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Abstract—Organizations have a variety of options to help their software developers become their most productive selves, from
modifying office layouts, to investing in better tools, to cleaning up the source code. But which options will have the biggest impact?
Drawing from the literature in software engineering and industrial /organizational psychology to identify factors that correlate with
productivity, we designed a survey that asked 622 developers across 3 companies about these productivity factors and about self-rated
productivity. Our results suggest that the factors that most strongly correlate with self-rated productivity were non-technical factors,
such as job enthusiasm, peer support for new ideas, and receiving useful feedback about job performance. Compared to other
knowledge workers, our results also suggest that software developers’ self-rated productivity is more strongly related to task variety

and ability to work remotely.

Index Terms—Productivity factors, software engineers, knowledge workers

1 Introduction

Improving productivity of software developers is impor-
tant. By definition, developers who have completed their tasks
can spend their freed-up time on other useful tasks, such as
implementing new features or on new verification and valida-
tion activities. But what causes developers to be more pro-
ductive?

Organizations such as ours demand empirical guidance
on which factors to try to manipulate in order to best im-
prove productivity. For example, should an individual devel-
oper (la) spend time seeking out the best tools and prac-
tices, or (1b) shut down email notifications during the day?!
Should a manager (2a) invest in refactoring to reduce code
complexity, or (2b) give developers more autonomy over their
work? Should executives (3a) invest in better software devel-
opment tools, or (3b) should they invest in less distracting
office space? In an ideal world, we would invest in a variety
of productivity-improving factors, but time and money are
limited, so we must make selective investments.

This paper contributes the broadest study to date to in-
vestigate what predicts software developers’ productivity. As
we detail in Section 3.1, productivity can be measured objec-
tively (e.g. lines of code written per month) or subjectively
(e.g. a developer’s self-assessment); while neither is univer-
sally preferable, in this paper we seek to achieve breadth by
measuring productivity subjectively to answer three research
questions:

1)  What factors most strongly predict developers’ self-
rated productivity?

2) How do these factors differ across companies?

3) What predicts developer self-rated productivity, in
particular, compared to other knowledge workers?

To answer the first research question, we created a survey and
deployed it at a large software company. To answer the sec-
ond question, which helps establish to what extent our results

1. To guard against confirmation bias [1], we encourage the reader
to circle (a) or (b) for each of the three options that they would recom-
mend investing in. Readers who can confidently answer each question
correctly can make a reasonable claim that the results of our study
are predictable or unsurprising. Answers provided in Section 6.

generalize and do not generalize, we adapted and deployed
the survey at two other companies in different industries. To
answer the third question, which helps explain what differen-
tiates software developers from other groups, we adapted and
deployed the survey with non-developer knowledge workers,
and compared the results to that of software developers.

Our results suggest that the factors that strongly correlate
with self-rated productivity across the companies we studied
were job enthusiasm, peer support for new ideas, and receiving
useful feedback about job performance. Compared to other
knowledge workers, our results also suggest that software de-
velopers’ self-rated productivity is more strongly related to
task variety and ability to work remotely. Our results can be
used by companies to prioritize productivity initiatives, such
as by increasing job enthusiasm through recognition of indi-
viduals’ work (Section 4.7).

We next describe the three companies we studied in Sec-
tion 2, describe and justify the methodology we used in Sec-
tion 3, explain and discuss our results in Section 4, and finally
describe related work in the area in Section 5.

2 Companies Studied

Before discussing our methodology, we next present descrip-
tions of each company we studied. The descriptions are sum-
marized in Table 1.

2.1 Google

Google has tens of thousands of developers spread across 40
offices worldwide. This software-centric company values co-
locating teams, and offices typically have open-plan layouts
where developers on the same team work in close proximity.
Google is relatively young (founded in the late 90s), and has
a relatively flat organizational structure where individual de-
velopers have a lot of autonomy. The promotion process incor-
porates peer review feedback, and developers do not have to
move into management roles to advance. Developers are free
to schedule their time, and calendars are uniformly visible
across the company. The software development process used



Google ABB National Instruments
Company Size Large Large Small
Office layout  Open offices Open and closed offices Open offices

Tooling style
Development type
Code repository
Focus

Mostly uniform developer tooling
Mostly server and mobile code
Monolithic repository
Software-centric

Similar tooling

Mix of web, embedded, desktop
Separate repositories
Engineering conglomerate

Flexible tooling

Mostly embedded and desktop
Monolithic repository
Software/hardware-centric

TABLE 1: Profiles of the three companies studied

by developers at Google (e.g. agile) is flexible and typically
determined on a per-team basis.

Google values openness; most developers at Google work
in a shared monolithic codebase, and developers are empow-
ered to change code in projects they don’t own. There is a
strong testing and code review culture; committed code has
been reviewed by another developer and typically includes
tests. Most developers at Google work on server code: code is
typically released frequently, and it is relatively easy to push
bug fixes. The set of developer tools used is largely uniform
(with the exception of editors) and developed in-house, in-
cluding the code review tool and the continuous integration
and release infrastructure.

2.2 ABB

ABB has well over 100,000 employees worldwide. Because it
is an engineering conglomerate, it employees a wide variety
of workers. It has approximately 4,000 traditional software
developers and over 10,000 application developers who pro-
gram industrial systems using a variety of industry-specific
visual and textual languages. Additionally, to run its large IT
infrastructure, it has a significant staff whose duties include
scripting and lightweight coding.

While ABB has acquired and incorporated smaller compa-
nies, it has had a central organization dedicated to ensuring
a uniform software development processes. Thus, while vari-
ations occur across departments, much of the overall tooling
and underlying approach to software development are similar.
Similarly, while small variations occur across departments,
most career development tracks are quite similar, progressing
from junior to senior developers on the technical track and
from group leader to department and finally center manager
on the management track.

2.3 National Instruments

National Instruments was founded in the 1970s. Most software
development takes place in four international research and de-
velopment offices. Calendars are globally visible, and anyone
can schedule meetings with anyone else.

Business commitments drive development activities. De-
velopers don’t have the autonomy to determine their project
scope, but have input into specific tasks or features to work
on. The majority of developers work in a shared monolithic
codebase with clearly defined ownership between logical ar-
eas. Code submissions are expected to have received approval
by a “code owner” before being allowed in. Code review from
technical leads is also expected; this policy is not enforced but
is widely followed.

There is a lot of freedom in terms of developer tools; de-
velopers are not consolidated onto common tooling unless it

has immediate benefit. For example, the IDE used is heavily
dependent on the kind of work being done, there is a mix of in-
house tooling for build/test, and different portions of the com-
pany have standardized on different source control systems or
code review tools. Software updates are typically released on
a quarterly to yearly basis, with the exception of rare ad-hoc
critical patch releases.

3 Methodology

Our goal is to comparatively understand the factors that pre-
dict software developers’ productivity. To reach this goal, we
designed a survey, consisting of a set of productivity ques-
tions, a set of productivity factors, and a set of demographic
variables.

3.1 Self-Rated Productivity

The first step is to define how we will measure productiv-
ity. Ramirez and Nembhard provide a taxonomy of techniques
used in the literature to measure productivity, including func-
tion point analysis, self-ratings, peer evaluations, outcome-
input ratio, and professional time utilization [2]. These tech-
niques can largely be divided into objective measurements
(like lines of code written per week) and subjective measure-
ments (like self-ratings and peer evaluations).

Neither objective nor subjective productivity measure-
ments are universally preferable; both have drawbacks. Ob-
jective measurements suffer from inflexibility and gaming. For
instance, consider lines of code written per week. A produc-
tive developer can write a one-line fix to a hard-to-find bug.
At the same time, an unproductive developer can easily in-
flate the number of lines of code he writes. On the other hand,
subjective measurements can suffer from inaccuracies due to
cognitive biases. Consider peer evaluations. A productive de-
veloper may be disliked by her peers, who may in turn give
her poor evaluations even if they try to remain objective.

Similar to Meyer and colleagues’ recent investigation into
software developer productivity [3], we have chosen to use sur-
vey questions as a subjective measurement of productivity,
for two main reasons. First, as Ramirez and Nembhard note,
surveys are a “straightforward and commonly used method
to measure [knowledge worker] productivity” [2]. Second, sur-
veys are flexible enough to allow responses from developers in
a variety of roles and to allow the respondent to incorporate a
variety of information into a self-rating of productivity.

We asked respondents about their productivity by rating
their agreement with the following statement:

I regularly reach a high level of productivity.

Through this statement, we aimed to measure productivity
in the broadest way possible. We began by designing eight
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Fig. 1: Methodology used to create survey.

candidate questions, then narrowed them to this one by in-
formally interviewing five developers at Google about their
interpretation of the question (Figure 1, bottom left). For the
question we included the qualifiers “high” and “regularly” in
the question is a design choice, for three reasons. First, we
wanted to establish a fixed point to which they could com-
pare themselves. Second, we wanted that point to be a high
benchmark, as a way of avoiding ceiling effects in responses.
Third, we wanted to focus responses on two specific dimen-
sions of productivity, namely intensity and frequency. Future
researchers could obtain a more granular productivity mea-
surement by disaggregating intensity and frequency in two
separate questions.

We field tested the question by asking three managers at
Google to send this question to their software development
teams, along with the question “What did you consider when
answering this productivity question?” Twenty-three devel-
opers responded (Figure 1, bottom center). We deemed the
question acceptable for our purposes because the respondents’
considerations when answering the questions were congruent
with our expectations about the meaning of productivity, en-
compassing issues regarding workflow, work output, being in
the zone or flow, happiness, goals achieved, coding efficiency,
progress, and minimizing waste. Although we do not analyze
them in this paper, the survey also included four additional,
narrower measures of productivity, drawn from prior work [2],
4l, [5).

To provide some objective data to contextualize our self-
rated productivity measure, we chose two convenient objec-

tive measures of productivity, then correlated them with self-
rated productivity within Google. The first objective measure
is lines of code changed per unit time by a developer, a com-
monly used but fraught measure of software engineering pro-
ductivity [6], [7]. The second is number of changelists merged
into Google’s main codebase per unit time by a developer,
a measure essentially equivalent to Vasilescu and colleagues’
measure of pull requests accepted per month [8]. For self-
reported productivity, in this analysis we use responses to a
similar survey at Google (n = 3344 responses); we could not
use the data from our survey in this analysis because the orig-
inal responses did not include participant identifiers that we
could use to then link with objective productivity measures.
This similar survey question asked, “How often do you feel you
reach a high level of productivity at work?”; participants could
answer Rarely or never, Sometimes, About half the time, Most
of the time, and All or almost all the time. We then create
a linear regression with self-rated productivity as an ordinal
dependent variable (coded 1, 2, 3, 4, and 5, respectively).?
As independent variables, we use each objective measure, log
scaled since they are both positively skewed. For control vari-
ables, we included job code (e.g., software engineer, research
engineer, etc.) as a categorical variable and seniority as a nu-
meric level (e.g., level 3 is an entry level software engineer

2. Linear regression assumes that the distance between productiv-
ity ratings are equal. Given the question’s wording, we believe this
assumption is reasonable. Ordered logistic regression does not require
this assumption. Applying that technique here yields robust results:
the same coefficients are significant in linear and ordered models.



Model Factor Estimate Sig. RA2
log(li h d+1 0.045 ***
’ og(lines_change ) 0.017
level -0.051 **
e
log(changelists_created + 1) 0.112 ***
2 0.024
level -0.050 **
3 log(changelists_created + 1) 0.132 *** 0.024
level -0.051 **

Fig. 2: Models predicting a subjective productivity measure
from two objective measures. n.s. indicates a non-significant
factor with p > .05, ** indicates p < .01, *** indicates
p < .001. Full models are described in the Supplementary
Material.

at Google). Job code was statistically significant for two job
roles in each linear model. We ran three models; two with each
objective productivity measure in isolation, and one with both
objective measures.

The results of this contextualization are shown in Figure 2.
Each model shows that level is statistically significant, with a
negative estimate, which we interpret to mean more senior de-
velopers tend to rate themselves slightly less productive. This
provides a strong rationale for us to control for seniority (Sec-
tion 3.7). The first two models indicate significant positive
correlations between each objective measure of productivity
and subjective productivity; this suggests that the more lines
of code modified and changelists submitted, the more produc-
tive an engineer self-rates. The final unified model, as well as
the estimates on the first two models, suggests that number
of changelists submitted is a stronger predictor of self-rated
productivity than lines of code submitted. However, on each
model, notice that the R?, which represents the percent of
variance explained, is quite low at less than 3% for each model.
Overall, these results suggest that the number of lines of code
and changelists submitted are part of engineers’ self-estimate
of their productivity, but only a small part.

3.2 Productivity Factors

Next on our survey, we asked participants about factors that
prior literature suggests correlate with productivity. We drew
these questions from four sources, as illustrated at the cen-
ter left of Figure 1. We chose these sources because, to our
knowledge, they represent the most comprehensive reviews
of individual productivity factors in the software engineering
and knowledge work research literature.

The first source we used was Pavalin and colleagues’
instrument, which the authors derived from a literature
review of performance measurements for knowledge work-
ers [4]. The standardized survey instrument, called Smart-
WoW, was fielded at four organizations, and encompass as-
pects of the physical workspace, the virtual workspace, the
social workspace, personal work practices, and well-being at
work. We modified some of the questions to better reflect con-
temporary terminology in software engineering and more con-
ventional American English. For instance, SmartWoW asks:

I often telework for carrying out tasks that re-
quire uninterrupted concentration.

Which we rephrased as:

I often work remotely for carrying out tasks that
require uninterrupted concentration.

SmartWoW included 38 candidate questions for our survey.

The second source we used was Hernaus and Mikulié’s lit-
erature review of work characteristics’ effects on knowledge
worker productivity [9]. Their survey, validated for reliability,
is itself an amalgamation of prior research on productivity,
including the Work Design Questionnaire [10], the Job Di-
agnostic Survey [11], Campion and colleagues’ measurements
of group cooperation [12], and Hernaus’ own measure of the
“nature of the task” [13]. We modified questions directly from
these underlying instruments for brevity and consistency. In
a similar vein, we considered using Campion and colleagues’
instrument directly, but it focused on characteristics of work
groups with little considerations for individuals’ productivity.

The third source was Wagner and Ruhe’s structured re-
view of productivity factors in software development [14]. Un-
like the other sources, this paper was not rigorously peer re-
viewed and does not contain original empirical studies, but
to our knowledge it is nonetheless the most comprehensive
review of studies of productivity in software engineering. Wag-
ner and Ruhe’s factors are broken down into technical factors
and soft factors, and further broken down into environmental;
team and corporate culture; project, product, and develop-
ment environment; capability; and experience factors.

A fourth source we used was Meyer and colleagues’ survey
of Microsoft developers, which listed the top five reasons that
developers have productive workdays, including goal setting,
meetings, and interruption [15].

We also opportunistically included three additional factors
that we felt were not adequately captured in the prior work,
that were of particular interest to Google. One was a factor
from the Knowledge Work Productivity Assessment [16], an
unpublished precursor to SmartWoW, which we adapted as:

The information supplied to me (bug reports,
user stories, etc.) is accurate

The second was a factor directly from the Work Design Ques-
tionnaire, adapted as

I receive useful feedback about my job perfor-
mance

We created the third factor, which was of particular interest
to ABB:

I require direct access to specific hardware to test
my software.

In total, we had 127 candidate factors. To reduce these
to a manageable number of questions that respondents could
answer without significant fatigue [17], we used the following
criteria for inclusion, as illustrated at the center of Figure 1:

1) Eliminate duplicates. For instance, both Smart-
WoW [4] and Meyer and colleagues [15] discuss goal
setting as an important productivity factor.

2) Condense similar factors. For instance, Hernaus and
Mikuli¢ describe multiple aspects of communication
between work groups that improve productivity, but
we condensed these down to a single factor [9].

3) Favor factors with clear utility. For instance, Smart-
WoW [4] includes the factor
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Fig. 3: Example factor questions from the survey.

Workers have [the] opportunity to see each
other’s calendar

At Google, this is universally true and unlikely to
change, so the factor has little utility.

We applied these criteria collaboratively and iteratively. First,
we printed a large physical poster of all candidate questions.
Then, we put that poster on a wall at Google, near the Google
authors’ shared office space. Next, each Google author inde-
pendently reviewed and revised the questions on the poster
based on the criteria above. The poster remained on the wall
for several weeks as we periodically added and revised feed-
back. Finally, the first author applied that feedback to create
the final question set.

In the end, our survey included 48 factors in the form of
statements (Figure 4, left column), which respondents marked
their level of agreement with on a five point scale, from
Strongly disagree to Strongly agree. These factors can be cat-
egorized into blocks about practices, focus, experience, job,
work, capabilities, people, project, software, and context. An
example question block is shown in Figure 3. We also asked
one open-ended question about factors that respondents felt
that we had missed. A full blank survey is available in the
Supplementary Material.

3.3 Demographics

We collected and asked about several demographic factors
that we wanted to control for, as illustrated at the top of
Figure 1:

o Gender
o Tenure
o Seniority

We asked about gender because prior work suggests that
gender is related to software engineering-relevant productiv-
ity factors, such as success in debugging [18]. Thus, the sur-
vey asked an optional question about gender (Male, Female,
Decline to State, Custom). Respondents who did not an-
swer the question were recoded to “Decline to State” (Google
n = 26 [6%], ABB n = 4 [3%], National Instruments
n =5 [6%]). We treated this data as categorical.

For tenure, we collected years at the company at Google
directly from human resources data. This was not feasible
at ABB and National Instruments, so we added an optional
question about it to their survey. At ABB, we recoded miss-
ing data (n = 4 [3%]) as 12 years of experience, the mean
of the reported data. At National Instruments, we use 9 years
(n = 1[1%]), for the same reason. More sophisticated data im-
putation techniques are possible [19], such as by using multiple
imputation to predict missing values based on present values;
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for instance, missing seniority values can likely be imputed
somewhat accurately based on tenure and gender. Instead of
using such techniques, we chose to use the simple statistical
mean for imputation because demographic factors were not
primary variables of interest, but instead simply covariates to
control for. We treated this data as numerical.

For seniority, at Google the survey asked participants to
optionally report their numeric job level. We recoded miss-
ing responses (n = 26 [6%]) as the most common level of
the reported data. For ABB, participants could optionally
mark Junior or Senior Software Engineer /Developer, although
many participants marked “other” job titles. For these, we re-
coded responses as Senior if the titles contained the words
senior, lead, manager, architect, research, principal, or sci-
entist; we recoded them as Junior otherwise. Non-responses
(n = 4 [3%)]) we recoded as the most common response, Se-
nior. For National Instruments, the options were Entry, Staff,
Senior, Principal Architect/Engineer, Chief Architect/Chief
Engineer, Distinguished Engineer, Fellow, or other. The sin-
gle “other” response reported being an intern, which we re-
coded as “Entry.” Non-responses (n = 3 [4%]) we recoded as
the most common response, Senior. We treated seniority data
from each company as numerical.

3.4 Non-Developer Comparison Survey

In our third research question, we wish to know what predicts
developer self-rated productivity in particular. For example,
we expect that interruption affects productivity, but we would
also expect that interruption affects the productivity of any
knowledge worker, so one would naturally ask whether inter-
ruption is particularly influential for developer productivity.

To answer this research question, we aimed to select a pop-
ulation comparable to software developers. We began by try-
ing to find knowledge workers by inspecting common job titles
at Google. While a number of candidate titles seemed to rea-
sonably indicate knowledge work, the most common and, in
our judgment, most reliable indicator of non-developer knowl-
edge worker was whether the employee had “analyst” in their
title. We chose to compare Google analysts to Google develop-
ers, instead of comparing Google analysts to developers across
all three companies. Our reasoning is that doing so will control
for any company-specific effects (e.g., perhaps Google employ-
ees are statistically more or less likely than employees at other
companies to be sensitive to interruption).

We next adapted our survey to analysts. This included
eliminating questions that were clearly software development-
specific, such as “My software’s requirements change fre-
quently”. Other questions we adapted specifically for analysts;
for instance, we adapted “I use the best tools and practices to
develop my software” to “I use the best tools and practices to
do my job”.

Self-rated productivity was measured the same way for
analysts as for developers. We measured gender, tenure, and
seniority the same way as we did for developers at Google. We
piloted the analyst version of the survey with a convenience
sample of five analysts, who reported the overall survey was
clear, but also made some minor suggestions. We adjusted the
survey accordingly before deploying it.



3.5 Attention Question

In an attempt to eliminate survey responses that were not
given due consideration, we included an attention item [20]
about two-thirds of the way through the survey. The atten-
tion question said “Respond with ‘Somewhat disagree’ to this
item.” Surveys that did not include a response of ‘Somewhat
disagree’ to this attention item were discarded.

3.6 Response Rates

We used human resources data from Google to select 1000 ran-
dom full-time employees with software developer job codes.
We received 436 responses, a 44% response rate, which is very
high for software engineering surveys [21]. 407 valid surveys
remained after removing those that answered the attention
question incorrectly (n = 29 [7%]).

For knowledge workers, we selected 200 random full-time
employees at Google with “analyst” in their job titles. We
chose not to survey more analysts because we judged it uneth-
ical to survey more analysts, when the survey results are pri-
marily of benefit to software developers. A total of 94 analysts
responded, a 47% response rate. 88 valid surveys remained
after removing those that answered the attention question in-
correctly (n = 6 [6%]).

We sent the survey to about 2200 randomly selected soft-
ware developers at ABB, and received 176 completed surveys.
This 8% response rate is on the low end of typical software
engineering surveys [21]. 137 valid surveys remained after re-
moving those that answered the attention item incorrectly
(n =39 [22%]).

We sent the survey to a mailing list containing about 350
software developers at National Instruments, and received
91 completed surveys (26% response rate). 78 valid surveys
remained after removing those that answered the attention
question incorrectly (n = 13 [14%)).

3.7 Analysis

In our analysis, we run linear individual multiple regression
models for each factor at each company, with the factor as an
independent variable (e.g. “My project deadlines are tight”)
and self-rated productivity as the dependent variable. We
chose to run separate models at each company for privacy, so
that each company’s raw data was not shared with any other
company. To reduce the influence of covariates, we included
available demographic variables in each regression model. To
interpret the results, we focus on three aspects of the produc-
tivity factor coefficient:

o Estimate. This indicates the effect size of each factor
while holding the demographics constant; the further
this number is from zero, the greater the effect.

o Standard Error. This represents the variability of
the estimate; lower numbers represent less variability.

« Significance. We also analyze statistical significance,
using p < .05 as a threshold. Because we are running
48 statistical tests per company and thus are likely to
discover a handful of relationships simply by chance,
we correct such p-values on a per-company basis using
the Benjamini-Hochberg method, a technique designed
to correct for false discovery [22].
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In our interpretation of the results, we focus more on effect
size (that is, the estimate) and less on the statistical signifi-
cance, because statistical significance can be obtained from
sufficiently large data sets, even when practical significance
is low. As we shall see in the results, statistically significant
results are obtained most frequently at Google, where our re-
sponse rate was high, and least frequently at National Instru-
ments, where our response rate was lower. Thus we interpret
this difference as a largely a matter of statistical power. We
encourage the reader to place more confidence in results with
statistical significance.

To provide context, we also analyze to what extent de-
mographic factors correlate with self-reported productivity.
We do this by running multiple linear regression, with the
demographic variables at each company as independent vari-
ables, and self-reported productivity as the dependent vari-
able. We then analyze the overall predictive value of the re-
sulting model, as well as how each independent variable con-
tributes to the overall model.

3.8 A Word on Causality

Our methodology measures correlations between productivity
factors and self-reported productivity, but fundamentally we
are actually interested in measuring the degree to which each
factor causes productivity changes. So to what extent is it
valid to assume that there actually exists causal links between
the factors and productivity?

Validity depends largely on the strength of the evidence
for causality in the prior work. The strength of this evidence
varies from factor to factor. As one example, Guzzo and col-
leagues’ meta-analysis of 26 articles about appraisal and feed-
back provides excellent evidence that feedback does indeed
cause productivity increases in the workplace [23]. However,
establishing the strength of the evidence for every factor we
surveyed would require an extensive meta-review, which is
well beyond the scope of the present paper.

In sum, although our survey itself cannot establish causal-
ity, by relying on prior work, we can have some confidence
that these factors cause increases or decreases in productivity,
but the reader should interpret our results with some caution.

4 Results

To describe the results of deploying our study, we begin by
describing the correlation between each productivity factor
and self-rated productivity when controlling for demograph-
ics. We use these results to answer each research question in
turn, followed by a discussion of the results of each question.
We then discuss the relationship between the demographics
and self-rated productivity. Finally, we discuss implications
and threats.

4.1 Productivity Factors

Figure 4 shows the results of our analysis, which we outlined
in Section 3.7. The first column indicates the factor, in the
form of the statement shown to software developers on the
survey, followed by factor labels (F1, F2, and so on) that we
assigned after we completed data analysis. Missing data for
certain factors means that the factor was developer-specific,
and thus was not presented to analysts (for example, F10).
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The other major columns display data from each of the three
labeled companies, plus data about Google’s analysts. Within
each major column, there are two minor columns.

The minor column labeled estimate indicates regression
coefficient, which quantifies the strength of the association be-
tween that factor and self-rated productivity, where the larger
the number, the stronger the association. For example, the
first row for Google gives the estimate as 0.414. Concretely,
this means that for every one point increase in agreement with
the statement about job enthusiasm (F1), the model predicts
respondents’ productivity rating will increase by 0.414 points,
controlling for demographic variables. Estimates can likewise
be negative. As an example, for all 3 companies, the more
personnel turnover on a team (F48), the lower the self-rated
productivity. Adjacent to each estimate is a single bar that
reflects that magnitude of the estimate.

Note that estimate does not mean higher factor ratings,
but instead means a higher correlation between a factor and
self-rated productivity. For instance, National Instruments’s
estimate for job enthusiasm (F1) is higher than that of the
other two companies. This does mot mean that developers
are the most enthusiastic at National Instruments; what it
does mean is that developers’ job enthusiasm was a stronger
predictor of self-rated productivity at National Instruments
than at the other two companies. We do not report ratings
directly because it was a condition of corporate participation.
In particular, ratings could be interpreted wrongly without
full context; for instance, if we reported that one company’s
developers had a lower job enthusiasm rating than another
company’s developers, the reader may get the impression that
the latter company is not a good company to work at.

The minor column labeled error indicates the standard
error of the model for each factor. Lower numbers are better.
Intuitively, lower numbers indicate that as the factor changes,
the model will more reliably predict self-rated productivity.
Overall error rates are fairly consistent across factors, espe-
cially for Google, which had a larger number of respondents.

Estimate and standard error values with an asterisk (*) in-
dicate that the factor was statistically significant in its model.
For instance, job enthusiasm (F1) was statistically significant
across all three companies, but meeting preparation (F17) was
only significant in Google.

The third major column indicates the mean (u) estimate
across all three companies, with the standard deviation in
parentheses (o). The first bar visualizes the magnitude of the
mean estimate, and the second bar visualizes the magnitude
of the standard deviation. For example, the average estimate
was 0.43 for job enthusiasm (F1), with a standard deviation
of 0.051. The table is sorted by the mean estimate.

The last column indicates the magnitude of the difference
(diff) between estimates at Google for software developers
versus analysts. Positive values indicate developers’ estimates
being higher, negative values indicate analysts’ estimates be-
ing higher. For example, analysts’ estimates tended to be
slightly lower than developers’ for enthusiasm (F1).

4.2 RQ1: What factors most strongly predict developers’
self-rated productivity?

The strongest predictors of self-rated productivity are the
statements with the highest absolute mean estimate; the
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weakest factors of self-rated productivity are those with the
lowest absolute mean estimate. In other words, the factors at
the top of the Figure 4 are the strongest predictors, and at the
bottom, the weakest. To determine which of the factors we
can have the most confidence in, we identify the results that
are statistically significant across all three companies:

o Job enthusiasm (F1)
o Peer support for new ideas (F2)
o Useful feedback about job performance (F11)

Discussion. A notable outcome of the ranking is that the
top 10 productivity factors are non-technical. This is some-
what surprising, given that most software engineering research
tends to focus on technical aspects of software engineering, in
our estimation. Thus, a vigorous refocusing on human factors
may yield substantially more industry impact for the software
engineering research community. For instance, answering the
following questions may be especially fruitful:

o What makes software developers enthusiastic about
their job? What accounts for differences in levels of en-
thusiasm between developers? What interventions can
increase enthusiasm? This work can extend existing
work on developer happiness [24] and motivation [25].

o« What kinds of new ideas are commonly expressed in
software development practice? What actions influence
developers’ feelings of support for those ideas? What
interventions can increase support for new ideas, while
maintaining current commitments?

o What kinds of job feedback do software engineers re-
ceive, and what makes it useful? What kinds of feed-
back is not useful? What interventions can increase the
regularity and usefulness of feedback?

Another notable feature is the ranking of factors from
the COCOMO II line of research. COCOMO II factors, de-
rived from empirical studies of industry software projects and
validated through quantitative analysis of 83 projects [26],
were originally designed to help estimate the cost of software
projects. Examples of COCOMO II productivity factors in-
clude the volatility of the underlying platform and the com-
plexity of the product. Interestingly, the COCOMO II factors
in our survey (F5, F10, F14, F16, F24, F26, F28, F32, F33,
F34, F36, F38, F39, F43, F44, F46, F47, F48) tend to be
lower ranked, suggesting they are less predictive of productiv-
ity than the other factors. Of the top 50% of most predictive
factors (F1-F24), only 5 are related to COCOMO II; in the
bottom 50%, 14 are. We see two different interpretations of
this result. One is that COCOMO 1I is missing several impor-
tant productivity factors, and that future iterations of CO-
COMO II may be able to make more accurate predictions if
they incorporated the more predictive productivity factors we
studied, such as an organization’s support for work method
autonomy. Another interpretation is that COCOMO 1T is fit
for its current purpose — capturing productivity at the project
level [6], [27], [28], [29], [30], [31] — but it is less suitable for
capturing productivity at the individual developer level. This
interpretation underscores the importance, and the novelty, of
our results.

Similarly, all of COCOMO II’s platform factors were rela-
tively small and not statistically significant predictors of pro-
ductivity across all three companies studied, such as:



o My software requires extensive processing power (F39)

o My software requires extensive data storage (F43)

o My software’s platform (e.g. development environ-
ment, software stack, hardware stack) changes rapidly
(F46)

One explanation is that, in the 20 years since COCOMO II
was created and validated, platforms have begun to make less
of a difference in terms of productivity. Standardized operat-
ing systems now arguably shield developers from productivity
losses due to hardware changes (e.g., Android for mobile de-
velopment). Likewise, cloud computing platforms may shield
developers from productivity losses due to scaling up process-
ing and data storage needs. This is not to say that modern
operating system frameworks and cloud computing platforms
are easy to use, but instead that the productivity gap between
processing a little data and processing a lot of data may have
closed since COCOMO II.

4.3 RQ2: How do these factors differ across companies?

To answer this question, we can look to the standard deviation
of estimates across all three companies. The three factors with
the lowest variance, that is, were the most consistent across
companies were:

1)  Use of remote work to concentrate (F40)
2)  Useful feedback about job performance (F4)
3) Peer support for new ideas (F2)

We posit that the stability of these factors makes them good
candidates for generalizability; companies beyond the ones we
studied are likely to get similar results as to ours, for these
factors.

The three factors with the highest variance, that is, varied
the most between companies were:

1)  Use of best tools and practices (F15)
2) Code reuse (F25)
3) Accuracy of incoming information (F6)

Discussion. The three factors that varied the least be-
tween companies (F40, F4, and F2) have a common feature
that they are social and environmental, rather than tech-
nical. Perhaps this suggests that developers, regardless of
where they work, are equally affected by remote working, job
feedback, and peer support for new ideas. Interventions that
change these three factors may have a higher impact than
other interventions, since these factors seem so consistent.

And why might F15, F25, and F6 vary so much between
companies? We provide a potential explanation for each,
based on what we know about these companies.

Using the best tools and practices (F15) was most strongly
related to self-rated productivity at Google, but weakly, non-
significantly related in National Instruments. One potential
explanation is that Google’s codebase may be substantially
larger than National Instruments’. Consequently, using best
practices and tools to effectively navigate and understand a
larger codebase is essential to productivity; at National In-
struments, productivity is less sensitive to tool use due to the
smaller, more understandable nature of the codebase.

Reusing existing code (F25) was strongly related to self-
rated productivity at Google, but weakly, non-significantly re-
lated at ABB. One potential explanation is that code reuse is
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easier to achieve in Google than in ABB. Google uses a mono-
lithic codebase, where all developers can browse nearly every
line of code in the company, so reusing code comes with little
effort. In contrast, ABB uses multiple repositories, so reusing
code across the company requires developers to gain access
to other repositories before reusing code from them. Thus, in
ABB, productivity gains (achieved through code reuse) may
be negated by productivity losses (in finding and accessing
relevant code to reuse).

Accurate information (F6) was strongly related to self-
rated productivity at National Instruments, but weakly, non-
significantly related at ABB. One potential explanation was
that developers at ABB are more insulated from the effect of
inaccurate information than at National Instruments. Specif-
ically, ABB has multiple levels of support teams dedicated
to getting correct information from customers about bugs.
If developers at ABB receive inaccurate information, their
productivity may not be reduced because they can delegate
correcting that information back to the support teams.

4.4 RQ3: What predicts developer self-rated productivity,
in particular, compared to other knowledge workers?

To answer this question, we can look at the last column of
Figure 4. Looking at a few of the correlations with the highest
estimates, we can see that, compared to software developers,
analysts’ self-rated productivity was more strongly related to:

o Positive feelings about their teammates (F7)
o Time management autonomy (F4)

On the other hand, developers’ self-rated productivity was
more strongly related to, for example:

o Doing a variety of tasks as part of their work (F'13)
o  Working effectively away from their desks (F30)

Discussion. Overall, these results suggest that developers
are similar to knowledge workers in some ways and different
from them in others. For instance, the strongest predictor
of productivity for developers was job enthusiasm, but that
factor predicted productivity to nearly the same extent for
analysts. We believe that our results on the similarities and
differences between developers and other knowledge workers
can be used by organizations either to choose productivity
initiatives targeted specifically at developers or to choose ini-
tiatives targeted more broadly.

The unified development toolset at Google may explain
why an increase in task variety corresponds to a larger
self-rated productivity increase for developers than analysts.
While task variety may decrease boredom and thus increase
productivity in both groups, the unified toolset for developers
at Google may mean that developers can use the same tools
for different tasks. In contrast, analysts may have to use dif-
ferent toolsets for different tasks, inducing a heavier penalty
for mental context switching.

The disruption caused by interruption may explain why
why an increase in working effectively away from one’s desk
corresponds to a larger productivity increase for developers
than analysts. Specifically, we posit that perhaps interrup-
tion is more harmful during programming than during ana-
lytical work, so being able to work effectively away from one’s
desk may be especially important for developers’ productivity.



Parnin and Rugaber found that resuming tasks after interrup-
tion is a frequent and persistent problem for developers [32],
caused in part by the need for better tools to assist with task
resumption [33].

4.5 Other Productivity Factors

At the end of the survey, respondents were able to respond to
write-in additional factors that they felt impacted productiv-
ity. We noticed that these responses largely provided the same
or more specific descriptions of our 48 factors, so we closed-
coded responses based on our factors, and created a handful of
new factors when necessary. We provide an accounting of the
new factors, as well as the more specific descriptions of our
factors, in the Supplementary Material. Overall, researchers
deploying and modifying our survey instrument may wish to
add a new question about a projects’ personnel mix. They may
also wish to either clarify or provide more specific breakdowns
of the questions for factors F15, F16, and F19.

4.6 Demographics

For Google and National Instruments, neither the over-
all demographic models nor any individual covariates were
statistically significant predictors of self-rated productivity.
For ABB, the demographic model was significant (F =
3.406,df = (5,131),p < .007). Gender was a statistically sig-
nificant factor (p = .007), with female respondents report-
ing 0.83 points higher self-rated productivity than males, and
custom genders reporting 1.6 points higher self-rated produc-
tivity than males (p = .03). Tenure also showed significant
results (p = .04), with self-rated productivity increasing .02
points for every additional year at the company. To our knowl-
edge, the differences between ABB and the other two compa-
nies do not seem to explain why these demographic factors
were significant predictors at ABB but not elsewhere.

4.7

How should practitioners put our results into action? We pro-
vide a ranked list of most predictive productivity factors,
which can be used to prioritize productivity initiatives. Such
initiatives can be drawn from prior work. For example, to in-
crease job enthusiasm, Markos and Sridevi suggest helping
workers grow [34], such as by providing workshops to tech-
nology and interpersonal skills. Markos and Sridevi also sug-
gest providing recognition for good work; for instance, ABB
has experimented with providing public recognition for de-
velopers who adopt tools and practices for structured code
navigation [35]. To increase support for new ideas, Brown
and Duguid suggest informal and formal sharing of best
practices [36]. At Google, one way knowledge is shared is
through an initiative called “Testing on the Toilet”, where
engineers write short newsletters about testing or other tech-
nical knowledge, and those newsletters are posted in bath-
rooms around the company. To increase feedback quality
about job performance, London and Smither suggest focus-
ing on feedback that is non-threatening, behaviorally-focused,
interpreted, and outcome-oriented [37]. At Google, one way
that feedback is provided in this way is through blameless
postmortems, where after a significant negative outcome oc-
curs like a service outage, engineers collaboratively write a

Implications for Practice and Research
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report that focuses on the behaviors that contributed to a
root-cause, without blaming individual engineers.

For researchers, several areas of future work in this area
would build on this work and advance the field of software
developer productibity. First, a systematic literature review,
which characterizes the strength and context of the evidence
for each productivity factor discussed in this paper, would
improve actionability of this work by helping establish causal
links. In areas where those links are weak, actionability would
likewise be improved by conducting a set of experiments that
establish causality. Second, as we mention in Sections 4.5
and 4.6, future researchers may want to consider other factors
that our participants suggested, and investigate how gender
and other demographic factors interact with developer pro-
ductivity. Third, the impact of productivity research in soft-
ware engineering would be improved with a multi-dimensional
toolbox of productivity metrics and instruments, validated
through empirical study and triangulation. Fourth, if re-
searchers can quantify the cost to change the factors that drive
productivity, organizations can make even smarter investment
choices.

4.8 Threats

Several threats to the validity of this study should be consid-
ered when interpreting its results.

4.8.1 Content Validity Threats

First, we reported on only one dimension of productivity, self-
rated productivity. Other dimensions of productivity exist,
including objective measures, such as number of lines of code
written per day per engineer, a measure used by companies
like Facebook [38]. As we argue in Section 3.1, all productivity
metrics have drawbacks, including self-rated productivity. For
instance, developers may be insufficiently self-aware of their
own productivity or may artificially increase their self-rating
due to social desirability bias [39]. Despite this limitation, Ze-
lenski and colleagues draw from prior work to argue for the va-
lidity of a single item, self-report measure of productivity [40],
such as the one we use in our paper.

Second, we measured self-reported productivity through a
single question, which likely does not capture the full range of
developers’ productivity experiences. For instance, the ques-
tion’s wording focuses on frequency and intensity, but omits
other aspects of productivity like quality. The survey also did
not ask respondents to bound their answers by a particular
time period, so some participants may have provided answers
that reflect their experience over the last week whereas others
reflect their experience over the last year. In retrospect, the
survey should have specified a fixed time window.

Third, because we were limited in the number of ques-
tions we could ask and we relied on only the factors studied in
prior work, our 48 chosen factors may not capture all aspects
of behavior that influence productivity. Likewise, our chosen
factors may be too broad in some cases. For example, in ret-
rospect, the factor that asks about best “tools and practices”
(F14) would probably be more actionable if it disaggregated
tools from practices.

4.8.2 Internal Validity Threats

Fourth, as we mentioned in Section 3.8, we rely on prior work
to establish a causal link between factors and productivity,



but the strength of the evidence for causality varies. For some
factors, it may be that the factor and self-rated productivity
are only linked through some third factor, or that the causal
relationship is reversed. For instance, it’s plausible that the
top productivity factor, increased job enthusiasm (F1), could
actually be caused by increased productivity.

4.8.3 External Validity Threats

Fifth, although we surveyed three fairly diverse companies,
generalizability to other types of companies, to other orga-
nizations, and to other types of knowledge workers, is lim-
ited. Similarly, in this paper we selected analysts to repre-
sent non-developer knowledge workers, but this selection ex-
cludes several types of knowledge workers, such as physicians,
architects, and lawyers. Another threat to validity is non-
response bias; the people who responded to the survey were
self-selected.

Sixth, we analyzed each productivity factor in isolation,
but multiple factors may co-vary. This is not a problem so
much with the analysis, but with its actionability; if factors
are co-dependent, adjusting one may adversely affect another.

4.8.4 Construct Validity Threats

Seventh, in designing this survey we were concerned with re-
spondents’ ability to guess our analysis methodology and not
answer truthfully as a result. We attempted to mitigate this
by separating the productivity question from the productivity
factors, but respondents nonetheless may have been able to
infer our analysis methodology.

Finally, we reworded some questions to adapt the survey to
analysts, which may have altered their meaning in unintended
ways. Consequently, differences between developers and ana-
lysts may be unduly influenced by question differences, rather
than job differences.

5 Related Work

Many researchers have studied individual factors of software
developer productivity. One example is Moser and Nierstrasz’
field study of 36 software projects, which examined whether
object-oriented technology can improve software developer
productivity [41]. Another example is DeMarco and Lister’s
study of 166 programmers in 35 different organizations per-
forming a one-day programming exercise, which found that
workplace and organization correlated with productivity [42].
A third example is Kersten and Murphy’s lab experiment with
16 developers, which showed that developers who used a task-
focusing tool were significantly more productive than those
that did not use the tool [43]. Beyond these examples, Wag-
ner and Ruhe’s systematic review provides a good overview
of the individual productivity factors that correlate with pro-
ductivity [14]. Likewise, Meyer and colleagues provide a more
recent overview of productivity factors [3]. In general, our
work builds on these factor-by-factor productivity studies by
broadly investigating a wide variety of factors.

As described in Petersen’s systematic mapping literature
review, seven software engineering papers have quantified the
factors that predict software development productivity [44].
Each paper uses a quantitative method, typically a regres-
sion as we use in this paper, to predict productivity in several
software projects. The most common factors relate to the size
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of the project and 6 of 7 explicitly build on COCOMO II
productivity drivers [6], [27], [28], [29], [30], [31]. The most
complex predictive model in Petersen’s study is based on 16
factors [6]. Our paper differs in two main respects. The first
is that we evaluate a larger number (48) and a wider variety
of productivity factors than prior work, drawing heavily on
industrial and organizational psychology. The second is unit
of analysis; while these prior studies examined what predicts
project productivity, we instead examine what predicts peo-
ple’s productivity.

Beyond software engineering, prior work has compared
the factors that predict productivity in other kinds of
workers, particularly in industrial/organizational psychology.
While such research has investigated productivity at an
organization-wide scale [45] and for physical work like man-
ufacturing [46], the most relevant subfield is productivity of
knowledge workers, that is, people who primarily work with
knowledge and information, typically using a computer [47].
Two major pieces of work have compared factors for knowl-
edge workers. The first is Palvalin and colleagues’ investiga-
tion into 38 factors that had been shown to correlate with
productivity in prior work; these factors cover the physical
workplace, virtual workplace, social workplace, personal work
practices, and well-being at work [4]. The second is Hernaus
and Mikuli¢’s survey of 512 knowledge workers, which inves-
tigated 14 factors in three categories [9]. We built on both of
these studies when designing our survey (Section 3.2).

At the same time, studies that compare productivity fac-
tors for knowledge workers are insufficient for studying soft-
ware developers for two main reasons. First, the degree to
which these general results translate to software developers
specifically is unclear. Second, such works tend to abstract
away software-specific factors, such as software reuse and
codebase complexity [48]. Thus, an important gap in the lit-
erature is a broad understanding of the factors that predict
productivity for software developers. Filling this gap has prac-
tical importance; the authors of the present paper are part of
three research groups across three different companies tasked
specifically with improving developer productivity. Filling this
gap helps our groups, and the companies we are part of, decide
how to invest in developer productivity improvements.

6 Conclusion

Many factors influence developers’ productivity, yet organiza-
tions have limited resources to invest in improving productiv-
ity. We designed and deployed a survey at three companies to
rank and compare productivity factors. To focus their effort,
developers, management, and executives can use our produc-
tivity factor ranking to prioritize what is otherwise a wide
array of investment options.? In short, prior research provides
many ways that organizations can improve software developer
productivity, and our research provides a way to prioritize
them.

3. Answers to the exercise from the introduction: la (see F24 vs.
F45), 2b (see F44 vs. F3, F4, and F8), and 3a, unless your company
is more like National Instruments than Google or ABB (see F15 vs.
F19).
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Default Question Block

What Makes Software Developers Productive?

This 15-minute, 1-page anonymous survey is intended to help us better understand what makes
software engineers productive and unproductive. Please answer the questions openly and honestly.

If you have any concerns about this survey, feel free to contact David
Shepherd (david.shepherd@us.abb.com) or Emerson Murphy-Hill (emerson@csc.ncsu.edu).

This survey asks about you, your project, and your software. Please keep in mind:

o My software refers to the main software you develop at ABB, such as the product or infrastructure
you develop. If you work on multiple pieces of software, please answer only for the main one you
work on.

o My project refers to the team of people you work with to develop your software.

o For relative questions, answer relative to other software engineers at ABB.

Some questions ask about potentially sensitive or embarrassing topics. Consider taking this survey in a
place where someone cannot look over your shoulder, and clearing your browser's history and cookies
after taking the survey.

Please rate your level agreement with each of the following statements.

Productivity

Somewhat Neither agree nor
Strongly disagree disagree disagree Somewhat agree Strongly agree

I regularly reach a high level of
productivity

| achieve satisfactory results in
relation to my goals

The quality of my work output is
high

My efforts contribute or will
contribute to ABB's revenue,
directly or indirectly

| spend most of my work time
doing useful work

14



Practices

Somewhat
Strongly disagree disagree

| seek out the best tools and
practices to develop my
software

| use the best tools and
practices to develop my
software

| prepare for meetings

Focus

Somewhat
Strongly disagree disagree

Context switching is a
necessary part of my job

| have few interruptions or
distractions while working

There is physical space
available for tasks that require
concentration

| often work remotely for
carrying out tasks that require
uninterrupted concentration

| shut down email and other
tools' notifications to concentrate
on my work

Experience

Somewhat
Strongly disagree disagree

| have extensive experience
developing other software
similar to the one I'm working on

| have extensive experience
with my software's platform
(software stack and hardware
stack)

| have extensive experience
with the tools and programming
languages used in my software

Neither agree nor
disagree

Neither agree nor
disagree

Neither agree nor
disagree

Somewhat agree

Somewhat agree

Somewhat agree

Strongly agree

Strongly agree

Strongly agree
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Job

Somewhat

Strongly disagree disagree
Somewhat

My job allows me to make my Strongly disagree disagree
own decisions about managing
my time

My job allows me to use my
personal judgment in carrying
out my work

My job allows me to make
decisions about what methods |
use to complete my work

My job involves a great deal of
task variety

My job requires me to use a
number of complex or high-level
skills

Work

Somewhat
Strongly disagree disagree

| can work effectively away from
my desk

| receive useful feedback about
my job performance

The results of my work are likely
to significantly affect the lives of
other people

Respond with 'Somewhat
disagree' to this item

| am enthusiastic about my job

Capabilities

Somewhat
Strongly disagree disagree

People who work on my
software's requirements and
design are highly capable,
efficient, thorough,
communicative, and cooperative

People who write code for my
software are highly capable,
efficient, thorough,
communicative, and cooperative

Neither agree nor

disagree
Neither agree nor

disagree

Neither agree nor
disagree

Neither agree nor
disagree

Somewhat agree

Somewhat agree

Somewhat agree

Somewhat agree

Strongly agree

Strongly agree

Strongly agree

Strongly agree
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Somewhat
Strongly disagree disagree

People who manage my project
are highly capable, efficient,
thorough, communicative, and
cooperative

People

Somewhat
Strongly disagree disagree

My project has many people
working on it

Knowledge flows adequately
between the key persons in our
project

| frequently talk to other people
in the company besides the
people on my project

People on my project are
supportive of new ideas

| feel positively about other
people on my project

My project resolves conflicts
quickly

Project

Somewhat
Strongly disagree disagree

The software process my
project uses is well-defined

My project's bug finding process
is efficient and effective

My project's meeting practices
are efficient

People on my project are
physically collocated

My project deadlines are tight

Personnel turnover on my
project is high

The information supplied to me
(bug reports, user stories, etc.)
is accurate

Software

Neither agree nor
disagree

Neither agree nor
disagree

Neither agree nor
disagree

Somewhat agree

Somewhat agree

Somewhat agree

Strongly agree

Strongly agree

Strongly agree
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Somewhat
Strongly disagree disagree

My software is extremely
complex

My software requires extensive
processing power
Somewhat

My software requires extensive . .
Y qu! % v Strongly. lisagree disé_ree

data storage

Significant effort is required to
create and maintain the data
necessary to test my software

| require direct access to
specific hardware to test my
software.

Somewhat
Strongly disagree disagree

My software's architecture
mitigates risks (e.g., security
vulnerabilities, changes in
requirements, etc.)

My software provides an API
that will be used widely and
heavily by other software
developers

My software reuses code, such
as by using APIs, rather than
duplicating it

Extensive documentation is
required to use my software at
different points in its lifecycle

Context

Somewhat
Strongly disagree disagree

My software's requirements
change frequently

My software's platform (e.g.
development environment,
software stack, hardware stack)
changes rapidly

The constraints on my software
are high (e.g., privacy, legal,
environmental, etc)

These questions are designed to comprehensively measure the factors that may influence productivity.

Is there anything we missed?

Neither agree nor
disagree

Neither agree nor
disd_ree

Neither agree nor
disagree

Neither agree nor
disagree

Somewhat agree

Somew! it agree

Somewhat agree

Somewhat agree

Strongly agree

Strong _agree

Strongly agree

Strongly agree
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Gender (Optional)

Male
Female
Decline to state

Custom

What is your position? (Optional)

Software Engineer/Developer
Senior Software Engineer/Developer

Other

What year did you start at ABB?

2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
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Supplementary Material
Blank Survey

2002
2001
2000
Other
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Regression Models for Productivity Measures

See Figures 5, 6, and 7.

Respondent-Reported Productivity Factors

In this section, we enumerate productivity factors described
by respondents in an open-ended question. We first describe
several new factors that emerged, then describe respondents’
descriptions of factors related to our existing factors. We
coded respondents’ comments using one or more codes, us-
ing our existing factors. We do not discuss factors here that
we judged were either vaguely described or did not provide
any information not already contained in our existing factor
descriptions.

New Factors

Four themes emerged from comments that were not reflected
in our set of factors. The theme that appeared in six respon-
dent comments described the mix of personnel assigned to a
project, such as the ratio of managers to engineers, whether
the project has a sufficient number of personnel, and whether
leadership maintains strong product ownership. One respon-
dent noted the type of software (server, client, mobile, etc.)
plays a role in productivity. Another noted physiological fac-
tors play a role as well, such as amount of sleep, while another
mentioned opportunities for personal growth.

Existing Factors

F1. Five respondents commented about factors related to job
enthusiasm: two mentioned job motivation and recognition,
one mentioned morale, and one mentioned a dispiriting office
building.

F3. Four respondents commented about factors related to
work method autonomy. One was about autonomy at the team
level, another about a policy that prevented use of a superior
open source system, and another about company-wide priori-
ties restricting team practices.

F4. One respondent commented about time management
autonomy, stating that it is restricted by priorities dictated by
the need for job promotion.

F5. Three respondents commented about management
competence. One was about leadership having a coherent
strategy, another about conflicting priorities set by manage-
ment, and the last about management of employee perfor-
mance.

F6. Eight respondents commented about being supplied
accurate information. Three comments were about inter-
team communication through documentation (and by other
means), and two were about whether a team’s goals and plans
are well defined.

F7. Two respondents commented about positive feelings
towards teammates, regarding team building and team cohe-
sion.

F8. One respondent commented about work execution au-
tonomy, regarding company policies dictating which resources
to use.

F9. One respondent commented about conflict resolution,
stating that teammates’ personal habits conflicted with social
norms.

F10. Four respondents commented about engineering com-
petence. One comment was about challenges understanding
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code, another about domain expertise, and another about
having a serious attitude towards testing.

F11. One respondent commented about feedback on job
performance, regarding receiving recognition from peers,
managers, and through promotion.

F12. One respondent commented about complex skills,
noting the complexity of implementing software “from my
brain to the shipping product”.

F13. Two respondents commented on task variety, specif-
ically around intercepting tasks on behalf of one’s team and
context switching.

F14. Four respondents commented on the competence of
people who work on requirements and design. One noted not
considering a problem sufficiently, another about readable de-
sign docs, another about the quality of project plans, and the
last about whether there is “adequate support for specifying
requirements”.

F15. Thirty-two respondents commented about using the
best tools and practices. Twelve comments mentioned tool
performance, especially speed and latency issues with build
and test tools. Five comments mentioned available features,
three mentioned compatibility and migration issues, and two
mentioned that even the best available tool might not be fit
for purpose. Other tool and practice comments mentioned the
level of automation offered by tools, specialized debugging
and simulation tools, agile practices, flaky tests and tools, tool
that work well remotely, programming language choice, legacy
tools, and separating personal tool choice from organizational
tool choice.

F16. Nineteen respondents commented about knowledge
adequately flowing between people. Nine respondents men-
tioned challenges communicating with other teams: three of
these discussed goal alignment between teams, one discussed
goal alignment on a single large team, and another discussed
generally establishing agreement between teams. Two com-
ments described the challenges aligning global or timezone
distributed teams. Two comments described reliance on other
teams’ documentation. Two comments called out code review
timeliness. Two discussed teammate work item awareness.
One discussed finding the right person, another communica-
tion delay, and another communication between engineers and
domain experts. Finally, one comment described the impor-
tance of clarifying which of many communication channels to
communicate is appropriate in any given situation.

F18. Two respondents commented about meeting prac-
tices, one specifically about noting that efficient meetings de-
pend on meeting rooms being available.

F19. Twenty-four respondents commented about inter-
ruptions and distractions. Ten noted environmental noisi-
ness, with 7 calling out open offices specifically as produc-
tivity reducing. Four discussed challenges with multitasking
and context switching. Four described being able to focus on
core work versus “extracurricular” activities, like interview-
ing. Two described challenges focusing while commuting.

F25. One respondent commented on code reuse, noting
that APIs that enclose 2-3 lines of code increase complexity
with minimal gains in duplication reduction.

F26. One respondent commented on software platform ex-
perience, noting that experience problems are compounded
when a developer switches between projects.
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Coefficients:

Estimate Std. Error t value Pr(>ltl)
(Intercept) 2.786969 0.111805 24.927 < 0.0000000000000002 *x**
log(lines_changed + 1) 0.045189 0.009296 4.861 0.00000122 #**
level -0.050649 0.015833 -3.199 0.00139 *x
job_codeENG_TYPE2 0.194108 0.172096 1.128 0.25944
job_codeENG_TYPE3 0.034189 0.076718 0.446 0.65589
job_codeENG_TYPE4 -0.185930 0.084484 -2.201 0.02782 *
job_codeENG_TYPES -0.375294 0.085896 -4.369 0.00001285 **x*
Signif. codes: O ‘*x*¢ 0.001 “*x¢ 0.01 ‘% 0.05 “.¢ 0.1 ¢ ¢ 1

Residual standard error: 0.8882 on 3388 degrees of freedom
Multiple R-squared: 0.01874, Adjusted R-squared: 0.017

F-statistic: 10.78 on 6 and 3388 DF,

p-value: 0.000000000006508

Fig. 5: Model 1: Full Linear Regression Results

Coefficients:

Estimate Std. Error t value Pr(>Itl)
(Intercept) 2.74335 0.09706 28.265 < 0.0000000000000002
log(changelists_created + 1) 0.11220 0.01608 6.977 0.00000000000362
level -0.04999 0.01574 -3.176 0.00151
job_codeENG_TYPE2 0.27044 0.17209 1.571 0.11616
job_codeENG_TYPE3 0.02451 0.07644 0.321 0.74847
job_codeENG_TYPE4 -0.21640 0.08411 -2.573 0.01013
job_codeENG_TYPES -0.40194 0.085659 -4.696 0.00000275538534
(Intercept) ok ok
log(changelists_created + 1) ***
level *ox
job_codeENG_TYPE2
job_codeENG_TYPE3
job_codeENG_TYPE4 *
job_codeENG_TYPE5 ook sk
Signif. codes: O ‘*x*¢ 0.001 “**¢ 0.01 ‘% 0.05 “.¢ 0.1 ¢ ¢ 1

Residual standard error: 0.885 on 3388 degrees of freedom
Multiple R-squared: 0.02589, Adjusted R-squared: 0.02416
F-statistic: 15.01 on 6 and 3388 DF, p-value: < 0.00000000000000022

Fig. 6: Model 2: Full Linear Regression Results

F27. Three respondents commented on software architec-
ture and risk mitigation. One commented on “how the archi-
tecture of the product is known, communicated, and how it
supports individuals knowing their role and being able to fo-
cus, know what their responsibilities, boundaries, and owner-
ship is.” Another noted that architecture can promote sharing
between software components at the expense of modularity.
The third suggested that the architecture should align with
organizational structure.

F32. Four respondents commented on the necessity of con-
text switching. Two noted that context switching is necessary
when switching projects. One clarified that the necessity of
context switching is different from enjoying context switch-

ing. Another noted that “productivity improvement projects”
themselves can reduce productivity.

F34. Five respondents commented on tight deadlines. One
noted that tight deadlines incur technical debt and another
that such deadlines can produce waste.

F42. Three respondents commented on software con-
straints, two pointing specifically to privacy constraints and
one at safety critical constraints.

F44. Eleven respondents commented on software complex-
ity. Two focused on legacy code being particularly complex,
two on technical debt, and one each on version control, soft-
ware maintenance, and code comprehension.



Coefficients:

Estimate Std. Error t value Pr(>lt]|)
(Intercept) 2.79676 0.11141 25.102 < 0.0000000000000002
log(lines_changed + 1) -0.01462 0.01498 -0.976 0.32897
log(changelists_created + 1) 0.13215 0.02600 5.082 0.000000394
level -0.05099 0.01578 -3.233 0.00124
job_codeENG_TYPE2 0.27767 0.17226 1.612 0.10706
job_codeENG_TYPE3 0.02226 0.07647 0.291 0.77102
job_codeENG_TYPE4 -0.22446 0.08452 -2.656 0.00795
job_codeENG_TYPES -0.40819 0.08583 -4.756 0.000002057
(Intercept) *okk

log(lines_changed + 1)
log(changelists_created + 1) ***
level *ok
job_codeENG_TYPE2
job_codeENG_TYPE3

job_codeENG_TYPE4 ok
job_codeENG_TYPES Kk
Signif. codes: O ‘*x*¢ 0.001 “*x¢ 0.01 “x 0.05 “.¢ 0.1 ¢ ¢ 1

Residual standard error: 0.885 on 3387 degrees of freedom
Multiple R-squared: 0.02616, Adjusted R-squared: 0.02415
F-statistic: 13 on 7 and 3387 DF, p-value: < 0.00000000000000022

Fig. 7: Model 3: Full Linear Regression Results



