UNSUPERVISED CONTEXT LEARNING FOR SPEECH RECOGNITION

Assaf Hurwitz Michaely, Mohammadreza Ghodsi, Zelin Wu, Justin Scheiner, Petar Aleksic

Google Inc.

{amichaely, ghodsi, zelinwu, jmscheiner, apetar}@google.com

ABSTRACT

It has been shown in the literature that automatic speech
recognition systems can greatly benefit from contextual in-
formation [1, 2, 3, 4, 5]. Contextual information can be used
to simplify the beam search and improve recognition accu-
racy. Types of useful contextual information can include the
name of the application the user is in, the contents of the
user’s phone screen, the user’s location, a certain dialog state,
etc. Building a separate language model for each of these
types of context is not feasible due to limited resources or
limited amounts of training data.

In this paper we describe an approach for unsupervised
learning of contextual information and automatic building of
contextual biasing models. Our approach can be used to build
a large number of small contextual models from a limited
amount of available unsupervised training data. We describe
how n-grams relevant for a particular context are automati-
cally selected as well as how an optimal size of a final con-
textual model is chosen. Our experimental results show great
accuracy improvements for several types of context.

Index Terms: speech recognition, language modeling,
contextual information

1. INTRODUCTION

Using contextual information to adapt the language model
(LM) can significantly improve automatic speech recognition
accuracy [1, 2, 3, 4, 5]. On-the-fly rescoring [4] has been used
to dynamically adjust LM weights for certain n-grams, based
on contextual models available at request time.

Previous work using on-the-fly rescoring [4, 3] assumes
the existence of a set of contextually relevant phrases to be
biased, and focuses on processing these phrases into n-grams
and weights. Some examples of such contextual phrase sets:
commands for a certain dialog state of the user’s phone, enti-
ties based on the user’s location, and trending search queries.
In all these cases, the entire set of phrases is broken up into
n-grams which make up the biasing model.

In this paper we present a method for automatically se-
lecting the n-grams and weights. To select these n-grams, we
use a general baseline LM and a corpus of contextually rele-
vant queries. The selected n-grams and weights can then be

used to adjust the LM to the desired context using on-the-fly
rescoring.

One can view our approach as an alternative to keeping
a separate full-sized LM for each context. Keeping multiple
LMs is not easily scalable, as they require significant com-
pute resources and maintenance. One alternate approach is
Bayesian interpolation [6], which focuses on statically in-
terpolating several LMs while optimizing the interpolation
weights per n-gram. However, because the interpolation is
static, the LM does not make use of contextual signals avail-
able at recognition time. In on-demand-interpolation [5], the
LM interpolation weights are set in real time, so the LM truly
adapts to context. However, there is a significant cost in la-
tency. Furthermore, this LM is not modular—it is assembled
offline, and must be reassembled whenever any of the under-
lying LMs is changed.

Our method uses only high-impact n-grams, keeping the
biasing model small, so the system can easily hold thousands
of these models to be used on demand, with only minimal la-
tency added, ~100ms per query. Each model can be changed,
removed, or added without having to refresh the entire sys-
tem.

Furthermore, by focusing only on high-impact n-grams,
our method avoids having to deal with low probability n-
grams. If an n-gram doesn’t appear very often in the training
data, it will not be selected, and the general LM score will be
used instead. This simplifies the training method, and allows
for training effective biasing models using far less data than
the amount needed to train full LMs for each context.

Finally, the biasing models described in this paper were
all built using unsupervised data. The queries used to train the
models were transcribed using an automatic speech recogni-
tion system.

We organize the paper as follows. In section 2, we de-
scribe the LM biasing framework, and present a method for
building the biasing models. In section 3, we describe how
the model size is optimized. Finally, in section 4, we describe
the experiments conducted and present results.

2. BIASING N-GRAM SELECTION PROCESS

In this section we first give a short description of the LM bias-
ing framework we use: on-the-fly rescoring. We then present

the criteria we use for n-gram selection, and our algorithm for
finding a near-optimal set of n-grams.

2.1. Language model rescoring framework

We use on-the-fly rescoring, a framework for biasing LMs us-
ing n-grams, introduced in [4]. The biasing model consists of
the set of n-grams to be adjusted and their weights. Biasing is
applied during decoding, and may be triggered based on par-
ticular conditions for some queries. Biasing affects the weight
of some n-grams, while leaving all other weights unchanged.
The biasing n-grams can include any symbol, whether in the
main LM’s vocabulary or not.

Class based symbols [7, 8] are also supported, both
for static classes (e.g. “$TIME”, “$DATE”, “$FULLPHO-
NENUM”), populated at LM training time, and dynamic
classes (e.g. “$SCONTACTS”, populated at recognition time
using the user’s contact list [9]).

Typically the biasing model is much smaller than the gen-
eral LM: While state-of-the-art main LMs may contain over
10 million n-grams [6], the biasing models evaluated in this
paper are much smaller, ranging from 60 to 10,000 n-grams.

In the context of probabilistic LMs, we assign the cost
(a.k.a. score, weight) of a word w, given its history H (the
first n — 1 words in an n-gram), with the negative log proba-
bility: — log(P(w|H)).

To find the cost of an n-gram s(w|H) in the combined
model, we first try to find the longest non-empty suffix of Hw
in the biasing model B, denoted H'w. If such a suffix exists,
we combine the cost of the general LM, sy and the cost in
the biasing model sp as:

s(w|H) = C(suu(w|H), sp(w|H"))

where C'is the score combination function. For example, in
most of our experiments we use C' = min, which provides
positive biasing[4] toward a context.

If there is no suffix H'w of Hw in B, we simply use the
general LM score s(w|H) = spm(w|H).

2.2. The criteria for selecting biasing n-grams

Our overall goal is to adapt the LM (using biasing) toward a
specific context (represented by a sample set from observed
queries), while selecting as few biasing n-grams as possible.
We can then override the LM costs of these n-grams to more
closely match their observed probabilities in the sample.

One can use perplexity to measure how well an LM
matches a given sample data set S drawn from a distribution
Ps. For simplicity in the following definitions, we assume S
is a sequence of words: wy, ... wr. The perplexity of the LM
on S is defined as 2CF(Fs:Fim) - where CE(Pg, PLy) refers
to the cross-entropy of the sample with respect to the LM
(A language model represents a probability distribution over
n-grams).

Cross-entropy is defined as
CE(Ps, PLM) = EPS [— IOg PLM]

=— Z Ps(Hw)log Povm(Hw)
Huw

Among all possible models (probability distributions), the
model that minimizes the above cross-entropy is the sample
distribution itself. The difference in cross entropy between
any model (e.g. the general LM) and the optimal model is the
KL-divergence [10] (Dx 1) between the model and sample:

Dy (Ps, Pom) = CE(Ps, Pm) — CE(Fs, Ps)
= CE(Ps, PLM) — Entropy(Ps)

Ps(w|H)
~ S Py(Huw)log -2
2 P o]

We want to replace the probability of a subset of n-grams in
the LM with the observed probability in the sample, to min-
imize the perplexity (S, LM+B), where LM+B represents the
biased LM. Therefore we should pick the n-grams that most
decrease Dg,.

If the effect of including each n-gram in the biasing model
were independent from the other selected n-grams, we could
simply sort all n-grams by their contribution to D1, namely

Ps(Hw) (log Ps(w|H) — log Pom(w|H))

and pick the top k.

Due to the way our biasing framework uses n-grams, their
effects are not independent. Specifically, when scoring an n-
gram Hw, as long as the biasing model contains some suffix
H'w of Hw, the longest such n-gram will be used to override
the main LM’s cost, even if the main LM has an n-gram of
higher order (length of history). For example, if the biasing
model consists of a single unigram w, it will override the LM
cost for all n-grams Hw regardless of their order.

Because of this dependence, we consider n-grams in or-
der of length. We first decide which unigrams to include in
the biasing model. Then, given our previous decisions, de-
cide which bigrams to include, and so on up to the maximum
length considered. (n-grams of the same length are indepen-
dent).

For each n-gram Hw under consideration, we first com-
pare its sample probability to the sample probability of the
longest selected n-gram H'w that is its suffix. If no such n-
gram H'w has been selected, then instead we compare Hw’s
sample probability to its probability in the main LM. We de-
note this value with Aygqup(Hw, LM, B):

Aadapt(va LMv B)
= Ps(Hw)|log Ps(w|H) — log Poves(w|H)|

where P y.p denotes the probability of an n-gram in the bi-
ased LM using all previously selected n-grams.

Given a threshold t, we select Hw if
Aadapl(HwaLMvB) >1 (1)

Algorithm 1 describes this process:

Algorithm 1 n-gram selection by threshold.

Given a probability distribution of n-grams in the sample
S, a general language model LM, a divergence threshold
t, and a maximum n-gram length n, returns a set B of n-
grams and costs, such that each n-gram added of length
k accounts for ¢ or more of D, between S and (LM +
B*~1) (B’ being the set of selected ngrams of length up
to 7).

1: function SELECTNGRAMS(S, LM, t,n)

2: B+ > The biasing model
3: fori=1...ndo > from unigrams up to length n
4 for Hw € S’ do > n-grams of length 4
5: if |CosT(LM, B, Hw) + log Ps(w|H)| >

t then

6 B + BU (Hw, —log Ps(w|H))

7: end if

8: end for

9: end for
10: return B

11: end function

Returns the biased n-gram cost of Hw, defined as the cost
of the longest non-empty suffix H'w € B or the LM cost
of Hw, if B contains no such H'w.

12: function CoST(LM, B, Hw)

13: n < |H|

14: fori=n—-1...0do

15: H' < ITHSUFFIX(H, 1)

16: if H'w € B then

17: return B[H'w] > Return the biasing model
cost

18: end if

19: end for

20: return — log P yv(w|H) > Return the LM cost

21: end function

3. MODEL SIZE OPTIMIZATION

In the previous section, we describe the n-gram selection pro-
cess given a threshold ¢. In this section, we describe how the
value for t is chosen. We would like to find a ¢ such that
the model captures a significant part of D while remaining
small. The challenge in finding the optimal ¢ is that it de-
pends on the context. Section 4.4 expands on this and other
differences between contexts.

Our method first estimates the context’s total Dg;, com-
pared to the LM. Given this estimate, we then set ¢ such that
the final model covers p% of the D, estimate.

To evaluate the biasing model’s D, we define the im-
provement expected from adding a new n-gram Hw to the
biasing model B, Agy:

AKL(B, Hw) =
Ps(Hw)([log Ps(w|H) — log Puu(w|H)| —
|log Ps(w|H') — log PLm(w|H')])

Where H'w is the longest n-gram suffix of Hw that is
already included in the biasing model B.

Summing Ak for H'w and Hw, we get (assuming the
model consists of these two n-grams):

AKL(B7 H/’LU) + AKL(37 H’U)) =
(Ps(H'w) — Ps(Hw))
+Ps(Hw)

|log Ps(w|H') — log Pim(w|H')|
[log Ps(w|H) — log Pum(w|H)|

(Py(H'w)—Ps(Hw)) llog(Ps(w| H')) — log(P(w] H"))|
accounts for the contribution we expect to get from ad-
justing the m-gram H’'w: We expect this adjustment to
take effect when scoring an n-gram ending with H'w, ex-
cluding n-grams ending with Hw (for those we use Hw).
Ps(Huw) |log Ps(w|H) — log Pom(w|H)| accounts for the
contribution from adjusting the n-gram Hw.

When summing Ay, (B, Hw) for all n-grams in B, we
thus get an estimate for the total reduction in KL-divergence
contributed by B:

HweB

We denote B* as the biasing model containing all the n-grams
in the sample. Similarly, we denote

YAk = X AkL(BY) €))

3 Agy gives us an estimate of the total possible reduction in
KL-divergence that we would have if we would select all the
n-grams from the sample.

Computing Ak (B, Hw) for each n-gram Hw € B can
be done as part of algorithm 1, and so our approach is the
following:

1. Run algorithm 1 with ¢ = 0. This will select all n-
grams into B. For each n-gram Hw, also calculate
Akp(B, Hw). Because all the n-grams are selected,
S AgL(B) = ¥ Agy. (See equation 3)

2. Sort n-grams by Aygapt.

3. Starting from the highest A,qqp going down, sum each
n-gram’s Agp (B, Hw), until the sum is greater than
p% of ¥ Agy calculated in step 1.

4. Sett = Aygap of the first n-gram not counted.

5. Run algorithm 1 with the newly calculated ¢.

Note that the algorithm described is an approximation.
Ak (B, Hw) depends on the n-grams previously selected
H'w. An n-gram’s Agp (B, Hw) summed in step 2 may be
different from its Ak (B*, Hw) in the final model (step 5),
because the model may then contain a different H'w. Recall
also that if the model contains an n-gram Hw, that n-gram
may override the LM score for n-grams with longer history,
while our definition of Ak (B, Hw) assumes that the LM
score replaced is always — log(P.v(Hw)). That being said,
these approximations work very well, so there is no practical
need for a more complex (and slower) algorithm.

4. EXPERIMENTAL RESULTS

In this section we describe our experimental setup and context
types used, and analyze results. To evaluate our models, we
ran two types of experiment:

1. Offline experiments on human-transcribed test sets.
2. Live traffic side-by-side experiments rated by humans.

All the utterances used (in test sets or side-by-side exper-
iments) have been anonymized. The test sets described below
all consist of human-transcribed utterances in American En-
glish. All the biasing models described in this paper were
trained using unsupervised voice queries from live traffic.

Our baseline system consists of a long short-term memory
acoustic model [11, 12] and a Katz smoothed [13] 5-gram
finite state transducer [14, 15] LM, pruned to 100M n-grams
and trained using Bayesian interpolation [6]. The system also
includes a larger second pass LM, trained on the same data
(16]

4.1. Biasing model training

e All our models were trained using a minimum n-gram
length of 2. Eliminating unigrams helped reduce over-
triggering as the models were able to capture enough
most of the contextual information using bigrams and
higher order n-grams.

e When setting the cost of each n-gram in the model, we
added a penalty of 2 on top of the cost derived from the
sample probability:

Cost(wH) = —log(Ps(w|H)) + 2

The penalty serves to slightly weaken the model’s bias-
ing. This value is optimized on a develepment testset so
that it compensates for the fact that the biasing models
are trained on far less data than the main LM.

4.2. Confirmation Context Type

The Confirmation context corresponds to a dialog state in
which the user is expected to confirm or cancel some action.

The main test set, “CONFIRM”, consists of 976 human-
transcribed, randomly sampled utterances. Typically, these
utterances contain n-grams such as {“yes”, “no”, “yeah”,
“send it”, “change it”}. An additional test set, “GENERAL”,
consists of 13K utterances that do not correspond to the
confirmation dialog state. This test set is meant for evaluating
biasing over-triggering.

The Confirmation biasing models were trained using
1.76 M unsupervised, randomly sampled utterances. We
evaluated 3 unsupervised learning models, containing 90%,
95% and 100% of X Agr. These models were compared
against a baseline (no biasing) and against a manual model.
The manual model consists of n-grams built from 619 man-
ually chosen relevant phrases, using the process described in
[3]. Table 1 shows the size of the models evaluated.

manual | 90% | 95%
3475 60 | 289

100%
9635

Table 1. Number of n-grams in the Confirmation bias-
ing models: The manual model (built from 619 manually
chosen relevant phrases, broken into n-grams [3]) and the
unsupervised-learning models with 90%, 95% and 100% of
ZAKL.

The results in table 2 show that the unsupervised-learning
models perform better than both the baseline and the manual-
phrase model in GENERAL & CONFIRM test sets.

Test set baseline | manual | 90% | 95% | 100%
CONFIRM 19.1 136 | 11.8 | 11.8 12.1
GENERAL 12.0 123 | 12.0 | 12.0 12.1

Table 2. WER(%) for the baseline, the manual model, and
the unsupervised-learning models with 90%, 95% and 100%
of AKL~

In particular, the Confirmation unsupervised-learning
models with 90% and 95% of ¥ Ak produced the best re-
sults, without having a negative effect on the GENERAL
set.

As the number of biasing n-grams increases above 90%
of ¥ Ag1., no more reduction in WER is observed, and an in-
crease in over-triggering causes a slight increase in the GEN-
ERAL test set WER.

4.3. Side-by-side experiments

We also ran “side-by-side” (SxS) experiments on live traf-
fic. In these experiments each utterance is automatically tran-
scribed by two systems: baseline and experimental. If the
two transcripts are not identical, they are sent for rating. The
experiment continues until there 500 such utterances. Each
utterance is rated by two humans (and a third in case of a tie).
For each of the SxS experiments, we present the following:

% Changed The percentage of utterances in which the two
systems produced different transcripts.

Wins/Losses The ratio of wins to losses in the experimental
system vs. the baseline.

4.3.1. Confirmation Context Type

The results for the Confirmation models described in 4.2
are below: Table 3 compares the best unsupervised-learning
models to a baseline with no context. Table 4 compares all
three unsupervised models to a baseline with the manual

name: Contact name disambiguation. The user is asked to
choose one of several contacts with similar names. The
” 13

model has 1492 n-grams such as: “(S) mom”, “text
$CONTACTS” and “another contact”.

Exp % Changed | Wins/Losses
text_confirm 14.85 26.73
recipient 2.81 242
type 2.82 3.76
name 5.70 3.33

biasing model.

Exp % Changed | Wins/Losses
manual 6.81 1.84
90% 1.33 7.23

Table 3. SxS results of the Confirmation manual-phrase
model and the unsupervised-learning model with 90% of

3 Axy, vs. a baseline with no contextual biasing.

Exp % Changed | Wins/Losses
90% 5.67 2.24
95% 5.7 1.83
100% 5.94 1.33

Table 5. SxS results of Text Message unsupervised-learning
models compared to a baseline with no contextual biasing.

Note the “text_confirm” state experiment, showing signif-
icant gains using only 156 biasing n-grams. Some examples
of biasing wins are: “egg” — “add”, “council” — “cancel”
and “Joan Jett” — “change it”.

4.3.3. Application specific biasing

In these experiments, the models were trained using speech
queries spoken within the YouTube application. The experi-
ments shown here used queries spoken in Russian (ru-ru) and
Brazilian Portuguese (pt-br). For each locale, we evaluated
models with 1K and 10K n-grams. Table 6 shows the results
of each of these models vs. a baseline with no context.

Table 4. SxS results of Confirmation unsupervised-learning
models with 90%, 95%, 100% of Y Axp, vs. the manual-
phrase model.

4.3.2. Text message dialog states

These dialog states occur in the process of the user sending a
text message. For each such state, we used a biasing model
set to keep 95% of its sample’s 3 Agy.. Table 5 compares each
model vs. a baseline with no contextual biasing.

text_confirm: The user is asked if the message should be
sent. This model has 156 n-grams, such as: “(.S) send”,
“send it”and “change it”.

recipient: The user is asked who is the recipient of the mes-
sage. The model has 1574 n-grams, such as: “(S)
$CONTACTS”, “(S) SFULLPHONENUM” and “(S)
text SCONTACTS”.

type: Contact type disambiguation. The user is asked to
choose one of several contact entries for the intended
recipient. The model has 26 n-grams, such as: “(.S)
mobile”, “first one”, “(.S) work” and “(S) cancel”.

Exp % Changed | Wins/Losses
ru-ru_1K 3.28 2.03
ru-ru_10K 6.18 2.65
pt-br_1K 1.98 1.44
pt-br_10K 4.25 1.26

Table 6. SxS results of YouTube unsupervised-learning mod-
els vs. a baseline system with no contextual biasing.

The results in table 6 show that the larger models (10k)
performed better than the smaller ones(1k) (pt-br_.10K has a
slightly lower Wins/Losses ratio than pt-br_1K, but a much
higher %Change). This is unlike the Confirmation setting in
section 4.2, where the best model had a mere 60 n-grams. In
the following section we demonstrate the difference between
these two contexts.

4.4. Comparing contexts

The results shown in sections 4.2 and 4.3.3 show that The
optimal model size varies between contexts. In this section,
we expand on this comparison.

Figure 1 shows that in the YouTube context, far more n-
grams are required to reach a substantial ¥ Ag; (B) compared

to the Confirmation context. The figure shows that with 60 n-
grams, the Confirmation model reaches 90% of its sample’s
Y Agr. With 60 n-grams, the YouTube model reaches less
than 30% of its sample’s X Ak .

1 , . .
= T T ——
M I
4 08 b/ |
N ’!
- 0-6 YouTube .
2 04 YNC |
; |
gz — |
0 L 1 L
0 50 100 150 200

Model size (number of n-grams)

Fig. 1. Model size and percentage of X Agy .

In section 3, we stated that there isn’t one optimal value
for the threshold ¢ used in the selection process. In figure 2,
we see that setting ¢ = 0.002 would result in over 90% of
the ¥ Ak of the Confirmation model, but in only 20% of the
Y Akr of the YouTube context. In the YouTube context, to
get 80% of the ¥ Ak we would need to set ¢t = 0.00005.

1 - - '
: T
;]
A 0.8 i
A
Gy
g 0.6 YouTube |
Y 0.4 |
g
E 0.2 |

0 ' ' '

0 0.0005 0.001 0.0015 0.002
Threshold ¢

Fig. 2. Value of ¢ and the percentage of X Ak .

Finally, figure 3 shows another important difference be-
tween the two contexts. While X Ak estimated for the Con-
firmation sample is over 2.5, XAk for the YouTube sample
is less than 1.

This comparison demonstrates why percentage of X Agp.
is useful for choosing the biasing model’s size—Y Ak, natu-
rally adapts to the given context, whereas other natural can-
didates (constant value of ¢, hard limit on the number of n-
grams or on XAk (B)) work well in some contexts but not
in others.

3 , : :
2.5 r’ 77777777777777777 - i
q 2]
2 15 | YouTube |
T ' No N (C—
< 1L |
A
0.5 /J/J_
O L 1 |
0 5000 10000 15000 20000

Model size (number of n-grams)

Fig. 3. Model size and ¥ Ay (B).

5. CONCLUSIONS

In this paper we presented a system that uses unsupervised
data to learn contextual information. Our system can exploit
various types of context. It can be used to automatically build
a large number of contextual models from a small amount of
unsupervised training data. We also described how to auto-
matically select n-grams relevant for a particular context as
well as how to choose an optimal size for contextual models.

We presented how such models can be used to increase
ASR accuracy in particular contexts. The experimental re-
sults show large improvements in recognition accuracy when
contextual models are used for all the contexts that we ana-
lyzed. We also show large improvements in metrics obtained
in human rated experiments.

Acknowledgements

Thanks to Pedro Moreno and Clara Gordon for their help.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

6. REFERENCES

Jerome R. Bellegarda, “Statistical language model adap-
tation: review and perspectives,” Speech Communica-

tion, vol. 42, pp. 93—108, 2004.

Reinhard Kneser and Volker Steinbiss, “On the dynamic
adaptation of stochastic language models,” in Proceed-
ings of ICASSP, 1993, pp. 586-589.

Petar Aleksic, Mohammadreza Ghodsi, Assaf Michaely,
Cyril Allauzen, Keith Hall, Brian Roark, David Rybach,
and Pedro Moreno, “Bringing contextual information to
google speech recognition,” in Interspeech 2015, 2015.

Keith B. Hall, Eunjoon Cho, Cyril Allauzen, Francoise
Beaufays, Noah Coccaro, Kaisuke Nakajima, Michael
Riley, Brian Roark, David Rybach, and Linda Zhang,
“Composition-based on-the-fly rescoring for salient n-
gram biasing,” in Interspeech 2015, 2015.

Brandon Ballinger, Cyril Allauzen, Alexander Gruen-
stein, and Johan Schalkwyk, “On-demand language
model interpolation for mobile speech input,” in Inter-
speech, 2010, pp. 1812-1815.

Cyril Allauzen and Michael Riley, “Bayesian language
model interpolation for mobile speech input,” in INTER-
SPEECH, 2011, pp. 1429-1432.

Peter F. Brown, Peter V. deSouza, Robert L. Mercer,
Vincent J. Della Pietra, and Jenifer C. Lai, “Class-based
n-gram models of natural language,” Computational
Linguistics, vol. 18, pp. 467479, 1992.

Lucy Vasserman, Vlad Schogol, and Keith B. Hall,
“Sequence-based class tagging for robust transcription
in asr,” in Proc. Interspeech. September 2015, ISCA -
International Speech Communication Association.

Petar Aleksic, Cyril Allauzen, David Elson, Aleksandar
Kracun, Diego Melendo Casado, and Pedro J. Moreno,
“Improved recognition of contact names in voice com-
mands,” in ICASSP, 2015, pp. 5172-5175.

Solomon Kullback, ‘“Letter to the editor: The kullback-
leibler distance,” 1987.

Hagim Sak, Andrew Senior, and Francgoise Beaufays,
“Long short-term memory recurrent neural network ar-
chitectures for large scale acoustic modeling,” in Inter-
speech, 2014.

Hasim Sak, Oriol Vinyals, Georg Heigold, Andrew Se-
nior, Erik McDermott, Rajat Monga, and Mark Mao,
“Sequence discriminative distributed training of long
short-term memory recurrent neural networks,” in In-
terspeech, 2014.

[13]

[14]

[15]

[16]

Slava M. Katz, “Estimation of probabilities from sparse
data for the language model component of a speech rec-
ognizer,” in IEEE Transactions on Acoustics, Speech
and Signal Processing, 1987, pp. 400-401.

Mehryar Mohri, Fernando Pereira, and Michael Riley,
“Weighted finite-state transducers in speech recogni-
tion,” Computer Speech and Language, vol. 16, pp. 69—
88, 2002.

Cyril Allauzen, Michael Riley, Johan Schalkwyk, Woj-
ciech Skut, and Mehryar Mohri, “OpenFst: A general
and efficient weighted finite-state transducer library,”
in CIAA 2007, 2007, vol. 4783 of LNCS, pp. 11-23,

http://www.openfst.org.

Preethi Jyothi, Leif Johnson, Ciprian Chelba, and Brian
Strope, “Distributed discriminative language models for
google voice search,” in Proceedings of ICASSP 2012,
2012, pp. 5017-5021.

