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ABSTRACT
It is often desirable to model multiple objectives in real-world web
applications, such as user satisfaction and user engagement in
recommender systems. Multi-task learning has become the standard
approach for such applications recently.

While most of the multi-task recommendation model architec-
tures proposed to date are focusing on using non-sequential input
features (e.g., query and context), input data is often sequential in
real-world web application scenarios. For example, user behavior
streams, such as user search logs in search systems, are naturally a
temporal sequence. Modeling user sequential behaviors as explicit
sequential representations can empower the multi-task model to
incorporate temporal dependencies, thus predicting future user
behavior more accurately. Furthermore, user activity streams can
come from heterogeneous data sources, such as user search logs and
user browsing logs. They typically possess very different properties
such as data sparsity and thus need careful treatment when being
modeled jointly.

In this work, we study the challenging problem of how to model
sequential user behavior in the neural multi-task learning settings.
Our major contribution is a novel framework, Mixture of Sequential
Experts (MoSE). It explicitly models sequential user behavior using
Long Short-Term Memory (LSTM) in the state-of-art Multi-gate
Mixture-of-Expert multi-task modeling framework. In experiments,
we show the effectiveness of the MoSE architecture over seven
alternative architectures on both synthetic and noisy real-world
user data in G Suite. We also demonstrate the effectiveness and
flexibility of the MoSE architecture in a real-world decision making
engine in GMail that involves millions of users, balancing between
search quality and resource costs.
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1 INTRODUCTION
It is often desirable to model multiple objectives simultaneously
in many web applications [5, 9, 36]. For example, it is beneficial to
optimize user engagement (such as click) and satification (such as
rating) for recommender systems [36]. Recently, neural multi-task
learning, which jointlymodels multiple objectives, has been actively
researched for such kind of problems and has been deployed in sev-
eral real-world large-scale commercial web systems. For example,
a large scale multi-objective ranking system was introduced for
recommending the next video to watch on an industrial video shar-
ing platform, and the system was designed to optimize for multiple
objectives, such as user satisfaction and user engagement [42].

Multi-task learning is effective especially when tasks are closely
correlated [24]. First, it allows efficient knowledge and data shar-
ing across relevant tasks. This potentially improves performance
of all tasks involved, especially those with sparse signals when
tackled alone (e.g. conversion in e-commenrce applications [25]).
Also, multi-task learning can act as a regularizer by introducing an
inductive bias [32], so auxiliary tasks can be used to improve the
generalization of the main tasks.

While most of the multi-task model architectures proposed to
date focus on using non-sequential input candidate features (e.g.,
query and context) [32], input data is often sequential in real-world
data science application scenarios. For example, web documents
are sequential: they often consist of a sequence of words, and the
state-of-art machine translation models usually explicitly model
the sequential nature of the data using LSTM cells [37] or attentions
[34]. Another example, which we focus on in this work, is the ubiq-
uitous user activity data, which plays a key role in personalization-
oriented applications such as recommender systems and personal
assistants [33]. A user activity stream describes a user’s sequential
behavior. Effective sequential modeling leads to better user behavior
prediction for future decision making needs such as recommending
a relevant item [6]. Modeling sequential user behaviors as explicit
sequential representations can empower the multi-task model to
incorporate temporal dependencies to achieve better performance.

In this paper, we study the problem of multi-task learning when
the model consumes sequential user activity data. While multi-task
learning can potentially help to learn better joint representations for
different user behavior objectives, we face the following challenges:

• Data Sparsity — User activities can be highly sparse in real-
world web applications. For example, user purchase events
can be very rare compared with other events, such as user
impression events.

• Data Heterogeneity — User activity data is heterogeneous
and spans a variety of data sources and types. For example,
user profile data contains gender information, while user
log data contains clickthrough information. Learning shared
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representations for those heterogeneous data is known to
be difficult due to task conflicts [35, 42].

• Complex Multiple Objectives — The (temporal) relation-
ship among objectives, such as click and purchase, can be
complicated due to a user’s complex underlying intent [36].

Our major contribution in this work is a model called Mixture
of Sequential Experts (MoSE) that addresses the above challenges.
The model is a novel combination of the state-of-art multi-gate
mixture of experts (MMoE) multi-task learning model [24] and
Long Short-Term Memory (LSTM) [15]. Based on both controlled
synthetic dataset and a real-world dataset that involves millions
of users in G Suite (i.e., GMail and Google Drive), we propose and
explore several principled ways to model multiple objectives in
user activity streams.

Our findings from the experiments include: 1) We show the
benefits of MoSE on both the synthetic dataset and a real-world
decision making engine in GMail that involves millions of users.
MoSE consistently outperforms seven other alternatives by a large
margin on all the tasks, including predicting user keypress and
mouse clicks in G Suite.

2) We validate the design choices of MoSE through an ablation
study.We find that it is the combination of sequential representation
andMMoE that allows the effective modeling of user activity stream
data. MMoE alone fails to explore the rich sequential dependencies
in user activity streams, and LSTM combined with standard multi-
task algorithms fails to effectively model sparse and noisy variables
as well as the interactions among them.

3) We highlight the flexibility of using MoSE in practice. It allevi-
ates the need of task training weight tuning for achieving accurate
predictions on all tasks. Due to the accurate modeling of MoSE, it
outperforms baselines consistently on serving with different busi-
ness needs after a single MoSE model is trained.

To summarize, our main contributions in this work are:

• We study the important but under-explored problem of mod-
eling multiple objectives in user activity streams.

• We propose a novel Mixture of Sequential Expert (MoSE)
model that consistently outperforms alternatives while pro-
viding important practical flexibility in both a synthetic and
a real-world large-scale user activity dataset.

• We perform the ablation study to show the benefit and ne-
cessity of the design choices of MoSE.

• We show a successful application of MoSE in a real-world
multitask decision making service, highlighting the model’s
effectiveness and flexibility.

2 RELATEDWORK
2.1 User activity stream modeling
Recently, using neural sequence models to effectively represent
users’ activity streams has become popular in web applications.
The work in [3] studies how to effectively use context features
(such as device) for recommending videos in Youtube. It uses LSTM
to represent a user’s video watch history. [30] is a personalized
sequential recommendation model based on Markov chains. [39]
applies a Recurrent Neural Network (RNN) for next basket recom-
mendation. [33] uses RNN and Attention to model both short and

long range dependencies in user sequences. [17] proposes a self-
attention based sequential model for next item recommendation
[13] shows that RNN can learn multiple user dynamics patterns in
individual recommendation sessions. These works show the ben-
efit of sequence modeling over non-sequential models (e.g., fully
connected feed-forward neural networks). However, none of these
works studied the problem of modeling multiple objectives in their
setting. Also, existing work typically focus on a single data source
(e.g., video watch history), while in practice it may be beneficial
to model streams from multiple data sources for a more holistic
view of the users. Heterogeneous data sources possess different
properties such as data sparsity, and we show it is critical to use
dedicated components for objectives from different sources using a
mixture of experts approach.

2.2 Multi-objective Optimization (MOO) for
e-commerce and recommender systems

It is desirable to model multiple objectives in real-world applica-
tions, such as optimizing click-through rate and gross merchandise
volume in recommender systems [20], clicks and purchases in E-
Commerce searching and advertising [25, 36]. Recently, neural
multi-task learning, which jointly models multiple objectives, has
been actively researched for such kind of problems[32, 40].

A family of approaches combine multiple objectives into a single
objective before model learning, in which the combined weights
are usually selected heuristically [31]. The recent work [5] shows
it can be beneficial to stochastically aggregate the labels. Another
recent work [20] is a theoretically driven approach to learn the
optimal weighting parameters in the context of Pareto efficiency
(one objective can not be optimized without hurting other objec-
tives). The focus of such work is around the objectives (such as
how to aggregate labels). Our work is complimentary to them and
mainly focuses on multi-task deep learning with flexible parameter
sharing, discussed next.

2.3 Multitask deep learning with flexible
parameter sharing

A hot research topic in the deep learning domain is to design model
architecture to specifically facilitate the modeling of multiple ob-
jectives. Multi-gate Mixture-of-Expert [24] is one of the state-of-
the-art in multi-task modeling, showing better results in content
recommendation over several competing approaches including ten-
sor factorisation [38] and a cross-stitch network [27]. Some work
[8, 11, 41] explicitly optimized the multiple objectives by consider-
ing the task relationships. However, those works only considered
non-sequential input data, while in this paper, we focus onmodeling
the sequential inputs from user activity streams.

[25, 36] focuses on parameter sharing and optimization schemes
that allow better transfer learning from clicks to the more sparse
conversions. This family of work usually has one major task and
other tasks are considered auxiliary. Our work focus on general
methods for optimizing multiple objectives simultaneously. Also,
none of these works provide a complete treatment that takes ad-
vantage of the sequential nature of user activity data.



2.4 Sequential and structural multi-task
learning

Neural multi-task learning with sequential input data was studied
recently for natural language processing (NLP) tasks [10, 16, 22].
These studies focus on tasks such as machine translation where
input data is single dimension sequences, i.e., text sentences. Multi-
task modeling is also successful in many computer vision tasks
[4, 21], where the input is homogeneous images or videos. Different
from this line of research, in this work, we focus on modeling user
activity streams from heterogeneous data sources (e.g., search logs
and browsing logs) and the interactions among them.

3 A MOTIVATING APPLICATION
In this section, we show a motivating real-world decision making
service in GMail that involves millions of users, where modeling
multiple objectives in user activity streams is needed.

Figure 1: GMail search allows users to search both emails
and Drive documents [1].

GMail is an email service and Google Drive is a file sharing and
storage system. As shown in Figure 1, when a user searches in the
GMail search UI, Drive documents may show up when available.
This requires a search request from GMail to the Drive search
backend system. Furthermore, GMail search enables a “search-as-
you-type” feature, where each keypress in the search box triggers
a search request. The large GMail search volume causes a highly
non-trivial resource burden to the Drive search system. On the
other hand, document search in GMail has relatively low utility,
while many users find this feature to be useful. Thus, instead of
completely turning this feature off, machine learning models can
be built to selectively turn on this feature at an individual level. In
practice, the decision of whether or not to suppress the section is
refreshed daily.

This problem requires the modeling and prediction of the two
tasks in the G Suite data: the number of Drive search result clicks
and the number of keypresses when a user searches in GMail. The
latter is a proxy for resource cost due to the “search-as-you-type”
feature. Making the decision to turn on the document search feature
is a balance between the two tasks. Ideally we want to turn off the
feature for users who will perform a lot of keypresses but few
document search clicks. Furthermore, the balancing factor between
these two tasks may change due to business needs, such as the
search request capacity the Drive search backend allows. Ideally,
we do not want to re-train the model every time the business needs

change. The model predictions need to be accurate and robust under
these requirements.

This problem setting is common in industrial applications where
a personalized decision can be made to trade-off multiple user-
facing or non-user facing objectives. It possesses several challenges
in user activity stream modeling. First, many variables, such as
one of the tasks, Drive search result click, is highly sparse. Second,
besides GMail activity, Drive activity (e.g., document edit, open,
and creation) needs to be considered (intuitively, how user behaves
in Drive can affect how she reacts to a Drive document in GMail).
so the problem requires modeling data from multiple data sources
which can contain heterogeneous data, including search logs in
GMail, browsing logs in GMail, and activity logs in Google Drive.
Third, the objectives are complex, since how user clicks and press
keys can depend on a user’s complex underlying intent. As we will
show, standard non-sequential multi-task models and straightfor-
ward sequential extensions of multi-task models do not work well
under these challenges.

4 METHOD
We first discuss the preliminaries for modeling multiple objectives
in user activity stream data in Section 4.1. Then we introduce the
Mixture-of-Sequential-Experts (MoSE) model in Section 4.2, and
alternatives for modeling user activity stream data in Section 4.3.

4.1 Modeling Preliminary
We can represent a user activity stream formally as an (#,) , �)
tensor, where # is the number of samples (e.g. one sample per
user), ) is the length of the sequence or the number of time steps,
and � is the dimension of variables we care about. Each sample
G = [x(1) , x(2) , ...x() ) ], where x is a � dimensional vector. Each
variable is associated with one user activity event type and may
possess sparse or dense values. For example, a real-valued variable
G8(C ) may describe the number of clicks for a user at time C . This
representation generalizes session-based recommendation datasets
where G8(C ) can be a sparse vector describing which item a user

clicked and G 9(C ) is a sparse vector describing which item a user
purchased at time C .

We are interested in modeling a subset of the � dimensional
variables that are of interest (e.g. business related) as the task vari-
ables in a multi-task learning setting. Our objective is to predict the
task variable values for C ¡ ) , which can be used for downstream
applications such as item recommendation.

4.2 Mixture of Sequential Experts model
In this section, we propose theMixture of Sequential Experts (MoSE)
framework for multi-task modeling of sequential user activity data.

The sequential multi-task learning setting presents uswith unique
challenges. First, user activity data (e.g. user profile and click-
through information) can be sparse and heterogeneous. For ex-
ample, the available user click-through information varies a lot
among different users (e.g. active vs. inactive users) and modeling
user behaviors in one data source can be very different from an-
other one (e.g. the same user’s behavior in GMail vs Google Drive).
In addition, the temporal relationship among multiple objectives



can be complicated due to a user’s complex underlying intent. We
thus hypothesize that, in addition to an explicit sequential approach
for data representation, there should be dedicated components in
the framework that model different aspects of the complex dataset
before merging them.

As a result, we propose the MoSE framework to address the
above issues. As shown in the Figure 3, MoSE is composed of the
following components.

• A shared-bottom LSTM module for consuming sequential
input data, which allows explicit and effective representation
learning from the input layer.

• A mixture of sequential experts layer where each expert
models different aspects for each task. For example, one
expert can focus on modeling the sequential dependency of a
sparse variable. Themain goal of theMixture of Expert (MoE)
layer [12] is to achieve conditional computation, where only
parts of a network are active on a per-example basis. We
further augment the MoE layer by using LSTM instead of
fully connected net to better handle sequence data.

• Gating networks to gate the outputs of experts as proposed
in [24]. Each gating network can learn to “select” a subset of
experts to use conditioned on the input example. This allows
the modeling of complex interactions among heterogeneous
variables.

• Multi-tower network with one tower per task to decouple
the optimization for tasks. This is a common structure in the
multi-task learning literature which is known to be useful for
learning different tasks with varying scales and data types.

To summarize, MoSE provides a full sequential solution with
gated mixture-of-experts to model user activity streams. In addition
to the natural fit of LSTM for sequential data, recent research shows
that LSTMs are efficient to learn from sparse event data [26] that is
common in user activity streams. The mixture of experts framework
allows dedicated sequential experts to focus on different challenging
aspects of the data, such as modeling variables that are sparse
or have complex temporal dependencies. The gated mixture of
experts [24] module allows each task to pick the most relevant
experts. This is important for modeling user activity data where
the task relationships may be weak or difficult to learn. On the
other hand, traditional multi-task frameworks that use a single
shared component can get confused by heterogeneous data sources
with dramatically different characteristics, such as sparsity and
noisiness.

Mathematically, given a data sequence with ) time steps G =

{x(1) , x(2) , ..., x() ) }, we perform many-to-many sequence learning
(see Fig. 2). For a given time step C with input x(C ) , we can formulate
the output for task : at time C + 1 as below:

~:(C+1) = ℎ:!()"

�
5 :

�
x(C )

��
where 5 :

�
x(C )

�
=

=Õ
8=1

6: (G)8 5!()"8

�
5!()"

�
x(C )

�� (1)

where ℎ:
!()"

is the tower network for task : , 5 : is the output
of the gated mixture of experts layer, 5!()"8

is the 8-th sequential
expert (there are = experts in total), 5!()" is the shared bottom

LSTM LSTM LSTM...

y(2) y(3) y(T+1)
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Figure 2: The many to many LSTM structure.
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Figure 3: Illustration for the MoSE model structure. Note
that we use two tasks for simple illustration but the frame-
work allows more objectives.

network, 6: is the gating network which transforms the input to a
distribution over the = experts based on the input:

6: (G) = B> 5 C<0G (,6:G) (2)

where,6: ∈ '=×�) is the weight matrix we are trying to opti-
mize. Note that we calculate the gating distribution on the whole
sequence G rather than at each time step. We are doing this to
get a consistent gating distribution at any time step for a specific
data sample. In equation 1, functions with !()" subscripts can be
stacked LSTM networks instead of a single layer.

4.2.1 Discussion. We also experimented with gated recurrent unit
(GRU [7]) and regular recurrent units as the building block for
the sequential units. We found the performance were inferior or
similar to LSTM in general and omit their results due to space
constraints. Experimenting with more advanced techniques such
as Transformer [34] is considered as future work.

4.3 Alternatives
To show the advantage of MoSE for multi-task modeling in user
activity data, we evaluate seven alternative approaches.

4.3.1 Separate Model for Each Task (Multi-Model). We can build
a standalone neural network for each task for comparison to see
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Figure 4: Different model structures for the alternative multi-task models we consider. Note that we use two tasks for illustra-
tion but the frameworks allow more tasks. FC stands for fully-connected layers.

how multi-task approaches perform in general. Due to the subtlety
of making multi-task approaches work (e.g., some methods assume
strong correlation between tasks), it should not be surprising if
some multi-task approaches perform worse than this approach.
On the other hand, this approach will not benefit from multi-task
learning, such as knowledge sharing, and may require extra effort to
maintain multiple models instead of one joint model. We build two
variants: Multi-Model uses a fully-connected feed-forward network
for each task and treats the input tensor as non-sequential data.
Sequential Multi-Model uses stacked LSTMs to ingest sequential
data.

4.3.2 Multi-head model (Multi-head). This approach first predicts
the task objectives and merges the losses into a single one before
back propagation. This is the standard approach for predicting
multiple outputs. Merging the losses without dedicated components
such as separate towers for each task may not perform well for
conflicting tasks [32]. We also evaluate two variants as before:
Multi-head that uses a fully-connected feed-forward network and
Sequential Multi-head that uses stacked LSTMs.

4.3.3 Shared-bo�om Model (Shared-Bo�om). This approach is one
of the most common multi-task learning approach [32]. It uses
multiple objectives (or heads) and each task has its own tower af-
ter the shared-bottom module. The loss for each individual task is
first calculated and then only combined before back propagation.
The model allows both knowledge sharing (via shared-bottom) and
specificity (via individual towers). However, the dedicated speci-
ficity components are close to the final output and may not handle
input heterogeneous data sources well early on. Similar as before,
we build Shared-bottom and Sequential Shared-bottom.

4.3.4 Multi-gate Mixture-of-Experts (MMoE). TheMulti-gateMixture-
of-Experts model [24] is the state-of-art deep multi-task learning
approach. It can automatically adjust parameterization between
modeling shared information and modeling task-specific informa-
tion. Experiments on several non-sequential datasets show that it
works particularly well on tasks that are less correlated. It is not

clear how MMoE works on sparse and noisy user activity data.
MoSE is an extension of MMoE and we will show that it is the
combination of MMoE and LSTM that can handle the various chal-
lenges of user activity data, while MMoE itself does not show strong
benefits over some other non-sequential models.

We show the model architecture for the different multi-task
alternatives in Figure 4.

5 EVALUATION
We validate the effectiveness of MoSE on a synthetic sequential
multitask dataset and a real-world user activity stream dataset in G
Suite. We also show the application of MoSE in a decision making
service where multiple objectives are traded-off due to business
needs.

5.1 Synthetic Experiments
In order to validate how MoSE and the alternatives perform on
general sequential multi-task applications, we design synthetic
experiments extending the data generation method in [24].

5.1.1 Dataset. We generate a sequential synthetic dataset using
a mixture of sinusoidal functions shown in Table 1, and give an
illustration of the data in Figure 5. We generate �-dimensional data
with multiple modes. For each data point, we first choose the mode
< it belongs to and generate the input by feeding a continuous time
stamp C to 8=(C). We then take 8=(C) as input, calculate >DC1 (C) and
>DC2 (C) with their parameters E (<)

1 and {E (<)
2 , 1

(<)
2 } correspond-

ingly. Thus, 8=(C) is a mixture of $ sine waves with mixing weight
F

(<)
> , which is a length � vector used for weighting of the � di-

mensional input; >DC1 (C) is a mixture of � sine waves which sum
all dimensions of the weighted input from 8=(C) at each time C with
weight E (<)

13 for dimension 3 ; >DC2 (C) is sine of weighted sum over

all dimensions of input from 8=(C) with weight E (<)
23 and bias 1 (<)

23 ;
n is the random noise added to all phases when generate the data.
This dataset is sufficiently complex for a synthetic experiments,



(a) Input of the synthetic data. (b) First target of synthetic data. (c) Second target of synthetic data.

Figure 5: Illustration for the synthetic dataset. The horizontal axis is time, vertical axis is the feature or target value. In order
to add complexity to the dataset we generate the data usingmultiplemodes of parameters which are shown by different colors.

where the two tasks are correlated due to the shared calculations
(e.g., the sine operation).

Table 1: Formulas for generating the synthetic data.

Input 8=(C) ˝
> B8=

�
F

(<)
> C + n

�
Target 1 >DC1 (C)

˝
3 B8=

�
8= (C) E (<)

13 + n
�

Target 2 >DC2 (C) B8=

�˝
3

�
8= (C )E (<)

23
�

+ 1 (<)
23 + n

��
We generated a synthetic dataset of 2000 data points as described

above with " = 10, � = 10, $ = 2, C = 0.28 where 8 is an integer
ranging from 0 to 500. Then we take 8=(C), which is a 2000 by 500
by 10 tensor as the input data. We call >DC1 (C) target 1 and >DC2 (C)
target 2. Both of the target 1 and target 2 are 2000 by 500 tensors.

5.1.2 Experiment se�ings. We use 80% of the samples for training,
10% for validation, and 10% for testing. Mean Squared Error (MSE)
is calculated between prediction and ground truth for the last 7 time
steps for the loss and evaluation metric. Non-sequential models
output a 7-dimension vector for each task. All the models are im-
plemented using the Tensorflow toolkit [2] and optimized with the
Adam optimizer [18]. For all models we pick the hyperparameters
using cross-validation by varying the number of network layers
from 1 to 3 and number of neurons in each layer ranging in [16, 32,
64, 128, 256] to decide the best network structure for both LSTM
and fully connected modules, including the shared bottom, experts,
and task towers when applicable. The importance weights between
two tasks is set to 1 when applicable (only Multi-model does not
need this) since the target tasks are of the same scale and we do
not assume prior knowledge of the importance weights. The best
network structure learned for MoSE is a single layer LSTM with
16 units for the shared bottom, single layer LSTM with 8 units for
each of the 10 experts, and 8 LSTM units for the towers.

5.1.3 Results. We summarize the results on the test dataset in
Figure 6. The Figures show the Mean Squared Error of MoSE com-
paring to the seven alternative methods when predicting the two
tasks on the synthetic dataset. We can see that MoSE achieves the
best performance consistently for both tasks. When compared with

the second best model (Sequential Multi-head), MoSE produces a
roughly relative 10% smaller error. We defer more detailed discus-
sions to the next section.

(a) Average MSE for task 1.

(b) Average MSE for task 2.

Figure 6: Model performance on the synthetic dataset.

5.2 Experiments on G Suite data
5.2.1 Dataset. We collect a sample of G Suite data, which contains
user activity data from heterogeneous sources in G Suite including



GMail and Google Drive. The dataset contains nearly 10million data
points in total across 30 days of user activity logs. We take each day
as one time step. Each variable represents one user’s activity. The
set of variables we consider include Google Drive activity counts,
including the numbers of Drive document views, Drive document
edits, Drive searches, as well as GMail search behavior statistics,
including the number of key-presses when a user searches, email
search result clicks, and Drive search result clicks. See Figure 1
for an illustration of search both email and Drive documents in
GMail. Two of these variables in GMail are our tasks, i.e. number of
key-presses when a user searches, and the number of Drive search
result clicks. We will show an application that leverages these
task predictions in the next section. The dataset is quite sparse,
especially for one of our tasks - the number of Drive search result
clicks in GMail. When no relevant activity is performed in a day,
the corresponding fields are filled with zero.

5.2.2 Experiment se�ings. Due to the sparsity of the user data, we
first sub-sample the training data to prevent the model from over-
fitting on zeros. First, we removed users with no activities in both
of the two tasks and then sub-sampled the data to ensure there are
at least 20% of users in the training data that have click task activity
in the 30-day period. Notice that the sub-sampling is applied only
on the training data. For evaluation we are using all the test data.
We randomly sampled 80% data as training, 10% for validation, and
the remaining 10% for evaluation. For each data sequence (user),
we predict the target tasks in the last day using information before
that, and calculate the Mean Squared Error (MSE) between the
predictions and observed values. The model hyper-parameters are
selected in the same way as Section 5.1 and the important weights
between tasks is also set to 1 when applicable for all models for fair
comparison. The best network structure learned for MoSE is a two
layer LSTM with [128, 64] units for the shared bottom, two layer
LSTM with [64, 64] units for each of the 10 experts, and two layer
LSTM with [64, 32] units for the towers.

5.2.3 Results. We again compare MoSE with seven alternative
models and show the results for the G Suite data in Figure 7. We
show relative performance of the models due to the sensitivity of
the data. Combined with the results from Section 5.1, we can make
the following observations:

• MoSE consistently outperforms the alternatives, especially
on the complex real-world dataset.

• Sequential models in general outperform non-sequential
models, showing the necessity of explicitly modeling se-
quential dependencies in user activity streams.

• MoSE significantly outperforms other sequential models.
This shows the mixture of sequential experts module is
able to effectively handle various challenges in user activity
streams such as sparse variables and complicated interac-
tions between heterogeneous data sources.

• MMoE itself does not show significant benefits over other
non-sequential models. The mixture-of-experts framework
is most beneficial when we use sequential experts as in MoSE
since most complexity in user activity streams seem to stem
from sequential complexity and sparsity.

(a) Relative average MSE of click prediction.

(b) Relative average MSE of keypress prediction.

Figure 7: Model performance on G Suite data.

5.3 Trading-off resource cost and document
search in GMail search

In this section, we show the application of MoSE in the real-world
decision making service in GMail described in 3. It requires the
modeling of the two tasks in the G Suite data discussed in Sec
5.2: the number of Drive search result clicks and the number of
keypresses when a user searches in GMail.

5.3.1 Experiment setup. We compare MoSE trained in Section 5.2
with the production model in the GMail search system. The pro-
duction model is a heavily tuned Shared-Bottom model with the
goal to save 80% resource compared with always turning on the
document search feature in GMail.

After obtaining the prediction for key-presses  ? and click �? ,
we decide whether to turn on or off the document search feature
based on the weighting parameter U (we differentiate between U
and A to highlight that U is used for inference and A is used in
training) and the decision threshold \ by the decision label !? =

(�? −U ? ) ¡ \ . If the decision label !? is true for a certain user, we
turn the feature on and turn it off for users with !? = false. With



the decision label !? we can define the resource saving rate %A and
click preserving rate %2 as below:

%A = 1 −
˝
8

�
1 − !?8

�
∗  6C8˝

8  6C8
(3)

%2 =

˝
8 !?8 ∗�6C8˝

8 �6C8
(4)

where
˝
8 is the sum over all users, �6C8 is the ground truth

number of Drive search result clicks for user 8 ,  6C8 is the ground-
truth number of key-presses for user 8 , and !?8 is the decision label
described above for user 8 . We can easily see from the formula that
if we set the decision threshold \ to the minimum of �?8 − U ?8 ,
we will turn on the document search feature for all users. This will
result in a click preserving rate 1 with no resource savings. On
contrary, if we set \ to the maximum of �?8 − U ?8 we will have
a !? of all false, and hence we will turn off the document search
feature for all users.

In order to evaluate how the models performed at different trade-
off points, we measure the overall performance by the AUC (Area
Under the Curve) score of the resource savings rate versus click
preserving rate curve by varying \ and U . We perform a compre-
hensive grid search of \ and U on the validation set to find the
best click preserving result at each resource saving level for the
compared models. We report at different resource saving levels, the
relative performance of click preserving of the two models on test
set in Figure 8.

Figure 8: Relative click preserving of MoSE over the Shared-
Bottom production model with different resource savings.

5.3.2 Results. In additional to the comparative results shown in
Figure 8, MoSE achieves +4.8% AUC score than the production
model. We emphasize two benefits of MoSE. First, performance-
wise, MoSE significantly outperforms the heavily tuned shared-
bottom model. At the requirement of 80% resource savings, MoSE
is able to preserve approximately 8% more document search clicks,
which is very significant in the product. Also, MoSE is robust across
different resource saving level due to the its modeling power, even
though we assigned equal weights to the tasks during training. This

gives MoSE more flexibility when the business requirement keeps
changing in practice since a more robust model like MoSE may
alleviate the need to re-train the model, comparing with models
that are more sensitive to the importance weights during training.

6 DISCUSSION AND FUTUREWORK
In this section, we discuss a few insights and limitations which
we have learned from developing MoSE for modeling user activity
streams.

6.1 Difficulty of multi-task user activity
sequence modeling

Though recently sequential multi-task learning has been explored
for NLP tasks such as machine translation, where the tasks could be
different language pairs, their inputs are limited to homogeneous,
complete sentences [29]. In real-world applications, user activity
streams possess unique difficulties that make existing work ineffec-
tive. User activities are typically very noisy and sparse, and come
from multiple heterogeneous data sources due to the large amount
of logging systems around users. Techniques that center around
self-supervised learning [10] may not work well due to the sparsity
of data. In this work, we focus on the modeling architecture to
address the difficulties, including explicit sequential models and
dedicated components to model different aspects of the data. But
the problem setting opens opportunities to more thorough studies
of user behavior across different applications, and more explicit
handling of user’s complex latent intents.

6.2 Extensibility of MoSE
We note that when we develop MoSE, we focus on the general
architecture that tries to address the difficulties in real-world user
activity streams. MoSE, consisting of general building blocks, can
be easily extended, such as using other sequential modeling units
besides LSTM, including GRUs, attentions, and Transformers [34]
for the shared bottom, sequential experts, and task towers. A more
thorough study of using different sequential units and their combi-
nations would be interesting.

6.3 Limitations of our work
In this work, though our dataset comes from multiple data sources
with varying properties, we did not explicitly handle multi-model
data [42] such as images or natural language inputs. Also, explicitly
modeling context features (e.g., location of the user) is a hot topic
recently [3, 28]. It would be interesting to extend MoSE to better
handle such kind of data.

Our work is limited to studying two tasks due to our application
needs. We plan to study how MoSE scales up to more tasks.

6.4 Future modeling work
Due to the recent popularity of multi-task learning, we plan to
integrate MoSE with more multi-task modeling techniques. For
example, the MoSE architecture still has a LSTM shared-bottom
component, which can be improved by even more flexible sharing.
Novel model architectures such as Sub-network Routing [23] can



introduce more flexible parameter sharing and robust learned rout-
ing. Incorporating a causal objective when working with biased
activity data [19] is also an interesting direction.

Our application only requires an offline inference of the UI deci-
sion for users daily. If the application requires an efficient online
inference, the trade-off between effectiveness and efficiency should
be considered. Exploring techniques such as model distillation [14]
is a future direction.

7 CONCLUSION
In this work, we study the important but under-explored problem
of learning multiple objectives in user activity streams. We pro-
pose a novel mixture of sequential experts (MoSE) framrwork that
consistently outperforms alternatives on both synthetic and noisy
real-world user activity data in G Suite. We further show an appli-
cation of MoSE in a decision making service in GMail that affects
millions of users.
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