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ABSTRACT
While current OCR systems are able to recognize text in
an increasing number of scripts and languages, typically
they still need to be told in advance what those scripts and
languages are. We propose an approach that repurposes
the same HMM-based system used for OCR to the task of
script/language ID, by replacing character labels with script
class labels. We apply it in a multi-pass overall OCR process
which achieves “universal” OCR over 54 tested languages
in 18 distinct scripts, over a wide variety of typefaces in
each. For comparison we also consider a brute-force ap-
proach, wherein a singe HMM-based OCR system is trained
to recognize all considered scripts. Results are presented on
a large and diverse evaluation set extracted from book im-
ages, both for script identification accuracy and for overall
OCR accuracy. On this evaluation data, the script ID sys-
tem provided a script ID error rate of 1.73% for 18 distinct
scripts. The end-to-end OCR system with the script ID sys-
tem achieved a character error rate of 4.05%, an increase of
0.77% over the case where the languages are known a priori.

1. INTRODUCTION
Over the past decade, several commercial and open-source

optical character recognition (OCR) systems have expanded
their language coverage dramatically — via optional mod-
ules [3], by providing a means for the user to train the sys-
tem [1, 6, 9], or both [13]. Encouragingly, this expanded
coverage extends in some cases to previously under-served
languages, such as some written in the Arabic, Indic, and
Southeast Asian scripts. While a welcome advance, support
for these scripts and others is typically not automatic within
a document: the recognition language, or the set of recogni-
tion languages, must be specified manually and in advance.
In some cases an arbitrary mix of recognition languages can
be specified [4], but to the best of our understanding doing so
in current systems comes at the expense of both recognition
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accuracy and speed.
Ideally, OCR of a multiscript and multilingual document

should “just work,” without requiring advance specification
of which scripts and languages are present, and without sac-
rificing much in the way of speed or quality. To build in-
tuition that this should be possible, consider human perfor-
mance in a multilingual setting.

A polyglot human reader is not unduly slowed down, or in-
duced to make a greater number of errors in understanding,
by the presence of passages in different languages that he or
she individually understands. To emulate this capability by
a computer, the added skill needed beyond the conventional
OCR goal of monolingual text recognition, is simply that
of identifying the language within each passage, and detect-
ing the transitions between them. Thus, the key missing
capability in order to achieve full-fledged multiscript, multi-
lingual OCR is that of locating and identifying constituent
monoscript/monolingual spans. Once these spans have been
identified, the appropriately tailored recognition models may
be applied to them.

Evidently, the task of locating and identifying constituent
monoscript, monolingual spans is easier than that of rec-
ognizing the text within them. Again considering human
performance, one need not understand any of the languages
present in the document in order to be able to quickly and
reliably segment the regions by script. For example, none of
the present authors understands Korean, but all of us can
reliably locate and identify Hangul material within a given
multilingual page. While this may be an easy example due
to the distinctiveness of Hangul relative to other scripts,
anecdotally we’ve observed that we’ve become quite reliable
in distinguishing and even identifying scripts for languages
we do not understand; similar observations have motivated
others to investigate vision-based / texture classification ap-
proaches to be used for script identification [7, 11,12].

What makes the script identification (script ID) problem
comparatively easy for a human? In part the answer must
be the same as for what makes humans good at monolingual
OCR: an innate faculty for vision and linguistics, supported
by biology. But for script ID we believe there are two ad-
ditional simplifying factors, both of which are available for
exploit by an automated process.

First, neither script nor language tends to change rapidly
from character to character, but rather each tends to per-
sist over spans of at least several characters, on the order
of words or phrases. This is a stable consequence of both
linguistic and typographical convention. Second, the class



label set – i.e., the set of possible values for the script and
language of a document fragment – is relatively small, con-
sisting of no more than a few hundred at most, with typically
much fewer values occurring within the same document.

The foregoing observations suggest a Markov-model-based
approach to locating and identifying script-homogeneous span:
first locate text lines, then treat each line as the output of
a hidden Markov model, traversed in display order, where
state represents the script label. Fortunately, HMM-based
systems for OCR [5,9] can be used exactly for this purpose.
In previous work [10] we described a system that generalizes
the HMM approach to work with multiple; heterogeneous
features. Here we employ a purely HMM-based OCR sys-
tem. We consider its use in script ID as a precursor to re-
applying the same-structured system for OCR. In the first
pass, decoding generates script ID labels rather than char-
acter identities; these labels are aggregated to hypothesize
script-homogeneous segments. These segment-wise labels
are then used in a second-pass to apply the correct OCR
models in character recognition within each segment.

2. MODELS
We are adapting an HMM-based system designed for gen-

eral purpose (line-level) OCR [10] to the task of script ID.
The system is based on an HMM approach similar to that
of [5, 9]. The character1 HMMs are left-to-right, with a
character-dependent number of states. Each state has a
self-transition as well as transitions to the next and sub-
sequent state (i.e., a Bakis model with a skip transition).
The HMM emission models are Gaussian mixtures over a
space of features extracted from sliding pixel windows. We
are able to use two different feature sets. The first set is
based on variable-sized Discrete Cosine Transform (DCT) of
a narrow strip of pixels. A high-energy subset of the DCT
coefficients are selected to yield a fixed, 45-dimensional fea-
ture vector. The second set is extracted by a deep neural
network (DNN) [8], trained to discriminate between char-
acters. Its input is a fixed-size window around a horizon-
tal position being considered by the HMM, and this is fed
through 4 hidden layers of 1000, 500, 250 and 45 nodes corre-
spondingly into a softmax classification layer that attempts
to distinguish character classes (or here, script classes in
Script-HMM system, as described below). The network is
trained by a gradient descent method, then the classification
layer is discarded, and the preceding layer (of 45 nodes) is
used to provide a set of features for the Gaussian mixture.
Thus, the dimensionality of the feature vector is 45 for both
the DCT and DNN variants.

2.1 Training
In all cases, the HMMs are trained on synthetic data: text-

line images that have been digitally typeset in a variety of
fonts and sizes, and distorted in various ways. The source
text used for training was gleaned from various web sources
on a per-language basis, in amounts sufficient to ensure that
the accuracy is not significantly limited by lack of training
data for any language. Evaluation and parameter tuning is
always done on real (not synthetic) data, as discussed later.
We have found that the generalization accuracy as measured
on this real evaluation data for the OCR task (when script

1Throughout, character refers to a fully composed grapheme
cluster, possibly comprising multiple Unicode points.

and language are known) is competitive with other state-
of-the-art OCR systems, over a broad range of scripts and
languages.

In addition to the use of synthetic data in training, we also
make use of unlabeled scanned image data for the purpose
of training the DNNs for some of the experiments reported
here. Specifically, for the end-to-end results reported in Sec-
tion 3.3, we use a preliminary, bootstrapping version of our
OCR system to label (generate pseudo-ground-truth for) a
relatively large amount of real scanned text images. We then
identify a high-confidence subset of the results, and train the
DNN feature extraction subsystem on that subset.

As will be discussed, the DNN-derived feature set is found
to be generally more accurate than the DCT features on
most scripts and languages.

We now describe two variant approaches to script ID that
make use of the existing HMM-based OCR system.

2.2 Union-OCR model
Perhaps the simplest approach to the script ID task given

an existing OCR system is to train it on the union of all the
languages and scripts, perform OCR, then perform script
(and language) identification on the resulting text. This
can be done by combining the training data of the individual
OCR systems (with sampling, to keep the size reasonable);
hence we term this approach to script ID Union-OCR. This
results in a mammoth system that is capable of recogniz-
ing text in any supported language and script, although it is
less accurate than it would be if the script and language were
known in advance, and is very slow. The output vocabulary
of the system consists of about 24000 character classes. For
comparison, the largest individual system (Simplified Chi-
nese) has only about 8000. For script ID purposes we do not
particularly care about the character-level accuracy as long
as it’s sufficient to identify the script, but its very low speed
makes this system impractical for use for preliminary script
ID within a multistage OCR system.

The OCR system outputs text; however, for this task we
need to output the script the line is in. To accomplish this,
each output character provides a vote for the script it be-
longs to, and we output the script with the most votes. Some
special handling is done for Chinese and Japanese, as de-
scribed in the next section.

2.3 Script-HMM system
Our Union-OCR system is slow because it is fundamen-

tally trying to solve a much harder problem as a step toward
solving an easier one: it is forced to predict the identities
of various characters, whereas we only care about which
script each character belongs to. A natural solution is to
replace the character labels by script labels during train-
ing, then use the resulting system to directly output the
desired script labels. We term this approach Script-HMM.
Relative to Union-OCR, Script-HMM reduces the number
of labels that must be distinguished from 24000 to around
25. Besides the script names, we use a separate label for
non-script-specific digits, another for punctuation and sym-
bols, and another for spaces. We also include some scripts
in the hypothesis space for which we are not reporting eval-
uation results. We use the Unicode database for mapping
from letters to scripts, and use the standard Unicode set of
scripts (ISO 15924), with some exceptions for Japanese and
Chinese, as we now discuss.



Japanese is mostly written using three scripts: Kanji,
Katakana and Hiragana. Each line may contain a mix of
any of them. For our purposes we do not need to distin-
guish between the latter two, since the Japanese-specific
OCR model handles all three. We do need to distinguish
Japanese from Chinese however, and this is made compli-
cated by the fact that in our approach we treat Kanji the
same way as the Chinese characters, since they share the
same Unicode space, and in many cases (though not all)
they look the same as the corresponding Chinese character.

Chinese poses an additional challenge of having two differ-
ent scripts: Simplified and Traditional (denoted Chinese-S
and Chinese-T, respectively) share a large number of char-
acters, not just visually (like Latin, Cyrillic and Greek), but
also in digital representation. For our purpose, however, we
need to distinguish them. To do so, we treat Chinese as
consisting of three scripts: Common Han, Simplified, and
Traditional. For each Unicode point in the Han blocks (this
includes Japanese Kanji) we use the UniHan database [2] to
map it to one of these three scripts.

The system is then trained, and lines are recognized, but
now the system output simply contains the script estimated
for each hypothesized character location. We then need to
determine the primary script for each line, based on the
estimated scripts for each position. One approach would be
to train another classifier to perform this task, using the
result of our script ID as input. However, in this paper
we use a simpler, voting based approach. Specifically, we
take the most frequently occuring script label within each
line to the the primary script for the line. For Chinese,
we count Common Han characters as both Simplified and
Traditional. For Japanese, we treat all Chinese characters
as also Japanese if there are at least 10% purely Japanese
characters (Katakana or Hiragana) in that line.

3. EVALUATION DATA AND RESULTS

3.1 Evaluation Data
Our development and evaluation data consists of roughly

2000 grayscale text line images at variable resolution aver-
aging about 200 ppi, in each of 55 languages, representing
18 distinct scripts, for a grand total of about 100,000 lines.
The lines were extracted from a wide sampling of scanned
books; for most languages a single book contributes no more
than two lines. Thus a wide variety of typefaces, publica-
tion dates, and subject matter are represented in the data.
All lines were verified as being in the target language by a
native speaker of that language. We use half of this data for
development (tuning), and half for evaluation. Note that
training data is separate, as discussed in Section 2.1.

All languages except Serbian are considered to be in one
script; Serbian has lines in both Latin and Cyrillic. We treat
Japanese as a single script for evaluation purposes.

Often, text lines contain fragments in multiple scripts –
for instance, an English phrase within in a Bengali sentence.
Both the Union-OCR and Script-HMM methods can be eas-
ily adapted to classify script at the sub-line (e.g., phrase or
word) level, as is discussed briefly in Section 4. However,
in the present study for the purpose of computing script-
classification error rates, we assign a single script label to
the entire line. When an evaluation line does contain mul-
tiple scripts, to assign it a reference label, a judgment was
made as to which is the primary script, considering the over-

Table 1: Evaluation data
Script # of Langs Example languages
Latin 29.5 English, Vietnamese
Cyrillic 6.5 Russian, Serbian(0.5)
Arabic 2 Arabic, Farsi
Hebrew 2 Hebrew, Yiddish
Greek 1 Greek
Armenian 1 Armenian
Japanese 1 Japanese
Korean 1 Korean
Chinese-S 1 Chinese (simplified)
Chinese-T 1 Chinese (traditional)
Devanagari 2 Hindi, Marathi
Bengali 1 Bengali
Gujarati 1 Gujarati
Kannada 1 Kannada
Malayalam 1 Malayalam
Tamil 1 Tamil
Telugu 1 Telugu
Thai 1 Thai

Total 55

all text from which the line was extracted.
The detailed data breakdown by script is given in Table 1.

Note that Latin-script data accounts for the majority of our
data, by virtue of most of the considered languages being in
Latin script, and each language having equal representation.
Thus, an aggregated measure of accuracy estimated on this
data will weigh languages written in Latin script more heav-
ily than others. In terms of assessing end-to-end accuracy of
an omni-script OCR system that uses this method of script
ID, such an aggregated measure can be appropriate if the
collection being digitized is similar in language breakdown
and proportion to the evaluation set. Note that equal rep-
resentation by language actually results in less Latin bias
than would have been the case had we sampled truly at ran-
dom from the underlying scanned book collection, without
equalizing language representation. Thus, for the purpose
of single-number accuracy assessment, the degree of Latin
bias in our data obtained by uniform language sampling
represents a middle ground between the two extremes of
uniform script representation and uniform collection sam-
pling. In addition to single-number overall accuracy, it is
also important to consider un-aggregated accuracy for spe-
cific languages, to answer questions such as, “how does the
end-to-end OCR system do on the average Armenian doc-
ument, without being told in advance that it’s Armenian?”
While not reported in detail here, such considerations inform
the present work.

3.2 Results
We ran both the Union-OCR and the Script-HMM models

on the dataset described above, using both the DCT and
DNN features. DNN features were discriminatively trained
appropriately for each system; i.e., for character accuracy
in Union-OCR and for script accuracy in Script-HMM. We
report line-level error rate (number of misclassified lines in
each script, divided by the total number of lines in that
script), as well as per-line speed (in seconds). The results
are summarized in Table 2.

For the Script-HMM model, the most common errors are



Table 2: Summary Results
Model Features Script-ID error rate Runtime

(%) (sec/line)
Union DCT 4.50% 20.8
Union DNN 1.71% 15.0
Script-id DCT 12.95% 1.58
Script-id DNN 1.73% 0.16

Table 3: Top Script Confusions
Script Union DNN Script-HMM DNN

top confusion top confusion
Latin Cyrillic Kannada
Cyrillic Latin Latin
Arabic Latin Latin
Hebrew Cyrillic Latin
Greek Latin Latin
Armenian Latin Arabic
Japanese Chinese-S Chinese-T
Korean Latin Latin
Chinese-S Chinese-T Chinese-T
Chinese-T Chinese-S Chinese-S
Devanagari Latin Bengali
Bengali Latin Latin
Gujarati Arabic Latin
Kannada Telugu Telugu
Malayalam Latin Arabic
Tamil Latin Latin
Telugu Kannada Kannada
Thai Latin Lao

between the two Chinese scripts. These errors constitute
about a third of the total (see Table 4). This is perhaps
unsurprising, as the characters in these lines are very similar
when viewed as a group; in fact most are the same.

For the Union model, however, this is a minor source of er-
ror, constituting less than 5% of the errors. This is because
the characters are recognized individually, and the distinc-
tion between a specific simplified and traditional character
can be made quite easily. The largest total source of er-
rors for the Union model is the confusion between Cyrillic
and Latin which are the two most common scripts and have
many similar or identical letters, but the actual error rate
for both of these is low. If we examine the per-script er-
ror rates of the Union model, the script that has the most
errors is Gujarati (15%) which is unsurprising as it is cur-
rently also one of the most challenging languages for our
per-language OCR systems, largely because of limitations
in available data.

The detailed breakdown of errors is provided in Table 4.
In comparing DCT and DNN models we can see that while
having a DNN model is always helpful (row 1 vs. 2 of Ta-
ble 2), it is absolutely critical when script-ID is the direct
output of recognition (row 3 vs. 4). Apparently, while the
dimensionality-reduced DCT feature vector retains informa-
tion needed to represent character shapes, and hence distin-
guishes them somewhat well, script identity is effectively a
latent variable, and the DNN’s ability to discriminatively
learn the feature vector specifically for the task gives it a
decisive advantage.

Table 3 shows the top script ID confusions made by the

Table 4: Detailed results (Script-ID error rate)
Script Union Union Script-id Script-id

DCT DNN DCT DNN
Latin 1.71% 0.16% 11.38% 0.35%
Cyrillic 3.01% 1.11% 13.01% 1.70%
Arabic 0.39% 0.27% 0.27% 0.27%
Hebrew 0.63% 0.15% 1.16% 0.09%
Greek 3.35% 0.83% 23.95% 0.83%
Armenian 16.83% 13.60% 41.33% 1.81%
Japanese 18.62% 14.49% 31.43% 9.96%
Korean 10.65% 5.56% 14.32% 2.24%
Chinese-S 7.83% 3.53% 46.14% 33.12%
Chinese-T 23.76% 10.39% 30.00% 10.65%
Devanagari 1.47% 0.22% 3.17% 0.82%
Bengali 7.39% 6.24% 6.59% 5.89%
Gujarati 49.15% 15.40% 35.06% 1.16%
Kannada 5.98% 1.56% 30.29% 2.95%
Malayalam 2.14% 0.55% 8.66% 0.74%
Tamil 2.75% 2.12% 10.18% 2.01%
Telugu 14.87% 6.43% 10.74% 1.37%
Thai 7.73% 1.98% 4.17% 7.44%

Combined 4.49% 1.71% 12.95% 1.73%

two DNN-based systems. Note that often Latin is the top
incorrect script-ID output for both systems, even in cases
where the true script is markedly dissimilar – but in most of
those cases, the overall number of confusions (script ID error
rate in Table 4) is quite low for the respective system, and
the effect may be due to a tuning bias from the prevalence
of Latin-script data overall.

Also note in the table that Thai is confused with Lao by
the Script-HMM system, although Lao isn’t listed as one of
the scripts in the left column. This is because the systems
are actually aware of — and have as their hypothesis space
— a larger set of scripts than those represented by the eval-
uation data. Thus, if the hypothesis space were restricted to
include only the evaluation scripts, the script-ID error rate
would likely be slightly lower than what is reported.

3.3 Multipass OCR: end-to-end accuracy
We were able to perform OCR experiments on this dataset,

using a 3-stage process: first, script-id (using DNN) system;
second, a script-specific OCR system followed by a language
identification step; third, a language-specific OCR system.

We consider Character Error Rate (CER), defined as the
sum of edit distances between the produced and the correct
transcriptions over all the test instances, divided by the total
length of the correct transcriptions.

If the script and language are correctly known in advance,
CER averaged over all languages represented in our evalu-
ation data is 3.28%. While not the focus of this paper, we
note as an aside that the accuracy of our system is compet-
itive with that of other state-of-the-art OCR systems, when
the languages and script are given and supported by the
systems.

If we assume the script is known in advance but the lan-
guage is not (idealizing stage 1), we obtain an average CER
of 3.55%. The 0.27% increase in CER is attributable to
errors in language identification performed on the result of
using the correct stage-2 script-specific OCR system.

Finally, using the full 3-step system in the above para-



graph, assuming no advance knowledge of either language
or script, we obtain the CER of 4.05%. Thus the contribu-
tion to overall CER that is attributable to errors in script
and language identification together, is about 0.77%.

4. DISCUSSION AND FUTURE WORK
We have demonstrated that an HMM-based OCR system

can be easily adapted for the purpose of script ID and reach
very high accuracy at high speed. This makes it possible to
create an efficient “universal” OCR system as a cascade of
two architecturally identical recognition components, where
the first one is a script ID system (the main focus of this
paper), and the second a script-specific system, which in
turn can produce either the final output when the script
and language are one-to-one (e.g., in case of Armenian), or
which can be further reprocessed by language identification
and language-specific systems for scripts that are used by
several languages (e.g., Latin script).

We have found that training the feature set specifically for
the script ID task is of great importance – using the same
DNN features as for OCR without re-training them in the
script ID context has not worked well in our experiments.
This is an additional motivation for using the flexible, data-
driven approach to learning features based on recent work
in distributed deep networks.

For comparison purposes, we also demonstrate a Union
system that is capable of distinguishing between over 24000
characters with high enough accuracy to allow for reliable
script (and, in principle, language) identification.

To mitigate error propagation from script ID, we could
attempt to make a soft script-ID decision and perform OCR
using a combined model of the hypothesized scripts, each
weighted by the confidence. However, the models thus com-
bined could have a large effective hypothesis space, espe-
cially for East Asian languages, and may therefore prove
prohibitively expensive. For this reason, improving our abil-
ity to distinguish Chinese and Japanese decisively at the
script-ID level remains an important challenge.

For lines containing multiple scripts, we would like to be
able to identify the parts of the lines that are in each script,
in order to allow the second-stage OCR system to use the ap-
propriate models for the scripts and languages present in the
various sub-line segments. The beginnings of this capability
are already present in the systems we described, since they
provide as an intermediate result a script label for each hy-
pothesized character position: sub-line script identification
can be performed by voting within a sliding window, say, or
alternatively, by dynamic programming. Specifically, each
script can correspond to a state, which emits its script’s la-
bel with high probability, and those of the other scripts with
lower probability (uniform or, as an optional refinement,
non-uniform). Transitions are penalized to strike a balance
between the ability to accommodate multiple scripts, and
the tendency to switch erratically and erroneously from one
script to another. In addition, if per-label confidences are
available, these could be incorporated as additional infor-
mation within the dynamic programming search to yield an
improved segmentation-by-script within each line. We leave
the detailed development within-line segmentation search as
future work.
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