
automemcpy: A Framework for Automatic
Generation of Fundamental Memory Operations∗

Guillaume Chatelet
Google Research

France
gchatelet@google.com

Chris Kennelly
Google
USA

ckennelly@google.com

Sam (Likun) Xi
Google
USA

xyzsam@google.com

Ondrej Sykora
Google Research

France
ondrasej@google.com

Clément Courbet
Google Research

France
courbet@google.com

Xinliang David Li
Google
USA

davidxl@google.com

Bruno De Backer
Google Research

France
bdb@google.com

Abstract
Memory manipulation primitives (memcpy, memset, memcmp)
are used by virtually every application, from high perfor-
mance computing to user interfaces. They often consume a
significant portion of CPU cycles. Because they are so ubiq-
uitous and critical, they are provided by language runtimes
and in particular by libc, the C standard library. These im-
plementations are heavily optimized, typically written in
hand-tuned assembly for each target architecture.

In this article, we propose a principled alternative to hand-
tuning these functions: (1) we profile the calls to these func-
tions in their production environment and use this data to
drive the important high-level algorithmic decisions, (2) we
use a high-level language for the implementation, delegate
the job of tuning the generated code to the compiler, and (3)
we use constraint programming and automatic benchmarks
to select the optimal high-level structure of the functions.
We compile our memfunctions implementations using

the same compiler toolchain that we use for application
code, which allows leveraging the compiler further by al-
lowing whole-program optimization. We have evaluated our
approach by applying it to the fleet of one of the largest

∗Our memory function implementations [14], benchmarking methodol-
ogy [11, 13] and raw measurements [10] have been open sourced.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
ISMM ’21, June 22, 2021, Virtual, Canada
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8448-3/21/06.
https://doi.org/10.1145/3459898.3463904

computing enterprises in the world. This work increased the
performance of the fleet by 1%.

CCS Concepts • Software and its engineering → Soft-
ware development techniques; •General and reference
→ Measurement; Performance; Empirical studies; Met-
rics.

Keywords memory functions, C standard library

ACM Reference Format:
Guillaume Chatelet, Chris Kennelly, Sam (Likun) Xi, Ondrej Sykora,
Clément Courbet, Xinliang David Li, and Bruno De Backer. 2021.
automemcpy: A Framework for Automatic Generation of Funda-
mental Memory Operations. In Proceedings of the 2021 ACM SIG-
PLAN International Symposium on Memory Management (ISMM ’21),
June 22, 2021, Virtual, Canada. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3459898.3463904

1 Introduction
Interacting with memory is an essential part of software
development. At the lowest level the two fundamental mem-
ory operations are load and store, but developers frequently
use higher level memory primitives such as initialization,
comparison, and copy. These operations are at the base of
nearly all libraries,1 language run-times,2 and even program-
ming languages constructs.3 They may be customized for
some particular contexts—such as for kernel use or embed-
ded development—but the vast majority of software depends

1e.g., std::string and std::vector in the C++ Standard Template Library.
2Garbage collectors move memory to reduce fragmentation, reflection APIs
rely on run-time type identifier comparison.
3In some C implementations, passing a large struct by value inserts a call
to libc’s memcpy.

https://doi.org/10.1145/3459898.3463904
https://doi.org/10.1145/3459898.3463904

ISMM ’21, June 22, 2021, Virtual, Canada G. Chatelet, C. Kennelly, L. S. Xi, O. Sykora, C. Courbet, X. D. Li, and B. De Backer

Table 1. Overview of memcpy source code language for vari-
ous architectures and libc implementations.

bio
nic

gli
bc

fre
eb
sd

die
tlib
c

uC
lib
c

eg
lib
c

kli
bc

mu
sl

aarch64 asm asm asm - - - - asm
arm asm asm asm - - asm - asm
i386 asm asm asm asm C asm - asm
x86-64 asm asm asm asm asm asm - asm
alpha - asm - - - asm - -
generic - - - - - - C C
ia64 - asm - - asm asm - -
mips - asm asm - - - - -
powerpc - asm asm - C - - -
s390 - asm - - - asm - -
sh - asm - - asm asm - -
sparc32 - asm - asm asm asm - -
sparc64 - asm - asm - asm - -

on their implementations in the C standard library: memset,
memcmp and memcpy4.

In the rest of this paper, we will focus on the optimization
of memcpy as the hottest of the three functions, but the same
approach can be applied to the other two.
As a reminder, memcpy is defined in §7.24.2.1 of the C

standard [21] like so: The memcpy function copies n characters
from the object pointed to by s2 into the object pointed to by
s1. If copying takes place between objects that overlap, the
behavior is undefined.

2 Overview of Current Implementations
2.1 Pervasive Use of Assembly
Memory primitives have been part of the C standard library
for at least three decades. They have seen persistent efforts
to exploit the capabilities (and work around the quirks) of
each architecture as it evolved over time. Developers, who
were typically well-versed in the subtleties of their target
micro-architecture, would choose assembly to obtain the
maximal amount of control on the resulting generated code.
As a result, out of the eight main publicly available libc im-
plementations (see Table 1), all but one use assembly to
implement memcpy. As shown in Table 2, glibc5 alone has six
x86-64 versions of memcpy to exploit different instruction set
extensions such as SSE2, SSE3, AVX, and AVX512.

2.2 Dynamic Loading and Relocation
Standard C libraries are usually provided as shared libraries,
which brings a number of advantages:

• it avoids code duplication—saving disk space and mem-
ory,

4memmove is not considered in this paper as: (1) it requires additional logic
and (2) in our experience, its use is anecdotal compared to memcpy, memcmp
and memset.
5The GNU C library.

Table 2. Binary size of glibc 2.31 memcpy implementations
for x86-64.

Name Size (bytes)
__memcpy_avx512_no_vzeroupper 1855
__memcpy_avx512_unaligned_erms 1248
__memcpy_avx_unaligned_erms 984
__memcpy_sse2_unaligned_erms 765
__memcpy_sse3 10695
__memcpy_sse3_back 10966

• it enables quick updates—this is especially important
for maintenance and security reasons,

• to the developer, it accelerates the compilation process
by reducing link time.

Shared libraries also come with costs:

• Symbols from shared libraries can’t be resolved at com-
pile time and they need extra run-time infrastructure.
Modern Linux systems and x86-64 in particular imple-
ment shared libraries using Position Independent Code
(PIC) [5–7]. PIC avoids costly relocation of function
addresses at load time by using an extra indirect call
through the Procedure Linkage Table (PLT). This indi-
rect call hurts performance and increases instruction
Translation Lookaside Buffer (iTLB) misses.

• Functions imported from shared libraries are not vis-
ible to the linker. This prevents optimizations such
as inlining and Feedback-Directed Optimization (FDO).
We discuss FDO in more detail in Section 2.4.

In Google data centers, applications are statically linked and
their size is typically in the hundreds of megabytes. Statically
linking the memory primitives only marginally increases the
binary size and overcomes the aforementioned problems.

2.3 Run-Time Dispatch
As CPUs and Instruction Set Architectures (ISAs) evolve, new
instructions become available and performance of older in-
structions may improve or degrade. Unless a libc is built for
a specific CPU model, it must accommodate the older models
but it should also provide an optimized versions for newer
CPU models. To this end, Linux libraries use a run-time dis-
patching technique on top of PLT called IFUNC [26] that is
commonly used by glibc. On the first call to an IFUNC, the
indirect address—stored in the Global Offset Table (GOT)—
points to a custom resolver function that determines the best
implementation for the host machine. The resolver then over-
rides its own GOT entry so that subsequent calls access the
selected function. After the setup phase, an IFUNC has the
same indirect call costs and limitations as a function from a
shared library, even if it is linked statically.

automemcpy: A Framework for Automatic Generation of Fundamental Memory Operations ISMM ’21, June 22, 2021, Virtual, Canada

2.4 Feedback-Directed Optimization
The most significant optimizations in recent years came from
the mainstream adoption of Feedback-Directed Optimiza-
tion6 (FDO) with global efficiency improvements typically
over 10% [15]. FDO relies on a measured execution profile to
make informed compilation decisions7 based on how the ap-
plication actually executes the code. Because memory primi-
tives are so pervasive among all applications, they are espe-
cially well covered by sampling profilers8 and could greatly
benefit from FDO.
However, FDO can only be applied to the parts of the

application for which source code is available to the com-
piler/linker. In particular, it can’t be applied to dynamically
linked functions and IFUNCs. Moreover, FDO does not under-
stand and is not allowed to modify code written in assembly.
This effectively means that the way memory functions are
implemented onmost systems prevents them from benefiting
from one of the most efficient optimization techniques.

3 Our Approach
Based on our analysis of the shortcomings of current im-
plementations, we design our implementation primitives
around two main principles:

• High-level description. The implementation should
be written using a high-level language—we chose C++
for its expressiveness. This makes the code shorter and
more readable, and it allows the compiler to use ad-
vanced optimization techniques, including FDO.When
needed, we examine the generated code to debug per-
formance issues, but never write assembly directly.

• Data-based optimization. On top of fleet-wide ex-
ecution profiles, we record run-time values of the
memcpy size argument for several representativework-
loads. We use the measured size distribution to auto-
matically select the best set of elementary strategies
and design the decision logic driving the function.

3.1 Measuring size Distributions
There are several ways of collecting the run-time values for
the size argument:

1. Manually instrument our memcpy implementations.
2. Rely on compiler’s instrumentation and value profiler.
3. Rely on profiling infrastructure.
Solutions 1 and 2 require a special (instrumented) build

of each application and add an extra run-time cost which
is impractical for use in production. Instead, we make use
of existing profiling infrastructure: the Linux perf tool [27].
This is an interface to the Linux performance monitoring
6In some contexts, FDO is also called Profile-Guided Optimization.
7Examples of what can be achieved are: determining which functions to
inline, or how to lay out the code to improve locality and reduce branching.
8Modern datacenters continuously run sampling profilers on their work-
loads as a part of standard operations [22].

subsystem that can attach to a running process and collect
profiling data without a need to recompile or restart the ap-
plication. Among other features, it allows sampling register
values at certain points during the execution of the program.
In our case, we set it up to sample the RDX register right af-
ter a call instruction. Under the System V x86-64 ABI [25],
this register contains the size argument of memcpy. Since
memcpy is statically linked, its address in the binary is known
at compile time, so we can easily filter samples belonging to
memcpy and gather them into a histogram.

3.2 Performance Definition
There are many dimensions to consider when designing
a memory function implementation. Contrary to existing
implementations that usually optimize for throughput,9 we
will focus on latency and code size as they aremost important
for our use cases. Code size is measured with the help of
the nm linux command and latency is measured through a
custom benchmarking framework. We define latency as the
running time of the memory operation for a given hardware
in a given context.

3.3 Benchmarking
Measuring the performance of memory functions is both
hard and critical, so we devote a whole section to our bench-
marking methodology. In the context of Google, we can rely
on fleet-wide profiling to measure the efficiency of an imple-
mentation. However, linking statically means that we have
to wait for all applications to be released before seeing the
results, which is not practical.
The aim here is to provide an accurate and reproducible

measurement of latency. To do so we heed the following
design principles:

1. Measuring instrument. We make use of the Time
Stamp Counter (TSC). It is the most precise clock avail-
able: a hardware register located on the CPU itself,
counting the number of CPU cycles elapsed since boot.
There are two versions of the TSC on x86-64 proces-
sors. One is in-core and ticks at a rate depending on a
number of factors (power saving mode, defined max-
imum and minimum frequency, thermal regulation);
the other one is Uncore,10 which ticks at a fixed fre-
quency usually referred to as ref cycles. Most high
end CPU architectures provide similar functionality
(SPARC, ARM, IBM POWER). The Uncore counter’s
frequency is about the same as that of the processor
in non-turbo mode. We use the Uncore counter to ac-
count for uniformly elapsing time.

2. Frequency Scaling. The Operating System usually
provides a way for the user to control the CPU core
frequencies (i.e., Scaling Governors under Linux), but

9Number of bytes processed per unit of time.
10https://en.wikipedia.org/wiki/Uncore

https://en.wikipedia.org/wiki/Uncore

ISMM ’21, June 22, 2021, Virtual, Canada G. Chatelet, C. Kennelly, L. S. Xi, O. Sykora, C. Courbet, X. D. Li, and B. De Backer

the CPUmay reduce its frequency automatically under
some workloads [19, 24]. By instructing the CPU to
run at the maximum allowed frequency and using the
uncore TSC, we make sure to account for potential
frequency reductions.

3. Operating System. To lower the impact of interrup-
tion and process migration, we pin the benchmarking
application to a reserved core.11

4. Compiler perturbations. Clever dead-code and de-
pendency analyses performed automatically by the
compiler may cancel or distort the measurement. To
this end we use techniques such as the escape inline
assembly described by Carruth [8].

5. Memory Subsystem. On modern non-embedded sys-
tems, RAM bus frequency is only a fraction of the
CPU core frequency. This well-known bottleneck is
balanced out by several levels of caching. The number,
size, and speed of each of these layers makes it hard
to attribute the result of the measurement to the algo-
rithm itself. For this reason, our framework takes extra
care to fit all the needed data into the L1 cache. The
results are slightly idealized but more reproducible and
comparable between CPUs of different cache sizes.

6. CPU. At the CPU level, out-of-order execution, su-
perscalar architecture, Macro-Operation Fusion (MOP
Fusion), Micro-Operation Fusion, and speculative exe-
cution make it harder to correlate TSC with individual
instructions. To mitigate these imprecisions and in-
crease the Signal to Noise Ratio (SNR) we run enough
iterations of each function to get noise down to ±1%.
Note that the repeated execution will bias the results
as the CPU will learn the branching pattern perfectly.
Consequently, we randomize the size of the operation
as well as the source and destination pointers. Ran-
domization is pre-computed and stored in an array so
it is not accounted for in the measurement. The size
of the array is large enough to prevent quantization
effects but small enough to keep all data in L1.

Additionally, it is worth noting that a number of effects
do play a role in production and are not directly measurable
through microbenchmarks. We end this section with the
following known limitations:

1. The code size of the benchmark is smaller than the
hot code of real applications and it doesn’t exhibit
instruction cache and iTLB pressure as much.

2. For the reasons stated in item 5 above, the current
version of the benchmark does not handle large oper-
ations spanning multiple cache levels.

11If the processor supports Simultaneous MultiThreading (SMT) all the logi-
cal CPUs sharing the same core should be reserved as well, or SMT should
be disabled altogether.

+ . . .

+ . . .
= . . .

Figure 1. Example Overlapping operation on 11 bytes. Bytes
from the source location are copied using two 8-byte block
operations that partially overlap. The five bytes in the middle
are copied twice.

3.4 Generic Access Strategies
At a high level, a memcpy implementation is assembled from
a set of simpler copying strategies (elementary strategies)
along with its associated decision logic that selects the best
copying strategy for a given size.
By analyzing the code of available implementations and

through experimentation, we identified the following pat-
terns for processing memory. In this section, we list these
strategies and describe their specifics.

3.4.1 Block Operation
A Block Operation consists of accessing a fixed amount of
memory of size 𝐵𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 . To be efficient, 𝐵𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 should
correspond to sizes natively supported by load and store
instructions of the CPU architecture. It is the simplest access
pattern and is implemented using the simple load and store
instructions provided by the ISA.

3.4.2 Overlap Operation
This access pattern is the composition of two Block Opera-
tions that may partially overlap, and it is a central compo-
nent of efficient implementations. This approach has several
advantages. First, a single access pattern involving two op-
erations of size 𝑁 can handle a range of sizes ∈ [𝑁 ; 2 × 𝑁].
Second, modern processors offer memory addressing modes
that render this pattern efficient in practice.
Figure 1 shows an example of Overlap Operation for 11

bytes. As depicted by the darker cells, one or more bytes
may be accessed several times. While this strategy is valid
for implementing memcpy, such a technique is not suitable
when volatile12 semantics apply.

3.4.3 Loop Operation
The Loop Operation involves a repetition of Block Opera-
tions followed by a trailing Overlap Operation. Note that
up to 𝐵𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 − 1 bytes may be accessed twice. Figure 2
shows an example of a Loop Operation.

3.4.4 Aligned Loop Operation
The Aligned Loop Operation starts with a Block Operation
to ensure that reads are aligned. It is then followed by a
12Note that the volatile keyword in C presents a number of issues and is
considered for deprecation [4].

automemcpy: A Framework for Automatic Generation of Fundamental Memory Operations ISMM ’21, June 22, 2021, Virtual, Canada

+ . . .

+ . . .

+ . . .

+ . . .
= . . .

Figure 2. Example Loop Operation on 13 bytes. The first 12
bytes are copied using three non-overlapping 4-byte Block
Operations. The remaining one byte is copied using a par-
tially overlapping 4-byte Block Operation. Three bytes are
accessed twice.

+ . . .

+ . . .

+ . . .

+ . . .

+ . . .
= . . .

Figure 3. Example Aligned Loop Operation on 17 bytes. Two
partially overlapping operations are used at the beginning
and at the end. All remaining bytes are handled using aligned
non-overlapping Block Operations.

Loop Operation. Note that in a worst case scenario, up to
𝐵𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 − 2 bytes may be accessed three times. Figure 3
shows an example of an Aligned Operation.

3.4.5 Special Instructions
Some ISAs provide primitives to accelerate string manipu-
lation. For example, x86-64 offers specialized instructions
for copy (rep mov), initialization (rep sto) and comparison
(repe cmps). The performance of these instructions varies
greatly from microarchitecture to microarchitecture [28] but
it is important to consider them as their footprint is so small
they could be easily inlined everywhere. In the rest of this
paper we refer to these special instructions as accelerators.

3.5 Run-Time Size Coverage
The Generic Access Strategies we presented in the previous
section can handle one or more sizes, Table 3 lists their run-
time size coverage in terms of 𝐵𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 .
These strategies can be composed in different ways to

build a full implementation covering the whole size_t range
[0, SIZE_MAX]. By way of illustration, a possible coverage is
given in Table 4.
To find the best memcpy implementation, we use a con-

straint solver to enumerate all valid memcpy implementations
matching our specification. We consider only memory func-
tions that subdivide the range [0, SIZE_MAX] into smaller

Table 3. Size coverage for a given strategy

Operation Size range
Block [𝐵𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒, 𝐵𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒]
Overlap [𝐵𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒, 2 × 𝐵𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒]
Loop [𝐵𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒, +∞]
Aligned Loop [𝐵𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒, +∞]
Accelerator [0, +∞]

Table 4. An example of coverage for a memory operation

Size range Operation BlockSize
[0, 0] - -
[1, 1] Block 1
[2, 4] Overlap 2
[5, SIZE_MAX] Loop 4

regions and cover each of them using one of the strategies
described in Section 3.4 using the following schema:
A B C D E
| individual sizes | overlap | loop | accelerator |

where A, B, C, D and E are bounds separating the regions.
If the run-time copy size is in [A, B) the copy will be

handled with the individual sizes strategy, in [B, C) with
the overlap strategy, and so on. A and E are anchored to 0
and SIZE_MAX respectively to make sure the whole range
is covered (eq. 1), and we make sure that the bounds are
ordered (eq. 2).

(𝐴 = 0) ∧ (𝐸 = SIZE_MAX) (1)

(𝐴 ≤ 𝐵) ∧ (𝐵 ≤ 𝐶) ∧ (𝐶 ≤ 𝐷) ∧ (𝐷 ≤ 𝐸) (2)
When the two bounds of a region are equal, e.g., when

𝐴 = 𝐵, the region is empty and the corresponding strategy
is not used in the generated function.

The individual sizes region handles each run-time size
individually with a Block Operation. In this study we restrict
B to small values as larger values substantially increase code
size.

(𝐴 = 𝐵) ∨ (𝐵 ≤ 8) ∨ (𝐵 = 16) (3)
The overlap region handles run-time sizes from B to C

by using one or more Overlap Operations. In this study we
explore all overlap regions for 𝑠𝑖𝑧𝑒 ∈ [4; 256] as well as the
empty region.

(𝐵 = 𝐶) ∨

𝐵 < 𝐶

𝐵 ∈ {4, 8, 16, 32, 64, 128}
𝐶 ∈ {8, 16, 32, 64, 128, 256}

(4)

The loop region employs the aligned loop strategy with a
run-time 𝐵𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 ∈ {8, 16, 32, 64}. If 𝐶 = 𝐷 , we also force
loop_block = 0 to remove redundant implementations.

ISMM ’21, June 22, 2021, Virtual, Canada G. Chatelet, C. Kennelly, L. S. Xi, O. Sykora, C. Courbet, X. D. Li, and B. De Backer

1

2

4

8

(a) Simple tree processing
small sizes first

8

4

1 2

(b) An optimized tree where
most values are above 8

Figure 4. A depiction of two branching strategies

loop_block = 0
𝐶 = 𝐷

}
∨

loop_block ∈ {8, 16, 32, 64}
𝐶 > 2 × loop_block
𝐷 −𝐶 > loop_block

(5)

The accelerator regionmakes use of special instructions
where available. We allow accelerator to start for small
sizes or amongst a set of discrete values.

(𝐷 ≤ 16) ∨ (𝐷 ∈ {32, 64, 128, 256, 512, 1024}) ∨ (𝐷 = 𝐸) (6)

3.6 Branching Pattern
Once a coverage has been determined, it is necessary to
decide which branch should be favored to lower the whole
operation latency. A simple approach is to make sure that
small sizes are processed first so that the cost of branching
is proportional to the amount of bytes to process (Figure 4a).
Another possibility is to prioritize sizes that occur the most.
To this end, we make use of Knuth’s Optimum Binary Search
Trees [23] that constructs a binary search tree producing
code with the shortest expected control height for a given
set of probabilities (Figure 4b).
The implementation can also explore a more elaborate

model to represent the cost of compares, branch instructions,
and taken branches. A hybrid expansion approach can also
be used. For instance when a sequence of individual sizes
gets dispatched to Block Operations, all sizes can be lumped
together and share one jump table. Note that this approach
will be the most effective when it is used for inlining—using
per-callsite profile data.

3.7 Optimized Memory Functions
The usage of memory primitives varies widely depending
on the use case. One extreme case is the Linux kernel that
spends a very significant proportion of its time clearing
or copying memory pages, which are always 4096 bytes

in length. Just like libc, the Linux kernel provides several
implementations, with a dynamic selection mechanism. In
contrast, for typical applications running on Google fleet,
we’ve found that sizes are very biased towards zero (see
Section 4.1). The best algorithm for the Linux kernel is not
necessarily optimal for other applications. In this section we
provide a principled approach to design efficient memory
functions tailored to a given environment:

1. We first model the function in terms of its coverage
strategies as described in Section 3.5, and use the Z3
Solver [16] to enumerate all valid coverages. Each of
them is described in terms of its parameters A, B, C, D,
E, and loop_block, and whether we use an optimized
branching pattern or not (Section 3.6).

2. We generate the source code for all of them and en-
code the values of the parameters into the function
name—this allows us to generate all functions in a
single file and quickly identify and understand the
implementation.

3. The code is then compiled and benchmarked on all rel-
evant microarchitectures using synthetic distributions
observed in production.

4. The best performing implementation is chosen, in the
case of a fleet of heterogeneous microarchitectures we
pick the implementation that minimizes the overall
latency.

Not only does this approach allow the functions to be opti-
mized for a particular application (or set of applications) but
it also adapts to special requirements like special compila-
tion flags, new microarchitectures or new CPUs. The model
described here generates 290 different functions which are
benchmarked in one or two hours. It is straightforward to
extend the exploration of the implementation space.

The techniques mentioned here are related to the domain
of auto-tuning which has been an important field of research
inHigh Performance Computing (HPC) [3] and Signal Process-
ing libraries [17, 18, 30]. To our knowledge, the only related
work in this domain is the one from Ying et al. [31], focusing
on optimal generation of assembly for Reduced Instruction
Set Computer (RISC).

4 Results
4.1 Memfunctions Size Distributions
The instrumentation procedure described in Section 3.1 in-
troduces a small overhead (1–3%) on the application itself
during the time that the profiler is active, due to the overhead
introduced by perf_events profiling. A 30-second profiling
session typically gathers enough data for analysis, depend-
ing on the frequency with which the application calls the
memory operations. Figures 5, 6, and 7 shows the cumula-
tive probability distribution for sizes of the biggest users of
memcpy, memcmp and memset at Google. The data is publicly
available [12]. Table 5 summarizes these figures and shows

automemcpy: A Framework for Automatic Generation of Fundamental Memory Operations ISMM ’21, June 22, 2021, Virtual, Canada

0 64 128 192 256 320 384 448 512 576
memcpy size (B)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Pe
rc
en
ta
ge

of
al
lc
al
ls

database 1
database 2
database 3
logging
service 1
service 2
service 3
service 4
storage

Figure 5. Cumulative histogram of memcpy size for various
Google workloads.

0 64 128 192 256 320 384 448 512 576
memcmp size (B)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Pe
rc
en
ta
ge

of
al
lc
al
ls

database 1
database 2
database 3
logging
service 1
service 2
service 3
service 4
storage

Figure 6. Cumulative histogram of memcmp size for various
Google workloads.

Table 5. Percent of calls below certain size values

Function % of calls ≤ 128 % of calls ≤ 1024
memcpy 96% 99%
memcmp 99.5% 100%
memset 91% 99.9%

that the majority of calls to memory functions act on a small
number of bytes.
The fact that the size distribution is strongly skewed to-

wards small sizes advocates optimizing for latency instead
of throughput. We have seen previously that relocation and
run-time dispatch introduce an indirect call which delays pro-
cessing. For example, a trivial zero size memory operation
would still have to go through address resolution and per-
form the indirect call before returning to the calling code. To
remove this latency entirely we link the memory primitives

0 64 128 192 256 320 384 448 512 576
memset size (B)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Pe
rc
en
ta
ge

of
al
lc
al
ls

database 1
database 2
service 3
storage

Figure 7. Cumulative histogram of memset size for various
Google workloads.

statically inside the binary and refrain from using IFUNC.
This comes with the disadvantage that we can no longer
pick the best implementation for the CPU at run-time; this
choice has to be made during compilation. Arguably, for dis-
tributions skewed towards small sizes, the use of wider load
and store instructions available on newer microarchitectures
doesn’t matter as much. In situations where it is important,
this can be mitigated by providing several binaries covering
the diversity of the fleet.

4.2 C++ Library
In Listing 1, we provide Block, Overlap andAligned Loop C++
implementations of the copy operation. The individual build-
ing blocks are unit tested for correctness, buffer overflow and
maximum number of accesses per byte. Note that the use of
__builtin_memcpy_inline is a compiler intrinsic function
that is semantically equivalent to a for loop copying bytes
from source to destination—i.e., has the semantic of memcpy.
Its use is necessary to prevent the compiler from recognizing
the memcpy pattern which leads to a reentrancy problem [9].

4.3 Fleet-Wide Manual Implementation
Now that we have defined the primitive C++ copy functions,
we can assemble them to handle all run-time sizes. Listing 2
shows a generic yet efficient implementation of memcpy that
has been tuned by trying out different building block combi-
nations and parameters. Full source code is available in [14].
Note that this version handles small sizes first. In Section 4.4,
we will take a closer look at size distributions and explore
optimized branching patterns.

A note on the use of AVX instructions. Although a
large portion of Google fleet supports the AVX instruction
set extension, their use is restricted to prevent important
slowdown due to frequency reduction [19, 24]. To that end

ISMM ’21, June 22, 2021, Virtual, Canada G. Chatelet, C. Kennelly, L. S. Xi, O. Sykora, C. Courbet, X. D. Li, and B. De Backer

template <size_t kBlockSize>

void CopyBlock(char *__restrict dst,

const char *__restrict src) {

__builtin_memcpy_inline(dst, src, kBlockSize);

}

template <size_t kBlockSize>

void CopyLastBlock(char *__restrict dst,

const char *__restrict src,

size_t count) {

const size_t offset = count - kBlockSize;

CopyBlock<kBlockSize>(dst + offset, src + offset);

}

template <size_t kBlockSize>

void CopyBlockOverlap(char *__restrict dst,

const char *__restrict src,

size_t count) {

CopyBlock<kBlockSize>(dst, src);

CopyLastBlock<kBlockSize>(dst, src, count);

}

template <size_t kBlockSize, size_t kAlignment = kBlockSize>

void CopyAlignedBlocks(char *__restrict dst,

const char *__restrict src,

size_t count) {

CopyBlock<kAlignment>(dst, src);

const size_t ofla =

offset_from_last_aligned<kAlignment>(src);

const size_t limit = count + ofla - kBlockSize;

for (size_t offset = kAlignment; offset < limit;

offset += kBlockSize)

CopyBlock<kBlockSize>(

dst - ofla + offset,

assume_aligned<kAlignment>(src - ofla + offset));

CopyLastBlock<kBlockSize>(dst, src, count);

}

Listing 1. Real C++ code for various copy operation strate-
gies

we make use of LLVM’s -mprefer-vector-width=128 op-
tion that limits the width of generated vector instructions.
For this reason, the x86-64 generated code (clang 12, op-
tions -O3 -mcpu=haswell -mprefer-vector-width=128)
will not use AVX. It is still quite compact (377 bytes) and fits
in six cache lines.

Performance. It is important to point out that although
this implementation does not use all the techniques applied
by glibc (e.g., non temporal move or rep mov) [29], it per-
forms better on Google workloads. As suggested in [2], the
smaller memory footprint compared to glibc (377B vs 765B,
see Table 2) allows more application code to stay in the
instruction cache. Indeed memcpy, memcmp, and memset are
called on a regular basis and can contribute to instruction
cache pressure, evicting previous application code from L1.

void memcpy(char *__restrict dst,

const char *__restrict src,

size_t count) {

if (count == 0)

return;

if (count == 1)

return CopyBlock<1>(dst, src);

if (count == 2)

return CopyBlock<2>(dst, src);

if (count == 3)

return CopyBlock<3>(dst, src);

if (count == 4)

return CopyBlock<4>(dst, src);

if (count < 8)

return CopyBlockOverlap<4>(dst, src, count);

if (count < 16)

return CopyBlockOverlap<8>(dst, src, count);

if (count < 32)

return CopyBlockOverlap<16>(dst, src, count);

if (count < 64)

return CopyBlockOverlap<32>(dst, src, count);

if (count < 128)

return CopyBlockOverlap<64>(dst, src, count);

return CopyAlignedBlocks<32>(dst, src, count);

}

Listing 2. an efficient yet readable implementation of
memcpy

Using this version of memcpy and associated memcmp and
memset improved the throughput of one of our main ser-
vices by +0.65% ± 0.1% Requests Per Second (RPS) compared
to the default shared glibc. Overall we estimate that this work
improves the performance of the fleet by 1%.

4.4 Fleet-Wide Autogenerated Implementations
As illustrated in Figure 5, most of the sizes for memcpy at
Google are heavily skewed toward small values. The most
occurring ones being spread between 0 and 32 with spikes
depending on specific workloads. For the optimized branch-
ing pattern (Section 3.6) we use the sum of the measured
size probability distribution; giving an equal weight to each
of them. The code is compiled and benchmarked on a dedi-
cated pool of machines with isolated cores running the per-
formance frequency governor. We benchmark the following
x86-64 microarchitectures: Intel Sandybridge, Intel Ivybridge,
Intel Broadwell, Intel Haswell, Intel Skylake Server (SKX)
and AMD Rome. The benchmarks make use of the rep mov
instruction and a total of 290 memcpy configurations. We
measure the average latency for each of the 9 size distribu-
tions of Figure 5 and an additional synthetic distribution for
larger sizes (uniformly distributed sizes between 384 and
4096). We produce 1000 samples for each of them to get a
sense of the statistical distribution. We show a sample of the
distributions in Figure 8.

automemcpy: A Framework for Automatic Generation of Fundamental Memory Operations ISMM ’21, June 22, 2021, Virtual, Canada

Implementations of memcpy

350 `𝑆

400 `𝑆

450 `𝑆

Figure 8. Distributions of latency measurement for several
memcpy implementations as measured on SKX for service 1.

In the context of this paper, we reduce the thousand sam-
ples to a single median value13 as this provides a total order
over the set of functions. For each distribution we derive a
speedup ratio by dividing each median latency by the one of
the glibc14—which is our baseline implementation. We use
the geometric mean (geomean) of these speedups to repre-
sent the performance of a particular implementation over the
baseline and across the selected distributions. In the rest of
the paper, we refer to this metric as the score of the function.

This systematic exploration exhibits implementations that
perform about +10% faster than our manual implementa-
tion for four out of six microarchitectures in our particular
environment (combination of workloads and special com-
pilation options). For Haswell and Broadwell, the manual
implementation is already close to the optimum. In Figure 9,
we plot the score for the 290 autogenerated x86-64 memcpy
implementations as measured on Skylake Server.

Key Takeaways. Overall, the best performing functions
for x86-64 rely on a small individual sizes region (𝐵 = 4
or 8) followed by a set of overlapping copies up to 256 bytes
while an aligned copy loop using blocks of 64 bytes helps
accommodate the bigger sizes. The rep mov instruction may
be useful for even bigger copies depending on the microarchi-
tecture but it’s usually on par with implementation relying
exclusively on aligned copy loop. It is to be noted that the
worst performing functions for our workloads are the ones
that rely almost exclusively on the specialized rep mov in-
struction.

Timings. The whole process takes a few hours. The enu-
meration and code generation for all valid implementations
takes a few seconds. The duration of the benchmarking pro-
cess ranges from tens of minutes to a few hours, depending
on a number of parameters such as: the number of samples,

13Considering that some distributions of latency measurement are multi-
modal we acknowledge that a better metric is desirable.
14GNU C Library 2.19 with local modifications.

Table 6. Score for worst, manual implementation and best
memcpy functions taking the system glibc as a baseline.

worst manual best
Rome 0.42 1.35 1.43
Skylake Server 0.54 1.38 1.53
Haswell 0.52 1.39 1.40
Broadwell 0.52 1.42 1.43
Ivybridge 0.57 1.22 1.34
Sandybridge 0.26 1.23 1.35
Neoverse-N1 0.82 1.21 1.36

the number and shapes of the distributions, the number and
efficiency of the generated functions, and the number and
the performance of the considered microarchitectures. In this
study, we used 1000 samples, 10 distributions, 290 functions
and 6 microarchitectures. The single threaded benchmark
is launched on the 6 microarchitectures in parallel and the
results are available in under two hours.

Open Source. One of our goals is to make our improve-
ments available publicly to people who do not have access
to Google fleet. The community should be able to measure
performance and contribute improvements, so we released
the methodology and the source code of our benchmark as
open source [11, 13].

Results. The worst, manual implementation and best per-
forming implementations are summarized in Table 6. It is
worth mentioning that the optimized branching pattern does
not yield a systematic performance improvement and seems
to be quite dependent on the processor microarchitecture.
Further investigation is required to determine the usefulness
of this optimization.

Case Study. To test the robustness of our method on a
different architecture, we conducted the same experiment
on an ARM Neoverse-N1 machine. The ARM ISA has no
instructions similar to rep mov, so the number of generated
functions drops to 60. We complement this set of functions
with a particular implementation from ARM Optimized Rou-
tines [1] to check how close we get to optimized assembly—
this implementation is statically linked. In our context, our
top performing function has an overall speedup of 1.36 over
the system’s glibc15 which is about +8% faster than the hand-
written assembly scoring 1.26. We note that each of them has
different strengths andweaknesses depending on a particular
size distribution.

4.5 Tailored Implementations
In the two previous sections, we have shown how we can
write a generic implementation of memcpy that works effi-
ciently across the fleet. However, we do not claim that all
workloads are similar to those that we run at Google. In this

15GNU C Library 2.27 with local modifications.

ISMM ’21, June 22, 2021, Virtual, Canada G. Chatelet, C. Kennelly, L. S. Xi, O. Sykora, C. Courbet, X. D. Li, and B. De Backer

score

database 1

database 2

database 3

logging

service 1

service 2

service 3

service 4

storage

uniform 384 to 4096
0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Figure 9. The speedups of the 290 generated memcpy functions for individual applications on SKX over glibc (𝑠𝑐𝑜𝑟𝑒 ∈
[0.53, 1.53]).

20 22 24 26 28 210 212 214 216 218 220 222 224
copy size

0%

20%

40%

60%

80%

100%

Pe
rc
en
ta
ge

of
al
lc
al
ls 400.perlbench

401.bzip2
403.gcc
429.mcf
445.gobmk
456.hmmer
458.sjeng
462.libquantum
464.h264ref
471.omnetpp
473.astar
483.xalancbmk

Figure 10. Cumulative distribution of memcpy sizes for each
SPEC int benchmark (ref set). Note the log scale.

section, we show how our approach can be used to derive
efficient implementations for a specific workload.
The SPEC benchmark suite [20] is a widely used set of

benchmarks that covers a diverse set of compute-intensive
workloads from real-world applications. Figure 10 shows the
distribution of memcpy sizes for each benchmark of the ref
data set.
One important thing to notice is that even though most

workloads make small copies, some of them (e.g., h264ref,
libquantum) perform a significant number of large copies.

Table 7. Percentage of the time spent in memcpy for each
SPEC int benchmark (ref dataset) using the glibc implemen-
tation on Haswell

benchmark % time in memcpy
400.perlbench 1.1%
401.bzip2 0.2%
403.gcc 0.3%
429.mcf 0.0%
445.gobmk 0.3%
456.hmmer 0.0%
458.sjeng 0.0%
462.libquantum 0.0%
464.h264ref 24.3%
471.omnetpp 0.0%
473.astar 0.0%
483.xalancbmk 3.3%

Additionally, Table 7 shows that for some of them, memcpy
represents a very significant portion of the total time for the
benchmark. Among all these examples, 464.h264ref is an
outlier as it has both a non-standard distribution of sizes,
and spends a large amount of time in memcpy (about 24% of
total cycles).
We focus on 464.h264ref to demonstrate the power of

this techniques on an application with very specific needs.

automemcpy: A Framework for Automatic Generation of Fundamental Memory Operations ISMM ’21, June 22, 2021, Virtual, Canada

if (count == 0) {

return; // 0

} else if (count >= 1) {

if (count == 1) {

return CopyBlock<1>(dst, src); // 1

} else if (count >= 2) {

return CopyRepMovsb(dst, src, count); // [2, +inf]

}

}

Listing 3. The auto-generated implementation selected by
automemcpy for 464.h264ref.

Table 8. Performance of the glibc, fleet-wide and specialized
memcpy for the 464.h264ref SPEC benchmark, on HSW.
Intervals are given with 95% confidence, and the speedup is
defined as the ratio between the time for glibc and that for
the implementation (larger is better)

memcpy % time in memcpy total
implementation memcpy speedup speedup
glibc 24.35% ± 0.13 1.00 1.00
fleet-wide 25.14% ± 0.10 0.96 0.99
specialized 15.05% ± 0.15 1.80 1.11

To generate an optimized memcpy implementation, we col-
lected a size profile when running the benchmark, and ran
automemcpy on the result. The framework selected the im-
plementation shown in Listing 3. Intuitively the framework
detects, based on data, that memcpy sizes are either 0, 1, or
very large, and so it optimizes for these two cases. The re-
sulting code is extremely simple and small.
We ran the 464.h264ref benchmark with the original

glibc implementation, our fleet-wide implementation, and
the specialized implementation generated by automemcpy.
All experiments were performed on a 6-core Xeon E5 running
at 3.50GHz with 16MB L3 cache. The results are summarized
in Table 8. Unsurprisingly, our fleet-wide implementation
is worse than the original glibc, because the implementa-
tion optimizes for a different size distribution than that of
464.h264ref. However, the specialized implementation out-
performs the one from glibc by a factor of 1.8, resulting in
the benchmark’s running more than 10% faster overall.
Keep in mind that the auto-generated memcpy implemen-

tation is only going to be efficient as long as the size distribu-
tion of the data does not significantly differ from the one on
which is was trained. Therefore, such specializations must
be regenerated periodically. Ideally, they should be part of
the release process of the target application.

5 Limitations and Further Work
5.1 Collected Data
Since the resulting implementation depends on the collected
data, it is critical that the measured size distribution be as
representative as possible of the real run-time behavior. In
the context of this paper, we used nine archetypal work-
loads and—as we have seen in Section 4.1—these distribu-
tions are all very similar for memcpy. However, it is possible
that other workloads use a different size distribution. We
plan on working on a more systematic approach to collect
size distribution data for all workloads—weighted by their
prevalence in the fleet.

5.2 Heterogeneous size Distributions
As seen in Section 4.5, building tailored implementations for
a binary can greatly improve its global performance. Some
particular workloads may use an entirely different size dis-
tribution, some may also have a different size distribution
per call site. Wewant to explore letting the compiler automat-
ically generate the proper implementation by itself, based
on sampled run-time data. One can even envision generat-
ing multiple specialized implementations for one application,
based on the call site context. They could be inlined or shared
across multiple contexts via cloning.

5.3 Limitations of Benchmarking
Overall, we pick the function that maximizes the score, but
a number of effects do play a role in production that are
not directly measurable through benchmarks. For instance,
the code size of the benchmark is smaller than the hot code
of real applications and doesn’t exhibit instruction cache
pressure as much. When a candidate function is selected,
it is crucial to also test it in production and verify that the
performance gains are realized.

5.4 Framework Extensions
The framework presented in this paper can be extended in a
number of ways:

1. By design, the benchmarking methodology imposes
a restriction on the number of bytes to process: all
data movement should stay within L1 to prevent ac-
counting for the specifics of the memory subsystem. If
bigger sizes are needed, different benchmarking meth-
ods must be used as we can no longer rely on repeating
the measurement to increase SNR.

2. More Generic Access Strategies (Section 3.4) can be
added if necessary. One can think of new processor
capabilities like SVE for recent ARM processors or
special instructions hinting the memory subsystem
like PREFETCHT0 or PREFETCHNTA.

3. The Constraint System developed in Section 3.5 can be
adapted to explore other parts of the implementation
space (e.g., use more discrete values, use of unaligned

ISMM ’21, June 22, 2021, Virtual, Canada G. Chatelet, C. Kennelly, L. S. Xi, O. Sykora, C. Courbet, X. D. Li, and B. De Backer

loops, use of aligned loops with different values for
𝐵𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 and 𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 , alignment on destination
rather than source for aligned loop).

4. If the number of possible implementations becomes so
great that a systematic exploration is nomore practical,
the problem can be viewed as an online optimization
problem.

6 Conclusion
In this paper, we have devised a method to quickly iterate
and explore the design space of memory primitives. It relies
on the composition of elementary strategies activated by
a decision logic written in C++. This is a departure from
the "hand-crafted assembly" approach where decision logic,
elementary strategies and instruction selection are all in-
tertwined. We have demonstrated that our implementation
matches the performance of hand-written assembly and ul-
timately provides better performance, because it is much
easier to optimize and tune for a given workload. The high
level implementation is also easier to test and maintain, as
logical units can be tested separately.

Furthermore, we present a method to automatically gener-
ate a set of valid C++ implementations of memcpy and eval-
uate them through a specific benchmark reproducing the
size distributions measured in production. It allows finding
and deploying the functions that perform best in a particular
environment. This process requires minimal human effort,
which makes it easy to repeat it whenever the usage patterns
of the functions change. This method is suitable for optimiz-
ing both fleet-wide deployment (Section 4.4) and particular
applications (Section 4.5).
Finally, we have demonstrated that we can improve the

performance of applications by taking into account the spe-
cific run-time size distributions of their memory primitives.
In specific benchmarks (SPEC 464.h264ref) we were able
to achieve up to ten percent speedup. In particular, by re-
lying exclusively on the manual implementation, we have
improved the performance of one of the most important—
and highly optimized—services at Google by +0.65% ± 0.1%
Requests Per Second (RPS). We have witnessed similar gains
throughout the fleet which lead to an overall 1% performance
increase.

References
[1] ARM. 2020. memcpy-advsimd.S. https://github.com/ARM-software/

optimized-routines/blob/master/string/aarch64/memcpy-advsimd.S
[2] Grant Ayers, Nayana Prasad Nagendra, David I. August, Hyoun Kyu

Cho, Svilen Kanev, Christos Kozyrakis, Trivikram Krishnamurthy,
Heiner Litz, Tipp Moseley, and Parthasarathy Ranganathan. 2019. As-
mDB: Understanding and Mitigating Front-End Stalls in Warehouse-
Scale Computers. In International Symposium on Computer Architecture
(ISCA).

[3] Prasanna Balaprakash, Jack Dongarra, Todd Gamblin, Mary Hall, Jef-
frey K. Hollingsworth, Boyana Norris, and Richard Vuduc. 2018. Auto-
tuning in High-Performance Computing Applications. Proc. IEEE 106,

11 (2018), 2068–2083. https://doi.org/10.1109/JPROC.2018.2841200
[4] JF Bastien. 2018. Deprecating volatile. http://wg21.link/P1152R0
[5] Eli Bendersky. 2011. Load-time relocation of shared libraries.

https://eli.thegreenplace.net/2011/08/25/load-time-relocation-of-
shared-libraries

[6] Eli Bendersky. 2011. Position Independent Code (PIC) in shared
libraries. https://eli.thegreenplace.net/2011/11/03/position-
independent-code-pic-in-shared-libraries

[7] Eli Bendersky. 2011. Position Independent Code (PIC) in shared li-
braries on x64. https://eli.thegreenplace.net/2011/11/11/position-
independent-code-pic-in-shared-libraries-on-x64

[8] Chandler Carruth. 2015. CppCon 2015: Chandler Carruth "Tuning
C++: Benchmarks, and CPUs, and Compilers! Oh My!". https://youtu.
be/nXaxk27zwlk?t=2441

[9] GuillaumeChatelet. 2019. [llvm-dev] [RFC][clang/llvm]Allow efficient
implementation of libc’s memory functions in C/C++. https://lists.
llvm.org/pipermail/llvm-dev/2019-April/131973.html

[10] Guillaume Chatelet. 2020. automemcpy paper supplementary materi-
als. http://github.com/google-research/automemcpy

[11] Guillaume Chatelet. 2020. Benchmarking llvm-libc’s memory
functions. https://github.com/llvm/llvm-project/blob/main/libc/
benchmarks/RATIONALE.md

[12] Guillaume Chatelet. 2020. [libc-dev] Q&A and the round table high-
lights from the virtual dev meeting. https://lists.llvm.org/pipermail/
libc-dev/2020-October/000211.html

[13] Guillaume Chatelet. 2020. Libc mem* benchmarking framework. https:
//github.com/llvm/llvm-project/tree/main/libc/benchmarks

[14] Guillaume Chatelet and "other contributors". 2020. Libc string func-
tions. https://github.com/llvm/llvm-project/tree/main/libc/src/string

[15] Dehao Chen, David Xinliang Li, and Tipp Moseley. 2016. AutoFDO:
Automatic Feedback-Directed Optimization for Warehouse-Scale Ap-
plications. InCGO 2016 Proceedings of the 2016 International Symposium
on Code Generation and Optimization. New York, NY, USA, 12–23.

[16] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT
Solver. In Tools and Algorithms for the Construction and Analysis of
Systems, C. R. Ramakrishnan and Jakob Rehof (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 337–340.

[17] Franz Franchetti, Yevgen Voronenko, and Markus Püschel. 2005. For-
mal Loop Merging for Signal Transforms. SIGPLAN Not. 40, 6 (June
2005), 315–326. https://doi.org/10.1145/1064978.1065048

[18] M. Frigo and S.G. Johnson. 2005. The Design and Implementation
of FFTW3. Proc. IEEE 93, 2 (2005), 216–231. https://doi.org/10.1109/
JPROC.2004.840301

[19] Mathias Gottschlag and Frank Bellosa. 2019. Mechanism to Miti-
gate AVX-Induced Frequency Reduction. CoRR abs/1901.04982 (2019).
arXiv:1901.04982 http://arxiv.org/abs/1901.04982

[20] John L. Henning. 2006. SPEC CPU2006 Benchmark Descriptions.
SIGARCH Comput. Archit. News 34, 4 (Sept. 2006), 1–17. https:
//doi.org/10.1145/1186736.1186737

[21] ISO/IEC. 2020. ISO International Standard ISO/IEC 9899:202x (E)
– Programming Language C [Working draft]. http://www.open-
std.org/jtc1/sc22/wg14/www/docs/n2478.pdf

[22] Svilen Kanev, Juan Darago, Kim Hazelwood, Parthasarathy Ran-
ganathan, Tipp Moseley, Gu-Yeon Wei, and David Brooks. 2014. Pro-
filing a warehouse-scale computer. In ISCA ’15 Proceedings of the 42nd
Annual International Symposium on Computer Architecture. 158–169.

[23] Donald E. Knuth. 1971. Optimum binary search trees. Acta informatica
1, 1 (1971), 14–25.

[24] Vlad Krasnov. 2017. On the dangers of Intel’s frequency scaling. https:
//blog.cloudflare.com/on-the-dangers-of-intels-frequency-scaling/

[25] Michael Matz and Janothers. 2014. System V Application Binary
Interface AMD64 Architecture Processor Supplement (With LP64 and
ILP32 Programming Models) Version 1.0. https://gitlab.com/x86-
psABIs/x86-64-ABI

https://github.com/ARM-software/optimized-routines/blob/master/string/aarch64/memcpy-advsimd.S
https://github.com/ARM-software/optimized-routines/blob/master/string/aarch64/memcpy-advsimd.S
https://doi.org/10.1109/JPROC.2018.2841200
http://wg21.link/P1152R0
https://eli.thegreenplace.net/2011/08/25/load-time-relocation-of-shared-libraries
https://eli.thegreenplace.net/2011/08/25/load-time-relocation-of-shared-libraries
https://eli.thegreenplace.net/2011/11/03/position-independent-code-pic-in-shared-libraries
https://eli.thegreenplace.net/2011/11/03/position-independent-code-pic-in-shared-libraries
https://eli.thegreenplace.net/2011/11/11/position-independent-code-pic-in-shared-libraries-on-x64
https://eli.thegreenplace.net/2011/11/11/position-independent-code-pic-in-shared-libraries-on-x64
https://youtu.be/nXaxk27zwlk?t=2441
https://youtu.be/nXaxk27zwlk?t=2441
https://lists.llvm.org/pipermail/llvm-dev/2019-April/131973.html
https://lists.llvm.org/pipermail/llvm-dev/2019-April/131973.html
http://github.com/google-research/automemcpy
https://github.com/llvm/llvm-project/blob/main/libc/benchmarks/RATIONALE.md
https://github.com/llvm/llvm-project/blob/main/libc/benchmarks/RATIONALE.md
https://lists.llvm.org/pipermail/libc-dev/2020-October/000211.html
https://lists.llvm.org/pipermail/libc-dev/2020-October/000211.html
https://github.com/llvm/llvm-project/tree/main/libc/benchmarks
https://github.com/llvm/llvm-project/tree/main/libc/benchmarks
https://github.com/llvm/llvm-project/tree/main/libc/src/string
https://doi.org/10.1145/1064978.1065048
https://doi.org/10.1109/JPROC.2004.840301
https://doi.org/10.1109/JPROC.2004.840301
http://arxiv.org/abs/1901.04982
http://arxiv.org/abs/1901.04982
https://doi.org/10.1145/1186736.1186737
https://doi.org/10.1145/1186736.1186737
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2478.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2478.pdf
https://blog.cloudflare.com/on-the-dangers-of-intels-frequency-scaling/
https://blog.cloudflare.com/on-the-dangers-of-intels-frequency-scaling/
https://gitlab.com/x86-psABIs/x86-64-ABI
https://gitlab.com/x86-psABIs/x86-64-ABI

automemcpy: A Framework for Automatic Generation of Fundamental Memory Operations ISMM ’21, June 22, 2021, Virtual, Canada

[26] Carlos O’Donell. 2017. What is an indirect function (IFUNC)? https:
//sourceware.org/glibc/wiki/GNU_IFUNC

[27] Linus Torvalds. 2021. Linux Perf Tool. https://github.com/torvalds/
linux/tree/master/tools/perf

[28] Travis Downs aka BeeOnRope and Arnaud. 2019. Enhanced REP
MOVSB for memcpy. https://stackoverflow.com/a/43574756

[29] various contributors. 2021. Glibc memcpy Implementa-
tion Strategies. https://sourceware.org/git/?p=glibc.git;a=
blob;f=sysdeps/x86_64/multiarch/memmove-vec-unaligned-
erms.S;hb=6e02b3e9327b7dbb063958d2b124b64fcb4bbe3f#l20

[30] R. Whaley and Antoine Petitet. 2005. Minimizing development and
maintenance costs in supporting persistently optimized BLAS. Soft-
ware: Practice and Experience 35 (02 2005), 101–121. https://doi.org/10.
1002/spe.626

[31] Huan Ying, Hao Zhu, Donghui Wang, and Chaohuan Hou. 2013. A
novel scheme to generate optimal memcpy assembly code. In 2013 IEEE
Third International Conference on Information Science and Technology
(ICIST). 594–597. https://doi.org/10.1109/ICIST.2013.6747619

https://sourceware.org/glibc/wiki/GNU_IFUNC
https://sourceware.org/glibc/wiki/GNU_IFUNC
https://github.com/torvalds/linux/tree/master/tools/perf
https://github.com/torvalds/linux/tree/master/tools/perf
https://stackoverflow.com/a/43574756
https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/x86_64/multiarch/memmove-vec-unaligned-erms.S;hb=6e02b3e9327b7dbb063958d2b124b64fcb4bbe3f#l20
https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/x86_64/multiarch/memmove-vec-unaligned-erms.S;hb=6e02b3e9327b7dbb063958d2b124b64fcb4bbe3f#l20
https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/x86_64/multiarch/memmove-vec-unaligned-erms.S;hb=6e02b3e9327b7dbb063958d2b124b64fcb4bbe3f#l20
https://doi.org/10.1002/spe.626
https://doi.org/10.1002/spe.626
https://doi.org/10.1109/ICIST.2013.6747619

	Abstract
	1 Introduction
	2 Overview of Current Implementations
	2.1 Pervasive Use of Assembly
	2.2 Dynamic Loading and Relocation
	2.3 Run-Time Dispatch
	2.4 Feedback-Directed Optimization

	3 Our Approach
	3.1 Measuring size Distributions
	3.2 Performance Definition
	3.3 Benchmarking
	3.4 Generic Access Strategies
	3.5 Run-Time Size Coverage
	3.6 Branching Pattern
	3.7 Optimized Memory Functions

	4 Results
	4.1 Memfunctions Size Distributions
	4.2 C++ Library
	4.3 Fleet-Wide Manual Implementation
	4.4 Fleet-Wide Autogenerated Implementations
	4.5 Tailored Implementations

	5 Limitations and Further Work
	5.1 Collected Data
	5.2 Heterogeneous size Distributions
	5.3 Limitations of Benchmarking
	5.4 Framework Extensions

	6 Conclusion
	References

