
Spanner is Google’s highly available global SQL database [CDE+12]. It manages replicated data at great 
scale, both in terms of size of data and volume of transactions. It assigns globally consistent real-time 
timestamps to every datum written to it, and clients can do globally consistent reads across the entire 
database without locking.

The CAP theorem [Bre12] says that you can only have two of the three desirable properties of:
• C: Consistency, which we can think of as serializability for this discussion;
• A: 100% availability, for both reads and updates;
• P: tolerance to network partitions.

This leads to three kinds of systems: CA, CP and AP, based on what letter you leave out. Note that you are 
not entitled to 2 of 3, and many systems have zero or one of the properties.

For distributed systems over a “wide area”, it is generally viewed that partitions are inevitable, although 
not necessarily common [BK14]. Once you believe that partitions are inevitable, any distributed system 
must be prepared to forfeit either consistency (AP) or availability (CP), which is not a choice anyone wants 
to make. In fact, the original point of the CAP theorem was to get designers to take this tradeoff seriously. 
But there are two important caveats: first, you only need forfeit something during an actual partition, and 
even then there are many mitigations (see the “12 years” paper [Bre12]). Second, the actual theorem is 
about 100% availability, while the interesting discussion here is about the tradeoffs involved for realistic 
high availability.

Spanner claims to be consistent and available 
Despite being a global distributed system, Spanner claims to be consistent and highly available, which 
implies there are no partitions and thus many are skeptical.1 Does this mean that Spanner is a CA system 
as defined by CAP? The short answer is “no” technically, but “yes” in effect and its users can and do 
assume CA. 

The purist answer is “no” because partitions can happen and in fact have happened at Google, and during 
(some) partitions, Spanner chooses C and forfeits A. It is technically a CP system. We explore the impact 
of partitions below.

Given that Spanner always provides consistency, the real question for a claim of CA is whether or not 
Spanner’s serious users assume its availability. If its actual availability is so high that users can ignore 
outages, then Spanner can justify an “effectively CA” claim. This does not imply 100% availability (and 
Spanner does not and will not provide it), but rather something like 5 or more “9s” (1 failure in 105 or less). 
In turn, the real litmus test is whether or not users (that want their own service to be highly available) 
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 1Although I work for Google, I have not worked on Spanner or TrueTime, other than to push to make both available to 
our Cloud customers. My intent is to provide an objective outsider’s view of Spanner, but I admit bias in that I like the 
system in addition to working for Google.

1

Eric Brewer
VP, Infrastructure, Google
February 14, 2017



write the code to handle outage exceptions: if they haven’t written that code, then they are assuming high 
availability. Based on a large number of internal users of Spanner, we know that they assume Spanner is 
highly available.

A second refinement is that there are many other sources of outages, some of which take out the users in 
addition to Spanner (“fate sharing”). We actually care about the differential availability, in which the user is 
up (and making a request) to notice that Spanner is down. This number is strictly higher (more available) 
than Spanner’s actual availability — that is, you have to hear the tree fall to count it as a problem. 

A third issue is whether or not outages are due to partitions. If the primary causes of Spanner outages 
are not partitions, then CA is in some sense more accurate. For example, any database cannot provide 
availability if all of its replicas are offline, which has nothing to do with partitions.  Such a multi-replica 
outage should be very rare, but if partitions are significantly more rare, then you can effectively ignore 
partitions as a factor in availability. For Spanner, this means that when there is an availability outage, it is 
not in practice due to a partition, but rather some other set of multiple faults (as no single fault will forfeit 
availability).

Availability data
Before we get to Spanner, it is worth taking a look at the evolution of Chubby, another wide-area system 
that provides both consistency and availability. The original Chubby paper [Bur06] mentioned nine 
outages of 30 seconds or more in 700 days, and six of those were network related (as discussed in 
[BK14]). This corresponds to an availability worse than 5 9s (at best), to a more realistic 4 9s if we assume 
an average of 10 minutes per outage, and potentially even 3 9s at hours per outage. 

For locking and consistent read/write operations, modern geographically distributed Chubby cells 
provide an average availability of 99.99958% (for 30s+ outages) due to various network, architectural 
and operational improvements. Starting in 2009, due to “excess” availability, Chubby’s Site Reliability 
Engineers (SREs) started forcing periodic outages to ensure we continue to understand dependencies 
and the impact of Chubby failures.

Internally, Spanner provides a similar level of reliability to Chubby; that is, better than 5 9s. The Cloud 
version has the same foundation, but adds some new pieces, so it may be a little lower in practice  
for a while.
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The pie chart above reveals the causes of Spanner incidents internally. An incident is an unexpected 
event, but not all incidents are outages; some can be masked easily. The chart is weighted by 
frequency not by impact. The bulk of the incidents (User) are due to user errors such as overload or 
misconfiguration and mostly affect that user, whereas the remaining categories could affect all users 
in an area. Cluster incidents reflect non-network problems in the underlying infrastructure, including 
problems with servers and power. Spanner automatically works around these incidents by using other 
replicas; however, SRE involvement is sometimes required to fix a broken replica. Operator incidents are 
accidents induced by SREs, such as a misconfiguration. Bug implies a software error that caused some 
problem; these can lead to large or small outages. The two biggest outages were both due to software 
bugs that affected all replicas of a particular database at the same time. Other is grab bag of various 
problems, most of which occurred only once.

The Network category, under 8%, is where partitions and networking configuration problems appear. 
There were no events in which a large set of clusters were partitioned from another large set of clusters. 
Nor was a Spanner quorum ever on the minority side of a partition. We did see individual data centers 
or regions get cut off from the rest of the network. We also had some misconfigurations that under-
provisioned bandwidth temporarily, and we saw some temporary periods of bad latency related to 
hardware failures. We saw one issue in which one direction of traffic failed, causing a weird partition 
that had to be resolved by bringing down some nodes. So far, no large outages were due to networking 
incidents.

Summarizing, to claim “effectively CA” a system must be in this state of relative probabilities: 1) At a 
minimum it must have very high availability in practice (so that users can ignore exceptions), and 2) as 
this is about partitions it should also have a low fraction of those outages due to partitions. Spanner 
meets both.

It’s the network
Many assume that Spanner somehow gets around CAP via its use of TrueTime, which is a service that 
enables the use of globally synchronized clocks. Although remarkable, TrueTime does not significantly 
help achieve CA; its actual value is covered below. To the extent there is anything special, it is really 
Google’s wide-area network, plus many years of operational improvements, that greatly limit partitions in 
practice, and thus enable high availability.

First, Google runs its own private global network. Spanner is not running over the public Internet — in fact, 
every Spanner packet flows only over Google-controlled routers and links (excluding any edge links to 
remote clients). Furthermore, each data center typically has at least three independent fibers connecting 
it to the private global network, thus ensuring path diversity for every pair of data centers.2 Similarly, there 
is redundancy of equipment and paths within a datacenter. Thus normally catastrophic events, such as 
cut fiber lines, do not lead to partitions or to outages.

The real risk for a partition is thus not a cut path, but rather some kind of broad config or software 
upgrade that breaks multiple paths simultaneously. This is a real risk and something that Google 
continues to work to prevent and mitigate. The general strategy is to limit the impact (or “blast radius”) 
of any particular update, so that when we inevitably push a bad change, it only takes out some paths or 
some replicas. We then fix those before attempting any other changes.

 

 2The actual requirement is a target availability, not a number of connections per se.
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Although the network can greatly reduce partitions, it cannot improve the speed of light. Consistent 
operations that span a wide area have a significant minimum round trip time, which can be tens of 
milliseconds or more across continents. (A distance of 1000 miles is about 5 million feet, so at ½ foot 
per nanosecond, the minimum would be 10 ms.) Google defines “regions” to have a 2ms round-trip time, 
so that regional offerings provide a balance between latency and disaster tolerance. Spanner mitigates 
latency via extensive pipelining of transactions, but that does not help single-transaction latency. For 
reads, latency is typically low, due to global timestamps and the ability to use a local replica (covered 
below).

A model with weaker consistency could have lower update latency. However, without the long round trip 
it would also have a window of lower durability, since a disaster could take out the local site and delete all 
copies before the data is replicated to another region.

What happens during a Partition
To understand partitions, we need to know a little bit more about how Spanner works. As with most ACID 
databases, Spanner uses two-phase commit (2PC) and strict two-phase locking to ensure isolation and 
strong consistency. 2PC has been called the “anti-availability” protocol [Hel16] because all members must 
be up for it to work. Spanner mitigates this by having each member be a Paxos group, thus ensuring each 
2PC “member” is highly available even if some of its Paxos participants are down. Data is divided into 
groups that form the basic unit of placement and replication.

As mentioned above, in general Spanner chooses C over A when a partition occurs. In practice, this is due 
to a few specific choices:

• Use of Paxos groups to achieve consensus on an update; if the leader cannot maintain a 
quorum due to a partition, updates are stalled and the system is not available (by the CAP 
definition). Eventually a new leader may emerge, but that also requires a majority.

• Use of two-phase commit for cross-group transactions also means that a partition of the 
members can prevent commits.

The most likely outcome of a partition in practice is that one side has a quorum and will continue on just 
fine, perhaps after electing some new leaders. Thus the service continues to be available, but users on 
the minority side have no access. But this is a case where differential availability matters: those users are 
likely to have other significant problems, such as no connectivity, and are probably also down. This means 
that multi-region services built on top of Spanner tend to work relatively well even during a partition. It is 
possible, but less likely, that some groups will not be available at all. 

Transactions in Spanner will work as long as all of the touched groups have a quorum-elected leader and 
are on one side of the partition. This means that some transactions work perfectly and some will time 
out, but they are always consistent. An implementation property of Spanner is that any reads that return 
are consistent, even if the transaction later aborts (for any reason, including time outs).

In addition to normal transactions, Spanner supports snapshot reads, which are read at a particular time 
in the past. Spanner maintains multiple versions over time, each with a timestamp, and thus can precisely 
answer snapshot reads with the correct version. In particular, each replica knows the time for which it is 
caught up (for sure), and any replica can unilaterally answer a read before that time (unless it is way too 
old and has been garbage collected). Similarly, it is easy to read (asynchronously) at the same time across 
many groups. Snapshot reads do not need locks at all. In fact, read-only transactions are implemented as 
a snapshot read at the current time (at any up-to-date replica).
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 Snapshot reads are thus a little more robust to partitions. In particular, a snapshot read will work if:
1. There is at least one replica for each group on the initiating side of the partition, and 
2. The timestamp is in the past for those replicas.

The latter might not be true if the leader is stalled due to a partition, and that could last as long as the 
partition lasts, since it might not be possible to elect a new leader on this side of the partition. During a 
partition, it is likely that reads at timestamps prior to the start of the partition will succeed on both sides 
of the partition, as any reachable replica that has the data suffices.

What about TrueTime?
In general, synchronized clocks can be used to avoid communication in a distributed system. Barbara 
Liskov provides a fine overview with many examples [Lis91].3 For our purposes, TrueTime is a global 
synchronized clock with bounded non-zero error: it returns a time interval that is guaranteed to contain 
the clock’s actual time for some time during the call’s execution. Thus, if two intervals do not overlap, 
then we know calls were definitely ordered in real time. If the intervals overlap, we do not know the actual 
order.

One subtle thing about Spanner is that it gets serializability from locks, but it gets external consistency 
(similar to linearizability) from TrueTime. Spanner’s external consistency invariant is that for any two 
transactions, T1 and T2 (even if on opposite sides of the globe):

if T2 starts to commit after T1 finishes committing, then the timestamp for T2 is greater than the 
timestamp for T1. 

Quoting from Liskov [Lis91, section 7]: 
Synchronized clocks can be used to reduce the probability of having a violation of external 
consistency. Essentially the primary holds leases, but the object in question is the entire replica 
group. Each message sent by a backup to the primary gives the primary a lease. The primary can 
do a read operation unilaterally if it holds unexpired leases from a sub-majority4 of backups. … 

The invariant in this system is: whenever a primary performs a read it holds valid leases from a 
sub-majority of backups. This invariant will not be preserved if clocks get out of synch.

Spanner’s use of TrueTime as the clock ensures the invariant holds. In particular, during a commit, 
the leader may have to wait until it is sure the commit time is in the past (based on the error bounds). 
This “commit wait” is not a long wait in practice and it is done in parallel with (internal) transaction 
communication. In general, external consistency requires monotonically increasing timestamps, and 
“waiting out the uncertainty” is a common pattern.

Spanner aims to elect leaders for an extended time, typically 10 seconds, by using renewable leases for 
elected leaders. As discussed by Liskov, every time a quorum agrees on a decision the lease is extended, 
as the participants just verified that the leadership is effective. When a leader fails there are two options: 
1) you can wait for the lease to expire and then elect a new leader, or 2) you can restart the old leader, 
which might be faster. For some failures, we can send out a “last gasp” UDP packet to release the lease, 
which is an optimization to speed up expiration. As unplanned failures are rare in a Google data center, 
the long lease makes sense. The lease also ensures monotonicity of time across leaders, and enables 
group participants to serve reads within the lease time even without a leader.

3There is a direct connection here: two of the Spanner paper authors, Wilson Hsieh and Sanjay Ghemawat, were grad 
students in Barbara Liskov’s extended group in the early 1990s. I was as well.
4A “sub-majority” is majority minus one, implying a majority when counting the leader as well.
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However, the real value of TrueTime is in what it enables in terms of consistent snapshots. Stepping 
back a bit, there is a long history of multi-version concurrency-control systems (MVCC) [Ree78] that 
separately keep old versions and thus allow reading past versions regardless of the current transactional 
activity. This is a remarkably useful and underrated property: in particular, in Spanner snapshots are 
consistent (for their time) and thus whatever invariants hold for your system, they will also hold for the 
snapshot. This is true even when you don’t know what the invariants are! Essentially, snapshots are taken 
in between consecutive transactions and reflect everything up to the time of the snapshot, but nothing 
more. Without transactionally consistent snapshots, it is difficult to restart from a past time, as the 
contents may reflect a partially applied transaction that violates some invariant or integrity constraint. 
It is the lack of consistency that sometimes makes restoring from backups hard to do; in particular, this 
shows up as some corruption that needs to be fixed by hand.5 

For example, consider using MapReduce to perform a large analytics query over a database. On Bigtable, 
which also stores past versions, the notion of time is “jagged” across the data shards, which makes the 
results unpredictable and sometimes inconsistent (especially for the very recent past). On Spanner, the 
same MapReduce can pick a precise timestamp and get repeatable and consistent results. 

TrueTime also makes it possible to take snapshots across multiple independent systems, as long as they 
use (monotonically increasing) TrueTime timestamps for commit, agree on a snapshot time, and store 
multiple versions over time (typically in a log). This is not limited to Spanner: you can make your own 
transactional system and then ensure snapshots that are consistent across both systems (or even k 
systems). In general, you need a 2PC (while holding locks) across these systems to agree on the snapshot 
time and confirm success, but the systems need not agree on anything else, and can be wildly different.

You can also use timestamps as tokens passed through a workflow. For example, if you make an update 
to a system, you can pass the time of that update to the next stage of the workflow, so that it can tell if 
its system reflects time after that event. In the case of a partition, this may not be true, in which case the 
next stage should actually wait if it wants consistency (or proceed if it wants availability). Without the 
time token, it is hard to know that you need to wait. This isn’t the only way to solve this problem, but it 
does so in a graceful robust way that also ensures eventual consistency. This is particularly useful when 
the different stages share no code and have different administrators — both can agree on time with no 
communication.6

Snapshots are about the past, but you can also agree on the future. A feature of Spanner is that you can 
agree on the time in the future for a schema change. This allows you to stage the changes for the new 
schema so that you are able to serve both versions. Once you are ready, you can pick a time to switch 
to the new schema atomically at all replicas. (You can also pick the time before you stage, but then you 
might not be ready by the target time.)  In theory at least, you can also do future operations, such as a 
scheduled delete or a change in visibility. 

TrueTime itself could be hindered by a partition. The underlying source of time is a combination of 
GPS receivers and atomic clocks, both of which can maintain accurate time with minuscule drift by 
themselves. As there are “time masters” in every datacenter (redundantly), it is likely that both sides of 
a partition would continue to enjoy accurate time. Individual nodes however need network connectivity 
to the masters, and without it their clocks will drift. Thus, during a partition their intervals slowly grow 
wider over time, based on bounds on the rate of local clock drift. Operations depending on TrueTime, such 
as Paxos leader election or transaction commits, thus have to wait a little longer, but the operation still 

6
5For comparison, in ARIES [MHL+92], snapshots are intentionally fuzzy, but you can then replay the log on a per-page 
basis to bring that page up to the target cutoff transaction (and logical time). This works well for recovery, but not so 
well for running analytics on the snapshot (since it is fuzzy).
6Note there is still background communication involved in clock synchronization, including GPS itself and periodic 
correction traffic.



completes (assuming the 2PC and quorum communication are working). 

Conclusion
Spanner reasonably claims to be an “effectively CA” system despite operating over a wide area, as it is 
always consistent and achieves greater than 5 9s availability. As with Chubby, this combination is possible 
in practice if you control the whole network, which is rare over the wide area. Even then, it requires 
significant redundancy of network paths, architectural planning to manage correlated failures, and very 
careful operations, especially for upgrades. Even then outages will occur, in which case Spanner chooses 
consistency over availability.

Spanner uses two-phase commit to achieve serializability, but it uses TrueTime for external consistency, 
consistent reads without locking, and consistent snapshots.
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