, and investigate their properties. The first of these is a streaming analogue of
subsampling, and the second a streaming analogue of the bootstrap. The main theoretical
results of this paper will be to show that (a) the two methods have about equivalent
asymptotic performance, and (b) they are both, in a sense to be made more precise,
very close to their non-streaming counterparts. We close by illustrating our results via a
hybrid real/simulated data example in Section 5.

2. Streaming buckets. When analyzing stream data we are both cursed and blessed
by the typically large, and a priori unknown, sample size N. One simple way to use the
sample size to our advantage is to subdivide the statistical units into b approximately
equal sized groups, which we call ‘buckets’. The estimator computed from the jth bucket
is also based on a large number n ~ N/b of observations, and hence its distribution
is closely related to that of Oy. In particular, the variability among these b copies of
our statistic, which we term bucket replicates, can be used to approximate the sampling
uncertainty of Oy.

More precisely (and assuming that b divides N for simplicity), consider relabeling the
random objects with double indices, using the mapping X (;_1)p4; +— X7, with 1 <7 <b
and 1 < i < n. The jth bucket replicate can be defined as éj' = ¢g(X;) where X; =
S Xij] / n. When N and n are both large, the distribution of Xj is obviously close
to that of X; it is usually a small leap to conclude that g(-) preserves this relationship.
As we shall see, the precision of these estimators improves as the array implied by our
2-D indexing gets ‘fatter’, but the cost incurred also increases linearly.

2.1. Variance estimator. A natural estimator of 512\, which makes use of bucket replicates
is given by

(10) SR = TS Go g,

Technically (10) is closer in spirit to a mean-square error, and contains an additional
squared bias term. One could eliminate that concern by replacing 65 by 6;, the mean
estimate computed over b replicates. However, in typical situations the difference is neg-
ligible.

Note that with b fixed, €2 = Var(d?) and SZ .k is consistent for £2; provided

(11) T/ (TREX) — 1

as N — oo.
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8 N. CHAMANDY ET AL.

In most cases, 7, = y/n, and assumption (11) is reasonable by virtue of the delta method
approximation

(12) Var(g(X)) = g(n)'Var(X)g()
(13) = g(u)'Sg(n) /N
(14) EVaru X,)).

The estimator Sguck is closely related to that given by Carlstein in the context of station-
ary timeseries data (Carlstein, 1986). It is also closely related to the delete-h jackknife
(for h = (1 — 1/b)N) (Efron, 1982), the n out of N bootstrap (Bickel, Gotze and van
Zwet, 1997), and disjoint block subsampling (Politis, Romano and Wolf, 1999).

2.2. Plug-in estimator. A full-fledged application of the plug-in principle yields the
bucket empirical distribution

(15) Gl bzﬂ{m — i) < b,

which can be used as an approximation to the sampling distribution function Gy of Ry.
The distribution (15) can be used to construct approximate quantile-based confidence
intervals for 0. It is shown to be a consistent estimator of G in Section 4.

2.3. Streaming allocation. Until now in this section, we have assumed that each bucket
replicate is formed from exactly n = N/b independent units. When the data are stream-
ing, this can rarely be guaranteed; indeed, N is not even known in advance. Instead, each
new unit is “allocated” to replicate j with probability 1/b, analogously to a b-arm clinical
trial with continuous patient recruitment (and equal-sized treatment arms). When units
are sharded, as for web data, this must be done carefully. One approach is to introduce
a hash function

(16) f: 8= {user ID strings} — {0,1}%

mapping the space of unique user ID strings uniformly to the 64-bit integers. For User ¢
with ID s; € S, bucket allocation is then done using a pseudo random number generator
seeded with f(s;). This ensures that all of User i’s data will be mapped to the same
bucket, while not requiring any communication between two machines simulateneously
processing fragments of X.

The consequence of this random allocation is a mild inflation of our uncertainty estima-
tors. This is because replicate j is based on k; observations, where (k; )2’ 1 is a random
vector. If the total sample size NNV is fixed, then (k; )] 1 ~ Multinompy(1/b,...,1/b). We
later demonstrate that this added variance is negligible for large N.

Alternatively, one could model N as a Poisson random variable with mean A, whereby
k;j ~ Pois(n = A/b) are ii.d. In addition to being mathematically convenient, such
a model is arguably more realistic in applied problems where N represents a quantity,
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ESTIMATING UNCERTAINTY FOR MASSIVE DATA STREAMS 9

such as the number of users, which has day-to-day fluctuation and is of interest in its own
right. It also provides a natural segue to the streaming bootstrap introduced in the next
section. Nevertheless, in order to make minimal assumptions when stating later results,
we maintain a fixed sample size view of the streaming buckets procedure — equivalently,
we choose to make inference conditional on N.

3. The Poisson bootstrap. The standard nonparametric bootstrap procedure in-
volves repeated generation of i.i.d. Multinomy(1/N,...,1/N) random weight vectors.
This is infeasible when analyzing stream data, both because NNV is large and because N is
not even known until all data have been processed. Modifications to the bootstrap using
alternative weight vectors have been considered elsewhere both in generality (Praestgaard
and Wellner, 1993), and for specific choices (Rubin, 1981; Owen and Eckles, 2012).

One such approach uses i.i.d. Poisson random weights with mean 1, and is particularly
convenient mathematically. We discuss some properties of the Poisson bootstrap in later
sections, and its implementation in the MapReduce framework will be outlined in detail
in a future paper (Najmi and Naidu, 2012). The basic method has appeared sporadically
in the literature in various contexts (Hanley and MacGibbon, 2006; Oza and Russell,
2001; Lee and Clyde, 2004), but has not gained significant traction. It has been viewed
primarily as a computational trick, since drawing Poisson random variables can be easier
than drawing multinomial vectors. In the streaming setting the latter is actually not only
difficult, but impossible. The procedure can also be viewed as a bootstrap with random
resample size, which is appealing in its own right.

We briefly describe how to carry out the Poisson bootstrap. For each observation X;,
one draws b independent Pois(1) random variables my1, . .., m;,. The weight m;; describes
the number of times that unit ¢ contributes to bootstrap resample j. For the class of
statistics described above, the jth bootstrap replicate of T is given by

A B N N
(17) 07(X) = g(X5) =g (E mz’sz’/ > :mw) :
i=1 =1

In order to compute (17) over a streaming data source, it is necessary to ensure that all
fragments of data from the ith observation are given the same weight in each resample.
As in the previous section, we accomplish this in practice by seeding the random weight
sequence (m;;)j>1 with the user ID hash f(s;). The low-probability event {)_, m;; = 0}
causes obvious problems in (17); we ignore that technicality for the moment but consider
it in some detail in Section 4.

3.1. Variance estimator. The estimator of €%, analogous to (10) is given by

b

1 i ;
(18) Stoor = 3 D (B(X) = )%
j=1

Note that we do not need a normalization constant in (18) as we did in (10). This may be
seen as an advantage of the bootstrap in the rare application where 7 cannot be posited.

An alternative to Sgoot would replace 6 with the mean among bootstrap replicates, ég.

imsart-aoas ver. 2012/08/31 file: stream_paper.tex date: September 19, 2012



10 N. CHAMANDY ET AL.

3.2. Plug-in estimator. Just as in the streaming buckets procedure, we can approximate
the distribution of Ry via the empirical bootstrap replicate distribution

b
(19) Gy(a) = 3 S U (6 — ) <}

J=1

As is usual with bootstrap distributions, G’ () can be used to estimate more complicated
functionals of the distribution of Ry, such as quantiles. It is worth pointing out here
that Ry is usually not a pivotal quantity in our applications. This is because while
7n normalizes the distribution for asymptotic order, it does not remove dependence on
&n, which is of course unknown. As a consequence, some higher order properties often
associated with the bootstrap cannot be guaranteed in our problems (Hall, 1992).

4. Comparison with non-streaming methods. In this section we consider two
important comparisons. Firstly, we examine the properties of the variance estimators
SZ . and SE, . as they compare to the elusive (for massive data) delta method estimator
Si. We show that the replicate-based methods perform similarly, and are n times more
variable than the delta method. Next, we examine the proximity, in a stochastic sense,
of our streaming replication procedures to their non-streaming counterparts, namely
subsampling and the multinomial bootstrap. We show that in both cases the streaming
and non-streaming versions are closer to each other than either estimator is to the true

underlying empirical process defined by G .

In what follows we make a slight modification to the algorithms described above. Specif-
ically, if for any replicate j of the bootstrap (respectively, buckets) we obtain by chance
an empty resample (respectively, bucket), then the entire procedure should be rejected
and started again. The proofs of our main results demonstrate why this is necessary: it
boils down to the fact that for a Poisson variate M, E[1/M] is infinite unless we condition
on the event {M > 0} (and similarly for a binomial). Though abandoning the analysis
in this fashion after computing estimates would seem to violate the spirit of single-pass
algorithms, we shall see that this issue is not of practical import because of its expo-
nentially tiny probablity. In the Poisson bootstrap, rejection is equivalent to observing 0
for one of b i.i.d. Pois(NN) random variables; in streaming buckets, it corresponds to a 0
value for the minimum of b independent Binom(N,1/b) variates. We could alternatively
only reject those replicates for which 0’s are obseverved, but this would still require a
second pass over the data (or else lead to a random number of replicates b).

4.1. Bias of the variance. In the exceptional case that g is a linear function, the variance
estimators introduced above are all unbiased. In general, elementary calculations show
that the delta method variance estimator is consistent for 512\1 with its bias decaying as
N—3/2 (i.e. a relative error of order N~1/2). There are two sources of this bias: the first
is the linearization of g, viz. the approximation ¢(X) ~ g(u) + g(u)(X — u); the second
is a substitution of X for x4 inside g. The latter error is typically of order N~2, so it is
(relatively) unimportant. The following proposition asserts that on average, the Poisson
bootstrap does not do significantly worse than the delta method, while the streaming
buckets procedure does only slightly worse.
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ESTIMATING UNCERTAINTY FOR MASSIVE DATA STREAMS 11

PROPOSITION 1. Let BN(S?) = Bn(S?%,£%) = E[S?] — &3, denote the bias of an esti-
mator S% of 512\,. Suppose that b, N, and n = N/b all tend to infinity. Then:

1. BN(Sgoot) = BN(‘S%) = O(N_3/2)
2. By(Sirg) = OBIN=42).

The extra factor of b!/2 in the bias of the buckets procedure is precisely the penalty paid
for assuming that g(}_{j) has approximately the same distribution, suitably rescaled, as
g(X). Clearly, this assumption gets better as b approaches 1, and can be very poor when
b ~ N, so that each observation is its own bucket. Nevertheless, Proposition 1 asserts
that SZ,., is consistent (in a relative error sense), as long as b = o(N). In the example

presented in Section 5, the additional bias in Sguck is negligible.

4.2. Variance of the variance. As seen in the previous section, the delta method does
not necessarily offer any advantage over replication-based methods in terms of asymptotic
consistency. Where its merits become evident is in the stability of the variance estimates
produced for massive data. Note that for the sample mean case, where g(z) = z, it is
well known (Kendall and Stuart, 1969) that Var(S3) = [(N — 1)/N]?(2Var(X)?/(N —

1) + k4(X)). The following proposition begins by generalizing that result.

PROPOSITION 2.

(20) Var (S3) = <2§V + ra(9(X)) + Rg(F)) [1 +0 (N—I/Q)} :

N3

where Ry(F') depends on the first three derivatives of g at p, and on moments of X up
to order 3. In particular, if g is a linear mapping then R,(F) = 0.

Suppose that N,b, and n = N/b all tend to infinity. Then

2 26N
(21) Var (Sgoot) = T[l + o(1)].
If, in addition, b = o(N'/?), then

2 20y
(22) Var (Spuck) = —, [L+o(l)].

Hence the relative efficiency of the delta method vs. replicate-based variance estimation
s given by

(23) eff (SZ, S2 (buck)> =0 (n) asN,b (and n/b) — c.

More details are given in the Appendix, but if b > ¢N'/2 and ¢ is non-linear, then the
relative error in (22) is of order b/n, and therefore Var(SZ, ) = O(bN~3) instead of
O(b~'N~2). While S’goot can only get better as b — oo, Propositions 1 and 2 suggest
that a qualitative change in the behaviour of Sguck occurs if b grows too quickly relative
to N. The following corollary makes this more precise. It simply says that we can gain
precision in the bucketed variance estimator by increasing the number of buckets, but

not beyond that attained at the square root of the sample size.
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COROLLARY 3. For a given g, Gy and N, let byin denote the value of b = b(N) yielding

the smallest possible mean-square error for the bucket variance estimator Sguck. Then
bmin = O(N1/2) as N — oo.

It is worth noting that the theoretical turning point of b ~ N2 is unlikely to be
surpassed in the applications we have in mind. Even if N = 10°, this corresponds to
more than 30,000 bucket replicates. Surely, in the vast majority of problems one would
obtain adequate inference, even accurate percentile-based confidence intervals, with many
fewer replicates than this. From a storage cost perspective then, any additional accuracy
would rarely justify such a large b.

4.3. Empirical processes. In this section we demonstate that as random processes, and
subject to rejection in the case of zero sample size replicates, the Poisson bootstrap
“agrees” with the multinomial bootstrap to within o,(N~1/2), and streaming buckets
with a flavour of subsampling to within op(nfl/ 2). These facts, made more precise in
Theorem 4, imply that the proposed streaming methods immediately inherit the first-
order properties of their predecessors. The need for a rejection clause stems from the
fact that the exchangeable sampling weights cannot otherwise be normalized to sum to
1 with probability 1. We note here that the powerful main result in Praestgaard and
Wellner (1993) can be used to show consistency of the Poisson bootstrap and streaming
buckets empirical processes. Our Theorem 4 is a stronger result, proved indirectly by
appealing to the ordinary bootstrap and subsampling empirical processes.

We first define the Wasserstein distance between two probability distributions having
distribution functions G; and G5. This is defined relative to some Donsker class of
functions F (see Van der Vaart (1998) for a gentle introduction), as
(24) |G = Gallw = sup [E[H(G1) | X]—E[H(G2) | X]|,

HEBLy(F)
Where BL;(F) denotes the space of functions H : ¢*°(F) — R which are uniformly
Lipschitz with constant 1. Here we can think of F as the set of indicator functions
]]-(foo,x}? x eR.

Let ' = Fy denote the empirical distribution function of F. We also introduce the
following notation. Let F3; denote the multinomial bootstrap distribution, Fy* the Pois-
son bootstrap distribution, F'y the disjoint block subsampling distribution, and Fy*® the
streaming buckets distribution. More explicitly, given a random sample X from F', letting
p ~ Unif(Sy) denote a random permutation of {1,..., N}, and assuming for notational
convenience that N/b =n € N, we have:

N
(25)  dEn(x) =) 0x,(x)/N;
i=1

N
(26)  dFj(x) =) w}ox,(x), w* ~ Multinomy(1/N)/N;
=1

N N
27)  dF(x) = > wiox,(x), wit =mi/ Y mi, m; K Pois(1);
=1 =1
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N
(28)  dFy(x) = Zw¢'5xi (x), w =1{p(i) < n}/n;

(29) dF* Zw"éx = 1{p(i) < k}/k, k= Zkk " Bern(1/b).

Note that definitions (27) and (29) are subject to the same rejection constraints described
earlier in this section; in other words, they are conditional on {) . m; > 0} and {>_, k; >
0}, respectively. Applying the consistency result in Praestgaard and Wellner (1993) to the
processes (27) or (29) would require (in their notation) setting W; = Nw;™* or W; = nw,*®,
respectively.

Statements about the asymptotic properties of the bootstrap (respectively, subsampling)
are generally proved by bounding the difference, suitably scaled, between F' — F and
F*—F (respectively, F'® —F ) asymptotically. Specifically, these converge to a particular
Gaussian process at the rate of /N (respectively, \/n) (Van der Vaart, 1998; Politis,
Romano and Wolf, 1999) . The following result plggy—backs on that basic method of
proof by approximating the difference between F** — F and F* — F', and that between
F**—Fand F*—F.

THEOREM 4. Let X be a random sample of size N drawn from F, with the derived
distributions defined by (25)-(29). Take F* to be conditional on the event {Zfil m; >
0}, and F2® to be conditional on {3 k; > 0}. For simplicity assume that Ty = N/2.

1. (Proximity of Poisson and multinomial bootstrap)

(30) |VN(F = ) = VN(F = Fw)||| = 0N/

2. (Prozimity of streaming buckets and disjoint block subsampling)

(31) |[VaFR® = ) = Va(Fs — )| = 074

An equivalent statement of (30) and (31) is that the differences H\/N (FN—F%) ‘W and

lvn(FN® — Fy)ll,y are also of order N ~1/4 in probability. Thus Theorem 4 settles the
issue of the first-order validity of the streaming methods introduced in this paper, by
demonstrating that they are in general strictly closer to their non-streaming counterparts
than the latter procedures are to the ‘truth’, where truth is defined as the distribution
of Ry. Note that since ), m;; ~ Pois(N) and ), k;j ~ Binom(N,1/b) ~ Pois(n), the
probablity of having to make extra passes through the data is bounded by be™ for the
Poisson bootstrap and be™" for streaming buckets. Even if b ~ N€¢ for some arbitrary
¢ > 0, this probability is exponentially small.

5. Simulations and data. Here we present the results of a hybrid simulation and
real data example. Because simulating massive data streams on a single machine is in-
feasible, we used actual Google data and injected randomness by (a) creating synthetic
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‘experiments’ based on a hash of the user ID, and (b) randomly perturbing the data for
users in the ‘treatment’ group. Assignment to treatment was done orthogonally to the
hash function f used for our replication algorithms, similarly to how real Google experi-
ments are run (Tang et al., 2010). By construction, the record unit in this application is
a query, while the correct exchangeable unit is the user. We created independent ‘itera-
tions’ of this simulation using yet another orthogonal hash function. The result was 1000
identically distributed copies of a synthetic experiment data set, with average size equal
to 1% of daily Google traffic, drawn from a single pass over the data. There was slight
dependence between these copies, so the observed variability in our confidence intervals
is only a lower bound for what would typically occur in practice. Note that 1% is on the
low end of the range of sample sizes that we encounter in real applications; sample sizes
3 orders of magnitude higher are not uncommon.

The parameter p estimated in these simulations is a relative treatment difference of ratio
metrics, i.e. x = (2,9, z,w) and g(x) = (y/x)/(w/z) —1. Thus, Y /X (respectively W /Z)
is our estimate of the parameter of interest in the treatment group (respectively, control
group). Confidentiality prevents us from giving full details, but each ratio is a measure of
user satisfaction with their interaction with ads on Google search. The treatment effect
was induced by multiplication of Y by an indpendent random variable with mean 1.005;
thus p = 0.5%. In each iteration, the streaming buckets and Poisson boostrap procedures
were applied with b = 1000. This allowed us to easily compute replicate-based inference
for any b which is either less than 1000 (in the case of bootstrap), or a divisor of 1000
(in the case of buckets). We show results for b = 20, 100, 1000 here.

Note that since (X;,Y;) describes outcomes in the treatment, and (Z;, W;) describes out-
comes in the control, either X; =Y; = 0 or Z; = W; = 0 for every unit +—a unit cannot
be simultaneously in the two groups. We therefore considered both the naive variance
and plug-in estimators (which needlessly join pairs of treatment and control replicates),
and the unpaired refinement in which the sample variance is computed from all b2 combi-
nations of control and treatment replicates. The latter estimator is not discussed in detail
here, but can be shown to be about twice as efficient in certain situations (Chamandy
and Muralidharan, 2012). In all cases we constructed 90% confidence intervals for p on
the percent scale. A null (p = 0) simulation yielded similar results, and is not shown.

Figure 3 presents a visualization of the ‘standard’ symmetric, equal-tailed intervals com-
puted using the simple variance estimators (10) and (18), and the normal quantile
®1(0.95). Similar plots appearing in Figure 4 show ‘percentile’ intervals, computed
based on the 5th and 95th percentiles of the replicate distributions (15) and (19) (save
for the delta method panels in the top row, which assume normality and thus are com-
puted symmetrically in the standard way). Two variants of the delta method procedure
are also shown for comparison. The first is easlily computable, but naively assumes in-
dependence between queries issued by the same user, and underestimates the variance
accordingly. The second is computed with the aid of an expensive intermediate data join,
and assigns data to replicates at the user-level. Effectively this join creates a new data
source whose record unit is the exchangeable one, that is the user—such a procedure is
too expensive for most applications.

The visualization technique is a modification of that of Franz (2007). In the plots, each
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(a) Histogram of simulated parameter estimates (b) Quantile-quantile plot of simulated estimates

Fig 2: The empirical distribution of 1000 simulated estimates p = [(Y1/X1)/(Yo/Xo) —
1] x 100%. Both the histogram (a) and g-q plot (b) indicate that a normal approximation
may be adequate.

vertical segment represents a single iteration of the specified interval estimation pro-
cedure, with red indicating non-coverage of the true parameter value. Green indicates
detection of a non-zero treatment effect. The intervals are sorted by their point estimate,
so that jaggedness in the envelope of the segments illustrates variability in the procedure.
The efficiency gained in estimating variance via the delta method is evident in the top
row of the figures, where the curves traced by upper and lower interval endpoints are
very smooth. However, its practical advantage is more or less gone once we have reached
b = 1000 replicates in this example. The intervals built from only 20 replicates perform
poorly for these data, especially when the percentile method is used—although unpairing
the replicates noticeably improves the results, as it does for larger b (not shown).

The statistic chosen for this example is relatively well-behaved—see Figure 2—and overall
1000 replicates appears adequate for interval estimation. It is worth noting that because
the statistic is approximately normal, the ‘fight’ between the delta and replicate-based
methods in this example is not a fair one. The latter estimators can at best hope to
approach the smoothness of the delta method by paying for more replicates, but cannot
really improve in terms of average interval length or coverage. In problems where normal-
ity is a poor approximation, the delta method is very stable, but its confidence interval is
biased by construction since it ignores higher order cumulants. Therefore without modi-
fication, say using Edgeworth expansion, the delta method cannot hope to compete with
the percentile replicate-based intervals since they have asymptotically correct coverage
as b — oo.

6. Future work. As mentioned in Section 4, the streaming buckets and bootstrap
procedures introduced in this paper are but two instances in a richer class of algorithms.
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(a) Delta method, independent queries (b) Delta method, independent users
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(c) Buckets, b = 20 replicates (d) Bootstrap, b = 20 replicates
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(e) Buckets, b = 20 unpaired replicates (f) Bootstrap, b = 20 unpaired replicates
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(g) Buckets, b = 100 unpaired replicates (h) Bootstrap, b = 100 unpaired replicates
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(i) Buckets, b = 1000 unpaired replicates

(j) Bootstrap, b = 1000 unpaired replicates

Fig 3: Confidence intervals with nominal 90% coverage, constructed by both the delta
method and ‘standard’ method, assuming a normal distribution for the replicates. Each
vertical segment is one of 1000 iterations. (Red) Blue indicates (non-)coverage of the
true experimental effect p = 0.5%. Green rug indicates detection of a non-zero effect.
Empirical non-coverage in each tail and power are printed in each panel. Vertical axis is

on the percent scale.
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(a) Delta method, independent queries (b) Delta method, independent users
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(c¢) Buckets, b = 20 replicates (d) Bootstrap, b = 20 replicates
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< 70.056 0.618 < 70.075
(e) Buckets, b = 20 unpaired replicates (f) Bootstrap, b = 20 unpaired replicates
o] 0.053 o]
o] "
o o
3’0.055 0.599 2 0.05 ‘ 0.614
(g) Buckets, b = 100 unpaired replicates (h) Bootstrap, b = 100 unpaired replicates
| |
3'0.057 0.559 3'0.049 0.6
(i) Buckets, b = 1000 unpaired replicates (j) Bootstrap, b = 1000 unpaired replicates

Fig 4: Confidence intervals with nominal 90% coverage, constructed by both the delta
method and basic percentile method. Each vertical segment is one of 1000 iterations.
(Red) Blue indicates (non-)coverage of the true experimental effect p = 0.5%. Green rug
indicates detection of a non-zero effect. Empirical non-coverage in each tail and power
are printed in each panel. Vertical axis is on the percent scale.

imsart-aoas ver. 2012/08/31 file: stream_paper.tex date: September 19, 2012



18 N. CHAMANDY ET AL.

These can generally be described in the following steps:

1. Choose an array of non-negative weights W of dimensions N x b, both tending to
infinity, as well as a sequence of triangular arrays of scaling constants (TJZ?’ N)?:l;

2. Determine a streaming method for generating the weights W;

3. Pass over the data stream, and for any record belonging to Unit ¢, update the jth
replicate of the estimator, 9}-7 N, exactly w;; times;

4. Approximate the target distribution of TN(é ~ — 0) by the empirical distribution of

ij,N(éj,N —0n),7=1,...,b.

The weight array W can be quite general, and as we have illustrated can be determinstic
(in the case of buckets) or i.i.d. (Poisson bootstrap). One fundamental property which
must be satisfied for massive data streams is independence of the rows of W, which
avoids the need for cross-machine communication, and makes Item 2 feasible. Note that
the columns of W need not be independent; indeed they are not in the streaming buckets
algorithm. An interesting open statistical problem is to enumerate a minimal set of weak
conditions on W in order to make the streaming replication algorithm described above
‘work’, perhaps in the spirit of Theorem 4.

We believe that massive data streams have brought with them a New Frontier in statis-
tics, and indeed a shift in the way statisticians must think about inference. Such struc-
tures make certain operations almost trivial (e.g. density estimation, Bayesian priors),
while rendering others hopelessly infeasible (e.g. the delta method, multinomial sam-
pling). But in some cases, even when a traditional method fails badly for streaming
data, a subtle modification thereof may be sufficient to save the day.
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Appendix. Throughout this section we use the term delta method (often just DM)
to refer to the variant of Theorem 1 or 2 in Hurt (1976) which replaces his bounded-
ness condition on A with the polynomial boundedness requirement described in Oehlert
(1992), which is weaker than our own assumptions. (We write h in the place of Hurt’s g,
since for us g is already reserved for the original function of interest.)

We state the following lemma for use in the proofs below.

LEMMA 5. Let M ~ Pois(N) and k ~ Binom(N,1/b). Suppose N,b, and n = N/b all
tend to infinity. Then

E[|(N —1)/M —1||M > 0] = O(N~'/?)
. E[IN/M — 1|*2|M > 0] = O(N~1/4)
E[|n/k — 1|k > 0] = O(n~/?)

E [|n/k — 1|Y2k > 0] = O(n~1/4)

PROOF OF LEMMA 5. We first prove that E[[N/M —1||M > 0] = O(N~'/2). This is
sufficient to establish 1 and 2 of the lemma by Jensen’s inequality and the observation
[((N—=1)/M —1| <[(N —1)/N]|N/M — 1| +1/N. We start by evaluating the expectation

(32) EHZ—HMN_N'W>0} =E[|Yn[|M >0].

Note that Yy = (N — M)?/(NM). We partition the possible values of M into three cases
by defining 6 = /3logN/N - 0: A={1< M < (1-§)N}; B={(1—-0N <M<
(L+0)N}; C={(1+ )N < M}. We then apply the results of Glynn (1986) to bound
the expectations on A and C, as follows. Using Propositions 1(i) and 2(i) from Glynn
(1986), we have

(33) P{A} <B{l < M < [(1-6)N]}
(34) < P{M = [(1- 6)N]}/5
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(35) <P{M =N-(6N-1)}/)

(36) < (2xN) V2 exp{—(6N — 1)(6N — 2)/2N}/5

(37) = (8mlog N) /2 exp{—6*N/2 + 36/2 — 1/N}

(38) < Kaa(log N) ™2 exp{—02N/2}

(39) = Ka1(log N)"V/2N—3/2

for some constant K4 and large enough N. Note that on A, since M > 1, we can
also bound |Yy| by (N — 1)2/N < K4oN. Thus, for large enough N, E[|[Yy|14] <

K a(log N)~'/2N~1/2_ Similarly, we can use Propositions 1(ii) and 2(ii) from Glynn (1986)
to establish that

(40)  P{C} < P{M > [(1+0)NT}

N —1
(41) < P{M = [(1+6)NT} (1 - H1+c5)1\ﬂ+1>
< () exp{-[ONT([8N] - 1)/2N
(12 +[ANT([SN] = 1)(2[6N] — 1)/(12N?)}
(43) < Kcq L0 y-172 exp{—0°N/2 4 6/2}

(44) < Koa(log N)™'/2N =372,

Use |Yn| < [N/M — 1] + |(M — N)/N| < 14+ N~Y2IN"Y2(M — N)| on C. Since
E|N~Y2(M — N)| < 1, it follows that E{|Yy|Llc} < Koa(log N)"Y/2N=3/2 4 N=1/2 <
KcaN~Y/2, Finally, on B we have Yy = (N — M)?/(NM) < §2N?/[(1 — §)N?] =
62/(1 = 0) < kplog N/N. Thus E{|Yx|1g} < kglog N/N. Putting this all together, we
have E [|Yn||M > 0] = P{M > 0} 'E[|Yx|L{as50y] = O(N~'/2). Therefore

(45)  E[IN/M —1||M > 0] < E{|Yn||M > 0} + N"V2E{|]M — N|/N} < KN~'/?
for some K, establishing 1 and 2 of the lemma.

Parts 3 and 4 of the lemma are proved very similarly, except that we can make use of
the well-known Chernoff bounds for a sum of Bernoulli random variables rather than
the somewhat clumsier Poisson bounds. That is, we set § = y/3logn/n, partition the
expectation by comparing k to (1 + d)n, and use

(46) P{k < (1—68)n} <e "2 =n=32 P{k>(1+0m}<e 3 =n1

We omit the remaining details. O

PROOF OF PROPOSITION 1. We assume that p = 1 for simplicity of exposition, but the
proof of the general case is similar. As mentioned, we make heavy use of the results
outlined by Oehlert (1992), who cites Hurt (1976).

We can decompose the target QQV as follows:

(47) Var(g(X)) = E | (9(X) — 9()°] = (Eg(X) — g(u))* .
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The second term in (47) is of order O(N~2) by Equation (2) in Oehlert (1992) (a single
term delta method). The first term can be handled by applying Equation (3) in Oehlert
(1992) with the function h(x) = (g(z) — g(u))?, and taking q = 2. This yields

(48) Var(g(X)) = h(u) + b (WE(X — p) + h"(n)Var(X)/2 + O(N~*/?)
(49) = g/(1)*Var(X) + O(N~%/%)
(50) = SA +[g'(0)* — ¢'(X)*]Var(X) + O(N*72).

Applying the same result to the function h(z) = ¢/(x)?, and ¢ = 1, we see that ¢'(X)? —
g (n)? = O(N—1), whereby Var(g(X)) = SZ + O(NfS/Q).

Next, we consider E(SZ, ) = E [(g(X*) — g(X))?], where X* denotes a generic resam-
pled sample mean. Note that vV N((X*, X) — (i, p)") LA N(0,X), where

02<1+(N—1)IE[1/M] 1 >

We can therefore apply the multivariate DM (see Theorem 2 in Hurt (1976)), with the
function of interest being h(a, b) = (g(a)—g(b))?. Note that h(u, 1) = 0 and its derivatives
are given by

ha(a,b) = 2¢'(a)(g(a) — g(b))

hy(a,b) = —24'(b)(g(a) — g(b))
haa(a,b) = 2[g"(a)(g(a) — g(b)) + ¢'(a)?]
hp(a,b) = 2[g"(b)(g(a) — g(b)) — ¢'(b)?]
ha(a,b) = —24'(a)g' (b).

Thus he(p, 1) = hy(p, 1) = 0, and haq = hyy = 29" (1)? = —hap at (1, p).

The conclusion of DM is therefore that

(52) E[(9(X*) —g(X))?] = E[n(X*, X) — h(p, p)]
(53) = M;VW(N — DE[1/M] + O(N~3/2)
(54) = {Var(g(X)) + O(N %) } (N = )E[1/M] + O(N /%),

[Note that going to ¢ = 3 in the above application of Theorem 2 in Hurt (1976) shows
the error in (53) is actually O(N~2), a fact which we use later.] Now we need only to
apply, from Lemma 5, that (N — 1)E[1/M] = 1 + O(N~2) to complete the proof of
part 1.

For part 2, consider the jth term of Sguck. We apply the same trick as above, but to

_ _ 112
the random vector <Xj, \/BX) ~ ((,u, Vi), %2 < Eb[?{/k;]] b 1 >>, and the function

h(u,v) = (g(u) — g(v/ﬁ))Q. We have

(55) E [(9(X;) = 9(X))’] = E[h(X}, X))]
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9w [ [n] 1 3/

(56) = p E B 2 +O0(n™°"%)
g/(,U/ 20.2 1 372

SRV - .
(57) - 2 +O(n™°"%)
Summing over j and dividing by b(b — 1) gives

2 _ 9'(#)202 b . } -1, —3/2
! 2 .2

(59) =L 7 (’j& T OWAN )
(60) = Var(X) + O(b!/2N—3/2),

O

PROOF OF PROPOSITION 2. Once again we work in one dimension for simplicity. The
first part of the proposition is proved by expanding each of the following with an applica-
tion of DM: Var(S3%), Var(g(X))?, and r4(g(X)) = E[(g(X) — E[g(X)])*] — 3Var(g(X))2.
For the first of these we apply the multivariate version in Theorem 2 of Hurt (1976),
with the function h(X, R) = ¢/(X)?R, with R = (N — 1)/NS? (the biased sample vari-
ance), and q = 1. Since hy o(u, (N — 1)/No?) = 2[(N — 1)/N]g'(1)g" (n)o?, ho1(p, (N —
1)/No?) = ¢'(1)? and Cov(X,S?) = Nk3/(N — 1), this results in

(61) Var(S3) = Var(h(X,R))/N*

()20 + k1) 49" ()" ()20 Ag'(1)3g" (w)o3ks 72
(62) = 3 + e + 3 +O(N7/?),

Next, we can write

(63)
3 mre / amy / (3) o2 amtrs 2
Var(g(X)? = {g w)o? e s, o0 )o? o 1)° +O(N_3)}
/ 454 2 3 1 2k 2d' (11)3g(3) o0 / 2 1 2456
:g(MN)2 L 29 () }GV?EM) 3, Q(M)]!\J]S (e | g'(w) ]QV?EM)
(64) +O(N™4.

For the last piece, we can expand the function h(z) = (g(x) — c)* with ¢ = Eg(X), which
gives

E[(9(X) — Eg(X))"] = N + 5 .

(65) +O(N™h.

—15¢'(1)*g" (n)?0® | 18¢'(1)*g" ()0 ks + (! [304 M}

Combining these, we have after some algebra that
(66)
Ry(F) = lim N? {Var(sg) —

N—oo

2Var(g(X))?

IO gj(g(%) - Eg(£))"] + 3Var<g<X>>2}
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29 ,

(67) =g (wyg" (w0 — 119" (09" (n)o?ss + 6g'(1)°9'*) (1)

This establishes the result for S%. Note that the function R,(F) may look different if
p > 1, but it will still vanish for linear functions g.

Next we treat the bootstrap case in some detail, leaving the (similar) buckets arguments
to the reader. Let ny = E[(N — 1)/M] and recall that Var(X*) = (1 + nx)o?/N. This
proof uses similar ideas to that of Proposition 1, but requires more terms in the various
DM expansions. We must compute terms of the form

(68)  Ci = Cov ((9(X) = 9(X)* (9(X) - 9(X7))*)

(69) = E[(4(X) ~ 9(X})* (o(X) — 9(X1))?] ~ E[(0(X) — 9(x)?]"
(70) =4+ Cna.

The square root of Cn 2 was expanded in the previous proof. A more careful analysis,
using the fact that E[(X — u)3] = k3(X) = O(N~2) along with some conditioning
arguments, shows that the O(N~3/2) term in (53) is in fact O(N~2). Hence
/ 4 4
9' (1)
(71) Cna = Nz

Likewise, for the same reason the following also holds:

¥ (1+O(NTh).

/ 4 4
(72) &% = Var(g(X))? = g(’;\;f (L+O(N).

Using another application of DM, we can write

(73)  CFy =g (W {EI(X - w)*] — 4E[(X — p)* (X} — )]

(74) +2E[(X — p)2(XF — )] + E[(X] — (X} — p)?)
(75) +AR[(X — p)2(XF — p)(Xf — )]

(76) — 4E[(X — )(X] — (X} — )]}

(77) + (degree 5 terms) + O(N )

Each degree 4 term can be examined using the relation
(78) E[XYZW]|=ry(X,Y,Z, W)+ EXY|E[ZW]+ E[XZ]E[YW] + E[XW]E[]Y Z].

All of the k4 terms in C']jf , can be shown (by conditioning on the bootstrap weights and

using the result in Brillinger (1969) to be of order N3, and can be ignored. When j # k,
it is easily seen that COV(XJ*, X;) = 0?/N. After some algebra, we therefore have

ik g (p)ta?
(79) Ona ="z

Putting this all together, we have

(14 261) nk + O(N~3).

b
1
(80) Var Sboot :bjzz C]JVl—i-CNQ

b
j=1k=1
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(81) = ;W (3bmi + b(b — V), — b + B°O(N 1))
/ 454
(52) = TR (14 O(b/)
26N —1/2
(83) = =N (1 +O(N )) (1+O(b/N)).

In particular, we have shown that the o(1) relative error in this approximation to the
variance of SZ_, is given by O (maX{N_l/Q, n_l}). In the case of SZ,, (not derived here)
similar calculations lead to a relative error of O (max{b/n,b~'}). The b/n term involves
higher order derivatives of g, and therefore vanishes for linear functions. O

PrOOF OF COROLLARY 3. The proof is by contradiction. As a shorthand, we write Sg
to denote the estimator SZ,, built from b buckets. We can ignore the O(bN ~3) relative
error term in (22) since it is of the same order as By(SZ)2. Suppose that b = o(N'/2).
Then there exists a sequence Sy such that b8y — oo and N~Y28y — 0. Therefore
Bn(52)% and BN(SéN)2 are both o(N~%/2) = o(b~'N~2), whereby MSE(S%N)/I\/ISE(Sg)
behaves like Var(S%N)/Var(Sg) ~ b/Bn — 0. Now suppose that bN~1/2 — oo. In that
case, the O(bN~3) terms dominates the MSE, and therefore we can choose a sequence
Bn = o(b) such that MSE(S%N)/MSE(S(?) ~ Bn/b— 0. O

PROOF OF THEOREM 4. We give details for part 1 (the bootstrap), and only a sketch
of part 2 (buckets), which is similar.

1. (Poisson bootstrap).
The proof is done in two parts. We first obtain a bound on the expected Euclidean
distance between the multinomial bootstrap weights and the Poisson bootstrap
weight. Secondly, we show how this bound carries through to Wasserstein distance
between their empirical processes.
For the first part, we employ the equivalent characterization of the Poisson boot-
strap as a multinomial bootstrap where each resample is of a random size M =
>, m;j, distributed as Pois(IV). Consider the following coupling, for a single boot-
strap resample. Let

84
85
86
87
88

M ~ Pois(N)
V ~ Multinom(M — N1{M > N},1/N)
Y ~ Multinom(N — M1{M < N},1/N)
w* = (Y +VI{M < N})/N
w™ = (YL{M > N} + V)/M.

A~ N I/~ /N
— — — Y— ~—

It is readily seen by conditioning on the sign of M — N that w* and w™ have
the correct marginal distributions prescribed by (26) and (27). Without loss of
generality suppose that M < N, so that V ~ Multinom(M,1/N) and Y ~
Multinom(N — M,1/N) (the M > N case is proved similarly). We have

(89)  E[llw* —w™3M] =E[IIY/N + (1/M — 1/N)V|[3|M]
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(90) =E[|(1/N)(Y = [(N = M)/M]1)+

(91) (1/M = 1/N)(V — (M/N)1)|3|M]

(92) = (1/N)*tr(Var(Y)) + (1/M — 1/N)*tr(Var(V))
1 1\ (N

(93) _N(l_N> (M_1>

(94) <]1V’]\]\;_1'.

Thus E [||w* — w*™*||o|M] < N~V2(N/M —1)Y/2,

Note that the previous calculation was conditional on M, and made no use of the

fact that it is Poisson. Therefore we can replace it with any nonnegative-integer-

valued distribution above, in particular the Poisson distribution with mean N left-

truncated at 1. By part 2 of Lemma 5, E [||w* — w**||2] = E{E [||w* — w**||2|M]} =

O(N—3/4),

Recall (Van der Vaart, 1998) that the F induces a metric [|G1—Ga |7 = sup;c 7 ([ fdG1 — [ f dG2),
and also that it has a square-integrable envelope function B(x) = supscr |f(7)].

For any H € BLy(F), we have

(95)
’]E [H (JN(F* - F)) ’ X] _E H (\/N(F** - F)) ‘ X} ‘
(96) <E :‘H<\/N(F*—F)) —H(\/N(F**—F))‘ ‘X}
(97) <E :H\/ﬁ(F*—F)—\/JV(F**—F)HJT’X]
(98) —E :H\/N(F*fF**) F‘X]
(99) =VNE [_HF* — F7| 7 X]
(100) =VNE s (/ fdF* — /de) X
(101) =VNE -?fé%’i (Z wif (Xi) = Y wi'f <X,~>> ‘ X]
(102) <VNE -]SCIEJE_)_ (Zf (X;) |wr — w > ' X]
(103) <VNE -ZB (X)) |wf — w* X]
(104) VN 2§<xi>E hut — ]
(105) = VNS B (X)E[Jut —w,].
(106) <VN (}V > <xz->> E [t —w ]
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(107) < (le > B (X,-)) 0 (N*l/‘*) .

Because x; are .i.d. ~ F, (1/N) Y, B(x;) = [ BdF almost surely, and in particu-
lar, (1/N) >, B(x;) = Op(1) is bounded in probability. We have therefore shown
that

(108) IVN(F* = F) = VN(F** = F)llw = Op(N~'/*).

. (Buckets). The proof of part 2 of the theorem follows along much the same lines.

The coupling of Fiy and F5*® is constructed as follows. We use Sy to denote the
symmetric group of order N.

p~ U(Sn)

k ~ Binom(N,1/b)
w® = p(1,,0y_,)/n
w®® = p(1y, Oy _y)/k.

It is easy to see that under this construction,

)

1 n
11 o (X} 2:7‘7_1
(13) fw® —w* = |7

which nicely parallels (94). We can therefore use part 4 of Lemma 5 to bound
the expected FEuclidean distance between the weight vectors. The rest of the proof
proceeds much as before.
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