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ABSTRACT
We present trièst, a suite of one-pass streaming algorithms
to compute unbiased, low-variance, high-quality approxima-
tions of the global and local (i.e., incident to each vertex)
number of triangles in a fully-dynamic graph represented as
an adversarial stream of edge insertions and deletions.
Our algorithms use reservoir sampling and its variants to

exploit the user-specified memory space at all times. This is
in contrast with previous approaches, which require hard-to-
choose parameters (e.g., a fixed sampling probability) and
offer no guarantees on the amount of memory they use. We
analyze the variance of the estimations and show novel con-
centration bounds for these quantities.
Our experimental results on very large graphs demon-

strate that trièst outperforms state-of-the-art approaches
in accuracy and exhibits a small update time.
1. INTRODUCTION
Exact computation of characteristic quantities of Web-

scale networks is often impractical or even infeasible due
to the humongous size of these graphs. It is natural in
these cases to resort to efficient-to-compute approximations
of these quantities, which, when of sufficiently high quality,
can be used as proxies for the exact values.
In addition to being huge, many interesting networks are

fully-dynamic and can be represented as a stream whose ele-
ments are edges/nodes insertions and deletions occurring in
an arbitrary (even adversarial) order. Characteristic quan-
tities in these graphs are intrinsically volatile, hence there
is limited added value in maintaining them exactly. The
goal is rather to keep track, at all times, of a high-quality
∗Work partially done at Brown University.
1Any missed chance is lost forever.
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approximation of these quantities. For efficiency, the algo-
rithms should aim at exploiting the available memory space
as much as possible and they should require only one pass
over the stream.
We introduce trièst, a suite of sampling-based, one-pass

algorithms for adversarial fully-dynamic streams to approx-
imate the global number of triangles and the local number of
triangles incident to each vertex. Mining local and global
triangles is a fundamental primitive with many applications
(e.g., community detection [4], topic mining [10], spam/anomaly
detection [3, 27], ego-networks mining [12] and protein in-
teraction networks analysis [29].)
Many previous works on triangle estimation in streams

also employ sampling (see Sect. 3), but they usually require
the user to specify in advance an edge sampling probability
p that is fixed for the entire stream. This approach presents
several significant drawbacks. First, choosing a p that allows
to obtain the desired approximation quality requires to know
or guess a number of properties of the input (e.g., the size
of the stream). Second, a fixed p implies that the sample
size grows with the size of the stream, which is problematic
when the stream size is not known in advance: if the user
specifies a large p, the algorithm may run out of memory,
while for a smaller p it will provide a suboptimal estimation.
Third, even assuming to be able to compute a p that ensures
(in expectation) full use of the available space, the memory
would be fully utilized only at the end of the stream, and
the estimations computed throughout the execution would
be suboptimal.
Contributions. We address all the above issues by taking
a significant departure from the fixed-probability, indepen-
dent edge sampling approach taken even by state-of-the-art
methods [27]. Specifically:
• We introduce trièst (TRIangle Estimation from STreams),
a suite of one-pass streaming algorithms to approximate,
at each time instant, the global and local number of tri-
angles in a fully-dynamic graph stream (i.e., a sequence
of edges additions and deletions in arbitrary order) using
a fixed amount of memory. This is the first contribution
that enjoys all these properties. trièst only requires the
user to specify the amount of available memory, an inter-
pretable parameter that is definitively known to the user.
• Our algorithms maintain a sample of edges: they use the
reservoir sampling [37] and random pairing [14] sampling
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schemes to exploit the available memory as much as pos-
sible. To the best of our knowledge, ours is the first appli-
cation of these techniques to subgraph counting in fully-
dynamic, arbitrarily long, adversarially ordered streams.
We present an analysis of the unbiasedness and of the
variance of our estimators, and establish strong concen-
tration results for them. The use of reservoir sampling
and random pairing requires additional sophistication in
the analysis, as the presence of an edge in the sample is
not independent from the concurrent presence of another
edge. Hence, in our proofs we must consider the com-
plex dependencies in events involving sets of edges. The
gain is worth the effort: we prove that the variance of our
algorithms is smaller than that of state-of-the-art meth-
ods [27], and this is confirmed by our experiments.
• We conduct an extensive experimental evaluation of trièst
on very large graphs, some with billions of edges, compar-
ing the performances of our algorithms to those of existing
state-of-the-art contributions [18, 27, 32]. Our algorithms
significantly and consistently reduce the average estima-
tion error by up to 90% w.r.t. the state of the art, both
in the global and local estimation problems, while using
the same amount of memory. Our algorithms are also
extremely scalable, showing update times in the order of
hundreds of microseconds for graphs with billions of edges.

Due to space constraints, the proofs and additional experi-
mental results can be found in the extended version [9].

2. PRELIMINARIES
We study the problem of counting global and local tri-

angles in a fully-dynamic undirected graph as an arbitrary
(adversarial) stream of edge insertions and deletions.
Formally, for any (discrete) time instant t ≥ 0, let G(t) =

(V (t), E(t)) be the graph observed up to and including time
t. At time t = 0 we have V (t) = E(t) = ∅. For any t > 0,
at time t+ 1 we receive an element et+1 = (•, (u, v)) from a
stream, where • ∈ {+,−} and u, v are two distinct vertices.
The graph G(t+1) = (V (t+1), E(t+1)) is obtained by inserting
a new edge or deleting an existing edge as follows:

E(t+1) =
{
E(t) ∪ {(u, v)} if • = “ + ”
E(t) \ {(u, v)} if • = “− ” .

If u or v do not belong to V (t), they are added to V (t+1).
Nodes are deleted from V (t) when they have degree zero.
Edges can be added and deleted in the graph in an arbi-

trary adversarial order, i.e., as to cause the worst outcome
for the algorithm, but we assume that the adversary has no
access to the random bits used by the algorithm. We assume
that all operations have effect: if e ∈ E(t) (resp. e 6∈ E(t)),
(+, e) (resp. (−, e)) can not be on the stream at time t+ 1.
Given a graph G(t) = (V (t), E(t)), a triangle in G(t) is a set

of three vertices {u, v, w} ⊆ V (t) such that {(u, v), (v, w), (w, u)}
⊆ E(t). We refer to the vertices forming a triangle as its cor-
ners. We denote with ∆(t) the set of all triangles in G(t),
and, for any vertex u ∈ V (t), with ∆(t)

u the subset of ∆(t)

containing all and only the triangles that have u as a corner.
Problem definition. We study the Global (resp. Local)
Triangle Counting Problem in Fully-dynamic Streams, which
requires to compute, at each time t ≥ 0 an estimation of
|∆(t)| (resp. for each u ∈ V an estimation of |∆(t)

u |).

3. RELATED WORK
The literature on triangle counting is extremely rich, in-

cluding exact algorithms, graph sparsifiers [35, 36], complex-
valued sketches [20, 28], and MapReduce algorithms [30, 31,
33]. Here we restrict the discussion to the works most related
to ours, i.e., to those presenting algorithms for counting or
approximating the number of triangles from data streams.
We refer to the survey by Latapy [25] for an in-depth dis-
cussion of other works.
Many previous contributions presented algorithms for more

restricted (i.e., less generic) settings than ours, or for which
the constraints on the computation are more lax [2, 6, 19,
22]. For example, Becchetti et al. [3] and Kolountzakis et al.
[21] present algorithms for approximate triangle counting
from static graphs by performing multiple passes over the in-
put. Pavan et al. [32] and Jha et al. [18] propose algorithms
for approximating only the global number of triangles from
edge-insertion-only streams. Kutzkov and Pagh [23] present
a one-pass algorithm for fully-dynamic graphs, but the tri-
angle count estimation is (expensively) computed only at
the end of the stream and the algorithm requires, in the
worst case, more memory than what is needed to store the
entire graph. Ahmed et al. [1] apply the sampling-and-hold
approach to insertion-only graph stream mining to obtain,
only at the end of the stream and using non-constant space,
an estimation of many network measures including triangles.
None of these works has all the features offered by trièst:

performs a single pass over the data, handles fully-dynamic
streams, uses a fixed amount of memory space, requires a
single interpretable parameter, and returns an estimation
at each time instant. Furthermore, our experimental results
show that we outperform the algorithms from [18, 32] on
insertion-only streams.
Lim and Kang [27] present an algorithm for insertion-only

streams that is based on independent edge sampling with a
fixed probability. Since the memory is not fully utilized dur-
ing most of the stream, the variance of the estimate is large.
Our approach handles fully-dynamic streams and makes bet-
ter use of the available memory space at each time instant,
resulting in a better estimation, as shown by our analytical
and experimental results.
Vitter [37] presents a detailed analysis of the reservoir

sampling scheme and discusses methods to speed up the
algorithm by reducing the number of calls to the random
number generator. Random Pairing [14] is an extension of
reservoir sampling to handle fully-dynamic streams with in-
sertions and deletions. Cohen et al. [8] generalize and ex-
tend the Random Pairing approach to the case where the
elements on the stream are key-value pairs, where the value
may be negative (and less than −1). In our settings, where
the value is not less than −1 (for an edge deletion), these
generalizations do not apply and the algorithm presented
by Cohen et al. [8] reduces essentially to Random Pairing.

4. ALGORITHMS
We present trièst, a suite of three novel algorithms for

approximate global and local triangle counting from edge
streams. The first two work on insertion-only streams, while
the third can handle fully-dynamic streams where edge dele-
tions are allowed.
Parameters. Our algorithms keep an edge sample S of up
to M edges from the stream, where M is a positive integer



parameter. For ease of presentation, we realistically assume
M ≥ 6. In Sect. 1 we motivated the design choice of only
requiringM as a parameter and remarked on its advantages
over using a fixed sampling probability p. Our algorithms
are designed to use the available space as much as possible.
Counters. trièst algorithms keep counters to compute
the estimations of the global and local number of triangles.
They always keep one global counter τ for the estimation
of the global number of triangles. Only the global counter
is needed to estimate the total triangle count. To estimate
the local triangle counts, the algorithms keep a set of lo-
cal counters τu for a subset of the nodes u ∈ V (t). The
local counters are created on the fly as needed, and always
destroyed as soon as they have a value of 0. Hence our algo-
rithms use O(M) space (with one exception, see Sect. 4.2).
Notation. For any t ≥ 0, let GS = (V S , ES) be the sub-
graph of G(t) containing all and only the edges in the current
sample S. We denote with NSu the neighborhood of u in GS :
NSu = {v ∈ V (t) : (u, v) ∈ S} and with NSu,v = NSu ∩ NSv
the shared neighborhood of u and v in GS .

4.1 A first algorithm – trièst-base
We first present trièst-base, which works on insertion-

only streams and uses standard reservoir sampling [37] to
maintain the edge sample S:
• If t ≤M , then the edge et = (u, v) on the stream at time
t is deterministically inserted in S.
• If t > M , trièst-base flips a biased coin with heads
probability M/t. If the outcome is heads, it chooses an
edge (w, z) ∈ S uniformly at random, removes (w, z) from
S, and inserts (u, v) in S. Otherwise, S is not modified.

After each insertion (resp. removal) of an edge (u, v) from
S, trièst-base calls the procedure UpdateCounters that
increments (resp. decrements) τ , τu and τv by |NSu,v|, and
τc by one, for each c ∈ NSu,v.
The pseudocode for trièst-base is presented in Alg. 1.

Algorithm 1 trièst-base
Input: Insertion-only edge stream Σ, integer M ≥ 6

1: S ← ∅, t← 0, τ ← 0
2: for each element (+, (u, v)) from Σ do
3: t← t+ 1
4: if SampleEdge((u, v), t) then
5: S ← S ∪ {(u, v)}
6: UpdateCounters(+, (u, v))

7: function SampleEdge((u, v), t)
8: if t ≤M then
9: return True

10: else if FlipBiasedCoin( M
t ) = heads then

11: (u′, v′)← random edge from S
12: S ← S \ {(u′, v′)}
13: UpdateCounters(−, (u′, v′))
14: return True
15: return False

16: function UpdateCounters((•, (u, v)))
17: NS

u,v ← N
S
u ∩ N

S
v

18: for all c ∈ NS
u,v do

19: τ ← τ • 1
20: τc ← τc • 1
21: τu ← τu • 1
22: τv ← τv • 1

Estimation. For any t ≥ 0, let ξ(t) = max
{

1, t(t−1)(t−2)
M(M−1)(M−2)

}
.

Let τ (t) (resp. τ (t)
u ) be the value of the counter τ at the end

of time step t (i.e., after the edge on the stream at time t

has been processed by trièst-base) (resp. the value of the
counter τu at the end of time step t if there is such a counter,
0 otherwise). When queried at the end of time t, trièst-
base returns ξ(t)τ (t) (resp. ξ(t)τ

(t)
u ) as the estimation for the

global (resp. local for u ∈ V (t)) triangle count.
Analysis.

Theorem 1. We have

ξ(t)τ (t) = τ (t) = |∆(t)| if t ≤M

E
[
ξ(t)τ (t)] = |∆(t)| if t > M .

The trièst-base estimations are not only unbiased in all
cases, but actually exact for t ≤M , i.e., for t ≤M , they are
the true global/local number of triangles in G(t).
We now analyze the variance of the estimation returned by

trièst-base for t > M (the variance is 0 for t ≤M .) Let t ≥
0. For any u ∈ V (t), let r(t)

u be the number of unordered pairs
of distinct triangles from ∆(t)

u sharing an edge.1 Similarly,
let r(t) = 1

3
∑

u∈V (t) r
(t)
u be the total number of unordered

pairs of distinct triangles from ∆(t) sharing an edge. We
also define w(t) =

(|∆(t)|
2

)
− r(t) as the number of unordered

pairs of distinct triangles that do not share any edge, and
analogously for w(t)

u .

Theorem 2. For any t > M , let f(t) = ξ(t) − 1,

g(t) = ξ(t) (M − 3)(M − 4)
(t− 3)(t− 4) − 1

and

h(t) = ξ(t) (M − 3)(M − 4)(M − 5)
(t− 3)(t− 4)(t− 5) − 1 (≤ 0).

We have:

Var
[
ξ(t)τ (t)] = |∆(t)|f(t) + r(t)g(t) + w(t)h(t). (1)

In our proofs, we carefully account for the fact that, as
we use reservoir sampling [37], the presence of an edge a in
S is not independent from the concurrent presence of an-
other edge b in S. This is not the case for samples built
using fixed-probability independent edge sampling. When
computing the variance, we must consider not only pairs
of triangles that share an edge (as for independent edge
sampling approaches), but also pairs of triangles sharing no
edge, as their respective presences in the sample are not
independent events. The gain is worth the additional so-
phistication needed in the analysis, because the contribu-
tion to the variance by triangles not sharing edges is non-
positive (h(t) ≤ 0), i.e., it reduces the variance. A compari-
son of the variance of our estimator with that obtained with
a fixed-probability independent edge sampling approach, is
discussed below.
Let h(t) denote the maximum number of triangles sharing

a single edge in G(t). The following concentration theo-
rem relies on 1. a result by Hajnal and Szemerédi [15] on
graph coloring, 2. a novel concentration result for fixed-
probability independent edge sampling, and 3. a Poisson-
approximation-like result on probabilities of general events
under reservoir sampling w.r.t. their probabilities under in-
dependent edge sampling. These ingredients are then com-
bined to obtain the following result. The details can be
found in our extended online version [9].
1Two distinct triangles can share at most one edge.



Theorem 3. Let t ≥ 0 and assume |∆(t)| > 0.2 For any
ε, δ ∈ (0, 1), let

Φ = 3

√
8ε−2 3h(t) + 1

|∆(t)|
ln
(

(3h(t) + 1)e
δ

)
.

If

M ≥ max
{
tΦ
(

1 + 1
2 ln2/3 (tΦ)

)
, 12ε−1 + e2, 25

}
,

then |ξ(t)τ (t) − |∆(t)|| < ε|∆(t)| with probability > 1− δ.

Results analogous to those in Thms. 1, 2, and 3 hold for
the local triangle count for any u ∈ V (t), replacing the global
quantities with the corresponding local ones.
Comparison with fixed-probability approaches. We
now compare the variance of trièst-base to the variance
of the fixed probability sampling approach mascot-c [27],
which samples edges independently with a fixed probability
p and uses p−3|∆S | as the estimate for the global number of
triangles at time t. As shown by Lim and Kang [27, Lemma
2], the variance of this estimator is

Var[p−3|∆S |] = |∆(t)|f̄(p) + r(t)ḡ(p),

where f̄(p) = p−3 − 1 and ḡ(p) = p−1 − 1.
Assume that we give mascot-c the additional information

that the stream has finite length T , and assume we run
mascot-c with p = M/T so that the expected sample size
at the end of the stream is M .3 Let V(t)

fix be the resulting
variance of the mascot-c estimator at time t, and let V(t)

be the variance of our estimator at time t (see (1)). For
t ≤M , V(t) = 0, hence V(t) ≤ V(t)

fix .
For M < t < T , we can show the following result.

Lemma 1. Let 0 < α < 1 be a constant. For any constant
M > max( 8α

1−α , 42) and any t ≤ αT we have V(t) < V(t)
fix .

For example, if we set α = 0.99 and run trièst-base with
M ≥ 400 and mascot-c with p = M/T , we have that
trièst-base has strictly smaller variance than mascot-c
for 99% of the stream.
What about t = T? The difference between the definitions

of V(t)
fix and V(t) is in the presence of f̄(M/T ) instead of

f(t) (resp. ḡ(M/T ) instead of g(t)) as well as the additional
term w(t)h(M, t) ≤ 0 in our V(t). Let M(T ) be an arbitrary
slowly increasing function of T . For T → ∞ we can show
that limT→∞

f̄(M(T )/T )
f(T ) = limT→∞

ḡ(M(T )/T )
g(T ) = 1, hence,

informally, V(T ) → V(T )
fix , for T →∞.

A similar discussion also holds for the method we present
in Sect. 4.2, and explains the results of our experimental
evaluations, which show that our algorithms have strictly
lower (empirical) variance than fixed probability approaches
for most of the stream.
Update time. The time to process an element of the
stream is dominated by the computation of the shared neigh-
borhood Nu,v in UpdateCounters. A Mergesort-based
algorithm for the intersection requires O (deg(u) + deg(v))
2If |∆(t)| = 0, our algorithms correctly estimate 0 triangles.
3We are giving mascot-c a significant advantage: if only
space M were available, we should run mascot-c with a
sufficiently smaller p′ < p, otherwise there would be a con-
stant probability that mascot-c would run out of memory.

time, where the degrees are w.r.t. the graph GS . By storing
the neighborhood of each vertex in a Hash Table (resp. an
AVL tree), the update time can be reduced toO(min{deg(v),
deg(u)}) (resp. amortized time O(min{deg(v), deg(u)}+
log max{deg(v), deg(u)})).

4.2 Improved insertion algorithm – trièst-impr
trièst-impr is a variant of trièst-base with small mod-

ifications that result in higher-quality (i.e., lower variance)
estimations. The changes are:
1. UpdateCounters is called unconditionally for each ele-

ment on the stream, before the algorithm decides whether
or not to insert the edge into S. W.r.t. the pseudocode
in Alg. 1, this change corresponds to moving the call to
UpdateCounters on line 6 to before the if block. mas-
cot [27] uses a similar idea, but trièst-impr is signif-
icantly different as trièst-impr allows edges to be re-
moved from the sample, since it uses reservoir sampling.

2. trièst-impr never decrements the counters when an edge
is removed from S. W.r.t. the pseudocode in Alg. 1, we
remove the call to UpdateCounters on line 13.

3. UpdateCounters performs a weighted increase of the
counters using η(t) = max{1, (t− 1)(t− 2)/(M(M − 1))}
as weight. W.r.t. the pseudocode in Alg. 1, we replace
“1” with η(t) on lines 19–22 (given change 2 above, all the
calls to UpdateCounters have • = +).

Counters. If we are interested only in estimating the global
number of triangles in G(t), trièst-impr needs to maintain
only the counter τ and the edge sample S of size M , so
it still requires space O(M). If instead we are interested
in estimating the local triangle counts, at any time t trièst
maintains (non-zero) local counters only for the nodes u such
that at least one triangle with a corner u has been detected
by the algorithm up until time t. The number of such nodes
may be greater than O(M), but this is the price to pay to
obtain estimations with lower variance (Thm. 5).
Estimation. When queried for an estimation, trièst-impr
returns the value of the corresponding counter, unmodified.
Analysis.

Theorem 4. We have τ (t) = |∆(t)| if t ≤M and
E
[
τ (t)] = |∆(t)| if t > M .

As in trièst-base, the estimations by trièst-impr are ex-
act at time t ≤M and unbiased for t > M .
We now show an upper bound to the variance of the trièst-

impr estimations for t > M . The proof relies on a very care-
ful analysis of the covariance of two triangles which depends
on the order of arrival of the edges in the stream (which we
assume to be adversarial). Let z(t) be the number of un-
ordered pairs (λ, γ) of distinct triangles in G(t) that share
an edge g and are such that g is neither the last edge of λ
on the stream nor the last edge of γ on the stream. For any
node u ∈ V (t), let z(t)

u be similarly defined, but considering
only the triangles incident to u.

Theorem 5. Then, for any time t > M , we have

Var
[
τ (t)] ≤ |∆(t)|(η(t) − 1) + z(t) t− 1−M

M
.

For the sake of clarity, in Thm. 5, we chose not to present
a stricter but more complex bound involving triangles that
do not share any edge, which, as in Thm. 2, would add a
non-positive term to the variance (i.e., reduce the variance).



The following result relies on Chebyshev’s inequality and
Thm. 5.

Theorem 6. Let t ≥ 0 and assume |∆(t)| > 0. For any
ε, δ ∈ (0, 1), if

M > max
{√

2(t− 1)(t− 2)
δε2|∆(t)|+ 2

+ 1
4 + 1

2 ,
2z(t)(t− 1)

δε2|∆(t)|2 + 2z(t)

}
then |τ (t) − |∆(t)|| < ε|∆(t)| with probability > 1− δ.

In Thms. 5 and 6, it is possible to replace the value z(t) with
the more interpretable r(t), which is agnostic to the order of
the edges on the stream but gives a looser upper bound to
the variance.
Results analogous to those in Thms. 4, 5, and 6 hold for

the local triangle count for any u ∈ V (t), replacing the global
quantities with the corresponding local ones.

4.3 Fully-dynamic algorithm – trièst-fd
trièst-fd computes unbiased estimates of the global and

local triangle counts in a fully-dynamic stream where edges
are inserted/deleted in any arbitrary, adversarial order. It is
based on random pairing (RP) [14], a sampling scheme that
extends reservoir sampling and can handle deletions. The
idea behind the RP scheme is that edge deletions seen on
the stream will be “compensated” by future edge insertions.
Following RP, trièst-fd keeps a counter di (resp. do) to
keep track of the number of uncompensated edge deletions
involving an edge e that was (resp. was not) in S at the time
the deletion for e was on the stream.
When an edge deletion for an edge e ∈ E(t−1) is on the

stream at the beginning of time step t, then, if e ∈ S at this
time, trièst-fd removes e from S (effectively decreasing the
number of edges stored in the sample by one) and increases
di by one. Otherwise, it just increases do by one. When an
edge insertion for an edge e 6∈ E(t−1) is on the stream at
the beginning of time step t, if di + do = 0, then trièst-fd
follows the standard reservoir sampling scheme. If |S| < M ,
then e is deterministically inserted in S without removing
any edge from S already in S, otherwise it is inserted in S
with probability M/t, replacing an uniformly-chosen edge
already in S. If instead di + do > 0, then e is inserted in
S with probability di/(di + do); since it must be di > 0,
then it must be |S| < M and no edge already in S needs to
be removed. In any case, after having handled the eventual
insertion of e into S, the algorithm decreases di by 1 if e was
inserted in S, otherwise it decreases do by 1. trièst-fd also
keeps track of s(t) = |E(t)| by appropriately incrementing
or decrementing a counter by 1 depending on whether the
element on the stream is an edge insertion or deletion. The
pseudocode for trièst-fd is presented in Alg. 2 where the
UpdateCounters procedure is the one from Alg. 1.
Estimation. We denote as M (t) the size of S at the end of
time t (we always have M (t) ≤ M). For any time t, let d(t)

i
and d(t)

o be the value of the counters di and do at the end of
time t respectively, and let ω(t) = min{M, s(t) + d

(t)
i + d

(t)
o }.

Define

κ(t) = 1−
2∑
j=0

(
s(t)

j

)(
d

(t)
i + d

(t)
o

ω(t) − j

)/(
s(t) + d

(t)
i + d

(t)
o

ω(t)

)
.

Algorithm 2 trièst-fd
Input: Fully Dynamic edge stream Σ, integer M ≥ 6

1: S ← ∅, di ← 0, do ← 0, t← 0, s← 0
2: for each element (•, (u, v)) from Σ do
3: t← t+ 1
4: s← s • 1
5: if • = + then
6: if SampleEdge (u, v) then
7: UpdateCounters(+, (u, v))
8: else if (u, v) ∈ S then
9: UpdateCounters(−, (u, v))

10: S ← S \ {(u, v)}
11: di ← di + 1
12: else do ← do + 1

13: function SampleEdge(u, v)
14: if do + di = 0 then
15: if |S| < M then
16: S ← S ∪ {(u, v)}
17: return True
18: else if FlipBiasedCoin( M

t ) = heads then
19: Select (z, w) uniformly at random from S
20: UpdateCounters(−, (z, w))
21: S ← (S \ {(z, w)}) ∪ {(u, v)}
22: return True
23: else if FlipBiasedCoin

(
di

di+do

)
= heads then

24: S ← S ∪ {(u, v)}
25: di ← di − 1
26: return True
27: else
28: do ← do − 1
29: return False

For any three positive integers a, b, c s.t. a ≤ b ≤ c, define

ψa,b,c =
a−1∏
i=0

c− i
b− i .

When queried at the end of time t, for an estimation of the
global number of triangles, trièst-fd returns

ρ(t) =

{
0 if M (t) < 3
τ(t)

κ(t)ψ3,M(t),s(t) = τ(t)

κ(t)
s(t)(s(t)−1)(s(t)−2)

M(t)(M(t)−1)(M(t)−2) othw.

When estimating |∆(t)
u | for u ∈ V (t), the definition for ρ(t)

u

uses τ (t)
u and has the additional condition that ρ(t)

u = 0 if
there is no counter τu. trièst-fd can keep track of κ(t)

during the execution, each update of κ(t) taking time O(1).
Hence the time to return the estimations is still O(1).
Analysis. Let t∗ be the first t ≥ M + 1 such that |E(t)| =
M + 1, if such a time step exists (otherwise t∗ = +∞).

Theorem 7. We have ρ(t) = |∆(t)| for all t < t∗, and
E
[
ρ(t)] = |∆(t)| for t ≥ t∗.

The proof relies on properties of RP and on the definitions
of κ(t) and ρ(t).

Theorem 8. Let t > t∗ s.t. |∆(t)| > 0 and s(t) ≥ M .
Suppose we have d(t) = d

(t)
o + d

(t)
i ≤ αs(t) total unpaired

deletions at time t, with 0 ≤ α < 1. If M ≥ 1
2
√
α′−α

7 ln s(t)

for some α < α′ < 1, we have:

Var
[
ρ(t)] ≤ (κ(t))−2|∆(t)|

(
ψ3,M(1−α′),s(t) − 1

)
+ (κ(t))−22

+ (κ(t))−2r(t)
(
ψ2

3,M(1−α′),s(t)ψ
−1
5,M(1−α′),s(t) − 1

)
The following result relies on Chebyshev’s inequality and

on Thm. 8.



Theorem 9. Let t ≥ t∗ s.t. |∆(t)| > 0 and s(t) ≥ M .
Let d(t) = d

(t)
o + d

(t)
i ≤ αs(t) for some 0 ≤ α < 1. For any

ε, δ ∈ (0, 1), if for some α < α′ < 1

M >max

{
1√

a′ − α
7 ln s(t),

(1− α′)−1

 3

√
2s(t)(s(t) − 1)(s(t) − 2)

δε2|∆(t)|(κ(t))2 + 2 |∆
(t)|−2
|∆(t)|

+ 2

 ,

(1− α′)−1

3

(
r(t)s(t)

δε2|∆(t)|2(κ(t))−2 + 2r(t)

)}
then |ρ(t) − |∆(t)|| < ε|∆(t)| with probability > 1− δ.

Results analogous to those in Thms. 7, 8, and 9 hold for
the local triangle count for any u ∈ V (t), replacing the global
quantities with the corresponding local ones.

5. EXPERIMENTAL EVALUATION
We evaluated trièst on several real-world graphs with

up to a billion edges. The algorithms were implemented
in C++, and ran on the Brown University CS department
cluster.4 Each run employed a single core and used at most
4 GB of RAM. We report here only a subset of the results.
Additional details are available in the extended online ver-
sion. The code is available from http://bigdata.cs.brown.
edu/triangles.html.

Datasets. We created the streams from the following pub-
licly available graphs (properties in Table 1).
Patent (Co-Aut.) and Patent (Cit.). The Patent (Co-
Aut.) and Patent (Cit.) graphs are obtained from a dataset
of ≈ 2 million U.S. patents granted between ’75 and ’99 [16].
In Patent (Co-Aut.), the nodes represent inventors and there
is an edge with timestamp t between two co-inventors of a
patent if the patent was granted in year t. In Patent (Cit.),
nodes are patents and there is an edge (a, b) with timestamp
t if patent a cites b and a was granted in year t.
LastFm. The LastFm graph is based on a dataset [7, 34] of
≈ 20 million last.fm song listenings, ≈ 1 million songs and
≈ 1000 users. There is a node for each song and an edge
between two songs if ≥ 3 users listened to both on day t.
Yahoo! Answers. The Yahoo! Answers graph is obtained
from a sample of ≈ 160 million answers to ≈ 25 millions
questions posted on Yahoo! Answers [38]. An edge connects
two users at timemax(t1, t2) if they both answered the same
question at times t1, t2 respectively. We removed 6 outliers
questions with more than 5000 answers.
Twitter. This is a snapshot [5, 24] of the Twitter follow-
ers/following network with ≈ 41 million nodes and ≈ 1.5
billions edges. We do not have time information for the
edges, hence we assign a random timestamp to the edges (of
which we ignore the direction).
Ground truth. To evaluate the accuracy of our algorithms,
we computed the ground truth for our smaller graphs (i.e.,
the exact number of global and local triangles for each time
step), using an exact algorithm. The entire current graph
is stored in memory and when an edge u, v is inserted (or
deleted) we update the current count of local and global
4https://cs.brown.edu/about/system/services/hpc/grid/

Graph |V | |E| |Eu| |∆|

Patent (Co-Aut.) 1,162,227 3,660,945 2,724,036 3.53× 106

Patent (Cit.) 2,745,762 13,965,410 13,965,132 6.91× 106

LastFm 681,387 43,518,693 30,311,117 1.13× 109

Yahoo! Answers 2,432,573 1.21× 109 1.08× 109 7.86× 1010

Twitter 41,652,230 1.47× 109 1.20× 109 3.46× 1010

Table 1: Properties of the dynamic graph streams
analyzed. |V |, |E|, |Eu|, |∆| refer respectively to the
number of nodes appearing in the graph, the num-
ber of edge addition events, the number of distinct
edges additions, and the maximum number of trian-
gles in the graph (for Yahoo! Answers and Twitter
estimated with trièst-impr M = 1000000, otherwise
computed exactly with the naïve algorithm).
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Figure 1: Estimation by trièst-impr of the global
number of triangles over time. Our estimations have
very small error and variance: the ground truth is
indistinguishable from max/min point-wise estima-
tion over ten runs.

triangles by checking how many triangles are completed (or
broken). As exact algorithms are not scalable, computing
the exact triangle count is feasible only for small graphs such
as Patent (Co-Aut.), Patent (Cit.) and LastFm. Table 1
reports the exact total number of triangles at the end of the
stream for those graphs (and an estimate for the larger ones
using trièst-impr with M = 1000000).

5.1 Insertion-only case
We now evaluate trièst on insertion-only streams and

compare its performances with those of state-of-the-art ap-
proaches [18, 27, 32], showing that trièst has an average es-
timation error significantly smaller than these methods both
for the global and local estimation problems, while using the
same amount of memory.
Estimation of the global number of triangles. Start-
ing from an empty graph we add one edge at a time, in
timestamp order. Figure 1 illustrates the evolution, over
time, of the estimation computed by trièst-impr withM =
1,000,000. For smaller graphs for which the ground truth
can be computed exactly, the curve of the exact count is
practically indistinguishable from our estimation showing
the precision of the method. Our estimators have very
small variance even on the very large Yahoo! Answers graph
(point-wise max/min estimation over ten runs is almost co-
incident with the average estimation). These results show
that trièst-impr is very accurate even when storing less
than a 0.001 fraction of the total edges of the graph.
Comparison with the state of the art. We compare
quantitatively with three state-of-the-art methods: Mas-

http://bigdata.cs.brown.edu/triangles.html
http://bigdata.cs.brown.edu/triangles.html
last.fm
https://cs.brown.edu/about/system/services/hpc/grid/


Max. MAPE Avg. MAPE

Graph Impr. p Mascot trièst Mascot trièst Change

Patent
(Cit.)

N 0.01 0.9231 0.2583 0.6517 0.1811 -72.2%
Y 0.01 0.1907 0.0363 0.1149 0.0213 -81.4%
N 0.1 0.0839 0.0124 0.0605 0.0070 -88.5%
Y 0.1 0.0317 0.0037 0.0245 0.0022 -91.1%

LastFm
N 0.01 0.1525 0.0185 0.0627 0.0118 -81.2%
Y 0.01 0.0273 0.0046 0.0141 0.0034 -76.2%
N 0.1 0.0075 0.0028 0.0047 0.0015 -68.1%
Y 0.1 0.0048 0.0013 0.0031 0.0009 -72.1%

Table 2: Global triangle estimation MAPE for
trièst and Mascot. The rightmost column shows
the reduction in terms of the avg. MAPE ob-
tained by using trièst. Rows with Y in column
“Impr.” refer to improved algorithms (trièst-impr
and mascot-i) while those with N to basic algo-
rithms (trièst-base and mascot-c).

Avg. Pearson Avg. ε Err

p Mascot-I trièst Change Mascot-I trièst Change

0.1 0.99 1.00 +1.18% 0.79 0.30 -62.02%
0.05 0.97 1.00 +2.48% 0.99 0.47 -52.79%
0.01 0.85 0.98 +14.28% 1.35 0.89 -34.24%

Table 3: Comparison of the quality of the local tri-
angle estimations in LastFM between trièst-impr
and Mascot-I). We outperform Mascot-I using
the same amount of memory.

cot [27], Jha et al. [18] and Pavan et al. [32]. Mas-
cot is a suite of local triangle counting methods (but pro-
vides also a global estimation). The other two are global
triangle counting approaches. None of these can handle
fully-dynamic streams, in contrast with trièst-fd. We first
compare the three methods to trièst for the global trian-
gle counting estimation. Mascot comes in two memory
efficient variants: the basic Mascot-C variant and an im-
proved Mascot-I variant.5 Both variants sample edges with
fixed probability p, so there is no guarantee on the amount
of memory used during the execution. To ensure fairness
of comparison, we devised the following experiment. First,
we run both Mascot-C and Mascot-I for ` = 10 times
with a fixed p using the same random bits for the two algo-
rithms run-by-run (i.e. the same coin tosses used to select
the edges) measuring each time the number of edges M ′i
stored in the sample at the end of the stream (by construc-
tion this the is same for the two variants run-by-run). Then,
we run our algorithms usingM = M ′i (for i ∈ [`]). We do the
same to fix the size of the edge memory for Jha et al. [18]
and Pavan et al. [32].6 This way, all algorithms use the
same amount of memory for storing edges (run-by-run).
We use the MAPE (Mean Average Percentage Error) to

assess the accuracy of the global triangle estimators over
time. The MAPE measures the average percentage of the

5In the original work [27], this variant had no suffix and
was simply called Mascot. We add the -I suffix to avoid
confusion. The variant Mascot-A can be forced to store
the entire graph with probability 1 (using an adversarial
edge order) so we do not consider it here.
6More precisely, we use M ′i/2 estimators in Pavan et al.
as each estimator stores two edges. For Jha et al. we set
the two reservoirs in the algorithm to have each size M ′i/2.
This way, all algorithms use M ′i cells for storing (w)edges.
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Figure 2: Average MAPE and average update time
of the various methods on the Patent (Co-Aut.)
graph with p = 0.01 – insertion only. trièst-impr
has the lowest error. Both Pavan et al. and Jha
et al. have very high update times compared to
our method and the two Mascot variants.

prediction error with respect to the ground truth, and is
widely used in the prediction literature [17]. For t = 1, . . . , T ,
let ∆(t) be the estimator of the number of triangles at time
t, the MAPE is defined as 1

T

∑T

t=1

∣∣∣ |∆(t)|−∆(t)

|∆(t)|

∣∣∣.7
In Fig. 2(a), we compare the average MAPE of trièst-

base and trièst-impr as well as the two Mascot variants
and the other two streaming algorithms for the Patent (Co-
Aut.) graph, fixing p = 0.01. trièst-impr has the smallest
error of all the algorithms compared.
We now turn our attention to the efficiency of the meth-

ods. Figure 2(b) shows the average update time per opera-
tion in Patent (Co-Aut.) graph, fixing p = 0.01. Both Jha
et al. [18] and Pavan et al. [32] are up to ≈ 3 orders of
magnitude slower than the Mascot variants and trièst.
This is expected as both algorithms have an update com-
plexity of Ω(M) (they have to go through the entire reser-
voir graph at each step), while both Mascot algorithms
and trièst need only to access the neighborhood of the
nodes involved in the edge addition.8 This allows both al-
gorithms to efficiently exploit larger memory sizes. We can
use efficiently M up to 1 million edges in our experiments,

7The MAPE is not defined for t s.t. ∆(t) = 0 so we compute
it only for t s.t. |∆(t)| > 0. All algorithms we consider are
guaranteed to output the correct answer for t s.t. |∆(t)| = 0.
8We observe that Pavan et al. [32] would be more efficient
with batch updates. However, we want to estimate the tri-
angles continuously at each update. In their experiments
they use batch sizes of million of updates for efficiency.
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Figure 3: Variance of trièst-impr with M = 10000
and of mascot with same expected memory, on
LastFM. trièst-impr has a smaller variance: the
max/min estimation lines are closer to the ground
truth. (Average estimations are qualitatively similar
and not shown).

which only requires few megabytes of RAM.9 Mascot is
one order of magnitude faster than trièst (which runs in
≈ 28 micros/op), because it does not have to handle edge
removal from the sample, as it offers no guarantees on the
used memory. As we will show, trièst has much higher
precision and scales well on billion-edges graphs.
Given the slow execution of the other algorithms on the

larger datasets we compare in details trièst only with Mas-
cot.10 Table 2 shows the average MAPE of the two ap-
proaches. The results confirm the pattern observed in Fig-
ure 2(a): trièst-base and trièst-impr both have an aver-
age error significantly smaller than that of the basic Mascot-
C and improved Mascot variant respectively. We achieve
up to a 91% (i.e., 9-fold) reduction in the MAPE while us-
ing the same amount of memory. This experiment confirms
the theory: reservoir sampling has overall lower or equal
variance in all steps for the same expected total number of
sampled edges. To further validate this observation we run
trièst-impr and of the improved Mascot variant using
the same (expected memory) M = 10000. Figure 3 shows
the max-min estimation over 10 runs. trièst-impr shows
significantly lower variance over the evolution: the maxmin
estimation lines are closer to the ground truth virtually all
time. This confirms our theoretical observations in the pre-
vious sections. Even with very lowM (about 2/10000 of the
size of the graph) trièst gives a good estimation.
Local triangle counting. We compare the precision in
local triangle count estimation of trièst with that of Mas-
cot [27] using the same approach of the previous experi-
ment. We can not compare with Jha et al. and Pavan et
al. algorithms as they provide only global estimation. As
in [27], we measure the Pearson coefficient and the average
ε error (see [27] for definitions). In Table 3 we report the
Pearson coefficient and average ε error over all timestamps
for the smaller graphs.11 trièst (significantly) improves

9The experiments in [18] use M in the order of 103, and
in [32], large M values require large batches for efficiency.
10We attempted to run the other two algorithms but they
did not complete after 12 hours for the larger datasets in
Table 2 with the prescribed p parameter setting.
11For efficiency, in this test we evaluate the local number of
triangles of all nodes every 1000 edge updates.
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Figure 4: Trade-offs between M and MAPE or
avg. update time (µs) – edge insertion only. Higher
M implies lower errors but higher update times.

(i.e., has higher correlation and lower error) over the state-
of-the-art Mascot, using the same amount of memory.
Memory vs accuracy trade-offs. We study the tradeoff
between the sample sizeM vs the running time and accuracy
of the estimators. Figure 4(a) shows the tradeoffs between
the accuracy of the estimation and the sizeM for the smaller
graphs for which the ground truth number of triangles can
be computed exactly using the naive algorithm. Even with
small M trièst-impr achieves very low MAPE value. As
expected, larger M corresponds to higher accuracy and for
the same M trièst-impr outperforms trièst-base. Fig-
ure 4(b) shows the average time per update in microseconds
(µs) for trièst-impr as function of M . Larger M requires
longer update times (a larger sample implies larger graph
on which to count triangles). On average a few hundreds of
microseconds are sufficient for handling any update even in
very large graphs with billions of edges. Our algorithms can
handle hundreds of thousands of edge updates per second
with very small error (Fig. 4(a)), and therefore can be used
efficiently and effectively in high-velocity contexts.
Alternative edge orders. In all previous experiments the
edges are added in their natural order (i.e., in order of their
appearance).12 While the natural order is the most impor-
tant use case, we have assessed the impact of other ordering
on the accuracy of the algorithms. We experiment with both
the uniform-at-random (u.a.r.) order of the edges and the
random BFS order: until all the graph is explored a BFS is
started from a u.a.r. unvisited node and edges are added in
order of their visit (neighbors are explored in u.a.r. order).
The results for the random BFS order (Fig. 5) and for the

12Excluding twitter for which we used the random order,
given the lack of timestamps.
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Figure 5: Average MAPE on Patent (Co-Aut.), with
p = 0.01 – insertion only in Random BFS order.
trièst-impr has the lowest error.
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Figure 6: Evolution of the global number of triangles
– fully dynamic case.

u.a.r. (omitted for lack of space) confirm that trièst has
the lowest error and is very scalable in every tested ordering.

5.2 Fully-dynamic case
We evaluate trièst-fd on fully-dynamic streams. We

cannot compare trièst-fd with the algorithms previously
used [18, 27, 32] as they only handle insertion-only streams.
In the first set of experiments we model deletions using the

widely used sliding window model, where a sliding window of
the most recent edges defines the current graph. The sliding
window model is of practical interest as it allows to observe
recent trends in the stream. For Patent (Co-Aut.) & (Cit.)
we keep in the sliding window the edges generated in the
last 5 years, while for LastFm we keep the edges generated
in the last 30 days. For Yahoo! Answers we keep the last
100 millions edges in the window13.
Figure 6 shows the evolution of the global number of tri-

angles in the sliding window model using trièst-fd us-
ing M = 200,000 (M = 1,000,000 for Yahoo! Answers).
The sliding window scenario is significantly more challeng-
ing than the addition-only case (very often the entire sample
of edges is flushed away) but trièst-fd maintains good vari-
13The sliding window model is not interesting for the Twitter
dataset as edges have random timestamps. We omit the re-
sults for Twitter but trièst-fd is fast and has low variance.
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Avg. Global Avg. Local

Graph M MAPE Pearson ε Err.

LastFM 200000 0.005 0.98 0.02
1000000 0.002 0.999 0.001

Pat. (Co-Aut.) 200000 0.01 0.66 0.30
1000000 0.001 0.99 0.006

Pat. (Cit.) 200000 0.17 0.09 0.16
1000000 0.04 0.60 0.13

Table 4: Estimation errors for trièst-fd.

ance and scalability even when, as for LastFm and Yahoo!
Answers, the global number of triangles varies quickly.
Continuous monitoring of triangle counts with trièst-fd

allows to detect patterns that would otherwise be difficult
to notice. For LastFm (Fig. 6(c)) we observe a sudden spike
of several order of magnitudes. The dataset is anonymized
so we cannot establish which songs are responsible for this
spike. In Yahoo! Answers (Fig. 6(d)) a popular topic can
create a sudden (and shortly lived) increase in the number
of triangles, while the evolution of the Patent co-authorship
and co-citation networks is slower, as the creation of an edge
requires filing a patent (Fig. 6(a) and (b)). The almost
constant increase over time14 of the number of triangles
in Patent graphs is consistent with previous observations
of densification in collaboration networks as in the case of
nodes’ degrees [26] and the observations on the density of
the densest subgraph [13].
Table 4 shows the results for both the local and global

triangle counting estimation provided by trièst-fd. In this
case we can not compare with previous works, as they only
handle insertions. It is evident that precision improves with
M values, and even relatively small M values result in a
low MAPE (global estimation), high Pearson correlation and
low ε error (local estimation). Figure 7 shows the tradeoffs
between memory (i.e., accuracy) and time. In all cases our
algorithm is very fast and it presents update times in the
order of hundreds of microseconds for datasets with billions
of updates (Yahoo! Answers).
Alternative models for deletion. We evaluate trièst-
fd using other models for deletions than the sliding window
model. To assess the resilience of the algorithm to massive
deletions we run the following experiment. We added edges
in their natural order but each edge addition is followed with
probability q by a mass deletion event where each edge cur-
14The decline at the end is due to the removal of the last
edges from the sliding window after there are no more edge
additions.



rently in the graph is deleted with probability d indepen-
dently. We run experiments with q = 3,000,000−1 (i.e., a
mass deletion expected every 3 millions edges) and d = 0.80
(in expectation 80% of edges are deleted). We observe that
trièst-fd maintains a good accuracy and scalability even
in face of a massive (and unlikely) deletions of the vast ma-
jority of the edges: e.g., for LastFM withM = 200000 (resp.
M = 1,000,000) we observe 0.04 (resp. 0.006) Avg. MAPE.
More results are available in our full version online [9].

6. CONCLUSIONS
We presented trièst, the first suite of algorithms that

use reservoir sampling and its variants to continuously main-
tain unbiased, low-variance estimates of the local and global
number of triangles in fully-dynamic graphs streams of ar-
bitrary edge/vertex insertions and deletions using a fixed,
user-specified amount of space. Our experimental evaluation
shows that trièst outperforms state-of-the-art approaches
and achieves high accuracy on real-world datasets with more
than one billion of edges, with update times of hundreds of
microseconds. Interesting directions for future work include
the use of color-coding techniques [30], and the extension to
3-profiles and complex graph motifs [11].
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