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ABSTRACT

We give the first O(%)—error online algorithm for recon-
structing noisy statistical databases, where T is the num-
ber of (online) sample queries received. The algorithm is
optimal up to the poly(log(T")) factor in terms of the er-
ror and requires only O(log7T) memory. It aims to learn
a hidden database-vector w* € R in order to accurately
answer a stream of queries regarding the hidden database,
which arrive in an online fashion from some unknown distri-
bution D. We assume the distribution D is defined on the
neighborhood of a low-dimensional manifold. The presented
algorithm runs in O(dD)-time per query, where d is the di-
mensionality of the query-space. Contrary to the classical
setting, there is no separate training set that is used by the
algorithm to learn the database — the stream on which the
algorithm will be evaluated must also be used to learn the
database-vector. The algorithm only has access to a binary
oracle O that answers whether a particular linear function
of the database-vector plus random noise is larger than a
threshold, which is specified by the algorithm. We note that
we allow for a significant O(D) amount of noise to be added
while other works focused on the low noise o(v/D)-setting.
For a stream of T' queries our algorithm achieves an aver-
age error O(%) by filtering out random noise, adapting
threshold values given to the oracle based on its previous
answers and, as a consequence, recovering with high preci-
sion a projection of a database-vector w* onto the manifold
defining the query-space. Our algorithm may be also applied
in the adversarial machine learning context to compromise
machine learning engines by heavily exploiting the vulnera-
bilities of the systems that output only binary signal and in
the presence of significant noise.
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1. INTRODUCTION
1.1 Database setting

Protecting databases that contain sensitive information
has become increasingly important due to its crucial prac-
tical applications, such as the disclosure of sensitive health
data. Privacy preservation plays a key role in this setting
since such data is often published in anonymized form so
it can be used by analysts and researchers. Several mecha-
nisms have been proposed, such as differential privacy, that
allow for learning from a database while preserving privacy
guarantees ([1, 2, 3, 4, 5, 6]). At the other extreme are many
results showing how database privacy can be compromised
by an adversary who is able to collect perturbed answers to
a large number of queries regarding the database ([7, 8, 9,
10, 6]). Existing results related to breaking the privacy of a
database have several key limitations. For example, most as-
sume that each query is represented by a vector g of D inde-
pendent entries taken from some fixed distribution (such as
the Gaussian distribution or a specific discrete distribution),
and that this structure is known to the privacy-breaking al-
gorithm. Also, most methods learn an approximation of the
unknown database-vector w* that has Lo error eD for some
small constant € > 0. Such precision is not sufficient to ob-
tain o(1)-error on the stream of T queries for 7' > D, as is
the case in our model. Further, the focus has typically been
on the offline setting, where the adversary first collects all
the queries, then applies some privacy-breaking algorithm,
and finally uses the reconstructed database-vector to com-
pute good approximations of the statistics he needs. From



the machine learning point of view this means that the over-
all protocol for the adversary consists of two distinct phases:
a training phase and a testing phase. Finally, the memory
resources used by privacy-breaking algorithms are typically
not analyzed, even though this is a crucial issue for the set-
ting considered here, where the number of all the queries ¢
coming in the stream may be huge.

The goal of this paper is to present and analyze a database
privacy-breaking algorithm for a more realistic setting in
which the limitations described above are lifted. The en-
tries of the query-vector are not necessarily independent.
The distribution D of the query-vector is not known to
the adversary. The adversary is not able to first learn the
database-vector before being evaluated. Our algorithm uses
only O(log(T))-size memory to process the entire stream of
T queries and therefore is well-suited to the limited resources
scenario. To make life of the adversary even more difficult,
we assume that the database mechanism provides only a bi-
nary oracle O that answers whether the perturbed value of a
dot-product between the database-vector w* and the query-
vector g is greater than a threshold that is specified by the
adversary. Thus the algorithm has very limited access to
the database even in the noiseless scenario. Dot-products
between query-vector and a database-vector are considered
in most of the settings analyzing database privacy-breaking
algorithms. Considering this more challenging setting, we
will show that much less than the noisy answer is needed to
carry out an effective attack and compromise data privacy.

In some of the mentioned papers ([5, 6]) an effort is made
to learn a good approximation of the database vector with a
small number of queries that is only linear in the size of the
database D. We use many more queries but our task is more
challenging - we need much more accurate approximation,
and get the information only about the sign of the perturbed
product as opposed to the perturbed product itself. Finally,
we are penalized whenever we are making a mistake. Our
goal is to minimize the average error of the algorithm over
a long sequence of queries so we need to learn this more
accurate approximation very fast.

In this paper we present the first online algorithm that an
adversary can use to reconstruct a noisy statistical database
protected by a binary oracle O that achieves average error
O(%) on the stream of T queries and operates in loga-
rithmic memory. The algorithm is optimal, i.e. we show
that any other algorithm (not necessarily online and with
arbitrary running time) solving this problem achieves er-
ror at least O(%) in the worst case scenario. From now
on we will call this algorithm a learning algorithm. The
learning algorithm is given a set of queries taken from some
unknown distribution D defined on a neighborhood of the
low-dimensional manifold that it needs to answer in the or-
der that they arrive (note that the entries of a fixed query
do not have to be independent). The learning algorithm
can use the information learned from previously collected
queries but cannot wait for other queries to learn a more ac-
curate answer. Every received query can be used only once
to communicate with a database. The database mechanism
calculates a perturbed answer to the query and passes the
result to the binary oracle O. The binary oracle uses the
threshold provided by the adversary and passes a “Yes/No™-
answer to him. The error made for a single query is de-
fined as: |z* — w* - ¢'|, where ¢* and z' are the query and
answer, respectively, provided by the learning algorithm in

round t. As a byproduct of our methods, we recover with
high precision the projection of the database-vector w™ onto
the query-space. Our approximation is within O(ﬁ) Lo-
distance from the exact projection. By comparison, most
of the previous papers focused on approximating/recovering
all but at most a constant fraction €D of all the entries of
w* which is unacceptably inaccurate in our learning setting
where T' > D. The assumption that queries are taken from
a low-dimensional manifold is in perfect agreement with re-
cent development in machine learning (see: [11], [12], [13]).
It leads to the conclusion that, as stated in [11]: “a lot of
data which superficially lie in a very high-dimensional space
RP actually have low intristic dimensionality, in the sense of
lying close to a manifold of dimension d < D”. Assume that
the queries are taken from a truly high-dimensional space.
Then as long as the number of all queries is polynomial in D,
the average distances between them are substantial. In this
scenario any nontrivial noisy setting prevents the adversary
from learning anything about the database since a single
perturbed answer does not give much information and the
probability that a close enough query will be asked in the fu-
ture is negligible in D. In practice we observe however that
noise can be very often filtered out and a significant number
of queries can give nontrivial information about a database-
vector w*. In this paper we explain this phenomenon from
the theoretical point of view. Our algorithm accurately re-
constructs the part of the database that regards the lower-
dimensional space used for querying. We show that this suf-
fices to achieve average O(ﬁ)—error on the set of T given
queries. In our model, the number of queries significantly
exceeds the dimensionality of the database, and therefore
we focus on optimizing our algorithm’s time complexity and
accuracy as a function of 7. Having said that, in most of
the formulas derived in the paper we will also explicitly give
the dependence on other parameters of the model such as
the dimensionality of the database D and the dimensional-
ity of the query-space d. We are mainly interested in the
setting: d < D < T. If we use the O-notation, where the
dependency is not explicitly given then we treat all missing
parameters as constants.

It should be also emphasized that, contrary to most pre-
vious work on reconstructing databases based on the per-
turbed statistics, the proposed algorithm does not use linear
programming and thus gives better theoretical guarantees
regarding running time than most existing methods. The
algorithm uses a subroutine whose goal is to solve a linear
program, however we show this program has a closed-form
solution. Therefore we do not need to use any techniques
such as simplex or the ellipsoid method. The algorithm is
very fast: it needs only O(dD)-time per query. More de-
tailed analysis of the running time of the algorithm as well
as memory usage will be given later.

1.2 Connections to adversarial machine learn-
ing

One important related setting for our model as well as
the algorithm we are going to present comes from adversar-
ial machine learning. In many real world machine learning
applications an adversary can use data in order to reveal
information about the machine learning classifier and con-
sequently, use this information to trick the classifier. This
happens for instance in such domains as fraud, malware
and spam detection, biometric recognition, auction alloca-



tion/pricing and many more. Thus, the need arises to es-
tablish secure learning in the adversarial setting.

Some introduced methods include repeated manual recon-
structions of the classifier or randomizing the classifier. For
example, an adversary-robust classifier in proposed in [14],
where the adversarial learning problem is formally defined.
In [15], a randomized approach is analyzed as a tool do de-
fend against the adversary. The paper in fact precisely char-
acterizes all optimal randomization schemes in the presence
of both classifier manipulations and adversarial inverse en-
gineering. On the other hand, many practical methods to
violate machine learning system security have also been in-
troduced, for example using evasion attacks. In the spam
detection framework these may involve, for instance, obfus-
cating spam emails’ content. In general, malicious samples
are modified and used to exploit the vulnerabilities of the
system. Other techniques take advantage of the frequent
retraining phases, where data can be possibly poisoned. In
that setting the goal is usually to compromise the process
of learning. Most of these aforementioned scenarios fit nat-
urally in the online framework.

The random noise in these settings setup may come from
many different sources (noise introduced to protect the ma-
chine learning framework, as it is in [15] or noisy channels
as is the case for various geophysical signals such as sonar
signals that are subject to noise depending on the ocean ge-
ometry and weather). The role of noise in machine learning
setting was extensively studied (see: [16]) and must be taken
into account in many real world settings.

We can think of the database-vector w* in our model as
a linear machine learning classifier. The dot-product given
to the oracle has a natural interpretation since it says on
which side of the hyperplane the given query is, and conse-
quently determines its classification. The dot-product out-
put has been extensively used in the statistical database
setting, however (contrary to many other approaches), the
techniques used in our algorithm can be used for various
types of outputs, not necessarily linear in the query ¢ (giv-
ing rise to applications for nonlinear classifiers). This is due
to the generalization of the bisection idea in the presence of
noise, that we fully explore in this paper and which consti-
tutes the core of the proposed algorithm, is independent of
the particular form of the output. The perturbation added
before this dot-product is given to the oracle may be in-
terpreted as a noise introduced to challenge the adversary
or an effect of the noisy channel, which was also the case
in the database setting described before. The oracle is like
the machine learning classification mechanism that outputs
the classification of the given query (for instance: spam/no-
spam). The answer given by the oracle in our model is bi-
nary, however, straightforward extensions of the approach
proposed by us lead to models, where the oracle chooses an
answer from the larger discrete set.

Finally, let us comment on the interpretation of our algo-
rithm’s error in the adversarial classification setting. Note,
the goal of our algorithm is to retrieve the vector w*, which is
a stronger goal than what is usually considered in the usual
adversarial classification setting, i.e. forcing false classifica-
tions. The exact value of the classifier dot-product measures
how far a given query is from the boundary of the binary
classification, i.e. how confident the system is that a given
query should be classified in a particular way. This informa-
tion is not given explicitly by the engine but is nevertheless

of great importance. It is reasonable to assume that the
adversary does not have unlimited resources and that is-
suing queries has a cost. Thus, the goal of the adversary is
to minimize the average per-round error during the sequence
of queries, which is equivalent to compromising the classifier
(within some additive error) with as few queries as possible.

2. MODEL DESCRIPTION AND MAIN RE-
SULT

We will now describe in detail our database access model.
We assume that the database can be encoded by the database-
vector w* € RP. For definiteness we will consider: w} €
[0,1] for ¢ = 1,...,D. Our method can be however used
in the much more general setting, as long as w* is taken
from some fixed ball in L. FEach query can be repre-
sented as a vector ¢ = (q1,...,9p), where: 0 < ¢; < 1 and
¢ + -+ g% > 0. Queries are taken independently at ran-
dom from the unknown distribution D (notice that entries
of a fixed query do not have to be independent). The distri-
bution D is defined on some d-dimensional linear subspace
U € RY (d < D). The exact answer to the query is given
as a = Zil w}¢q;. For the t** coming query ¢' the learning
algorithm £ selects the threshold value §* and passes ¢° to
the database mechanism M which computes a' = w* - ¢'.
The noisy version @’ of a’ as well as 0" is passed by M and
L to the binary oracle O:

~t at 1 if &t > 9t7
0@, o) = { 0 otherwise.

The value O(a*, 8") is then given to £. The learner records
this value and can also use the information obtained from
previously received queries to give an answer z' to the query
q*. However it has only O(log(T))-memory available. Fur-
ther, for a fixed query the learner only has one-time access
to the binary oracle O.

The noise €' = @' — a’ is generated independently at ran-
dom and is of the form DE, where £ is some known distribu-
tion producing values from some bounded range [—u, u]. The
boundedness assumption is not crucial. Technically speak-
ing, as long as the random variable is not heavy-tailed (which
is a standard assumption), our approach works. In fact even
this condition is unnecessarily strong. This will become ob-
vious later when we describe and analyze our method.

This setting covers standard scenarios where computing
every single product in the sum of d terms for w* - ¢* gives
an independent bounded error. We should note here that
in most of the previous papers the magnitude of the noise
added was of the order o(v/D) (see: [7, 8, 9, 10, 6]). For in-
stance, in [8] the authors reconstruct a database that agrees
with the groundtruth one on all but (2ca)? entries, where
« is a noise magnitude and ¢ > 0 is a constant. Thus,
even though previous works do not assume that noise was
added independently for every query, the average error per
single product in the dot-product sum was only of the mag-
nitude o(%). This assumption significantly narrows the
range of possible applications. This is no longer the case in
our setting, where some mild and reasonable assumptions
regarding independence of noise added to different queries
and low-dimensionality of querying space leads to a model
much more robust to noise. We will assume that ¢’ do not
have singularities, i.e. P(e’ = ¢) = 0 for any fixed c.

We need a few more definitions.



DEFINITION 2.1. We say that a vector w computed by
the learning algorithm e-approzimates database-vector w* if
[Ty (w) — gy (w*)| oo < €, where Iy (v) stands for the projec-
tion of v onto d-dimensional querying space U.

DEFINITION 2.2. Let Q be a probability distribution on
the unit sphere S(0,1) in Lo. For a fized vector q € S(0,1)
we denote by pig the probability that a vector x selected ac-
cording to Q satisfies: q-x > cos(0).

DEFINITION 2.3. Take a distribution D from which queries
are taken. Assume that D is defined on the d-dimensional
space U with orthonormal basis B. Denote by D,, the nor-
malized version of D and by By, the normalized version of B
(all vectors rescaled to length 1 in the Lo-norm). Then we
define: pp,y = minges,, (ng).

The error ¢, the algorithm is making on each query ¢ is
defined as the absolute value of the difference between the
exact answer to the query and the answer that is provided
by the algorlthm The average error on the set of queries:
ql7 .. is defined as €4, = T Z Let us state now
main result of this paper.

7,1‘1'

THEOREM 2.1. Letq',...,q" be a stream of query-vectors
coming in an online fashion from some d-dimensional sub-
space, where: 0 < ¢f < 1 fori =1,...,d and each ¢
a nonzero vector. Then there exists an algorithm Alg using
O(log(T'))-memory, acting according to the protocol defined
above, and achieving average error:

eav = O(—=(rD%d + VDlog(T)))

1
VT
with probability psyce > 1 —

_ 2 _ 1
r= P and¢f2arcsm(64\/ﬁ).

O(log(}ifT) + dloﬁ;‘)ﬂ)), where

We will give this algorithm, called OnlineBisection algo-
rithm, in the next section. Notice that ¢ is well approxi-

mated by ﬁ. To see what the magnitude of r is in the

worst-case scenario it suffices to analyze the setting where ¢
is chosen uniformly at random from the query-space U.

If this is the case then one can notice that pp ¢ is of the
order Q(2741°8(d) thus r = O(24'°¢@). If however there
exists a basis of U such that most of the mass of D is con-
centrated around vectors from the basis then standard anal-
ysis leads to the = (d) -lower bound on p, i.e. poly(d)-upper
bound on r (where poly(d) is a polynomial function of d).

Theorem 2.1 implies a corollary regarding the batch ver-
sion of the algorithm, where test and training set are clearly
separated (the proof of that corollary will be given later):

COROLLARY 2.1. Let wr denote the final hypothesis con-
structed by the OnlineBisection algorithm after consuming
T queries drawn from an unknown distribution D. Then
the following inequality holds with probability at least 1 —

O(log(dDT) + dlogédT)) for any future queries q drawn from

et VD log(T)
Egp[|lwr - g ql] < v,

In the subsequent sections we will prove Theorem 2.1 and
conduct further analysis of the algorithm. Unless stated
otherwise, log denotes the natural logarithm.

3. THE ALGORITHM

We will now present an algorithm (Algorithm 1) that
achieves theoretical guarantees from Theorem 2.1. Our algo-
rithm, called OnlineBisection, maintains a tuple of intervals
(Z1,...,Zq) which encode a hypercube that contains the
database-vector w* (projected onto U) with very high prob-
ability.

For each coming query-vector ¢' the algorithm outputs
an answer Wapprox * qt, where Wappros is an arbitrarily se-
lected vector in the current hypercube. The query-vectors
received by the algorithm are used to progressively shrink
the hypercube.

Algorithm 1 - OnlineBisection
Input: Stream ¢*,...,q7 of T queries, database
mechanism M and binary oracle O.

Output: A sequence of answers (w' - ¢*, ..., w” - ¢"),
returned online.
begin

Choose an orthonormal basis C = {e',..., e} of U.

Let ¢ = Zarcsm(m\[)

Let Z; = [—\F,f], N;“ =0and N; =0 for
i1=1,...,d.

fort=1,...,7 do

Output Wappros - ¢ for any

Wapprox = flel +---+ fded, where fz S I’i7

i=1,....d.
if |Z;] < % for i = 1, ...,d continue.
if 3" € {1 .,d} such that

arccos(e’ Hthz) < ¢ then

Let m = maxg,ez,.....faez, Spy fi€' - (—0").
Let M = maxy, ez,,...,f,€7, Z?:l fie!

M
Let b= O(M(q"), =),
If b > 0 update N;i < N;i + 1, otherwise
update N < N + 1.

end
Let Ap=P(— Il <& < ) N, = N + N/
and Neriz = 302052@)‘

if N; > Nepit fori=1,...,d then
Run ShrmkHyperCube(Il, oo, Za,

N, .. N;,N{,...,Nd).
Update: Nj'<—0 N; < 0fori=1,...,d
end
end
end

As the hypercube shrinks, vector wappros €-approximates
w* for smaller values of e. When the hypercube is large
the errors made by the algorithm will be large, but on the
other hand larger hypercubes are easier to shrink since they
require fewer queries to ensure that hypercube continues to
contain w* (with very high probability) after shrinking. This
observation plays a crucial role in establishing upper bounds
on the average error made by the algorithm on the sequence
of T' queries.

After outputting an answer for query-vector ¢°, the algo-
rithm checks whether ¢* has a large inner product with at
least one vector in an orthonormal basis C = {e',...,e%} of
U. If so, ¢" represents an observation for that basis vector;
whether it is a positive or negative observation depends on



the response of the binary oracle @. The threshold given
by the algorithm to O is chosen by solving the linear pro-
gram maxyeuc ¢ -y for ¢ = ¢* and ¢ = —¢*, where HC is
the current hypercube. As we will see in Section 5, this
linear program is simple enough that there is a closed-form
expression for its optimal value. So we do not need to use
the simplex method or any other linear programming tools.

Algorithm 2 - ShrinkHyperCube
Input: 7, = [z1,41),...,Za = [Za,ya], NT',..., N,

Ny ,...,Nj.
Output: Updated hypercube (Z1,...,Z4).
begin

Let o = 2, Asz(—% <EL %)7
p1=P(E > Ty and N; = N + N;
fori=1,...,d do
if N;" > Nip1 + Y22 then
| Ti < lyi — ays — 1), yil;
else
| Li + [wi, @i + aly — 2:));
end

end
end

The optimal values m and M of the linear programs solved
by the OnlineBisection algorithm represent the smallest and
largest possible value of the inner product of the query-
vector and a vector from the current hypercube. The true
value lies in the interval [m, M]. By choosing the average
of these two values as a threshold for the oracle we are able
to effectively shrink direction ¢*. The intuition is that if the
query-vector forms an angle a = 0 with this direction and
there is no noise added then by choosing the average we ba-
sically perform standard binary search for ¢. Since « is not
necessarily 0 but is relatively small (and noise is added that
perturbs the output), the search is not exactly binary. In-
stead of two disjoint subintervals of I;+ we get two intervals
whose union is I;» but that intersect. Still, each of them is
only of a fraction of the length of I;» and that still enables
us to significantly shrink each dimension whenever a suffi-
cient number of observations have been collected for each
basis vector — specifically, N.,it observations — by calling
the ShrinkHyperCube subroutine (Algorithm 2).

Every shrinking of the hypercube decreases each edge by
a factor « for some 0 < a < 1. A logarithmic number of
shrinkings is needed to ensure that any choice of Wapprox in
the hypercube will give an error of the order O(%) Notice
that Ncrie grows with 7', which reflects the fact that for
smaller hypercubes more observations are needed to further
shrink the hypercube while preserving the property that it
contains the database-vector w* with very high probability.
This is the case since if the hypercube is small we already
know a good approximation of the database vector so it is
harder to find even more accurate one under the same level
of noise. When the hypercube is small enough (condition:

|Z:| < % for ¢ = 1,...,d) there is no need to shrink it
anymore since each vector taken from the hypercube is a
precise enough estimate of the database vector.

Note that choosing an orthonormal basis C = {e!,...,e%}
of U does not require the knowledge of the distribution D

from which queries are taken. We only assume that queries

are from a low-dimensional linear subspace U of d dimen-
sions. It suffices to have as {e',...,e?} some orthonormal
basis of that linear subspace. There are many state-of-the-
art mechanisms (such as PCA) that are able to extract such
a basis, and thus we will not focus on that, but instead
assume that such an orthonormal system is already given.
Notice that in practice those techniques should be applied
before our algorithm can be run. Since such a preprocess-
ing phase requires sampling from D but does not require an
access to the database system, we can think about it as a
preliminary period, where evaluation is not being conducted.

4. THEORETICAL ANALYSIS

In this section we prove Theorem 2.1. We start by in-
troducing several technical lemmas. First we will prove all
of them and then we will show how those lemmas can be
combined to obtain our main result.

We denote: hr = %. Thus the stopping condition

1

VT for

for shrinking the hypercube is of the form: |Z;| <
i=1,..,d.

We start with the concentration result regarding binomial
random variables.

LEMMA 4.1. Let Z™ = Bin(m,p1), W™ = Bin(m,p1 +
Ap) and p1 = mp;.

Then the following is true:
mAp) _m(ﬁ)m?

P(Z™ > 1 + <e T, 1

m A

POV <m+22E) <e (2)

Proof. The proof follows from standard concentration in-

equalities. Let 61,02 > 0. Note that F(Z™) < mp; and

E(W™) > mp1 + mAp. Denote p2 = E(W™). Note that
by Chernoft’s inequality we have:

_ m(ap)?
10

52
P(Z™ > (1+61)u) < e 2551 3)
Similarly,
_ 53
BOV™ < (1— 2)piz) < e~ 53" (4)
Take: 61 = ";lﬁp = QAT‘;, 02 = "2’527’. Using these values of

61 and d2, we obtain:
1 mAp

mAp) < e_rf% 2

P(Z" >+ 2L (5)

Similarly,
1 mAp
1+ % 2

(6)
Notice that §1,02 > % (the latter inequality holds be-
cause obviously: p2 < m). Thus we get:

P(W™ < u1+mTAp) <P(W™ < uzfmTAp) <e

PZ" > + T2D) < o HERD )

and
P(W™ < p1 + mTAp) < e*% (8)
Since Ap < 1, the proof is completed. |



DEFINITION 4.1. Let HC be a d-dimensional hypercube in
RP. We denote by [(HC) the length of its side measured
according to the La-norm (recall that all the sides of a hy-
percube have the same length).

Next lemma is central for finding an upper bound on the
average error made by the algorithm.

LEMMA 4.2. Let (q1,...,qr) be a sequence of T queries.
Let HCo, ..., HCs be a sequence of d-dimensional hypercubes
in RP. Assume that I(HCit1) < al(HC;) fori=0,...,5 —
1 and some 0 < a < 1. Denote l(HCo) = L < D and
assume that s = @ log, (L\/dh(T)), where h(T) is some

function of T. Assume that w* € HCo()---[VHCs. Let & be
a random variable defined on the interval [—u,u] for some
constant uw > 0, with density p continuous at 0, and such
that p(0) > 0. Define

Lo' (% —¢) Lot (L —¢)
(1) = P(— < 4
pel)) =B~ < g < 22 )
for some constant 0 < ¢ < &. Let m; = ¢2(1)Clog( )

for some constant C > 0 and let k; = m;r for some other
constant r >0 and i = 0,...,s. Assume that learning algo-
rithm uses a vector Wapprox € HCo to answer first ko queries,
a vector Wapproz € HC1 to answer next ki queries, etc. As-
sume also that an algorithm uses a vector Wapprox € HCs to
answer remaining T—3 7, ki queries. Then the following is
true about the cumulative error €cum made by the algorithm:
VDT

€cum = O(L* D drlog(T)W(T) + ) 0

Proof. Note first that for any d-dimensional hypercube
HC € RP of side length [, two vectors: w',w? € HC and a
vector ¢ = (q1,...,qp) such that: ¢; =1fori=1,...,d the
following is true: |w' - ¢ — w? - g| < Iv/dD. This comes from
the fact that: |jw' — w?||2 < IV4d, ||¢|l2 < v'D and Cauchy-
Schwarz inequality. Thus we see that the cumulative error
€tum made by the algorithm for the first >oi_o ki queries
satisfies:

€eum < Y _kiLa'VdD < LVdDr» “mia’ (1)
=0 =1

Therefore we have:

€rum < CLVdDrlog(T) (12)

We can write:

t

€tum < CLVdDrlog(T) ¢;X( 3 + CLVdDrlog(T)Z,
i=0 "¢
where 2 = 377, ¢§‘—Z) and t is the smallest index such

that p(x) > p\(/q) forxz e [-%, % ] Since p is continuous at
0, t is well-defined. Notice that ¢ does not depend on d, D
and T, but only on the random variable £ and constant a.
Observe that:

CL\/@rlog(T)i (bg(z) <

(T) (13)

b
92(t)

and

t 2CL\VdD%rlog(T)t
@2(t) = p2(0)at(5 —2¢)2

where the last inequality follows immediately from the defi-
nition of ¢ (density p on the interval considered in the defi-
nition of ¢.(t) is at least L\/%) thus the related probability is

at least: the length of that interval times L\/%), ie.:

CLVdDrlog(T) (14)

bu(t) > %L“g 29 (15)

Therefore the considered expression is of the order
O(LVdD3Zrlog(T)). Now let us focus on the expression:
R = CLVdDrlog(T) > ;_, 4 ¢‘§‘—El) From the definition of ¢
we get:

R < CLVAD3rlog(T)1I, (16)

where

II= —_— 1
Z a21 26)2 2(0) (17)
Therefore we have:

32CLVdD%r log(T) i o
p*(0) =~

R <

Thus we get:
R<
- p*(0)

so we also get:

320LVdD5%rlog(T) a (L ot

l—a o -1 (19)

32CLVdD 2 rlog(T) 20)
= 20)(1 - aar
Using the formula on s, we get:
P
R < 32CL*Dzdrlog(T)h(T) (21)

=T RO -a)

Combining this upper bound on R with the upper bound on
the previous expression, we obtain:

etom = O(L>D? dr log(T)h(T)) (22)

Next let us focus on the cumulative error €2,,, made by the
algorithm for the remaining T — > ;_ ki queries. By the
definition of s we know that

1

I(HCs) < (23)
Vdh(T)
This implies that for any w € HCs we have:
1
w—w 24
o =l < gy (24)

Thus clearly for any query coming in this phase the learning
algorithm makes an error at most h(T) (again, by Cauchy-
Schwarz inequality) and we have at most 1" queries in this
AT D.T). That completes the

entire proof. |

phase. Therefore €2, = O(



In the following lemma we analyze cutting the hypercube
according to some linear threshold.

LEMMA 4.3. Let w € R”, let {v*,...,v"} be a system of
pairwise orthogonal vectors such that vt 6 RD, |v*||2 = L for
i=1,.,d and let HC = {w+ ", fiv' : f1,..., fa €[0,1]}
be a d dzmenswnal hypercube. Let e be a unit-length vector

in Ly that is parallel to v', i.e. e = ﬁvl. Let z be a unit-

length vector satisfying: z - e > cos(0) for some 0 < 6 <
5. Let 0 < B < 1. Define m = minygewncy -2z and M =
maxyewncy- 2. Let HC={y € HC : z-y <m+ (M —m)}
and HC, = {y € HC : z-y > m + B(M — m)}. Then for
€= SSin(g)\/E:

-y — mi cy < L(B+ 25
yléla)él ey yremr(ljl ey (B+e) (25)
and
_ < _
yrena)ér e-y yremrcl e y<L(l-pB+e). (26)

Proof. Denote: n = e — z. Note that
Inl2 < 2sin(2) (27)
Take first y € HC;. We have:
m<z-y<m+ B(M—m) (28)
Thus we also get:
mtn-y<e-y<m+pBM-—m)+n-y (29

Define: m = minyexcy - e and M = maxyecic Y - e. Notice
that:

i —m| < 2sin(g)L\/3 (30)
and besides:
|M — M| < 2sm(g)L\/é (31)
This follows directly from:
lyll2 < LV, (32)
Iz < 2sin(2) (33)

and Cauchy-Schwarz inequality. Thus we obtain:

m— 251n( )L\f—i—n y<e-y (34)
and
ey < m+2sin(2 )Lf +B(M—rm+4sin(= )Lf )+n-y (35)

Since, from the definition of M, M and HC we have:
M—m=L, (36)
we obtain:
— 2sin(= )Lf +n-y (37)

and

ey <1+ 2sin( )LW+B(L+4sm( YLVd) +n-y (38)

Therefore

0
- <L 8 d 39
g e v mip e ySLE+SMGVY (39
This completes the proof of inequality 25. The proof of
inequality 26 is completely analogous.

|

We are ready to prove Theorem 2.1.
Proof. Let L = 2v/D. Let us notice that the algorithm
can be divided into s + 1 phases, where in the ** phase
(i=0,...,s) all the intervals Z; are of length La™" and

1
s = ——log,(LVdhr) (40)
10g2(;)
Indeed, whenever the shrinking is conducted, the length of
each side of the hypercube decreases by a factor é (see sub-
routine ShrinkHyperCube), the initial lengths are 2v/D and
the shrinking is not performed anymore if the side of each
length is at most \/Elh We will call those phases: 1st-
T

phase, 2nd-phase, etc. Notice also that the value of the
parameter N.r;¢ is constant across a fixed phase since this
number changes only when ShrinkHyperCube subroutine is
performed. Let us denote the value of N¢pi¢ during the ith
phase of the algorithm as n;. Notice that

S 301og(T)
i — APQ ;

k3

(41)

where Ap; is the value of the parameter Ap of the algorithm
used in the " phase. Denote by k; the number of queries
that need to be processed in the i*" phase fori = 0,...,s—1.
Parameter k; is a random variable but we will show later that
with high probability: k; < n;r for ¢ =0,...,s — 1, where:

2
(pp,0)?

Assume now that this is the case. Denote by HCo, ..., HCs
the sequence of hypercubes constructed by the algorithm.
Assume furthermore that w* € HCo N --- N HCs. Again,
we have not proved it yet, we will show that this happens
with high probability later. However we will prove now that
under these two assumptions we get the average error pro-
posed in the statement of Theorem 2.1. Notice that under
these assumptions we can use Lemma 4.2 with L = 2@,
h(T) = hr, ¢(i) = Ap;, C = 30, m; = n;. We get the
following bound on the cumulative error:

r =

(42)

eeum = O(D? dr log(T)R(T) + %) (43)

Thus the average error is at most

fcum
€qv < T (44)

Loe) i the above formula,

By using the expression h(T) =
we obtain the bound from the statement of Theorem 2.1.
It remains to prove that our two assumptions are correct
with high probability and find a lower bound on this proba-
bility that matches the one from the statement of the theo-
rem. We will do it now. Let us focus on the i*" phase of the
algorithm. First we will find an upper bound on the prob-
ability that the number of queries processed in this phase
is greater than k;. Fix a vector ¢/ from the orthonormal
basis C. The probability that a new query ¢ is within angle



¢ from €’ is at least p = pp,e, by the definition of pp 4.
Assume that u; queries were constructed. By standard con-
centration inequalities, such as Azuma’s inequality, we can
conclude that with probability at least 1 — e~2ui(5)? at least
=P of those queries will be within angle ¢ from el If we
take:

2774'

Ui > (45)
then we conclude that with probability at least 1— 6_2“1'(%)%
at least n; of those queries will be within angle ¢ from e’.
Denote u; = n;r, where r > %. We see that the considered
2
yd

probability is at least 1 — e~ 2 ™". Using the expression on

2
n; we get that this probability is at least 1 — 3075 log(T)

Notice that when m; queries within angle ¢ from a given
vector ¢/ € C are collected, the j*" dimension is ready for
shrinking. Thus taking union bound over O(log(dT")) phases
and all d dimensions we see that if we take k; = rn;, where:
r = p%, then with probability at most C”(’Tgi?fgm some 3"
phase of the algorithm for i € {0, ..., s—1} will require more
than k; queries. Now let us focus again on the fixed i** phase
of the algorithm. Assume that ShrinkHyperCube subroutine
is being run. Fix some dimension j € {1,...,d}. We know
that, with high probability, at least n; queries g that were
within angle ¢ from the vector e/ € C were collected. Denote
by w} the j' coordinate of w*. Let Z; = [v;,y;] and assume
that wj € [z;,y;]. Let us assume that the ShrinkHyperCube
subroutine replaced Z; = [x;,;] by Z;. We want to show
that with high probability segment fj is constructed in such
a way that w} € Z;. Denote

= Y — 5 (46)
and
1
5= (a— ) (47)

Notice first that if w} € [(1 — a)l, od] then w} will be in I;
since no matter how Z; is constructed, it always contains
[(1 —a)l,al]. So let us assume that this is not the case.

Thus we have either
wj € [zj,2; + (1 — a)l] (48)
or

wj € [y; — (1 — )l yy] (49)

Let us assume first the former. Consider a query-vector ¢
within angle ¢ of e/ that contributed to Nj+. Let us denote
by p4+ the probability of the following event Fj: for g the
oracle O gives answer: “greater than 0”. Observe that the
total error made by the database mechanism M while com-
puting the dot-product: w™* - ¢ is DE. Now notice, that by
Lemma 4.3 and the definition of £, probability p4 is at most

P(DE > § — €l), where: € = 8sin(£)Vd = 3. Thus we get:

(50)

Notice that in the i*" phase the hypercube under consider-
ation has the side of length exactly . Thus, since a = 2,
we get:

(7 — e)Lo/)

p+ <P(€> (51)

Let us assume now that wj € [y; — (1 —a)l,y;]. We proceed
with the similar analysis as before. We see that the proba-
bility P1 of an event Fy is at least P(DE > —0 + €l). Thus
we obtain:

(; —eLa’
3 )
But now we see, by Lemma 4.1, using: m = N;, p1 = P(€ >

1_o)Lat
(Gola’ D)L ) and

Py 2 P(€ > - (52)

—( —¢)La’ (2 —¢)La’

Ap=P(—+——"—"— << " 53

p=p(— i <o LTI, (g

that N;” > Nip1 + Mi22 is satisfied if w] € [szj,l'j +(1-

n;(Ap)

a)(y; — x;)] with probability at most e~ oo Similarly,

N < Nip1 + NiQAp is satisfied if if w; € [y;,y; — (1 —
n;(Ap)?

a)(y; — x;)] with probability at most e 0. We can use

Lemma 4.1 since (as it is easy to notice) in the i*" phase Ap

is exactly

1 _ Lot 1 _ Lot

Ap: = P(—4 ;) L Tl SN

and p; is exactly

L _ oL
p1=P(E > u) (55)
D

We obtain the following: the probability that there exists i
ni(Ap)?

such that w* ¢ HCoN- - -NHC; is at most: O3 ;_,e” 10 ).
Substituting in that expression the formula on n;, and notic-
ing that the number of all the phases of the algorithm is
logarithmic in 7, D and d, we get the bound O(log(TdifT)).
Thus, according to our previous remarks, we conclude that
with probability at least 1—0(105(;,17?” + E“"Tgis(gT)) OnlineBi-
section algorithm makes an average error at most:

en = O(L (%3 r10g(T)hr + YUy (56)

T hr

As mentioned before, we complete the proof by using the
formula:

VT

hor —
T log(T)

(57)

S. ANALYSIS OF THE RUNNING TIME OF
THE ALGORITHM AND MEMORY US-
AGE

We start with the analysis of the running time of On-
lineBisection. First we will show that the linear program
used by the algorithm to determine the threshold in each
round has a closed form solution.

LEMMA 5.1. For any query-vector q, I1 = [x1,y1],...,Za =
[€a, ya] and orthonormal basis C = {e*,..., e} the value

is given by

JjETy jeg_



where Jy = {i € {1,...,d} :
{1,...,d} : ¢’ - ¢ < 0}

e q>0}and J- = {i €

Proof. Take some point: ciel + -+ cded, where: z; <
¢ <wy;fori=1,...,d. For j € J; the following is true:
Cj ed.g< y]ej q, since: c¢; < yj and e/ - ¢ > 0. Similarly, for
j € J- we have: cje’ - q < xje/ - g, again by the definition
of J_. Combining these inequalities we get that for every
point v in the hypercube HC induced by Zi,...,Zq and C
the following is true: v-q < opt. Besides clearly there exists
v* € HC such that: v* - g = opt. |

Now let us fix a query ¢. It is easy to notice that ¢ is
being processed by the algorithm in O(dD) time. Indeed,
a single query requires updating O(d) variables of the form
N;", N, and computing the closed-form solution given in
Lemma 5.1 in O(dD) time. Computing dot product of the
query with the given approximation of the database vector
clearly takes O(D) time. Thus OnlineBisection runs in the
O(dD)-time per query. Notice that OnlineBisection algo-
rithm does not store any nontrivial data structures, only
segments: Zi,...,Zq, counts: Nj', N; fori=1,...,d and
a constant number of other variables. The counts can be
represented by O(log(T'))-digit numbers thus we conclude
that OnlineBisection runs in the O(log(T"))-memory.

6. OPTIMALITY OF THE ALGORITHM

In this section we prove a negative result showing that up
to the poly(log(T)) factor no algorithm (offline or online)
can beat OnlineBisection in respect to the achieved error.
We prove that this is the case even if the oracle is turned off
and the perturbed answer is given directly to the adversary.

THEOREM 6.1. In the considered database model (but with
online mode possibly turned off) any algorithm achieves er-
ror at least O(%) in the worst case scenario.

Proof. The proof is a direct consequence of the tightness of
Azuma’s inequality. We will prove that the result holds even
for D = 2. Our queries ¢ will be of the form (z,1). Consider
a database vector w = (a,b) for some b > 0. The perturbed
answer that the oracle receives is of the form ax + b + €,
where ¢, is the error added to the exact answer for the query
q. Obviously, it suffices to show our result if the oracle is
turned off and the adversary receives ax + b + ¢, instead of
the binary signal.

Let {¢; = (zi,1) : ¢ = 1,..., T} be the set of all the queries.
Intuitively, we want to show that for T queries there al-
ways exists a vector Wnear = (@, bnear), where: bpear — b =
Q( ﬁg(ﬂ) such that with probability almost one the ad-

versary will not be able to distinguish between w and wnear
based on the outcome for these T queries.

T

Let us analyze the following expression: E = m.
Notice that from Azuma’s inequality we know that ]P’(E >
L\/?) = o(1) for any increasing positive function f(7"). We
heavily used this fact before. However, from the tightness
of Azuma’s inequality (see: [17]) we also know that there
exists a symmetric bounded distribution Z such that if every
€q is taken from Z then P(E > ﬁ}(T)) =1—0(1), where
f(T) = log(T).

Let us assume that this is the case, i.e. E >

1
VT log(T)"
But then one can easily check that there exists wneqr (and
related distribution determining the amount of error being

added to each answer) that gives the same perturbed an-
swers as w. Thus, given this set of queries the adversary will
incur an error of at least 6( N (T)) from the exact answer

given by at least one of the two database mechanisms deter-

mined by vectors: w and wpear for each asked query (since
. . 1

the distance between w and wyeqr is of order G(W)).

Thus, by the Pigeonhole Principle, for at least one of the

two mechanisms the adversary will achieve average error at
T 1
2 gy _ (=)
T - VT log(T)’"
That completes the proof since both database mechanisms
are legitimate mechanisms that can communicate with the

adversary.

least

7. ONLINE-TO-BATCH CONVERSION

Throughout the paper we have considered the challeng-
ing online scenario, where the algorithm both learns and is
evaluated on a single set of streaming queries. However, we
note that the OnlineBisection algorithm also works well in
the batch setting, i.e. when there is a separate train and
test phase. We prove here Corollary 2.1, that for clarity we
state once more:

COROLLARY 7.1. Let wr denote the final hypothesis con-
structed by the OnlineBisection algorithm after consuming
T queries drawn from an unknown distribution D. Then
the following inequality holds with probability at least 1 —

O(log(ﬁfm + d“’ﬁégm) for any future queries q drawn from

VD log(T)
%

Proor. This simply follows from the fact that, as ar-
gued in the proof of Theorem 2.1, w* € HCs with at least
the probability indicated in the statement of this corollary.
Furthermore, by definition of the algorithm, we have wr €
HCs and the length of the side of the hypercube HC, <
log(T)/v/T. Thus, with at least the probability indicated,

lwr - q —w* - gl < [Jwe —w*|2]lgll2 < 5P VD. O

8. CONCLUSIONS AND FUTURE WORK

We presented in this paper the first O( 1T)-error algo-
rithm for database reconstruction. It is adapted to the
highly challenging, yet very realistic setting, where the an-
swers given by the database are heavily perturbed by a ran-
dom noise and besides there exists strong privacy mechanism
(binary oracle O) that aims to protect the database against
an adversary attempting to compromise it. We show that
even if the learning algorithm receives only binary answers
on the database side and needs to learn database-vector w*
with high precision at the same time it is being evaluated, it
can still achieve very small average error. We assume that
the query-space is low-dimensional but this fact is needed

only to guarantee that the term r = p22
D.,é

on the error is not exponential in D. The low-dimensionality
assumption is indispensable here if one wants to achieve av-
erage error of the order o(1) and considers nontrivial models
with random noise. It is also worth to mention that if no
noise is added, the low-dimensionality query-space is not re-
quired and a simple modification of our algorithm enables
to get rid of the %-term, Our algorithm operates in the

Egp [|wr g —w" -q]] <




very limited (logarithmic) memory and is very fast (O(d)
processing time per query). By not using linear program-
ming we obtain better theoretical bounds regarding running
time of the algorithm than previously considered methods.
OnlineBisection algorithm adapts next threshold values sent
to the binary oracle O to its previous answers in order to
obtain good approximation of the projection of a database-
vector w* onto the low-dimensional query-space U.

It would be interesting to know whether the assumption
about the low-dimensional querying model is indeed nec-
essary or may be at least relaxed. Another area that can
be explored is the application of the presented method to
machine learning settings other than adversarial machine
learning. It seems that presented technique provides a gen-
eral mechanism for efficient online information retrieval. Fi-
nally, the authors plan also to extend presented algorithm
to work in the setting, where no independence assumption
for the mechanism of noise addition is required.
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