
Borg: the Next Generation
Muhammad Tirmazi

Harvard University

tirmazi@g.harvard.edu

Adam Barker
∗

University of St Andrews

adb20@st-andrews.ac.uk

Nan Deng

Google

dengnan@google.com

Md E. Haque

Google

mehaque@google.com

Zhijing Gene Qin

Google

geneqin@google.com

Steven Hand

Google

sthand@google.com

Mor Harchol-Balter

CMU

harchol@cs.cmu.edu

John Wilkes

Google

johnwilkes@google.com

Abstract
This paper analyzes a newly-published trace that covers 8

different Borg [35] clusters for the month of May 2019. The

trace enables researchers to explore how scheduling works in

large-scale production compute clusters. We highlight how

Borg has evolved and perform a longitudinal comparison of

the newly-published 2019 trace against the 2011 trace, which

has been highly cited within the research community.

Our findings show that Borg features such as alloc sets

are used for resource-heavy workloads; automatic vertical

scaling is effective; job-dependencies account for much of

the high failure rates reported by prior studies; the work-

load arrival rate has increased, as has the use of resource

over-commitment; the workload mix has changed, jobs have

migrated from the free tier into the best-effort batch tier;

the workload exhibits an extremely heavy-tailed distribution

where the top 1% of jobs consume over 99% of resources; and

there is a great deal of variation between different clusters.

Keywords. Data centers, cloud computing.

ACM Reference Format:
Muhammad Tirmazi, Adam Barker, Nan Deng, Md E. Haque, Zhi-

jing Gene Qin, Steven Hand, Mor Harchol-Balter, and John Wilkes.

2020. Borg: the Next Generation. In Fifteenth European Conference
on Computer Systems (EuroSys ’20), April 27–30, 2020, Heraklion,
Greece. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/
3342195.3387517

1 Introduction
Data centers are huge capital investments that serve a wide

range of applications including search engines, video pro-

cessing, machine learning, and third-party cloud applica-

tions. Modern cluster management systems [22, 34, 35] have

∗
Work done whilst on sabbatical leave as a Visiting Researcher at Google.

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

EuroSys ’20, April 27–30, 2020, Heraklion, Greece
© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6882-7/20/04.

https://doi.org/10.1145/3342195.3387517

Date May 2011 May 2019
Duration 30 days 31 days

Cells (clusters) 1 8
Machines 12.6k 96.4k
Machines per cell 12.6k 12.0k

Hardware platforms 3 7

Machine shapes 10 21
Priority values 0–11 0–450
Alloc sets – Y
Job dependencies – Y
Batch queueing – Y
Vertical scaling – Y
Format csv files BigQuery tables

Table 1. Comparison between 2011 and 2019 traces.

evolved to manage these data centers efficiently, and sev-

eral companies have published job-scheduling traces of their
cluster management systems so that external researchers

can explore how they achieve this. Examples include Google

[36], Microsoft [3] and Alibaba [33].

In 2011, Google published a 1-month trace from its Borg

cluster management system to enable external researchers

to explore how scheduling worked in a large-scale compute

cluster. Several hundred researchers have taken advantage

of that trace to study a wide range of phenomena. An open

question is howworkloads for such systems evolve over time,

and how the evolution of the cluster managers has affected

scheduling decisions. To support research on these topics,

Google has published a new “2019” trace [37] that includes

detailed Borg job scheduling information from 8 different

Google compute clusters (Borg cells) for the entire month of

May 2019. The new trace contents are an extension of the

data provided in the 2011 trace [28, 36]. This paper reports

on the results of a first longitudinal comparison between the

2011 and 2019 traces, repeating several analyses from the

first paper to analyze the 2011 trace [27], and adding some

new ones. We also discuss new features in Borg that were

not visible in the 2011 trace. Our key observations can be

summarized as follows:

1. The 2019 trace has several new features (§3 and
§5), including information about allocations [35], parent-

child dependencies (which affects how task exits are to

https://doi.org/10.1145/3342195.3387517
https://doi.org/10.1145/3342195.3387517
https://doi.org/10.1145/3342195.3387517


EuroSys ’20, April 27–30, 2020, Heraklion, Greece Tirmazi et. al

be interpreted), and additional placement constraints.

It also covers eight different cells, not just one.

2. The workload mix has changed (§4): much of the

workload has moved from the free tier (low prior-

ity) into the best-effort batch tier (jobs managed by a

queued batch scheduler), while the overall usage for

production tier (high priority) jobs has remained ap-

proximately constant. We also observe considerable

inter-cell workload variation.

3. The scheduling rate is higher (§6): the job submis-

sion rate is 3.7� higher than in 2011, and the number

of tasks needing to be scheduled has increased by a

factor of 7, even though the sizes of the 2019 cells

are comparable to the 2011 cell. Despite this, the time

the scheduler takes to find places to host the tasks is

largely unchanged.

4. A very heavy-tailed distribution of job sizes (§7):
the compute and memory consumption of jobs are ex-
tremely variable, with squared coefficients of variation

over 23000. Both compute and memory consumption

follow power-law Pareto distributions with very heavy

tails: the top 1% of jobs (“resource hogs”) consume over

99% of all resources, which has major implications on

scheduler design: care is needed to insulate the bot-

tom 99% of jobs (the “mice”) from the hogs to keep

queueing times under control.

5. Vertical autoscaling is effective (§8): the new traces

demonstrate how automated vertical scaling of per-

task resources provides noticeable savings. (A com-

panion paper [29] explores this in much greater depth,

with a focus on automated memory scaling.)

We begin with a quick overview of Borg, followed by infor-

mation about the new 2019 trace, highlighting changes from

the 2011 trace.

2 A quick summary of Borg
(This description is a highly abbreviated summary of the

information in [35].) Like many similar systems [13, 22, 34],

a Borg deployment comprises a logically centralized clus-

ter scheduler master, and a large number of machines (or

nodes), each of which runs a local management agent. Each

such deployment is called a cell, and is operated as a single

management unit. Both the 2011 and the 2019 traces consist

of time-stamped data from the master and the individual

machines.

The cluster scheduler receives job creation requests sub-

mitted on behalf of a user (an internal developer or a group,

used for accounting and authentication purposes); these re-

quests identify the executable binaries along with additional

details such as the resources needed, the number of replicas,

the job priority, and so on. In Borg, each replica in a job is

called a task, and the role of the cluster scheduler is to place

each task onto a suitable machine (i.e., one where the requi-

site resources are available). Tasks inherit several properties

from their job: for example, all tasks within a job have the

same priority, and if a job is queued then all of its constituent

tasks are also put into a queued state.

The cluster scheduler will assign an upper bound on the

resource consumption of a task on a machine. This upper

bound is called the limit and is configured based on the

requested resources; the actual resource usage of a task varies
over time. For memory, the limit is generally a hard bound

(i.e., the usage will never exceed the limits), but for CPU

the system is typically configured to be work conserving,

meaning the CPU usage can exceed the assigned limits if

the machine’s CPU is not overloaded. In theory, the sum of

limits of all running tasks should never exceed the machine’s

capacity.

The priority of a job helps define how the scheduler treats

it. Ranges of priorities that share similar properties are re-

ferred to as tiers:

� Free tier: jobs running at these lowest priorities incur
no internal charges, and have no Service Level Ob-

jectives (SLOs). 2019 trace priority �= 99; 2011 trace

priority bands 0 and 1.

� Best-effort Batch (beb) tier: jobs running at these

priorities are managed by the batch scheduler and

incur low internal charges; they have no associated

SLOs. 2019 trace priority 110–115; 2011 trace priority

bands 2–8.

� Mid-tier: jobs in this category offer SLOs weaker than
those offered to production tier workloads, as well as

lower internal charges. 2019 trace priority 116–119;

not present in the 2011 trace.

� Production tier: jobs in this category require high

availability (e.g., user-facing service jobs, or daemon

jobs providing storage and networking primitives);

internally charged for at “full price”. Borg will evict
lower-tier jobs in order to ensure production tier jobs

receive their expected level of service. 2019 trace pri-

ority 120–359; 2011 trace priority bands 9–10.

� Monitoring tier: jobs we deem critical to our infras-

tructure, including ones that monitor other jobs for

problems. 2019 trace priority ¡= 360; 2011 trace prior-

ity band 11. (We merged the small number of monitor-

ing jobs into the Production tier for this paper.)

3 Comparing the 2011 and 2019 traces
This section compares the 2011 and 2019 traces at a high

level; there is considerably more information in the new

trace documentation [37].

Table 1 provides a summary of themain changes. The older

trace described a single cell, while the newer trace spans



Borg: the Next Generation EuroSys '20, April 27�30, 2020, Heraklion, Greece

eight. The average number of machines per cell remains sim-
ilar, although there is greater variety in the CPU-to-memory
ratio, as illustrated in Figure 1.

Figure 1. Frequency of machine shapes as a function of CPU and
memory (RAM) capacity. The area of each circle is proportional to
the number of machines. Both CPU and memory are re-scaled to a
0�1 range in the trace.

Job priority values: the new trace exposes the raw pri-
orities as sparse values in the range 0�450; the 2011 trace
mapped the unique job priority values (0, 25, 100, 101, 103,
104, 107, 109, 119, 200, 360, 450) to the integers from 0�11;
i.e., the value 3 in the 2011 trace corresponds to a raw prior-
ity of 101. (The meaning of some of the priority values has
changed since 2011. We follow the trace documentation [37]
in mapping jobs to the tiers listed above.)

CPU usage histograms:the 2019 trace adds a 21-element
histogram of CPU utilization for each 5 minute sampling
period, biased towards high percentiles.

Normalized CPU units: to help its users better handle
machine heterogeneity, Borg has switched to using abstract
Google Compute Units (GCUs)instead of physical CPU cores,
and the trace follows suite. An allocation of 1 GCU should
provide about the same amount of computational power on
any machine in the �eet, and Borg maps that onto the appro-
priate number of physical CPU cores. As in 2011, the 2019
trace further re-scales these values based on the maximum
machine sizes in the trace, so that the resultingNormalized
Compute Units (NCUs)are always in the range 0�1.

Alloc sets: these allow users to reserve resources on ma-
chines into which jobs can later be scheduled � e.g., to secure
resources before bringing up a new workload, to retain re-
sources while jobs are turned down and back up again, and
to co-locate tasks from di�erent jobs [35]. The 2011 trace
elided data about alloc sets, and treated them (and the jobs
that landed inside them) as if they were jobs. The new trace
provides information about both jobs and alloc sets (together

calledcollections) and how tasks are mapped into alloc in-
stances (instances).

Job dependencies:if a Borg job has aparent job, the child
job will be killed automatically when its parent terminates.
This simpli�es job cleanup for systems like MapReduce [10]
where a controller job spawns a number of child workers
that are automatically removed when the controller exits.
The 2019 traces provide this dependency data, permitting
more sophisticated failure analyses.

Batch queuing: like Omega [31], Borg now supports mul-
tiple schedulers, including abatch schedulerthat manages
the aggregate batch job workload for throughput byqueue-
ing jobs until the cell can handle them, after which the job
is given to the regular Borg scheduler.

Vertical scaling: Borg now supports vertical autoscaling
via a system called Autopilot that automatically predicts a
job's resource usage, and adjusts its resource limits dynam-
ically [29]. The trace indicates which jobs were subject to
this autoscaling.

The 2019 trace contains an average of 350 GiB of com-
pressed data per cell, compared to about 40 GiB for the 2011
trace, or 2.8 TiB of data for the entire trace. To obviate the
need to download so much data, and to simplify analyses, the
new one is provided as data tables in Google BigQuery [5],
which is an externally-available version of Google's Dremel
system [24] that provides both storage and analytic tools
built around a dialect of SQL. Most of our analyses were done
using BigQuery, and we also imported the 2011 trace to Big-
Query, so we could use the same queries in both cases. This
allowed us to validate many of our evaluations, including
reproducing the data reported in [27].

Our results are presented both as simple time series aggre-
gations as well asComplementary Cumulative Distribution
Functions(CCDFs [6]) to visually summarize distributions of
data. These show the fraction of samples that have a value
larger than the one at a given point on the x-axis.

Both the 2011 and 2019 traces normalized resource units
for CPU and memory so that they scale from 0�1. The ab-
solute machine sizes are di�erent in the two traces, so the
values cannot directly be compared, but relative comparisons
are still valid, such as percentage utilizations.

4 Resource utilization
Figure 2 shows the average compute and memoryusagefor
every hour of the 2011 and 2019 traces. The average utiliza-
tion has increased over 8 years, mostly due to an increase in
consumption from the best-e�ort batch tier across both re-
source dimensions. Best-e�ort batch now accounts for� 20%
of the cell's capacity for both CPU and memory, which is
a considerable increase over the 2011 trace, although some-
what countered by a reduction in the usage from the free
tier. (The lower variance visible in the 2019 trace is partly a
result of aggregation across multiple cells.)



EuroSys '20, April 27�30, 2020, Heraklion, Greece Tirmazi et. al

(a) 2011 CPU usage. (b) 2019 CPU usage, averaged across all 8 cells.

(c) 2011 memory usage. (d) 2019 memory usage, averaged across all 8 cells.

Figure 2. The fraction of a cell's total resource capacityused during each hour-long interval.

Figure 3. Averageutilization (as a fraction of cell capacity across the entire trace duration) by tier, for 2011 and the 8 cells in the 2019 trace.


	Abstract
	1 Introduction
	2 A quick summary of Borg
	3 Comparing the 2011 and 2019 traces
	4 Resource utilization
	4.1 Machine utilization

	5 New Borg features and trace properties
	5.1 Alloc sets
	5.2 Terminations
	5.3 State transitions

	6 Evolution in the scheduling load
	6.1 Job submission rate
	6.2 Task submission rate
	6.3 Scheduling delay

	7 Resource consumption
	7.1 Comparison with 2011 data
	7.2 Correlations between compute and memory consumption
	7.3 Implications of compute and memory consumption for queueing delay and scheduling

	8 Vertical scaling
	9 Lessons learned from trace generation
	10 Research directions
	11 Related work
	12 Conclusions
	References

