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Abstract

Debuggability is important in the development of machine-learning (ML) systems.
Several widely-used ML libraries, such as TensorFlow and Theano, are based on
dataflow graphs. While offering important benefits such as facilitating distributed
training, the dataflow graph paradigm makes the debugging of model issues more
challenging compared to debugging in the more conventional procedural paradigm.
In this paper, we present the design of the TensorFlow Debugger (tfdbg), a
specialized debugger for ML models written in TensorFlow. tfdbg provides
features to inspect runtime dataflow graphs and the state of the intermediate graph
elements ("tensors"), as well as simulating stepping on the graph. We will discuss
the application of this debugger in development and testing use cases.

1 Introduction

Machine learning (ML) is becoming increasingly popular in academic and industrial settings. Several
popular open-source ML libraries, such as TensorFlow [1] and Theano [8], are based on dataflow
graphs [2]. Graph-based computation offers great flexibility in the placement of computational
operations on devices to facilitate large-scale, distributed model training and inference.

However, the dataflow graph paradigm introduces a challenge: debuggability. Diagnosing and
resolving software bugs is an inescapable part of software development and productization cycles.
The efficiency with which debugging activities can be performed limits the speed of development and
production issue resolution. ML systems are software systems, and hence are no exceptions in this
regard. Moreover, the complexity and data-driven nature of ML systems lead to less deterministic and
more opaque behavior in ML systems than in most non-ML systems, which puts greater emphasis on
debuggability [3, 4, 5, 6]. From our interaction with a wide variety of TensorFlow users, a specialized
debugging tool is among the most frequently requested features. Developers of TensorFlow ML
models often ask questions such as:

• Where in my model do problematic numerical values such as infinities arise?
• Why is my graph not pre-processing the input data as expected?
• What issues keep my model from converging during training?

Designing a debugger for TensorFlow is not trivial, with the challenge coming from the fact that
the standard API encapsulates computation on the graph as a black-box function call, which not
only abstracts away the graph-internal details, but also involves parallel and potentially distributed
execution. A tailored debugger for ML dataflow graphs needs to organize the intermediate and
internal states and present them in a clear and understandable fashion, to help users locate the source
of issues such as unexpected graph structure and graph element properties, problematic numerical
values, along with data input pipeline and training issues. In this paper, we present tfdbg, an
open-source TensorFlow Debugger, specialized for debugging ML models and dataflow graphs.
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Figure 1: A. An example dataflow graph in TensorFlow. Nodes Add and MatMul are computation
nodes. W and b are Variables. x is an Placeholder node. The dashed box provides an example for
tfdbg NodeStepper’s stepping through a graph. Suppose the nodes in the dashed box have been
executed in a previous continue call, a subsequent continue call on the Add node need not recompute
those nodes, but can use the cached tensor for the MatMul node. B. Debug nodes inserted by tfdbg
are shown as white circles. Each node in the original graph is watched by a pair of nodes, a Copy (C)
node and a Debug (D) node that exports the value copy to a configurable location.

2 Functional Design

Overview of Dataflow Graph Execution in TensorFlow. As detailed in [1], a dataflow graph in
TensorFlow is a directed graph consisting of nodes and edges connecting them. Most nodes represent
a computational operation, such as matrix multiplication. Inputs and outputs of the nodes, i.e., the
data passed on the edges, are called tensors, which are typed multi-dimensional arrays. In addition to
nodes representing computation, several special types of node exist, including, 1) Variables, which
hold model parameters mutated during training of the model, and 2) Placeholders, which are the
locations in the graph where external data can be entered (See Figure 1a).

A session in TensorFlow is an interface with which a graph can be executed. Using the run method
of a session, clients can specify a node or a set of nodes to execute (called fetches), along with any
tensor values to be fed into the graph. On receiving the run call, the TensorFlow runtime underlying
the session rewrites the graph for performance optimization and node placement on devices and
machines. Then the runtime calculates the fetched outputs in a multi-threaded fashion. In typical
TensorFlow-based ML model training, the session’s run method is invoked repeatedly to perform
iterative training (e.g., mini-batch stochastic gradient descent).

The run method returns only the final fetch result, which makes the execution model a black box: the
intermediate tensors generated during the execution are used during the run, but are not visible to the
client. Standard debugging tools are not useful: Python’s pdb cannot access information at the level
of the runtime (which is written in C++), while gdb is not capable of presenting the information in a
way relevant to TensorFlow constructs such as nodes and tensors. In addition, it is not possible for
the client to control the execution process (e.g., pausing it at an intermediate state to observe and
manipulate intermediate tensors). This is where tfdbg aims to provide visibility and controllability
to the graph execution process.

2.1 Architecture of the TensorFlow Debugger

tfdbg consists of three main components, namely the Analyzer, the NodeStepper and the RunStep-
per. The Analyzer adds observability to the graph execution process, while the NodeStepper and
RunStepper focus on the controllability of TensorFlow code on two different levels described below.

The Analyzer. It makes the structure and intermediate state of the runtime graph visible. The
Analyzer is designed to be applicable to not only a TensorFlow runtime running on a single machine,
but also a distributed runtime spanning multiple machines.

The NodeStepper. It is reminiscent of the sequential debuggers such as gdb [7]. Using the
NodeStepper, clients can pause at a given node of the graph, inspect the current state of the graph’s
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nodes, and optionally make certain modifications to the tensors’ states before resuming execution on
the graph. The NodeStepper is currently limited to runs on a single machine.

The Analyzer and NodeStepper are not mutually exclusive and can work together, e.g., during a
stepping debugging session in which the client desires visibility into intermediate tensors generated
by the continuation calls.

The third module of tfdbg, which we call the RunStepper, achieves controllability on a higher
level. This has to do with an interesting aspect about how model training happens in TensorFlow:
breakpointing can occur at two different levels. On the lower level, one can pause at a given node in a
graph, in the middle of a session run call. This is what the aforementioned NodeStepper implements.
On a higher level, one can pause between successive run calls, e.g., between iterations of model
training.

Debugging is usually an interactive process. A command-line interface of tfdbg provides human-
friendly access to all three components mentioned above.

3 Detailed Design

Design of the Analyzer. The Analyzer inserts special-purpose debugging nodes into the runtime
graph itself and lets those nodes export the data. This approach provides flexibility in expanding or
changing the functionality of the data-exporting debug nodes and greater portability among different
runtime environments.

As Figure 1b shows, to watch a node’s output, a pair of Copy (C) and Debug (D) nodes are inserted
between the output slot and its outgoing targets (recipients). The Copy node copies the watched
tensor, to guard against updates to the tensor value by concurrent threads in a race condition. The
debug ops support dumping the values of the watched tensors to the file system and sending them
remotely through remote procedural calls (RPC). The file dumping mode is used for debugging on
a single machine, where the total size of the intermediate tensors in a single run or across multiple
runs can exceed the RAM of the machine. The RPC mode is used during distributed training, where
a centralized debugging server receives the debug data and may store them to the file system for
subsequent analysis. In addition to dumping the intermediate tensors, the Analyzer also exposes the
runtime graphs, which generally differ from the graph set up by the client in a front-end language,
e.g., Python.

The Analyzer provides options to watch a subset of the nodes on the graph, e.g., by filtering node
names with a given regular-expression pattern. The Analyzer also has a limited amount of built-in
intelligence to analyze common model issues, such as highlighting the backward path in a training
graph and determining the source node of bad numerical values.

Design of the NodeStepper. The primary functionality provided by the NodeStepper is to let the
client execute part of the transitive closure of a fetched node, thereby turning a session’s run call from
a monolithic operation into an incremental and controllable process. We refer to this incremental
action as the continue method. While performing the incremental continue calls on the graph, there
are three types of states that the NodeStepper needs to keep track of.

• What previous continue calls have occurred: the stepper should cache outputs from the
previous continue calls and use them in subsequent continue calls (dashed box in Figure 1a).

• Whether previous continue calls have mutated states of relevant Variable nodes. Such
Variable value updates should have invalidated the cached tensors that receive inputs from
the variables transitively. In addition, the NodeStepper provides options to restore the
previous values of the Variables between continue calls.

• The NodeStepper allows users to override the value of any intermediate tensor. Such value
overriding can be useful when debugging issues at the node level.

Based on the continue method, the stepper can achieve other modes of incremental debugging.
For example, by topologically sorting the nodes in the transitive closure of the fetched nodes, the
NodeStepper can actually step through the nodes in a linear fashion. Based on this stepping, it can
break at a given node, as specified by the node’s name or type, or when a certain predicate on the
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output tensor value is satisfied. This can be regarded as conditional breakpoints at the node level.
Time-travel debugging (i.e., re-executing to already-executed nodes or jumping ahead to nodes whose
input nodes have not been executed yet) is also possible, as the NodeStepper is not constrained by the
actual node execution order in a non-debugging session and can set up any nodes’ inputs at will.

Design of the RunStepper. While the Analyzer operates on the level of graph nodes, the RunStep-
per operates at a higher level, i.e., the level of the Session run calls. The RunStepper provides the
ability to pause between runs, based on any specified predicates on the run history. The simplest
mode is to pause at every run. Unlike general debuggers such as pdb, the RunStepper can access
graph-internal states such as intermediate tensor values and hence is capable of more sophisticated
debugging modes. For example, it can break conditionally at run calls when any intermediate tensor
in the graph satisfies a certain configurable predicate, such as containing infinities or NaNs. A more
powerful type of predicate examines the history of the graph state across previous runs. For example,
the RunStepper can be configured to pause when a node in the graph outputting a loss function value
starts to show an upward trend.

4 Use Cases

White-box Testing of ML Models. In an ML system under active development, feature develop-
ment and code refactoring can sometimes lead to unforeseen changes in the structure and behavior
of an ML model. Such changes can also arise as a result of changes in the underlying ML library
itself. If left untested, these low-level changes can lead to subtle issues in production that are difficult
to observe and debug. The above-described Analyzer module of tfdbg makes it possible to make
assertions about a TensorFlow model in unit tests.

Two types of assertions can be made based on tfdbg’s Analyzer: 1) structural assertions: the structure
of a TensorFlow graph, the nodes and their attributes 2) functional assertions: the intermediate tensor
values in the graph under a given set of inputs. Structural and functional assertions should focus
on the critical parts of the model, such as output of a neural-network layer or an embedding lookup
result, and ignore noncritical parts, in order to avoid being sensitive to unimportant changes caused
by refactoring or library changes.

Debugging Problematic Numerical Values. A type of frequently encountered problem in Tensor-
Flow ML model training is bad numerical values, e.g., infinities and NaNs, which arise due to various
reasons such as numerical overflow and underflow, logarithm of and division by zero. In a large
ML model with thousands of nodes, it can be hard to find the node at which this first emerged and
started propagating through the graph. With tfdbg, the user can specify a breaking predicate in the
RunStepper to let runs break when any intermediate tensors in the model first show infinities or NaNs
and drop into the Analyzer UI to identify the first-offending node. By examining the type of node
and its inputs using the Analyzer UI, the user can obtain useful information about why these values
occur, which often leads to a fix to the issue such as applying value clipping to the problematic node.

5 Conclusion and Future Directions

The TensorFlow Debugger (tfdbg) provides visibility and controllability into the execution of models
written in TensorFlow, an ML library based on dataflow graphs. It enhances the unit-testability and
debuggability of TensorFlow ML models. In the future, we plan to implement additional features in
tfdbg, including integration with TensorBoard [1] for visual debugging and improved support for
the distributed sessions of TensorFlow, including replaying of multi-machine graph execution.

Open source. tfdbg is a part of open-source TensorFlow. Its README file is
at: https://github.com/tensorflow/tensorflow/tree/master/tensorflow/python/
debug/examples.
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