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Abstract

We describe a Digital Advertising System Simulation (DASS) for modeling advertising and its
impact on user behavior. DASS is both flexible and general, and can be applied to research on a
wide range of topics, such as digital attribution, ad fatigue, campaign optimization, and marketing
mix modeling. This paper introduces the basic DASS simulation framework and illustrates its
application to digital attribution. We show that common position-based attribution models fail
to capture the true causal effects of advertising across several simple scenarios. These results lay
a groundwork for the evaluation of more complex attribution models, and the development of
improved models.

1 Introduction

Advertisers need to assess the performance of their online marketing efforts in order to make tactical
and strategic decisions regarding their online media spend. While randomized experiments are the
gold standard of measurement, advertisers may not have the ability, or desire, to run experiments
due to their cost, complexity, or effort required. Instead, advertisers rely on models applied to
observational data to assess the effectiveness of their advertising and make budget and campaign
implementation decisions.

This paper describes a Digital Advertising System Simulation (DASS), which simulates online
user browsing behavior, and includes the ability to inject advertising events that modify this user
behavior. With DASS, we have a highly flexible framework with the ability to generate the data to
which observational models can be applied, as well as the ability to run virtual experiments with
simulated users to measure the actual incremental value of marketing for direct comparison.

DASS has a wide range of potential applications across topics that rely on the advertising system
of user behavior, campaign implementation, and how users react to advertising. It can be used to
evaluate the quality of attribution and marketing mix models. It can also be applied to study the
impact of marketing synergy, ad fatigue, and marketing decisions. In this paper, we demonstrate the
application of DASS to systematically evaluate and compare the performance of digital attribution
models. We describe several sets of data generated by DASS to illustrate the process.



2 SIMULATION MODEL

Attribution models use observational user-level path data to assign credit for conversions (the
advertiser’s target objective, such as a purchase) back to the marketing events to which a user was
exposed prior to converting. These credits are aggregated across users to assign an overall value
to each marketing event type. Advertisers use these results to assign credit for the relative and/or
absolute value of their online media spend across their marketing types.

The most common attribution models are position rule-based models [I]. Such models assign credit
for conversions based on the position of each marketing event preceding a conversion in a user’s
activity path. Examples of position-based attribution models include: “last interaction”, which
gives all credit to the last marketing event prior to a conversion; “first interaction”, which gives
all credit to the first marketing event in a user path containing a conversion; and “linear”, which
evenly divides credit between all marketing events prior to the conversion. Only paths that include
a conversion are analyzed by position-based attribution models, and paths without conversions
are ignored. Previous studies, such as [2], have compared position rule-based model estimates to
randomized controlled experiment results to demonstrate that these models do not capture the true
causal effects of advertising.

Algorithmic attribution models, also called probabilistic attribution models or data-driven attri-
bution models, take a more dynamic approach to assigning credit for conversions. Rather than
deterministically assigning credit based on the position of marketing events in a converting user’s
path, algorithmic attribution models compare the frequency of conversion in many user paths that
contain and don’t contain a target marketing event. See, for example [3] and [4]. Considering both
converting and non-converting paths is an improvement over position rule-based models. However,
the degree of improvement achieved by using these models is not clear. In addition, more sophisti-
cated models typically require many specifications, such as the values of various tuning parameters.
Hence, there is value in having a method for evaluating these models.

While attribution models are practical to apply, the quality of the information generated by these
models hasn’t been systematically compared to true causal measurement. Can attribution models
extract causal insights from observational data? And, if so, under what conditions or assumptions
is this the case? DASS makes it possible to answer these questions. It allows us to generate data
under different assumptions about how users behave, how ads are served, and how ads impact users.
And, each set of data generated comes with a known causal impact from each media type.

2 Simulation Model

DASS simulates the browsing behavior of users with an extended, non-stationary Markov model
consisting of three primary components: a user activity path model, which characterizes the brows-
ing behavior of users in the absence of advertising; an ad serving model, which describes the process
through which users are exposed to advertising events; and an ad impact model, which specifies
how exposure to ads impacts downstream user behavior. These are described below. A high level
overview of the DASS model is shown in

The DASS simulation model has a wide range of capabilities. These include, the simultaneous
consideration of multiple media; the ability to vary the behavioral response to advertising; the use
of heterogeneous sets of users; the inclusion of ad targeting, frequency capping, burn-in/fatigue;
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Figure 1: High level overview of DASS. A user’s browsing activities are simulated via a Markov
model. Ads are served based on campaign implementation and the user’s activity state. Exposure
to ad impressions modifies the user’s downstream browsing activity.

and the ability to vary the effectiveness of ads, ad intensity, share of voice (SOV), and organic
interest in the advertiser. In short, the model includes many of the important components of an ad
serving system. Further, it is possible to configure DASS to generate simulated data that resembles
the characteristics real user data from an attribution platform.

The stream of a user’s browsing activities (for example: visiting websites, searching, etc.) are
simulated via a Markov model. In the absence of advertising, the user’s browsing behavior is
modeled as a stationary Markov process. This user browsing process is similar to the network
of web pages Markov model underlying the PageRank algorithm, as described in [5]. With the
injection of ads, a user’s browsing behavior can be modified, which is realized by changing the
user’s transition matrix, thereby making the Markov model non-stationary.

Ads are served based on the user’s activity (e.g., if the user is performing a search, a search ad
may be shown) and targeted based on the likelihood of the user being receptive to the ad (e.g.,
a user searching for a keyword more relevant to the advertiser is considered more receptive to an
ad than a user searching for a less relevant keyword). If the user is served an ad, the ad has a
probability of modifying the user’s downstream browsing behavior through a temporary and/or
permanent change to the user’s transition matrix (e.g., the user is more likely to directly navigate
to the advertiser’s website as a result of having been exposed to the ad; either immediately, via
their next activity, or at a later time, via all future activities). A diagram of the DASS model is
shown in and the components are described in detail in the sections that follow.

DASS generates user activity streams U, with each user activity stream composed of two vectors
U = (Y, Z). The first vector Y consists of the user’s activity states: Y = (Yo, ..., Yr) with Y; being
the activity state at event ¢. Examples of Y, include: performing a branded search, visiting the
advertiser’s website, visiting a third-party website, or completing a conversion activity. The second
vector Z consists of the corresponding ad to which the user was exposed, if any, on each activity
state: Z = (Zy, ..., Zr) with Z; being the ad served while the user was on their ¢-th activity state.
Examples of Z; include: a search ad impression, display ad impression, video ad impression, or
none (if no ad was served to the user). The vectors Y and Z have the same length, but this length
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2.1 Activity Stream Model 2 SIMULATION MODEL
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Figure 2: Diagram of DASS. The activity stream model generates the next activity state Yék for
user k from the user’s current transition matrix M f and previous activity state, and is described
in greater detail in The ad serving model generates the next ad impression Zé“ served
based on the user’s current activity state, and ad serving parameters sy, dp;, vp;, fp;, q{fj associated
with each possible ad type b;, which are described in The ad impact model generates
the user’s updated transition matrix le“ by using the parameters qz_l and r%¢-1, described in
to determine whether the previous ad exposure changed the user’s behavior, and if so,
applying the ad’s impact to the previous transition matrix.

is random, and differs across users, as stream length is determined by the number of steps until
transition to an absorbing state.

DASS is typically used to generate the activity streams of multiple users, and we let K denote the
number of users. The K user activity streams are U, ..., U¥. Each user activity stream becomes
UF = (Y*, ZF), with Y* = (Y, ... ,Yka), where ng is the activity state of user k at event £, and
Zk = (Z(’)“, ceey Zﬁk) where Zéc is the ad served, if any, while the user k was in their ¢-th activity
state. Since we index the initial activity state by zero, L; + 1 is the number of activity states in
the k™ user’s path.

2.1 Activity Stream Model

The activity stream model specifies user browsing behavior in the absence of advertising. This
behavior is a first order Markov chain. The observed states consist of possible user browsing
activities, such as a search, site visit, and conversion. An associated transition matrix defines the
probabilities of transition from any given activity state to another.
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2 SIMULATION MODEL 2.1 Activity Stream Model

The activity stream model includes three sets of parameters. First, the activity states ai,...,an
describe the state space of the Markov model. These states are the n browsing activities that
users can transition between inside the simulator. Second, the initial activity state distribution
Tays- -+ Ta, Specifies how users begin their browsing activity stream. Each probability is defined
as T, = P(YJ = a;) with the requirement that > I, m,, = 1. Finally, the activity transition
matrix M describes how a user moves between activity states in the absence of ads. Without ads,
the user’s browsing behavior is completely characterized by the activity transition matrix. Given
the user’s current state, the row corresponding to that state gives the probability distribution of
the user transitioning to each of the other activities in the model state space. M is composed of
probabilities pq,,a; = P(ij_1 = aj\YZ“ = a;), with all rows summing to one: 2?21 Pasa; = 1V i.

Typically, at least one state is an absorbing state, at least one state represents a conversion activity,
and at least two states represent a visit to the advertiser’s website (to differentiate between visits
from paid clicks on ads versus visits from organic clicks). An absorbing state will have transition
probabilities such that the user cannot continue on to any other state after reaching the absorbing
state. The absorbing state terminates a user’s activity stream. Formally, if a; is an absorbing state,
then pg, q; = 1 and pg, o, = 0V j # i. We typically assume that no ads are served on an absorbing
state.

A conversion state can only be reached once a user is already on one of the states representing a
visit to a website that the advertiser owns. That is, transition probabilities to conversion states are
zero for all states that do not represent a visit to the advertiser’s site. Let a; be a conversion state,
and let J be the set containing the indices of states that represent a website that the advertiser
owns. Then pg, o, =0V j & J.

In the absence of advertising, it is not possible to reach the paid-click-visit-to-the-advertiser’s-
website activity state. Transitions to this state are set to zero because it is not possible for a user
to visit the advertiser’s website via a click on a paid ad, if an ad is not shown to the user. If a; is
a visit to the advertiser’s site via a paid ad click, then p,; ., =0V j in the absence of advertising.
In later sections, we will discuss how this state is reachable once advertising is introduced.

Other restrictions can be imposed on the transition matrix to accommodate additional assumptions.
For example, if a state indicating video watching is included as one of the activity states, we
might restrict transitions to that state to only come from third party websites, and not from the
advertiser’s website or searching states.

Through specification of the entries in the transition matrix, we can modify various user charac-
teristics. Activity levels, activity preferences (searching, web surfing, video watching), advertiser
engagement (branded searches, site visits), and conversion rates can be adjusted by changing the
magnitude of transition probabilities. The activity transition matrix does not need to be the same
for all users. For example, some users may have a higher conversion rate than other users, and
this heterogeneity can be correlated with other parameters. For example, a user with a higher
conversion rate could have higher ad impressibility (likelihood of being impacted by exposure to
an ad). This specification correlates user heterogeneity with ad serving, since ads are targeted to
users with higher impressibility. In particular, this specification makes ads more likely to be served
to users with higher conversion rates.
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2.2 Ad Serving Model

The ad serving model describes the types of ads that can be served to users, the user activity states
on which each ad type is eligible to be served, and how we determine whether or not to serve an
ad to each user. The ad serving model is parameterized as follows.

Ad types by,..., b, specify the types of advertising that can be served to users in the simulation.
The model includes the ability to serve ads of different formats (for example: search, display, video).
It is also possible to differentiate campaigns within the same ad format (for example: branded and
generic search ads).

Every user has an impressibility parameter associated with each ad type, ql’fl, . ,qu. This im-
pressibility is the probability that the user’s behavior will change as a result of seeing that ad type.
The impressibility assigned to each user for each ad type is parameterized through a distribution
with support between zero and one. Each user’s impressibility to each ad type is then drawn in-
dependently from the corresponding distributions. Impressibility is discussed in the context of the

ad impact model in [Section [2.3]

A user’s impressibility to ads is also used in ad serving. Each ad type can be served to a subset of
users based on their impressibility to that ad type, which allows DASS to model ad targeting. As
a result, these user impressibility parameters allow us to model the implementation of advertising
campaigns. Impressibility targeting can be viewed as, for example, the types of keywords targeted
in a search campaign (search ad impressibility), or the relevance of websites targeted by a display
campaign (display ad impressibility).

Each ad type b; has four corresponding parameters (sbj,dbj,vbj, fbj) that specify where and how
that ad type is served. The parameter s;, = {a; : bj served on state a;} specifies the set of activity
states on which ad type b; can be shown to users.

The impressibility threshold dp; specifies the minimum user impressibility level required for that
ad type to be shown. That is, users with impressibility below this threshold will never be served
the corresponding ad type. The impressibility threshold is a number between zero and one. An
impressibility threshold of zero leads to all users being eligible to be served the ad, whereas an
impressibility threshold of one means that the ad will not be served. The impressibility threshold
allows us to model the website and keyword targeting, as described above.

The share of voice parameter, vp;, indicates the probability that an ad is actually served to an
eligible target user, where an eligible target user is defined as a user who meets the minimum
impressibility threshold for the ad type. Share of voice is also a number between zero and one. A
share of voice of 0.5, for example, indicates that half of all eligible users will be shown the ad type
when they reach the target activity state, on average. Ads can then be served to the fraction of
users (share of voice) who meet a given impressibility threshold (website/keyword targeting). In a
real campaign, the share of voice is regulated by the keyword bids and/or the campaign budget.
Higher bids/budgets will result in a higher share of voice.

Frequency cap fp, defines the maximum number of ads that a user can be served for ad type b;.
Ads are not served to a user after the user has reached the frequency cap of impressions for that
ad type.
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2.3 Ad Impact Model

The ad impact model specifies the impact that advertising has on exposed users. This model
describes how exposure to an advertising event modifies the user’s transition matrix probabilities.

If a user is exposed to an ad, the ad has a probability of modifying the user’s behavior. This
probability is defined through the impressibility parameters. Impressibility probabilities qgfl, ey q,’fm
are specific to the user for each ad type served. The user’s impressibility for an ad type indicates
the probability that the user’s behavior will change as a result of seeing that ad type.

If a user’s behavior changes from ad exposure, a number of ad response parameters describe how
the user’s behavior is modified. These parameters are specified separately for each ad type. When
a user is impacted by an ad, that user’s downstream behavior is affected through a change to that
user’s transition matrix. The downstream behavior can change across different time horizons. Each
time horizon effect is parameterized by a function. While general specification of time horizons is
possible, we focus on three possibilities in this paper to illustrate the concept: temporary impression,
temporary click, and persistent impression. Note that a single ad type can have effects over multiple
time horizons.

The temporary impression effect function ri)ij from ad b; modifies the transition to the very next
activity after ad exposure. This type of ad impact does not persist beyond the transition to the
very next activity. For example, an exposure to a search ad can increase the probability of a paid
click on that ad, but this effect only exists while the ad is visible, and does not affect additional
downstream activities.

The temporary click effect function rsg from ad b; is similar to the temporary impression effect,
but it is conditional on the user clicking on the ad. It only modifies the transition to the very
next state after an ad click. If the user does not click on the ad, this effect is not applied. For
example, clicking on an ad could increase the probability that the user visits additional pages on
the advertiser’s website immediately after visiting the landing page following the click. Note that
an ad must have a temporary impression effect in order to have a temporary click effect, since it
would otherwise be impossible to click on the ad.

The persistent impression effect function rfj from ad b; applies a permanent modification to the
user’s transition matrix. This effect modifies transition probabilities for all downstream browsing
activity, and is applied after the time horizons of the temporary impression and temporary click
effects (if any) have ended. For example, exposure to an ad impression may result in users becoming
aware of an advertiser or brand for which they had no previous familiarity. This new awareness
could result in a permanent increase in the probability that such users perform a branded search
or visit the advertiser’s website.

For each time horizon effect 7 of an ad, the function rij applies the effect by specifying the changes
to the user’s behavior during that time horizon through changes to the user’s transition matrix.
For example, each function rﬁj could be composed of the following example modifications: scaling,
spiking, and re-normalizing. A scaling modification hs.(M,a;, ws:) scales up the probability of
transition to state a; through a specified multiplicative scaling factor, ws. > 0, by multiplying
transition probabilities to the specified state by 1 + wg.. This function might be used to specify
that, with ad exposure, the user is more likely to directly visit the advertiser’s website. The
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2.4 Simulating User Streams 2 SIMULATION MODEL

function hs.(M, a;, ws:) multiplies the column corresponding to state a; by (1 4+ ws.). That is,
hse(M, @i, wse) = M Lij(140,.), Where L4y, is an identity matrix except for the value of entry i1,
which is (1 4 wsc).

A spiking modification hgpi (M, ai, wspk) sets the probability of transition to state a; to a fixed
constant value wepk € [0,1]. This function can be used, for example, to model the probability
that the user clicks on an ad. The function hgpk (M, ai, wepk) replaces the column corresponding to
state a; by wgpk. That is, hgpi (M, a;, wepk) = My , where M; is the matrix M except with

? wspk) wspk)

column ¢ replaced by wgpy - I

Since the above, as well as other possible changes, can result in a transition matrix with rows no
longer summing to one, a re-normalizing modification hym (M, A) is used to ensure that the rows of
the transition matrix continue to sum to one. This function also allows the transition probabilities
to the states specified in the set A to remain unchanged. This function is typically used to preserve
the rate at which conversions are generated from visits to the advertiser’s website, and makes
it possible to prevent the overall conversion rate from decreasing as the level of advertising is
increased. (Otherwise, increased transition probabilities to states such as branded search, followed
by renormalization, would result in decreased transition probabilities to the conversion state.)

Applying the functions described above across multiple ad serving events allows the impact of
advertising to accumulate over multiple impressions (burn-in). This impact can also be reduced
across additional impressions (fatigue). For example, the functions might include an ad burn-in /
fatigue correction to modify the magnitude of changes to the user’s transition matrix due to the
n-th ad exposure.

2.4 Simulating User Streams

This section describes the steps used to generate a simulated user stream of activities and ad
exposures from DASS for user k. Readers who are less interested in these implementation details

can proceed to [Section |3}

We assume that all parameters of the model have been defined. The procedure can be repeated K
times to generate K user streams. Below, for ease of exposition, we make the following assumptions:
at most one ad type, b;, is eligible to be served on any activity state a;; no ads are served on
absorbing activity states; and each ad type has three possible response time horizons (temporary
impression, temporary click, persistent impression). This procedure can easily be modified to
accommodate different assumptions. A flow diagram of the procedure is shown in

0. Generate the user’s initial activity state Yok from the state space aq,...,a, using the initial
transition probabilities mq,,...,7,,. Set the current activity number ¢ = 0. Check if the
current state is an absorbing state: Yek € Aabsorbing-

(a) If no, go to to determine whether any ads are served on this activity state.

(b) If yes, stop. The simulation for user k is complete.

1. From the current activity sz, generate the next user activity Yglil with the user’s transition
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2 SIMULATION MODEL 2.4 Simulating User Streams

matrix M: draw from the state space ai,...,a, according to the transition probabilities
Pyrar s PypFa,: Set £ = ¢+ 1. Check if Yék € Aabsorbing-

(a) If no, go to to determine whether any ads are served on this activity state.

(b) If yes, stop. The simulation for user k is complete.

2. Check if any ad type is eligible to be served on the user’s current activity state: 3b; : ng € Sp,-

(a) If no, go to to generate the next activity state.

(b) If yes, let b; be the ad type that is eligible to be served on the user’s current activity
state. Go to to determine whether the user is eligible to be served this ad type.

3. Determine whether the user is targeted by the ad type campaign, by checking whether the
user’s impressibility to the ad meets the ad’s impressibility threshold: q{fj > dp,;, and the

. b . b;
user’s number of previous exposures to the ad n;/ is less than the frequency cap: n;’ < fj,.

(a) If no, go to to generate the next activity state.
(b) If yes, go to to determine whether the user will be served this ad.

4. Use the share of voice probability vy, to determine if the user will be served an ad of this
type: Bernoulli(vy,;) = 1.

(a) If no, go to to generate the next activity state.

(b) If yes, record the ad impression exposure: Zé“ = bj. Go to to determine the
impact of ad exposure on the user’s transition matrix.

5. Use the user’s impressibility probability for the relevant ad format to determine if the user’s
behavior (transition matrix) will be impacted by the ad: Bernoulli(qu) =1.

(a) If no, go to to generate the next activity state.

(b) If yes, check if there is a temporary impression effect function rfij associated with the ad
format.
i. If yes, apply the temporary impression effect function to the transition matrix to
. . , b .
compute the temporary transition matrix M’ = r./ (M). Go to E to determine
whether the user clicked on the ad.
ii. If no, modify the transition matrix with the persistent impression effect function

’ (M). Go to

to compute the user’s permanent updated transition matrix M = Toi

to generate the next activity state.

6. Generate the next activity YelfH from the current activity ng and the temporary transition
matrix M’. Set £ = ¢ + 1 and determine if the user clicked on the ad: ng € Apaid, where
Apaia is the set consisting of the states a; that indicate a paid visit to the advertiser’s website
via an ad click.

(a) If no, restore the transition matrix by removing the temporary impression effect: resume
use of of M and discard M’. Apply the persistent impression effect to compute the

permanently updated transition matrix M = rfj (M). Check if sz € Aabsorbing-
i. If no, go to to determine whether any ads are served on this activity state.
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ii. If yes, stop. The simulation for user k is complete.
(b) If yes, check if there is a temporary click effect function rfé associated with the ad.

i. If yes, modify the transition matrix with the temporary click effect function to
compute a temporary transition matrix M’ = rfé (M). Go to E to generate the

next activity state from this temporary transition matrix.

ii. If no, restore the transition matrix by removing the temporary click effect: resume
use of M and discard M’. Apply the persistent impression effect to compute the

permanently updated transition matrix M = rffi(M ) Go to [Step [2| to determine
whether any ads are served on this activity state.

7. Generate the next activity from the current activity Yf and the temporary transition matrix
M'. Restore the transition matrix by removing the temporary click effect: resume use of M
and discard M’. Apply the persistent impression effect to compute the permanently updated
transition matrix M = rffl' (M). Set £ = ¢+ 1. Check if Yf € Aabsorbing-

(a) If no, go to to determine whether any ads are served on this activity state.

(b) If yes, stop. The simulation for user k is complete.

3 Evaluating Attribution Models

In this section, we explain how DASS is used to evaluate the performance of an attribution model.
We assume that the following have been pre-specified: the DASS simulation model parameters,
the set of attribution models to evaluate, and the “data scope” of the attribution product. An
attribution product’s data scope is defined by the set of event types that are visible to the product.
For example, the data scope could include search ad clicks, display ad impressions, clicks to the
advertiser’s website from third-party referral links, and conversions. This topic is discussed in more

detail below, in [Section |3.2

3.1 Calculating Incremental Conversions

We run virtual experiments with DASS to determine the true number of incremental conversions
generated by each ad type. To run a virtual experiment for an ad type, b;, we generate two sets
of simulation data. First, we generate a set of simulated data (y with the pre-specified simulation
model parameters. That is, all advertising types b1, ..., b, are included in the simulation. Second,
we generate another set of simulated data (p, using the same set of simulation parameters, except
with the advertising type b; turned off. Turning off an ad type b; is accomplished by setting the
ad’s impressibility threshold d;; = oo, ensuring that no ad of this type is served to any user.

We then count the number of conversions, Xp,, that occurred in the simulated data set (p,, which
has the advertising type b; turned off, as well as the number of conversions Xy that occurred
in the simulated data set (p, which has all ad types b1,...,b, turned on. The true number
of incremental conversions for advertising type b; is the difference between these two conversion
counts: Oy, = Xo— Xj,. This procedure tells us the number of conversions that are lost by turning
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from mg,, ..., Tan
Set activity number £ = 0

|

Is current activity is an absorbing state: J

‘ Generate initial activity Yy ‘

Generate the next activity Yl‘ﬂrl from M

Y € Aabsorbing? Set £ = £+ 1

[ Simulated stream of user k completed J«—[

no

Are any ads served on current activity state:} no
ELTIEED

l yes

‘ Is the user targeted by the ad ‘

and below the frequency cap: no

b .
@, > dy, &y < fi? ‘

l yes

Is the user served the ad: W no
Bern(w,) = 17 J

yes

Record the ad exposure:
Set Zf = b;

[ Is the user’s behavior modified by the ad: W no

Bern = 17
(’771(qu) J no

yes

Generate the updated transition matrix
using the permanent impression effect:
Set M = r%(M)

pi

temporary impression effect:

Does the ad have a
307

1 yes

‘ Generate a temporary transition matrix ‘

using the temporary impression effect:
Set M/ = (M)

|

Generate the updated transition matrix — - -
using the permanent impression effect: [ Generate thf‘ next activity Yy, from M’ J
Set M = 7%(M) Setl = £+1

pi

. e Did the user click on the ad:
[ Discard M ]«—m T

yes

( Does the ad have a temporary click effect:
no 3 rfj,y ?

l yes

‘ Generate a temporary transition matrix ‘

using the temporary click effect:
Set M' = b3 (M)

Figure 3: Flow diagram illustrating the process used by DASS to generate a simulated user stream
of activities and ad exposures for user k. This procedure is repeated K times to generate K
simulated user streams.

off advertising type b;. A virtual experiment is performed for each ad type. Note that this approach
aligns with the process of measuring ad effectiveness with randomized experiments (e.g. a user-level
experiment [6] or geo experiment [7]). We do not calculate incremental conversions from unpaid
event types. This is because we cannot turn these event types off. This is true in DASS and in
practice.

It is also possible to calculate a confidence interval for the number of incremental conversions, Oy, .
Let Xé“ be the number of conversions in the stream of user k£ that occurred in the simulated data
set (p, let X é“j be the number of conversions in the stream of user k that occurred in the simulated
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data set (p,, and let @k] = Xk - Xk. Then O, = Zk 1 ’g_. By the Central Limit Theorem, a
confidence mterval for ©p, with conﬁdence level ~ is given by

Op;, = ©(1 — a/2) x /K * Var(@lgj) (1)

where a = 1 — v and @ is the standard normal cumulative distribution function. Alternatively,
DASS can be used to calculate an empirical confidence interval. However, the analytical formulation
is usually preferred, since it has a much lower computational burden for a large number of simulated
users.

3.2 Generating Attribution Model Estimates

The next step is to apply attribution models to the simulated data set (y. That is, the data set
that has all ad types turned on, which is the scenario in which attribution models are applied in
practice. If an advertiser is willing to turn an advertising type off, an actual experiment could, in
principle, be run, and there would be no need for the attribution model.

However, attribution models cannot be applied directly to this data set. Recall that DASS generates
complete user activity streams, consisting of every activity state visited by the user, as well as all
corresponding ad impressions. No attribution product is able to observe all of these user activities
and ad impressions. Instead, these models have access to a subset of this simulated data, which
we call the observable data. As a result, the visible data scope of the attribution product £ must
first be defined, as well as a corresponding translation function x¢ that maps the simulated data
into a filtered version consisting of only those events n¢ that are visible to the attribution product
€. The translation function x¢ translates a simulated user stream into a path of events visible to
the attribution product. The attribution models being evaluated are then applied to this data, i.e.
x¢(¢o). The translation function is applied to each user stream x&(U¥) and outputs a new single
vector O%¢ consisting of entries O?,’g.

The function that computes the conversion credits for each attribution model of interest, A, is then
applied to the visible user path data generated from x%((y). That is, let A be the set containing
the corresponding function A for each model of interest. For each A\ € A, we apply A to the
observable user path data x%((y). Each attribution function calculates the credit 57;"5 assigned
to each observable event 7. The total credit for an ad type is then calculated by aggregating all
credits assigned to the ad type’s associated observable event. For example, since the observable
event corresponding to search ads is typically a paid click on the search ad, the total credit for
search ads is calculated by aggregating the credit assigned to each paid search ad click by the
attribution model. Note that the accuracy of the ad type level conversion estimates from each
attribution model depends on the data scope of the attribution product. For example, attribution
model results vary depending on whether ad clicks versus ad impressions are observable within the
data scope.
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3.3 Assessing Model Performance

The final step is to evaluate the performance of each attribution model A € A by taking the difference

between the true incremental conversions and the credit assigned by the attribution model: \I/ 77

Bn — ;. For a given simulation scenario and advertising type b;, the performance of a set of
attribution models can then be compared based on the magnitude of |\Ilg‘fn|, which measures the
distance between attribution model estimate and true incremental conversions. Attribution models
with smaller distances from the truth are more accurate.

4 Application

In this section, we present an example application of DASS. This example includes two ad types,
search and display, and measures the performance of position-based attribution models in several
scenarios.

Display ads impact user behavior by increasing the user’s likelihood of performing a related branded
or generic search, or visiting the advertiser’s website. These display ads have a small click-through
rate relative to the search ads. The search ads impact user behavior by increasing the user’s likeli-
hood of performing a branded search or visiting the advertiser’s website; with a larger temporary
effect and smaller persistent effect. Display ads and search ads increase the number of conver-
sions by, directly or indirectly, generating site visits that can result in a conversion. A complete

description of all simulation parameters is provided in

4.1 Attribution Models

We evaluate the performance of the following position-based attribution models: last event, first
event, and linear; however, any attribution model could be evaluated. The last event attribution
model gives all the credit to the last observed event prior to a conversion. That is, let U* be a
simulated user stream containing a conversion. Applying the translation function corresponding to
the data scope of the attribution product, x&(U k) = O, provides the path of observable events
for this user. Assume O?,"g is the observed conversion event, and assume the last event prior to the
conversion is Of,’fl = 7). Then the last event model assigns a credit of one to the event 7) for user
k: 61a5t 1. The total credit ﬁlaStas&gned to each observable event 1 by the last event attribution
model is computed by summing the credits assigned to that observable event over each user path:

last __ last
Byt =2k By

Similarly, the first event attribution model assigns a credit of one to the first observed event
OM =11 in the path of a user k containing a conversion: ﬁgm = 1. As with the last event model,
the first event model also computes the total credit for each observable event by summing the
credits assigned at the user path level.

The linear attribution model evenly divides credit across all observed events prior to a conversion
event. That is, let O*¢ be a path containing a conversion, assume O?j's is the observed conversion
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event, and assume the events prior to the conversion are Of’g =mn; for j =0,...,¢ —1. Then

the linear model gives credit of % to each event that occurred prior to conversion: 52;2” = % for

j=0,...,¢ — 1. Like the last event and first event models, the linear model again sums the user
path level credits to compute the total credit for each observable event.

4.2 Data Scope

To generate the observed set of events, we use an example data scope similar to that of many
attribution platforms, including Google Analytics. We assume visibility to events that led the user
to visit the advertiser’s website, as well as display ad impressions. For example, if a user arrived
at the advertiser’s website by clicking on an organic search result, an organic search click event is
visible. Note that many other event types are not visible. In particular, search impressions and
transitions between sites that do not belong to the advertiser are not visible. We use the following
translation function y¢ to map each simulated user stream to a path of events visible within our
example data scope. The translation process is summarized in

Translation Function Event Description

diately preceded by a search activity state

organic search click unpaid visit to the advertiser’s website is imme-

ately preceded by a search ad impression

paid search click paid visit to the advertiser’s website is immedi-

display ad impression display ad impression is served

other non-ad event

unpaid visit to the advertiser’s website is immedi-
ately preceded by a non-search activity (designed
to cover events such as direct navigation, referral
clicks, and other clicks to the advertiser’s website)

conversion conversion activity state is reached

Table 1: Summary of translation of simulated user stream to path of observable events within our
example data scope.

Our example translation function is a simplification which approximates the events visible within
our example data scope. The example translation function used here does not reproduce all possible
sources of clicks to the website, and makes some simplifying assumptions. For example, we assume
that a search activity followed by an unpaid visit to the advertiser’s website is always from a
click on an organic search result; in practice, it is also possible that the user directly navigated to
the advertiser’s website. With more complexity, we could capture these subtleties. However, the
translation function does capture the most important characteristics of the event types observable
to common attribution platforms. For example, impressions of search ads are not visible.
shows an example simulated user stream and its translation to a path of three observable events.

4.3 Results

shows results comparing conversions attributed by position-based attribution models to
true incremental conversions for the example simulation. This result was generated using the set
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ARZ: ZF oyt
0 | third-party site visit display ad | display ad impression
1 | third-party site visit no ad -
2 | generic search no ad -
3 | branded search search ad | -
4 | paid visit to advertiser’s website | no ad paid search click
5 | conversion no ad conversion
6 | end of session no ad -

Table 2: Example translation of simulated user stream to path of observable events.

of parameters specified in The column of true incremental conversions was generated
using the process described in [Section [3.1

Attributed Conversions
Ad Type Observed Event Incremental Conversions (959 cry | Last Event | First Event | Linear
search ads | paid search click 1,208 (1113, 1302) 804 464 617
display ads | display ad impression 5,505 (5192, 5817) 100 10,669 | 6,032
- organic search click - 3,540 1,442 2,287
- other non-ad event - 22,394 14,233 | 17,899
TOTAL - - 26,838 26,838 | 26,838

Table 3: Results generated using the example set of parameters specified in [Appendix [Al Ground
truth incremental conversions for each ad type and number of conversions attributed to the corre-
sponding observed event by three position-based attribution models.

In these results, all three models under-credit search ads. The last event model is closest to the true
number of incremental conversions from search ads, the first event model performs worst for search
ads, and the linear model is in between. A key reason why all models under-credit search ads is due
to the fact that the visible event is a click on search ads. Search ad impressions are not visible, and
therefore no model is able to give them credit, even though they have value in this simulation. We
will demonstrate the importance of this fact further with additional results below. For display ads,
model performance is more varied. The last event model severely under-credits display ads, the
first event model greatly over-credits display ads, and the linear model is quite close to capturing
the true incremental conversions from display ads for this simulation parameterization (6,032 vs.
5,505).

Next, we present results for related scenarios that vary the effectiveness of the ads. A complete
specification of the following scenarios is provided in [Appendix [B]

We first vary the effectiveness of display ads. To modify the effectiveness of display ads, we
vary the value of a multiplicative regulating parameter, dqsp, over the following set of values:
{0.0,0.5,1.0,1.5,2.0,2.5,3.0}. (The subscript dsp in dqsp is short-hand for display.) At dgqgp = 0,
display ads have no impression effect. That is, the only effect of display ads is to allow the user
to click through the ad to the advertiser’s website. As the value of dqg, increases, the impression
effect of display ads increases, causing users to be more likely to visit the advertiser’s website or
perform a related search at a later time. The corresponding temporary impression and persistent

impression effect functions for display ads are provided in
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In we plot the true incremental conversions from display ads and the credit given to
display ad impressions by the three attribution models across the range of d4s, values. The 95%
confidence interval was calculated using [Equation [1] in [Section [3.1

Variations in Display Ad Effectiveness

egm= |ncremental

---- Incremental 95% CI
n + Last Event

A First Event

o Linear

Conversions
15000 20000 25000 30000 35000
|

10000
|

5000
|

0
|

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Display Ad Effectiveness (d4sp)

Figure 4: Incremental conversions from display ads and conversions attributed to display ad impres-
sions by attribution models. Results are shown for different levels of display ad effectiveness. This
effectiveness is modified by varying the value of dqg, in [Equation [7]and [Eiquation 8| in |Appendix [B.1}

The last event model consistently under-credits display ads at all positive levels of effectiveness. The
first event model consistently over-credits display ads at all levels of effectiveness. The linear model
both over-credits and under-credits display ads, depending on the level of ad effectiveness. The
plot makes it clear that the close match between the linear model and true incremental conversions
from display ads in the example parameters in (corresponding to d4sp = 1) was merely a
coincidence.

Next, we consider search ads. As indicated previously, search ad clicks are visible, but search ad
impressions are not. To highlight the importance of this observation, we consider two variations
related to the effectiveness of search ads. First, we consider the case in which search ads have no
impression effect. That is, the only effect of search ads is to allow the possibility for the user to
click through on the ad to the advertiser’s website. Within this case, we then vary the effectiveness
of any clicks on search ads by varying the probability that the user returns back to their activity
state just prior to clicking on the ad, Yf_ ;- In this way, we simulate the probability that the user
clicks on the search ad, considers the ad to be unhelpful, and immediately clicks on their browser’s
back button to revert to the search results page. A persistent impression effect function for search
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ads is not used in this case. Further, this example, like all other examples presented in this paper,
does not include a long term effect from having clicked on an ad.

To modify the effectiveness of search ad clicks, we vary the value of another regulating parameter,
dsch,c, over the following set of values: {0.0,0.25,0.5,0.75,1.0}. (The subscript sch,c in g ¢ is
short-hand for search click.) When dsnc = 0, search ads have zero effect: any user that clicks on
the ad will return to their previous activity state Yf_ , with probability one. As the value of dsch c
increases, the probability (1 — dscn,c) of returning to the previous activity state after clicking on the
search ad decreases, causing the clicks on search ads to become more effective. The corresponding

temporary impression and temporary click effect functions are provided in

contains a plot of the incremental conversions from search ads and the attribution credit
given to paid search click by the three models, over the range of s values. When search ads
have no impression or long term effect, the last event model does very well at measuring the true
incremental conversions from search ads across the full range of click effectiveness. Both the linear
and first event models under-credit search ads, with the first event model being the worst performer.

Variations in Search Ad Click Effectiveness (No Impression Effect)

S _| |me=s Incremental
® ---- Incremental 95% CI
+ Last Event
A  First Event
O Linear
o
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O
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<
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Search Ad Click Effectiveness (3sch, )

Figure 5: Incremental conversions from search ads and conversions attributed to search ad clicks
by attribution models. The plot shows results over a range of search ad click effectiveness levels.
Ad effectiveness is modified by the value of dsc ¢, as determined by [Equation [9] and [Equation [10]in

Search ad impressions have no effect in these simulations.

Now, we consider the case in which search ads do have an impression effect, and we vary the
magnitude of this impression effect. To modify the effectiveness of search ads, we vary the value
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of dscni over the following set of values: {0.0,0.5,1.0,1.5,2.0}. (The subscript sch,i in dsch; is
short-hand for search impression.) At dschi = 0, search ads have no impression effect beyond
allowing the possibility for the user to click through the ad to the advertiser’s website. As the
value of dgeni increases, the impression effect of search ads increases, causing users to be more
likely to visit the advertiser’s website or perform a related search at a later time. This effect is
realized with temporary impression and persistent impression effect functions, which are provided

in [Xppendix 3.3

In we plot the incremental conversions from search ads and the attribution credit given to
paid search clicks by the three models, over the range of dsp ; values. All three models under-credit
search ads in this case; among the three models, the last event model most closely matches the true
incremental conversions. The first event model has the worst match.

Variations in Search Ad Impression Effectiveness
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Figure 6: Incremental conversions from search ads and conversions attributed to search ad clicks
by attribution models. This plot shows results over a range of search ad impression effectiveness
levels. Effectiveness is modified by the value of s ; as determined by [Equation[11]and [Equation

in [Xppondix |33

These results are not a surprise, since the attribution models do not have visibility to search ad
impressions. As a result, when the effectiveness of the search ad impressions increases, and the
number of incremental conversions also increases, the attribution models do not see those users
who were exposed to an unclicked search ad that changed their downstream browsing behavior.

To evaluate whether visibility to search ad impression events would improve the performance of
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these attribution models, we also compute the credits attributed to search ads by each model when
search ad impression events, rather than search ad clicks, are made available to the models. In
we plot the incremental conversions from search ads and the attribution credit given to
paid search impressions by the three models, over the range of dgen i values. The linear and first
event models are somewhat closer to the truth when search ad impressions are available. The last
event model’s performance does not change, since in our example data scope, a search ad impression
can only immediately precede a conversion if the user clicks on the ad. If the user does not click on
the ad, some other event that brings the user to the advertiser’s website (such as direct navigation
or organic search click) must occur between a search impression event and a conversion. All three
models still under-credit search ads. This result demonstrates that better data alone does not solve
the attribution problem. Better attribution models are also needed.

Variations in Search Ad Impression Effectiveness (Impressions Visible)
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Figure 7: Incremental conversions from search ads and conversions attributed to search ad im-
pressions by attribution models. This plot shows results over a range of search ad impression
effectiveness levels. Effectiveness is modified by the value of dsep; as determined by
and [Equation [12] in [Appendix [B.3]

5 Concluding Remarks

This paper introduced DASS, a simulation-based framework to model advertising and its effect
on user behavior. DASS is a flexible and general framework with a broad range of potential
applications; such as marketing mix modeling, digital attribution, campaign optimization, and
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ad fatigue. We demonstrated its application to digital attribution by analyzing and quantifying
the performance of position-based attribution models under different ad effectiveness conditions.
None of the models performed well across all scenarios. While it is not the goal of this paper to
recommend a particular attribution model, this approach can be used to create a systematic process
for doing so. We are actively using DASS to systematically quantify the performance of existing
attribution models, as well as develop new models.

Many advertisers rely on observational models to assess how well their advertising is working and
make decisions about how to optimize their online ad spend. However, the quality of guidance
provided by these methods has been unclear. Digital advertising is complex; it works differently
across different verticals, advertisers, campaigns, and users. So, rather than attempting to deter-
mine how advertising works in a specific situation, it is more useful to evaluate models under a
variety of conditions and assumptions about how advertisers implement their campaigns, and how
users behave and react to this advertising. The framework presented in this paper can be used
to systematically evaluate models across these conditions. The most capable models will provide
causal insights across the widest variety of assumptions.
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Appendix A Example Simulator Parameterization

This appendix provides an example set of parameters that fully specifies the DASS simulation
model. The parameters described in this section are the basis of the results shown in

The total number of users is set to K = 10,000, 000. The set of activity states is
ai,...,a, = {bs, gs, vp, vup, tpw, vw, c, eos }

where the definition of each state is provided in

We set the initial activity state distribution so that all users begin with a third party website visit,
the activity tpw. That is, we set m,, = 1 for a; = tpw, and 7., = 0 for a; # tpw.

The transition matrix M, consisting of probabilities pq, q; is specified as:
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Activity State | Description

bs branded search

gs generic search

vp visit to a website that the advertiser owns via a click on a paid ad

vup visit to a website that the advertiser owns via any non-paid click activity
tpw third party website visit (website that does not belong to the advertiser)
VW video view

c conversion

€os end of session

Table 4: Description of activity states used in example simulations.

bs gs vp vup tpw vw ¢ eos

bs .01 .07 0 .05 33 0 0 .54

gs .01 07 0O .03 34 0 0 .54

vp .01 .07 0 .03 .33 0 .03 .53

M= | vup .01 .07 0 .04 33 0 .03 .52
tpw .01 .06 O .03 .32 .06 0 .51

vw .01 .06 0 .03 .32 .06 0 .51

c 01 07 0 03 34 0 0 .54

leos 0 0 O 0 0 0 0 1

We use the following ad types in the simulations:

bi,...,bm = {b1,ba} = {sch, dsp}, where sch = search ads, dsp = display ads
The associated ad serving parameters for each ad type b; are shown in

Ad Type | Serving States | Impressibility Threshold | Share of Voice | Frequency Cap
b; Sb; dp, U, Jv;
sch bs 0.8 0.8 100
dsp tpw 0.8 0.4 100

Table 5: Ad serving parameters used in demo simulations.

Each user’s impressibility, for both ad types, is determined by separate random draws from a
truncated normal distribution:

gy, ~ Tr[0,1]N (= 0.8,0 = 0.1) V b;

To parameterize ad response, we use two functions for each ad type b;, applying different time
horizon effects. The two timeframe effect functions are: temporary impression rfij and persistent
impression ri{. The function f (an) appears as part of the temporary and persistent impression
effect functions. This function serves to modify the impact of an ad based on the number of times
an a user was exposed to the ad, and is described at the end of this section.

For search ads, the temporary impression effect function is given by:

~ bs b
TEICh(M) = h,nrm (o] h,scsaf(nk]) o h;’élp,Qf(nkJ) ° th,OQ(M)

spk
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The components of this function were described more generally in We modified notation
here slightly to simplify presentation by placing function arguments in superscripts, and using the
function composition operator o, which simplifies the notation for f(g(x)) to f o g(x).

With a search ad impression, the temporary effect function in sets the transition proba-
bilities of the vp column in M to 0.2 with the function h:;’l’(o'Q (introducing the possibility of a paid

click on the ad), scales the transition probabilities in the columns bs and vup by the factor 2 f (an )

A bs ~ b
. . 2f(n,? 2f(n,’ . .. .
with the functions h]socs’ i) and hee ) (make the user more likely to visit the advertiser’s
website from, for example, an organic search click or via a related generic search click), and then
re-normalizes the updated transition matrix with the function Apppy,.

The persistent impression effect function for search ads is:

(M) = B 0 RSSO o LSO (3)
The function scales the transition probabilities in the columns bs and vup by the factor 1.5 f (nzj ),
increasing the probability of a branded search or unpaid visit to the advertiser’s website, and then
re-normalizes the transition matrix. The re-normalization is performed across all columns except
the conversion column c, in order to keep the conversion rate given site visit constant. Note that the
persistent impression effect function for search ads uses smaller scaling factors than the temporary
impression effect function. We chose this example parameterization since search ads are generally
assumed to have a greater impact on user behavior while the ad is visible to the user.

Turning to display ads, the temporary impression effect function is:

700 700 £l
PP (M) = ha 0 e 208 o A0 o Q21000 o gy 0.001 () (4)
The function sets transition probabilities of the vp column to 0.001, scales the transition probabil-
ities in the columns bs, gs, and vup by a factor of 1.2 f (an ), and then re-normalizes the transition
matrix.

The persistent impression effect function for display ads is given by:

A b 7. Yj F(nbi
bu.L2f(n) o pesd2fnd) e 2fd) ) (5)

Tglsp(M) = h;rm O fsc sc

This function scales the transition probabilities in the columns bs, gs, and vup by a factor of
1.2 f (an ), and then re-normalizes the matrix. Again, the re-normalization is performed using
all columns except the conversion column c, in order to keep the conversion rate given site visit
constant. For display ads, the persistent impression and temporary impression effect functions use
the same scaling factors. This example parameterization was used because display ads are often
assumed to impact user behavior primarily through longer-term impression effectiveness that is not

greater while the ad is visible.

The function f (an ), which appears as part of the temporary and persistent impression effect
functions, modifies the impact of an ad based on the number of times a user was exposed to the
ad. For both search ads and display ads, the temporary and persistent impression effect functions
modify the impact of the ad depending on the number of times the user was exposed. Specifically,
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columns that are scaled up increase in effect over the first several impressions (burn-in), and then
decline in effect after additional impressions (fatigue). The ad burn-in / fatigue correction function
f shown in @ is used to modify the magnitude of changes to the user’s transition matrix
due to the n,’-th ad exposure from ad type b;.

b,
P 7;% b nk] =70
7Y — J b
f(nk ) 2 — % ng <n; < 2ng (6)
b,
0 n, > 2ng

In this hat function, ng specifies the ad exposure that results in the maximum ad impact. For the
example simulations presented in this paper, we set ng = 2. A plot of the hat function with ng = 2

is shown in [Figure [§

A b,
Value of f versus number of ad exposures ny’ when ng =2

1 °
t 05 - o o
0O — o o o o o
T T T T T T T I
0 1 2 3 4 5 6 7

by
Nk
Figure 8: Plot of the hat function f versus number of ad exposures an when ng = 2. This function
modifies the impact of an ad depending on the number of prior exposures. The impact increases
across the first few impressions, and then declines after subsequent impressions.
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Appendix B Ad Impact Variation Functions

In this appendix, we provide the ad impact functions that were used to produce the results in
Section 4.3

B.1 Display Ad Effectiveness

Display ad effectiveness was varied in using the following temporary impression and per-
sistent impression effect functions for display ads:

P A bs ~ b
ds bs,1.284sp f(n,”) gs,1.2645p f(n,7) vup,1.28q5p f(n,7) ,0.001
rti p(adsp) - hnrm hsc v k o hsc P k o h’SC P k o h:[I))k (M) (7)
dsp ¢ b8, 12000 F () 88,1 200pf(n)7) _, vup,1.2845p ()
Tbi (ddsp) = hyem © hsc 0 hsc O Nsc (M) (8)

Note that for dqsp = 1, [Equation]7]is the same as the example temporary impression effect function
for display ads from [FEquation |4 and [Equation |8 is the same as the example persistent impression
effect function for display ads from

B.2 Search Ad Click Effectiveness

The effectiveness of search ad clicks was varied in using the following temporary impression
and temporary click effect functions for search ads:

P B) = ham R0 o
Yflil Yékfla(lfasch,c)

7ie (Gsehe) = hmim' © By (M) (10)

B.3 Search Ad Impression Effectiveness

The effectiveness of search ad impressions was varied in [Figure [6] using the following temporary
impression and persistent impression effect functions for search ads:

~ b ~ b
h b57265c ,if(n ]) Vup12550 ,if(n J) 70.2
T?f (5sch,i) = hnrrn o hsc " ko hsc " k7o h:gk (M) (11)
sch c b571-555ch,if(nzj) Vup71-55sch,if(nzj)
Tpi = Prem © hsc O Nge (M) (12)

Similar to the scenario previously shown for display ads, when dsn; = 1, both rﬁfh(ésch’i) and
r?fih((sscm) are the same as the example temporary rifh and persistent rfgh impression effect functions

for search ads in [Equation [2| and [Equation [3]
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