
Bobby Dorward, Collin Johnston, Eric Nickell, Tim Henderson
2021-April-16
dorward at google dot com, collinj at google dot com, esnickell at google dot com, tadh at google dot com

Flake-Aware Culprit Finding
A Bayesian Approach

Problem
Find culprits even
when a test is flaky.

Background

CI System Flaky Tests

We use a mono-repo, so all commits are submitted to a single
branch. The commits are linearly ordered so a test failure can be
attributed to a single commit.
Commits are not tested exhaustively before or after submit.
Instead, we rely on culprit finding to pinpoint the exact commit
which caused a regression.

Test may fail non-deterministically. The non-determinism "at
scale" can be from the test infrastructure as well as
non-determinism in either the test code, or the code under test.

For our culprit finders, we assume that a "failing test" cannot have
flaky passes, but a "passing test" can have flaky failures.

Error rate of naïve binary search vs Flake Rate

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

Culprit-finding flaky targets: Existing solutions

Deflaked Binary Search

One solution is to run binary search, and deflake the result at each pivot point. Instead of
running the test once and recursing on the left/right half based on the result, we could run the
test N times, and recurse based on the aggregated result: Passed if any result passed, Failed if
all results failed.

Flake-aware Culprit-finding

FACF Key Idea
Track probability that
each commit is the
culprit and use Bayes'
rule to update results

Naïve binary search

Naïve binary search

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

Binary Search

While we normally view the progress of CF as
bounding the possible locations of the
pass-to-fail transition, we could alternatively
view it as shifting a probability distribution.

Legend

Saw PASS

Saw FAIL

Last pass before culprit

Culprit Commit

Commit w/ no results

Naïve binary search ... as probability redistribution

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

Binary Search

Start with a uniform distribution.

Legend

Saw PASS

Saw FAIL

Last pass before culprit

Culprit Commit

Commit w/ no results

Naïve binary search ... as probability redistribution

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

Binary Search

Start with a uniform distribution.

On seeing a passing result, transfer all the
left-hand probability to the right.

Legend

Saw PASS

Saw FAIL

Last pass before culprit

Culprit Commit

Commit w/ no results

Naïve binary search ... as probability redistribution

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

Binary Search

Start with a uniform distribution.

On seeing a passing result, transfer all the
left-hand probability to the right.

On seeing a failing result, transfer all the
right-hand probability to the left.

Legend

Saw PASS

Saw FAIL

Last pass before culprit

Culprit Commit

Commit w/ no results

Naïve binary search ... as probability redistribution

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

Binary Search

Start with a uniform distribution.

On seeing a passing result, transfer all the
left-hand probability to the right.

On seeing a failing result, transfer all the
right-hand probability to the left.

Legend

Saw PASS

Saw FAIL

Last pass before culprit

Culprit Commit

Commit w/ no results

Naïve binary search ... as probability redistribution

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

Binary Search

Start with a uniform distribution.

On seeing a passing result, transfer all the
left-hand probability to the right.

On seeing a failing result, transfer all the
right-hand probability to the left.

Legend

Saw PASS

Saw FAIL

Last pass before culprit

Culprit Commit

Commit w/ no results

Naïve binary search ... and flaky failures

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

Binary Search A flaky target...

If we move all the right-hand probability to the
left on a flake, we can never find the culprit.

(If the likelihood for a commit ever drops to
zero, it can never recover.)

Legend

Saw PASS

Saw FAIL

Last pass before culprit

Culprit Commit

Commit w/ no results

Flake-aware probability distribution

Flake-aware Culprit Finder

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

Binary Search A flaky target...

If we move all the right-hand probability to the
left on a flake, we can never find the culprit.

So we only shift some of the probability.
What's left behind is the probability that the
failure was a flake.

Flake-aware Culprit Finder

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

Binary Search A flaky target...

The probabilities will self-correct as long as
there aren't too many flakes.

Flake-aware when no flakes

Flake-aware Culprit Finder

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

Binary Search

Since we assume are no false PASSes, we can
still move all left-hand probability to the right
on a pass.

A flaky target...

Flake-aware Culprit Finder

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

Binary Search

Shift some probability to commits left on FAIL.

A flaky target...

Flake-aware Culprit Finder

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

Binary Search

Shift more probability left on FAIL.

A flaky target...

Flake-aware Culprit Finder

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

Binary Search

Continue until a single transition is the culprit,
with sufficiently high likelihood.

A flaky target...

Features of
flake-aware culprit-finding

At each flakiness, both algos achieve 99.9% correctness.

Deflaked Binary search vs Flake Aware Culprit Finder

● Can find culprits even for flaky targets in O(log N) time & resources.

● Splits culprit range to minimize expected number of iterations.

● Number of test executions auto-scales to desired correctness.

● Algorithm becomes binary search as flakiness drops to zero.

Flake-aware Culprit Finder

Prior Distribution Flaky Trigger Build Cost

FACF can start with a prior distribution,
coming from heuristics, an ML model, or
another culprit finder which produces a
probability distribution.

The initial failing edge could have been a
flake. This can be handled by including an
extra suspect commit representing "no
culprit", on the right hand end. This is
initially set to an estimate based on an
initial estimate.

Although FACF results in less test
executions, deflaked binary search might
be cheaper in situations where the cost of
building the test heavily outweighs the
cost of running the test, since FACF runs at
more commits.

Flake-aware Culprit Finder: Notes, Caveats

Questions?

