Reducing Permission Requests in Mobile Apps

Sai Teja Peddinti, Igor Bilogrevic, Nina Taft

Martin Pelikan, Ulfar Erlingsson, Pauline Anthonysamy, Giles Hogben
Google Inc.

ABSTRACT

Users of mobile apps sometimes express discomfort or concerns
with what they see as unnecessary or intrusive permission requests
by certain apps. However encouraging mobile app developers to re-
quest fewer permissions is challenging because there are many rea-
sons why permissions are requested; furthermore, prior work [25]
has shown it is hard to disambiguate the purpose of a particular
permission with high certainty.

In this work we describe a novel, algorithmic mechanism in-
tended to discourage mobile-app developers from asking for unnec-
essary permissions. Developers are incentivized by an automated
alert, or “nudge”, shown in the Google Play Console when their apps
ask for permissions that are requested by very few functionally-
similar apps—in other words, by their competition. Empirically, this
incentive is effective, with significant developer response since its
deployment. Permissions have been redacted by 59% of apps that
were warned, and this attenuation has occurred broadly across both
app categories and app popularity levels. Importantly, billions of
users’ app installs from the Google Play have benefited from these
redactions.

CCS CONCEPTS

« Security and privacy — Domain-specific security and pri-
vacy architectures; Economics of security and privacy; Informa-
tion systems — Data mining; - Computing methodologies —
Machine learning;

KEYWORDS
Mobile Apps, Permissions

ACM Reference Format:

Sai Teja Peddinti, Igor Bilogrevic, Nina Taft and Martin Pelikan, Ulfar Er-
lingsson, Pauline Anthonysamy, Giles Hogben. 2019. Reducing Permission
Requests in Mobile Apps. In Internet Measurement Conference (IMC ’19),
October 21-23, 2019, Amsterdam, Netherlands. ACM, New York, NY, USA,
8 pages. https://doi.org/10.1145/3355369.3355584

1 INTRODUCTION

The Android ecosystem and Google Play are popular platforms
with over 2 million apps and 2 billion active devices worldwide.
Many apps require access to private or protected data on users’
devices, which they request via the Android permissions system.
Recent versions of Android (6.0 and higher) organize individual

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

IMC 19, October 21-23, 2019, Amsterdam, Netherlands

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6948-0/19/10.

https://doi.org/10.1145/3355369.3355584

permissions into groups, such as Storage, Contacts, and Location.
Users are asked to grant or deny a permission for an app at the level
of these groups via a runtime prompt. These prompts are usually
surfaced at the moment when an app needs a permission, and are
therefore made in context.

There are a number of reasons why an app may request per-
missions outside of those needed for its core functionality, such
as for analytics, personalization, testing, performance assessment,
advertising (especially for free apps), or support for (unused) func-
tionality in libraries that the app includes. Prior research has shown
that many mobile apps request potentially unnecessary permissions
[21, 27, 29] or permissions that are not directly related to their core
functionality [2, 8, 17, 24, 28, 35], or use permissions in unexpected
ways [21]. This has also been reported by the press [12, 33, 37]. Fur-
thermore, several studies have documented user frustration with
what is viewed as unnecessary permission requests [11, 18, 34, 35]
and how this can lead to a feeling of erosion of privacy [10, 12].

Permission usage can differ greatly, as mobile-app developers
comprise a large community with varying experience and disparate
working environments. A 2018 survey that reached over 40,000 de-
velopers from 160 countries, showed that 49% had less than 5 years
experience and 40% worked for organizations with less than 50 em-
ployees [9]. Small- to medium-sized businesses, or businesses with
limited experience, may be less likely to have privacy experts on
their teams, or understand the tradeoffs of designing with privacy
in mind [7]. For example, well meaning developers that include
third-party libraries in their code, may not realize that their app’s
manifest need not request all the permissions requested by a library,
and may be unaware of the privacy implications of different per-
mission requests. Indeed, the study in [19] showed that developers
mostly use the default configuration of ad libraries, choose libraries
based on popularity and ease-of-use rather than risk assessment,
and feel themselves unable to address the risks. Our aim is to help
such developers become more privacy-aware in their handling of
app permissions.

Developers who are aware of how their users perceive exces-
sive permission requests may be motivated to refrain from using
permissions that aren’t strictly needed, e.g., for the sake of their
reputation. A perusal of app reviews can reveal comments about
invasive and unnecessary permissions. Beyond complaints in app
reviews, there are other reasons why a developer may remove a
previously requested permission, including: (i) a change in a library
they use; (ii) an update to the APIs associated with a permission
such that the permission is no longer required; (iii) a change in the
app functionality; (iv) Google’s developer outreach efforts [4]; and
(v) in response to negative press articles [37].

Uncovering whether a permission request is necessary or not,
with certainty, has proved challenging; even powerful techniques
like static and dynamic analysis methods do not offer comprehen-
sive answers [25]. For instance, dynamic analysis has code coverage

https://doi.org/10.1145/3355369.3355584
https://doi.org/10.1145/3355369.3355584

IMC ’19, October 21-23, 2019, Amsterdam, Netherlands

issues, and static analysis cannot examine code downloaded dur-
ing runtime. Thus, the decision as to whether or not to ask for a
permission should ultimately be left up to each developer.

Our first contribution is an automated algorithmic approach that
uncovers situations in which there is a significant chance a per-
mission request is unnecessary. We inform developers via a nudge.
Nudges are a well-known technique from behavioral economics
which have been used in many contexts to encourage positive
behavior without being punitive [32]. Recently researchers have
started studying nudges surfaced to users to assist them with deci-
sion making [3, 18]. We focus on nudges that target developers.

To incentivize developers to act on our nudge, we employ the
following metric. For a given app, we let the developer know when
other apps with very similar functionality refrain from requesting
a particular permission. For each specific app, we compute a ‘peer
group’ of functionally-similar apps, automatically determining sim-
ilarity from textual app descriptions and Google Play user-behavior
data (as described in Section 2.2). If a specific app requests a per-
mission that nearly none of its peers request, then we inform the
developer of this and also remind the developer of research show-
ing that users are more likely to select apps that request fewer
permissions, when given a choice [15].

Previous research studies have explored other ways to give de-
velopers privacy related feedback, such as giving apps privacy
grades [23], giving privacy policies grades [31, 36], or providing
privacy risk metrics on public websites [6, 26]. We chose to explore
giving developers feedback via the tools they use to create and
manage their apps, such as Android Studio, Play Console, GitHub,
and the Gradle build system, to name just a few. These tools provide
opportunities to surface nudges. We deployed our privacy warning
in August 2017 as part of the Pre-Launch Report shown in the Play
Console.

Our second contribution is an assessment on the effectiveness of
our nudge. After the live deployment of the nudge, we observed that
59% of apps who received a warning did indeed remove permissions.
These removals occurred across all app categories, all app popularity
levels, and over a broad set of permission types. This demonstrates
developers’ willingness to remove permissions when it is pointed
out to them. We show that the removal of these permission requests,
in aggregate, affected over 55 billion app installs. We also show that
the existing permission redaction activity that happens for other
reasons is significantly boosted by our warnings.

Our warning is one component of Google’s larger strategy to
protect users and help developers achieve good security and privacy
practices. One component focuses on device security, with services
such as Play Protect! that offer malware protection services for
Android. A second component focuses on robust enforcement of
Google Play’s user data policies, which require developers to pro-
vide clear notice and control over collection of data in their apps,
as well as recent policy changes further limiting developers’ ability
to request access to certain permissions. For instance, Google Play
announced (in October 2018) further limitations of apps’ ability to
request Call Log and SMS permissions on Android devices [30] .
A third component aims at educating developers to adopt better
practices. In addition to our privacy warning, other signals have

!https://www.android.com/play-protect/

S. Peddinti et al.

also been incorporated into the Play Console, such as warnings
that discourage use of HTTP and permanent identifiers. Also, Lint
warnings are surfaced in the Android Studio IDE to alert developers
if their app is using a version of a library that has been identified
by the library developer as a potential source of privacy and/or
security risks [1]. In isolation, each approach has its own benefits
and limitations, yet together they’re all complementary.

2 NUDGING DEVELOPERS

2.1 Our Approach

Developers interact with Google Play via the Play Console [5],
both before and after launching an app. This console includes a
‘Pre-Launch Report’, accessible to developers who submit apps for
testing, that surfaces the results of automated tests on app APKs
(e.g. that identify performance issues and many other things) before
the app is published on Google Play. Our approach to incentivize
developers to avoid requesting permissions that aren’t strictly nec-
essary is to show them a motivating warning in this Pre-Launch
Report.

Consider a developer who asks for a specific permission in their
new app. We compute a set of functionally similar apps and check
if this set of apps also ask for the same specific permission. The
permissions in the set of functionally-similar apps, or peer apps,
provide a baseline for the set of permissions needed for an app, as
well as a baseline for user expectations about which permissions
make sense for the app to request. Hence if nearly all of their
competition does not ask for the same permission, then we let
developer know. We thus make it easier for developers to assess
their needs as compared to their peers. We leave the decision to
the developer as we recognize there may be other specific reasons
for the permission.

Your app is requesting the permission, <permission _name>,
which is used by less than X % of functionally similar apps.

<number> functionally similar apps which initially requested
<permission_name> have stopped requesting it.

Users prefer apps that request fewer permissions and requesting
unnecessary permissions can affect your app’s visibility on
Google Play. If these permissions aren’t necessary, you may be
able to use alternative methods in your app and request fewer
permissions. If they are, we recommend providing an explanation
to users of why you need the permissions. Learn more.

Table 1: Privacy warning shown to developers

The warning message we show developers is depicted in Table 1.
We point out a few properties of this warning. First, developers
can choose to adhere to or ignore it. If a developer ignores the
warning, then it will re-appear in the report for the next version of
their app as long as the conditions for the signal remain true (e.g.
peer groups would be recomputed at that time). Second, we further
motivate developers by reminding them that users prefer apps with
fewer permissions and that the perception of a permission request
being unnecessary could affect their installs. Third, we recommend

https://www.android.com/play-protect/

Reducing Permission Requests in Mobile Apps

providing an explanation for the permission request. Fourth, pa-
rameter X is a design choice that influences how conservative the
warning aims to be. A very small value, such as 1%, ensures that
the developers receiving the warnings are highly unlikely to need
the permission.

2.2 Finding Similar Apps

The simplest approach would be to identify peer groups using
Google Play app categories; but this is too coarse-grained as apps
within the same category can offer very different functionality. For
example, the category ‘Travel and Local” contains navigation apps
but also hotel reservation apps and tour guides. The category ‘Auto’
contains car software as well as apps that help users buy a car.

Another potential method for identifying similar apps could be
based on user behavior while browsing in Google Play. When users
look at a particular app on Google Play, suggestions of other apps
that users may want to install are also shown. When users click on
these suggestions, it may indicate that the user thought the clicked
app is similar or related to the original one they were viewing. A
method based on clustering analysis of these user co-clicks, (called
UBC for user behavior clustering method), iteratively improves over
time. However, the UBC data alone is not sufficient for our task for
a number of reasons. First, the UBC method is optimized to find
interesting suggestions, and not to find functionally-similar apps;
for example, for a game app the UBC method may suggest a game
discussion-forum app, or a game media editor. Second, to model
user preferences, the UBC method favors apps in the same primary
language, designed for the same locale. We do not want to limit our
peer app assessment by language since app functionality is often
independent of language. For example, the peer group of a French
email app could include a Japanese email app. Finally and perhaps
most importantly, the UBC method fails to provide any suggestions
for brand-new apps or very unpopular apps, since Google Play has
no user-behavior data for these cases.

Prior work has suggested analyzing the app description text via
LDA analysis to identify apps with similar functionality [14, 16].
Our approach follows this direction but, as explained below, we use
a different model and supplement the basic app descriptions with
user co-click data. Further below we compare our approach to a
pure LDA-based one.

Design of our App Peer Group Mechanism: To determine
when to surface a nudge in a Pre-Launch Report, we must be able
to compute app peer groups for all apps, including brand-new apps,
unpopular ones, and do so for apps in any language. We have
developed a deep-learning algorithm that creates an embedding
based on word2vec for each app, thereby mapping apps into a
high-dimensional space where closeness in distance corresponds
to similarity [13, 20].

The key input data used to compute our embedding is textual,
notably the apps’ description, as well as the app name and category.
If needed, this text is translated to English, to handle apps in any
of the 100+ languages supported by Google Translate. In addition
to text, the embedding is also computed based on UBC data; this
is done by incorporating the top 10 UBC-related apps for each
app, unless no such UBC-related peers are available. We note that
the UBC data we work with is highly aggregated and contains no

IMC ’19, October 21-23, 2019, Amsterdam, Netherlands

personal information. The data is in the form of app pairs with an
accompanying probability on the likelihood that the second app
would be clicked if the first is already shown.

The training data contains several rows of text for each app
and are created as follows. Each sentence from the app description
constitutes one row. The app title and category each form a separate
row. Each app is given a unique identifier token (a unique word) that
is prepended to all rows associated with that app. To incorporate
the UBC ranking data, we include a single row with the identifier
tokens of the top 10 apps considered most related by the UBC
algorithm. Each English word is also a unique token. Thus, the
complete set of training-data tokens includes both unique tokens
representing apps, as well as vocabulary tokens for the words in
the app descriptions, titles, and categories.

The training data is used to train a skip-gram language model,
which uses a log-linear classifier with softmax to estimate the proba-
bility distribution of tokens that come within a certain range before
and after the current token [20]. Thus, the input of the model is a
token and the output is the probability distribution of the context
in the form of surrounding words. Each token is represented by an
n-dimensional vector and all these vectors comprise the projection
matrix with v rows and n columns, where v is the vocabulary size
(number of all tokens). For an input word w, the probability of a
word ¢ being in the context (surrounding words) decreases expo-
nentially fast with cosine distance of w and c. A univariate model
defines the probability of several context words as the product of
the individual probabilities of these words. The training optimizes
the vectors so that the product of all the context probabilities is
maximized for the training data. Thus, words that are often located
near each other end up with vectors that are close to each other
according to the cosine distance. Similarly, vectors of closely related
apps end up close to each other. For example, chess and checkers
apps will be close to each other in the vector space because words
such as board, game, and piece co-occur near each other and are
also close to both app tokens in the vector space.

We use 200-dimensional vectors to represent all Android app
tokens and also other tokens in the training data (words from
descriptions, titles, and categories). The vocabulary size v (number
of tokens) is in the millions. Our models are trained using stochastic
gradient descent. To make the training of an embedding model for
millions of tokens feasible, we use negative sampling as described
in [20].

To measure the similarity between two apps, we use the cosine
distance of their app vectors from the word2vec algorithm. The
peers of an app are its nearest neighbors based on this distance. For
example, with our model, the closest peer of Gmail is another email
app with cosine distance of 0.41. Weakly related Android apps have
greater cosine distances from Gmail: such as 0.68 for a messenger
app, 0.80 for an internet browser, and 0.85 for a chess app. Our peer
identification algorithm works well across all app popularity levels
as the distribution of peer similarity scores is very similar.

We believe that developers have little motivation to circumvent
our system. Because our warning signal is shown only to the devel-
oper, there is no public effect and thus no impact to their reputation.
In theory, developers could attempt to influence the warning by
creating a large number of apps, each of which asks for all the
permissions they want, and has similar text descriptions. That said,

IMC ’19, October 21-23, 2019, Amsterdam, Netherlands

developers would not know a priori how many such apps are re-
quired to affect our algorithm.

Evaluating App Similarity within our Peer Groups. We
compare our mechanism against two approaches: the UBC algo-
rithm alone and a Latent Dirichlet Allocation (LDA) using 50 topics
on normalized app descriptions [14]. We conducted two rounds
of evaluation. First, we had 17 human evaluators participate in a
survey. We split apps into 5 buckets based on the number of in-
stalls, and then select several apps from each bucket. This ensures
that our analysis provides feedback across app popularity levels.
For each selected app, we chose the top 3 peers from each of the
3 approaches (if available), removing duplicates. These at most 9
peers for each app are then randomly shuffled and presented to
raters without any information about the source model or the orig-
inal rank of each peer. Raters are shown a pair of apps and asked
how similar they think the apps are, on a scale from 1 (not related)
to 4 (nearly identical). We normalize the feedback values to [0, 1]
with higher values indicating higher similarity. These evaluators
rated over 400 app pairs. Each pair of apps was rated by at least
3 evaluators. Our evaluators were all Google employees recruited
via internal advertisement, which resulted in employees from nu-
merous groups. They were told the purpose of the evaluation - to
compare the quality of app similarity algorithms - but were not told
how they work and had no way to know which algorithm produced
which pair of apps presented. The evaluators were told they could
use any publicly information available on Google Play to inform
their decision about the similarity of the presented app pairs.

Note that the app pairs should all have high similarity since we
pair each app with one that was a top-3 match from one of the
models. The average app similarity for app pairs proposed by our
word2vec-based algorithm was 0.81. Our algorithm significantly
outperformed the LDA method that received an average app simi-
larity of 0.51. The UBC method received an average similarity of
0.79 which is comparable to our approach, however, as explained
earlier, it has much lower coverage ; in particular, it didn’t provide
any suggestions for approximately one in ten of the apps in our
test set (because they were either new or unpopular).

To further compare our proposed model with UBC method, we
conducted a second round of evaluation. For each app selected we
picked the top 3 peers plus 2 other peers randomly selected from
the closest 30 peers (if available), from each method, resulting in at
most 10 app pairs. Similar to the earlier setup, these app pairs are
shuffled and presented to the evaluators, who are asked to rate how
similar the two apps are on a scale from 1 to 4. To increase the app
coverage, each app pair is only rated by 1 evaluator in this round.
Our evaluators rated over 1450 app pairs. The average similarity
based on the normalized feedback values is 0.82 for our proposed
model, compared to 0.66 for the UBC model. This further re-enforces
that our deep-learning algorithm outperforms prior approaches.
Beyond using a powerful approach such as deep-learning, it is
intuitive that our approach works best because LDA relies solely on
text descriptions and the UBC approach relies solely on co-clicks,
whereas our approach uses both of these input signals.

S. Peddinti et al.

3 EFFECTIVENESS OF NUDGES

Using our algorithm above to detect similar apps, we implemented
the privacy nudge described in Section 2.1 for Android Platform
related permissions and released it in the Play Pre-Launch Report,
along with a blog post, in August 2017 [22]. We imposed a cutoff on
the peer similarity scores to produce between 150-200 high quality
peers per app. The distribution of peers per app is shown in Figure 1,
and as is seen, a very small fraction of apps have less than 190 peers.

—

200-

of Peers
1 » o
e <o ©

—_
(e}
o

150-
0 25 50 75 100
% of Apps
Figure 1: Number of peers per app

— N w »

% of Apps that could receive warnings*

o

0 1 2 3 4 5
Warning Threshold (X% of peers)
Figure 2: Percentage of apps that could receive privacy warn-
ings at different thresholds (*only apps with peers and cer-
tain minimum installs are considered)

To guide the choice of the threshold (‘X’% of peers not using a
permission) that determines when to raise the privacy warning, we
estimated the percentage of apps with peers that could receive a
warning at different thresholds between 1% to 5%. Note that not
all apps are included in the calculation of peers sets; for instance,
we require an app to have a minimum number of installs to be
included. The results are outlined in Figure 2. We initially elected
to use a highly conservative threshold of ‘less than 1%’ of peer apps
using a permission to raise the privacy warning. We opted for this
conservative threshold for two reasons. First this ensures that each
warning signal has high fidelity, i.e. developers are nudged only
when we are quite confident that their behavior is significantly
out of the ordinary. Second, we elected to start conservatively to

Reducing Permission Requests in Mobile Apps

2000-

1000-

Number of Warnings
g g
e ° e
A,
o)
e I—
Ac,
Co
Yy
Vs I

IMC ’19, October 21-23, 2019, Amsterdam, Netherlands

& ‘ © & o < o D ‘ »
& A Y & Y /:
S ¢ & s5é sF 88 & s Hssés
g o & &5 ST & O % g F T L8 S5

Q' F & & 528 985§ & & K § & O go 9o
NS 7 ;& 7 N9 7 S S Y9 §F o S 8N & IV 9N
« &/ Q & & AR Q 9’0 O O O < 7 S [¢] &
¢ ¢ I & & sYF ex & & g & ¢ < &

& ¢ 8 & ¢ T g8 & s $

S %) &

Android Platform Permissions (android.permission.)

Figure 3: Permissions warned (20 permissions with more than 100 warnings each are shown)

explore whether developers would respond to such a warning (we
wanted to avoid de-sensitizing them). Based on positive developer
reaction, later in September 2018, we relaxed the threshold to 3%.
Since August 2017, every new test APK submission to Google Play,
among the millions participating in our testing framework, has been
evaluated by our system. We evaluate our threshold’s effectiveness
on an ongoing basis and may consider raising the threshold further
in the future.

Overall Response. Between August 2017 and Feb 2019 (in-
clusive), privacy warnings were raised for 28,446 permissions re-
quested by 19,215 apps, which came from 15,645 developers. Among
the warned apps, we observed that 11,289 apps (59%) apps, devel-
oped by 9313 developers, removed at least one permission after
seeing our warnings. If we look at individual permissions, of the
28,446 warned permissions, only 5,725 (20%) were removed. Interest-
ingly we observed that developers of warned apps removed many
permissions they had not been explicitly warned about. In particu-
lar, our 19,215 warned apps removed 45,866 unwarned permissions.
This hints that our warning may have encouraged developers to re-
visit their decisions about permissions beyond the one(s) they were
warned about. The total number of permissions removed by these
apps was 51,591 including both warned and unwarned permissions.

Response by Permission Type. Figure 3 shows a breakdown
of the number of warnings surfaced for 20 example Android Plat-
form permissions. Some of these permissions were deprecated in
recent Android SDK versions, but we include them as some apps
can be targeting older Android SDKs. These permissions had at
least a 100 warnings each. While overall 20% of individual per-
mission warnings were adhered to, there was variation across the
permissions: 7% of apps receiving warnings for Camera removed
the permission, where as 65% of them receiving a warning for Get
Accounts removed the permission. Because our warnings are soft,
developers can elect to keep a permission—perhaps rightly so, if
their needs do not fully correspond to those of their peers.

In addition to these warned permission removals, app developers
have removed many more unwarned permissions. These unwarned
removals are much more prominent across popular permissions,
such as Location and Storage, which naturally generate fewer warn-
ings. For instance, Read External Storage was only warned 29 times
but has seen 1374 removals across the 19K apps. It could be that
developers realize they don’t always need these, and a warning
for any permission could serve as a reminder. Many permissions

beyond the 20 presented here, including those defined by other
apps or services to control access to their resources, were removed
by developers after they saw our privacy warnings. Note that when
developers remove a permission they were not warned about, it
does not remove our warning; hence the behavior of removing
unwarned permissions should not be interpreted as a way to try to
remove our warning. All these (non) platform permission removals
sum up to the 51K removals reported earlier.

5000-
©
S 4000-
o
5
& 3000-
ks
5 2000-
o
5
L1
0.
ESSEEICISSESSISELELES
£ &.& LTS IFFOoFTS SENS
TN IS LS ITSRIVTIITHN KL
F eSS E P50
IS TSI TE o
& TSI Fs L
% SO SR SIS ~ o
FLo &8 §
&8
Play Store Category

Figure 4: Categories and their permission removals

Response by App Category and Popularity. We now exam-
ine whether these removals are occurring only in a niche portion
of Google Play or more broadly. We first look at Google Play cate-
gories of the apps who remove permissions. We observe removals
in all categories. For example, as shown in Figure 4, within the top
20 categories, we observe between 1000-5000 permission removals
per category. Hence developers across a broad set of app categories
are responsive to our nudges. Next we look at the popularity of
the 11.3K responsive apps, shown in Table 2. We notice that apps
from all popularity levels have received warnings and removed
permissions. These observations are encouraging, as they indicate
that permissions are being removed broadly from many different
kinds of apps across the popularity spectrum.

Estimating Impact. Ideally we’d like to assess the impact of
these permission removals on the number of users affected. We can-
not directly measure this. Our data only includes app descriptions,
metadata and install counts; we have no user or device level data,

IMC ’19, October 21-23, 2019, Amsterdam, Netherlands

Installs per app | Number of apps that

removed permissions
< 10K 3887
10K-50K 2555
50K-100K 893
100K-1M 2326
1IM-5M 912
5M-10M 278
10M-100M 371
100M+ 67

Table 2: Popularity of responsive warned apps

thus we cannot know, for example, how many of these responsive
apps may be installed on the same device. However, we can approx-
imate the impact via a lower bound on the number of installs as
follows. Table 2 shows that there are 67 warned apps with more
than 100 million installs each, thus a permission removal by each
of these apps improves privacy for at least 100 million devices. This
is clearly an underestimation as there are a few hundred other apps
each affecting 10s of millions of devices. We can also assess the
cumulative impact by looking at the number of installs of an app.
For this estimate, we assume that all users update to the latest app
version. For each app in this table, we count its number of installs;
summing these counts we find that the 51K permission removals,
resulting from our warnings, impacted more that 55 billion app
installs in aggregate.

100-

% of Removals
n ~
i a

n
o

0-
NUOVDOOANDDIINVONDOA DDON LD
\\\\\\\\\\c\,q,q,q,q,qz?

Versions Taken to Remove Warned Permissions

Figure 5: Versions taken to remove permissions

Time/Versions Taken to Respond. For the 5725 permissions
that were warned and later removed, we analyzed the time taken
by the developer to remove the permissions. For computing these
metrics, we consider the earliest version of the app that was flagged
by our privacy warning and the first version released later without
the warned permission. We found that about 5% of the removals
happened within a day of surfacing the warning, and 50% occurred
within a 3 month period. Since permission removals require an
app version update, and developers each have their own app de-
velopment cycle, it is natural that the time to respond would vary
significantly. We also looked at the number of app versions taken
to remove the warned permission, and Figure 5 shows the CDF
plot. 25% of removals happen in the immediate version release, and
70% take less than 10 version releases. Many developers have more
than one app version lined up for release next, and the permis-
sion removal change may be included in any one of these release
versions.

S. Peddinti et al.

Supplementary Effect. Many developers publish more than
one app, and so we investigate if showing a warning across one
of the apps would induce changes across other unwarned apps
published by the same developer. Our analysis showed that of
the 15,645 developers who saw our permission warnings, 3758
developers revisited permissions requested by their unwarned apps.
These developers removed an additional 60,993 permissions from
18,997 apps they published. These results indicate that our privacy
warning, though being shown conservatively due to the chosen
thresholds, may be influencing developer behavior more widely
than the scope of our warnings.

4 DO OUR WARNINGS CHANGE DEVELOPER
BEHAVIOR?

There can be many reasons why a developer may remove a per-
mission (see Section 1). To try to understand if developers remove
permissions due to our warning or due to other reasons, we com-
pared the permission removal statistics of our warned apps to that
of apps in two control groups.

e Warned Apps: The 19K apps that received our warnings.

e Control Group-A: Apps for which our metrics did not de-
tect any unnecessary permissions, and therefore did not
receive any warnings.

e Control Group-B: Apps for which our metrics detected un-
necessary permission requests, but which were not notified
since their developers do not receive the Pre-Launch Report

All 3 groups have similar proportions of (un)popular apps. Con-
trol group-A has more than a million apps. This group could be
removing permissions for any of the 5 reasons we outlined in Sec-
tion. 1. Note that any changes in APIs, or in a library, would require
all updating apps to incorporate these changes. Since group-A is
removing permissions not due to anomalous permissions (as per
our definition), we view them as a proxy for permission removal
activity that occurs for other reasons. We observed that 9% of apps
in Control Group-A remove permissions. This hints that possibly 9%
of the apps in our warned app set remove permissions for reasons
not related to our warning.

Control group-B only contains 12K apps, that exhibit the same
anomalous permissions behavior as our warned apps, however they
do not receive a warning. In this group, 45% of the apps removed
permissions. Since this is larger than 9%, it could be that developers
in this group are more sensitive to negative press, or may be aware
of the broad issue surrounding potentially unnecessary permission
requests. While we cannot confirm that, we note that nevertheless,
our warning boosts the permission removal activity an additional
31% beyond what these developers do on their own.

We also point out that Group-A removed on average 0.3 permis-
sions/app, Group-B removed 1.7 permissions/app and our warned
apps removed 2.7 permissions per app. So even compared to other
apps with similar anomalous permission behavior, our warning
appears to increase the number of permissions removed per app by
60%.

Figure 6 shows the percentage of apps that removed permissions
across the three app groups, for 20 permissions. These percentages
for each group are calculated based on the number of apps that

Reducing Permission Requests in Mobile Apps

I3 50- Legend

S;‘ Control Group-A
%5 40 Control Group-B
o 30- B Warned Apps

&

*qc-; 20

ot

9]

[«

IMC ’19, October 21-23, 2019, Amsterdam, Netherlands

e .

& 9 / / /. /
X <] N Lo K S/ S NS S Q8 0o K W W
[¢] Q 2 / 7 / 2 (¢] Q 9
g & 5 FF S TS & E v S L ESSS
hS M 7 S 7 AR Nl o @ o3 9 S N & &N /N
& ¢ g & ¢ g 8 F ¢ g &8 & &
< X & X/ & % S
S & ¢ § o & g < & 9§ $
S S A3 &

Android Platform Permissions (android.permission.*)

Figure 6: Percentage of apps that removed permissions (warned apps and control groups; 20 permissions shown)

request the permission in that group. As is clearly seen, many more
apps in the warned group removed each permission type compared
to apps in either of the control groups. A Kruskal-Wallis test con-
ducted on the number of apps that have removed each of the 60
platform permissions across the three groups indicates that the
differences are statistically significant (H = 51.2,p < .01).? Further-
more, the Mann-Whitney U tests show that the pairwise differences
between the warned apps and the two other control groups (A and
B) are also significant (U = 854,p < .01 for the warned apps vs.
control group A, and U = 1212,p < .01 for the warned apps vs.
control group B, after applying the Bonferroni correction). This
evidence indicates that our privacy warning is effective in nudging
developers towards removing more permissions than they would
without the warning, and this influence extends beyond the specific
permissions warned about, thereby boosting the overall redaction
activity both directly and indirectly.

5 LIMITATIONS

Although changes due to our warning affect billions of app installs,
we acknowledge that our feedback signal only reaches a small por-
tion of the overall Google Play ecosystem in terms of the number
of apps affected. This is because our conservative threshold dis-
courages the presentation of warnings that we are not strongly
confident about. This behavior also indirectly limits false positives;
indeed, we view the high developer response as indicative that the
signal is of good fidelity. If we showed warnings too frequently, or
with many false positives, developers may become desensitized and
ignore them.

As mentioned in Section 2.1, when the majority of apps in the
peer set do request the same permission as a specific developer,
we interpret this as an indication that the permission is genuinely
needed by this type of app. If it should arise that more than 97% of
the apps in a peer set are simultaneously requesting an unnecessary
permission, then our approach does not flag these. Instead dynamic
analysis is more promising for such cases.

6 CONCLUSIONS AND FUTURE WORK

We showed that even with a conservative approach (3% threshold)
to surfacing privacy nudges, our deep learning approach is able to

2The null hypothesis is that the number of apps that remove each of the 60 platform
permissions across the three groups come from the same distribution.

influence a significant number of apps towards the more privacy-
friendly behavior of refraining from requesting unnecessary per-
missions. Overall, 59% of warned apps adhered to our warnings
by removing permission requests. Moreover, this occurred not just
for a niche group of developers or apps, but rather broadly across
Google Play—as evidenced by removals from all app categories,
across all popularity levels and many permission types. Our nudges
encourage additional permission removals beyond the ones we
warn about, for example, we observe a boost of 60% in the number
of permissions removed per app, as compared to a control group
that captures normal background permission removal activity due
to other reasons.

Since developers are responsive to nudges, we believe it is promis-
ing to explore the design of other nudges in future work. Warnings
could be surfaced in other developer tools such as Android Studio,
Gradle, and more. It may be worthwhile to explore nudging SDK and
library developers, as prior work has shown that a small number
of libraries (~30) are used by the vast majority of apps [8]. Find-
ing ways to incentivize this group of developers is a challenge but
would have significant impact. To better understand why interven-
tions such ours have the intended effect, controlled experimentation
could be used to compare multiple variations of the warnings. Sur-
veying developers as to why and when they remove permissions,
and to understand their response to our warnings, could help to
further clarify the effectiveness of nudges such as ours - especially
in terms of their supplemental effects.

7 ACKNOWLEDGEMENTS

Development and deployment of the privacy warning involved
many people. We would like to thank Qiang Yan, Fergus Hurley,
Bruno Buss, Olivier Gaillard, Marcin Oczeretko, and Richard Gay-
wood.

REFERENCES

[1] 2019. Android Studio Project Site: Android Lint Checks. http://tools.android.
com/tips/lint-checks. (2019).

[2] Y. Agarwal and M. Hall. 2013. ProtectMyPrivacy: detecting and mitigating privacy
leaks on i0S devices using crowdsourcing. In Proceedings of MobiSys.

[3] Hazim Almuhimedi, Florian Schaub, Norman Sadeh, Idris Adjerid, Alessandro
Acquisti, Joshua Gluck, Lorrie Faith Cranor, and Yuvraj Agarwal. 2015. Your
Location Has Been Shared 5,398 Times!: A Field Study on Mobile App Privacy
Nudging. In Proceedings of CHL. ACM.

http://tools.android.com/tips/lint-checks
http://tools.android.com/tips/lint-checks

IMC ’19, October 21-23, 2019, Amsterdam, Netherlands

[10]

[11

[12]

[13]

[14

[15]

[16]

[17]

[18]

[19]

[20

[21]

[22

[23]

[24]

[25]

[26]

[27]

[28]

Android Developers 2019. App permissions best practices. https://developer.
android.com/training/articles/user-data-permissions.html?hl=en. (2019).
Android Developers [2019]. Google Play Console. https://developer.android.com/
distribute/console/. ([2019]).

AppCensus 2019. AppCensus: Learn the privacy cost of free apps. https://www.
appcensus.mobi/. (2019).

Rebecca Balebako, Abigail Marsh, Jialiu Lin, Jason I Hong, and Lorrie Faith
Cranor. 2014. The privacy and security behaviors of smartphone app developers.
Workshop on Usable Security (USEC) (2014).

Saksham Chitkara, Nishad Gothoskar, Suhas Harish, Jason I. Hong, and Yuvraj
Agarwal. 2017. Does This App Really Need My Location?: Context-Aware Privacy
Management for Smartphones. Proc. ACM Interact. Mob. Wearable Ubiquitous
Technol. 1, 3 (Sept. 2017).

Developer Economics 2019. Slash Data: Developer Economics 2018 Survey.
https://graph.developereconomics.com/?survey=de15. (2019).

Federal Trade Commission 2013, Android Flashlight
App Developer Settles FTC Charges It Deceived Con-
sumers. https://www.ftc.gov/news-events/press-releases/2013/12/
android-flashlight-app-developer-settles-ftc- charges-it-deceived. (2013).
Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner.
2011. Android Permissions Demystified. In Proceedings of the 18th ACM Conference
on Computer and Communications Security (CCS). ACM, 12.

Tom Fox-Brewster. 2014. Check the permissions: Android flashlight apps crit-
icised over privacy. https://www.theguardian.com/technology/2014/oct/03/
android-flashlight-apps-permissions-privacy. The Guardian (Oct. 2014).

Tan Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT
Press. http://www.deeplearningbook.org.

Alessandra Gorla, Ilaria Tavecchia, Florian Gross, and Andreas Zeller. 2014.
Checking App Behavior Against App Descriptions. In Proceedings of the 36th
International Conference on Software Engineering (ICSE). ACM, 11.

Marian Harbach, Markus Hettig, Susanne Weber, and Matthew Smith. 2014.
Using Personal Examples to Improve Risk Communication for Security & Privacy
Decisions. In Proceedings of the 32Nd Annual ACM Conference on Human Factors
in Computing Systems (CHI). ACM, 10.

Suman Jana, Ulfar Erlingsson, and Iulia Ion. 2015. Apples and Oranges: Detecting
Least-Privilege Group Analysis. CoRR abs/1510.07308 (2015). arXiv:1510.07308
http://arxiv.org/abs/1510.07308

Jialiu Lin, Shahriyar Amini, Jason I. Hong, Norman Sadeh, Janne Lindqvist, and
Joy Zhang. 2012. Expectation and Purpose: Understanding Users’ Mental Models
of Mobile App Privacy Through Crowdsourcing. In Proceedings of the 2012 ACM
Conference on Ubiquitous Computing (UbiComp). ACM, 10.

Bin Liu, Mads Schaarup Andersen, Florian Schaub, Hazim Almuhimedi,
Shikun (Aerin) Zhang, Norman Sadeh, Yuvraj Agarwal, and Alessandro Acquisti.
2016. Follow My Recommendations: A Personalized Privacy Assistant for Mobile
App Permissions. In Twelfth Symposium on Usable Privacy and Security (SOUPS).
USENIX Association.

Abraham H. Mhaidli, Yixin Zou, and Florian Schaub. 2019. "We Can’t Live Without
Them!" App Developers’ Adoption of Ad Networks and Their Considerations of
Consumer Risks. In Fifteenth Symposium on Usable Privacy and Security (SOUPS
2019). USENIX Association.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
Estimation of Word Representations in Vector Space. CoRR abs/1301.3781 (2013).
arXiv:1301.3781 http://arxiv.org/abs/1301.3781

Elleen Pan, Jingjing Ren, Martina Lindorfer, Christo Wilson, and David R.
Choffnes. 2018. Panoptispy: Characterizing Audio and Video Exfiltration from
Android Applications. Proceedings of Privacy Enhancing Technologies Symposium
(PETS) (2018).

Martin Pelikan, Giles Hogben, and Ulfar Erlingsson. 2017. Identifying Intrusive
Mobile Apps Using Peer Group Analysis. https://security.googleblog.com/2017/
07/identifying-intrusive-mobile-apps-using.html. (2017).

PrivacyGrade 2019. PrivacyGrade: Grading The Privacy Of Smartphone Apps.
http://privacygrade.org/. (2019).

Zhengyang Qu, Vaibhav Rastogi, Xinyi Zhang, Yan Chen, Tiantian Zhu, and
Zhong Chen. 2014. AutoCog: Measuring the Description-to-permission Fidelity
in Android Applications. Proceedings of the ACM Conference on Computer and
Communications Security (CCS) (November 2014).

A. Razaghpanah, R. Nithyanand, N. Vallina-Rodriguez, S. Sundaresan, M. Allman,
C. Kreibich, and P. Gill. 2018. Apps, Trackers, Privacy and Regulators: A Mobile
Study of the Global Tracking Ecosystem. In Proceedings of NDSS.

ReCon 2019. ReCon: Bug Fixes, Improvements, ..., and Privacy Leaks: A Longi-
tudinal Study of PII Leaks Across Android App Versions. https://recon.meddle.
mobi/appversions/index.html. (2019).

Jingjing Ren, Martina Lindorfer, Daniel] Dubois, Ashwin Rao, David Choffnes,
and Narseo Vallina-Rodriguez. 2018. Bug Fixes, Improvements, and Privacy Leaks.
A Longitudinal Study of PII Leaks acorss Android App Versions. In NDSS.

F. Shih, I Liccard, and D. Weitzner. 2015. Privacy tipping points in smartphones
privacy preferences. In ACM CHI.

[29

[30

[31

[33

[34

[35

[36

(37

]

S. Peddinti et al.

Anastasia Shuba, Evita bakopoulou, and Athina Markopoulou. 2018. Privacy
Leak Classification on Mobile Devies. In Workshop on Signal Processing Advances
in Wireless Communication (SPAWC). IEEE.

Ben Smith. 2018. Project Strobe: Protecting your data, improving our third-party
APIs, and sunsetting consumer Google+. https://www.blog.google/technology/
safety-security/project-strobe/. (2018).

Welderufael B. Tesfay, Peter Hofmann, Toru Nakamura, Shinsaku Kiyomoto,
and Jetzabel Serna. 2018. PrivacyGuide: Towards an Implementation of the EU
GDPR on Internet Privacy Policy Evaluation. In Proceedings of the Fourth ACM
International Workshop on Security and Privacy Analytics (IWSPA ’18). ACM, New
York, NY, USA, 15-21.

Richard H. Thaler and Cass R. Sunstein. 2008. Nudge - Improving Decisions About
Health, Wealth, and Happiness.

New York Times. 2016. Keep Tabs on Android App Permis-
sions. https://www.nytimes.com/2016/10/06/technology/personaltech/
keep-tabs-on-android-app- permissions.html. (October 2016).

Lynn Tsai, Primal Wijesekera, Joel Reardon, Irwin Reyes, Serge Egelman, David
Wagner, Nathan Good, and Jung-Wei Chen. 2017. Turtle Guard: Helping Android
Users Apply Contextual Privacy Preferences. In Symposium on Usable Privacy
and Security (SOUPS).

Timothy Vidas, Nicolas Christin, and Lorrie Cranor. 2011. Curbing android
permission creep. In Proceedings of the Web, Vol. 2. 91-96.

Shomir Wilson, Florian Schaub, Aswarth Abhilash Dara, Frederick Liu, Sushain
Cherivirala, Pedro Giovanni Leon, Mads Schaarup Andersen, Sebastian Zimmeck,
Kanthashree Mysore Sathyendra, N. Cameron Russell, Thomas B. Norton, Eduard
Hovy, Joel Reidenberg, and Norman Sadeh. 2016. The Creation and Analysis of a
Website Privacy Policy Corpus. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers). Association
for Computational Linguistics, 1330-1340.

Wired. 2018. App permissions don’t tell us nearly enough about our apps.
https:https://www.wired.com/story/app-permissions. (April 2018).

https://developer.android.com/training/articles/user-data-permissions.html?hl=en
https://developer.android.com/training/articles/user-data-permissions.html?hl=en
https://developer.android.com/distribute/console/
https://developer.android.com/distribute/console/
https://www.appcensus.mobi/
https://www.appcensus.mobi/
https://graph.developereconomics.com/?survey=de15
https://www.ftc.gov/news-events/press-releases/2013/12/android-flashlight-app-developer-settles-ftc-charges-it-deceived
https://www.ftc.gov/news-events/press-releases/2013/12/android-flashlight-app-developer-settles-ftc-charges-it-deceived
https://www.theguardian.com/technology/2014/oct/03/android-flashlight-apps-permissions-privacy
https://www.theguardian.com/technology/2014/oct/03/android-flashlight-apps-permissions-privacy
http://www.deeplearningbook.org
http://arxiv.org/abs/1510.07308
http://arxiv.org/abs/1510.07308
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
https://security.googleblog.com/2017/07/identifying-intrusive-mobile-apps-using.html
https://security.googleblog.com/2017/07/identifying-intrusive-mobile-apps-using.html
http://privacygrade.org/
https://recon.meddle.mobi/appversions/index.html
https://recon.meddle.mobi/appversions/index.html
https://www.blog.google/technology/safety-security/project-strobe/
https://www.blog.google/technology/safety-security/project-strobe/
https://www.nytimes.com/2016/10/06/technology/personaltech/keep-tabs-on-android-app-permissions.html
https://www.nytimes.com/2016/10/06/technology/personaltech/keep-tabs-on-android-app-permissions.html
https:https://www.wired.com/story/app-permissions

	Abstract
	1 Introduction
	2 Nudging Developers
	2.1 Our Approach
	2.2 Finding Similar Apps

	3 Effectiveness of Nudges
	4 Do our Warnings Change Developer Behavior?
	5 Limitations
	6 Conclusions and Future Work
	7 Acknowledgements
	References

