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Abstract
We introduce a technique for dynamically applying
contextually-derived language models to a state-of-the-art
speech recognition system. These generally small-footprint
models can be seen as a generalization of cache-based models
[1], whereby contextually salient n-grams are derived from
relevant sources (not just user generated language) to produce
a model intended for combination with the baseline language
model. The derived models are applied during first-pass decod-
ing as a form of on-the-fly composition between the decoder
search graph and the set of weighted contextual n-grams. We
present a construction algorithm which takes a trie representing
the contextual n-grams and produces a weighted finite state
automaton which is more compact than a standard n-gram
machine. Finally, we present a set of empirical results on the
recognition of spoken search queries where a contextual model
encoding recent trending queries is applied using the proposed
technique.
Index Terms: speech recognition, language modeling

1. Introduction
The context within which an utterance is made can influence
the expectation of what was spoken. For example, the loca-
tion of an individual when making a voice query on their mo-
bile phone can influence the likelihood of certain words and
phrases, such as place names in the same region as the speaker.
Other contextual side information could also be of similar util-
ity, including temporal or seasonal information, previously ob-
served individual language use or actions, or the specific appli-
cation being used with spoken input. In the case of applications
such as voice search, particularly newsworthy or trending items
may have higher likelihood in the moment than estimated by the
static, general-purpose language model.

In many such cases, the relevant information is not static,
and hence must be derived and served on-the-fly. The amount
of data associated with any particular source of side informa-
tion may not be of particularly large scale and often is not re-
ally intended to be a representative sample over all strings of
words from the vocabulary. For example, one may have access
to a list of frequently queried locations within a certain distance
from the speaker; or a relatively small but recent sample of the
speaker’s previous queries, such as is often used to produce a
recency cache [1]. Models derived from such sources are gen-
erally not robust, large vocabulary models that would be used
on their own for general speech recognition. Rather, they are
intended to be used in conjunction with a baseline large vocab-
ulary model, to bias recognition towards words and phrases for
which there is external evidence of increased (or possibly de-
creased) likelihood.

Most approaches to modifying a static, baseline language

model with contextual or in-domain information takes the form
of building an in-domain model and performing model inter-
polation, i.e., mixing the probability distributions in one of a
number of standard ways [2]. In the current paper, we explore
a new method for exploiting in-domain or contextually salient
n-grams, which biases the weights of a subset of n-grams while
leaving the weights of all others alone. This is effected by com-
posing a weighted finite-state transducer (WFST) representing
the baseline model with a compact WFST representation of the
set of n-grams being biased. This compact representation uses
special arcs (ε and ρ arcs, see details in section 2.1) so that ev-
ery n-gram in the original model survives the composition with
a weight that is only changed from the original weight for the n-
grams in the specified subset. This contrasts with typical model
mixing or rescoring methods, where the scores of all n-grams
are modified. One might think of these as generalizations of
cache language models [1], whereby collections of salient n-
grams (however that saliency is determined) are used to bias
recognition towards them. The approach in this paper gen-
eralizes the sources of such small n-gram collections beyond
user generated language, as well as the kinds of composition
functions that are used to combine the scores with the baseline
model. See Section 4 for further discussion of related work.

We present results using biasing WFSTs derived from re-
cently trending n-grams within a voice search application (for
additional applications see [11]). The models are applied in a
rapid rescoring scenario, meaning that the model is composed
with a very large set of possible extensions to the lattice being
constructed prior to pruning during first-pass recognition. We
demonstrate significant improvements in recognition accuracy
by the use of these methods on a test set of expected fast rising
queries, while remaining neutral on general voice search traf-
fic.

2. Methods
To perform composition-based on-the-fly rescoring, a set of n-
grams and target costs for those n-grams must be selected, and
this weighted set must be compiled into a data structure for use.
Before discussing (in section 2.2) how the n-grams were se-
lected in the case studied in this paper, we first present methods
for compiling the selected set into an efficient finite-state repre-
sentation and combining with the decoder graph.

2.1. Composition-based on-the-fly rescoring

2.1.1. Weighted finite-state compilation

We compile a given set of n-grams into a weighted finite-state
transducer (WFST) representation. Figure 1 presents a standard
trie structure representing a small set of n-grams. Each node in
the trie has a suffix link (represented with a dotted line arc) to
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Figure 1: Example of trie representation of n-grams in a given set,
and compact (minimal) WFST representing the same set. Bold circles
in the trie represent leaf nodes, and dotted arcs represent suffix links.
In the WFST, dotted arcs represent either φ or ρ transitions, which are
traversed only in the absence of a matching symbol.

the node in the trie representing the longest proper suffix of the
node, or to the root node if no proper suffix exists in the trie.
(Suffix links to the root are omitted for clarity.) Bold circles
represent leaf nodes, and the path from root to leaf determines
the n-gram being stored.

The WFST below the trie in Figure 1 encodes the same set
of n-grams (plus some extra information) more compactly. State
0 represents the initial state, and there is a state for every proper
prefix of an n-gram in the set: state 1 represents the prefix ‘a’;
state 2 represents ‘d’; and states 3, 4 and 5 represent ‘aa’, ‘dd’
and ‘aac’, respectively. Each of these states is reached from the
initial state via a path of ascending arcs labeled with the prefix
n-gram. Each state has a failure arc (denoted with a dotted line
and labeled with either φ or ρ) that is traversed only when trying
to match with a symbol that does not label any arc leaving that
state (an ‘otherwise’ arc). A φ arc is traversed without consum-
ing the symbol being matched, just as with an ε arc. The ρ arc
leaving state 0 consumes the symbol being matched (leaving it
unchanged), so that the WFST successfully composes with any
arbitrary input sequence. For example, the sequence “a d g b”
would successfully compose with the WFST in Figure 1 by fol-
lowing sequence: start in state 0; ‘a’ transition from state 0 to
state 1; ‘d’ transition to state 2; ’φ transition to state 0 (because
there is no arc with ‘g’ leaving state 2); ρ transition to state 0 (no
arc with ‘g’ leaving state 0); and finally ‘b’ transition to state 0.

Note that there are two kinds of transitions in the WFST
– those which carry the weights that were provided with the
list of n-grams, and those that have no labeled weight, but are
required in order to access the correct states for detecting when
an n-gram in the set is found. See section 2.1.2 for details on
how the generalized composition works with weight-carrying
arcs as well as non-weight-carrying arcs.

This WFST structure is similar to standard WFST n-gram
representations [3], but has some key differences. Whereas in
standard n-gram WFSTs, failure transitions are used to encode
backoff arcs that have as destination the backoff history (the
suffix of length exactly one symbol less than the current his-
tory), in the current representation the failure arcs point to the
longest suffix that has a state in the WFST. Hence state 5 in the
WFST in Figure 1 (representing the history ‘aac’) has a failure
arc pointing to state 0 (no history) because there is no proper
suffix of ‘aac’ that has a state in the WFST. In other words,
there is no suffix of ‘aac’ that is a proper prefix of an n-gram

in the set. Second, unlike a backoff n-gram model, the failure
arcs do not carry a backoff weight, but are non-weight-carrying
arcs. Finally, this WFST must distinguish in general between
weight-carrying and non-weight-carrying arcs, the latter includ-
ing failure arcs and those required to reach weight carrying arcs
from the initial state.

We note that this WFST encoding is very similar to that for
log-linear models in [4], and that paper proved that this repre-
sentation is minimal for a given set of n-gram features.

2.1.2. Generalized Composition

We introduce the notion of a generalized composition1 that we
will apply between the n-gram WFST and the general language
model being used in the first-pass decoder. Standard composi-
tion under a tropical semiring combines the scores of matched
arcs (arrived at via matched paths), by summing the scores. In
the context of probabilistic n-gram language models, we repre-
sent the score of a word given it’s history as the negative log
conditional probability, − log(p(w|H)). Composition of two
n-gram models in the tropical semiring is equivalent to multi-
plying the probabilities of each model2.

Given the compact biasing WFSTs generated from our con-
textual source, we adopt a general mechanism for combining
model scores, defined in equation 1.

s(w|H) =

{
C(sG(w|H), sB(w|H)) if (w|H) ∈ B

sG(w|H) otherwise (1)

Here, sG(w|H) is the raw score from the baseline grammar
for the word w leaving history state H and sB(w|H) is the
raw score for the biasing model, if such a score is provided.
We define the function C(sG(w|H), sB(w|H)) to replace the
semiring multiplication operation, e.g., addition in the tropical
semiring. Some alternative score combining functions follow.

C′(sG(w|H), sB(w|H)) = (2){
α ∗ sG(w|H) + β ∗ sB(w|H) // LL

− log(α ∗ exp(−sG(w|H)) + β ∗ exp(−sB(w|H)) // LIN

Equation 2 defines the function C′ which combines the gen-
eral language model score with the biasing model in either a
log-linear (labeled LL) or linear (labeled LIN) manner. As our
scores are negative log conditional probabilities, a sum of the
scores is equivalent to a log-linear combination of the probabil-
ities. Finally, we provide a mechanism that restricts the biasing
to only be applied if it improves the score. In equation 3 we de-
fine the positive biasing function which applies this restriction.

C′′(sG(w|H), sB(w|H)) = (3)
min(sG(w|H), C′(sG(w|H))

2.1.3. Dynamic Decoding

We perform dynamic decoding of input speech similar to that
described in [5]. Given a CLG (a composition of the context-
dependent phone model, lexicon, and general language model),
we perform time-synchronous decoding via beam search. As in

1This generalization of composition may no longer be compatible
with the semiring to give invariance with respect to the topology of its
inputs. We retained the name, qualified by generalized, since we do not
need that invariance in our applications and the underlying algorithmic
steps are otherwise identical.

2We omit the details of standard n-gram model merging as it requires
proper merging of backoff transitions, etc.



[5] we build a pseudo-deterministic word-lattice during decod-
ing. It is at this point where we apply an on-the-fly composition
[6, 7] with the above WFST representing the set of n-grams
to bias. In order to perform this during decoding, we build the
cross-product of the decoder states and the biasing WFST states.
When a word-emitting arc is traversed, we look up the exten-
sion of the previous state in the biasing WFST, and if found, we
combine this state with the current decoder state.

2.2. Training contextual models

We explore a specific contextual model that is dependent on
time, which we refer to as a recency model. It is trained from
queries that appear in general search traffic more often within a
specific recent time period than in the past. We use this model
to bias the baseline model until it is replaced with a new recency
model. Although there are no inherent constraints on how fre-
quently we can update the recency model, for this paper they
are updated daily. A pipeline extracts fast rising queries from
our search traffic and uses them to train the recency model.

Given a set of fast rising queries, it can be tricky to assign
the target scores sB(w|H) required for the sequence of words in
a selected query. Should all substrings of the selected queries be
biased, or only full queries? How can the query counts derived
from fast rising query selection be compared to the probabilities
in the baseline model in order to derive the scale of the bias,
particularly since the selected data set is very small relative to
the general language model training data?

For this paper, we build a smoothed trigram model3 from
the selected queries, then score every prefix of queries in
the collected set (including full queries) with the language
model score for the word given the history. For exam-
ple, given the query ‘storm in new york’, we select the n-
grams ‘storm’, ‘storm in’, ‘storm in new’, and ‘storm in new
york’ to appear in the set of biased n-grams, with the corre-
sponding weights derived from the model: -log p(storm|<s>),
-log p(in|<s>, storm) and so on. All higher order n-gram prob-
abilities are approximated with the smoothed trigram probabil-
ities, but the full higher order n-gram is included in the set of
selected n-grams. Biasing only prefixes of queries, rather than
all substrings (as an n-gram model would do), has the benefit of
compactness (see section 2.1.1), but also targets the bias more
strictly on the queries of interest, e.g., we can bias ‘storm in
new york’, without having to worry about the model biasing the
suffixes ‘in new york’, ‘new york’, etc., in all contexts.

3. Experiments
We use two manually transcribed test sets to evaluate the per-
formance of biasing WFSTs in the context of recency, drawn
from randomized, anonymized voice-search traffic. The first
test set VOICE-SEARCH (41295 words) is a sample from gen-
eral voice search traffic, and tracks any regressions that appear
by biasing recent queries. The other test set RECENCY (25254
words) contains utterances we expect are fast rising queries. We
mark an utterance as a fast rising query if the pronunciation se-
quence of that utterance is high for that day compared to the
average over the past 5 weeks. The test sets have utterances
over the course of 3 months (201402 - 201404), and we have
a recency model pre-built for each day. For each utterance we
pick the most recently built recency model, and use it to bias the
baseline model.

3A low order model is used due to the relative sparsity of data.

Figure 2: WER with varying interpolation weights for recency, α. In-
terpolation weight for the baseline model is 1− α.

3.1. Model interpolation

We explore the effect of different interpolation weights with
log-linear interpolation between the baseline model and the re-
cency model. With positive biasing (Eq. 3), Figure 2 shows
that we can get more than 7% relative WER gain when mix-
ing the two models with equal interpolation weights, with a
relatively small loss on general voice search traffic. As ex-
pected, there is a pair of interpolation weights that give us max-
imum WER gain on the RECENCY test sets, while the WER for
VOICE-SEARCH increases with heavier biasing towards the re-
cency model. Figure 2 also shows the importance of positive bi-
asing in the recency model. Without positive biasing, the WER
increases to 17.0 for RECENCY and 14.7 for VOICE-SEARCH
with equal interpolation weights.

In practice, we can find the optimal operating pair of inter-
polation weights on a held out dev set, and use those instead.
A simple 2-fold cross validation shows that, α = 0.7, results
in maximum WER gain on the RECENCY dev set, and with that
pair of interpolation weights we get a similar relative WER gain
of 7% on the held out RECENCY test set.

3.2. Biasing WFST vs N-gram model

In order to compare the effect of the biasing WFST represen-
tation with the standard n-gram model, we use both represen-
tations to do on-the-fly rescoring for recency models. With
equal interpolation weights of 0.5, on-the-fly rescoring with a
standard n-gram model results in 16.5 WER on the RECENCY
test set and 12.6 on the VOICE-SEARCH test set. This is
close to the WER with the biasing WFST representation, which
achieves 16.2 and 12.5, respectively. Although the n-gram
model does properly handle backoffs, it biases all possible sub-
strings of extracted queries (as mentioned with the examples in
Section 2.2), whereas the biasing WFST selectively biases only
prefixes of extracted queries.

The use of a biasing WFST also enables the decoder to
generate a better lattice for second pass rescoring, as relevant
words will be biased towards being included in the final lat-
tice. This can be measured using oracle normalized sentence
accuracy (ONSACC) which calculates the oracle sentence ac-
curacy from the generated lattice. The biasing WFST increases
ONSACC from 77.7 to 78.9 for the RECENCY test set over the
baseline, and from 84.8 to 84.9 for VOICE-SEARCH test set.

Yet another benefit of the biasing WFST representation is
its compact size. As shown in Table 1, the biasing WFSTs have
on average an approximately 60% reduction in bytes and num-



Model Size(MB) States Arcs
N-gram 2.69 46579 143905

Biasing WFST 1.08 16436 50296
Table 1: Average size comparison of N-gram and biasing WFST rep-
resentations.

ber of states and arcs versus the n-gram representation.

3.3. On-the-fly rescoring vs model mixed language model

We also compared the difference between applying a biasing
WFST on-the-fly versus simply applying a similar composition
off-line and using the composed model as the first-pass LM.
Off-line composition is effectively a form of model merging,
where we derive a model which produces the scores that would
have been obtained by combining the scores from each model
(the baseline and the biasing model). We do this first by trans-
forming the biasing WFST to a full n-gram model topology and
then mapping both models to a topology that contains all n-
gram states needed by the pair of models. Finally, we apply our
generalized composition function to combine the scores.

RECENCY VOICE-SEARCH
Model 1st-pass 2nd-pass 1st-pass 2nd-pass

Baseline 20.1 17.6 13.4 12.4
On-the-fly 17.7 16.2 13.5 12.5
Off-line 17.3 15.8 13.5 12.4

Table 2: Results, reported in WER, comparing the effect of no biasing
model (Baseline), the on-the-fly application of the biasing WFST and
the off-line composition of the biasing model applied as a first-pass LM.

Table 2 shows the results for off-line composition of the
models and using the composed model as the first-pass LM (i.e.,
the G of the CLG). As expected, there is a benefit to performing
off-line composition of the biasing WFST, because some prun-
ing (though not all) is performed prior to on-the-fly rescoring,
relying solely on the first-pass model. On-the-fly composition
loses 0.4% absolute of the total 1.8% WER reduction in the full
two-pass biased recognizer.

Our presented methods can be applied to cases where this
off-line CLG construction would be infeasible: contexts which
change frequently (e.g., per utterance) or which are too detailed
and numerous to permit separate full models for each. The two
constraints which we are working with are time (required to
perform composition before model can be used) and space (re-
quired to store and serve the potentially many large models).

3.4. Analysis

To get a sense of how biasing impacts specific recency-related
examples, we selected utterances that have the following n-
grams in the recognized transcripts: ‘Charlie’ and ‘winter storm
J’ from dates January 17 and 27, 2015. These are dates where
search queries for ‘Charlie Hebdo’ and ‘winter storm Juno’
peaked respectively. We re-recognized these utterances using
on-the-fly rescoring with a recency biasing WFST. Table 3 cap-
tures some of the common misrecognitions we have without re-
cency biasing. Overall, with the biasing WFST, we see a 10%
increase in the number of utterances with the hypothesis ‘Char-
lie Hebdo’, 32% increase for ‘je suis Charlie’ and 589% in-
crease for ‘winter storm Juno’.

4. Related Work
N-gram model adaptation most commonly takes the form of
model mixing or MAP adaptation (see [2] for a presentation
of such methods for multinomial models in general), whereby

N-gram Incorrect recognition examples
Charlie Hebdo Charlie Abdo, Charlie had to go cover,

French magazine Charlie Eppes, who is
Charlie Hipp do

je suis Charlie Jay sweet Charlie, jesli Charlie, trans-
late just sweet Charlie

winter storm Juno pictures of winter storm Juneau, power
outages winter storm Juneau east coast,
who named winter storm Juneau

Table 3: Incorrect recognition examples of n-grams without recency
biasing. With recency biasing, the italicized n-grams are properly re-
placed with the n-gram on left.

in-domain and out-of-domain models are mixed based on pa-
rameters derived for each history that occurs in either model. In
such approaches, to ensure proper normalization, the parame-
ters driving the mixture are defined for each history.

A more complicated method, which combines differently
for different n-grams with the same history, is the “fill-up”
method [8]. In this approach, a discounted relative frequency
is taken from the in-domain model if it has been observed in
the domain; otherwise, if the n-gram has been observed in the
out-of-domain model, the out-of-domain model score is used. If
the n-gram has been observed in neither domain, the in-domain
backoff probability is used. Everything is properly normalized.

Our approach is most similar to cache models [1], which
are typically mixed with the baseline model with a fixed inter-
polation weight to preserve normalization. Several improve-
ments to the original formulation, including a decay function
[9] and generalization to higher order n-grams [10] have made
this a potentially effective mode of personalization. Our ap-
proach contrasts with these methods by (1) deriving our salient
n-grams from other sources besides personal language use; and
(2) permitting more complex methods of combination with the
baseline model, sometimes at the expense of normalization in
the interests of run-time efficiency.

5. Conclusions
We have presented methods for collecting contextually salient
n-grams, deriving target costs for those n-grams and efficiently
combining on-the-fly during the first-pass of recognition. Re-
sults making use of biasing WFSTs derived from fast rising
queries in search traffic demonstrate strong improvements in
WER on utterances with high expectation of containing a fast
rising query, while remaining neutral on general voice search
traffic. We demonstrate the importance of biasing probabilities
only in the case that the biasing results in a lower cost for the
n-gram than the baseline probability, i.e., it is only promoting
n-grams based on the sample, not inhibiting n-grams.

There remain open questions for making use of the myriad
of potential contextual signals available at time of recognition,
such as how to combine two independent biasing WFSTs, e.g.,
from fast rising queries and also from some kind of geo-location
information. The importance of positive biasing in the current
case gives us some indication of one promising approach to this:
choose the maximum positive bias from among the set. N-gram
selection and bias estimation also require further research.
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