
Improving semantic topic clustering for search queries with word

co-occurrence and bigraph co-clustering

Jing Kong∗, Alex Scott, and Georg M. Goerg

Google, Inc.

Abstract

Uncovering common themes from a large number of unor-
ganized search queries is a primary step to mine insights
about aggregated user interests. Common topic model-
ing techniques for document modeling often face sparsity
problems with search query data as these are much shorter
than documents. We present two novel techniques that can
discover semantically meaningful topics in search queries:
i) word co-occurrence clustering generates topics from words
frequently occurring together; ii) weighted bigraph cluster-
ing uses URLs from Google search results to induce query
similarity and generate topics. We exemplify our proposed
methods on a set of Lipton brand as well as make-up & cos-
metics queries. A comparison to standard LDA clustering
demonstrates the usefulness and improved performance of
the two proposed methods.
keywords: search queries, topic clustering, word co-

occurrence, bipartite graph, co-clustering

1 Introduction

With the increasing size and popularity of online search,
exploring information embedded in search queries has be-
come a remarkable resource for valuable business insights.
For instance, analyzing search queries related to a brand can
inform a company what constitutes the brand search volume
and what customers associate with their brand. Clustering
similar individual search queries into meaningful buckets is
often bene�cial prior to more advanced analysis. For exam-
ple, aggregating search volume across search queries from
misspellings, plural forms and variations of a single concept
increases signal-to-noise ratio and speeds up algorithms due
to smaller dimensionality. At a high level, �nding com-
mon topics yields insights beyond individual queries. From

∗Corresponding author: jingkong@google.com

a product category point of view, say `beauty products',
grouping similar queries together simpli�es the analyses in
looking for new and trending topics.

Latent dirichlet allocation (LDA) [2] and probablistic
latent semantic analysis (PLSA) [5] are widely used
techniques to unveil latent themes in text data. Basically,
mixture models of topics are imposed on documents,
where a topic is a probability distribution over words.
These models learn the hidden topics by implicitly taking
advantage of document level word co-occurrence patterns
[3, 10].

Short texts however � such as search queries, tweets or
instant messages � su�er from data sparsity, which causes
problems for traditional topic modeling techniques. Unlike
proper documents, short text snippets do not provide
enough word counts for models to learn how words are
related and to disambiguate multiple meanings of a single
word [6]. As a demonstrative example, Figure 1 and
2 show 2, 000 Lipton brand queries which are naturally
decomposed into a `tea' and a `soup' cluster. By treating
each query as a document and unique words as terms in the
LDA setting, these Lipton queries yield a document-term
matrix with 99% sparsity. Since each query usually covers
either the `tea' or the `soup' concept, we set the number
of clusters to K = 2 and α = 0.1.1 Figure 1 shows
that LDA can recognize the two topics to a large extent.
However, we can easily identify several words, marked in
red boxes, falling in the wrong category. In contrast, our
proposed word co-occurrence clustering does not su�er
from this shortcoming (Figure 2).2 Section 2.1 explains the

1The hyperparameter α speci�es the Dirichlet prior topic distribu-

tion of each document in LDA. A low α encodes the prior belief that

a document may contain just a few �or even only one � topics.
2We don't treat Lipton company related words including `job',

`song', `stock' as misclustered. The reason is that Lipton is better

known for its tea products, therefore queries like � lipton tea job� and

1

jingkong@google.com

underlying methodology in detail.

A common way to reduce sparsity is to aggregate short
texts into lengthy pseudo-documents. For example, Weng
et al. (2010) [11] collapse tweets belonging to one user
into documents before training LDA. However, this usu-
ally makes it much harder to �nd common and meaningful
associations for search queries. Suppose a user is a heavy
searcher for beauty products, then they are likely to search
for several products or brands within beauty category over
time. Collapsing all their queries into a single `document'
adds lots of wrong product ↔ attribute relationships be-
cause attributes of one product are mixed with characteris-
tics of a completely unrelated product or brand. Moreover,
a large number of users have too few search queries to make
aggregation helpful.

Yan et al. (2013) [13] proposed biterm topic model to
learn the topics by directly modeling the generation of
unordered word pairs (biterms) in the whole corpus. This
method is e�ective to deal with short text by aggregating
word co-occurrence patterns, but the drawback is that
all non-stop terms are considered equally in forming the
biterms [12].

This paper introduces two novel topic clustering methods
for search queries, namely word co-occurrence and weighted
bigraph co-clustering. Word co-occurrence clustering �rst
applies text data processing to canonicalize variations
including misspelled and plural forms and to remove stop
words, then generates topics by looking for words that
co-occur frequently with topic anchors in the given set
of queries. It can alleviate the sparsity problem as topic
anchors are selected to be words more likely to be searched
in the context of search queries than usual. This also e�ec-
tively encourages the algorithm to emphasize on interesting
words within the queries, rather than indistinctly forming
biterms among all possible non-stop words. Creating
bipartite graph for document clustering is proposed in
Dhillon (2001) [4], where documents and words from
these documents constitute the two sets of nodes for the
graph with edge weights being document term frequency.
However, this does not o�er additional information beyond
the scope of words, documents and their interaction. We
introduce weighted bigraph co-clustering which extends the
idea of Be�erman and Berger (2000) [1] and constructs a
weighted bipartite graph using query and URL pairs, � as
new source of data to enrich short queries �, in organic

� lipton tea stock � exist in our collection of Lipton brand queries as

opposed to � lipton soup job� or � lipton soup stock �.

Figure 1: LDA clusters, top for `tea' cluster and bottom for
`soup' cluster, with red boxes marking wrongly classi�ed
words.

2

Figure 2: Word co-occurrence clustering results, top for `tea'
cluster and bottom for `soup' cluster.

search results to induce query level similarity, and then
form clusters. It uses Google search engine to understand
the semantic meaning of search queries and to deal with
low level variations.

The paper is organized as follows. Word co-occurrence
clustering is formally introduced in Section 2.1; weighted
bigraph clustering in Section 2.2. Case studies for Lipton
brand and make-up & cosmetics queries demonstrate the
usefulness and performance of each method. Section 3 in-
cludes summary and discussion.

2 Methodology: �nding common

themes in a set of search queries

Before going into details of the methodology we introduce
notation and terminology. We can formalize the problem
as follows: given a set of L queries Q = {ql | 1, . . . , L}
we want to �nd K topics, T = {tj | j = 1, . . . ,K}, where
each topic tj represents a meaningful collection of queries.
For example, q1 = �green tea lipton� and q2 = �is green
tea good for you? � both fall in a semantically meaningful
t1 = `green tea' topic. We also often refer to unigrams of a
query as words or terms. Let W = {wi | i = 1, . . . , N} be
the set of unique words of all queries in Q. Furthermore,
we denote i) B(tj) as the bag of words de�ning tj , e.g.,
B(t1) = { `green', `tea' }; ii) B(ql) as the bag of words
contained in query ql, e.g., B(q1) = { `green', `tea', `lipton'
}; iii) Q(tj) = ∪l{ql | B(ql) ∩ B(tj) 6= ∅} the queries that
contain words belonging to topic tj . For example, Q(t1)
contains q1 = �green tea lipton�, q2 = �is green tea good for
you? � and q3 = � lipton tea� and q4 = � lipton black tea� as
they all share words with t1.

We propose two methods to estimate T. Word co-
ocurrence clustering (Section 2.1) relies on a good speci-
�cation of a query context. This is often the case when an-
alyzing a particular brand or category, e.g., `Lipton'. If such
a context is not available or the queries are too heteroge-
nous to de�ne a single encompassing context we suggest to
use weighted bigraph clustering (Section 2.2).

2.1 Word Co-occurrence Clustering

First, we apply standard text cleaning and processing to
queries � including stemming, stopwords and punctuation
removal as well as spelling correction (see Jurafsky and Mar-
tin (2000) [7] for reference) �, which are then segmented into
bags of words W = {wi | i = 1, . . . , N}. Each wi represents

3

a set of variations of a word, e.g., `lipton', `liptons', `lipton's'
are all represented by one wi.
Next, word co-occurrence clustering initializes tj 's explic-

itly with a number of interesting words wi given the context
of the queries. In order to �nd topics related to a search
query it is useful to look at lift scores. The lift score for
word wi given action a is de�ned as

lift(wi;a) =
P (wi | a)
P (wi)

, (1)

where a can be any user action, such as visiting a cer-
tain website or searching for a speci�c query. Suppose
lift(wi;a) = 5, then the chance of wi being searched given
a is 5 times greater than the chance of wi being searched
in general. A large lift score helps us to construct top-
ics around meaningful rather than uninteresting words. In
practice the probabilities in (1) can be estimated using word
frequency in Google search history within a recent time win-
dow.
For the remainder of this work we usually assume a rep-

resents a user issuing a speci�c search query, say, a brand
or product category name.34 For example, if all queries are
related to a brand, say Lipton, the context can be the brand
name `lipton'. If the queries are around a product category,
say make-up & cosmetics, the context can be speci�ed as
`beauty'.
The method then expands each topic tj by introducing

words that signi�cantly co-occur with existing words in
B(tj) among the query set Q(tj). Q(tj)'s provide a non-
disjoint partition on the queries. Additional steps below
help to achieve clusters with better interpretation. 1. If non-
disjoint results are desired, a query is assigned to the topic
with the largest intersection, i.e., argmaxj | B(ql) ∩ B(tj) |.
A query could be assigned to multiple topics if there exists a
tie on intersection size. 2. Disjoint clusters can be achieved
with hierarchical clustering on pairwise query similarity in-
duced by how much two queries agree on their topic a�nity.
The rationale of word co-occurrence clustering leads to

the following properties:

1. Clusters usually deliver focused concepts and have good
interpretation because the topics are keyed from words
highly associated with the context.

3We estimated the probabilities in lift score using co-searched data

for users. They could also be estimated with general document repos-

itory, like wikipedia webpages.
4One could also use an automated procedure to pick one of the

queries as the context. For example, use the query qi with the largest

average lift compared to all other queries in the set. However, when

the context is unknown we suggest to use bigraph clustering.

2. It has the ability to extrapolate the bag of words to
larger topics beyond W = {wi | i = 1, . . . , N} due
to the topic expansion and hierarchical clustering on
induced query similarity.

2.1.1 Algorithm

Create hashmap Assuming that text preprocessing is
already conducted, the algorithm �rst segments all
queries into words and extracts their variations. Then
a hashmap is created with keys being the words W =
{wi | i = 1, . . . , N} and values being the queries having
such words, i.e., the key:value pair is wi : {ql | wi ∈
B(ql)}. For example, � lipton chicken soup� and � lipton
green tea� are values of the key `lipton'.

Initialize topics Topics are initialized with a subselection
of keys of the hashmap. One could either manually se-
lect wi's, or generate them automatically. Let us elab-
orate on the automatic route.

Any wi ∈W can start a topic. However, not all words
are interesting given the background of the queries. For
instance, for �best maybelline mascara� the word `best'
is not as interesting as `mascara' in the context of the
Maybelline brand. We use lift score (1) to rank the
words by importance and then threshold it to obtain a
set of words highly associated with the context. Setting
a zero threshold includes all words in W as topics; as it
increases, more topic irrelevant and generic words are
eliminated. Therefore, one could start with a moderate
value, for example 5 or 10, and increase (decrease) the
threshold if the clusters are too granular (broad) than
expected. This yields the desired topics T.

Up to now, each word in the hashmap is independent
from each other and each topic is represented by only one
word. In practice, words can co-occur with others to de�ne
a concept or to include certain attributes. For example,
�shape eyebrow � is a valid combination but �shape lips� is
less common. We often see �waterproof mascara� because
waterproof is an important attribute of mascara. But �wa-
terproof nail polish� is not common since almost all nail pol-
ish products are waterproof. Hence, we can expand a topic
to other words based on the rationale of word co-occurrence.

Expand topics We �rst construct a term-document ma-
trix [8], where terms are the wi's and the documents,
indexed by tj 's, are the concatenation of Q(tj) which
is the collection of queries associated with tj . In order
to pick one (or more) relevant topics for a word wi, we

4

need a metric to measure if queries in Q(tj) are more
likely to include this word. To do this consider the log
odds ratio

`jk = log2
P (tj | wi)

P (tk | wi)
, k = 1, . . . ,K (2)

which compares the likelihood of tj to all tk given word
wi, where P (tk | wi) is estimated using the term-
document matrix. If `jk > 0, then tj is more likely
than tk given wi.

To compare the association between tj and wi across
all topics we average `jk over k = 1, . . . ,K. Instead of
using a simple average we use the conditional probabil-
ity of each tk given wi as the weight of `jk to re�ect
the importance of topic k given wi. This yields the
association score

R(tj ; wi) = log2 P (tj | wi)−
M∑
k=1

P (tk | wi) log2 P (tk | wi), (3)

which can take negative and positive values, but is
guaranteed to be non-negative for at least one j. It is
noteworthy that (3) also has an information theoretic
interpretation as

R(tj ; wi) =

{
−

M∑
k=1

P (tk | wi) log2 P (tk | wi)

}
− (4)

{− log2 P (tj | wi)}
= H(t | wi)− h(tj | wi), (5)

where H(t | wi) ≥ 0 is the Shannon entropy [9] of topic
conditional distribution given wi, and h(tj | wj) ≥ 0
is the pointwise entropy of topic tj given wi. Hence
R(tj ; wi) measures how much more information is con-
tained in tj given wi compared to the expected infor-
mation of a randomly picked topic. For example, if
R(tj ; wi) = 1, then � conditioned on wi � topic tj is 1
bit more informative than a randomly selected topic.

To expand tj , we threshold on R(tj ; wi) and update

B(tj)← {wi | R(tj ; wi) ≥ τ} ∪ B(tj) (6)

A larger τ recruits fewer new words to tj thus leads to
a more conservative expansion. One may start with a
large τ and decrease it until the words in B(tj)'s or the
output clusters cease to be well focused.

This �nishes one iteration of topic expansion. One could
update the queries belonging to Q(tj), then iterate the
above process until no more wi is added to any tj .

Form non-disjoint clusters Now we calculate how many
words a query intersects with the words in tj ,

slj =| B(ql) ∩ B(tj) |, j = 1, . . . ,K, (7)

then assign the query to the topic with the largest in-
tersection, allowing ties.

If one starts with carefully selected keys, stopping here
usually yields good results. If topics are generated auto-
matically, then di�erent tj 's, say initialized by `eyelash' and
`mascara', represent the same underlying concept and are
hence duplicated topics. In this case, additional steps below
are helpful.

Induce query similarity Using the size of intersection
de�ned (7), we map each query ql to a vector of length
K � being the number of topics �

s(ql) = (sl1, · · · , slK). (8)

Pairwise query similarity between ql and ql′ is de�ned
as

sim(ql, ql′) = cos (s(ql), s(ql′))

=

∑K
k=1 slksl′k√∑K

k=1 s
2
lk ·

√∑K
k=1 s

2
l′k

, (9)

which measures how much two queries agree with their
a�nities across all topics.

Form disjoint hierarchical clusters Run hierarchical
clustering algorithm on the pairwise query similarity
matrix. Clusters at di�erent granularity are generated
by cutting the hierarchical tree at various levels.

2.1.2 Example: Lipton queries

Here we revisit the Lipton brand queries from the Intro-
duction (see Figure 2). Table 1 lists the largest 5 topics
after one iteration of topic expansion with thresholds on lift
and R(tj ; wi) to be 10 and 4, respectively. Figure 3 shows
the hierarchical clustering results on the induced query
similarity matrix. The choice of number of clusters K, or
equivalently the height to cut the hierarchical tree, is sub-
jective and depends on one's use case. For instance, when
broad and general topics are desired for Lipton queries, we

5

initial B(tj) expanded B(tj)
tea tea, goji, vert, zero, mango, citron, for-

est, yellow, lyric, glass, delight, indulge,
ginseng, fresh

soup soup, sausage, homemade
noodle noodle, sauce, chive, instruction
rice rice, broccoli, spanish
dip dip, bowl

Table 1: Example initial topic words and expanded set of
words for Lipton queries.

Figure 3: Pairwise similarity matrix for 2, 000 Lipton brand
queries with associated dendrogram of hierarchical cluster-
ing solution.

cut the hierarchical tree at height 0.9, which corresponds
to two big clusters in the similarity matrix and Figure 2
reveals that these are a `tea' and a `soup/mix/meatloaf'
cluster. Granular topics can be obtained by decreasing the
cuto� value of hierarchical tree.

Word co-occurrence clustering relies on word pre-
processing, i.e. fetching plural forms and variations, and
co-occurrence to detect synonyms. However, this is not
enough when semantic and contextual synonyms exist in the
queries, e.g., `burn fat' and `weight loss'. Moreover it relies
on a good speci�cation of a context, which might not always
be possible. In the following section, we present weighted bi-
graph co-clustering which augments short queries with URL
information to �nd semantically meaningful clusters.

2.2 Weighted bigraph clustering

Be�erman and Berger (2000) [1] proposed a strategy of
viewing clickthrough data from search queries to URLs as
a bipartite graph, and applied iterative, agglomerative clus-
tering to its vertices. The rationale is that

1. Users may phrase their query di�erently, including vari-
ations and misspellings, but a search engine under-
stands they are close and present the same URL to
the users. Hence, URLs can identify queries of similar
meaning.

2. URLs that are shown as top search results for a single
query are somewhat similar. Hence, queries naturally
group similar URLs to together.

In practice we observe that i) click data is usually sparse
and we may miss a big portion of queries if focusing on click
data alone; ii) organic search results are often quite infor-
mative and relevant to the search query itself even when
users do not click through. Following these observations we
enhance previous work by Be�erman and Berger (2000) [1]
to introduce weighted bigraph clustering that builds on or-
ganic Google search results to construct the bipartite graph
and uses both click and impression count data to inform
edge weights.

2.2.1 Algorithm

Create bipartite graph This algorithm starts with tar-
get queries, Q = {ql | l = 1, · · · , L}, then collects asso-
ciated URLs, U = {um | m = 1, · · · ,M}, from Google
search data, usually restricting on URLs with large im-
pression and small average position (say, top 10 for
search results on the �rst page). With graph theory ter-
minology, the bipartite graph is a triple G = (Q,U,E)
where E is the set of edges
{Elm = weight(ql, um) : ql ∈ Q, um ∈ U}. The edge
weights are discussed below.

Calculate edge weights We formulate the problem of
calculating Elm from a Bayesian point of view by im-
posing a Beta(α, β) prior on click-through-rate (CTR)
for each URL with an edge linked to a query, i.e.

CTR =
click

impression
∼ Beta(α, β), (10)

where α = γ and β = 1 − γ are hyperparameters and
γ is speci�ed as a typical CTR among organic search
results. This choice guarantees that i) the prior aver-
age equals a typical CTR γ, and ii) we impose only a

6

weak prior impression count of α + β = 1. Given im-
pression and click observations for a (query, URL) pair,
the posterior distribution of CTR is again a Beta(a, b)
with

a = α+ click count and (11)

b = β + nonclick count

= β + impression count− click count. (12)

We de�ne Elm the weight measuring the importance
of a URL um to a query ql as the inverse posterior
coe�cient of variation, i.e. the posterior mean divided
by the posterior standard deviation

Elm =
posterior mean

posterior standard deviation
(13)

=
a

a+b√
ab

(a+b)2(a+b+1)

=

√
a

b
(a+ b+ 1). (14)

The weight in (13) is a variation adjusted CTR, which
puts more importance to a URL with, say, 1, 000 im-
pressions and 100 clicks than a URL with 10 impres-
sions and just 1 click, even though their CTRs are iden-
tical. A closer look at (14) shows that the weight is a
geometric mean of two interpretable quantities:

� The posterior ratio between click and nonclick
counts, a/b, measures how relevant users consider
the URL given the query. This quanti�es the im-
portance of a URL to a query from a click angle.

� The second term, a+b+1, equals the posterior im-
pression count. The Google search engine identi-
�es URLs relevant to the queries so the web pages
are displayed on top of the search results. Hence,
this term takes into account the contribution from
an impression angle.

In applications, we do not impose a prior on non-
observed (query, URL) pairs to maintain a sparse graph
which is computationally much more e�cient.

Figure 4 shows URLs weights on queries for a toy exam-
ple of Maybelline queries. Obviously, �maybelline age
rewind concealer � and �maybelline roll on concealer �
are semantically close and the edges in Figure 4 show
that also the large weight to the common URL cap-
tures this similarity. Let's see how to mathematically
formulate this so that queries clustered together coin-
cide with our semantic intuition.

Figure 4: Subset of URL weights on queries for May-
belline brand queries and brand URLs, where [h] stands
for http://www.maybelline.com. Thickness of edges rep-
resents edge weights.

Pairwise similarity Each query ql is represented by a vec-
tor of M URL weights

wu(ql) = (El1, · · · , ElM). (15)

We measure pairwise similarity of ql and ql′ using cosine
similarity of their edge weight vectors,

sim(ql, ql′) = cos(wu(ql),wu(ql′))

=

∑M
m=1ElmEl′m√∑M

m=1E
2
lm ·

√∑M
m=1E

2
l′m

, (16)

i.e. using URLs to induce query similarity. Pairwise
similarity among URLs is de�ned in the same way with
edge weights on queries.

Successive hierarchical clustering We run a clustering
procedure on query and URL nodes successively. Each
iteration runs hierarchical clustering on the query and
the URL similarity matrix respectively, with a tree cut-
o� height at h, followed by an update on the weight vec-
tors as well as similarities by treating queries or URLs
in a cluster as a whole entity. Iteration stops when
maximal similarity in both query and URLs similarity
matrix is below a threshold ∈ [0, 1]. A larger threshold
leads to more granular clusters.

Here we elaborate on the necessity of an iterative pro-
cess of forming query and URL clusters. Consider the
following scenario: the two queries

� ql = �maybelline lipstick [retailer] �

� ql′ = �maybelline mascara [retailer] �

7

Figure 5: Density plot of URL induced query similarity for
distinct query pairs (92.74% exact zero similarity pairs are
removed). Red line indicates the similarity between �does
lipton green tea burn fat� and �diet lipton green tea weight
loss�.

may both have a single link to two di�erent URLs

� um = [retailer homepage]/maybelline/lipstick

� um′ = [retailer homepage]/maybelline/mascara.

At iteration 0, the query similarity equals zero. How-
ever, both URLs have a second edge to another query
�[retailer] maybelline� and are therefore grouped to-
gether during the URL clustering procedure. There-
after, um and um′ form a single URL entity and the
updated similarity between ql and ql′ is no longer 0. In
the next iteration, the two queries can be clustered to-
gether. The same rationale applies to URL clustering
as well by boosting URL similarity using query clusters.

2.2.2 Example: Lipton queries

Impression and clicked URL data for the 2, 000 Lipton brand
queries were extracted from Google organic search results
in January 2016. This gave us 11, 358 distinct query and
URL pairs. Following the steps above, we computed the
weights of URLs (queries) on queries (URLs). To provide
a concrete example, Table 2 presents a few common URLs'
weights on �does lipton green tea burn fat� and �diet lipton
green tea weight loss�. The query similarity between these
two queries is 0.78 in the initial iteration, as shown in the
red line in Figure 5 which plots the density of URL induced
query similarity for distinct pairs.
Weighted bigraph clustering does an excellent job in cap-

turing semantic similarity. For example, Table 3 shows that
it can learn that `nutrition facts' and `calories' describe a
similar concept and that `burn fat' and `lose weight' are

cluster queries

nutrition and calories

calories in lipton tea
how many calories in lipton tea
lipton black tea nutrition facts
lipton tea bag calories
lipton tea bags nutrition facts
lipton tea nutrition

weight loss

can lipton green tea help lose
weight
does lipton green tea burn fat
diet lipton green tea weight loss
lipton green tea bene�ts weight
loss

company information

history of lipton tea
home country of lipton tea
lipton tea origin
lipton tea history

k cups (keurig)

keurig lipton iced tea
lipton iced tea k cups
lipton k cups
lipton sweet tea k cup

Table 3: Example semantic clusters for Lipton brand queries
using bigraph clustering.

essentially the same. It is noteworthy that in both cases
the query pairs do not share a single common word, which
demonstrates that this method can indeed achieve a seman-
tic topic clustering, which is very hard to get right using
topic modeling techniques that are based purely on a bag
of words.

2.2.3 Example: make-up and cosmetics queries

As another example Figure 6 shows 370 generic make-up
and cosmetics queries. These queries are challenging for
word co-occurrence clustering since they are only loosely
related compared to branded queries. Therefore, the ex-
pansion step is not very e�ective and the procedure reduces
to creating clusters around each individual word.
In contrast, bigraph clustering is still powerful enough.

We collect impression and click data on URLs for these
queries from Google organic search data in January 2016,
yielding 10, 077 distinct (query, URL) pairs. Table 4 lists
a subset of URLs normalized weights for �best foundation�
and �foundation makeup� (all URL weights for a query add
up to 1). Not suprisingly, queries and URLs tell each others
stories in paralell.
Final clusters on queries are obtained by successive hier-

8

does lipton green tea diet lipton green tea

burn fat weight loss

weight-loss-tea 0.07 0.08
articles/lipton-green-tea-for-weight-loss/ 0.35 0.15

blog/lipton-green-tea-weight-loss-%E2%80%93
0.07 0.13

-can-lipton-green-tea-help-burn-fat

Table 2: Normalized weights on two example queries �does lipton green tea burn fat� and �diet lipton green tea weight
loss� for subset of URLs (removing hostnames).

best foundation foundation makeup

best-foundation-makeup 0.06 0.12
best-of/top-10-best-foundations 0.01 0.02

beauty/makeup-skin-care/tips/g9064/
0.12 0.03

editors-favorite-foundation

Table 4: Example URLs (removing hostnames) normalized weights on two example queries �best foundation� and �foun-
dation makeup�

Figure 6: Wordcloud for words with minimal frequency of 3
among 370 generic make-up and cosmetics queries. Size of
word corresponds to term frequency.

archical clustering with maximal similarity threshold of 0.1.
Three example clusters are listed in Table 5. Misspellings
and variations, e.g. `smoky' vs. `smokey' and `eyebrow' vs.
`brow', are easily handled with the support of Google search
engine. Similar queries are very well grouped based on the
pairwise similarity induced by URLs.

3 Discussion

In this work we introduce two methods to identify semanti-
cally meaningful topics in a collection of short texts such as
search queries. Word co-occurrence clustering starts with a
set of words anchors as initial topics, and generalizes anchors
to other words co-appearing with the same queries. Topics
are created using hierarchical clustering on pairwise query
similarity, which measures to what extent two queries agree
on their intersections with the list of words in each topic.
This method performs well when the queries are closely re-
lated, e.g. brand queries, so that the keywords expansion
step can e�ectively extropolate the scope of words to reach
broader topics. For instance, for Lipton brand queries we
achieve a big cluster of various tea products and another big
clusters of food products covering soup, mix, recipes, etc.
Word co-occurrence clustering does not depend on other
sources of data thus is applicable to any set of short texts.

Weighted bigraph clustering capitalizes on organic search
results to construct a bipartite graph with a set of queries
and a set of URLs as nodes. Edge weights of the graph
are computed with the impression and click data of (query,

9

cluster queries

eye makeup

eye makeup
how to do eyemakeup
eye makeup tutorial
eyeshadow tutorial
how to apply eye makeup
how to put on eyeshadow
how to apply eyeshadow
how to do a smokey eye
smokey eye makeup
smokey eye
smokey eyes
smoky eye
smokey eye tutorial
how to do smokey eyes

contouring

contouring
contouring kit
contouring makeup kit
contour kit
contouring makeup
contour makeup
makeup contouring
how to contour
face contouring
how to contour face
highlight and contour

eyebrow

best eyebrow pencil
brow
eyebrow pencil
eyebrow
eyebrow makeup
eyebrows
how to do eyebrows
how to do your eyebrows
how to shape eyebrows
how to pluck eyebrow
perfect eyebrows
eyebrow tutorial

Table 5: Example topic clusters for make-up & cosmetics
queries.

URL) pairs from a Bayesian perspective and are used to
induce query (URL) pairwise similarities. Successive hier-
archical clustering on both the query and URL nodes yields
the �nal clusters. Due to the information embedded in
Google search results, this method is superb in grouping
semantically close queries together. Therefore, opposed to
word co-occurrence clustering, weighted bigraph clustering
can still perform very well even if the queries do not share
common words, e.g. generic queries in the make-up and cos-
metic example.

References

[1] D. Beeferman and A. Berger. Agglomerative clustering
of a search engine query log. In Proceedings of the sixth
ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 407�416. ACM, 2000.

[2] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent Dirich-
let Allocation. Journal of Machine Learning Research,
3:993�1022, 2003.

[3] J. L. Boyd-Graber and D. M. Blei. Syntactic topic
models. In Advances in Neural Information Processing
Systems, pages 185�192, 2009.

[4] I. S. Dhillon. Co-clustering documents and words using
bipartite spectral graph partitioning. In Proceedings of
the seventh ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 269�274.
ACM, 2001.

[5] T. Hofmann. Probabilistic latent semantic indexing.
In Proceedings of the 22nd annual international ACM
SIGIR conference on Research and development in in-
formation retrieval, pages 50�57. ACM, 1999.

[6] L. Hong and B. D. Davison. Empirical study of topic
modeling in Twitter. In Proceedings of the First Work-
shop on Social Media Analytics, pages 80�88. ACM,
2010.

[7] J. H. Martin and D. Jurafsky. Speech and language
processing, volume 710. 2000.

[8] G. Salton, A. Wong, and C.-S. Yang. A vector space
model for automatic indexing. Communications of the
ACM, 18(11):613�620, 1975.

[9] C. E. Shannon and W. Weaver. The mathematical the-
ory of information. 1949.

10

[10] X. Wang and A. McCallum. Topics over time: a non-
Markov continuous-time model of topical trends. In
Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 424�433. ACM, 2006.

[11] J. Weng, E.-P. Lim, J. Jiang, and Q. He. Twitter-
rank: �nding topic-sensitive in�uential Twitterers. In
Proceedings of the third ACM international conference
on Web search and data mining, pages 261�270. ACM,
2010.

[12] Y. Xia, N. Tang, A. Hussain, and E. Cambria. Dis-
criminative Bi-Term Topic Model for Headline-Based
Social News Clustering. In FLAIRS Conference, pages
311�316, 2015.

[13] X. Yan, J. Guo, Y. Lan, and X. Cheng. A biterm topic
model for short texts. In Proceedings of the 22nd inter-
national conference on world Wide Web, pages 1445�
1456. ACM, 2013.

11

	Introduction
	Methodology: finding common themes in a set of search queries
	Word Co-occurrence Clustering
	Algorithm
	Example: Lipton queries

	Weighted bigraph clustering
	Algorithm
	Example: Lipton queries
	Example: make-up and cosmetics queries

	Discussion

