
Borg: the Next Generation
Muhammad Tirmazi

Harvard University

tirmazi@g.harvard.edu

Adam Barker
∗

University of St Andrews

adb20@st-andrews.ac.uk

Nan Deng

Google

dengnan@google.com

Md E. Haque

Google

mehaque@google.com

Zhijing Gene Qin

Google

geneqin@google.com

Steven Hand

Google

sthand@google.com

Mor Harchol-Balter

CMU

harchol@cs.cmu.edu

John Wilkes

Google

johnwilkes@google.com

Abstract
This paper analyzes a newly-published trace that covers 8

different Borg [35] clusters for the month of May 2019. The

trace enables researchers to explore how scheduling works in

large-scale production compute clusters. We highlight how

Borg has evolved and perform a longitudinal comparison of

the newly-published 2019 trace against the 2011 trace, which

has been highly cited within the research community.

Our findings show that Borg features such as alloc sets

are used for resource-heavy workloads; automatic vertical

scaling is effective; job-dependencies account for much of

the high failure rates reported by prior studies; the work-

load arrival rate has increased, as has the use of resource

over-commitment; the workload mix has changed, jobs have

migrated from the free tier into the best-effort batch tier;

the workload exhibits an extremely heavy-tailed distribution

where the top 1% of jobs consume over 99% of resources; and

there is a great deal of variation between different clusters.

Keywords. Data centers, cloud computing.

ACM Reference Format:
Muhammad Tirmazi, Adam Barker, Nan Deng, Md E. Haque, Zhi-

jing Gene Qin, Steven Hand, Mor Harchol-Balter, and John Wilkes.

2020. Borg: the Next Generation. In Fifteenth European Conference
on Computer Systems (EuroSys ’20), April 27–30, 2020, Heraklion,
Greece. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/
3342195.3387517

1 Introduction
Data centers are huge capital investments that serve a wide

range of applications including search engines, video pro-

cessing, machine learning, and third-party cloud applica-

tions. Modern cluster management systems [22, 34, 35] have

∗
Work done whilst on sabbatical leave as a Visiting Researcher at Google.

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

EuroSys ’20, April 27–30, 2020, Heraklion, Greece
© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6882-7/20/04.

https://doi.org/10.1145/3342195.3387517

Date May 2011 May 2019
Duration 30 days 31 days

Cells (clusters) 1 8
Machines 12.6k 96.4k
Machines per cell 12.6k 12.0k

Hardware platforms 3 7

Machine shapes 10 21
Priority values 0–11 0–450
Alloc sets – Y
Job dependencies – Y
Batch queueing – Y
Vertical scaling – Y
Format csv files BigQuery tables

Table 1. Comparison between 2011 and 2019 traces.

evolved to manage these data centers efficiently, and sev-

eral companies have published job-scheduling traces of their
cluster management systems so that external researchers

can explore how they achieve this. Examples include Google

[36], Microsoft [3] and Alibaba [33].

In 2011, Google published a 1-month trace from its Borg

cluster management system to enable external researchers

to explore how scheduling worked in a large-scale compute

cluster. Several hundred researchers have taken advantage

of that trace to study a wide range of phenomena. An open

question is howworkloads for such systems evolve over time,

and how the evolution of the cluster managers has affected

scheduling decisions. To support research on these topics,

Google has published a new “2019” trace [37] that includes

detailed Borg job scheduling information from 8 different

Google compute clusters (Borg cells) for the entire month of

May 2019. The new trace contents are an extension of the

data provided in the 2011 trace [28, 36]. This paper reports

on the results of a first longitudinal comparison between the

2011 and 2019 traces, repeating several analyses from the

first paper to analyze the 2011 trace [27], and adding some

new ones. We also discuss new features in Borg that were

not visible in the 2011 trace. Our key observations can be

summarized as follows:

1. The 2019 trace has several new features (§3 and
§5), including information about allocations [35], parent-

child dependencies (which affects how task exits are to

https://doi.org/10.1145/3342195.3387517
https://doi.org/10.1145/3342195.3387517
https://doi.org/10.1145/3342195.3387517

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Tirmazi et. al

be interpreted), and additional placement constraints.

It also covers eight different cells, not just one.

2. The workload mix has changed (§4): much of the

workload has moved from the free tier (low prior-

ity) into the best-effort batch tier (jobs managed by a

queued batch scheduler), while the overall usage for

production tier (high priority) jobs has remained ap-

proximately constant. We also observe considerable

inter-cell workload variation.

3. The scheduling rate is higher (§6): the job submis-

sion rate is 3.7× higher than in 2011, and the number

of tasks needing to be scheduled has increased by a

factor of 7, even though the sizes of the 2019 cells

are comparable to the 2011 cell. Despite this, the time

the scheduler takes to find places to host the tasks is

largely unchanged.

4. A very heavy-tailed distribution of job sizes (§7):
the compute and memory consumption of jobs are ex-
tremely variable, with squared coefficients of variation

over 23000. Both compute and memory consumption

follow power-law Pareto distributions with very heavy

tails: the top 1% of jobs (“resource hogs”) consume over

99% of all resources, which has major implications on

scheduler design: care is needed to insulate the bot-

tom 99% of jobs (the “mice”) from the hogs to keep

queueing times under control.

5. Vertical autoscaling is effective (§8): the new traces

demonstrate how automated vertical scaling of per-

task resources provides noticeable savings. (A com-

panion paper [29] explores this in much greater depth,

with a focus on automated memory scaling.)

We begin with a quick overview of Borg, followed by infor-

mation about the new 2019 trace, highlighting changes from

the 2011 trace.

2 A quick summary of Borg
(This description is a highly abbreviated summary of the

information in [35].) Like many similar systems [13, 22, 34],

a Borg deployment comprises a logically centralized clus-

ter scheduler master, and a large number of machines (or

nodes), each of which runs a local management agent. Each

such deployment is called a cell, and is operated as a single

management unit. Both the 2011 and the 2019 traces consist

of time-stamped data from the master and the individual

machines.

The cluster scheduler receives job creation requests sub-

mitted on behalf of a user (an internal developer or a group,

used for accounting and authentication purposes); these re-

quests identify the executable binaries along with additional

details such as the resources needed, the number of replicas,

the job priority, and so on. In Borg, each replica in a job is

called a task, and the role of the cluster scheduler is to place

each task onto a suitable machine (i.e., one where the requi-

site resources are available). Tasks inherit several properties

from their job: for example, all tasks within a job have the

same priority, and if a job is queued then all of its constituent

tasks are also put into a queued state.

The cluster scheduler will assign an upper bound on the

resource consumption of a task on a machine. This upper

bound is called the limit and is configured based on the

requested resources; the actual resource usage of a task varies
over time. For memory, the limit is generally a hard bound

(i.e., the usage will never exceed the limits), but for CPU

the system is typically configured to be work conserving,

meaning the CPU usage can exceed the assigned limits if

the machine’s CPU is not overloaded. In theory, the sum of

limits of all running tasks should never exceed the machine’s

capacity.

The priority of a job helps define how the scheduler treats

it. Ranges of priorities that share similar properties are re-

ferred to as tiers:

• Free tier: jobs running at these lowest priorities incur
no internal charges, and have no Service Level Ob-

jectives (SLOs). 2019 trace priority <= 99; 2011 trace

priority bands 0 and 1.

• Best-effort Batch (beb) tier: jobs running at these

priorities are managed by the batch scheduler and

incur low internal charges; they have no associated

SLOs. 2019 trace priority 110–115; 2011 trace priority

bands 2–8.

• Mid-tier: jobs in this category offer SLOs weaker than
those offered to production tier workloads, as well as

lower internal charges. 2019 trace priority 116–119;

not present in the 2011 trace.

• Production tier: jobs in this category require high

availability (e.g., user-facing service jobs, or daemon

jobs providing storage and networking primitives);

internally charged for at “full price”. Borg will evict
lower-tier jobs in order to ensure production tier jobs

receive their expected level of service. 2019 trace pri-

ority 120–359; 2011 trace priority bands 9–10.

• Monitoring tier: jobs we deem critical to our infras-

tructure, including ones that monitor other jobs for

problems. 2019 trace priority >= 360; 2011 trace prior-

ity band 11. (We merged the small number of monitor-

ing jobs into the Production tier for this paper.)

3 Comparing the 2011 and 2019 traces
This section compares the 2011 and 2019 traces at a high

level; there is considerably more information in the new

trace documentation [37].

Table 1 provides a summary of themain changes. The older

trace described a single cell, while the newer trace spans

Borg: the Next Generation EuroSys ’20, April 27–30, 2020, Heraklion, Greece

eight. The average number of machines per cell remains sim-

ilar, although there is greater variety in the CPU-to-memory

ratio, as illustrated in Figure 1.

0.0

0.5

0.5

1.0

1.0
Compute (NCU)

Figure 1. Frequency of machine shapes as a function of CPU and

memory (RAM) capacity. The area of each circle is proportional to

the number of machines. Both CPU and memory are re-scaled to a

0–1 range in the trace.

Job priority values: the new trace exposes the raw pri-

orities as sparse values in the range 0–450; the 2011 trace

mapped the unique job priority values (0, 25, 100, 101, 103,

104, 107, 109, 119, 200, 360, 450) to the integers from 0–11;

i.e., the value 3 in the 2011 trace corresponds to a raw prior-

ity of 101. (The meaning of some of the priority values has

changed since 2011. We follow the trace documentation [37]

in mapping jobs to the tiers listed above.)

CPUusage histograms: the 2019 trace adds a 21-element

histogram of CPU utilization for each 5 minute sampling

period, biased towards high percentiles.

Normalized CPU units: to help its users better handle

machine heterogeneity, Borg has switched to using abstract

Google Compute Units (GCUs) instead of physical CPU cores,

and the trace follows suite. An allocation of 1GCU should

provide about the same amount of computational power on

any machine in the fleet, and Borg maps that onto the appro-

priate number of physical CPU cores. As in 2011, the 2019

trace further re-scales these values based on the maximum

machine sizes in the trace, so that the resulting Normalized
Compute Units (NCUs) are always in the range 0–1.

Alloc sets: these allow users to reserve resources on ma-

chines into which jobs can later be scheduled – e.g., to secure

resources before bringing up a new workload, to retain re-

sources while jobs are turned down and back up again, and

to co-locate tasks from different jobs [35]. The 2011 trace

elided data about alloc sets, and treated them (and the jobs

that landed inside them) as if they were jobs. The new trace

provides information about both jobs and alloc sets (together

called collections) and how tasks are mapped into alloc in-

stances (instances).
Job dependencies: if a Borg job has a parent job, the child

job will be killed automatically when its parent terminates.

This simplifies job cleanup for systems like MapReduce [10]

where a controller job spawns a number of child workers

that are automatically removed when the controller exits.

The 2019 traces provide this dependency data, permitting

more sophisticated failure analyses.

Batch queuing: like Omega [31], Borg now supports mul-

tiple schedulers, including a batch scheduler that manages

the aggregate batch job workload for throughput by queue-
ing jobs until the cell can handle them, after which the job

is given to the regular Borg scheduler.

Vertical scaling: Borg now supports vertical autoscaling

via a system called Autopilot that automatically predicts a

job’s resource usage, and adjusts its resource limits dynam-

ically [29]. The trace indicates which jobs were subject to

this autoscaling.

The 2019 trace contains an average of 350GiB of com-

pressed data per cell, compared to about 40GiB for the 2011

trace, or 2.8 TiB of data for the entire trace. To obviate the

need to download so much data, and to simplify analyses, the

new one is provided as data tables in Google BigQuery [5],

which is an externally-available version of Google’s Dremel

system [24] that provides both storage and analytic tools

built around a dialect of SQL. Most of our analyses were done

using BigQuery, and we also imported the 2011 trace to Big-

Query, so we could use the same queries in both cases. This

allowed us to validate many of our evaluations, including

reproducing the data reported in [27].

Our results are presented both as simple time series aggre-

gations as well as Complementary Cumulative Distribution
Functions (CCDFs [6]) to visually summarize distributions of

data. These show the fraction of samples that have a value

larger than the one at a given point on the x-axis.

Both the 2011 and 2019 traces normalized resource units

for CPU and memory so that they scale from 0–1. The ab-

solute machine sizes are different in the two traces, so the

values cannot directly be compared, but relative comparisons

are still valid, such as percentage utilizations.

4 Resource utilization
Figure 2 shows the average compute and memory usage for
every hour of the 2011 and 2019 traces. The average utiliza-

tion has increased over 8 years, mostly due to an increase in

consumption from the best-effort batch tier across both re-

source dimensions. Best-effort batch now accounts for ∼ 20%

of the cell’s capacity for both CPU and memory, which is

a considerable increase over the 2011 trace, although some-

what countered by a reduction in the usage from the free

tier. (The lower variance visible in the 2019 trace is partly a

result of aggregation across multiple cells.)

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Tirmazi et. al

0 5 10 15 20 25
Time (days)

0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
tio

n
of

 c
el

l c
ap

ac
ity

free tier
beb tier
prod tier

(a) 2011 CPU usage.

0 5 10 15 20 25 30
Time (days)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 c

el
l c

ap
ac

ity

free tier
beb tier
mid tier
prod tier

(b) 2019 CPU usage, averaged across all 8 cells.

0 5 10 15 20 25
Time (days)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 c

el
l c

ap
ac

ity

free tier
beb tier
prod tier

(c) 2011 memory usage.

0 5 10 15 20 25 30
Time (days)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 c

el
l c

ap
ac

ity

free tier
beb tier
mid tier
prod tier

(d) 2019 memory usage, averaged across all 8 cells.

Figure 2. The fraction of a cell’s total resource capacity used during each hour-long interval.

NCU, NMU
2011

NCU, NMU
cell a

NCU, NMU
cell b

NCU, NMU
cell c

NCU, NMU
cell d

NCU, NMU
cell e

NCU, NMU
cell f

NCU, NMU
cell g

NCU, NMU
cell h

0.0

0.2

0.4

0.6

0.8

1.0

R
es

ou
rc

e
us

ag
e

as
 fr

ac
tio

n
of

 c
el

l c
ap

ac
ity free tier

beb tier
mid tier
prod tier

Figure 3. Average utilization (as a fraction of cell capacity across the entire trace duration) by tier, for 2011 and the 8 cells in the 2019 trace.

Borg: the Next Generation EuroSys ’20, April 27–30, 2020, Heraklion, Greece

0 5 10 15 20 25
Time (days)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Fr

ac
tio

n
of

 c
el

l c
ap

ac
ity

free tier
beb tier
prod tier

(a) 2011 CPU allocation.

0 5 10 15 20 25 30
Time (days)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Fr
ac

tio
n

of
 c

el
l c

ap
ac

ity

free tier
beb tier
mid tier
prod tier

(b) 2019 CPU allocation, averaged across all 8 cells.

0 5 10 15 20 25
Time (days)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Fr
ac

tio
n

of
 c

el
l c

ap
ac

ity

free tier
beb tier
prod tier

(c) 2011 memory allocation.

0 5 10 15 20 25 30
Time (days)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Fr
ac

tio
n

of
 c

el
l c

ap
ac

ity

free tier
beb tier
mid tier
prod tier

(d) 2019 memory allocation, averaged across all 8 cells.

Figure 4. The fraction of a cell’s total resource capacity allocated during each hour-long interval.

NCU, NMU
2011

NCU, NMU
cell a

NCU, NMU
cell b

NCU, NMU
cell c

NCU, NMU
cell d

NCU, NMU
cell e

NCU, NMU
cell f

NCU, NMU
cell g

NCU, NMU
cell h

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

R
es

ou
rc

e
al

lo
ca

tio
n

as
 fr

ac
tio

n
of

 c
el

l c
ap

ac
ity

free tier
beb tier
mid tier
prod tier

Figure 5. Average allocation (as a fraction of cell capacity across the entire trace duration) by tier, for 2011 and the 8 cells in the 2019 trace.

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Tirmazi et. al

Figure 3 shows how the CPU and memory usage vary

across the eight cells, broken up by tier; the two bars on

the far left of the graph show data from the 2011 trace. As

expected [35], there is considerable variation in the work-

load mix from cell to cell, for example, cell b has the largest

proportion of best-effort batch jobs, cell a has the largest

proportion of production jobs and cell h has the largest pro-

portion of mid-tier jobs. There is also variation within a cell

across the different resource dimensions, for example cells

a and h both exhibit large variation between memory and

CPU resource usage.

Jobs also specify a requested limit (upper bound) on the

amount of resources they will need, and this quantity is used

to determine whether or not an instance can fit on a particu-

lar machine. Figure 4 shows that the sum of these limits has

significantly increased from 2011 to 2019, with both resource

dimensions now being consistently allocatedwell above 100%

of the deployed capacity. This demonstrates that Borg is us-

ing statistical multiplexing to over-commit resources, i.e.,

betting that jobs will under-use the resources they request. In

2011, CPUwasmore aggressively over-committed thanmem-

ory, because the penalty for short-term CPU over-allocation

is throttling, while insufficient RAM on a machine will cause

an out of memory (OOM) eviction. That is no longer true in

2019: the amount of memory over-allocation is comparable

to that for CPU.

At this level of aggregation (1-hour averages across tens of

thousands of machines), Borg has not significantly increased

the fraction of machine resources that are actually consumed

since 2011, but it has successfully increased the amount of

work that its internal users can place on a fixed amount of

machine capacity. This means that less additional compute

capacity needed to be purchased to cope with a growing

potential workload.

The tiers exhibit different behaviors: for example, com-

pute usage at the production tier is only around 30% of the

allocated level, while the memory usage is closer to 65%; for

the mid-tier, the allocation and usages are closer together.

Figure 5 shows how the CPU and memory allocations vary

across the eight cells, broken up by tier; the two bars on the

far left show data from the 2011 trace. We see considerable

inter-cell variation and some very highly over-allocated cells,

for example, cell c has allocated ∼ 140% of the cell’s memory

capacity just to the best-effort batch tier.

4.1 Machine utilization
Figures 6a and 6b show CCDFs of machine CPU and memory

utilization for all 8 cells at the same local time in the 2019

trace for each cell, along with data from the 2011 trace.

The first thing to note is that the machine utilization in

2019 is higher when compared to 2011 at all but the highest

percentiles: the median overall utilization has increased by

20–40% for CPU and 3–30% for memory. Secondly, the varia-

tion in utilization is lower in the 2019 cells compared with

2011 (visible as steeper lines in many of the CCDF lines).

Thirdly, there are fewer machines with CPU utilization >80%

than in 2011. Put together, this means that the Borg sched-

uler is doing a better job in 2019 than it did in 2011 in terms

of distributing workload across the cell and avoiding both

under- and over-utilizing machines.

The next observation is that there is considerable varia-

tion across the 2019 cells for both memory and CPU at all

utilization levels (e.g., almost 30% utilization at the median).

This aligns with the importance of heterogeneity that was

described in the original Borg paper [35].

We also observed a diurnal cycle in the loads, correspond-

ing to Figure 2: the load at midnight PDT was much higher

in cell g in Singapore where it was 3pm, than in the others

where it was 2 or 3am locally in the USA.

5 New Borg features and trace properties
This section discusses some of the changes in Borg’s behavior

between 2011 and 2019 that are reflected in the traces.

5.1 Alloc sets
An alloc set is a set of reserved resources (alloc instances)

into which jobs can be scheduled, by placing a job’s tasks

inside the alloc instances [35]. Because the 2011 trace was

made available before [35] was published, alloc information

was not included in that trace, but is included in the 2019

one.

A collection is an alloc set or a job. Only 2% of collections

are alloc sets, but they are an important feature of production

workloads: alloc sets represent 20% of the total CPU alloca-

tions and 18% of the RAM. 15% of the jobs are marked to

run in an alloc set, most of which (95%) are from the produc-

tion tier. Jobs within allocs have a higher average memory

utilization (73%) than other jobs (41%).

5.2 Terminations
Many authors (e.g., [2, 11, 16, 32]) have reported surprisingly

high task failure rates in the 2011 trace. For example: “Un-

successful job terminations in the Google trace are 1.4–6.8×
higher than in other traces” [11]. We suspect that this may

have been an unfortunate side-effect of omitting some cru-

cial information in the 2011 trace and its documentation:

the majority of “failures” are transitions triggered directly or

indirectly by users canceling jobs. A collection or an instance

can be terminated through one of the following four events:

• finish: the collection or instance completed normally

(aka “success”).

• evict: the collection or instance was de-scheduled

due to a (rare) hardware failure, or a forced OS up-

grade (about 1/month per machine), or preempted by

a higher priority instance, or because the machine was

over-committed and Borg had to kill one or more in-

stances to free enough resources for the rest. Most

Borg: the Next Generation EuroSys ’20, April 27–30, 2020, Heraklion, Greece

0.0 0.2 0.4 0.6 0.8
x - Machine utilization

0.0

0.2

0.4

0.6

0.8

1.0
P

ro
ba

bi
lit

y
(M

ac
hi

ne
 u

til
iz

at
io

n
>

 x
)

a
b
c
d
e
f
g
h
2011

(a) CPU utilization

0.0 0.2 0.4 0.6 0.8
x - Machine utilization

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

ba
bi

lit
y

(M
ac

hi
ne

 u
til

iz
at

io
n
>

 x
)

a
b
c
d
e
f
g
h
2011

(b)Memory utilization

Figure 6. Machine CPU and memory utilization (usage ÷ size) for all machines on the 15th day of the trace at the same time of day (1:00 to

1:05pm in the local timezone, apart from cell g, for which we used 12 noon to 12:05pm because it is in Singapore, which does not observe

daylight savings time). The letters correspond to different cells in the 2019 trace.

evictions are of instances, not collections. In almost

all cases, an evicted instance will be rescheduled else-

where in the same cell.

• kill: the collection or instance was canceled by the

user, either directly via an RPC to the Borgmaster, or

indirectly if this was a child of a parent job that exited

or was killed.

• fail: the collection or instance was unexpectedly ter-

minated because it had a problem of its own, such as

a segfault, or trying to use more resources than it had

requested (e.g., from a memory leak or misconfigura-

tion).

Of all these event types, only evicts are caused by the clus-

ter infrastructure. And even in these circumstances, Borg has

maximum-permitted eviction rate SLOs to protect important

collections from being evicted too often. This is supported

by the trace data: of the 24.8M collections in the 2019 trace,

only 0.79M of them (3.2%) experience any instance evictions,

and 96.6% of those collections are in non-production tiers

(priority <120). For jobs in the production tier, <0.2% of collec-

tions have any instances evicted, and 52% of these collections

experience only a single eviction.

Users initiate most kill events, and the traces do not have

an explanation of why this was done. One exception is job

dependencies, which is a commonly used mechanism among

Borg users: across all 8 cells, we have observed a higher

percentage (87%) of jobs with parent experiencing a kill

event compared to jobs without any parent (41%). Providing

parent information in the 2019 trace partly explains the high

kill rates reported earlier.

Figure 7. The job state transitions observed between jobs in cell g,

with occurrence counts for the transitions. The “unusual” transi-

tions are extremely rare compared to the common ones.

5.3 State transitions
Figure 7 shows the state transition diagram for collections

and instances, annotated with the relative frequencies of the

transitions. As expected, common paths are many orders of

magnitude more frequently exercised than the rarer ones.

6 Evolution in the scheduling load
This section reports some analyses of how the scheduler load

has evolved since 2011.

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Tirmazi et. al

0.0
0 1000 2000 3000 4000 5000 6000 7000

0.2

0.4

0.6

0.8

1.0

2019 - aggregate
2011
2019 - single cell

x - Job submission rate (jobs / hour)

3.7x

3x

Figure 8. CCDF of the mean job submission rate per hour to the

Borg scheduler per cell. The 2019 data is shown both as a rate

averaged across all cells, and also on a per-cell basis.

0.0
0 250k 500k 750k 1M

0.2

0.4

0.6

0.8

1.0

x - Task submission rate (tasks / hour)

2011 - new tasks
2011 - all tasks
2019 - new tasks
2019 - all tasks

3.6x

3.6x

Figure 9. CCDF of the number of tasks/hour submitted to the Borg

scheduler. New tasks are ones that are members of newly-submitted

jobs; all tasks also includes rescheduled tasks that were previously

running.

6.1 Job submission rate
Figure 8 shows the CCDF of the number of jobs submitted

per hour to the Borg scheduler per cell. Even though the

cell sizes are comparable (see Table 1), the mean job arrival

rate increased 3.5× from 964 jobs per hour in 2011 to 3360

jobs per hour in 2019; the median arrival rate increased 3.7×
from 885 to 3309 jobs per hour; and the 90%ile has grown by

approximately 3×.

6.2 Task submission rate
Figure 9 shows the rate at which the Borg scheduler is pro-

cessing task scheduling decisions, for both new tasks and
all tasks, the latter of which includes tasks that have pre-

viously been running but are now being rescheduled. The
first thing to notice is that the median task scheduling rate

has increased drastically since 2011 (by about 3.6× for all

tasks); the second is that a lot of the task scheduling events

are for rescheduling: the ratio of the median resubmitted

task rate to the median new task rate increased from 0.66:1

to 2.26:1. This indicates there is considerably more “churn”

in the modern system.

6.3 Scheduling delay
Considering this increase in job and task submission rate, it

might be expected that the Borg scheduler could take longer

to make scheduling decisions, and/or tasks or jobs could re-

main stalled, waiting for scheduling decisions. To assess this,

we examined the time it took Borg to schedule the first task

of a ready job onto a machine (state running), to exclude

deliberate queueing delays due to the batch scheduler. We

picked this measure because users do not expect all their

tasks to be available before a job can start doing useful work

[35]. Figure 10 shows the results: median scheduling delays

have actually decreased, although the tail is longer for the last
28% of jobs. Most of the long delays are associated with best-

effort batch and mid-tier jobs: production jobs are scheduled

significantly faster than in 2011. (Also: note that some jobs

may experience a delay in the qeued state before entering

the ready state.)

To understand why this might be happening, we looked

at the number of tasks per job by tier (Figure 11): best-effort

batch and mid-tier jobs have a larger number of tasks than

the other tiers. For example, the 80%ile best-effort batch job

has 25 tasks, but other tiers only have 1 task; and at the

95%ile, the values are 498, 67, 21, and 3 tasks for best-effort

batch, mid-tier, free, and production tier, respectively. Best-

effort batch and mid-tier jobs may take longer to schedule

simply because they contain more tasks.

7 Resource consumption
In this section we examine the integral of resource consump-

tion across time for jobs in the 2019 trace. For compute usage,

we add up the number of NCU-hours (note: not core-hours)

consumed by a job across its lifetime. A 20 NCU-hour job

might have consumed 20 machines for an hour, or one ma-

chine for 20 hours, or used 20% of 100 machines for an hour,

etc. Similarly, for memory usage we total the Normalized

Memory Unit-hours (NMU-hours) consumed by a job.

As Table 2 and Figure 12 show, there is huge variability in

the number of NCU-hours and NMU-hours used per job. One

way to understand this variability is to look at the squared

coefficient of variation (𝐶2
), where:

𝐶2 = variance/mean
2

𝐶2
is invariant to data normalization, and thus is particularly

helpful here.

To give some context, for an exponential distribution,

𝐶2 = 1. In 1996, measurements of compute consumption

in UNIX jobs at U.C. Berkeley found𝐶2 ≈ 50 [19], which was

Borg: the Next Generation EuroSys ’20, April 27–30, 2020, Heraklion, Greece

0 5 10 15 20 25
Scheduling delay (s)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

ba
bi

lit
y(

sc
he

du
lin

g
de

la
y

>
x)

2019
2011
2019 - 1 cell

(a) Job scheduling delay by cell.

0 5 10 15 20 25
Scheduling delay (s)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

ba
bi

lit
y(

sc
he

du
lin

g
de

la
y
>

 x
) 2019 prod tier

2019 mid tier
2019 beb tier
2019 free tier
2011 prod tier
2011 beb tier
2011 free tier

(b) Job scheduling delay by tier.

Figure 10. CCDF of job scheduling delay, i.e., the time from when a job is in the ready state until its first task is running. For 2019, we

aggregate the data across all 8 cells, and in (a) also provide the per-cell data.

0 25 50 75 100 125 150 175 200
x - number of tasks per job

10
−3

10
−2

10
−1

10
0

P
ro

ba
bi

lit
y(

nu
m

be
r o

f t
as

ks
 p

er
 jo

b
>
x)

prod tier
mid tier
beb tier
free tier

Figure 11. CCDF of the number of tasks per job by tier for the 2019

trace. Note the log-scale y-axis.

considered to be extremely high at the time. A 2005 study

of workloads in several supercomputing centers found that

𝐶2
ranged from 28 to 256, depending on the supercomput-

ing center [23], and another 2004 study of supercomputing

centers found 𝐶2 = 43 [30]. A 2017 study of the sizes of a

billion objects being cached at Akamai touted “extremely

high variability” with 𝐶2 = 143 for a Hong Kong trace and

𝐶2 = 760 for a U.S. trace, with object sizes spanning 9 orders

of magnitude [4].

Google’s 2019 workloads in the trace are 1–2 orders of

magnitude more variable than even the Akamai measure-

ments above. For compute consumption, our variance is

about 33.3k with a mean of only 1.2 NCU-hours, so we end up

NCU-hours NMU-hours
Measure 2011 2019 2011 2019
median 0.15e-3 0.05e-3 0.07e-3 0.03e-3

mean 3.00 1.19 3.00 0.67

variance 75.2k 33.3k 99.0k 19.8k

90%ile 0.03 0.005 0.01 0.004

99%ile 10.5 1.33 5.2 0.65

99.9%ile 248 69.67 196 36.6

maximum 138 k 370 k 151 k 299 k

top 1% jobs load 97.3% 99.2% 98.6% 99.1%

top 0.1% jobs load 83.0% 93.1% 89.3% 92.6%

𝐶2
8375 23 312 11 001 43 476

Pareto(𝛼) 0.77 0.69 0.72 0.72

𝑅2
99.8% 99.9% 99.8% 99.6%

Table 2. Distribution data for the integral of resource usage by

job, for CPU (NCU-hours) and memory (NMU-hours). The Pareto

distribution data is for large jobs: ones where NCU-hours and NMU-

hours were > 1 and <= 99.99%ile value. All percentiles and 𝐶2

values are based on unbiased random samples.

with 𝐶2 = 23k. For memory, the story is even more extreme:

the variance is about 19.8k for a mean of 0.67NMU-hours,

leading to 𝐶2 = 43k. Both of these 𝐶2
values are incredibly

high.

The (relatively) straight lines on the log-log scale in Figure

12 tell us that resource-hour consumption has a power-law

distribution; specifically, it is Pareto(𝛼) distributed [18]:

Pr{job uses > 𝑥 NCU-hours} = 1/𝑥𝛼

(and similarly for NMU-hours) where 𝛼 is the negative slope

of the line. If we consider only “larger” jobs (ones that use

more than 1NCU-hour for CPU consumption or 1NMU-hour

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Tirmazi et. al

10
−6

10
−4

10
−2

10
0

10
2

10
410

−4

10
−3

10
−2

10
−1

10
0

Fr
ac

tio
n

of
 jo

bs
 w

ith
 u

sa
ge

-in
te

gr
al

 >
x

2019 CPU (NCU-hours)
2019 memory (NMU-hours)
2011 CPU (NCU-hours)
2011 memory (NMU-hours)

Figure 12. CCDF of resource-usage-hours by job for 2011 and 2019
– i.e., the fraction of jobs that use at least 𝑥 resource-hours. Note

the log-log scale.

for memory), and ignore the outliers at the very end of the

tail (the top 0.01% of jobs), we are able to fit our 2019 data

to Pareto distributions with 𝛼 = 0.69 (CPU) and 𝛼 = 0.72

(memory) with an 𝑅2
goodness of fit of over 99% in both

cases.

Pareto distributions, particularly those with 𝛼 < 1, exhibit

a strong heavy-tailed property, where a small number of the

largest jobs comprise most of the load [9]. The “heavy-tailed

property” is far more extreme than the commonly cited “80-

20 rule,” where the 20% largest jobs comprise 80% of the load.

In prior empirical studies of compute consumption and file

sizes [9, 17–20], the authors observe a heavy-tailed property

where the 1% largest jobs comprise 50% of the load. The

heavy-tailed property we observed in the 2019 traces is even

more extreme: the largest 1% of jobs comprise 99.2% of the

CPU load (99.1% of the memory load), and the largest 0.1%

of jobs comprise 93.1% (92.6%) of the load.

We call the largest 1% of jobs hogs, and the remaining 99%

of jobs mice. A later section discusses some of the conse-

quences of this for workload scheduling.

7.1 Comparison with 2011 data
We see a similar story, albeit not quite so extreme, for the

2011 data (see Table 2 and Figure 12). The 2011 data is a factor

of eight smaller in scale than 2019, and the rawmachine sizes

were different. However, we can still directly compare the

squared coefficient of variation and the overall distribution

parameters, both of which are invariant to normalization.

Additionally, both 2011 and 2019 resource usage values are

measured in terms of the fraction of available resources at

the time, which means that the results have a similar inter-

pretation.

The 2011 data is not that different from the 2019 data:

both sets of data follow Pareto(𝛼) distributions (see Table

NCU Hours used by jobs

Figure 13. Correlation between compute and median memory

consumption for jobs grouped into 1-hour NCU buckets.

2), for both CPU and memory. The 2011 data is somewhat

less variable (𝐶2
values for both CPU and memory usage

are about 4 times lower than in 2019)
1
and somewhat less

heavy-tailed in terms of the fraction of load made up by the

largest 1% and 0.01% of jobs – but still very high compared

to other published data. Our general characterization of jobs

into hogs and mice appears to hold consistently across the

years.

We note that [27] claimed that Google compute consump-

tion and memory consumption did not follow power-law

distributions in 2011. This is because their analysis looked

at instantaneous job sizes, not the integral of consumption

over time, so we are looking at different signals.

7.2 Correlations between compute and memory
consumption

Given that compute consumption and memory consumption

follow almost the same distribution (see Figure 12), it is

reasonable to ask whether these metrics are correlated. Our

analysis suggests they are. Figure 13 shows NCU-hours on

the x-axis, quantized into buckets of size 1 NCU-hour. For

each of those buckets of size 1 NCU-hour, we plot (on the

y-axis) the median NMU-hours consumed by jobs that fall

within that bucket. The result is almost a straight line (with

Pearson correlation coefficient of 0.97): the higher the NCU-

hours used, the higher the median NMU-hours. This is not

entirely surprising as the job duration is a common factor of

both metrics.

1
Although the 𝐶2

values are lower for the 2011 data, both the mean and

variance are higher for the 2011 data. This is consistent with the fact that the

2011 CCDF curves in Figure 12 stochastically dominates the corresponding

2019 CCDF curves.

Borg: the Next Generation EuroSys ’20, April 27–30, 2020, Heraklion, Greece

7.3 Implications of compute and memory
consumption for queueing delay and scheduling

The above results regarding compute and memory consump-

tion have many implications for queueing delay and sched-

uling. Our goal is not to solve the scheduling question here,

but simply to explain the implications of our measurements.

It is well known that mean queueing delay is directly pro-

portional to the squared coefficient of variation (𝐶2
) of job

service requirements [18]. Specifically, the Pollaczek-Kinchin

formula [26] tells us that, for an M/G/1 queue:

E[queueing delay] = 𝜌

1 − 𝜌
· 𝐶

2 + 1

2

,

where 𝜌 is the load and 𝐶2
is the squared coefficient of vari-

ation of job sizes.

Observe that high𝐶2
means that we can expect high queue-

ing delay even when the system load is low. The intuition is

that when 𝐶2
is high, there is a wide range of job sizes, and

inevitably we will end up with situations where small jobs

(the mice) get stuck waiting behind large jobs (hogs). Sched-

uling in large scale data-centers is far more complex than an

M/G/1 queue, given that there are hundreds of thousands of

servers, and jobs themselves occupy many servers at a time.

However, the basic message still holds: when 𝐶2
is high, as

it is at Google, one must find a way to schedule jobs so that

the mice are either prioritized over the hogs or are isolated

from them in some other way.

If the scheduler were to ensure that just 1% of the jobs

(the compute hogs) did not get in the way of the other 99%

of the jobs, the latter could see little to no queueing, and

be run much more quickly. The strong correlation between

compute and memory consumption means that the compute

hogs are also likely to be the memory hogs so that we can

just think about how to generally move “hogs” out of the

way of the remaining 99% of jobs, rather than handling CPU

and memory separately.

8 Vertical scaling
Borg now supports an automatic resource scaling system

called Autopilot, which is described in detail in a companion

paper [29]. Autopilot supports 3 vertical scaling strategies:

not autoscaled, fully autoscaled, or autoscaled with constraints
and these are captured in the 2019 trace [37]. As in Kuber-

netes [14], the term “vertical autoscaling” is used to describe

the ability of the system to automatically adjust (increase or

decrease) the number of resources assigned to a task.

Autopilot aims to remove the burden of specifying a job’s

resource requirements. This can be challenging because ask-

ing for too few resources can be catastrophic: a job might fail

to meet user service deadlines or even crash. For this reason,

most users request as many resources as they think they

might need. Autopilot instead strives to improve efficiency

by reducing slack resources as far as possible, i.e., the gap

between the requested resources and those actually used.

This translates directly into efficiency improvements and

costs savings, by allowing more work into the system.

Autopilot makes use of historical data from previous runs

of the same or similar jobs in order to configure the initial

resource request, and then continually adjusts the resource

limits as the job executes so as to minimize slack. In order

to give an idea of how well Autopilot works, we looked at

how the slack varied depending on the auto-scaling strat-

egy chosen. The precise metric we chose to use is the peak
NCU slack, which is defined as the gap between the per-task

limit and the peak (maximum) observed usage in a 5-minute

sample:

peak NCU slack =
max(0, allocated NCU −max NCU)

allocated NCU

.

We compute this for every sampled (5 minute) data point

for every task, and show the resulting CCDF in Figure 14.

From this we can clearly see that both of the auto-scaling

techniques are better than manual configuration; and further

that unconstrained autoscaling is the clear winner, reducing

the peak NCU slack by more than 25% for the vast majority

of jobs. For a more thorough analysis of the effectiveness of

Autopilot, please refer to [29].

Fully autopilot jobs
Constrained jobs
Other jobs

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100

x - percentage peak NCU slack

Figure 14. CCDF of the peak NCU slack (limit minus peak usage

as a fraction) for fully autoscaled jobs, jobs that are autoscaled but

under vertical scaling constraints, and jobs that are not autoscaled.

9 Lessons learned from trace generation
The Borg system generates huge quantities of monitoring

data. Converting that into “only” 2.8 TiB of data that made

sense to external researchers was a non-trivial challenge.

This section describes some of the steps we took.

Exposing enough details without losing focus. Borg
gives its users great freedom to express their requirements,

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Tirmazi et. al

and a huge variety of configuration and tuning patterns have

resulted. To support its users and administrators, Borg has

evolved sophisticated monitoring and bookkeeping systems,

which generate huge amounts of monitoring data – not all

of which is internally consistent. We found it necessary to

clean and extrapolate data to fit an abstract mental model

understandable by people outside Google. To support this,

we extended a distributed Flume pipeline that had originally

been built for the 2011 trace generation process.

Providing explanations for unreasonable cases. We

found it helpful to check a raft of logical invariants such as

“the total resource usage of all instances on a machine should

be smaller than the machine’s capacity”; or “a submit event

should happen before any termination event”. Given the

vagaries of large-scale trace data collection, we found that

most of these invariants were violated occasionally. Even so,

they proved invaluable in giving us confidence in the trace

data.

Automated validation. To support such validations, we

evolved from a system of one-off scripts to a repeatable

pipeline that could be applied automatically. In retrospect,

we should have started with that: at this scale, paranoia is a

helpful default.

UsingBigQuery. It was empowering to be able to execute

near-arbitrary queries against a multi-GiB dataset in a few

tens of seconds. This made our validation work easier and

analyses simpler. We hope that users of the new trace will

share our enthusiasm.

10 Research directions
This paper reports on the first public analyses of the new

2019 Google trace data set – but this is just the tip of the

iceberg of the opportunities it makes available. What follows

are a few suggestions for research questions that we wished

that we had time for before the publication deadline, but

which others may want to explore.

1. Explainable scheduling: schedulers are highly com-

plex entities that have to account for rapid changes

in both the state of the cluster and the workload. It

would be nice to be able to provide explanations for

why the scheduler made the decisions it made – either

to help system operators understand what is going on

(or is about to), or to provide guidance to end users on

how they could better use the cluster.

2. How far can overcommittment be pushed? It is

clear that statistical multiplexing is important in achiev-

ing high utilization – but it comes at a cost. How far

can it be pushed, under what circumstances?

3. Gang scheduling: Borg will start a job as soon as

any of its tasks are running. (Users can ask to wait for

more tasks to be running, but few do.) Its algorithms

are generally relatively simple greedy heuristics. How

could we do better?

4. Why is the average utilization relatively low?De-
spite a great deal of effort, the average utilization of

compute and memory resources is still relatively low.

Why is that? One hypothesis is that it is related to disas-

ter recovery protocols, in which a third of the external

load (in a 2+1 redundancy system) can be switched

to a target cell nearly instantaneously. Another one is

that there are temporal and/or per-machine variations

that prevent tighter bin-packing. What other expla-

nations are there? Can average utilization be further

increased?

5. Scheduling to combat heavy tails: we’ve seen that

the top 1% most compute-intensive jobs (the “hogs”)

comprise over 99% of the total CPU usage. There is

interesting research to be done on how to schedule

jobs in a way that allows the remaining 99% of jobs

(the “mice”) to have partial or full isolation from these

hogs, so that they can experience what appears to be

a very lightly loaded environment.

6. Inter-cell variations: the analysis here has barely

scratched the surface of differences between the 8

cells in the new traces. We expect there is much to

be learned by more detailed studies that compare their

behaviors.

11 Related work
Traces have been around a long time, and long before Borg.

We do not have space to present a thorough survey of this

space, and so focus here on examples of more recent compute

cluster traces and workloads.

An early 7-hour long precursor to the Borg traces [21] was

analyzed in [25]. [27] offered a more thorough analysis of the

original 2011 trace, highlighting the heterogeneity observed

in the workload. Since then, several hundred researchers

have used the 2011 trace or written about them. Google

Scholar claims there have been 555 citations for the 2011

trace format document by early March 2020 – a tiny subset

is listed in [7].

Several other companies have released cluster traces. An

analysis of Microsoft’s Azure VM workloads [8] concludes

that certain VM behaviours are consistent over time, and

historical data can be used as an accurate predictor for future

behaviour. From this observation they create a resource pre-

dictor, which collects VM data, learns behaviours offline and

provides predictions to resource managers; this is analogous

to Borg’s Autopilot (Section 8). Their paper is accompanied

by a publicly available trace [3] containing traces collected

in 2017 and 2019, which contains information about 2M

virtual machines and 2.6M virtual machines respectively

across a 30-day window. Both traces are well-cited within

the research community.

Alibaba has released two traces [1]: the 2017 version con-

tains information from 1300 machines over a period of 12

Borg: the Next Generation EuroSys ’20, April 27–30, 2020, Heraklion, Greece

hours, while the 2018 version contains information for about

4000 machines over a period of 8 days. [33] includes an anal-

ysis of task dependencies from this data.

The Parallel Workloads Archive [12] contains HPC traces

collected between 1993 and 2015, and the Grid Workload

Archive [15] contains anonymized workload traces from

scientific grid environments.

12 Conclusions
Understanding large-scale compute cluster workloads is of

ever-growing importance as we come to rely more and more

on the capabilities delivered by “warehouse-scale comput-

ers”. Traces of such systems are important to the academic

community as demonstrated by the hundreds of published

studies that have built on or used the 2011 trace.

This paper describes the next generation of Borg traces

and provides a preliminary analysis, including longitudinal

comparisons with the 2011 trace. Many of the new features

described in the Borg paper [35] are reflected in the new

trace, as well as several new kinds of information.

We found that although the cluster cell sizes are relatively

unchanged, the workload has increased substantially in both

an absolute sense, and in terms of the scheduler load, as has

the effective utilization of the machines. Consistent with

[35], we see big variations in the behaviors across different

cells. Much of the previous “free” tier work has migrated

to the best-effort batch tier, and the disparity between the

resource consumption of the big jobs (“hogs”) and the small

ones (“mice”) is now more extreme than in any other re-

ported trace: the largest 1% of jobs now represent 99% of

both compute and memory resource consumption, with a

squared coefficient of variation over 23 000. Finally, we ob-

serve that today’s resource prediction algorithms appear

more efficient than users manually defining their own re-

source requirements.

We hope that others will find the new traces as useful as

the 2011 ones seem to have been, and look forward to even

more exciting ideas and analyses being generated now that

they are available.

Acknowledgments
We thank numerous engineers who work on Borg and the

monitoring infrastructure. We also want to thank Rohit Jna-

gal, Krzysiek Rzadca, the EuroSys reviewers, and our shep-

herd, Valerie Issarny, for their feedback on this paper.

References
[1] Alibaba cluster data: using 270 GB of open source data

to understand Alibaba data centers. Blog post, url =

https://www.alibabacloud.com/blog/594340, Jan. 2019.

[2] G. Amvrosiadis, J. W. Park, G. R. Ganger, G. A. Gibson, E. Baseman,

and N. DeBardeleben. On the diversity of cluster workloads and its

impact on research results. In USENIX Annual Technical Conference
(USENIX ATC), pages 533–546, Boston, MA, USA, July 2018. USENIX

Association.

[3] Azure Public Dataset. https://github.com/Azure/AzurePublicDataset.

Accesses 2020-03.

[4] D. S. Berger, R. K. Sitaraman, and M. Harchol-Balter. Adaptsize: Or-

chestrating the hot object memory cache in a content delivery network.

In 14th USENIX Conference on Networked Systems Design and Imple-
mentation (NSDI), pages 483–498, Boston, MA, USA, 2017. USENIX

Association.

[5] Google BigQuery. Online documentation, https://cloud.google.com/
bigquery/., 2020. Accessed 2020-03.

[6] Cumulative distribution function, Accessed Nov. 2019. https://en.
wikipedia.org/wiki/Cumulative_distribution_function.

[7] Google cluster data bibliography, Accessed Nov. 2019. https://github.
com/google/cluster-data/blob/master/bibliography.bib.

[8] E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fontoura, and

R. Bianchini. Resource central: Understanding and predicting work-

loads for improved resource management in large cloud platforms. In

26th Symposium on Operating Systems Principles (SOSP), pages 153–167,
Shanghai, China, 2017. ACM.

[9] M. Crovella. Performance evaluation with heavy tailed distributions.

In Revised Papers from the 7th International Workshop on Job Scheduling
Strategies for Parallel Processing (JSSPP), pages 1–10, London, UK, 2001.
Springer-Verlag.

[10] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on

large clusters. In 6th Conference on Symposium on Operating Systems
Design & Implementation (OSDI), pages 10–10, San Francisco, CA, USA,

2004. USENIX Association.

[11] N. El-Sayed, H. Zhu, and B. Schroeder. Learning from failure across

multiple clusters: a trace-driven approach to understanding, predict-

ing, and mitigating job terminations. In International Conference on
Distributed Computing Systems (ICDCS), pages 1333–1344, June 2017.

[12] D. Feitelson, D. Tsafrir, and D. Krakov. Experience with the parallel

workloads archive. Journal of Parallel and Distributed Computing, 74,
10 2014.

[13] C. N. C. Foundation. Kubernetes. http://k8s.io; accessed 2019-11.

[14] C. N. C. Foundation. Vertical pod autoscaler. https://github.com/
kubernetes/autoscaler/tree/master/vertical-pod-autoscaler; accessed
2019-11.

[15] The GridWorkloads Archive. Online repository, http://gwa.ewi.tudelft.
nl/.

[16] Q. Guan and S. Fu. Adaptive anomaly identification by exploring

metric subspace in cloud computing infrastructures. In 32nd IEEE
Symposium on Reliable Distributed Systems (SRDS), pages 205–214,
Braga, Portugal, Sept. 2013.

[17] M. Harchol-Balter. The effect of heavy-tailed job size distributions on

computer system design. In ASA-IMS Conf. on Applications of Heavy
Tailed Distributions in Economics, 1999.

[18] M. Harchol-Balter. Performance Modeling and Design of Computer
Systems: Queueing Theory in Action. Cambridge University Press, New

York, NY, USA, 1st edition, 2013.

[19] M. Harchol-Balter and A. B. Downey. Exploiting process lifetime distri-

butions for dynamic load balancing. In ACM International Conference
on Measurement and Modeling of Computer Systems (SIGMETRICS),
pages 13–24, Philadelphia, PA, USA, 1996. ACM.

[20] M. Harchol-Balter, B. Schroeder, N. Bansal, andM. Agrawal. Size-based

scheduling to improve web performance. ACM Trans. Comput. Syst.,
21(2):207–233, May 2003.

[21] J. L. Hellerstein. Google cluster data. Google research blog, Jan. 2010.

Posted at http://googleresearch.blogspot.com/2010/01/google-cluster-
data.html.

[22] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. Katz,

S. Shenker, and I. Stoica. Mesos: a platform for fine-grained resource

sharing in the data center. In 8th USENIX Conference on Networked
Systems Design and Implementation (NSDI’11), pages 295–308, Boston,
MA, USA, Mar. 2011.

https://cloud.google.com/bigquery/
https://cloud.google.com/bigquery/
https://en.wikipedia.org/wiki/Cumulative_distribution_function
https://en.wikipedia.org/wiki/Cumulative_distribution_function
https://github.com/google/cluster-data/blob/master/bibliography.bib
https://github.com/google/cluster-data/blob/master/bibliography.bib
http://k8s.io
https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler
https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler
http://gwa.ewi.tudelft.nl/
http://gwa.ewi.tudelft.nl/
http://googleresearch.blogspot.com/2010/01/google-cluster-data.html
http://googleresearch.blogspot.com/2010/01/google-cluster-data.html

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Tirmazi et. al

[23] H. Li, D. Groep, and L. Wolters. Workload characteristics of a multi-

cluster supercomputer. In 10th International Conference on Job Schedul-
ing Strategies for Parallel Processing (JSSPP’04), pages 176–193. Springer
Verlag, June 2004.

[24] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M. Tolton,

and T. Vassilakis. Dremel: interactive analysis of web-scale datasets.

In 36th International Conference on Very Large Data Bases (VLDB’10),
pages 330–339, 2010.

[25] A. K. Mishra, J. L. Hellerstein, W. Cirne, and C. R. Das. Towards char-

acterizing cloud backend workloads: insights from Google compute

clusters. SIGMETRICS Perform. Eval. Rev., 37(4):34–41, Mar. 2010.

[26] Pollaczek–khinchine formula. Wikipedia, https://en.wikipedia.org/
wiki/Pollaczek-Khinchine_formula. Accessed 2020-03.

[27] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch.

Heterogeneity and dynamicity of clouds at scale: Google trace analysis.

In 3rd ACM Symposium on Cloud Computing (SoCC’12), pages 7:1–7:13,
San Jose, CA, USA, 2012. ACM.

[28] C. Reiss, J.Wilkes, and J. L. Hellerstein. Google cluster-usage traces: for-

mat + schema. Technical report at https://github.com/google/cluster-
data, Google, Mountain View, CA, USA, Nov. 2011. Revised 2014-11-17

for version 2.1.

[29] K. Rzadca, P. Findeisen, J. Swiderski, P. Zych, P. Broniek, J. Kusmierek,

P. Nowak, B. Strack, P. Witusowski, S. Hand, and J. Wilkes. Autopi-

lot: workload autoscaling at Google. In 15th European Conference on
Computer Systems (EuroSys’20), Heraklion, Crete, Greece, 2020. ACM.

[30] B. Schroeder and M. Harchol-Balter. Evaluation of task assignment

policies for supercomputing servers: The case for load unbalancing

and fairness. Cluster Computing, 7(2):151–161, Apr. 2004.

[31] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes.

Omega: flexible, scalable schedulers for large compute clusters. In 8th
ACM European Conference on Computer Systems (EuroSys’13), pages
351–364. ACM, 2013.

[32] A. Sîrbu and O. Babaoglu. Towards data-driven autonomics in data

centers. In International Conference on Cloud and Autonomic Computing
(ICCAC), Cambridge, MA, USA, Sept. 2015. IEEE Computer Society.

[33] H. Tian, Y. Zheng, Y. Zheng, W. Wang, and W. Wang. Characterizing

and synthesizing task dependencies of data-parallel jobs in Alibaba

Cloud. In 10th ACM Symposium on Cloud Computing (SoCC’19), Cham-

inade, Santa Cruz, CA, US, Nov. 2019. ACM.

[34] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,

R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino,

O. O’Malley, S. Radia, B. Reed, and E. Baldeschwieler. Apache Hadoop

YARN: Yet Another Resource Negotiator. In 4th Annual Symposium
on Cloud Computing (SoCC’13), pages 5:1–5:16, Santa Clara, CA, USA,
Oct. 2013.

[35] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and

J. Wilkes. Large-scale cluster management at Google with Borg. In

10th European Conference on Computer Systems (EuroSys’15), pages
18:1–18:17, Bordeaux, France, 2015. ACM.

[36] J. Wilkes. More Google cluster data. Google research blog, Nov. 2011.

Posted at http://googleresearch.blogspot.com/2011/11/more-google-
cluster-data.html.

[37] J. Wilkes. Google cluster-usage traces v3. Technical report at https:
//github.com/google/cluster-data, Google, Mountain View, CA, USA,

Nov. 2019.

https://en.wikipedia.org/wiki/Pollaczek-Khinchine_formula
https://en.wikipedia.org/wiki/Pollaczek-Khinchine_formula
https://github.com/google/cluster-data
https://github.com/google/cluster-data
http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html
http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html
https://github.com/google/cluster-data
https://github.com/google/cluster-data

	Abstract
	1 Introduction
	2 A quick summary of Borg
	3 Comparing the 2011 and 2019 traces
	4 Resource utilization
	4.1 Machine utilization

	5 New Borg features and trace properties
	5.1 Alloc sets
	5.2 Terminations
	5.3 State transitions

	6 Evolution in the scheduling load
	6.1 Job submission rate
	6.2 Task submission rate
	6.3 Scheduling delay

	7 Resource consumption
	7.1 Comparison with 2011 data
	7.2 Correlations between compute and memory consumption
	7.3 Implications of compute and memory consumption for queueing delay and scheduling

	8 Vertical scaling
	9 Lessons learned from trace generation
	10 Research directions
	11 Related work
	12 Conclusions
	References

